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Abstract

We give a definition of convergence of differential of Lipschitz functions with
respect to measured Gromov-Hausdorff topology. As their applications, we give
a characterization of harmonic functions with polynomial growth on asymptotic
cones of manifolds with nonnegative Ricci curvature and Euclidean volume growth,

and distributional Laplacian comparison theorem on limit spaces of Riemannian

manifolds.
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1 Introduction

Let {(M;,m;)} be a sequence of pointed n-dimensional complete Riemannian manifolds
(n > 2) with Ricy, > —(n — 1) and (Y,y,v) a pointed proper metric space (i.e. ev-
ery bounded subset of Y is relatively compact) with Radon measure v on Y satisfying
(M;, m;,vol) converges to (Y,y,v) in the sense of measured Gromov-Hasdorff topology.
Here vol is the renormalized Riemannian volume of (M;,m;): vol = vol/vol By(m;). We
fix R > 0, a sequence of Lipschitz functions f; on Br(m;) = {w € M;;w,m; < R} and
a Lipschitz function f,, on Bgr(y) satisfying sup, Lipf; < co. Here w,m; is the distance
between w and m;, Lip f; is the Lipschitz constant of f;. Then we say that f; converges to
foo if fi(x;) = foolToo) for every x; € Br(m;) and zo, € Bg(y) satisfying that z; converges
t0 Too. See section 2 for these precise definitions. Assume {f;} converges to f., below.
The purpose of this paper is to give a definition: differential df; of f; converges to
differential dfs, of fs in this setting. To give the definition below, we shall recall cele-
brated works for limit spaces of Riemannian manifolds by Cheeger-Colding. By [5] and
[9], we can construct the cotangent bundle 7*Y of Y, a fiber T,;Y is a finite dimensional

real vector space with canonical inner product (-, -)(w) for a.e. w € Y. Moreover, every



Lipschitz function g on Bg(y) have canonical differential section: dg(w) € TXY for a.e.
w € Bgr(y). See section 4 in [5] and section 6 in [9] for the details.

We shall give a definition of convergence of differential of Lipschitz functions (see
Definition 4.18):

DEFINITION 1.1 (Convergence of differential of Lipschitz functions). We say that df;
converges to df, on Bg(y) if for every € > 0, o, € Br(y) 200 € Y, x; € Br(m,;) and
z; € M; satisfying that x; converges to x,, and that z; converges to z.., there exists r > 0
such that

(dr,,, df;)dvol — (dr,.,dfs)dv| < €

lim sup

1—00

1 / 1 /
V_OlBt(fL’Z) Bi(x:) U(Bt<x00)) Bi(%o)

and

1 1
lim su —/ dﬂdvolg—/ dfso*dv + €
Hoop V_OlBt(xi) By(z;) | f| o U(Bt(xoo)) Bi(zso) | / l

for every 0 <t < r.

If df; converges to dfs on Bgr(y), then we denote it by (fi, df;) = (feo, dfso) o0 Br(y).
Assume (f;, df;) = (foo, dfso) and (g;, dgi) — (oo, dgoo) On Br(y) below.
In the paper, we will study several properties of the convergence and give their appli-

cations. For example, we will give the following in section 4:

THEOREM 1.2. We have

tw [ R(ddg)dsel = [ Ful(dfadgn)de
"¢ J Br(m;) Br(y)
for every sequence of continuous functions {F;}i=1 2. on RF satisfying that F; converges

to F uniformly on each compact subsets of R. FEspecially, if foo = goo, then we have

1

lim ——— Fi(|df; — dgi|)dvol = Fi(0).
i By o B~ dad) (0)

See Proposition 4.5 and Theorem 4.20 for the proof. We will also give the following

in the section:

THEOREM 1.3. Let h; be a harmonic function on Br(m;) and hy, a Lipschitz function
on Br(y) satisfying that sup, Liph; < oo and that h; converges to hs, on Bgr(y). Then
heo is harmonic function on Br(y), (hi,dh;) — (heo, dhoo) on Bgr(y).

We remark that the harmonicity of h, in Theorem 1.3 is given already in [24] by Ding.
We will give an alternative proof of it in section 4 (see Corollary 4.37).

The organization of this paper is as follows:



In the next section, we will give several important notions and propeties for metric
spaces and manifolds to understand this paper. Most of statements in the section do not
have the proof, we will give a reference for them only.

In section 3, we will give results of rectifiability for limit spaces of Riemannian mani-
folds (Theorem 3.17 and Theorem 3.54). It is important that we can take functions which
give a rectitfiability of limit spaces, by distance functions in these theorem. As a corol-
lary, we will give an explicit geometric formula of radial derivative for Lipschitz functions
(Theorem 3.33). These results are used in section 4 essentially. In [45], we will also give a
geometric application of results in this section 3 to limit spaces of Riemannian manifolds
with Ricci curvature bounded below.

In section 4, we will give a definition of convergences of L°°-functions associated to
measured Gromov-Hausdorff convergence and give the definition of convergence of dif-
ferential of Lipschitz functions again via the definition of convergence of L*°-functions.
After that, we will give several properties of the convergence. Main properties of them
are Theorem 4.20, Theorem 4.27 and Corollary 4.35.

In section 5, as an application of results in section 4, we will study harmonic func-
tions on asymptotic cones of manifolds with nonnegative Ricci curvature and Euclidean
volume growth via Colding-Minicozzi big theory ([17, 18, 19, 20, 21, 22]). See Definition
5.3 for the definition of asymptotic cones. It is important that we can replace most of
statements for harmonic functions on manifolds in [18] with one on asymptotic cones via
Ding’s important works [23, 24] and Theorem 4.20. For instance, we will prove that the
space of harmonic functions with polynomial growth of a fixed rate is finite dimensional
vector space (Theorem 5.34). We can regard it as asymptotic cones version of finite di-
mensionality conjecture on manifolds by Yau (see for instance Conjecture 0.1 in [17]). We
remark that most of important essential ideas to prove these statements given in [18, 22].
Roughly speaking, we can get these results by “taking limit of most of results in [18]
via Theorem 4.20”. As an application of them to manifolds, we will prove the following

Liouville type theorem:

THEOREM 1.4. Let M be an n-dimensional (n > 3) complete Riemannian manifold
with nonnegative Ricci curvature and Euclidean volume growth. Then, there exists unique

dy > 1 satisfying the following properties:
1. For every asymptotic cone My, of M and 0 < d < dy, we have

H%(M,,) = {Constant functions}.

Here HY (M) is the linear space of harmonic functions on My, with order of growth

at most d.



2. There exists an asymptotic cone My, of M such that

H% (M) # {Constant functions}.

3. For every 0 < d < dy, we have

H%(M) = {Constant functions}.

See Corollary 5.48 for the proof.

In section 6, as another application of results in section 4, we will give (distributional)
Laplacian comparison theorem on limit spaces of Riemannian manifolds by using several
results in [42]. See Theorem 6.1. This formulation is given in [53] by Kuwae-Shioya
on weighted Alexandrov spaces. Roughly speaking, this Laplacian comparison theorem
implies that limit spaces of Riemannian manifolds have “definite lower bound of Ricci
curvature in some sense.” In fact, we can get a stability result of lower bound of Ricci
curvature with respect to Gromov-Hausdorff topology (Corollary 6.3). The corollary is
well known in the setting of metric measure spaces. See for instance [65, 66, 72, 88, 89,
92, 93]. We will give an alternative proof of it via the Laplacian comparison theorem.

In section 7, we will give proofs of several propositions used in previous sections.

Acknowledgments. The author would like to express his deep gratitude to Professor
Kenji Fukaya and Professor Tobias Holck Colding for warm encouragement and their
numerous suggestions and advice. He is grateful to Professor Takashi Shioya for his
suggestion about Theorem 6.1 and giving many valuable suggestions. This work was done
during the stay at MIT, he also thanks to them and all members of Informal Geometry

Seminar in MIT for warm hospitality and for giving nice environment.

2 Preliminaries

Our aim in this section is to introduce important notions and properties for metric spaces

and manifolds to understand statements in this paper.

2.1 Metric measure spaces
For a positive number € > 0, we use following notation:
a=bte<=la—b <e

We denote by U(ey, €a,... , €x; €1, C2,... , ¢;) (more simply, ¥) some positive function on R% ; x
R! satisfying

lim  W(ey,eg,.., € 01,Ca,.,¢) =0
€1,€2,...,€—0



for each fixed real numbers ¢y, ¢a,..., ¢;. We often denote by C(cy, ¢a,..., ¢;) some (positive)
constant depending only on fixed real numbers ¢y, co,..., ¢;.
For a metric space Z, a point z € Z and a positive number r > 0, we use the following

notation:
B.(2)={rve Z;z;x <7r},B,(2) ={x € Z;Z,2 <r},0B,(2) = {zx € Z;Z,x = r}.

Here 7,7 is the distance between y and z, we often denote the distance by dz(y, x). For
r < R, we put A,g(z) = Br(2) \ B.(2). For every A C Z, we also put B,(A) = {z €
Z;A,w < r} and B.(A) = {z € Z;A,x < r}. For an open subset U of Z and 1 > 0, we
put U, = {w € U; B,(w) C U}. It is easy to check that U, is closed subset of Z. For
z € Z, we define 1-Lipschitz function r, on Z by r.(w) = Z,w.

For a Lipschitz function f on Z and a point z € Z, we will use the following notations:
1. If z is not an isolated point in Z, then we put
lipf(z) = liminf sup M ,
=0 \eeB\z B F

if z is an isolated point in Z, then we put lipf(z) = 0.

2. If z is not an isolated point in Z, then we put

Lipf(z) = limsup ( sup M) :

r—0 z€Br(2)\{z} T,z

if z is an isolated point in Z, then we put Lipf(z) = 0.

3. If Z is not single point, then we put

Lipf = sup | f(w1) — f(ws)]

w1 Fwa Wi, W2

< 00,

if Z is a single point, then we put Lipf = 0.

We shall remark that for every subset A C Z and Lipschitz function f on A, there
exists a Lipschitz function f* on Z such that f*|4 = f and Lipf* = Lipf. In fact, if we
define a function f* on Z by f*(z) = inf,ca(f(a) + LipfZz;a), then it is easy to check
that f*|4 = f and Lipf* = Lip/.

For a Borel subset A of Z, an extended real valued Borel function f on A and an
extended nonnegative real valued Borel function g on A, we say that g is an upper gradient
for f if for every aj,as € A and continuous rectifiable curve 7 : [0,l] — A parametrized
by arclength with v(0) = ay,v(l) = az, we have

I
|f(ar) — flaz)| < /0 g(v(s))ds.
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For an open subset U C Z and a Lipschitz function f on U, lipf is an upper gradient for
f on U. See [5, Proposition 1.11].

We say that Z is proper if every bounded subbsets of Z are relatively compact. We also
say that Z is a geodesic space if for every x1,xo € Z, there exists an isometric embedding
v from [0, 77, T3] to Z such that v(0) = x1,v(ZT1,T3) = xo. We say that v is a minimal
geodesic from xy to x2. For a proper geodesic space W and w € W, we put C,, = {z € W,

For every x € W\ {z}, we have w,z + Z,Z > w, z} (if W is a single point, then we put
Cy, =0). We call C,, cut locus of W at w.

For a proper metric space Z and a Borel measure v on Z, we say that v is Radon
measure if v(K) < oo for every compact set K,

Y= = B, )

for every Borel subset A of Z. Then we say that a pair (Z,v) is a metric measure space in
this paper. For a metric measure space (Z,v), a point z € Z and k € R, we say that v
is Ahlfors k-reqular at z if there exist r > 0 and C' > 1 such that C~! < v(By(2))/tk < C
for every 0 < t < r. We shall introduce the notion of v-rectifiability for metric measure
spaces by Cheeger-Colding. See [9, Definition 5.3] and [9, Theorem 5.7]. For metric
spaces X1, Xo, 0 < 6 < 1 and a bijection map f from X; to X5, we say that f gives
(1 & §)-bi-Lipschitz equivalent to Xo if f and f~! are (1 + §)-Lipschitz map.

DEFINITION 2.1 (Rectifiability for metric measure spaces). For a metric measure space
(Z,v) and a Borel subset A C Z, we say that A is v-rectifiable if there exists a positive
integer m, a collection of Borel subset {Cf;}1<k<m.ien of A and a collection of bi-Lipschitz

embedding map {¢y; : Cr; — R} satisfying the following properties:

Lov(A\ Ukz Cki) =0
2. v is Ahlfors k-regular at each x € Cj.

3. For every k, z € ;e Cki and 0 < § < 1, there exists Cy; such that x € Cy; and
that the map ¢y, gives (1 £ 0)-bi-Lipschitz equivalent to the image ¢y ;(Ck.;)-

We shall recall the definition of Sobolev spaces on metric measure spaces (see [4] and
[41]). We fix a metric measure space (Z, v) satisfying that Z is a geodesic space and that
(Z,v) satisfies doubling condition below: For every r > 0, there exists K = K(r) > 1
such that 0 < v(Ba,(r)) < 2K0(By(z)) for every x € Z and 0 < s < . We fix an open set
U C Z. For functions f,g € L*(U), we say that g is a generalized upper gradient for f
if there exists sequences of extended real valued functions f; on U and upper gradient g;
for f; on U such that f; — f and g; — g in L*(U). Let Hy o(U) be the subspace of L*(U)



consisting functions f satisfying that there exists a generalized upper gradient g for f on
U. By [5, Theorem 2.10], for every f € H;o(U), there exists unique gy € L*(U) satisfying
that |g¢|r2) < |g|r2w) for every generalized upper gradient g for f. We define a norm
|- 1,2 on Hio(U) by |fli2 = | flr2@w) + 97| L2y We call (Hy2(U), |- |1,2) the Sobolev space.
We put K(U) = {k € Hy2(U); There exists n > 0 such that v({k # 0} N (U \ U,)) = 0}.

We recall the definition of (2-)harmonic function on metric measure spaces by Cheeger.
For a Borel function f on U, we say that f is harmonic on U if f|, € Hy (V) for every
bounded subset V' C U and |gy4&|r2(vy = |gf|12(v) for every k € K(U).

We shall recall the definition of weak Poincaré inequality of type (1,2) for metric
measure spaces. We say that (Z,v) satisfies a weak Poincaré inequality of type (1,2) if
for every R > 0, there exist 7 > 1 and C' > 1 such that

1 1 1 -
mrexe D AR reves WA CT\/ By ™

for every x € Z, 0 < r < R and f € Hy2(B,(x)). We remark that if (Z,v) satisfies a
weak Poincaré inequality of type (1,2), then for every R > 0, there exist C; > 1 such that

1 1 1 -
BT S| BT Sy |20 C“"\/ BT o

forevery x € Z,0 <r < R and f € Hy(B,(z)). See for instance (4.4) in [5] or [37].

We shall give a short review of important results about differentiability of Lipschitz

functions on metric measure spaces by Cheeger. We assume that (Z,v) satisfies weak
Poincaré inequality of type (1,2) below. Then, by section 4 in [5], we can construct the
cotangent bundle 7*Z of Z. See [5, Definition 4.42] for the construction. We will give

several fundamental properties of the cotangent bundle only:

1. T*Z is a topological space.
2. There exists a Borel map 7 : T*Z — Z such that v(Z \ n(T*Z)) = 0.

3. For every w € m(T*Z), 7! (w) is finite dimensional real vector space with canonical

norm | - |(w).

4. For every open set U C Z and f € H;5(U), there exists a Borel set V' C U and a
Borel map df (called differential section of f) from V to T*Z such that v(U\V) =0
and that modf (w) = w, |df|(w) = g¢(w) for every w € V. Moreover, if f is Lipschitz,
then [df|(w) = Lip/(w) = lipf (w).

5. For every open set U C Z and Lipschitz functions f;, fo on U, Leibnitz rule hold:
d(frf2)(w) = fa(w)dfs(w) + fr(w)dfz(w)

8



for a.e. weU.

See section 4 and 5 in [5] for the details.

In addition, we assume that Z is v-rectifiable below. Then, by section 6 in [9], for a.e.
w € Z, each norms | - |(w) defines the inner product (-, -)(w), i.e. [v|(w) = 1/(v,v)(w) for
every v € m 1 (w). We call {(-,-)(w) }wey Riemannian metric of Y and denote it by (-, ).

Moreover, the following bilinear form

[ (anaaja

on Hi5(Z) is closable (see [9, Theorem 6.25]). Therefore this bilinear form determines
a canonical (positive definite) self-adjoint operator Az on L*(Z). We call Az Laplace
operator of (Z,v) or Laplacian of (Z,v) Moreover, if Z is compact, then (1 + Az)~! is

compact operator (see [9, Theorem 6.27]).

2.2 Gromov-Hausdorff convergence

For compact metric spaces X1, X5, we define Gromov-Hausdorff distance between X, and
X2 by

dar (X1, Xo) = inf{d}y (¢1(X1), ¢2(X3)); There exist a metric space W and
isometric embeddings ¢; from X; to W(i =1,2)}.

Here d¥ is the Hausdroff distance and the infimum above runs over all W, ¢; satisfying
conditions above. We remark that dgp is a distance on the set of isometry class of compact
metric spaces. On the other hand, for compact metric spaces X, X5, a positive number
e > 0 and a map ¢ from X; to X5, we say that ¢ is an e-Gromov-Hausdorff approximation
if B.(Image¢) = X; and |7,y — M\ < € for every x,y € X;. It is easy to check
that if dgy (X, X2) < €, then there exists an 3e-Gromov-Hausdorff approximation from
X1 to X5 and that if there exists an e-Gromov-Hausdorff approximation from X; to
Xo, then dgp (X1, Xo) < 9e. For a sequence of compact metric spaces X;, we say that
X; converges to Xoo if dop(Xi, Xoo) converges to 0. Then we denote it by X; — Xo..
Similarly, for pointed compact metric spaces (X1, x1), (Xa, x2), we can define the pointed
Gromov-Hausdorff distance dgy ((X1, 1), (X2, x2)).

Moreover, for a sequence of pointed proper geodesic spaces, (Z;, z;), we say that (Z;, z;)
converges t0 (Zs, 200 if there exist sequences of positive numbers ¢;, R; and a (Borel)
map ¢; from (Bg,(2),2;) to (Bg,(2x), 2s) such that ¢, — 0, R; — oo as i — 00,
Br,(200) C Be,(Imagee;) and [T1,73 — ¢5(x1), ¢i(22)| < € for every zy, x5 € Bg,(z;).
We denote it by (Z;, z;) ($rfpe) (Zooy Zo0), Or more simply (Z;, z;) — (Zoo, 200). For every



Too € Lo and x; € Z;, we say that x; converges to x., ifW — 0. Then, we denote
it by z; — T.

Let (Z;, z;) — (Zwo, 200). For asequence of sets A; C Z; satisfying that there exists R >
0 such that A; C Bgr(z;) for every i, we say that A; is included by A, asymptotically if for
every € > 0, there exists iy such that for every i > iy, ¢;(A;) C B(As). Then we denote
it by limsup, ., A; C As. (If Ay = 0, then limsup,_, . A; C A implies A; = @ for every
sufficiently large i.) Similarly, we also say that A is included by A; asymptotically if for
every € > 0, there exists iy such that for every i > iy, Ao, C Ac(pi(A;)). Then we denote it
by Ay C liminf, . A;. Let Cy C liminf, . C;. For a sequence of Lipschitz function f;
on C; satisfying sup, Lipf; < oo, we say that f is a restriction of f; asymptotically if for
every w € Cx, subsequence {n(i)} of N and wy) € Cy) satisfying m — 0,
we have

lim fn(i) (wn(i)) = foo(w)'

Let limsup,_, ., D; C Dy and D, be compact. For a sequence of Lipschitz function g; on
D; satistying sup,; Lipg; < oo, we say that g is an extension of g; asymptotically if for
every w € D, subsequence {n(i)} of N and wy) € Dy satisfying m — 0,
we have

lim gy (W) = Goo(w).

For a sequence of compact set K; C Z;, we say that (Z;, z;, K;) converges t0 (Zuo, Zoo, Koo)
if there exists 7; > 0 such that 7, — 0, ¢;(K;) C Be,yr,(Ks) and Koo C Be, 11, (0:(K3)).
Then we denote it by (Z;, z;, K;) (P1,Res) (Zoo, Zooy Koo) or, more simply, (Z;, z;, K;) —
(Zoo, Zooy Koo) O K; — K. It is easy to check that (Z;, z;, K;) — (Zso, 20, Koo) holds if
and only if limsup,_,  K; C K and K, C liminf, .., K; hold.

Let (Z;, 2i, Ki) — (Zoos Zoo, Koo). For a sequence of Lipschitz functions, f}, f2,.., fF

R
1

on K; satisfying sup, (Lipf! + |f!|1=) < oo, we say that (Z;, z;, K;, f} ..., fF) converges
t0 (Zoo, 200y Kooy f1, fR) if

lim fH(z) = [l (2)
for every x; € K; and x,, € K, satisfying x; — x,. It is easy to check that this condition
holds if and only if f/_ is an extension (or a restriction) of { f!} asymptotically for every .
We denote it by (Z;, zi, Ks, fL, ) = (Zoos 200, Kooy f& s, f5), or more simply, f! — fL

for every [. Then we can also check that
lim [} = [l 0 Gl = 0
easily.

EXAMPLE 2.2. Let (Z;, 2;) — (Zoo, 200)- Then it is easy to check that limsup, . Br(z;) C
Br(2s) and Bg(2s) C liminf; .o, Br(2;).
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EXAMPLE 2.3. Let (Z;, 2;) — (Zoo, 200). Then for every A C Z, and 7; — 0, we have
limsup;_,, B ((¢:) 7 (A;)) C A and A C liminf; o (¢;) " (4;).

It is not difficult to check the following proposition:

PROPOSITION 2.4. Let (Z;, z;) — (Zoos 200), Ab, A? bounded subsets of Z;. Then we
have the following:

1. Iflimsup, .. Al C Al for j = 1,2, then limsup, . (A} U A%) ¢ AL U A2..
2. If AJ_ C liminf, . A for j = 1,2, then liminf,_. (A} U A?) ¢ AL U A2..

3. If X,Y C Z satisfies limsup,;_ . Al C X, limsup, .. A} C Y and X UY C
liminf; .., A}, then X =Y. Here, X is the closure of X in Zu.

We shall give a proof of the next proposition:

PROPOSITION 2.5. Let (Z;,2;) be a sequence of proper geodesic spaces, A a set and
{A2}sen a collection of bounded subsets of Z;. We assume that (Z;, z;) converges to
(Zoos 200), AL is compact for every A € A and that limsup,_, . A} C A for every X € A.
Then, limsup; o (Nyea A7 C Naea Aoo-

PRrOOF. The proof is done by a contradiction. We assume that the assertion is false.
Then, there exists 7 > 0 such that for every 4, there exist N; > 7 and w; € ¢n, ([ ca A]AVZ)\
B-(Nyea Al)- Without loss of generality, we can assume that there exists we € Zoo such
that w; — w.,. By the assumption, we have wy, € @ = Aéo for every A € A. Thus,
Weo € Myen Ai- Especially we have w; € B, ([, AX) for every sufficiently large i. This

is a contradiction. O]
We shall consider convergence of a sequence of complement of open balls:

PROPOSITION 2.6. Let (Z;, z;) be a sequence of proper geodesic spaces and A; a bounded
subset of Z;. We assume that (Z;, z;) converges to (Zs, 200), Aco 18 compact and that
limsup, . Ai C Aw. Then for every r > 0 and x; — Too € Zno, we have limsup,_, . (A; \
B.(%;)) C Ao \ Br(Zoo)-

PrROOF. We assume that the assertion is false. Then there exists 7 > 0 such that for
every i, there exist N; > i and w; € ¢n,(An, \ Br(zn,)) \ Br(Ax \ Br(s)). Without
loss of generality, we can assume that there exists wo, € Z, such that w; — ws. By the
assumption, we have wy, € Ay, = A, We take a; € Ay, \ B, (7y,) satisfying w; = ¢, ().
Then, since @;, Ty, > r, we have W, Too > 7. Therefore, wy, € As \ Br(Z). Thus, we

have w; € B; (A \ Br(7)) for every sufficiently large . This is a contradiction. O
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EXAMPLE 2.7. Let (Z;, 2;) — (Zoo, 200). Then, for every r > 0, we have lim sup,_, ., 0B, (z;) C
OB, (200)-

The proof of next proposition is done by a contradiction similar to the proof of Propo-
sition 2.5 or 2.6.

PROPOSITION 2.8. Let (Z;, z;) be a sequence of proper geodesic spaces and n; a positive
numbers. We assume that (Z;, z;) converges to (Zuo, 200) and 1; — Neo- Then for every
r >0, we have limsup, . (By(2))y, C (By(z00))...

We will give the following fundamental result by Gromov for precompactness of Gromov-
Hausdorff topology. See [35] for the proof.

PROPOSITION 2.9. Let {(Z;,z;)}; be a sequence of pointed proper geodesic spaces. We
assume that for every e > 0 and R > 1, there exists N such that for every i, there exists a
finite covering {Bc(x;)}j=1,.n of Br(zi). Then, there exist a subsequence {(Zny, Zn())}

and a pointed proper geodesic space (Zuo, Zoo) Such that (Znay, 2niy) converges to (Zso, Zoo)-
We will give a result of precompactness for a sequence of compact sets;

PROPOSITION 2.10. Let (Z;,z;) be a sequence of proper geodesic spaces and K; a
sequence of compact subset of Z;. We assume that (Z;, z;) converges to (Zso, 200) and
that there exists R > 0 such that K; C Bg(z;) for every i. Then, there exist a subse-
quence {n(i)} and a compact subset Ko of Zo such that (Zn, Zn), Kn:)) converges to
(Zoor Zooy Koo )-

PROOF. By the assumption, for every k, there exists Ny such that for every ¢, there ex-
ists @1 (i, k),..., a, (i, k) € Br(z) such that K; C Br(z) C U, B (25(i, k). Since Z
is proper, by diagonal argument, there exists a subsequence {n(i)} such that {¢, (x;(n(i), k))}
is Cauchy sequence for every j,k. We put z;(k) = lim; o ¢n()(2;(n(i), k)) and K =
W. It is easy to check that (Z,z), 2n(i), Kn@)) converges to (Zs, Zoo, Koo)- O

We will give a result of precompactness for a sequence of Lipschitz functions.

PROPOSITION 2.11. Let (Z;, z;) be a sequence of proper geodesic spaces, K; a sequence
of compact subset of Z; and f; a sequence of Lipschitz function on K;. We assume that
(Zs, zi, K;) converges to (Zso, Zoo, Koo) and that sup,(Lip fi+|fi|r~) < co. Then there exist
a Lipschitz function fs on Koo and a subsequence {n(i)} such that (Z@), Zn@), Kn@)s fat))
converges t0 (Zso, Zooy Kooy foo)-

PRrROOF. We take a countable dense subset {z;} of K. For every z;, we take z;(i) €

K; satisfying that z;(i) converges to z;. Then, there exists a subsequence {n(i)} of N

12



such that the sequence { f,,;)(z;(n(7)))} is Cauchy sequence. We define a function Fi, on
{z;} by

Faoliry) = Tim fuo (o (n(i))).
It is easy to check that the function F is sup, Lip f;-Lipschitz function. Therefore there

exists unique Lipschitz function fo, on Ko such that Fi(z;) = foo(2;). It is easy to check
that f. satisfies the assertion. m

We shall give a fundamental covering lemma (for proper metric spaces). See chapter
1 in [81] for the proof.

PROPOSITION 2.12. Let X be a proper metric space, A a subset of X, A a set, {x)}rea
a collection of points in X and {r\}rea a collection of positive numbers. We assume that
for everyx € A and € > 0, there exists A € A such that x € B,, (1)) and diamB,, (z,) < €.
Then, there exists a countable subset Ay C A satisfying the following properties:

1. {Eml () }aen, are pairwise disjoint collection.

2. For every finite subset Ay C A1, we have

A\ U ET‘AQ(‘TAQ) C U En’wx(m)\)‘

A2 €A2 )\eAl\AQ

We shall recall the definition of measured Gromov-Hausdorff convergence by Fukaya,
first. Let (Z,2;) — (Zw,200). For a sequence of Radon measure v; on Z;, we say that
(Zs, zi,0;) converges to (Lo, Zoo, Uso) i the sense of measured Gromov-Hausdorff topology
if

lim v; (B, (2;)) = Voo(Br (7))

1—00
for every r > 0, 1o, € Z, and sequence x; € Z; satisfying z; — 2. Then we de-
note it by (Z;, zi, Vi) — (Zoo, 200, Uso). We introduce a following fundamental result for

precompactness of measured Gromov-Hausdorff topology. See [7, Theorem 1.6] or [30].

PROPOSITION 2.13. Let {(Z;, z;,v;) }i be a sequence of pointed proper geodesic spaces
with Radon measure v;. We assume that v;(Bi(z;)) = 1 and that for every R > 0 there
ezists K = K(R) > 1 such that v;( By, (;)) < 2Kvi(B,(x;)) for every 0 <r < R, i € N
and x; € Z;. Then, there exist a subsequence {(Zng), Zn(i), i)} and a pointed proper
geodesic space with Radon measure (Zyo, Zoo, Vo) Such that (Zn(i),zn(i),vi) converges to

(ZOO’ ZOO’ UOO)

Next, we will give a relation between the measure of limit set and the limit of measures

of sets:

13



PROPOSITION 2.14. Let {(Z;, z;,v;) }i be a sequence of pointed proper geodesic spaces
with Radon measure v; and A; a Borel subset of Z;. We assume that v;(By(z)) =1, As
is compact, (Z;, zi,V;) — (Zso, Zoo, Uso ), limsup,_, .o A; C Ay and that for every R > 0
there exist K = K(R) > 1 such that v;(Ba(z;)) < 25v;(B,(z;)) for every 0 < r < R,
1€ N and z; € Z;. Then we have

lim sup Ui(A;) < Vo(Aso)-

PROOF. By Proposition 2.12, there exists a pairwise disjoint collection {B, (z;)}jen
such that z; € Ay, 0 < r; << 1 and Ay, \ UY, B, () C UsZ w1 Bsri(z;) for every
N. We fix € > 0. We take N satisfying > ° . Uoo(By,(2;)) < €. By the assump-
tion, we have > . v(Bsy, (;)) < 2°XMe. We consider an open covering { B, (y;)} =

{Bator (@) Yiz1,.. N U {Bsater (2:) }izng1 of A By compactness of Ay, there ex-

.....

,,,,,

Va0 (Ase) = S0 Vo (By, (21))] < W(e; K). There exists 7 > 0 such that 7, << min{t;; 1 <
j < 1} and that By (As) C UL, By, (2). We take 7 > 0 and a sequence z(j) € Z;
satisfying that 7 < 75 and that z;(j) — z;. Then since ¢;(A;) C B, (As) for every suffi-
ciently large i, it is easy to check that A; C U;Zl By ++(2j(1)) for every sufficiently large
i. Therefore we have v;(A4;) < 22:1 V;i(By;++(2j(7))). Thus,

1—00

l
lim sup Uoo(Ai) < Z Uoo<Btj+T(zj))'
j=1

By letting 7 — 0 and € — 0, we have the assertion. O]

PROPOSITION 2.15. Let {(Z;, z;,v;)}i be a sequence of pointed proper geodesic spaces
with Radon measure v;. We assume that v;(B1(z;)) = 1, diamZ,, > 0, (Z;, z;, v;) (@17 c0)
(Zoos Zoos Voo ) and that for every R > 0, there exist K = K(R) > 1 such that v;(Bo,(x;)) <
2K0;(B,(x;)) for every 0 <r < R, i € N and x; € Z;. Then, we have

lim sup vi(Br (i) — Voo (Br(¢i(:)))| = 0

i—00 3. e Bp(2),0<r<R

for every R > 1.

PrROOF. By the assumption, it is easy to check that radZ,, > 0. Here radX =
infy,ex (Sup,, e x 1, 72) for metric space X. We put K = K(100R). We take 0 < 7 <<
radZ,,. Then, by the definition, there exists N satisfying that for every N <7 < oo and
w € Z;, there exists W € Z; such that w, 1w = 7. Since B;(w) C Bry3() \ Br_+(), by
21, Lemma 3.3] (or [4, Proposition 6.12]), there exists 0 < 7 << 7 such that for every
N <i<oo,we€ Z; and 0 <t <7, we have

vi(By(w)) < V(t; K, R)vi( Bior (w)).

14



Therefore, for every € > 0, there exists N; € N and 0 < r << min{R,7,€, 1} such
that for every Ny < i < 00, 0 < s < r; and z € Bg(z;), we have v;(Bs(2)) < e. We

777777777

and [0, R] C U§'=1 B, (tj). We take x;(i) € Bg(z) satisfying that z;(i) — z;. There
exists Ny > N} such that [v;(By, (x;(1))) — veo(B, (5))| < €. for every i = Ny, j =1,..,1
and j = 1,..,1. Then, for every z € Br(z) and s € [rq, R], we take j € {1,..,(} and
7€ {1,..,1} satisfying 7,7z < ery and |s — t;| < ery. Then by [21, Lemma 3.3],

(1) Voo (Bs(2)) — UOO(Bt5 ()] < Voo(Bstser (2)) — Voo(Bs—ser, (2))
(2) < \IJ(E; K7 Rv T)UOO(BR(ZOO))
On the other hand, for a sequence z(i) € Bg(z;) satisfying z(i) — z,
(3) |0i(Bs(2(2))) — vi( By, (2;(2)))] <

(4)
(5)

Uz’(Bs-i-lOem (Z(Z))) - Ui<Bs—10€’l”1 (Z(Z)))
U(e; K, R, 7)vi(Br(2))
U(e; K, R, T)Uoo(Br(20))

IN

IN

for every ¢« > N,. Thus, we have
[Ui(Bs(2(4))) — voo(Bs(2))| < ¥(€; K, R, T)voo(Br(2c0))-
Therefore, we have the assertion. O

We remark that an assumption diamZ,, > 0 of Proposition 2.15 is necessary. For

example, consider a sequence S"(r) — {p} as r — 0. Here S"(r) = {z € R""}; |z| = r}.

PROPOSITION 2.16. Let {(Z;, z;,v;) }i be a sequence of pointed proper geodesic spaces
with Radon measure v;. We assume that v;(B1(2;)) = 1, (Z;, zi, v;) (@ Rpcs) (Z ooy Zoos Uso)
and that for every R > 0, there exist K = K(R) > 1 such that v;( B, (z;)) < 25v;(B,(x;))
for every 0 <r < R, 1€ N and x; € Z; Then we have
lim f @) ¢Zd’l)l = fdvoo

Z;

1—00 Zeo
for every f € CY(Zy).

PROOF. We put A = suppf and fix € > 0. We take R > 1 satisfying A C Br(zs0)
and put K = K(100R). For every x € Z., we take r(z) > 0 satisfying that for every
w € By(z)(x), we have f(w) = f(x)%e. By Proposition 2.12, there exists a pairwise disjoint
collection {B,,(x;)}; such that z; € A4, 0 < r; << min{r(z;),e} and K \ U1]11 B, (z;) C
U2 w1 Bsr(@;) for every N. We take N satisfying > - v Voo(Br,(2;)) < €. By the
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assumption, we have > .o Voo (Bsyr, (1)) < V(e; K). We take x,(i) € Z; satisfying that
ption, 2 ie N1 Voo Bsr, ; j ymg

x;(i) — z;. Then we have

f o gydv; = Z / f o gudv;
v (x5 (3)

/ f ) szdvz .
ZAU Br, (5(0)

We also have

(©) / f o duduvs| = £ o dudv
Zi\UjL Br (2;(9)) T HAN\UGL Bry (25(6))
N
(7) < sup | flvi(¢; (A)\ [ By, (2;())
=1
(8) < sup | flui(g; 1 (A) \ | By, (;(0))).
j=1
By Proposition 2.14, we have
N N
©  tmswpu@ (AN By (@500) < vae(A\ | By (1))
1—00 j=1 j=1
(10) < Z Voo (B ) < U(e; K).

i=N+1

Therefore for every sufficiently large 7, we have

(1) [ Foddvi= Y1) £ (B (a0) £ Ve K.sup )

N
(12) = (f(xj) £ €)vse(By, (x;)) £ U(e; K, sup | f], R)
(13) - / fdvs = U(e; K, sup | f])

B?“ (m])

14 fduss fldvse + ¥ (€ K, sup | f
(14 = [ s (/A\UN o o+ Wl ] |>>
(15) = [ st 96 Koswp )
Therefore we have the assertion. O

In section 4, we will generalize Proposition 2.16. See Proposition 4.13.
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2.3 Riemannian manifolds and its limit space

First, we shall introduce a very powerful gradient estimates for harmonic functions on

manifolds by Cheng-Yau. This estimate is used in this paper many times. We fix n > 2.

THEOREM 2.17 (Cheng-Yau, [13]). Let K be a real number, R a positive number, M
a complete n-dimensional Riemannian manifold with Ricyy > K(n — 1), m a point in M
and f a nonnegative valued harmonic function on Br(m). Then, we have
R(R|K(n—1)|+1)

R? —m, z°

V() < C(n)f(x)
for every x € Br(m).

Next theorem is a fundamental result for the study of Gromov-Hausdorff convergence

of Riemannian manifolds:

THEOREM 2.18 (Bishop-Gromov, [35]). Let K be a real number, M a complete n-
dimensional Riemannian manifold with Ricyy > K(n — 1) and m a point in M. Then we

have
vol B,(m) _ vol Bg(m)

>
vol B,(p) — vol By(p)

Jor every 0 < r < s. Here, p is a point in the n-dimensional space form My whose

sectional curvature is equal to K.

As a corollary of Theorem 2.18, if a sequence of pointed n-dimensional complete Rie-
mannian manifolds with renormalized volume {(M;, m;,vol)} satisfy Ricy, > K(n — 1),
then the sequence satisfies the assumption of Proposition 2.13. Here renormalized volume

means

ol — vol
T Sol Bi(m;)

For a real number K and a pointed proper geodesic space (Y,y), in this paper, we say
that (Y,y) is (n, K)-Ricci limit space if there exist a sequence of real numbers {K;} and
a sequence of pointed n-dimensional complete Riemannian manifolds {(M;, m;)} with
Ricy, > Ki(n — 1) such that K; — K and (M;,m;) — (Y,y). Then, we often call
(Y,y) a Ricci limit space of {(M;,m;)}. Similarly, for a pointed proper geodesic space
with Radon measure (Y,y,v), we also say that (Y,y,v) is (n, K)-Ricci limit space if
there exist a sequence of real numbers {K;} and a sequence of pointed n-dimensional
complete Riemannian manifolds {(M;, m;)} with Ricy;, > K;(n—1) such that K; — K and
(M;, m;,vol) — (Y,y,v). More simply, for (n,—1)-Ricci limit space (Y,y) (or (Y,y,v)),
we say that (Y,y) is Ricci limit space. See section 4.1 in [65]. We shall fix a Ricci limit
space (Y, y,v) in this subsection and give a very short review of structure theory of Ricci

limit spaces developed by Cheeger-Colding below. See [7, 8, 9] for the details.
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We shall give an important notion called tangent cone to study Ricci limit spaces:
For pointed proper geodesic spaces (Z,z) and (X,x), we say that (Z,z) is a tangent
cone of X at x if there exists a sequence of positive numbers {r;} such that r; — 0 and
(X,z,77 dx) — (Z,2). For k > 1, we put Ri(Y) = {z € Y; All tangent cones at = are
isometric to R¥} and call it k-dimensional reqular set. More simply, we shall denote it by
Ri. We also put R = |, <k<n Ry and call it regular set. Next theorem is an important

properties for Ricci limit spaces:

THEOREM 2.19 (Cheeger-Colding, [7]). We have v(Y \ R) = 0.

For 6,7 >0 and 0 < a < 1, we put (Ry)s,r = {z € Y;dau((Bs(z),x), (Bs(0k), 0x)) <
§s for every 0 < s < r} and (Rpa)r = {7 € Y;dau((Bs(z),2), (B4(0),04)) < s+ for
every 0 < s < r}. Here 0, € R*. By the definition, we remark that these set are closed.
It is easy to check that (. (U,-0(Ri)sr) = Ri. We also put Risa = U, ~o(Risa)r- By [7,
Theorem 3.23] and [7, Theorem 4.6], there exists 0 < a(n) < 1 such that v(Ri\ Riam)) =
0, v is Ahlfors k-regular at each point in Ry.q(n) for every k. Next, we shall introduce an

important result for rectifiability and Poincaré inequality on Ricci limit spaces:

THEOREM 2.20 (Cheeegr-Colding, [9]). Y is v-rectifiable, (Y,v) satisfies weak (1,2)-

Poincaré inequality.

More strongly, they proved that segment inequality on Ricci limit spaces holds. (We
do not give the definition here. See [9, Theorem 2.15].) Therefore we can construct the
cotangent bundle T*Y of Y. Finally, for cut loci on Ricci limit spaces, we also remark
that v(C,) = 0 for every x € Y. See [42, Theorem 3.2]. These results above are used in

section 3, essentially.

3 Rectifiability on limit spaces

In this section, we shall study a rectifiability of Ricci limit spaces. These results given in

this section are used in section 4, essentially.

3.1 Radial rectifiability

The main result in this subsection is Theorem 3.17.

LEMMA 3.1. Let Z be a proper geodesic space, z a point in Z, s,0 positive numbers,
v a Radon measure on Z and F a nonnegative valued Borel function on Bs(m). We
assume that there exists K > 1 such that for every w € By(z) and 0 < t < s, we have
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0< U(th(w)) < 2KU(Bt(w))7

.
— Fdv < 6.
v(Bs(2)) Ja.2)

Then, there exists a compact set K C By 12(z) such that v(K)/v(Bg02(2)) > 1—V(8; K)
and that for every x € K and 0 < t < 5/10?,

o
v(Bi(x))

Proor. Without loss of generality, we can assume that F' is a nonnegative valued
Borel function on Z by F =0on Z\ Bs(z). We fix C > 0. We put A,(C) =
{w € Bi(2); [4 o2 dv > Cvu(Bsji2(w))} and take zi,..,x; € A;(C) which are
an s/10-maximal separated subset of A;(C). We also put Ax(C) = {w € Bs(m) \

(:Ell>;fBS/103(w) Fdv > Cu(Bspps(w))} and take zi,..,z;, € As(C) which are
s/10%-maximal separated subset of A;(C). By iterating this argument, we put A4;,(C) =
{w € Bs(m) \ Ui<jci1, 1<iz; Bsjro- 2(2371): [ o 10041 () Fdvol > Cu(Bspg (w))} and

take 21 ,.., z}, € A;(C) which are s/10"-maximal separated subset of 4;(C').

/ Fdv < V(0; K).
Bi(z)

2

Cram 3.2. The collection {Fs/lom(xl.)} are pairwise disjoint.

We take w € Eg/ml”rl( )ﬁBs/mm( zt). We assume that [ < [. Then, by the definition,

we have xi € M\ U 1 Byj1oi-1(25). Especially, we have a: , 2t > s/10'71. Therefore, we
have §5/1of+1( ) N Bs/101+1( zh) = (D This is a contradlctlon Therefore, we have [ = [. By
the definition, we have i = 7. Thus, we have Claim 3.2.

It is easy to check the following claim.

Cramv 3.3. We have U,en Ai(C) C Ujeni<ich, Bso-2(})

We have
(16)
/ Fdv>C Z U(Bﬁ (1))
lEN 1<i<h, ¥ Boper (70) IEN, 1<i<k,
(17) >CCm) Y. w(B_a @) =cChmp( | B, @)
1EN,1<i<k; IEN,1<i<k;

On the other hand,

(18) > / de: /u Fduv

)
1eN,1<i<k le teN i<k Bp ()

(19) < /B ( )de < C(n)v(Bs(2))o.

19



Therefore, we have

U(UleN,lSiSkl Bw(xi)) < éC’(n)
v(Bs(m)) - C .
By taking C = V0, K = B,j102(2) \ Uien.1<ick, B (27), we have the assertion. O

o2

DEFINITION 3.4. let (Y, y,v) be a Ricci limit space, k an integer satisfying & < n and
r,0 positive numbers satisfying » < 1 and § < 1. Let (Rk)gm, denote the set of points,
w € Y such that for every 0 < s < r, there exists a map ® from B,(w) to R* such that
7 0® = r, and that ® gives an §s-Gromov-Hausdorff approximation to B,(®(w)). Here,
7, is the projection from R* = R x R¥! to R.

LEMMA 3.5. We have

M (U ((was,,,\cx)) — R\ C

6>0 \r>0

PROOF. It is easy to check that

We take w € Ry \ C,. By the definition, for every é > 0, there exists r > 0 such that for
every 0 < s < r, there exists an ds-Gromov-Hausdorff approximation from (B,(0),0})
to (Bs(w),w). Here, B,(0;) € R*. On the other hand, by splitting theorem (see [4,
Theorem 9.27]), there exist a pointed proper geodesic space (W, ws) and a map $ from
(Bs(w),w) to (B,(0,w,), (0,w,)) such that 7g o ® = r, — T,w and that ® gives an ds-
Gromov-Hausdorff approximation. Here, B,(0,w,) C R x W, with the product metric
/A& + d%,vs, 7R is the projection from R x W, to R. By rescaling s 'dgx and [44, Claim
4.4], there exists an ¥(§;n)s-Gromov-Hausdorff approximation f from (B,(w,),w,) to
(B(04_1),05_1). We define a map ¢ from B, (w) to RF by g(z) = (7,7, f o ®). Let 7, be
the canonical retraction from R¥ to B,(g(w)). We put § = m,0g. Then, it is easy to check

that ¢ gives a W(§;n)s-Gromov-Hausdorff approximation to (B(§(w)),g(w)). Since & is

arbitrary, we have the assertion. O]

For every proper geodesic space X, a point x € X and a positive number 7 > 0, we

put

D; = {w € X; There exists a € X such that a,w > 7 and T7,w + w,a = T, a}.

It is easy to check that D] is a closed set. By the definition, we have

Jpr=x\C..

>0
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LEMMA 3.6. Let (Y,y,v) be a Ricci limit space, k an integer satisfying k < n, o,
positive numbers satisfying 6 < 1,r < 1, x a point in Y and w a point in (Rk)g,r N
Leb((Ri)sr)\(CoU{z}). Then, there exists n(w) > 0 satisfying the following property: For
every 0 < s < n(w), there exist a compact set L C By(w)N(R4)s, and points xa, x3,..., 1), €
Y such that v(L)/v(Bs(w)) > 1 —W(d;n) and that the map ® = (14, ryyy.. , 7, ) from L
to R¥, gives (1 & WU(8;n))-bi-Lipschitz equivalent to the image ®(L).

PROOF. There exists 0 < 7 < r such that v(Bs(w) N (Rk)s,)/v(Bs(w)) > 1 =4 for
every 0 < s <7 and w € DI\ B.(z). Let (M;, m;,vol) — (Y,y,v). We take x;,w; € M;
satisfying w; — w, x; — x. We fix 0 < s << min{d, 7}. Then, for every sufficiently large
i, there exists an §s-Gromov-Hausdorff approximation ®¢ = (&%, &%) from (B,(w;),w;)
to (B4(0x),0;) such that ® = r, —r, (w;). We put sy = v/ds. For convenience, we shall
use the following notations for rescaled metrics sy 'dyy,, s 'dy: vol = vol® 1dMi, Tw(Q) =
sgirw(a), Bya) = BfgldMi (@) = Byy(a), 0 = v/v(Byg(y)), § = sy'g for a Lipschitz
function g and so on. We also denote the differential section of g as rescaled manifolds
(M;, sy das) by dg : M; — T*M; and denote the Riemannian metric of (M;, sy dy,) by
(Y = 85°(-,-). We remark that (Mi,mi,saldMi,v_olsgldMi) — (Y, y,sy dy,0). The
following claim follows from the proof of splitting theorem (see for instance [4, Lemma
9.8], [4, Lemma 9.10] and [4, Lemma 9.13]).

CLAIM 3.7. For every sufficiently large i, there exist harmonic functions B; on B1002 (w;) (5 =
1,.., k), and points = € B js-1(wi), (j = 2,.., k)) such that \bj-—fxé_ Lo (B2 (wi) = U(d;n),

2 dvol < U(8;n),

1 An N

vol BlOO2 (wl) Bwo? (wi) ’
1 ETE

T a— / ’<db3= b;>50|dVO1 =05+ \11(5’ n>

vol B2 (wl) B2 (w:)

and

2 .7 .

S, dvol < W(d;n)

1
—~ = / |HessB¢_
vol Bygoz (w;) J B, 2 (ws) !

for1< 4,1 <k. Here v = a}

3

We define a nonnegative Borel function F; on B1oo2 (w;) by

s)’

k k
Fi= 3 Tip(bj — )2 + S [(dbj, dbi)., | + Z(’HGSSB;
=1 I#j =1

By Lemma 3.1, there exists a compact set K; C ﬁloo(wi) such that vol K@-/VZ)I Bloo(w@-) >
1 —U(d;n) and that for every a € K; and 0 < t < 100, we have

1 A
f/ Fidvol < ‘If<5, n)
vol By(a) JBy(a)
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CrAM 3.8. For every sufficiently large i, o € Kiﬂ350(wi) and 0 < t < 50, there exists
a constant C3(j = 1,.., k) such that B; = T + Ci£Y(0;n)t on By(a) forj=1,. k.

The proof is as follows. By Poincaré inequality, we have

1
vol By(a) JBi(w)

1 N N
2 C(n == Li bzl - f’zl 2dvol
(21) <t <>\/ ( )/Bt(a; o )

(22) <tV (d;n).

N 1 N o
(b — i) — =——=—— / (b} — 7, )dvol| dvol
J vol By(a) JBi(w) i

For C' > 0, Let A;(C'), denote the set of points 5 € Bt(a), such that

> C.

~. 1 . ~
b’ — 7 - b’ — 7 i )dvol
B508) =43 ~ s / PRURLATE

Then, we have

1 . .
(23) ((S TL / 1, - f/ (b; — fxi)dVOI dvol
Vol Bt Bi(a 57 vol By(a) Jauw) !
1 N N ~
(24) = ) — f/ (b; - fx@)dVol dvol
Vol Bt A (C ] vol By(a) J Bi(a) !
(25) > VolA (C)
VOl Bt( )

Therefore, for above ¥ (d;n), if we put C' = /V(J;n)t, then we have

vol A; i(C) _

vol By(a ) Loin)

Here, we assume that B, (8) C A;(C) for some 3 € By(a) and € > 0. Then, by Bishop-

Gromov volume comparison theorem, we have

vol By () _ vol A; () _ )
vol By(a) ~ VOlBt(Oé)

C(n)e" <

1/n
Therefore, for C'(n) above, if we take € = (20(71)_1 U (d; n)) , then we have a con-

1/n ~
tradiction. We put € = (20(71)*1 W(é;n)) . We take 8 € Bi(a). We also take
3 e B(l,e)t(a) satisfying 75((3) < et. Then, there exists v € Bg(3) \ A;(C). Thus, we
have v € By(a). By the definition of A;(C), we have

. 1 . .
b;-(fy) = fz;-_ (*y) + %/ (b; — fmé_)dvol + \11(5; n)t.
vol 3100(04) Bioo(w)
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By Cheng-Yau’s gradient estimate, we have |@B§|so < C(n). Thus, we have

- . 1 -
b3 (8) = 7,1 (6) + T ha Bron() /Bloo( )(b Tyi )dvol + U(e; n)t.

Therefore we have Claim 3.8.

By an argument similar to the proof of [9, Theorem 3.3], we have the following:

CLAIM 3.9. For every sufficiently large i, « € K; N Bg,()(wi) and 0 < t < 1079,
there exist a compact set Z; C M;, a point z € Z; and a map ¢ from (;t( ), ) to
(Bt(zt),zt) such that the map ® = (bll,... ,b}c,gb) from Bt( ) to BH\I,((;M)( (a)) C (RF
Z, \/d%{k + (so~tdar,)?), gives ¥ (J; n)t-Gromov-Hausdorff approzimation.

We put K; = K; N §40(wi). Then, we have vol K;/vol Byy(w;) > 1 — ¥(8;n). By
Proposition 2.10, without loss of generality, we can assume that there exist a compact set
K, C §4O(w) and points 25° € Y (2 < j < k) such that 2 — 2° and K; — K. By
Proposition 2.14, we have 0(Ky)/0(Bao(w)) > 1 — U(8;n).

On the other hand, by Proposition 2.9, Claim 3.8 and 3.9, for every a € K, and
0<t<107 ° there exist a compact metric space Z., a point 2, € Z and a map 10)
from (Bt( ), ) t0 (By(2s0), 200) such that the map ¢ = (P, Tage s s Taoe, @) from Bt( ) to
Bt_;,_\p (S:m)t +(p(e)), gives an ¥(§; n)t-Gromov-Hausdorff approximation

We put Koo = Koo N (Ry)s, N Big-10g, (w). Then, we have v(Ky)/v(Big-105,(w)) >

— ¥(d;n). On the other hand, for every a € Ko and 0 < ¢t < 1075, if we take
0, Zo, 200 as above, then, since a € (Rg)s,, we have diamZ,, < ¥(d;n)t. Especially,
the map f = (7, Fage,... , Toe) from ﬁt(a) to Birwaye(f(@)), gives an W(d; n)t-Gromov-
Hausdorff approximation. Especially, for every a, 3 € K, satisfying o # [, if we put
0 <t =7(8) <107°, then we have

k
B —1, 1 —1, —1,
(ma' — 2, 50 Y2 S @Eat Y —aE g Ve =a st

=2

+ U (d;n)t

-1
sy dy

= (1£9(5;n)a, 3
Therefore, we have the assertion. O

LEMMA 3.10. Let (Y,y,v) be a Ricci limit space and x a point in Y. Then, there
exist a collection of compact subsets {C} }i<k<nien of Y and a collection of points

{z}. . Yo<i<k<nien €Y satisfying the following properties:
1. Uien Cks € Ry for every k.
2. V(R \ Ujen Ciis) = 0 for every k.
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3. For every z € J;en Cf; and 0 < 6 < 1, there exists Cf; such that z € C; and the
map 3 ; = (14, T2 sy Tk ) from CF; to RF* gives (14 §)-bi-Lipschitz equivalent to
the image @ ,(Cy ;).

Proor. We put

Av= ) < U (Ri)T s 1 pmy N LeD((Ri) 1/ 1/ma) \ (Car U {56})> :

mi1EN mo €N
CrAmM 3.11. We have Ay, C Ry and v(Ry \ Ax) = 0.

The proof is as follows. For

By, = ﬂ < U (Re)T a1 ma N (Ri)1/my 1/ms \ (Cz U {x})> :
m1EN \m2eN

by Proposition 7.5, we have, Ay C By, v(Bg \ Ax) = 0. On the other hand, by Lemma

3.5, we have B, = Ry \ {C, U{z}}. Since v(C,) = 0, we have Claim 3.11.

For every z € Ay and N € N, we take my = ma(z, N) satisfying z € (Ri)7/x 1 /m, N
Leb((Rk)1/n1/m2) \ (Cz U {x}). By Lemma 3.6, there exists n(z, N) > 0 such that for
every 0 < s < n(z, N), there exist a compact set L(z,s, N) C By(z) N (Ry)1/n,1/m, and
points 25(2,s, N),..,7x(2,5, N) € Y such that v(L(z,s,N))/v(Bs(2)) > 1~ ¥(N~t:n)
and that the map @, , y(w) = (T,W, 12(2, 5, N), w,..., 21(2, 8, N),w) from L(z,s, N) to R¥,
gives (1 £ (N1 n))-bi-Lipschitz equivalent to the image @, s n(L(z,s, N)). We fix R >
1. By Lemma 2.12, there exists pairwise disjoint collection {ESZNR(ZiN ") en such that
2 e AN Bgr(y), 0 < 50 < (2", N)/100 and that A, N Bg(y) \U:-ilgsi\f,R<ZlN’R) C
U .. B SﬁV,R(ZN’R) for every m. We put L(i, N, R) = L(z"", 55" N)N A, N Bg(y) C

i=m+1 "5 7 i

Ak N ER(y)

Cram 3.12. v(Ax N Br(Y) \ Uysngien L(i,N,R)) = 0 for every Ny € N.
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Because, for every N > Ny, we have

(26) v (Ak NBry)\ [ J LGN, R))

1€EN

(27) SU(U <§58NR( ™) N Ay N Brly )\U( N’RaN)ﬂAkQER(yD)

€N iEN

(28) <> 0(Bywn(z")\ LT 55 N))

(20) W)Y o(By ()
(30) < VN ) Y o(Bal)

(31) < U(N~Hn)v(Ber(y)).

Therefore, by letting N — oo, we have Claim 3.12.

By Claim 3.12, we have v(A; N Bgr(y) \ﬂNo(UN>N0 ieN L(i,N,R))) = 0. We put
E(i,N,R) = L(i,N,R) N Naoen(Uns g jen L(j, N, R)). Then, we have v(Aj, N Br(y) \
Uinex E(i; N, R)) = 0. For every z € |, yen £(i, N, R) and 0 < 0 < 1, we take
i,N € N satisfying = € F(i, N,R). We also take Ny € N satisfying N;' << 0.
Then there exist N > Ny and i € N such that z € f)(%,N,R). Then, the map
o(w) = (T,w xg(zNR,sév R),w,‘.. ,xk(zy’R,s?’R),w) from L(zg\?’R,sgv’R,N) to R”, gives
U(N~1 n)-bi-Lipschitz equivalent to the image. Especially, the map gives (1 £ 0)-bi-
Lipschitz equivalent to the image. We remark that L(i, N, R) C L(z N, R sVR ,N) and
z e L(i, N, R)NMien(Ujs1pen L(p,j,R)) = E(i, N, R). Therefore, 1fwe put zo(i, N, R) =
2o(2) % sV R R, ak(i, N, R) = (2", 52" R), then we have the following claim:

71, 71,

CrAM 3.13. For every z € U; yen E(4, N, R) and 0 < & < 1, there exists E(i, N, R)
such that z € E(i, N, R) and that the map ¢(w) = (T,w, x2(i, N, R),w,..., (i, N, R), w)
from E(i, N, R) to R¥, gives (1 & §)-bi-Lipschitz equivalent to the image.

By Claim 3.13, it is easy to check the assertion. O]

}JeN be a collection of

LEMMA 3.14. With same notaion as in Lemma 3.10, let {Dy, ;
) = 0. Then, there ezists a collection

Borel subsets of Cf; satisfying v(Ci; \ Ujen Prsi
of Borel subsets {EF, ;} such that &, . C Dy, ., v(Di,; \ E,;) = 0 and that for every
k, z € . . ;o and 0 < 6 < 1, there exists &, ; such that z € &, ; and that the

1,JEN k KN kyi,j ki
= (1, 7y . ) from &, ; to R gives (1 & 6)-bi-Lipschitz equwalent to the

Zmage CDkZJ(glfzg)

map (I)k V6]
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ProoOF. We fix 1 < k < n. For every M € N, we put By, = {i € N; the map
¢ = (rz,rw%i,.., ) from Cf, to R¥, gives (1 & M~')-bi-Lipschitz equivalent to the
image } and glf,i = Dlggu N mMeN(UiEBM,jEN Dizg)

Cramv 3.15. v(Dy, : \ & ;) = 0.

Because, by Lemma 3.10, we have J;cn CF; € Nysen(Uies,, Cri))- On the other
hand, it is easy to check that (y;en(Uies,, Cri)) € Uien Ckio Therefore, we have
mM€N<UzeBM Cifz)) = UzEN lez Thus, U<Di” \5135”) = U(Di” N UleN Ckl \ 51“]> =

( ki,j N nMeN(UleBM lel) \ 51mj) = U(Dgu N ﬂMeN(UleBMjeN klj) \gkz]> = 0.

Therefore we have Claim 3.15.

CLAIM 3.16. For every z € U, jen €,y and 0 < & < 1, there exists E,; ; such that
z € &, and thal the map ¢ from &, . to R* defined by ¢ = (rx,rxi e Tk ) gives
(1 & §)-bi-Lipschitz equivalent to the image.

Because, we take M € N and 4,5 € N satisfying M~! << § and z € i - By the
definition, there exist Ny € By and Ny € N such that z € Dy v, v,. Therefore, we have

2 €Dy nyy N mMeN(UieBM,jeN Diﬁ,i,j) = & ny.n, and the map ¢ = (7, T3 e ,rx;;yj) from
Ei no.v, 1O R*, gives (1 & M ~1)-bi-Lipschitz equivalent to the image. Therefore, we have
Claim 3.16.

Thus, we have the assertion. O

The following theorem is the main result in this subsection. See Appendix 7.4 or (2.2)
in [8] or [42, Definition 4.1] for the definition of the measure v_;.

THEOREM 3.17 (Radial rectifiability). Let (Y,y,v) be a Ricci limit space satisfying
Y # {y} and x a point in Y. Then, there exist a collection of Borel subsets {C}.;}1<k<n,ien
of Y, a collection of points {l‘ggﬂ-}leSkSn’ieN of Y, a positive number 0 < a(n) < 1 and a
Borel subset A of [0, diamY’) such that the following properties hold:

1. UieN C,fﬂ- C Rk@(n) \ C,.
2. (R \ UieN lez) =0
3. For every Cf; and z € Cf;, we have lim, o v(B,(2) NC} ;) /v(B,(2)) = 1.

4. For every Ci,, there exists A} ; > 1 such that (A7) < v(B.(2))/r* < A, holds
Jor every z € Cf; and 0 <r < 1.

5. The limit measure v and k-dimensional Hausdorff measure H* are mutually abso-

lutely continuous on C ;.
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6. For every z € J;en CF; and 0 < § < 1, there exists Cf; such that z € C}; and that
the map @ ; = (re, Ta2 ey Tk ) from CF; to R* gives (140)-bi-Lipschitz equivalent
to the image ®f ,(Cy. ;).

7. H'(]0,diamY") \ A) = 0.

8. For every R € A, the collection {0Bgr(z) N C},;} C dBgr(x) \ C, satisfies following

properties:

(a) vy <(aBR(5E> \ Ci) \ U1gk§n,ieN CI?%) =0.

(b) For every dBr(x) N Cf,, there exist Bi; > 1 and 11, > 0 such that (Bg ;)™ <
v_1(Bg(x) N Bu(2) \ Cp) /"' < v_1(0Bgr(z) N B,(2))/r*~t < Bi, for every
2z € OBR(z)NCE,; and 0 <1 < 7,

(¢c) For every z € |U;en(0Br(x) N CE;) and 0 < & < 1, there exists OBgr(z) N
Cy; such that z € OBgr(x) N Cf; and that the map i)iz = (rﬂfi,i"" ’Tm’;i,i)
from dBg(x) N CE, to RF', gives (1 & §)-bi-Lipschitz equivalent to the im-
age @ﬁyi(ﬁBR(x) NCE)-

FEspecially, 0Br(z) \ Cy is v_y-rectifiable.

PRrOOF. First, we shall prove the following claim:

CLAIM 3.18. For every R > 0, z € Bg(z) \ {7} and 0 < € < min{z,7/100,1}, we
have v_1(0Bz=(z) N B.(2)) < C(n)v(B(2))/e.

Because, by [43, Corollary 5.7], we have

v-1(0B5z(x) N Be(2)) V(Ca(0Brz(x) N Be(2)) N Avz—zez(x))
vol OBz=(p) =) vol Azz_2e72(p) '

Here C,(A) = {z € Y; there exists a € A such that T,z + Z,a = Z,a} for every subset
A of Y. On the other hand, by triangle inequality, we have C,(0Bz=(z) N B.(2)) N
Ais oez=(x) C Biooc(2). Thus, we have

- vol 8BW(£)
- VOl AT,Z—QE,H(B)

v_1(0Bg=(x) N B(z v(Bigoe(2))C(n) < C(n, R)%v(Be(z)).

~—
~—

Therefore, we have Claim 3.18.

We take collections of Borel sets {C};} and of points {z};} as in Lemma 3.10. By
Lemma 3.14, without loss of generality, we can assume that for every CY;, there exists
7 > 0 such that Cf; C D \ B;(x). Moreover, by [9, Theorem 3.23] and [9, Theorem 4.6],
we can assume that for every Cf,, there exists Af; > 1 such that for every 0 <r <1 and
z € Cf,;, we have (A} ;)" < wv(B,(2))/r* < Aj,;. By Proposition 7.5, we can also assume
that for every Cf; and z € C};, we have lim, o v(B,(2) N C};)/v(B.(2)) = 1.

27



CrAamM 3.19. Let (Y,y,v) be a Ricci limit space, x a point in'Y , 7, R positive numbers
satisfying 0 < 7 < 1, R > 1, and z a point in DL N Br(x) \ B.(x). Then, we have
v(0Bz=(z) N Be(2) \ Cy) > C(n, R)u(B.(z))/€ for every 0 < e < 7/100.

The proof is as follows. We take w € Y satisfying z,w = €/100 and T, 2 + Z,w = T, w.
By [43, Theorem 4.6 |, we have

V(B (w))

V-1 (Ca(B gy (w)) N 0Brz())

000
vol AW,T,Z-&-G (p)

< C(n)

p vol OBz=(p)
By triangle inequality, we have Cy(Be¢/1000(w)) N 0Bzz(x) C 0Bz=(v) N B(z). Thus, by

Bishop-Gromov volume comparison theorem for v,

vol 0Bz~
3 OB N B\ ) 2 OO0y DB o)
(33) > Cln, B)Lo(B g, (w))
(39 > O, ) o(B(w)
(35) > O(n, g)V B2

€
Therefore we have Claim 3.19.

By Claim 3.18 and 3.19, for every C};, there exist By; > 1 and 77; > 0 such that for
every z € Cf; and 0 < 7 < 7, we have (Bf,)™" < v(0Bg=(z) N B,(2) \ Cy)/r* < BE,.
We put A = {t € [0,diamY);v_,(dB;(z) \ UCk:) = 0}. Since v(Y \ UC;) = 0,
by [43, Proposition 5.1] and [43, Theorem 5.2], we have, A is H'-Lebesgue measurable,
H'([0,diamY’) \ A) = 0. Since v is a Radon measure, there exists a Borel set A C A such
that H'(A\ A) = 0. Thus we have the assertion. O

3.2 Calculation of radial derivative for Lipschitz functions

The purpose in this subsection is to calculate the radial derivative of Lipschitz functions:

(dr,,df) explicitly. The main result in this subsection is Theorem 3.33.
LEMMA 3.20. Let (Y,y) be a Ricci limit space satisfying Y # {y}, z a point in Y \ C,,

f a Lipschitz function on Y, T a positive number and ~; an isometric embedding from
0,7, 2+ 7] to Y satisfying vi(0) =y and v;(y,2) = z(i = 1,2). We put f; = fo~;. Then,
we have lip f1(y,Z) = lipf2(¥,Z) and Lip f1(y,%z) = Lip fo(y, ).

PROOF. For every real number € satisfying 0 < |¢| << 7, by splitting theorem (see
[4, Theorem 9.25] or [6, Theorem 6.64]), we have (%, Z + €),72(T, 2 + €) < U(|e|;n)]el.
Therefore, we have

[fon@z+e = fon@2)| _ |[fon@zZt+e) — fon@?)
e - le|

+ LipfU([e[; n).
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Thus, we have Lipfi(7,2z) < Lipfs(y,2) and lipfi(y,2) < lipfo(y, Z). Therefore we have
Lipf1(y,z) = Lip f2(y,Z) and lipf1(y,z) = lipf2(7,2). 0

We shall give the following definition:

DEFINITION 3.21. Let (Y, y) be a Ricci limit space, z a point in Y\ Cy, 7 a positive
number, v an isometric embedding from [0, 7, Z2+4 7] to Y satisfying v(0) = y and v(7; 2) =
z. We put F = fo~. Then, we put lip!* f(z) = lipF (,z) and Lip;* f(z) = LipF (7, 2).

THEOREM 3.22. Let (Y,y,v) be a Ricci limit space, x a point in'Y and f a Lipschitz
function on'Y. Then, we have the following:

1. lipf(2)? = Lipa f(2)? + lip(floBes(w)) (2)? for a.e. z€ Y.

2. Lipf(z)? = Lip™f(2)? + Lip(flop,o@))(2)? for a.e. z €Y.

3. Lip(floBss(@))(2) = lip(floBre@nc.)(2) for a.e. z€ Y\ Cy.

PRrROOF. First we shall remark the following:

a.e 2= (z1,..,2) € R

Because, by Rademacher’s theorem for Lipschitz functions on R¥, the function f is
totally differentiable at a.e z € R*. Therefore we have Claim 3.23.

The next claim is clear:

CLAIM 3.24. Let Z; be metric spaces (i = 1,2), § a positive number with 0 < § < 1,
and ® a map from Zy to Zy satisfying ®(Z;) = Zy and (1 — 871,03 < ®(z1), B(zy) <
(14 8)T1, @3 for every xy,x9 € Zy. Then, for every Lipschitz function f on Zs, we have,
(1 = W(6))Lipf(P(z1)) < Lip(f o @)(z1) < (14 ¥(d))Lipf(z1), (1 = ¥(0))lipf(P(z1)) <
lip(fo®)(z1) < (14 W(0)lipf(P(21)) for every z, € Z.

We will give a proof of the following claim in appendix.

CrLAIM 3.25. For every Lebesgue measurable A C R¥, we put sl; — LebA = {a =
(al,... ,ak) - A;hmr_)o Hk_l({al} X ET(CLQ,.A. ,ak) N A)/Hk_l({al} X Er(ag,... ,ak)) = 1}
Then we have the following:

1. The set sl; — LebA is a Lebesque measurable set.
2. For everyt € R, HF 1 (AN {t} x R*1\ sl; — LebA) = 0.

3. H*(A\ sl; — LebA) = 0.
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We put L = Lipf. We take collections of Borel sets {C]ii}lgkgn,ieN and of points
{x§€7i}2§k§n7ieN72§lSk as in Theorem 3.17. We fix a sufficiently small § > 0 and Cj;
satisfying that the map ®f ; = (ry, T2 e ,’I’I?Z_) from C}; to R*, gives (14 0)-bi-Lipschitz
equivalent to the image. Then we put a function fi, = fo(®},)~" on ®f ,(CF;). and take

a Lipschitz function F}; on RF satisfying Fiiles )y = fi, and LipFy; = Lipf},.

CLAIM 3.26. With notation as above, we have the following:

1. (1 = W(0;n))LipFy,(w) < Lipf(((I)iﬂ.)_l(w)) < (1 + 9(6;n))LipF,(w) for a.e w €
Oy (Cry)-

2. (1 = (6 n))lipF,(w) < lipf((q)iﬂ-)_l(w)) < (1 + V(6 n)lipE;(w) for a.e w €
Py (Crs)-

3. Lip (i Rox fun,.sin ) (0) = LU (850) < Lip f((RF 1) (w)) < Lip(FE i Rxun, ) (W) +

,,,,,

LY(5;n) for a.e w = (wy,.. ,wy) € q)iz(clfz)

4o Up(FE [ Rx fun, . yuny) (W) = LW (050) < Lipd f((RF ) (w)) < Up(FE [ Rx fwa, .. suny) (W) +
LY (0;n) for a.e w = (wy,...,wx) € OF (CF,).

5. (1 =9(0; n))Lip(Fi; | gy xri—1) (w) < Lip(f|63m(z)mcg,i)((‘bi,i)_l(w)) < (1+

@(57 n))Lip(Flf,i|{w1}><Rk*1>(w) Jora.e. w= (w17"' 7wk) = @9}571(01?71)
6 (L W) MinFE o)) < lin(flos_ e (@) ) < (14
(6 n))ip(F il fwyyxms-1)(w) for a.e. w = (wy,..,wy) € OF (CF,).

The proof is as follows. First, we shall check the statement 1. We put Cy, =
Leb(® ,(CF,;))N®; ;(LebCy ;). Then, we have H*(®f ,(Ci,)\Cf ;) = 0. By Claim 3.24 and
Proposition 7.5, we have (1—W(0))Lip(F};|e, (cp ) (w) < Lip(f|clf’i)((<1>%,i)*1(w)) <(1+
W (0))Lip(Fyiyleg (cp ) (w), LiD(Fleg (cp ) (w) = LipF;(w) and Lip(fleg ) ((2F;) ™ (w)) =
Lip f((®},) " (w)) for every w € Cf ;. Therefore we have the statement 1. Similarly, we
have the statement 2.

Next, we shall give a proof of statement 3. We put Cif = sl; —LebCj ,n{w € R¥; F},
is totally differentiable at w.}. Then, by Claim 3.25, we have H*(Cj,; \ Cif) = 0.

We take a point w € Cilf and put w, = w + (¢,0,...,0) for every € > 0. Since w €
LebCy ;, there exists 1w, € Cf; such that We, We < a(e)e(a(r) — 0as T — 0). Clearly, (1—
5)(e— a(e)e) < (1- 8w, i, < (@) 1(w), (BF,) () < (148w, < (1+8)(e+ale)e).
We define the projection 7 from R* to R by mj(w) = w;. Then we have z, (®f )~ (1) =
m1(i0) = () + a(e)e = my(w) + € £ ale)e =, (BF,)1(w) + (Bf,) 1 (w), (BF,) (@) +
(0 + a(e))e. By Lemma 3.14, without loss of generality, we can assume that there exists
70 > 0 such that Cy; C DI°. We take an isometric embedding ~y from [0, W—l—m]

30



to Y satistying 7(0) = = and ~(x, (®f,)"}(w)) = (®f,)""(w). Then, by rescaling e~'dy
and splitting theorem, we have (®f;)~!(w),v(z, (®F ;) (w) +¢€) < W(a(e),d;n)e. For
€ << Ty, we have

FF (w) — FF.(w, FF.(w) — FF.(w,
) = B ()| _ Fiw) = Pl
€ €

_ URE) ™ (w) = fy(z, ()" (w) + €))]

+ LV (a(e),0;n).

€

By letting € — 0, we have Lip(F{; |Rx {ws,...,un}) (W) < Lipd ((®%,) H(w)) + LY(d;n). We

7777 T

take a sequence {¢;} such that ¢; — 0 and that

L 1f 0 (@1) " (w) — FO@ @) (W) + &)

J—00 ;]

= Lipy ' f((®F,) 7 (w)).

We fix j € N. We assume that ¢; > 0. Since (®f;)""(w) € LebCy,, there exists
w(j) € Cf; such that w(j),y(z, (®F;) " (w) +€;) < Tj¢;(r; — 0 as j — o0). Then, we
have

(36) m(w(5)) — m(w) = z,w(j) — z, (PF ;) (w)

(37) = z,7(z, (PF,) 1 (w) + €;) £ ¢,
(38) = €; £ Ty,
(39)
(40)

39
40

=(z, (PF,) " Hw) +€), (PF )1 (w) £ Tj¢5
> (1 =0)0f,(w(4)), w — Ti¢5.

On the other hand, since ®F ;((j)), w < (146)e;+7j¢;, we have w + (€5, 0,...,,0), f ;(w(j)) <
U(|ej,0;n)e;]. Similarly, we have the inequality above in the case ¢, < 0. We put
w(j) =w+ (€,0,..,0). Then, we have

|F((@F,) " (w)) = f(y(z, (F,)~Hw)) +¢5)) o Hi(w) = FG(PF(0()))]
€] N €]
| (w) — i (w(3))]

!€j|

—{—LT]‘

+ LY (|ej], 75, 0;m).

By letting j — oo, we have the statement 3. Similarly, we have the statement 4.

We shall give a proof of the statement 5. we take w € Ci’; By Claim 3.24, we have

(41) (1= WO)LIP(EE g er iz, (0) < LiD(Flios )t om0z ) (BF) ()
(42) <(1+ \II(6>)Lip(Fkx,i|{w1}><Rk_1ﬂC£’i)(w)'
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We remark that (7 ;) '({wi} x R"'nCy ;) = 8Bﬁ(a:) N Cj,;. By Proposition
7.7, we have Lip(F};| (w1 xri-1ncs ) (W) = Llp( kz|{w1}><R’“ 1)(w). Therefore, by Claim
3.24, we have

(43) (1= WO)LIp(Fs | unpemr—) (W) < LipflaBT oncg,) (P17 (w))

(44) < Lip(f|83m(x)mcgi)(‘I’i,i)_l(w))
(45) < (1 + W (0))Lip (Y| fwn yxme-1m0g (g ) (W)
(46) < (14 W () Lip(Fi il fuwryxrr—1) (w).

Thus we have the statement 5. Similarly, we have the statement 6.
Therefore we have Claim 3.26.

CLAIM 3.27. With same notation as in Claim 3.26, we have

lip(flam

ziq(f)ﬁcﬁi)(((bi,i)_l(w)) > Lip(f@Bmi_l(x))((‘biﬂ-)_l(w)) — ¥ (d;n, L)
= @F ) 1(w) : =@ )

for a.e w € @iz(C’,fl)

The proof is as follows. We will use same notaion as in the proof of Claim 3.26. We take
w e @i’i(Leb(QJﬁi)_l(Ci:f)) and put z = (®f ;)" (w). First, we assume k > 2. We shall
prove that z € 0Bz(x) is not an isolated point in 0Bz=(z)\C,. Because, by the definition
of sl; — Leb(C%;), there exists a sequence {3(j)} € Cf; such that m(8(j)) = m(w),
B(j) # w and f(j) — w. Then, we have (®f ;)" (8(j)) # 2, (P} ;)" (B())) € 0Bzz(2)\C;
and (®f ;)7 (6(j)) — 2. Therefore, z is not an isolated point in dBzz(z) \ Cs.
We take a sequence {z(j)} € 0Bz=(x) \ {2} such that z(j) — z and that |f(z(j)) —
F)/2(5), 2 — Lip(f[oB,=(x))(2). We put n; = 2(j), 2 > 0. Since z € Leb(®f ;)™ 1(Cizf),
there exists 2(j) € (®f,)""(Cy 7y such that 2(5), 2(j) < #m;(7; — 0 as j — co). We put
a(j) = @7 ,(2(j)). Thus, we have |71 (a(j)) —m(w)| < (1+40)7;m;. Therefore, there exists
a(j) € {w} x R¥1 such that w(j), &(j) < ¥(7;;n)n;. Then, we have

[f(z() = F)] _ [f(20)) = f(2)]

(47) O ”Jj o

" _ |F,g,l-<w<j>7)7 “IE L s, )

" |F,§ (@(A')LFEJ(WN a(j), w + LW (#5;m, L).
a(j), w i

By letting j — oo, we have Claim 3.27 for the case k > 2. Next, we assume £ = 1. It

suffices to check that z is an isolated point in 0B;(x). We assume that z is not an isolated
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point in Bz=(z). Then, there exists a sequence {z(i)} € 0Bz=(z)\{z} such that z(i) — z.
We take an isometric embedding «y from [0, 7, Z + 79 to Y such that v(0) = z,v(7;2) = =.

Here 7y is a positive constant. We put €(i) = z,2(i). Then we have z(i),v(7,z — ¢;) >

x,2(i) =2, y(T, 2 — &) =€, 2(4),7(T, 2+ €) > x,v(T, 2+ €) — x, 2(i) = €. On the other
hand, by Proposition 2.9, without loss of generality, we can assume that (Y,¢; 'dy, 2)
converges to some tangent cone (7,Y,0,) at z. By the argument above and splitting
theorem, there exists a pointed proper geodesic space (W, w) such that T,Y = R x W
and that W # {w}. On the other hand, z € C;; C Ry. This is a contradiction. Therefore
we have the Claim 3.27 for the case k = 1.

By Claim 3.23, 3.26 and 3.27, for every N € N, we have Lipf(z)? = Liptf(2)? +
Lip(floByiy ) (2)* £ N7H = lip f(2)? + lip(flopez@nc.) (2)? £ N" = lipf(2)? £ N~! for
a.e. z € Y \ C,. Therefore, we have the assertion. O

REMARK 3.28. For every Ricci limit space (Y, y,v) and Lipschitz function f on Y, by
[4, Corollary 6.36], we have lipf(z) = Lipf(x) for a.e. z € Y.

By an argument similar to the proof of Lemma 3.20, we have the following:

LEMMA 3.29. Let (Y,y) be a Ricci limit space satisfyingY # {y}, z a point in Y \ C,,
f a Lipschitz function on Y, T a positive number and vy an isometric embedding from
0,7, 2+ 7] to Y satisfying v(0) =y and v(y,2z) = z. We assume that the limit lim, _o(f o
v,z +r) — f(2))/r exists. Then, for every isometric embedding v : [0,7,Z2 + 7] — Y
such that v(0) = y and that v(y,;2) = z, we have lim,_o(f o Y(7;z + r) — f(2))/r =
lim, o(fov(m,z+71)— f(2))/r.

We shall give the following definition:

DEFINITION 3.30. Let (Y, y) be a Ricci limit space satisfying Y # {y}, f a Lipschitz
function on Y. We put

A, = {x € Y\ Cy; The limit lim for@y+r) = f(z) exists} .
r— r
Here v is an isometric embedding from [0,7,Z + 7] (7 > 0) to Y satisfying v(0) = y and

v(y, %) = x. For x € A,, we put

ﬁ(x):hmfov(Terr)—f(w)_

dry r—0 T

Similarly, we have the following lemma:

LEMMA 3.31. Let (Y,y) be a Ricci limit space satisfying Y # {y}, z a point in Y \ C,,
[ a Lipschitz function on'Y, T a positive number and ~;(i = 1,2) isometric embeddings
from [0,5,Z + 7] to Y satisfying v(0) = y and ¥(y,Z) = z. Then, we have liminf, o |f o
@z +71) = f(2)|/|r] = liminf, o [f 0 2(y, 2 + 1) = f(2)]/]r]-
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With same notaion as in Lemma 3.31, we put Lﬂ;adf(z) = liminf, .o |f o 71 (7,2 +

r) = FEI/Ir]-

LEMMA 3.32. Let (Y,y,v) be a Ricci limit space, x a point in'Y and f a Lipschitz
function on'Y. Then, we have @;adf(z) = Lip™df(2) for a.e. z€Y.

x

Proor. We will use same notaion as in the proof of Claim 3.26. We put L = Lipf.
We take a sufficiently small 0 < 6 < 1 and a Borel set C}; such that the map ®f; =
(Tf’”rmi,i"" ,rx?i) from Cf; to RF, gives a (1 & §)-bi-Lipschitz equivalent to the image.
We take w € Cifc and put z = (®f ;)" (w). We choose an isometric embedding  from
[0,Z,Z+ 7] to Y such that v(0) = z,v(T,2z) = z. Here, 7 is a positive constant. We take a
sequence of real number, {¢;} such that ¢, — 0 and lim; o |f o y(ZT;Z + &) — f(2)|/|e] =

@;ad f(z). By an argument similar to the proof of Claim 3.13, there exists w(j) € Cf;

such that w(j),v(7;Z + €;) < 7le;|(1; — 0 as j — o0) and that

f(2) = (V@7 + )| _ [Fia(w) — FG(PF(0(9))))]
&1 €]

| Fia(w) — Fy(w))]

5]

(50) —2L7;

(51) — U(7;,6;n, L).

By letting j — oo, we have @;adf(z) > Lip(}?’,fﬂ-|RX{w2 we}) (W)=Y (850, L) > Lipradf(z)—

7777 xT

U(d;n, L). Therefore, we have the assertion. O

Thus, we have

Llpgrvad (Z) — }ILL% |f © 7(m|_];_|h) B f(Z)|

for a.e. z€ Y\ C,.

THEOREM 3.33 (Radial derivative for Lipschitz functions). Let (Y,y,v) be a Ricci

limit space satisfying Y # {y}, x a point in' Y and [ a Lipschitz function on'Y . Then,

we have v(Y \ A;) =0 and
ar

g (2) = (. dr)(2)

for a.e. z € A,.

PROOF. For every w € Y\ C,, there exist 7 > 0 and an isometric embedding ~ from
[0,Z,Z+7] to Y such that 4(0) = z and v(Z,w) = w. Then, by Theorem 3.22 and Lemma
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3.32, for a.e. w € Y\ C,, we have

% (Lip(r, + f)(w)* = Lipf(w)® — Lipr,(w)?)

= S e+ F)(w) + Lip((rs + Dloerione.)(w)’

)*
= Lipf(w)* = Lip(flosac.) () = 1)

{dre, df)(w) =

= (LD e+ () + Lip(flopone,) ()
 Lip™ f(w)? — Lip(flopc.)(w)? — 1)
%(Llp e+ f)(w)? ~ Lipf f(w)? ~ 1)
s+ f)oy@@+B) = (o + NP |f 0@+ k) — f(w)?
9 (;Ho E — i A2 B 1>

for(@w+h) - flw)

1
* h

h—0 |h‘2

1 < ,
= — | im
2 \ h—o

(Here, we have the existence of the limit lim

P Mfon(@m ) — f@)P 1)

fon(T,w+ h) —f(w)‘)

0 h
_ §<1 oy LTI S0) Ly or(mT 1) = 0
 y [f 2T wg’?) flw)P _1>
= g LTS )

3.3 Rectifiability associated with Lipschitz functions

In this section, we will give a generalization of Theorem 3.17. First, we shall state the

following lemma:

LEMMA 3.34. Let 6 be a positive number, {(M;,m;)}; a sequence of n-dimensional
complete Riemannian manifolds with Ricy, > —d(n — 1), (Y,y,v) an (n,—9)-Ricci limit
space of {(M;,m;,vol)}s, x,x1, 29 points in Y, x(i), z1(7), x2(i) points in M;, b} a har-

monic function on Bigo(x(i)) and b$® a Lipschitz function on Byg(z). We assume that

T,o >0 LTI > 6, BT + T, T — T, @ <0, x(i) — x, x;(1) — x;(0) (5 = 1,2),
sup, Lipb} < 0o, b} — b on Bigy(z),

Ib% — T3 Lo (Broo () < 0

35



1

- Vbi — Vr, (»|?dvol < §
vol Bygo(z(i)) /Bmo(x(‘)) Vb, 1)

and
1

- - Hessy,: |*dvol < 4.
vol BlOO(x(Z)) /B1oo(x(i)) | .

Then, we have

L
v(Bi())

We remark that Lemma 3.34 does not follows from [4, Lemma 9.10] directly. We shall
give a proof of Lemma 3.34 in the proof of the following Lemma 3.35.

/ |db3° — dr,,|*dv < ¥(d;n).
By (z)

LEMMA 3.35. Let 6 be a positive number, {(M;,m;)}; a sequence of n-dimensional
complete Riemannian manifolds with Ricy, > —d(n — 1), (Y,y,v) an (n,—9)-Ricci limit
space of {(M;,m;,vol)};, z,x;(j = 1,2,3,4) points in Y and x(i),z;(i)(j = 1,2,3,4)

points in M;. We assume that (i) — z, z;(i) — z;(j = 1,2,3,4)), T,2; > 6", 7,71 +

T, T3 —T1,02 < 0 and T, T3 + T, x4 — T3,24 < 0. Then, for every sufficiently large i, we

have

el ),
_— dry,,drg,)dv = ———— dra, (i), dre,iy)dvol = U (d;n
M&@DBmf 1 dryy) Vd&@@)&mm< (0)> AT () (D)

(dry,, drg,)dv (dry,,drg,)dv| dv < ¥(§;n)

: / : /
v(By (7)) By (x) v(By (7)) By (z)
and

: / ’ : /
_— drg, (i), dreoi)) — ——=——— dry,,dry,)dv
VL Ba@ D) Sty |0 0N T B @) S

ProoF. First, we remark the following claim:

dvol < U(d;n)

CrAM 3.36. For every sufficiently large i, there exist harmonic functions bt b% on
Bioo(x(i)) such that Lipb% < C(n), [b} — re)|re(Bio(y)) < Y(d;n),

1 / ,
_— |db} — dry,(; ?dvol < W(8;n)
vol Bioo(%(7)) Jgioo(atiyy ¥
and .
_— Hessy,i |*dvol < U(8;n)
Vd&m@@%émmm‘ el
for 3 =1,3.

See [4, Lemma 9.8, Lemma 9.10, Lemma 9.13] or [6, Lemma 6.15, Lemma 6.22, Propo-
sition 6.60] for the proof of Claim 3.36.
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Since C'(n)(|Hessy,

equality, we have

? + [Hessy,;

%) is an upper gradient of (db, db), by Poincaré in-

- - db’, db%)dvol
vol Bioo(7(%)) J Byoo (i) (b1, dbi)

2) dvol < W(5:n).

(db', dbl) — dvol

sy
vol Bioo(7(4)) JByoo (i)

1
< C(n —/ (Hess i
( >V01 BIOO(x(Z)) Bioo(x(1)) ’ i

Therefore, we have

i [Hessy,;

1

dbi,drx N ———————— / dbi,dm n)ydvol| dvol
< 3 1()> VOlBloo(;C(’l)) Bloo(g:(i))< 3 1()>

T
vol BIOO(x(i>> Bioo(z(i))
< U(0;n).
By Proposition 2.11, without loss of generality, we can assume that there exists Lipschitz

functions b, b$® on Bjg(x) such that b; — b5 on Byg(z). By Theorem 3.33, there
exists a Borel set A C Bjgo(x) \ Cy, such that v(Bigo(z) \ A) = 0 and that

i 21 @La+h) — f(a)
h—0 h

= <dr:v1’ db?)(a’)

for every a € A and minimal geodesic v from x; to a. By Lusin’s theorem, there exists a
Borel set A(d) C A such that v(A\ A(0)) < 0v(B;(x)) and that the function (dry,, df)| )
is continuous. For every 0 < 7 < §, we put a function f) on A(0) \ Bas(x) by
f(z) = f(w
fo= s (I g ).
weC: ({z1})NBy(2) 2, W

It is easy to check that fg is an upper semi-continuous function. Especially, fg is a Borel
function. By the definition of A, for every a € A, we have lim,_.g fg (a) = 0. Thus, by
Egoroff’s theorem, there exists a Borel set X = X (§) C A(6) such that v(A(0) \ X(4)) <
dv(Bi(x)) and that

lim (sup fg(a)) = 0.

=0 gex
We take n = n(6) << 6 satisfying sup,ex f) (a) < 4 for every 1y < n. For every i, let X;
denote the set of points w € By(z(i)) such that

1

(dbs, dra, o) () = Sy

/ (dbl, dr, i))dvol| < ¥(8;n)
Bioo(x(2))

. Then, we have vol(Bj(z(i)) \ X;)/vol By(z(i)) < W¥(d;n) for every sufficiently large i.
For every i, we define a Borel function F; on Bigo(x(7)) \ Cs, ),

Fi(w) = bé(’y(_xl(i),w_;f)) — bi(w)

Here, v is the minimal geodesic from (i) to w.
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CraM 3.37. For every sufficiently large i, we have

1

_ |(db%, dry,»)) — Fi(w)|dvol < W(d;n).
vol Byg(x(i)) /Blo( O)){ee ’ ©

The proof is as follows. It is easy to check that for every a < b, smooth function f on
(a,b) and ¢ € (a,b), we have

£ =50+ £ -0 - [ (5= f(s)ds.

Therefore, we have

b (y(x1 (i), w — ) —bi(w) _ dbj w— L
—n? dra, (i)

Thus, by an argument similar to the proof of [44, Estimate 2.6], we have

1

. I / dbz , dr:cl @) — dvol
(52) vol Bio(2(%)) J o)) \Cay (i) K ’ ! ‘
. a:l(z
3) - n_VOlBlO /B N / 77 |HeSsz‘< (s))dsdvol
10(x(i
y < 20(n —/ Hessy,; |dvol
( ) =1 ( )VOI B100(I(l)) Bloo(x(i))| .
1
55 < n?C(n —/ Hessy; [*dvol
(55) <n°C( )\/ vol Bioo(x(i)) B100($(i))‘ ”
(56) < n?C(n)¥(5;n).

Therefore, we have Claim 3.37

Cram 3.38. For sufficiently large i, we have

v(Bi(%‘)) /Bl@

The proof is as follows. Let Y; = {w € By(z(i)) \ Cr,q); [{dbh, dre, i) (w) — Fy(w)] <
¥(0;n)}. By Claim 3.37, we have vol (B;(x(i)) \ Y;)/vol Bi(x(i)) < W(d;n) for every
sufficiently large i. We put Z; = X; NY,;. We take a compact set W; C Z; satisfying
vol(Z; \ W;)/vol By(z(7)) < W(§;n). Thus, we have vol(By(z(i)) \ W;)/vol By(x(i)) <
U(d;n) for every sufficiently large i. By Proposition 2.10, without loss of generality, we

B
vol By (z(i))

(dbS°, dry, ) — / (dbY, dry, y)dvol| dv < U (5;n).
B (x(i))

can assume that there exists a compact set W,, C Bi(z) such that W; — W,. By
Lemma 2.14, we have v(Wy)/v(Bi(z)) > 1 — ¥(§;n). We put E = W, N X, then
v(Bi(z) \ E) < ¥(§;n)v(Bi(z)). For every w; € W; and w € E, we take the minimal
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geodesic 7, from z;(7) to w; and a minimal geodesic v, from 1 to w. Then, there exists

1o such that for every ¢ > 1o, w € E and w; € W, satistying w; — w, we have ¢; << n,

by (6), wi — n?)) — bi(w;)
_772

(dbf, dry, (i) (w) < U(8;n)

and )
dbi7d7“$1i w;) — ——————— / db’, dr, ;) )dvol
’< 5 ()>( ) VOlBlOO(x(Z)) Bloo(a:(i))< ’ 1()>

On the other hand, by rescaling n~2dy, since

< U(d;n).

:7_2dy p——— :7_2dy

Iy, ¢Z(71($1<Z)7w7, - 772)) 2 77_1? ¢Z(VZ($1<Z)7wZ - 772))>w 2 77_1

and

@1, Gi(vi(21 (1), w; — 772))I + @i (vi(x1 (), w; — n?)),w — medY <,

by splitting theorem, we have

n~2dy

Gi(vi(z1 (i), ws —n?)), (T, W — 1?) < VU(6;n).

Therefore, we have

b (A0 — ) ~ i) DEOETT )~ g
-1 -1
Thus, we have
‘(dbg",drmlﬂw)—m /B (())(dbg,drm(mdvol < W(5;n).
We put X
Ci - vol BlOO (m(l)) /Bloo(m(i))<dbé7 drm(i))dVOl'
Then
! . dr,, )y — C;ldv
5N / b )~ Gl
! 5 ,dry,) — C;|dv L 5, dry,) — Ci| dv
59) = S o ) = Clito s [ (b )
Cop(Bu)\B) | w(B) o oo
o WB) e S e

Therefore, we have Claim 3.38.
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CrAamM 3.39. We have

1

- db*2dv < 1+ W(6:n).
U(‘Bl(x)) /]_;31(51:) | ° | ( )

This proof is as follows. Since

1 / -
_ dbi| — 1]ldvol < ¥ (§;n
vol Bl (I(l) B (x(i) || 3| | ( )

for every sufficiently large i, by [5, Lemma 16.2], there exists a compact set K; C By (x(i))
such that vol(By(x(i)) \ K;)/volBy(x(i)) < ¥(d;n) and that Lip(bj|x,) < 14+ ¥(d;n). By
Proposition 2.10, without loss of generality, we can assume that there exists a compact
set Ko C Bj(v) such that K; — K. By Lemma 2.14, we have v(K)/v(B;(x)) >
1—U(J;n). By the definition, we have Lip(b$°|x..) < 1+ ¥(d;n). We put K, = Leb K.
Then by Proposition 7.7, we have

]‘ / 2 1 2 ]‘ 2
L[ aban = —/ b3 o + —/ b3 [2du
v(Bi(2)) Jp ) v(Bi(x)) Jr, v(Bi(2)) Jp ke

| o o PBI) Ko
§U<Bl<x))/w(Lpb3)d O B @)

1 . 0 2 “n
R [ Wil o+ w5in)

1
< m/f{ (14 (5 n))dv + U(5:n) < 1+ W(5:n).

Therefore, we have Claim 3.39.

If we consider the case x1 = x3, x5 = x4, then, by Claim 3.36, 3.38 and 3.39, we have

(60)
1

_— db%® — dr,. |*dv
(B (@) /m)‘ 3 e

(61)

1 / , 1 1 ,
S b [2dv — 2—/ (dbS°, dryy Ydv + —/ iy, [2du
v(Bi(@)) Jp @y v(Bi(2) Jpy) ’ v(Bi(7) Jp@)

(62)
<149(6;n)—2(1 —¥(5;n))+1<Y(0;n)

for every sufficiently large i. Therefore, we have Lemma 3.34. On the other hand, Lemma
3.35 follows from Lemma 3.34 and Claim 3.38. n

LEMMA 3.40. Let {(M;,m;)}; be a sequence of n-dimensional complete Riemannian
manifolds with Ricy, > —(n — 1), (Y,y,v) a Ricci limit space of {(M;,m;,vol)};, T
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a positive number, x,x1,xs points in Y, x(1),x1(i), x2(i) points in M;. We assume that
T € ﬂjzl’Q(D;j(i)\BT(xj)), z(1) — x and xj(i) — x;(j = 1,2). Then, for every sufficiently

large @, we have

1 1 r
—— dry,, dry,)dv = ————— dra, (i), ATy (i) )dvol £ W (r, —;m),
(B, (x)) /Br(gg)< o, draa)dv = OB /BT(x)< Fasi), ras(iybvol & W (r, =)

1 / r
— dry,,dry,)dv|dv < ¥(r,—;n
oB, 1) 0 i im)

T

(dry,,drg,)dv —

and

1
Qoo ) — dran iy, dray o )dvol
< /rxl(’b)7 T.Z’Q(Z)> VO]_ BT(I’(Z)) \/Br(x)< rxl(l)7 Tx2(1)> VO

T

o
vol B,.(z(7)) By (x)
PROOF. By rescaling r~'dy and Lemma 3.35, it is easy to check the assertion. [

Next corollary follows from Lemma 3.35, 3.40 directly:

COROLLARY 3.41. Let {(M;, m;)}; be a sequence of n-dimensional complete Rieman-
nian manifolds with Ricy, > —(n — 1), (Y,y) a Ricci limit space of {(M;, m;,vol)};, 7, L
positive numbers, T, T1,..., Tk, 21,... , 2z points in' Y, x(i), x1(7),.. , xx(1), 21(7),... , /(i) points
in M; and ay,..,a,by,.., b real numbers. We assume that x € ﬂle(D;i \ Br(x;)) N
Ny (DL Bo(z), 2)) — o, 25(0) = 230 = 1o B), 2m(i) — 2mlm = 1,.,1) and
Zle a? + Zﬁzl b} < L. Weput f = Z?Zl ajry,,g = Zé’:l bire;, fi = Z?Zl ajTe; (i) and
gi = 22:1 bijr.;i)- Then, for every sufficiently large i, we have,

(dfi, dg;) —

(df, dg)dv| dvol < W(r, “:n, L),
T

1 1
vol B,.(x(1)) /Br(z(i)) v(B:(2)) /Br(x)

1 1
- - df, dg) — —— df;, dg;)dvol
v(B, (7)) /Br(:r) .41 vol B, (x(i)) /Bmc(i))< o)

LEMMA 3.42. Let {(M;,m;)}; be a sequence of n-dimensional complete Riemannian
manifolds with Ricy,, > —(n—1), (Y, y,v) a Ricci limit space of {(M;, m;,vol)}i, 1, ka(1 <
a < 1) positive integers, r,¢,7, L positive numbers, x,z;(1 < s < [,1 <t < k) points
inY, x(i),x;(i) points in M; and aj(1 < s < [,1 < t < k) real numbers. We put
i = Sk al,ry s f) = Sk aznrxzn(i). We assume that | < n, k; < n(l < i <),
RS ﬂlfgigugjgki (D;;: \ BT(xé-)), x(i) — x, 23 (i) — 7, Zi,j(a§)2 < L and

dv < ¥(r, f;n,L).
T

— d ; dz dU = (5ij €.
o(B, (@) /BM( Ui df) -

Then, for every sufficiently large i, there exists a compact set K' C Fr/lo(:p(i)) satisfying
the following properties:

41

dvol < U (r, f; n
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1. vol(B,j10(x(7)) \ K7)/vol B, 10(z(2)) < W(r,r/7,€;n, L)

2. For every w € K and 0 < s < r/10%, there exist a compact set Z C By(w), z € Z
and a map ¢ : (By(w),w) — (Z,z) such that the map ® = (fi, fi,.., fi, @) from
By(w) t0 Bsiw(rrjreniys(fi(W),..., fi(w), p(w)), gives U(r,r/7,€;n, L)s-Gromov-Hausdor(f
approximation.

3. For every w € K and 0 < s < r/10°%, we have

1

) ) r
o B dfi dfi) — Sagldvol < W(r, = e, L),
VOlBS(w> /Bs(w)|< fon fﬁ> a5| vol < (7",7_76,71, )

Proor. By Lemma 3.42, we have

1

o r
Sl Bl dfi, df) — 6, ;ldvol < W¥(r,—, en, L
vol B,.(z(7)) /Br(x(i))|< Ifi, df}) ],z| vol < (T,T,e,n, )

for every sufficiently large i. We consider rescaled distances r~'dy and r~'d,;. For
convenience, we shall use the following notations: vol = vol” ™ & = v/v(B,(y)),
P(w) = r w2, By(w) = BT (w) = By (w), § = g for Lipschitz function g and
so on. We remark that (M;, m;, r‘ldMZ.,v_olrfldMi) — (Y, y,r"'dy, ). We also denote the
differential section of Lipschitz function f on Y as metric measure space (Y, 0) by d f:
Y — T*Y and denote the Riemannian metric of rescaled Ricci limit space (Y, y, 7 'dy, 0)
by (-,+),. By the definition, we have (-,-), = r=2(-,-). Then we have

1 / Aa A A N r
NN ’<dfz,df}>r—5A‘dV01§ W(T,—,&;R,L).
vol By(x(0)) Je1way ! 7 T

On the other hand, by [4, Lemma 9.8, Lemma 9.10, Lemma 9.13| (or [6, Lemma 6.15,
Lemma 6.22, Proposition 6.60]), there exist harmonic functions lA);”(l <m<[1<j<
km) on Bigo(2(1)) such that [b7"" — fum ()| poo 5100wy < L(r:7/Tim),

1 o~ . A
B / ‘db;n7Z — d’/’Axm(l)ﬁdVOl < \IJ(T, Z; n),
vol BIOO(x(Z>> Bioo((i)) ’ T

and

|HessB;n,z- 2dvol < U(r, ;; n).

T )
vol Bioo((7)) J Bioo (i)
We put f); =S aﬁnf);m Then, we have

P T r.
|fj - bj’LOO(Bloo(:t(i))) < ¥(r, ;7”7 L),

1 An A A ~
o [ b~ dfy vl < 0 D 1)
vol BlOO (ZL'(Z)) Bloo(ﬂc(i)) T
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and
1

?/ |HeSSB?
VOlBloo(ZE(Z)) Bioo(x(i)) !

Especially, we have

2dvol < U(r, f; n,L).
T

1

—_— |(db?, dbi), — &;,|dvol < W(r,—, e n, L)
vol Bloo(l'(Z)) /Bloo(ac(i)) ! 4 7_

We put

l
E, = Z |dbi, — dfi[? + Z [ldbif2 — 1]+ [(db, dbi),| + > [Hossg, |7
j=1

]<l

By Lemma 3.1, we have the following:

CrLAIM 3.43. For every sufficiently large i, there exists a compact set K! C Bl/lo(x(i))
such that

BEONKD

and that

1
—/ Fvol < W(r, - e, 1)
vol Bss(w) J Bsy(w)

for every w € K! and 0 < s < 1/10.

We fix w € K’ and 0 < s < 1/10. By an argument same to the proof of [9, Theorem
3.3], we have the following:

CLAIM 3.44. There exist a compact set Z C ﬁs(w), a point z € Z and a map ¢
from Byjs(w) to Z, such that the map ®(a) = (bi(a),.., bi(a), ¢(e)) from Byjes(w) to
§3/105+\1,s(1§)§(w),... ,f)}(w),gb(w)) C R* x Z, gives Us-Gromov-Hausdorff approzimation.
Here, W = V(r,7/T,€;n, L).

Since
L / |dbl — dfi|*dvol < W(r, -, €;n, L),
vol Bss(w) J Bss(w) T
by segment inequality (see [9, Theorem 2.15]), for every z; € ?s(w), there exist z; €
§58 (w), w € ?55(21)) and a minimal geodesic y from 2, to 1w such that zy, 2, < U(r,7/7, €;n, L),
w,w < V(r,r/T,€mn, L), and that

| el = )6 < v Lein Ds

Therefore, we have

@@ﬁ—ﬁ%%ﬂ%@%—ﬂwﬂéz%%@®}fm(»ﬁ<@( en L)
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By Cheng-Yau’s gradient estimate, we have Lip(f)ﬂ Baw(w)) < C(n,L). Thus, we have
|B;(zl) - f;(zl) - (Bz(w) — fj’(w))| < U(r,r/T,€e;n, L)s. Therefore, if we put C' = l;);(w) -

f}(w), then we have

Ci_ f ro.
bl = fi +C £ ¥(r, 6 L)s
on ﬁs(w).
Thus, the map ®() = (fi(),.., f/(@), ¢(a)) from By105(w) t0 By 15 ws(fi(w),... , [l (w), p(w)),
gives Us-Gromov-Hausdorff approximation. Therefore we have the assertion. n

LEMMA 3.45. Let (Y, y,v) be a Ricci limit space, T, €,0, L positive numbers, I,m, ky(1 <
s <1 < m) positive integers, x,z;(1 < s < 1,1 <t < k) points in'Y and a] real numbers.
We put f; = Zf,{:l ainrx%. We assume that x € Leb (mlgigz,gjgki (DL A\ {z:}) N (Rm)(;ﬁ),
>i;(a%)? < L and J

lim sup

1
0 V(B (x)) /Br(x) [{dfs, dfi) — dijldv < e.

Then, for every sufficiently small s > 0, there exists a compact set K, C By(x) satisfying
the following properties:

1. v(Ks)/u(Bs(z)) > 1— V(e d;n, L).

2. For every a € K and every sufficiently smallt > 0, there exist points wh(«),...,w! _,(«) €
Y and a compact set Uy C By(a) such that v(U;)/v(Bi(a)) > 1 — (e, d;n, L)
and that the map ®, = (fl;---,fl,’f’wg(a)r--,'f’w;%l(a)) from Uy to R™, gives (1 +
(e, §;n, L))-bi-Lipschitz equivalent to the image ®4(Uy).

PrOOF. Let (M;, m;,vol) — (Y,y,v). We take x(i) € M; satisfying x(i) — x and

put f; = Sk aj,r,i ;- There exists s; > 0 such that s; <<,

b
U(Buguoa (1))

|(df, df;) =6 |dv+—————"-F z < 3¢
/Blolos(x) ’ ! U(Bl[)los(x))

for every 0 < s < s;. By Proposition 2.10 and Lemma 3.42, for every 0 < s < sy, there

exists a compact set K, C Bygo,(z) satisfying the following properties:
1. v(Ky)/v(Bigs(z)) > 1 — V(e n, L).

2. For every w € K, and 0 < t < 10*s, there exist a compact set Z C B;(w) and
a map ¢ from B;(w) to Z such that the map ®¥ = (fy,.., fi, o) from By(w) to
Biogserwn (fi(w),.., filw), ¢ (w)), gives Ut-Gromov-Hausdorff approximation. Here
U =V(en, L)
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3. For every w € K, and 0 < t < 10%s, we have

1
v(Bi(w)) /Bt(w) [(dfj, dfi) — dijldv < ¥(en, L).

Here, with same notation as in Lemma 3.42, we used Proposition 4.13 as

1 1

lim —/ (df¥, dfF)y — 64|dvol = —/ df;, df;) — d5|dv.

8 SO B w(R) Sy P T OB S ) fyy ) 0
for w(k) — w. We fix 0 < s < 51 and take Ky, w € Ky N Leb((; oy 1<, (DL \ {25}) N

Sl S $j
{251 N (Rum)sr))/v(Bigos(x)) > 1= W(e;n, L). We assume that ¢ is sufﬁcie_n’;ly small and
that
v(Bj(w))
for every 0 < ¢ < t. There exist points y;", y; € By(w)(1 < i,j < [) such that
dv(y), (0,..,0,t,0,.,0, 0% (w)) < ¥t and ®¥(y; ), (0,..,0,—t,0,..,0, 0% (w)) < Wt. We
t(yz)( ' o (w)) t(%)( 4 o (w))
7 J
also take an Wt-Gromov-Hausdorff approximation &% from Bigorun (fi(w),..., filw), ¢ (w))
to By(w) satisfying ¥ o ¥ (), v < Wt for every a € Bigorun (fi(w),.., filw), ¢ (w))
and <i>j;” o ®¥(3), 3 < Wt for every 3 € B;(w). On the other hand, we can take dt-Gromov-
Hausdorff approximation ¢ from (B,(w), w) to (By(0), 0,) and ¢ from (B,(0,,), 0 ) to
(By(w),w) satisfying that ¢ o (), o < 56t for every a € By(0,,) and ¢ o (), 8 <
56t for every 3 € By(w). Especially, there exists an Wt-Gromov-Hausdorff approximation
h from (B;(0_1), 0py) to (Z*, ¢ (w)) such that (0,...,0, ), 1 o ®¥(fi(w),..., filw), h(a)) <
Ut for every o € Z}”. Here ¥ = W(e, §;n, L). Without loss of generality, we can assume
that ¥ (y;), (0,..,0,%,0,..,0) < Wt. There exist points 2, 2 € By(w)(l+1 < i, < m)
\‘/—/

>1—c

9%
such that ¥ (z;"), (0,..,0,¢,0,.,0) < ¥t and V(25 ),(0,..,0,-¢,0,..,0) < Wt. We put
% J
F; = f; — fi(w) and define a function G; on (B;(0,,),0,) by G; = F; o1®. Since
Trm-1 (Y} 0 QP (fi(w),..., filw), hi(a))), < Wt, the map G = (Gh,..., G, M1, , T) from
(B¢(0,1),0,) to (Biywi(0),0,,) gives Ut-Gromov-Hausdorff approximation and satisfies
G((0,...,0,+£t,0,..,0),(0,..,0,%¢,0,..,0) < Wt. Here mgm—: is the canonical projection
—— S——

R” = R' x R — R™! and 7 is the i-th projection R™ — R. Thus, we have
a, G(a) < Wt for every a € By(0,,). Especially, we have the following claim:

CLAIM 3.46. We have
|Gy —mi| < U(e,d;m, L)t

on By(0y,).
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We fix 0 < t < t. By rescaling t 'dy, ¢ 'dgm, Claim 3.46 and the definition of

Busemann function, we have the following:

CLAIM 3.47. We have
t
F(@) {1y @) = 1y o)) < (e,

on Bi(w).
We take y; (k), z; (k),w(k) € M}, such that y; (k) — y;,2; (k) — z; and w(k) — w.

For U = U(e, §;n, L) in Claim 3.47, we put r = v/Ut.
For convenience, for rescaled distances r~'dy and r~'d,;,, we shall use the same no-

tation as in the proof of Lemma 3.42 below: fF, df,vol and so on.

CrLAIM 3.48. For every sufficiently large k, we have
1 7 rk 7a 23"
|df; — dF - gy lrdvol < V(e d;n, L).
Bioo(w(k)) '

vol Bigo(w(k))
This proof is as follows. By the assumption and Proposition 4.13, for every sufficiently

el
Biooo(x(k))

Vz)l élooo(af(k’))
By an argument similar to the proof of Lemma 3.42, for every sufficiently large k, there ex-

ist harmonic functions b¥ on Bigo(w(k)), such that Lipb* < C/(n), |B§_fik|L°°(Bwo(w(k))) <

large k, we have
|dfF? — 1]dvol < W(e, 8 n, L).

W(r,r/7in, L),
1 - . .
— / |db¥ — dfF|?dvol < U(r,r/7;n, L)
vol Bigoo(w(k)) J Biooo(w(k))
and )
— / [Hessg |>dvol < U (r,r/7;n, L).
vol Bigoo(w(k)) J Bioso (k) ’
we take the minimal geodesic 7§ from y; (k) to o on

For every o € Bygoo(w(k)) \ Cox
(M;, 7= dys,). We fix 0 < h < 1. By Claim 3.47, there exists ko such that for every k > ko
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and o € Bygoo(w(k)) \ C\y= (> we have

B(a) = B (e(y (K)o " — b))
(63) ;
A A —————ldy,
(64) _ fia) - fik(Vf(y;ffk)7a —h)) n \I’(e,éf;Ln, L)
(65) _ filénl(a) - fi(qbk(v?;yi‘(k)’a ) 4 ‘1’(@5];”, L)
—— P “Tda, r~ldy
66) = Y Pe()  —yr ,m(v{;(y{ (k), a -h \I/(e,é}ln, L)
rilde —r*lde _lde
67) = yi (k), — y[(’f)w?h(yi‘(k),a — h) N \11(6,5};71, L)
63) —1+2@OmD)

h

On the other hand, by an argument similar to the proof of Claim 3.37, we have

(69)

— 1 / l /yi_(k)’ald (S — (y;(k))a 71de _ h)) Mdsdv/\ol
vol BlOO(w(k» Boo(w(k)) h y;(k),aT My _p, ds

(70)

h -
< C(n)—=——= / |Hessy|r-dvol < W(e,0;n, L).
vol Biooo(w(k)) J Biooo(w(k)) '

Since
e e b
(71) bf(a) = b (12 (yr (k)0 " —h)) + —(a)h
dry{(k)

= (k) T 20k

Y; o r— Yy d“b’ O")/(-l
72 - — (y; (k F—h)) ——"d
() /y;(k),a”%_h (S i (), )) ds?t

for every o € Bgo(w(k)) \ C,- (), We have

L i, i =1 2 L)
VOlBloo(UJ(kf)) Bwo(w(k)) ' h
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Therefore, we have

1 / 5 Pk N 24
_ |df} — dr - o |7dvol
vol BlOQ(ZU(kf)) Bloo(x(k)) v

1 Sy 2 S -
= —— / |dfF2dvol — —— / (dfF, df - g)rdvol + 1
vol BlOO ('LU(/{)) Bloo(w(k)) vol Blo()(w(k)) Bwo(w(k)) ‘

(dbf, dP,- 4y )rdvol + 1+ W(e, 6;n, L)

1
vol BlOO (?U(k)) Bloo(w(k))

_2_2(1i\11(6,5};n,[/)

Therefore, we have Claim 3.48.
Next claim follows from Claim 3.48 and [4, Theorem 9.29] directly:

)£ V(e d;n, L) = w

CrAM 3.49. For every sufficiently large k, we have

— [(df, dr - y)r|dvol < W(e, 0;n, L)
vol Blo()(w(k')) Bl(w(k)) J (&)

foreveryl <i<landl+1<j<m. Moreover we have

1 / Pk Gk g
— [(dfi’, df;)r|dvol < W(e, d;n, L)
vol Bioo(w(k)) J By (w(k))

for every 1 <i<i<I.

There exist harmonic functions Bf(l +1<i¢<m)on Bwoo(w(k)) such that |7 - —
bﬂLOO(Blooo(w(k))) < (e, d;n, L),

1 n A .

— dbF — di . |2dvol < U(e, 8:n, L
i z; (k)Ir

vol Biooo(w(k)) J Brooo (w(k)) ’

and

1 ~
— / |Hessy|2dvol < W(e,d;n, L).
vol Biooo(w(k)) J Bigoo(wk)) '

We put
l m
Fy= ) [dbf,dbf), =650+ Y [Hessyel? + Y |dbf —dff[; + ) |dbf —dF |},
1<i,j<m 1<i<m ' i=1 i=1+1 '

Then, by Lemma 3.1, for every sufficiently large k, there exists a compact set C(k) C
Bi(w(k)) such that vol(By(w(k)) \ C(k))/vol By(w(k)) < U(e, d;n, L) and that for every
a € C(k) and 0 < § < 10, we have

1 A ~
f/‘ deVOI S \If(e,é;n, L)
vol Bs(«) JBi()
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Thus, by an argument similar to the proof of [9, Theorem 3.3], for every a € C(k) and
0 < 8 < 1, there exist a compact set P® C Bj(a), a point p¢ € P¢ and a map ¢%
from (Bs(),a) to (Bs(p2),p?) such that the map Q2 = (b¥,... b ¢2) from B;(a) to

B§+\p§(f)’f(a),.‘. ,f)’fn(a),p?), gives Ws-Gromov-Hausdorfl approximation. For every o €

C(k) and 0 < § < 1. by an argument similar to the proof of Claim 3.44, we have

= flk + constant + Us

A

on B;(«) for every 1 < i <, and

~

b¥ = T, ~ (k) + constant + Us

)

on B;(a) for I+1 < i < m. Therefore, the map Q¢ = (fF,..., flk,le;l(k),... Ty, 45) from
Bi() t0 Berus(FE@) s FH@), 7 (@)1 (@), p2), gives Ws-Gromov-Hausdorf

approximation.

By Proposition 2.10, without loss of generality, we can assume that there exists a com-
pact set C'(o0) C ﬁl(w) such that C'(k) — C(oc). We put U = C(00) N[ <icpi<jcr, (Pl \
{5}) N (Rm)s.r. By Proposition 2.14, we have O(By(w) N U)/o(By(w)) > 1— . Slnjce
a € (Ri)rs, by the argument above, the map 7§ = (fl,... i, AZ;H,.“ ,7,-) from ﬁg(a) to
Bi(T¢()), gives ¥s-Gromov-Hausdorff approximation for every o € U and 0 < § < 1.
Therefore for every o, 8 € UN Bl/g(w) satisfying o # 3, if we put § = mr_ldy < 1, then

we have

(73) (fi(@)sers file), 7o (@) (@), (F1(B)s s UB) P (B s 7o (B))

Vi Y
(74) —ad Y +ws
(75) — 1+ W) g ™
Therefore we have the assertion. O

LEMMA 3.50. Let (Y,y,v) be a Ricci limit space, I,k,m(1l <1 < m < n) positive
integers, x a point in'Y, h;(1 < i <) Lipschitz functions on Y, T a positive number,
(1 < i < k) points in'Y and af(l < i < k1 <j <) real numbers We put f; =
S alr,,. We assume that

=1 "

1

lim—/ \df; — dh;|dv =0
=0 0(B(2) Jp,@

for every j,

e ﬂ <U Leb (ﬂ D;Zj \{zI})n (Rm)(SJ’)) ,

6>0 \r>0
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the limit

1
hnl———————j/ (dhy, dh;)dv
r—0 ’U(BT(ZE)) () J

exists for every t, 7, and

1
d lim ——— dh;, dh;)dv .

Z7j

Then, for every 0 < § < 1, there exists 7o > 0 such that for every 0 < s < rq, there exists
compact set K, C B,(z) satisfying the following properties:

1. v(Ky)/v(Bs(z)) > 1—46.

2. For every a € K and every sufficiently smallt > 0, there exist points wh(«),...,w! _,(«) €
Y and a compact set Uy C By(a) such that v(U;)/v(By(a)) > 1 — 6 and that the
map ®; = ((ha,..., i) A, Tt )5 ,rwinil(a)) from Uy to R™, gives (1 + §)-bi-Lipschitz

equivalent to the image ®,(Uy). Here,

AJQ%ﬂéﬂﬁémﬁmﬂwm>.{

l’]

PROOF. We define Lipschitz functions ¢; on Y by (g1,..,9) = (h1,.., h)A. By the
definition, we have

1
lim —/ (gir 95)dv = 5.
r—0 U(Br(l’)) B, (z) I J

By Corollary 3.41, we have

1
lim—/ 1{gi, g;) — d;j|dv = 0.
r—0 U(Br(ﬁ)) B, (z) J J

We put (F17--- 7Fl) = (Zf:l bzlrﬂcw ’ Zf:l birﬂfz) = (Z?:l CZ}?‘xi,.._ ’ Zf:l aérm)A and take
L > 1 such that |A| + Z”(bf)2 < L. We fix 0 < § < 1. By Lemma 3.45, we have the
following claim:

CLAIM 3.51. There exists 11 > 0 such that for every 0 < s < ry, there exist a compact
set K, C By(x) satisfying the following properties:

1. v(Ky)/v(Bs(z)) > 1—4.

2. For every a € K and every sufficiently smallt > 0, there exist points wh(«),...,w! _,(«) €
Y and a compact set B, C By(a) such that v(E;)/v(By(a)) > 1 — 6 and that the
map @, = (F1,.., Fi, Tt () - ’rw;fz(a)) from E; to R™, gives (1 £ §)-bi-Lipschitz

equivalent to the image.
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On the other hand, there exists ro > 0 such that

@l
_ dF; — dg;|dv < 6
B Joy 2115~

for every 0 < s < rg. Thus, by Lemma 3.1, we have the following;

CLAIM 3.52. For every 0 < s < 19/100, there exists a compact set X, C By(x) such
that v(X,)/v(Bs(x)) > 1 —W¥(5;n) and that

)
S dF; — dg;|dv < U(5:n
U(B5§(Oé)) Bsa(a) ZJ: | J ]| ( )

for every a € X5 and 0 < 5§ < s.

We put V; = K, N X, for 0 < s < min{rg, 1 }/1000. Then we have v(V;)/v(Bs(z)) >
—U(d;n). We fix 0 < s < min{rg,r }/1000. We also take a € V; and sufficiently small

t > 0. By an argument similar to the proof of Claim 3.44, we have
F; = f; + constant £ U(0; n)t

on By(a). We put U; = Byj2(a) N Ey. Then we have v(Uy) /v(Byja()) > 1 — U(d;n). For
D1, P2 € Byjo(a) N Ey satisfying py # po, if we put t = p1,p2 > 0, then we have

)
(pl) ( )7 Twt(a)s s Twt _ (a) (pl))7 (fl(pQ)a"- 7fl(p2)7 Tw{(a)(p2)7m yTwt (@) (pQ))

5 QUS
~N = | 3

)

(Fl( ) E(p1>7 7ﬁwi(a)a--- 7rw;71(a)(pl))a (Fl(p2>7 )E(p2)7 Twﬁ(a)(pg),... ,T'wfnil(a)(pz)) + \I’tA
(78)

(1:&5)]91,]92:‘:@2& <1Z|:\I/)p1,p2

Therefore we have the assertion. O

LEMMA 3.53. Let (Y,y,v) be a Ricci limit space, | a positive integer integer, f;, f(1 <
i <) Lipschitz functions on'Y and A a Borel subset of Y. We assume that for a.e. x € A,
span{dfi(z),..,dfi(x)} = TFY . Then, for a.e. © € A, there exists by(x),...,bj(x) € R such
that

1
i s |
=0 v(B,(2)) o,

PROOF. Without loss of generality, we can assume that for every x € A, {df;(z)} is a
base of 7)Y . For every x € A, we put

1

(b(2), - ., bulw)) = ({df, dfv) (), - ... {df, dfl>(x))\/(<dfiv df;) ()i
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By Corollary 7.6, for a.e. x € A, we have

) 1
}{%m /T(x) |df Pdv = |df |*(x),

. 1 = N (x
finy /B Ll dna = @ )

for every ¢ and
. 1
I S Jo o A = )

for every i, j. Therefore, for a.e. x € A, since

. 1
iy — s / AP = @) =

l 2

> bi(x)dfi(x)

1=1

_ 1
(79)  lim )] /BT@ <df Zb dfz> dv = Z by (@) (df, df;) (z)
(80) = Zb <Zb dfj,dfl> )

2

)

(81) = a)dfi(x
and

o : 2
i o S5 d“‘zb N ) = |2 B
we have

2

) 1
gy, [ S

o o oy L
® =ty 2 >/ <df’Zb dfz>

. 1 2
(84) + lim v(B,(z)) /Br(ff)

l

Z bi(a)df;

=1

dv = 0.

]

THEOREM 3.54 (Rectifiability associated with Lipschitz functions). Let (Y, y,v) be a
Ricci limit space, | a positive integer, f;(1 <i <) Lipschitz functions on' Y, A a Borel
subset of Y. We assume that {fi(x),.., fi(x)} are linearly independent for a.e. x € A.
Then, there exist 0 < a(n) < 1, a collection of compact sets {Cl; bi<k<nien C A, points
{7ri} € A and {7} }1<s<h € Y satisfying the following properties:
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1. v(A\ Uzgkgn,ieN Cr,i) = 0.

2. For everyl <k <n, x € J;cn Cri and 0 < 6 < 1, there exists i € N such that x €

1
Ck,i and that the map ¢k’,i = ((fl(z)> ) fl(z))\/(<dflﬁdf3>)l7]<xk’7l) 7T:c,1€’ia~~ 771z£—il)
gwes a (1 £ §)-bi-Lipschitz equivalent to the image ¢r;(Cr,).

3. Cri C Rialy N2 (Y \ (Cyy U {ad 1)),

4. The limit measure v and k-dimensional Hausdorff measure H* are mutually abso-

lutely continuous on Cy ;. Moreover, v is Ahlfors k-regular at every x € Cj;.

PROOF. We take a collection of Borel subset {C}/;} of ¥ and a collection of points
{:1:9“} in Y as in Theorem 3.17. For convenience, we put x}” =y, Cki = C,i’z By Lemma
3.14, we can assume that Cy; is bounded for every i, k. By the definition of 7Y (see
section 4 in [4] or section 6 in [9] for the detail), we have Span{drm}c’i (x),.. ,drxz’i(x)} =TrY
for a.e. z € CY;. Therefore, by the assumption, we have v(AN Cy;) = 0 for k < . Since

v (Rk\ U (ﬂ (U Leb <ﬂ(D;] \{z]})n (Rk)5r>>>> =0,

by Lemma 3.50 and Lemma 3.53, we have the following claim:

CLAIM 3.55. For every k > 1 and i € N, there exists a Borel set Ay; C AN Cy,;
satisfying the following properties:

2. For everyx € Ag; and 0 < § < 1, there exists S > 0 such that for every 0 < s <19,
there exists a compact set K(x,8,s) C By(x) satisfying the following properties:

(a) v(K(x,6,s))/v(Bs(x)) >1—0.

(b) For every a € K(x,0,s) and every sufficiently small t > 0, there exist points
w(i,z,d,s,a,t) €Y(1 <i<k—1)and a compact set U(z,d,s,a,t) C By(a)
such that the map

(I)z,(s,s,a,t = ((fh s fl)A(l’), Tw(l,z,c?,s,a,t)r” ) Tw(k—l,z,5,s,a,t))

from U(z,d,s,a,t) to R¥, gives (1 £ §)-bi-Lipschitz equivalent to the image.
Here,

(85) Aw) = \/ (ll“%m /BT(@W o df t>dv>st |

(86) =/ (df df) () s 1
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We put fl;“ = Leb(Ag;). For every N € N and z € flk,i, we take 0 < s <
min{ry/Y, N=1} satisfying

U(Bgy () N Ag)
U(Bsa’cv (ZL’))

>1-— N1

We take K (z, N', sY) as in Claim 3.55. We put K(z, N1, sN) = K(z, N~', s¥) N A,

’x 'Y

Thus, we have
v (Bsév () N K(z, N~
V(B (2))

i )> > 1 — 100N

For every a € K(z, N7', sY), there exists a sufficiently small 0 < ¢t = t(a) < N~ such

that
v(B;(a) N Ag)

v(Bi(a))
for every 0 < ¢ < t. We take w(i,z, N~ sY a, 1) and U(x, N~ sV, a, 1) as in Claim 3.55.
We put U(z, N1, s, o, t) = U(z, N"', s, a,i) N Ay,;. Then we have

Y <X )

>1- Nt

A

v (Bg(a) NU(z, N', s a,i)
v(Bi(a))

By Lemma 2.12, it is not difficult to check that the following claim:

) >1—1000N .

CLAIM 3.56. With same notation as above, there exist Y € A, o) € [A((ib‘év, N~ sh)
J
and 0 <tV < t(a}’) such that

(A,”\ U Uz, N7, fj ajv,tév)) < U(N'n)u(Bio(Agy)).

JEN

We put U(j, N) = U(z, N~ i, o t(af), wi, g, N) = w(i, o), N7 s o o)),

jo i
U() = Nyen (UNIZNO 0, N1)> and U(j, N) = U(j, N) N U(j). Then we have v(Ay, \
Ujex U()) = 0 and Uyen UG, N) = U(j5). We fix j. We take w € Uyen U(4, N) and
0 < § < 1. There exists Ny such that w € U(j, No). We take N; satisfying Ny ' << 4.
Since w € Up,>n, U(j, Ny), there exists N, > Nj such that w € U(j, Ny). Especially we
have w € U(j, N2). Thus the map G; n, = ((f1,.., fi)A ( 2 )5 Tw(1,5,Na) - s Tw(k—1,j,Nz)) from
U(j, Ny) to R¥, gives (1 & N, ')-bi-Lipschitz equivalent to the image. Especially, G v,

gives (1 £ ¢)-bi-Lipschitz equivalent to the image. Therefore, we have the assertion. [

REMARK 3.57. Radial rectifiability theorem (Theorem 3.17) corresponds to Theorem

3.54 for a distance function r,.
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We shall give two corollaries of Theorem 3.54. For metric space X, we define a distance
on R>o x X/{0} x X by

(t1,11), (ta, x0) = \/t% + 2 — 21ty cos min{ Ty, Tz, 7}
Let C(X) denote this metric space and p = [(0,z)] € C(X).

COROLLARY 3.58. Let X be a compact geodesic space, | a nonnegative integer. We
assume that | < n, dimgX =n —1—1, (R! x C(X), (0;,p)) is an (n,—1)-Ricci limit
space. Here p € C(X) is the pole. Then, X is H" '"L-rectifiable.

PROOF. We define 1-Lipschitz functions 7;(1 < j < ) and g on R¥ x C(X) by
7;i(t1,.., t,w) = t; and g(ty,.., 4, w) = p,w. By Theorem 3.33, we have (dm;, dm;)(a) =
84, (dmi, dg)(a) = 0,]dg|(a) = 1 for a.e. o € RF x C(X). Therefore, we can take
a collection of {Cj;}i+1<k<n as in Theorem 3.54 for Lipschitz functions y,..,m, g and
A = R! x O(X). By an argument similar to the proof of Lemma 7.21, the product

measure H' x H"~' on R! x C(X) is equal to H". Therefore by Fubini’s theorem, we have
0= H"(R Cri) = | H"'({t1,..,t} x O(X Cri)dH".
0\ | ety x €0 e

Especially, we can take (t1,..,t;) € R satisfying H" ' ({t1,.., t;} x C(X)\J Cri) = 0. We
put Cr; = {t1,..,t;} x C(X) N Cy,; and regard it as a subset of C'(X). By an argument
similar to the proof of Proposition 7.22, we have

/ fdH" ! = / / fdH™ " at
C(X) 0 0B¢(p)

for every f € L'(C(X)). (This is co-area formula for distance function from the pole on
C(X)). Especially, we have

H" Y (0By(p \UO;H =

for a.e. ¢ > 0. Then it is not difficult to check the assertion. O

REMARK 3.59. With same notation as in Corollary 3.58, for every x € X and r > 0,
we have 0 < H""1(B,(z)) < oo. It follows from [7, Theorem 5.9], [9, Theorem 4.6] and
co-area formula for distance function from the pole on C'(X). Since it is not difficult to

check it, we skipped the proof.
Similarly, we have the following:

COROLLARY 3.60. Let (X, z) be a pointed proper geodesic space, | a nonnegative inte-
ger. We assume that | < n, dimgX =n—1, (R x X, (0;,2)) is (n, —1)-Ricci limit space.
Then, X is H" '-rectifiable.
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4 Convergence of Borel functions and Lipschitz func-

tions

In this section, we will give several notions of convergence of a sequence of Borel functions.
By using these notions, we will define a notion of convergence of differential of Lipschitz
functions (see Definition 4.18). Moreover, by using results in section 3, we will discuss
convergence of harmonic functions. Throughout subsections 4.1 and 4.2, we shall consider
the following situation: Let (Z;, z;) be a sequence of pointed proper geodesic spaces, v;
a Radon measure on Z; satisfying v;(B;(z;)) = 1, and for every R > 1, there exists
K = K(R) > 1 such that for every 1 < i < 00, z € Z; and 0 < s < R, we have
vi(Bay(2)) < 25i(By(2)). We assume that (Zi, zi,v;) ©5 (Zoo, 200, v00). We fix

x; € Z; satistying x; — 2.

4.1 Infinitesimal constant convergence property

Our aims in this subsection are to define the following notion of infinitesimal constant

convergence and to give several fundamental properties of it:

DEFINITION 4.1 (Infinitesimal constant convergence property). Let R be a positive
number, w a point in Br(xs) and f; a Borel function on Bg(z;)(1 < i < 00) satisfying
sup; | fil Lo (Br(e:)) + [foolLo(Br@w)) < 00. We say that {f;}; has infinitesimal constant
convergence property to fo at w if for every € > 0, there exists r > 0 such that

1 1
lim sup —/ fi— —/ fooldvUoo | du; < €
i Ui(Bi(w;)) Bi(w;) Voo (Bi(w)) By (w)
and
lim sup L / f L / fidv;| dugs <
— -5 AU | QU < €
i—00 Uoo<Bt(w)) Bi(w) Ul(Bt(wl)) B (w;)

for every 0 < t < r and w; — w.

EXAMPLE 4.2. Tt is easy to check that for every f € C°(Bgr(z)), if we put f; = fo¢;
and fo = f, then, {f;} has infinitesimal constant convergence property to f, at every
w € Br(Ts).

ExAMPLE 4.3. If f; is Lipschitz function with sup, Lipf; < oo, and f; — f., then for

every w € Bgr(Zs), {fi}: has infinitesimal constant convergence property to f,, at w.

EXAMPLE 4.4. Let w; — w € Bgr(zs), 7 > 0 satisfying B,.(w) C Br(2s). Then,
{1 Br(z:)\B, (wi)}i has infinitesimal constant convergence property to 1 Br(ze)\Br(ws) & €VEry
a € Br(zs) \ 0B, (w).
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We shall give a fundamental result for infinitesimal constant convergence property:

PROPOSITION 4.5. Let k be a positive integer, R a positive number, f! Borel functions
on B(w:)(1 <1<k, 1 <i < 00) satisfying sup, (| ]| (Baes) + | fol b (Braa))) < 00, w
a point in Br(Ts) and {F;}1<i<oo @ sequence of continuous functions on RE. We assume
that { f!}1<i<oo has infinitesimal constant convergence property to f' at w for every | and
that F; converges to Fy, in the sense of compact uniformly topology. Then, the sequence

{E(fL ., f5)} has infinitesimal constant convergence property to Foo(fL ..., fX) at w.

R

PROOF. We fix € > 0. We take R, L > 1 satisfying that U, Image(f1,.., f}) € Bx(0k),
sup; (| fl| o (Bren) + [Floli=(Br(zay) < R and sup; | il 840, < L. There exists a
nonnegative valued function b on R-¢ such that b(t) — 0 as t — 0 and that for every
t > 0, there exists 4, such that Fo(o) = F;(8) £ b(t) for every a € Bp(0x), @ > ¢, and
B € By(a). On the other hand, there exists 7 > 0 satisfying the following properties: For

every 0 < s < 7, there exists js such that

v; <€

vi(Bs(wy)) /Bsw fi o Bw) /Bs(w) Jootltee

and

Voo < €

1 1 1 Ldv.
Voo (Bs(w)) /Bs(w) foo =SB w)) /Bs(wz—) e

for every 1 <1<k, i > j, and w; — w. Especially, we have

1 / I 1 I
- Fldog = —— / fldos + e.
Voo (Bs(w)) J B, (w) Vi(Bs(wi)) J g, (wy)

We fix 0 < s < 73. Therefore, there exist a sequence of compact sets K; C Bs(w;) and a
compact set Ko, C Bg(w) such that v;(K;)/vi(Bs(w;)) > 1=W(e; K(1)), Voo(Kxo)/ Voo (Bs(w)) >
1 —¥(e; K(1)) and that

! ——1 L dv €;

) = B o Fte| < e KO
and .

foo(B) — m/&(wi) fidvi| < U(e K(1))

for every js < i < 00,1 <[ <k, a€ K;and § € K. Without loss of generality,
we can assume that there exists a compact set K C B,(w) such that K; — K. We put
K. = KN K. By Proposition 2.14, we have ts(Koso)/Vso(Bs(w)) > 1—U(e; K(1)). We
put

)
b= fldv,.
vi(Bs(w;)) B (w;)
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Then, there exists ks > j, such that

(87) Foo(foo(@),s (@) = Foolagg,..., as) £ b(¥(e; K(1)))
(88) = Fy(a},..,ak) +2b(V(e; K(1)))
(89) = Fi(fi (), f{(cu)) £ 3b(¥(e; K(1)))

for every ¢ > kg, a € f(oo and «; € K; with a; — «. Thus, we have

1 1 Ey ol ok v
! ! k) — al a” v €;

(91) = oo (Bw) /Rm |Foo(faor s J) = Fus(aly. alo) | dvs = V(e K(1), L)
(92) < 3b(¥(e; K(1))) + V(e; K(1),L)
and

b L Rlal dY du
O B o, [FU £ = Flal o)
O = By f [FUL 5~ Flal e v e K,
(95) < 3b(V(e; K(1)))+ ¥(e; K(1), L)

for ¢ > k,. Moreover, we have

(96)
b
Voo (Bs(w))

(97)

_ m /K Foo(fl 5 )dv & (e K(1), 1)
(98)

= (1+¥(e; K(1)))(Fa (g
(99)

— (14 U KA)) (Pl ab) & b((e; K(1))) + U(e; K(1), L)

(100) S
— s (e x)
(101)

~ e wie ) (

/ Foolfr o f5)dua
B (w)

yas,) £0(¥(e; K(1))) £ W(e K(1))

1

o (Ba(w) /K Ei(fl,.., fFdv; + Bb(llf(e;K(l)))) + U(e; K(1), L)

v
vi(Bs(w;))

for ¢ > ks. Therefore, we have the assertion. O

/ B L 3 K<1>>>> LW K(1), L)
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REMARK 4.6. By the proof of Proposition 4.5, we also have the following: Let k
be a positive integer, f! Borel functions on Bg(x;)(1 <1 < k,1 < i < o0) satisfying
sup, f,L-l|Loo(BR(xi))+|f<l>o|Loo(BR(xoo))) < 00, w a point in Br(7w) and {F;}1<;<00 a sequence

of locally L* functions on R¥. Assume the following:

1. {f!}1<i<oo has infinitesimal constant convergence property to f. at w for every [.

2. The limits

a = lim—/ féodvoo
=0 Voo (B (w)) By (w)

exist for every [.

3. There exists an open neighborhood U at (a!,- - -, a¥) € R¥ such that F; is continuous

on U for every 1 <i < oo and that F; converges to Fi, on U uniformly.

Then, the sequence {F;(f!,..,fF)} has infinitesimal constant convergence property to
Fo(fL,.., ff) at w.

For Ricci limit spaces, we shall give a sufficient condition to satisfy infinitesimal con-

stant convergence property for radial derivative of Lipschitz functions:

PROPOSITION 4.7. Let {(M;, m;,vol)}; be a sequence of pointed connected n-dimensional
complete Riemannian manifolds with Ricy, > —(n — 1), (Y,y,v) be a pointed proper
geodesic space with Radon measure v, R a positive number, o, a point in'Y, x; a point
in M;, f; a C?-function on Bgr(x;) and fo a Lipschitz function on Bgr(x). We assume
that sup, Lip f; < oo, (M;, m;, x;, f;, vol) (92 Bpee) (Y, Y, Too, foo, V) and that

sup/ |Hess , |*dvol < oo.
' J Br(zi)

(3

Then, there exists a Borel subset A C Br(xs) such that v(Bgr(zw) \ A) = 0 and that
for every z € A and w; — w € Y, the sequence {(dr.,,df;)} has infinitesimal constant

convergence property to (dry, df.) at z.

Proor. We fix € > 0 and take L > 1 satisfying

1
_ H |2dvol + Lipf; | < L.
sgp (V_Ol Br(x;) /BR(gci) | essf2| oLt 1pf> -

By Theorem 3.33, there exist 0 < << € and a Borel subset X (¢) C Br(zs) DI\ B,(2)
such that

o(Ba(i) \ X(6))
vBrli)
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and that L
foo o ’}/(Z,CY + h) B fm(a)
h
for every av € X (e), h satisfying 0 < |h| < 7 and isometric embedding v from [0, Z;a@ + )
to Y with v(0) = z and ~(z;@) = a. By Corollary 7.6, there exists Borel set X (¢) C X (¢)
such that v(X(€) \ X(¢)) = 0 and that

- <drz7df00>(a) <€

1

lg% m /Bt(a) |<dTZ, dfoo> — <de, dfoo>(a)|dv =0

for every a € X (). For every a € X (e), there exists r(a) > 0 such that

1

B 01 = el <

-1/4

for every 0 < t < r(x). We put [ =7 By an argument similar to the proof of

Proposition 3.1, for every i, there exists a compact subset K; C Br_.(z;) such that

V_OI(BR—E(xi) \ Kl)
V_Ol BR—E (‘rl)

<V Yn,R,L)

and that )

_— Hess . |2dvol < 1
vol By (w) /Bt(w) [Hessy,[dvol <

for every w € K; and 0 < t < ¢/100. Without loss of generality, we can assume that there
exists a compact set K, C Bp(rs) such that K; — K. We put W(e) = K, N X(e).
By Proposition 2.14, we have
v(W(e))
U(BR<xm))

We fix a € W(e), 0 < t << min{n,r(«)} and an isometric embedding 7 from [0,z @ + 7]

>1—-V(en, R, L).

to Y satisfying 7(0) = z and v(Z;@) = a. We take «; € K satisfying o; — . We define
a Borel function F; on By(a;) \ (C,, U {z:}) by

fio ’Yﬁ(m - 772) — fi(B)
—1?

Fi(B) =

Here 73 is the minimal geodesic from z; to 8. By an argument similar to the proof of
Claim 3.37, we have

1
102 _ df;, dr,) — F;|dvol
(102) STy, )~ Fl
C(n) /
103 <pPp—r Hess;. |?dvol < n?C(n)l < U(e;n
(103) T B o, 1B Pl < OO0} < Wiein)
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for every 1. We take i satisfying that ¢; << t for every ¢ > ig. For every i > iy, and
B; € Bi(a;), we remark that ¢;(3;),a <t +¢; < n3. Then, since

—2

z,¢i(m(m - 772>>n_ ~ + ¢i(’Yﬁi(m —n?)), ¢i(ﬂi)l7_ dY — 2, 0:i(5) v < 3¢,

we have
— n~2dy — n2dy 2

2, ¢i(v, (2, Bi — 1?)) + 0i(vs, (2, Bi — 7)), —zZa" < 5.
Similarly, we have

. 3. 0 dy ~ 3 — N fdy  —— 7%
z, 0i(v8,(2i, Bi — 1)) +0i(v, (2, Bi — n?)).v(Z;a + 1) —zy(Za+n) <5,

— 2 — n~2dy _1
¢i(vs, (21, B — m?)), v(Z,a@ + 1) >0 =,
n~2dy

6i(v: (21, Bi — 1m2)), 2 >n =1

and

— n~2d

&i(va, (2, Bi — m?)), & Y= 1+ 5m.

Therefore, by splitting theorem, we have

n~2dy

6i(v, (21, Bi — ?)) . v(Z @ — ) < U(n;n).

Thus we have

(104) fz(751<m:n72]2)) — fz(ﬁz) _ f00<¢z<7ﬁz<m __Zz))) - fm((ﬁl(ﬁl)) I %
(105) _ =0z —_73722))) — foolo) | Wi, L)
(106) = (dr,,df)(a) £ ¥(n;n, L).

Especially, we have

1

1P/ E_ drzydoo «Q dV_OlS\If 7n7L
S /BM’ (dr.. df.) (@) (min, L)

for i > 4. Therefore if we put W =y, en(Un,>n, W(N; 1)), then v(Bgr(zs0) \ W) = 0,
{(dr.,,df;)} has infinitesimal constant convergence property to (dry,dfs) at every w €
W. O

REMARK 4.8. We shall introduce the following important method to get some uni-
formly Hessian estimates by using cut-off functions with good properties by Cheeger-

Colding: Let (M, m,vol) be a pointed connected n-dimensional complete Riemannian
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manifold with renormalized measure satisfying Ricy; > —(n — 1), R a positive number
and f a C?-function on Br(m). We assume that there exists L > 1 such that

1
00 m - Af|2dvol < L
|V f Lo (Br( ))+v_olBR(m) /BR(m)| f|7dvol <

Then, we have
1

vol B,(m)

for every 0 < r < R. The proof is as follows. By standard smoothing argument, without

/ |Hess|*dvol < C(n,r, R, L)
By (m)

loss of generality, we can assume that f is a smooth function. There exists a smooth
function ¢ on M such that 0 < ¢ < 1, @[, (m) = 1, suppp C Br(m), |V¢| < C(n,r, R)
and |A¢| < C(n,r, R) (see for instance [4, Theorem 8.16]). By Bochner’s formula, we
have

S AV > [Hessogl? — (VAGF), V(01) — (0~ DIV

Thus, we have

W) g | | [Hessy g

oy <o ] syl

109 < ij—ﬂ / (o) dwl + Cln, B 1)

o) < % / A0+ (6A]) + (V. V0) sl + O, B L)
(111) < C(n,rR L)

This observation performs a crucial role to study limit functions of harmonic functions.
The following proposition follows from Lemma 3.40 directly.

PROPOSITION 4.9. Let {(M;, m;,vol)} be a sequence of pointed connected n-dimensional
complete Riemannian manifolds with renormalized measure satisfying Ricy, > —(n — 1),
(Y,y,v) be a Ricci limit space of {(M;,m;,vol)};. Then for every w',w? € Y, 2z €
Y\ (Copt U Cype U{w!, w?}) and w! — w? € Y(j = 1,2), the sequence {{dry1,dryz2)} has

infinitesimal constant convergence property to (dry,_,dr: ) at z.

4.2 Infinitesimal convergence property

In this subsection, we will give a notion of infinitesimal convergence property and its

fundamental properties.
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DEFINITION 4.10 (Infinitesimal convergence property). Let R be a positive num-
ber, w a point in Bg(z) and f; a Borel function on Bg(z;)(1 < i < o0) satisfying
sup; | fil Loe (Br(e:) + | fool Lo (Br(za)) < 00. We say that {f;}; has infinitesimal convergence
property to fs at w if for every € > 0, there exists » > 0 such that

1 1
= E— zd T T =% ood oo
i (B (w;)) /Btm) fude Voo (Bi(w)) /Bt(w) Joett

for every 0 <t < r and w; — w.

lim sup

1—00

<e€

It is clear that if the sequence {f;}; has infinitesimal constant convergence property
to fso at w, then {f;}; has infinitesimal convergence property to f., at w. We skip the

proof of the next proposition because it is not difficult.

PROPOSITION 4.11 (Linearlity of infinitesimal convergence property). Let R be a pos-
itive number, a;, b;, ¢;, d; Borel functions on Br(z;)(1 <i < 00), w a point in Br(Zs).
We assume that sup;(|a;| + [bi| + |c;| + |di]) Lo (Br(a)) < 00 and that {a;};, {b;}; have
infinitesimal constant convergence property to aeo,bs at w, respectively and {c;}i, {d;}:
have infinitesimal convergence property to oo, ds at w, respectively. Then {a;c; + b;d;}

has infinitesimal convergence property t0 GooCoo + booldse at W.

The next proposition follows from an argument similar to the proof of Proposition
2.14:

PROPOSITION 4.12. Let R be a positive number, K; a Borel subset of Br(x;) and f;
a nonnegative valued Borel function on Br(z;)(1 < i < 0o) satisfying sup; | fi| L= (Br(:) +
| fool Lo (Br(za)) < 00. We assume that K., is compact, limsup,_ ., K; C Ko and that for
a.e. w € Ky, {fi} has infinitesimal convergence property to f. at w. Then we have

1—00

lim sup / fidv; < FooldUse.
K; Koo

We shall state a fundamental result for infinitesimal convergence property:

PROPOSITION 4.13. Let R be a positive number, K; a Borel subset of Br(x;) and {fi};

a Borel function on Br(z;)(1 < i < 00) satisfying sup, | fil oo (Br(e) | fool Lo (Br(za)) < 00

We assume that K is compact, limsup, . K; C Ko and that for a.e. w € K, {1k, }:
and {f;}i have infinitesimal convergence property to 1k, fo at w, respectively. Then,
we have

lim fidv; = foodUse.
K;

i—00 K
[e @)

63



PROOF. We fix € > 0. We take L > 1 satisfying sup; | fi|r= + | foo| + Voo (Br(Zs)) < L.
There exists a Borel subset Koo C Koo satisfying the following properties: For every
w € K, there exists t,, > 0 such that By, (w) C Br(z) and that

1 1
0;(Bs(w;)) /BM Jidvi = W) / () foedvee
Voo (Bs(w) N K, )

lim sup

1—00

< €,

and

lim sup

1—00

<€

1 1
- / g, dv; — ————— / 1. dveo
Ui(BS(wi)) Bs(w;) UOO(BS<w)) Bs(w)

for every 0 < s < t, and w; — w. By Lemma 2.12, there exists a pairwise disjoint
collection {B,,(z;)}; such that z; € K, r; << t,, and that K. \ Ufilﬁri(zi) C
Ui w1 Bsr (@) for every N. We take N satisfying > - v Voo (B, (2;)) < €. Then, we
have -7 1 Uso(Bsy, () < 2°Ke. We take z;(j) € Z; satisfying 2;(j) — ;. Then we

have

1) [ v = Z / fudvn | Frcldn
v ()N K oo Uz N1 Bsy, (1)
(113) = Z/ Foolvos = U(e; K(1), L)
By, (z4)
(114) - Z / fydv; + W(e: K (1), L)
Brl i (7))

(115) = Z/ o fjdvj + U(e; K(1),L)

(116) =/ fidv; & (/ B |fildv; + ‘I’(E;K(l),L)> :
K; KN\ULy Bry (7))

for every sufficiently large 5. On the other hand, by Proposition 2.5, Proposition 2.6 and
Proposition 2.14, we have

N
(117) limsup/ |fildv; < Llimsupv;(K; '\ U B, (z:(4)))
j—=oo JKAUL, Br,(w:i(j)) J—oo i=1
N
(118) < Lse (Koo \ | By (2:1))
i=1
(119) < WU(e; K(1),L).
Therefore, we have the assertion. O
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REMARK 4.14. Proposition 2.16 also follows from Example 4.2, 4.4 and Proposition
4.13 directly.

Next corollary follows from Proposition 4.13 directly.

COROLLARY 4.15. Let R, r; be positive numbers, N a positive integer, {z; }1<j<n points
in Y and f; a Borel function on Br(z;)(1 < i < o00) satisfying sup; | fi| e (Ba(e)) +
| fool Lo (Brze)) < 00. We assume that for a.e. w € Br(rs) \ UX, B (), {fi}: have

infinitesimal convergence property to fo at w. Then, we have

hm fdej = / foodvoo
7790 J Br(x;)\UiL, Br, (2i(5)) Br(eo)\UiL Br; (2)
for every z;(j) — 2.

We end this subsection by giving the following proposition:

PROPOSITION 4.16. Let A; be a Borel subset of Br(x;) and w € LebAy. We as-
sume that {14,}; has infinitesimal convergence property to 14, at w. Then {14,} has
infinitesimal constant convergence property to 14 at w.

ProoOF. We fix € > 0 and take a sequence w; — w. There exists > 0 such that

Voo (Br(w) N Asp)

>1—c¢
Uoo(Bi(w))
and
li ! / 14.d ! / 14 d ’<
imsup |[————— 4, dv; — ———— A dUs| < €
i—oo | Vi(Be(ws)) J B, ws) Voo Bt(Woo)) J By (o)

for every 0 <t <r. We fix 0 <t < r. Then we have

(120) m /B . la, — m /B o 1 dvse| dv;

(121) < m/&w 1y —m/&w Ly dvso| dvs + €

(122) = m/&(wi) 1a — Uizjgfii)) dv; + €

1) =y S T Jyquyin BT
(124) < 2“"(5 Egj&\f) + €< 3€+ 2€ < Be.
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for every sufficiently large i. Similarly, we have

1 1
UB) B /Bdww) oo <Bt<wz>>/ e

AU

1
126 S—/ lag / 1a, dus | dus + €
( ) Uoo(Bt(woo)) Bi(weo) A Uoo Bt woo A
127 <2 + € < 3¢
2 vBiu)
for every sufficiently large 7. Thus, we have the assertion. m

4.3 Convergence of differential of Lipschitz functions

The purpose of this subsection is to give a definition of convergence: df; — dfs. See
Definition 1.1 or Definition 4.18. Throughout this subsection, we fix the following situ-
ation: Let {(M;, m;,vol)}; be a sequence of pointed, connected n-dimensional complete
Riemannian manifolds with renormalized measure satisfying Ricy, > —(n—1), (Y,y,v) a
Ricci limit space of {(M;, m;,vol)};, R a positive number, z; a point in M;, 2, a point in
Y, fi a Lipschitz function on Bg(x;) and f. a Lipschitz function on Br(zs). We assume
that sup,(Lipf; + |fi|z=~) < oo and that x; — xn.

For w € Bg(zs), we say that f; converges to f. at w if fi(w;) — foo(w) holds for
every w; — w. We denote it by f; — f, at w. It is easy to check that the following

conditions are equivalent:
1. {f;} has infinitesimal convergence property to f., at w.

2. fi = fs at w.

3. {/:} has infinitesimal constant convergence property to f. at w.

We shall consider a convergence of energy of Lipschitz functions. See also [5, Corollary
10.17].

DEFINITION 4.17 (Infinitesimal upper semicontinuity of energy). We say that {f;};
has infinitesimal upper semicontinuity of energy to fo at w € Br(xs) if for every € > 0
and w; — w, there exists » > 0 such that

1 1
hmsupm/ ( )(Lipfi)QdV_Ol < (
T By (w;

_ Lip fs)2dv + €
i—oo VOl By v(By(w)) /Bt(w)( pfec)

for every 0 <t <.

By the definition, if {(Lipf;)?}; has infinitesimal convergence property to (Lipfs)?
w, then {f;}; has infinitesimal upper semicontinuity of energy to f., at w. Next, we shall

give a definition of convergence of differential of Lipschitz functions:
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DEFINITION 4.18 (Convergence of differential of Lipschitz functions). We say that df;
converges to dfs, at w € Br(xs) if {{(dr.,,df;)}; has infinitesimal convergence property
t0 (df s, dgoo) at w for every z; — z € Y and {f;}; has infinitesimal upper semicontinuity
of energy to fo at w. Then we denote it by df; — dfs at w. Moreover, for a subset A
of Br(w), if fi — feo and df; — dfs at every a € A, then we denote it by (f;,df;) —
(foo, dfso) Oon A.

PROPOSITION 4.19. For every w; — w € Y, we have (7y,, dry,) — (rw,dry) on'Y.
Proor. It follows from Proposition 4.9 and Proposition 4.13 directly. O
The following theorem is the main result in this subsection:

THEOREM 4.20. Let g; be a Lipschitz function on Bgr(x;) and A a Borel subset of
Br(zs). We assume that df; — dfs and dg; — dgs, on A. Then, for a.e. w € A, the

sequence {(df;, dg;) }:i has infinitesimal constant convergence property to (dfs, dgeo) at w.

Proor. By Theorem 3.17 and Lemma 3.53, there exist a collection of Borel set A; C
A\ {z}, positive integers 1 < k; < n and points zl, . ,x{;j € Y satisfying the following

properties:
Lo o(A\UZ, 4)) =0.
k‘j ]
2. A; Y \UL(C,y U {ad)).

3. For every w € Aj;, there exists a{, e ,ai_,b{, ey bi_ € R such that
J J

2 2
k;

k.
1 . )
lim ———— / dfss — d ajr, + |dgeo — d bjr dv = 0.
r=0 0(Br(w)) J5, (w) ,Z:; P 1221: b

We take w € A; and a{, e ,aij, b]i, e ,bij € R satisfying equalities above. We also take
L > 1 satisfying sup,(Lipf; + Lipg;) + chil((a{)2 + (b))?) < L. There exists 7 > 0 such
that w € Ufil(D;j \ B,(x])). We also take sequences (i) — 2] and w; — w. We fix
€ > 0 satisfying € << Then, there exists 0 < r << € such that

k; 2 k 2

1 , L
—_— dfse — d alr ; + |dgeo — d blr dv < e,
v(B(w)) /Bt(w) f Z L7 g Z Lz =

=1 =1

1
lmsup — s / . (Lipf)dol <
1 By (w;

1

—U(Bt(w)) /Bt(w)(LipfOO) dv + e,

1
limsup—/ Lipg;)?dvol < —/ Lipgaso )2dvu + e,
PP LB Sy S DB g
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1 1
lim su —/ dfi,dr ;. dv_ol——/ df oo, dr j)dv| < €
P vol By(w;) Bt(wi)< fudr @ v(By(w)) Bt(w)< d xl>
and
lim su ! / (dg;,dr_j,.,)dvol ! / (dgoo, dr_j)dv| <
oo [ By(w1) gy O 0(Bi()) Jpy

for every [ and 0 <t <r We fix 0 < t < r below. Thus, by Lemma 3.40, we have

—1 1 & J i J .
v(By(w)) /Bt(w) (dfso, dgoo) — W/Bt(w) <d (; alrzg) ,d (lz; blrxl;) > dv|dv < V(e L)

and

1 1
128 —/ Af oo, dgoo) — —/ Af o, dgoo)dv| dv
U2 B o | T B S P
k.
1 J
129 = —/ d ajr, b]T y
BT E ) S < (Z | ) (Z )>
1 o
130 ——/ d arj b]r] dv|dv £+ V(e;n, L
(130) v(Bi(w)) Bt(w)< lz:; : Z > ( )
(131) = U(e;n, L).
On the other hand, for every sufficiently large ¢, we have
1 & 2
132 — / df; — d alr i || dvol
(132) vol By (w;) By (w;) 521 Ha)
1 2 L a{
133 = —/ df;|*dvol — —/ df;,dr, i dvol
(133) Sl B) AR Dy xern ll MNCALETOY
134 j i 1
(134) +ZvolBt ™ /Bt(w)wr dr 3 ;))dvol

k

—1 2 U — —a{ T, i)av
S B w) /Bt(w) =32 ST o

=1

ala
(136) + Z l l / <drx{, dr_i)ydv + V(e;n, L)
Bi(w) !
kj 2
(137) :;/ dfse — d i:a{rj dv+9Y(e;n, L) < U(en, L).
'U(Bt(UJ)) By (w) — ] =
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Similarly, we have

2
k.
1 o
— dz_d b]T’j. dVOlS\IJE;’rL’L
vol By(w;) /Bt(wi) g 521 A0 vol < W( )

for every sufficiently large i. Especially, we have

(138)

1 1 k; k;
_ df;, dg;) — ————— d Ir o0 ,d Vr ;.. dvol| dvol
BT oy |90~ T /<>< BTN R PILIT > vol dvol
(139)
< U(en, L).
Therefore, we have the assertion. O

We remark that Theorem 1.2 follows from Theorem 4.20 directly.

COROLLARY 4.21. Let Q be a non-empty open subset of Br(xs). We assume that for
a.e. w € Q, df; — dfs at w. Then df; — dfs on 2.

ProOF. The assertion follows from Example 4.4, Proposition 4.13 and Theorem 4.20.
O

COROLLARY 4.22. Let g; be a Lipschitz function on Bgr(z;) satisfying sup,(Lipg; +
|gi| L) < 00 and A a Borel subset of Br(xs). We assume that (f;, df;) — (feo, dfs) and
(gi,dg;) — (goo, dgoes) 0n A. Then, there exists a Borel subset A of A such that v(A\A) = 0

and}hat (fi+gi7 d(fi"'_gi)) - (foo+g007 d(foo+g00>) and (figiy d(lel)) - (foogom d(fOOQOO))
on A.

PROOF. By Theorem 4.20, there exists a Borel subset A of A such that v(A\ A) =0
and that {|df;|*}:, {{(dfi, dg;)}: and {|dg;|*}; have infinitesimal constant convergence prop-
erty to |dfso|?, (dfso, dgoo) and |dgso|?> on A, respectively. Since |d(f;g:)|> = f2|dgi|? +
2f;g:{df:, dg;) + g:ldf;]?, by Proposition 4.5, we have, {|d(fig;)|*}; has infinitesimal con-
stant convergence property to f2 |dgeo|?* + 2fooGoo (Af oo, Agoo) + 92 |dfso]® = |d(faogoo)|? on
A. On the other hand, since d(f;9;) = gidf; + fidg;, by Proposition 4.11, for every z; —

z, we have, {(dr,,,d(f;g;))}:; has infinitesimal convergence property to goo{(dr,_,df~) +
fooldra.,dgeo) = (dr..., d(fegoo)) O A. Therefore we have (figi, d(figi)) = (fooGoor (o))
on A. Similarly, we have (f; + gi, d(fi + ¢:)) = (fso + goo, d(f; + gi)) on A. O

COROLLARY 4.23. Let K; be a Borel subset of Br(x;) and g; a Lipschitz function on
Br(z;) satisfying sup,;(Lipg;+|gi|r~) < co. We assume that K, is compact, limsup,_, ., C
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K and that for a.e. w € Ky, 1k, has infinitesimal convergence property to 1k at w,
dg; — dfs and df; — dfs at w. Then for every sequence of continuous functions F; on
R satisfying that F; converges to F, in the sense of compact uniformly topology, we have
lim [ Fi(|df; — dgi|)dvol = Foo (0)v(Koo).
71— 00 Kl
PrOOF. The assertion follows from Proposition 4.5, Proposition 4.16 and Theorem
4.20. O

REMARK 4.24. By several arguments in section 3 and the proof of Theorem 4.20, we

can also prove the following: If {f;}; satisfies,
1. {f;}; has infinitesimal upper semicontinuity of energy to f. at every a € Br(),

2. there exists a dense subset A of Bg(rs) and a Borel subset A of Bg(zs) such
that v(Bg(zs) \ A) = 0 and that for every w € A and w; — w, {(dry,,df;)}; has

infinitesimal convergence property to (dr,, df) at every a € A,
then, df; — dfs on Br(zs).

REMARK 4.25. Similarly, for a sequence of Ricci limit spaces {(Y;, y;,v;)}; and a se-
quence of Lipschitz function f; on Bg(y;), we can also define a notion of convergence:

df; — df . and prove several properties as above.

REMARK 4.26. For fixed Ricci limit space (Y, y,v), a sequence of Lipschitz functions
fi on Bg(y) satisfying sup, Lipf; < oo, we have, df; — dfs on Bgr(y) (in the sense of
the convergence (Y, y,v) (v Bires) (Y,y,v)) if and only if |Lip(fi — foo)|22(Br(y) — 0. We
shall check it. By Corollary 4.23, it suffices to check that ‘if’ part. We assume that
\Lip(fi — foo)|lL2(Br(y)) — 0. Then, especially, for every w € Bg(y), {fi}; has infinitesimal
upper semicontinuity of energy to fs at w. On the other hand, by Proposition 4.19, we
have

lim |dry, — dre|*dv =0
"¢ JBr(y)

for x; — 2z € Y. Therefore, {(dr,,,df;})} has infinitesimal convergence property to
(dre.,dfs) at every w € Br(y). Thus, df; — dfs on Bg(y).

We will give a sufficient condition to satisfy infinitesimal upper semicontinuity of

energy in the next subsection. See Proposition 4.33.
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4.4 Approximation theorem

Throughout this subsection, we shall use the following notation (same to previous subsec-
tion): Let {(M;, m;,vol)}; be a sequence of pointed, connected n-dimensional complete
Riemannian manifolds with renormalized measure satisfying Ricy, > —(n—1), (Y,y,v) a
Ricci limit space of {(M;, m;,vol)}, R a positive number, z; a point in M;, z, a point in Y’
satisfying (M;, m;, z;, vol) ($irftyes) (Y,y, Zoo,v). The purpose in this subsection is to give
an approximation theorem (Theorem 4.27). Roughly speaking, it means that for given
Lipschitz function on Bg(z), there exists a sequence of Lipschitz function on Bg(z;)

approximating the function in the sense of the topology: (fi,df;) — (feo, dfso)-

THEOREM 4.27 (Approximation theorem). Let L, R be positive numbers, fo a L-
Lipschitz function on ER(xOO), A; a Borel subset of ER(xi), As a compact subset of
Br(rs) and f; a L-Lipschitz function on A;. We assume that limsup; . A; C As
and that fuo|a,, s an extension of {f;}:; asymptotically. Then, for every e > 0, there
exist an open set Q. C Br(Two) \ Ao, C(n, L)-Lipschitz function f$, on Br(xs) and a
sequence of C(n, L)-Lipschitz function ff on Br(x;) such that (ff,dff) — (fS,dfS) on
Qe, folaw = flaw: ffla, = fila; and that

U(BR(xoo) \ (Qe U Aw)) € 1
o(Bale)) IRl )

Proor. We fix sufficiently small ¢ > 0 and £ > 0. (We will decide ¢ later.) By

Lemma 3.14 and (the proof of) Theorem 3.17, there exist a (pairwise disjoint) collection

/ (dfe. —dfc[2dv < c.
BR(afOO)

of Borel set E; C Br(7), positive numbers 7; > 0, positive integers 1 < k; < n and

points x{, e ,xij € Y satisfying following properties:
1. Voo(Br(7s) \ Uj E;)=0.
kj T ]
2. E; © (L (D)) \ Bry (o).

3. For every w € Ej,

1
{dr g, dr,;)(w) = lim —/ (dr,g,dr,)dv =6, + ¢
l r('w) i )

4. For every w € Ej, there exist al(w),. .. ,ai,(w) € R such that

J

2

1 ,
lim ————— / df —d E aj(w)r; || dv=0.
r=00(B,(w)) /i, s
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For every w € Ej, there exists 0 < r,, << 7; such that B;(w) C Br(zs) and

2

k.
1 / SN
—_— df —d ajr i || dv<e
v(Bi(w)) JB,w) lzl H

for every 0 <t < r,. Weput X = [J72,(E; \ Bs¢(As)). By Proposition 2.12, there exists
a pairwise disjoint collection {B,,(z;)}; C Br(2x) such that z; € X, r; << min{r,,, €,&}
and X \ UY, B,,(z) C Us w1 Bsri () for every N. For every i, we take [(i) satisfying
2 € Eyg). We fix N satisfying Y 0° \, v(B,,(2)) < e. We take sequences z;(j) — 2; and
2! (j) — 2! . We define a function F/ on B, (z(j)) and a function F; on B,,(z) by

10 10
Jj § : 13 _ E : (3
‘F; - a?‘fz)rxigll)(J) + Oi7 E - a'n(:)rmln(f) + CZ
m=1 m=1

Here C; is the constant satisfying F;(z;) = foo(2:)-
Craiv 4.28. We have LipFZ-j + LipF; < C(n, L) for every i,j.

The proof is as follows: Since
(140) |dfs ()] = Zagi) l(i)(drmi(i),rxiuﬁ(zi)
(141) —Zaz) (5,0 % €)

1(%)

7 7 1(2
(142) = (16> (@2 e [al]]a)]

s=1 s#L
1(3) 1(4)
(143) =1+ (a2 £ T(e;n) ) ()
s=1 s=1
[ON
(144) — (1 (n) Y (o)
s=1
and |df|(z;) < L, we have
k;
(!N < L2 4+ W(e;n, L).
m=1

Therefore we have Claim 4.28.
Since {B,,(zi(j))}1<i<ny are pairwise disjoint for every sufficiently large j, we de-

fine a function F; on (JY_, B(1-¢)r,(2(j)) and a function Fy on UZ:lE(l—E)m(gi) by

FilBo_gn ) = F|Bu_gyr, (1)) FoolBu_ey, (20) = FilBu_gy, (2)-

72



CrLAIM 4.29. We have LipFj, LipFy, < C(n,L) + ' U(e;n, L) for every sufficiently
large j.

The proof is as follows. By Claim 4.28, for every i, j, we have Lip(Fj|§(17®”(zl,(j))) +
Lip(Fw|§(1_5)ri(zi)) < C(n,L). There exists jo such that ¢; << min{&ry,..,&ry} for ev-
ery j > jo. Wefix j > jo, 1 <1 < m < N, w(j) € Ba—gyn(z(j)) and wy,(j) €
B(i-¢yr,, (zm(j)). Since B, (z1(4)) N By, (2 (4)) = 0, by taking a(j) € 0B, () satisfying
w3, o) + a), on) = @), @), we have W), wnl) > W), alj) > £r. Sim-
ilarly, we have w;(7), wn(j) > &rp. Thus, we have wi(j), wn(j) > £(r + rm)/2. On the
other hand, since

2

dv < e,

ky
1 / . k
_— Llp foo - aslr k
U(BIO’!’Z (Zl)) Bior, (1) ( ; xkgl)

by segment inequality on limit spaces (|9, Theorem 2.6]), there exist 2;, ¢;(w;(j)) € By, (z)

and a minimal geodesic v from Z; to gbj(u;l(j)) such that z;, 2 + gbj(wl(j)),gbj(u;l(j)) <
U(e;n)r and that

21,6 (wi(5)) ol
/ Lip | foo — Z a’;lrmkl (v(t))dt < Y (e;n)r.
0 s=1 ’

Therefore we have

ky
(145) - Zalglrx’:z(él) - (foo ¢] Zl Za r o ¢] Zl ))))‘
s=1
21,05 (wi(j)) ki
(146) < / : Lip (foo Za r kl) (v(t))dt < Y(e;n)r.
0 s=1
Thus

< U(en, L)r.

foo Zl Za r kz Zl (foo ij Zl Za r kl ¢j Zl ))))

Especially, we have | F;(w;(j))— fooo®;(wi(j))]| < V(e;n, L)r. Similarly, we have | F;(w,(j))—
foo © 0 (Wi (5))] < ¥(e&n, L)ry, and [Fo — foo| < ¥(esn, L)1y on B¢, (21). Therefore

we have
147) |Fj(wi(5)) = Fj(wm(5))] < [foo © @5(wi(5)) = foo © @5 (wi(4))] + ¥(e;n, L) (ry 4 14m)

(147)

(148) < Loj(wi(f)), j(wm(5)) + ¥(esn, L) (r + 7m)
(149) < L(wi(j), wn(5) + €) + V(& n, L) (ri + 7m)
(150)
(151)

150 < Lwy(j), wn () + ¥(en, L)(r + rm)
151 < (L+& (e n, L)wi(4), wa(4).
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Thus, by Claim 4.28, we have LipF; < C(n,L) + £ '%(e;n, L). Similarly, we have
LipF,, < C(n,L) + 1% (e;n, L). Therefore we have Claim 4.29.

CLAM 4.30. For every sufficiently large j, we have \JX | B ey (2i(§)) C M;\ Bae(A;)
and UL, Ba-gr (2) €Y\ Bae(Ax).

Because, by the definition, we have Ufil B,.(2) C Y\ By(As). On the other hand, by
the assumption, there exists iy such that for every ¢ > iy, we have ¢;(A4;) C B¢(Ax) and
e << mini<en{€r;}. Thus, since ¢(U;L; B (2:(4))) € Uiy Bri(2:) C Y\ Big(A)
for every ¢ > ig, we have Claim 4.30.

On the other hand, we remark the following claim:

Crav 4.31. We have

lim sup | fi — foo 0 1] = 0.
1—00 Az

The proof is done by a contradiction. We assume that the assertion is false. Then,
there exist 7 > 0, a subsequence {n(i)} of N and «o; € A, ;) such that |f,(0;) — foo ©
bn@)(u)| > 7. Without loss of generality, we can assume that there exists a, € Y such
that ¢na) () — @o. Thus, liminf; .o |fue) () — foo(@eo)] > 7. On the other hand,
by the assumption, we have o, € Ay = A. Since fo|a. is an extension of {f;}
asymptotically, this is a cotradiction. Therefore we have Claim 4.31.

We put W; = UN_, Bu_ey (2(5)) and Wo, = UY_, Bu_e)ni(2). By Claim 4.30, we
can define a Lipschitz function G; on W; U A; and a Lipschitz function G on W, U A
by Gjlw, = Filw;, Gjla, = [i; Goolwae = Foolwee and Goola, = fooaw-

CrLAIM 4.32. We have LipG;, LipG < C(n,L) + £ 1 (e;n, L) for every sufficiently
large j.

The proof is as follows. We put &; = sup,, |fj — foo © ¢;|. Then by the proof of Claim
4.29, there exists jo such that for every j > jo, a; € Ba_g)(2:(j)) and 3; € A, we have

152
153
154
155
156
157

G(ay) = G;(8))] = |Fj(ey) = f3(5))]
< |F 0 @j(a) = foo 0 05(5;)] + W(€&;m, L)rs + §;
< |foo 0 dj(a)) = foo 0 95(B))| + ¥(esn, L)ri +§;
< Loj(ay), ¢5(8;) + ¥(en, L)r;
< L(ay, B+ ¢;) + ¥(en, L)E

(
(
(
(
(
( < (L+Y(en, L))oy, B

)
)
)
)
)
)

Therefore, by Claim 4.29, we have LipG; < C(n, L) + £ 1U(e;n, L) for every sufficiently
large j. Similarly, we have LipGy, < C(n, L) + £ 1W(e;n, L). Thus, we have Claim 4.32.
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For ¥ = U(e;n, L) in Claim 4.32, we put £ = v/U. We take a Lipschitz function f5 on
M; and a Lipschitz function f3, on Y satistying that Lipf; = LipGj, Lipfs, = LipGw,
filwua, = Filwua, and fSlwoua, = Foolwaua,- We put Q= W, Then, by the
definition, Proposition 4.19 and Corollary 4.22, we have (ff,dff) — (fS,dfS,) on Q.. We

have

(158)
df oo — df< |Pdv < dfso — df<,|*dv dfso — df<,|?dv
/BR(W\f e | /X\Bsg( e +/355<Aw>'f e
159 < dfso — df<_[*dv
159 Z/Bu e)r; (7i) |
(160) + (5L2v(B5§(Aoo) \ Aw) + /A \dfS, — dfso|*dv + U (e;m, L))
(161) < Zev ey (21)) £ (BL20(Bse(Ax) \ Ao) + ¥(e;m, L))
(162) < ev(Br(z)) £ (BL*0(Bse(Aso) \ Aso) + U(e;m, L))
and
(163) V(Br(Ts) \ (2 U Ax)) < 0(X \ (2 U Ax)) + 0(Be(Aw) \ Acc)
(164) < Z (Bsr,(2)) + v(Be(Ax) \ Axc)
(165) < C(n)e +v(Be(Ax) \ Aso).

Since A is compact, we remark that lim, o v(B,(Ax) \ Ax) = 0. We put 7(r) =
U(Br(Ax) \ Ax). On the other hand, by the proof of Claim 4.29, we have |f$ — foo| <
U(e;n, L) on Q.U A, For every w € Bgr(s,), there exists @ € QU Ay such that w, w <
W(e, 7(56);n, L, v(Br(2x))). Therefore, we have [ [ (w) = foo(w)] < |f5(w) = foo(w)] +
U(e, 7(58);m, L,v(Br(s))) < V(e, 7(58);n, L, v(Br(Ts))). Thus, we have |fS — fool <
(e, 7(5¢

€
€
);n, L,v(Br(ZTw))) on Br(2s). Therefore, we have the assertion. O

As a corollary of Theorem 4.27, we shall give a sufficient condition to satisfy infinites-

imal upper semicontinuity of energy:

PROPOSITION 4.33. Let R be a positive number, f; a C*-function on Br(x;)(i € N),
foo @ Lipschitz function on Br(zs). Assume that

sup (Lipfi —l—/ \Afi]dv_ol) < 0
i Br(=i))
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and f; — foo on Br(xs). Then, we have
fimsup [ (LipfoPdvol < [ (LipfaPdv
i—oo  JBp(=;) Br(zoo)
FEspecially, the sequence {f;}; has infinitesimal upper semicontinuity of energy to fs at
every w € Br(xy).
Proor. We put g; = Af;. First, we shall remark the following:

CLAIM 4.34. For every Lipschitz function k on Bgr(z;) satisfying suppk C Bg(z;), we

have
| aneppael-z [ gtneRdol> [ a2 [ gfvl
Br(z;) Br(wi) Br(wi) Br(z;)

Because, since
[ gt npdol-2 [ g Rdel= [ Pl -2 [ gpdl
Br(z:) Br(z;) Br(z;) Br(z:)
+ [ kPl
Br(z:)

we have Claim 4.34.
We fix € > 0 and take L > 1 satisfying

sup (Lipfi T | filoe + /

Br(z;)

|gi|dV_Ol) < L.

Since limsup, , Ag—c r(2;) C Ap—cr(Tx), by Theorem 4.27, there exist a C'(n, L)-Lipschitz
function fS on Br(z), a C(n, L)-Lipschitz function ff on Br(z;) and an open set 2. C

BR($OO) \AR—E,R(‘TOO) such that f§O|AR—s,R(xoo) = fOO|AR—e,R(zoo)a fz‘6|AR—e,R(xi) = fi|AR—e,R(1'i)7
(ff,dff) — (fS,,dfs,) on €, and that

U (Br(T0) \ (U Ap—r(7))) e 1 L
U(BR(-TOO)) + |foo foo|L°°(BR(J:oo)) + —UOO(BR(I‘OO)) /BR(IOO) |dfoo dfoo| dv

< €.

By Claim 4.34, we have

[ rpive-2 [ gpavel> [ a2 [ gfvl
Br(z:) Br(z:) Br(zi) Br(z;)

By Proposition 2.12, without loss of generality, we can assume that there exists a pairwise
disjoint finite collection {B,,(2i)}1<i<n such that Q. = Y, B,,(z). We take a sequence
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zi(j) — z. We put Q.(j) = UZ 1 Br.(z:(4)). Since vol(Q(j) U Ar—_c r(z;))/vol Br(z;) >
1 — € for every sufficiently large j, by Proposition 4.13, we have

[ wpasci— [ g
BR(xj) Br(7c)

On the other hand, since SUPB (e ’f —fi1 <C(n,R,L) SUpgq, (; ]f — f;| and lim SUD;_ o SUPg,(; |f _
fil <supg, |fS — fol, we have

/ g;fjdvol — / g; fidvol
Br(z;) Br(z;)

for every sufficiently large j. Therefore, by Proposition 4.13, we have

< V(en, L, R)v(Br(rx)).

< w1 / Ioldsol < W(ein. B Lyv(Bale)

lim Sup/ |df;|?dvol < / \df< |>dv + U (e;n, L, R)v(Br(s)).
Br(z:)

i—00 Br (xoo)

Thus, we have

fimsup [ (dfPvol < [ Jdfufdo + W(em, L R)o(Bal).
Br(z;)

1—00 BRr(%oo)

By letting € — 0, we have the assertion. O
Next corollary follows from Remark 4.8 and Proposition 4.33 directly:

COROLLARY 4.35. Let R be a positive number, f; a C?*-function on Bgr(xz;) and f
Lipschitz functions on Br(xs). Assume that

sup (Lipfﬁ / |Afi|2dv_ol) < o
i Br(zi))
and f; — foo on Br(xs). Then, we have (f;, df;) — (foo, dfso) 0N Br(Zso).

COROLLARY 4.36. Let R be a positive number, f; a C?-function on Br(z;) and fs a
Lipschitz function on Br(rs) satisfying sup;(Lip f; 4+ |A filLe(Br(z))) < 00. We assume
that f; — foo on Bgr(zs) and that there exists a L™®-function go, on Bgr(zw) such that
{Af:}i has infinitesimal convergence property to goo at a.e. w € Br(rs). Then, for every
Lipschitz function ks, satisfying suppks, C Br(Zs), we have

/ (df s, dkooydv = / koo goodu.
Br(zoo) Br(zoo)

ProoF. By Corollary 4.35, we have (f;, df;) — (foo, dfso) 00 Br(zs). We take L > 1
satisfying sup, (Lip fi+| fi| Lo +|A fi| L) < L. We put 7 = sup,,cquppr.. Too, W and g; = Af;.
By compactness of suppk.,, we have r < R. We fix € > 0 satisfying e < R—r. By Theorem
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4.27, there exist a C'(n, L)-Lipschitz function k5, on Br(zs), a C(n, L)-Lipschitz function
ki on Bg(x;) and an open set {2, C Br(¥s) \ Ar—c,r(To0) such that kS |4, p@e) = 0,
k:i6|AR—e,R($z‘) =0, (k{,dk) — (kS,,dkS,) on €, and that

v (BR(iUOO) \ (Qe UAp_. R(3700>>> 1 / 2
’ ke — kS 1o (B ) + ——— dke. — dko|?dv
o(Br(r)) | = Bate) B ) S |

< €.

By Proposition 4.11, {k{g;}; has infinitesimal convergence property to kS g at a.e. w €

Q.. By an argument similar to the proof of Proposition 4.33, and Proposition 4.13, we

have

[ nagia- [ (i)
Br(zi) Br(z)

< U(e;n, L, R)v(Br(7s))

+

| akidwol- [ gura
Br(z:) Br(zco)

for every sufficiently large . Since

/ (df,. dkS)dvol = / gik<dvol,
Br(z;)

Br(z;)
we have
/ (df s, dkoo)dv = / Jookoodv £ VU (e;n, L, R)U(Br(Ts))-
Br(2oo) Br(2oo)
By letting € — 0, we have the assertion. O]

The following corollary follows from Corollary 4.35 and 4.36 directly. See also [24].

COROLLARY 4.37. Let R be a positive number, f; a harmonic function on Bgr(x;)

and f a Lipschitz function on Br(xs) satisfying sup, Lipf; < oco. We assume that
fi = foo on Br(xs). Then, we have (f;,df;) — (feo,dfso) on Br(Zs). Moreover, for
every Lipschitz function ke satisfying suppke, C Br(Zw), we have

/ (df o, dleoc)dv = 0.
Br(zoo)

Especially fo is a harmonic function on Br(Zs).

5 Harmonic functions on asymptotic cones

In this section, we will give several applications of results in section 4 to harmonic func-
tions on asymptotic cones of manifolds with nonnegative Ricci curvature and Euclidean
volume growth via Colding-Minicozzi theory [17, 18, 19, 20, 21, 22] for harmonic func-
tions on manifolds. Throughout this section, we will always assume that dimensions of

all manifolds are greater than 2.
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5.1 Convergence of frequency functions

Throughout this section 5, we fix an n-dimensional complete Riemannian manifolds M
satisfying Ricy; > 0 and FEuclidean volume growth condition:

lim vol? Bpr(m)

Jim > 0.

Here m is a point in M and g,; is the Riemannian metric of M. We remark that by
Bishop-Gromov volume comparison theorem, the limit above always exists and does not
depend on choice of m. We denote the limit by Vi7" = limpg_,, vol? Bg(m)/R". It is easy
to check that V], 9 = V& for r > 0. Therefore we shall use the notaiton: Vi, = VI,
We fix a point m € M below. Then the global Green’s function G9(m,z) on M with
singularity at m exists. See [79]. First, we shall introduce an important result about

asymptotic behavior of G9 by Colding-Minicozzi:

THEOREM 5.1 (Colding-Minicozzi, [20]). We have

. GgM(qu_, T) _ vol Bl(On)‘
mz—oo M, T " \%Y:

By the definition of Green’s function, we have

201, G (m, x)
G" M (m,x) = T

It is known that there exists C; > 1 such that m,z>™™ < G%(m,z) < Cym, x> " for

every m # x. We define a smooth function b% on M \ {m} by

) = (o O )

Thus we have bl “9 = b9 /r. We shall use the notation b% = b9 simply. Then we have

_ Y p— “2gum -2 CiVu 2 —2
T < bT gm < T TgMm
(vol Bl(On)> Y = W =7 B1(0,,) Y

for every r > 0. We put b9 (m) = 0. It is easy to check

Vi 1
IMpIM — pIM ™ IM (J9M 9.
v 2ol B0y )Y (m, )

On the other hand, for every € > 0, there exists R(e) > 0 such that

/ Vb9 2 — 12dvol < evol ({b < R}),
bIM<R

/ |Hessponr)2 — 2gn |*dvol < evol({b™ < R})
bIM <R
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for every R > R(¢) and that
bIM (SL’)

mgM
for every x € M \ Br((m). See (2.23),(2.24) and (2.25) in [19] or section 4 in [20] for
proofs of these results.

— 1| <e

LEMMA 5.2. We have (oM < R
fim LU S B

R—oo  vol BEY(m)

PROOF. For every 0 < e < 1, we take R(¢) > 0 as above. We put

s GV T
We take R > R(e). First, we shall show Bg(m) C {b%* < (1+¢€)R}. We take y € Bg(m).
By the definition of b9 | if y = m, then y € {9 < (1+¢€)R}. If y # m and ™,y < R(e),

then we have

C’1‘/M 2o C’1VM 2n ~
pIM < _ < | — < < R.
(v) < (VolBl(On)) Y= (volBl(On)) R(e) < Rle) < B

Especially, we have y € {0 < (14 ¢)R}. On the other hand, by the definition of R(e),
if m,y > R(e), then |b9 (y) —m, y| < em,y. Especially, we have b9 (y) < (1 + €)m,y <
(1 4+ €)R. Thus, we have Bgr(m) C {b < (1 + ¢)R}. Next, we shall show {b% <
(14+€¢)R} C B%R(m). We take x € {b% < (1 + €)R} satisfying ™,z > R(€). Then, we
have (1 — e)m,z < b9 (z) < (1 + €)R. Thus, we have {07 < (14 €)R} C B%R(m).
Therefore, we have B%(m) c {9 < R} C B%(m) for every R > 2R(¢). Since

lim

R—o0 vol B%(m) 1—e¢

VOlBli(m) - (1+€>"

we have the assertion. O

We shall define frequency functions for harmonic functions on M. For R > 0,0 < r <

R and a harmonic function u on {0 < R}, we put

n—1

I (r) = rl_”/ u?|V9M p9M | dyolIM
bIM =y

DM (r) = r2"/ |V9M | dvolI™

bIM <r
and )
ou
FoM(r :7“3_”/ — | Vb9 |dvol?M,.
(r) o |on | | 1
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9m

Here n is the unit outer vector of {b9* = r}, vol?, is the (n — 1)-dimensional Hausdorff

measure with respect to the Riemannian metric gy;. Moreover, we put

ot (. DM (r)
u ( )_ ]ﬂM(r)

if 19 (r) #0,

Ugv(ry=0if I9M(r) =0
and call the function U on (0, R) frequency function for u. We remark that the critical
set of b%M has codimension two. See [12], [38] or [19, Remark 2.11]. By maximum principle
on manifolds, U () = 0 for some 0 < r < R if and only if u is a constant function. The
following fundamental properties of functions above are given in [19]:

Do) < (1) pgecs)

S

i D ()

dr r
S T79m t
I9M(s) = exp (2/ —U“t( )dt) I9v (1)

for r < s (see (2.10), (2.12), (2.13) and (2.14) in [19]). For every 7,7 > 0, R > rr
and harmonic function u on {9 < R}, we put u, = u/7. Then we have DZT_QQM (r) =

T2 D9M (), I;:QQM (r) = 77219 (r7), FJ;QQM(T) = 772F9 (r7) and UJ:QQM (r) = UM (rr).

We shall recall the definition of asymptotic cone (or tangent cone at infinity) of M by
Cheeger-Colding;:

DEFINITION 5.3 (Asymptotic cone). For pointed proper geodesic space (My, M),
we say that (My, ms) is an asymptotic cone (or tangent cone at infinity) of M if there

exists a sequence R; — oo such that (M, m, R; 'dy) — (Mao, Moo).

We fix an asymptotic cone (M, my) of M and a sequence R; — oo satisfying
(M, m, R;'dy;) — (My,ms) in this subsection below. We remark that by [7, Theo-
rem 5.9], we have (M,m, Ri_ldM,volszgAf) — (My, Mmoo, H™). We shall introduce an

important result for asymptotic cones by Cheeger-Colding;:

THEOREM 5.4 (Cheeger-Colding, [6]). With same notation as above, there ezists a
compact geodesic space X such that diamX < 7w and (M, ms) = (C(X),p).

See [4, Theorem 9.79] or [6] for the proof. We fix X as in Theorem 5.4. For R > 0,
0 < 7 < R and Lipschitz function u on Bg(p) satisfying that u is harmonic on Bg(p), we
put

I(r) = 7’1_”/ w?dH"
aBr(p)
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and

Moreover, we put

and
Uu(r) =0if I,(r) = 0.

We also remark that by Proposition 7.22, the function

F,(r)= r3”/ (dr,, du)*dH™ .
9Br(p)

is well defined for a.e. r € (0, R).

REMARK 5.5. We remark the following: Let R be a positive number, u; a harmonic

function on B (m). Assume that sup, |(u;)g,| < oo for every 0 < r < R.

Loo (BRI ()

Then we have sup, Lip ((UZ)R .
B, " m

) < oo for every 0 < r < R. The proof is as
follows. We fix 7 satisfying » < # < R. Since B,(p) is convex, it is not difficult to see
—R; %gum .
that there exists ig such that for every i > iy, z1(i),x2(i) € Bf’ ™ (m) and geodesic 7;
2

from x1(7) to x(7), we have Imagey; C Ffi_ 9 (m). Therefore, by Cheng-Yau’s gradient

R2 ) < oo for every 0 < r < R. Thus we
B, " m

estimate, we have limsup, . Lip | (u;)g, onr
(

have the assertion.

PROPOSITION 5.6. Let R be a positive number, u; a harmonic function on BR (m)

and us a Lipschitz function on Br(p). We assume that sup, |(u;)g,]| < 00

R 2g)
Leo(Byt 7 (m))
and (u;)r, — Uso on By(p) for every 0 <r < R. Then, for every 0 < r < s < R, we have

D

R;QgM (t) . Duoo (t)‘ =0

lim sup () n,

i—00 te(r,s]

and
—2
lim sup )I(Ri IM(t) — Iuoo(t)‘ =0

Ui )R
00 telr,s] iR

PrOOF. We fix 0 <7 <r < s <5< R We take L > 1 such that |tue|r~(B, (@) +
Lipu., < L. We fix € > 0 satisfying ¢ << min{7, R — §}. Then, by the proof of Lemma
5.2, there exists R;(e) > 1 such that

B yal0m) € {09 < R} C B oy ()
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and
/ |[Vor b |2 — 1\2 < vol{b™ < R}
bIM <R

for every R > Ry (€). Especially, by Cauchy-Schwartz inequality, we have
/ HVQMb9M|2 _ 1{ < €4VO1{b9M < R}
bIM <R

and
/ ||VoMpam| — 1| < €2V01{bgM < R}.
bIM <R

For 0 <t < R, we put
Fi(t) = / L ()% [V pR o 2 gyl B o
bRi IM <t *

Then, we have

dF;
dt

(ui) R,

1) = u; 2 vRi_ZgMbRi_2gM dVOlREQQM _ ]RfQQM £l
R_QQJ\/[ R; n—1
b =t

Thus, we have

R 2gu "

d2E Ui )R, —2
(t) = ogn—1 —Lm 7 ):z +(n— 1)L ()2

dt?

(ui)R,

_ _ n—1 _ _ -2
=9 i QQAI(ui>Ri 2dvol™ om (n-1) (us)% |V 5 “gn Ry o |2dvolfilgM,
b I <y t bi o —y '
On the other hand, in general, for every C?-function f on R, we have

)= 1(0) + - @ ~ [ =0 )as

for every a, s,t € R. Therefore, for every 0 <t < R, we have
Fi(t+¢€) — Fi(t)

€

t+e
—2 -2
§/ 2/ -2 |vRi gM(UZ‘)RAQdVOlRi IM da
t b TIM<q

—2 —2 -2
_/ 72 (Uz‘)?ﬂvRi gm pi; 91\{|dVOlRi gm
bt "I =t

t+e _ 3 _
+(n—1) / / o ()R VR0 dvol 0 dg
t b IM —g

n—1
t

<2 / VR () [Pdvol e / ()2 [V 0B 00t 2ol "o,
bl TIM <tie t<bIM <tte '

By Proposition 2.15, there exists ip € N such that R;7 > 10R;(¢), |(w;)g,|
10L and

Ee (B )

—_ —2
sup volBti “on Bfi oM (m) — H”(Ba(p))) < €
a€0,R)]
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for every ¢ > ig. Then, by Cheng-Yau’s gradient estimate, for every i > 1o and r < t < s,
R 29

(166) / . (V798 (1) , [Pvol B S/
b IM <tte B(11+e)(t+e)(m)

(167) < C(n,L,R).

|VRZ'_29M (u;)r, |2dV01Ri_29M

Here, we used H"(Bg(p)) = R"H"(Bi(p)) < R"C(n). Moreover, we have
(168)

/ (Uz)% |VR{29M bR{2gM |2dVO1R{2gM

t<bRs M < e '

(169)

< / L (1), dvol e "9 / . ()%, ||V 5 om bR 9 |2 _ 1] gyl i "o

t<bli IM <ppe ' t<bi TIM <ty '

(170)

< / y (u;)% dvol® 9 4 100L2vol ™ 9 {t < b9 < ¢ 4 ¢}
t<bfi TIM <t ’

(171)

< 200L2vol™ 9 ¢ < pR o <t 4 €}
(172)

< 200L2vol™ "9 AR (1 )t (1 + )(t + ¢))
(173)

< 200L*H™ (A, (1 — €)t, (1 + €*)(t+€))) + 300L%¢.

On the other hand, we have

Fi(t - Ft) 1 _
(174) o) g - _/ —2 (u;)% dvol™i “on
€ € Jr<vfli "IM <pye !
1 - _ _
(175) + - (ul)Q _ |VR’ QQMbRi 29M|2 -1 dVOlRi 29M’
€ Jo<pRi “om <pie fi
and
1 2 R72 R72 2 R2
(176) P —2 (ui)p, ’|V i@ IMpT IM | l‘dvol i IM
€ Ji<pfi TIM<pye g
2
(177) < 100L / . |VR;29MbR;29M ‘2 - 1‘ dvolR;29M
€ bR TIM <gte
100L2 —2 2
(178) < e2vollti “9m ({bRi M <t 6})
VolgMBgM ) (m>
179 < 1002 (1+e?)(t+e)Ri
(179) < € o
(180) < eC(n, L, R).
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We remark that

(181) / —2 (’U/i)%idvolRi_ng _/ —2 (ui)?ﬁdVOlRi—QgM
t<bfi IM <pqe ARG TOM (4 4 o)
(182) < 100L2vol™ “ov ({t < ORI <t A AAR Pt t+ e)) .

Here AAB = (A\ B)U(B\ A).
CrLAM 5.7. We have
(183) {t <R <t 4 JAAR 9”f(t t+e€)
(184) C AR (1= @) (4 6), (1 + ) (E+6)) UART™ (1= A, (1 + 1)
for every i > 19 andr <t < s.
The proof is as follows. We put Af(t) = {t < bR o < ¢ 4 G}AAR'ing (t,t +¢).

First, we take y € {t < bR <t €/2} N Aj(t). Then we have y € B(ll—ﬁ-eg])vét—&-f/?)(m)

Especially, we have
g M < (14 ) (t + %) <t+e

Since y € M\ Ay (t t+¢), we have y € B ™ (). Thus, we have {t < b& “om
t+e€/2} N AL C B i gM( )\B1 EgM(m). Similarly, we have {t + ¢/2 < pRi Zgnr

t+e}pNA(t) C B(Heg)(tJrE)( m) \ BtJre gM( ). Therefore, we have

IA A

(6 < BP0 < f 4 ey N AS(E) © AT (1= @) ) U AR e (14 )t + 6).
Next, we take z € AS(t) N Aﬁ"—ng (t,t 4+ €/2). Then we have
BRI (1) < (1+ a9 < (14 ) (t+¢/2) <t+e.
Since € M\ {t < bR 9 < ¢ 4 €}, we have bR 9 (z) < t. Therefore, we have

T € Bgig;‘; (m). Thus, we have A% 7Y (t, t+¢/2)NAS(t) C AN M (¢, (1+€2)t). Similarly,

—2 —2
we have Api oM (t+e€/2,t+e)NAS(L) C Aps o (t+ ¢ (1+€)(t+¢€)). Therefore we have
Claim 5.7.

By Claim 5.7 and Bishop-Gromov volume comparison theorem, we have
(185) € Lvolft: "o <{t < PR < p g Y AARTI (g g e>)
(187) + e Lol o <AR;QQM (1=, (1+ 62)t))>

(188) < 3¢ le vol i gM <GBRI M (m)\Cm> + 3¢ Le vol i gM <aBRZ gM( )\ Ch >

(186) < e 'volfi 9 (Aif o ((1—62)(t+e),(1+62)(t+6)))

1—€2)(t+e) 1—€2)

(189) < 6evol 0BR(0,,).
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Therefore we have

-2 -2
/ L (ui)%idvolRi oM _/Rz (ui)?ﬁdVolRi gM
t<pfi IM <t e b M (e

for every i > ip and 7 < t < 5. We take the canonical retraction, m; from C(X) to By(p)

< 600L%evol 9BR(0,,).

for every t > 0. It is easy to check that m; is 1-Lipschitz map. We put u! = (us)? o 7.
We have Lipul < Llp Uso)?. By Proposition 7.22; we have

(190) (oo )?dH" lda—/ / ul dH" 'da
OBa(p) OBa(p
(191) < / (1)? — e |dH"
Ap(t,t+e)
(192) < Lip(ueo )’ eH" (A, (t, t +€)).

for every r <t < s. On the other hand,

t+e t+e a n—1
(193) / / uZOdH"_lda:/ <—> / (oo )*dH™ *da
¢ 9Ba(p) ¢ 3 dB:(p)
t+e a\n—1
(194) - / (1o )2 H™ / (—) da
9B:(p) ¢ 13

(195) —
(196) = I, (t)(et" ' £ U(e;n, R)e).

Therefore we have

lim sup
00 te[p 5]

(ui)R;

[y (t)’ —0.

Next, we shall prove

“ Z)Ri () - Dum(t)‘ = 0.
We shall use same notations as above. It is clear that
(197)

t2n/Ring ‘VR;QQMWDRZ-IQdVOIRf%M < DRZQQM(t)

(ui) R,
(1—e2)t (m) :

1—00 te(r,s]

(198) <t (VA0 (1) | 2dvol B o
Ly (M)
(14+€2)t

for every ¢ > i and r < t < s. On the other hand, we have

(199) L (VR0 (), Pdvol 9 (m)
m (1)t (1+e2)t)
(200) < C(n, L, R)yvol™ “om AR9 (1 _ )¢ (1 4 1))
(201) < C(n,L,R) (H" (Ay((1 — €)t, (1 + €)t)) +e) .
Therefore, by Theorem 4.37, we have the assertion. O
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For every 0 < r < R and harmonic function v on {9 < R}, we put
EIM (7’) — 7’2_”/ |v9Mu|2’vgNIb9]\/[|2dVO191M‘
“ bIM <r
It is easy to check that for every 7,7, R > 0 satisfying R > r7 and a harmonic function u
on {b™ < R}, we have E;T_QQM(T) = 77 2E% (7). By an argument similar to the proof

of Proposition 5.6 (or [19, Proposition 3.3]), we have the following:
PROPOSITION 5.8. With same assumption as in Lemma 5.6, we have

lim sup |E/¢. oM (t) — D, ()| =0

i—00 te(r,s] (iR,
for every 0 <r <s < R.
We shall introduce an important result [23, Theorem 2.1] by Ding;:

THEOREM 5.9 (Ding, [23]). For every 0 < r < R, all harmonic functions on Bg(p)
are Lipschitz on B.(p). Moreover, for every 0 < r < s < R and harmonic function v on

Bgr(p), there exist a subsequence {n(i)}; of N and a sequence of harmonic functions v,

R2
on B, "™ (m) such that vy — Us 0N By (Ts).

Proor. We shall give an outline of the proof only. First, we shall show that u., is
Lipschitz function. By [51, Proposition 5.1], for every u € Hy»(M;) and R > 0, we have

(202) / u(y)QHR_QgM(t,y,x)dvolfjfng < 2t/ |dR_29Mu|2dv015729M
M M

2
(203) + (/M U(y)HR29M(t,y,x)dvol§29M)

for a.e. x € M. Here. H® 9% (L, y, ) is the heat kernel for rescaled manifold (M, R~2gy;).
By [24, Theorem 5.54] and [5, Lemma 10.3] (or Theorem 4.27), for every u € K(C(X)),

we have,

/ Pt ) < 2 / ) (f . u<y>Hoo<t,y,x>dH"<y>)2

C

for a.e. © € C(X). Here Hy is as in [24, Theorem 5.54]. Since K(C(X)) is dense in
H,5(C(X)), the inequality above holds for every u € Hyo(C(X)). Next, we fix z € X
and 0 < t < R. Then, by Bishop-Gromov volume comparison theorem, it is easy to
check that H"(B;((1,z))) > C(n, Vi )t". For every R > 0, we define the map ¢g from
Ap(R—t, R+t) to Ay(1— L, 1+ L) by ¢r(({,2)) = ({/R,z). Since H"(¢r(A)) = R"H"(A)
for every Borel subset A C A,(R —t, R+ 1), we have

H"(B,(R,z)) = R"H"(B1 (1,z)) > C(n, Var)t".

By
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Therefore, (C(X), H™) is Ahlfors n-regular metric measure space (see section 1 in [51]).
By [24, Theorem 6.1], [24, Theorem 6.20] and [51, Theorem 1.1], us is locally Lipschitz
function on Bg(p). By convexity of Bs(p) and the proof of [51, Theorem 1.1], un is
Lipschitz on B,(p). Next, we shall take L > 1 satisfying Lip(uc |, p)) + [Uoo |10 (B, (p)) <
L. Without loss of generahty, we can assume that there exists a sequence of Lipschitz
functions f; on B o *(m) such that Llpfz + | fil Lo (B, (p)) < 10L and f; — uoe on By(p).

We take a harmonic function u; on B gM( ) such that

ui|835;29M (m) - fi|an;29M (m)
in the sense of Perron’s method for f;. We shall give a short review of Perron’s method
of subharmonic functions in this setting below. See for instance section 2.8 in [33]. For
—2 -2
f € CBY M (m)), we say that f is subharmonic (superharmonic) in B2 ¥ (m) if for
_2 _ p2 9 — R,
every w € Bi M(m), r > 0 with BRi M(w) B gM( ), and h € C’O(Bf? ™ (w))

satisfying h| p-», ~ is harmonic and h| , we also have
Bl oM ()

Bl M ) =@ )ﬂaB M w)
—2

h <(>)fon B IM(w). For g € C'O(B 3 gM(m)) we say that g is a subfunction relative

to fi\Bf;%M o if gl r-2,, - is a subharmonic function and g\ o S fz'dBf’;QgM o’

We also say that g is a superfunction relative to f;| .- if g| o 29 M) is a superhar-
Bg? m

91\/1(

monic function and g| -2, > fil w2, . Let Sy, denote the set of subfunctions
0Bst M (m) 0Bst M(m)

-2
relative to fi| -2 . Then we put a function u; on B ™ (m) by
Bl

gM(

u;(w) = sup v(w).
’UESfZ.
By an argument similar to the proof of [33, Theorem 2.12], it is easy to check that w; is
. R %gur

harmonic on B,* " (m).

We fix 0 <7 < 3R, x € 0B,(p) and z € 3325( ) satisfying p, = + T,z = p, z. We take
sequences (i) € GBRZ IM(m) and z(i) € 8BRZ 9 (m) such that z(i) — = and z(i) — z.
Then it is easy to check that for every oo € Bs(p), we have

Ci(n,R)z,a* <z,a—7,7 < 7,0

We fix a € B,(p) and take a sequence of points «(i ) e Bl gM( ) satisfying a(i) — a.
We put b = (ri’i) D (rf(i) 9MY2=m(1(4)) on Ba" o (m). By Laplacian comparison
theorem on manifolds (or (4.11) in [4]), we have, a function b’ is a superharmonic, a
function f;(z(i)) + 100LT + C(n, L, R)b'/7? is a superfunction relative to fi|aBR_72

PM (m)

and a function f;(x(i))—100LT —C(n, L, R)b’ /7% is a subfunction relative to fi|6 —
B

i 9
A Z\I(m)

for every sufficiently large ¢. By an argument similar to the proof of [33, Lemma 2.13],
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we have C(n. R, L) ,
n, Iy, —R;
Tl’(l)a (i) o

for every sufficiently large <. On the other hand, by Proposition 2.11 and Corollary 4.37,

[fi(2 (i) — wila(i)] < C(n, R, L)T +

we can assume that there exists a harmonic function ., on Bg(p) such that .| Bs(p) 15 @

Lipschitz function, u; — us on Bs(p) for every 0 < § < s. Thus we have

Cn RI)

2 Y

[thoo () — lioo ()| < C'(n, R, L)T +

T

1/3

for every a € By(p). If we put 7 =7, @'/°, then we have

oo (%) — i ()| < C(n, R, L)Tas.

for every x € 0B(p) and a € By(p). Since Uy € Hyo(Bs(p)) for every 0 < § < s, and uy
is Lipschitz on B,(p), by [80, Cororally 6.6] and an estimate above, we have sup Ba(p) [Uoo —

Uso| = limg_ (sup Ba(p) [Uoo — 1)OO|) = 0. Therefore, we have the assertion. H
We shall remark that the following:

COROLLARY 5.10. Let R be a positive number and us, Voo harmonic functions on

Bgr(p). Then s + Vs is a harmonic function on Bgr(p).

From now on, we shall replace most of many important statements in [19] with state-

ments on asymptotic cones:

PROPOSITION 5.11. For every 0 < r < s < R and harmonic function us on Bgr(p),

we have
D)< (5) " D)
Lo (s) — Lo (r) = / SQD“%@)dt.

Moreover, if I, (r) > 0, then we have

Lo (s) = exp (2 / S U“%(”c@ ().

ProOF. By Theorem 5.9, without loss of generality, we can assume that the assump-
tion of Proposition 5.6 holds. Since

RZQQM 2" R;29M

D(ui)Ri (T) < (;) D(W)Ri (S)’

by letting i — oo, we have the first assertion. Similarly, since
—2

Ri gm t

—2 —2 S w) e ()
5o () — 1 () = / g gt

(ui) Ry (ui) R, t
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by letting @ — oo and dominated convergence theorem, we have the second assertion.
Especially, we remark that I,,__ is a continuous function and that a monotonicity 7, (r) <
I, (s) holds. We shall prove the third assertion. By Proposition 5.6 and the monotonicity

2
of I,,_, we have lim inf;_, <infa€[,«,s} I (R ' gM(a)) > (. Therefore, by Cheng-Yau'’s gradient

1
Ui)Ri
estimate, we have

—2
lim sup ( sup U(Iz?):M(a)> < 00.
1—00 a€lr,s] v
On the other hand, since
2 S URi_QgM (t) 2
Ry (ui)R; Ry
1 () — exp [ 2 / S e | 1 ),

by letting ¢ — 0, dominated convergence theorem and Proposition 5.6, we have the third

assertion. O

COROLLARY 5.12. Let r, R be positive numbers with r < R and us, a harmonic func-
tion on Bgr(p). If U, (r) =0, then u is a constant function on B,.(p).

PRrooF. First, we assume I, _(r) = 0. Then, by Proposition 5.11, we have D,__(t) =0

for a.e. 0 <t < r. Since D, is continuous, we have D, (r) = 0. Thus, by Poincaré

inequality on limit spaces, we have
1

SR PR T
v(B () Jo,m |7 v(BrP)) Ji,) v(Br(p))
Since f is Lipschitz on B,(p), f is a constant function on B,(p). Next, if U, (r) = 0 and

dv < C(n, R)r\/ / (Lipf)2dv = 0.
Br(p)

I, (r) > 0, then, by the definition, we have D,_(r) = 0. Therefore, by an argumetnt
above, we have the assertion in this case. O

The following corollary follows from Proposition 5.11 and continuity of the function:
t — H"(B(p)), directly.

COROLLARY 5.13. For every R > 0 and harmonic function u., on Br(p), the function

L. is a C'-function on (0, R) and
dl, 2D, (t)
= (1) = Tt
dt ®) t
For every 0 < r < R and harmonic function u on B%” (m) satisfying u # 0, we put
B (r)
ngw (r) = o (r)

With same assumption of Lemma 5.6, if u., is not a constant function on B, (p), then, by

Proposition 5.6 and Proposition 5.8, we have

—2
lim W(iz)]iM (r) = Uy (r).

3—00
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PROPOSITION 5.14. For every 0 < r < s < R and harmonic function us on Brr(p),
we have

U (1) < Uuo (s)-

PrOOF. By Theorem 5.9, there exists a sequence of harmonic functions u; on Bgy, (m)
such that sup, Lipu; < oo and (u;)r, — Us On Bgr(p). We fix € > 0. Without loss of
generality, we can assume that U,_(r) > 0. We shall use same notation as in [19, Propo-
sition 4.11]. We put Qo = s/r,y = D,_(25)/D,_ (r)+1. Then we take R = R(m,~, €, Q)
as in [19, Proposition 4.11]. By Proposition 5.6, there exists io such that R;r > R and

R2
DP (20 Ryr) DI (2R;s)  Diyy (29) g
Dﬂi”(Rﬂ") - Dziw(Rz’I“) - DR;QQM(T) =7

(ui) R,

for every i > iy. Then, by [19, Proposition 4.11], we have

Y dt > —e.

/Ris dlog W
R;r dt

i.e. we have

log Wi (Ris) — log Wi (Rit) > —e
Since Wg \(Ris) = W : gM( ), by letting i — oo, we have
logU,_(s) —logU,_(r) > —e.
Since € is arbitrary, we have the assertion. O

REMARK 5.15. Most of their results in [19] are about global harmonic functions on
manifolds. However, by the proof, their results in [19] also hold for harmonic function on
a big domain like one used in the proof of Proposition 5.14. We will often use these facts

below.

For d > 0, we put HY(My) = {teo : Mo — R; Uy is a harmonic function and there
exists C' > 1 such that |us(z)| < C(1 + Mo, 2¢) for every & € M }.

PROPOSITION 5.16. We have U, (t) < d for every t > 0 and u, € HY(M,,).

Proor. This proof is done by a contradiction. We assume that there exist 7, 59 > 0
such that U,_(sg) > do + 7. By Proposition 5.14, we have U,_(s) > d + 7 for every
s > 80. Since us € HY(M, ~), there exist s; > sp and C' > 1 such that

I

Uoo

(s) = 51"/ wr dH™ ' < s'7"s%0l OB, (p)C < Cs*vol B (0,)
835(17)
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for every s > s;. For s > s1, by Proposition 5.11, we have

20, (t 5 2d+2
C's*vol B1(0,,) > exp </ U%”dt) I, (s1) > exp (/ ﬂdt) I, (s1).
s1 s

) t

Therefore, we have

it + log I, (s1) |

9 4+ log(Cvol By(0,,)) S 1 / 2d + 27y
t log s

log s ~ logs /g

By letting s — 0o, we have 2d > 2d + 27y. This is a contradiction. O]

PROPOSITION 5.17. For every 0 < s < t < a < R and harmonic function us, on

S

PROOF. First, we assume that u., is not a constant function on Bs(p). By Theorem

Brr(p), we have

5.9, there exists a sequence of harmonic functions u; on By (m) such that sup, Lipu; <
oo and (u;)gr, — Ueo 00 Bgr(p). We fix € > 0. By the assumption and Corollary 5.12,
there exists 0 < r < s such that U,__(r) > 0. We shall apply [19, Corollary 4.37]. We put

Qg =2a/r, Q@ = a/r and
D, (2r)

We take R = R(m,~,€,Q0) as in [19, Corollary 4.37]. There exists iy such that R;r > R
and that

v = + 1.

—2
Dy v (20r)
R %gm <7

(r)

(ui)rR;

for every i > iy. Thus, by [19, Corollary 4.37], we have

Rit 2(14+e)WiM (QR;7)
RZ'S)

199 (Rit) < (

Thus by letting ¢ — oo, we have

" 2(14-€)Unoo (@)
Lo < (%) Lo (5).

Since € is arbitrary, we have the assertion. Next we assume that u., is a constant function
on By(p). We put § = sup{f € [0, R]; uo is a constant function on Bg(p)}. If § > ¢, then,
since I, (t) = I,__(s), the assertion is clear. We assume § < t. We take § < § < ¢. Then,

by an argument above, we have

I.(t) < (i)wm(a) 1, (8).

By s <3, I, (s) = I,_(5) and letting § — §, we have the assertion. O
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COROLLARY 5.18. Let s, R be positive numbers with 0 < s < R and us, a harmonic

function on Bzgr(p). Assume that U, (s) = 0. Then u is a constant function on Br(p).

PROOF. First, we assume that I, _(s) = 0. Then, by Proposition 5.17, we have
I

Uoco

(t) = 0 for every s < t < R. Therefore, by Proposition 5.12, we have the assertion.
Next, we assume that I,__(s) > 0 and U,__(s) = 0. Then, we put e, = Uso — Uso(p). We

remark that 4., =0 on B,(p). Since I _(s) = 0, we have the assertion. O

PROPOSITION 5.19. Let R be a positive number and uy, a harmonic function on Brg(p)

with us(p) = 0. Assume that uy is not a constant function on Br(p). Then, we have
Uu(5) >1
for every 0 < s < R.

PrOOF. By Theorem 5.9, there exists a sequence of harmonic functions u; on Bgyy (m)
such that sup, Lipu; < oo and (u;)r, — U on Bgg(p). Moreover, we can assume that
(u;)g;(m) = 0. We remark that by Proposition 5.18, U,__(r) > 0 for every 0 < r < R. We
fix a sufficiently small ¢ > 0. We shall apply [19, Corollary 4.40] and use same notation
as in there. We take Qp = Qp(n,€) > 2 as in [19, Corollay 4.40] (or [19, Corollary 3.29]).
We put Qg = 5Qz, r = 5/2(2Q;)% < s and

_ D, (2(2Q1)%r) 1 D, (s)

Dy (r) Dy (r)

We take R = R(m,v,e,Q) as in [19, Corollary 4.40]. Then there exists io such that
R;r > R and

+ 1.

—2
R;

D9 (2(20,)2Rir) Doy (2(2921)%r) g
IM (2 = R2 =7
D (R D

for every i > ig. Then by [19, Corollary 4.40], we have
R %gum
1—3e <UM(2QLRir) = U(u;)lfi“@QLr).
By letting i — oo, Proposition 5.6 and Proposition 5.14, we have 1 — 3e < U,_ (2Q,7) <
U

Uoco

U

(s). Since € is arbitrary, we have the assertion.

PROPOSITION 5.20. Let r,s, R,6,dy be positive numbers with 0 < r < s < R and us
a harmonic function on Brr(p). We assume that U, _(s) < do, us 1S not a constant

function on Bgr(p) and

pox ety <

Then, we have

/ r," |7 (drp, dites) — U, (rp)uoo|2 dH™ <V (8;n,do) 1, ()
Ap(r,s)
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PrOOF. By Theorem 5.9, there exists a sequence of harmonic functions u; on Bgyy (m)
such that sup, Lipu; < oo and (u;)r, — e 0n Bgr(p). We shall apply [19, Proposition
4.50]. We put Qo = 2s/r, Q = s/r and
D, (2Qr)

Dy (r)
Then, by Proposition 5.6, there exists ¢y such that

v = + 1.
—2
D, ™ (20r)
D5;29M (T)

-2
‘max U ™ (1) < 2do

<7

)

and B
U&-)ﬁ.”” (G2r)
log # <4
U(UZ)RI- (7)
for every i > ig. Thus, by [19, Proposition 4.50], we have,

2
/ R (br)" (W% — Ug™ <bgM)|ngb9M|) dvol™ < W(5;n, do) 19 (R;s)
rR;<bIM <sR;

for every sufficiently large 7. On the other hand, by Cheng-Yau’s gradient estimate, we

have
-2 —2 V -2 -2 -2
(204) |vRi gm pR; 9M| _ (n — Q)V(]\jl Bl(o )|bRi gM|n—1|vRi gm R gM(m7.)|
\%Y; R72 n— R72 _ —2
20 < e 2 T ) )
2 2 2
(206) S C(n)(rﬁl gM)_l(Tr,}Zi 9M)n—1(7a§li 9M)2—n

(207) < C(n).

—2
on Al oM (r,s) for every sufficiently large ¢. Thus by Corollary 4.37 and Theorem 5.1,

we have (bR 9v @R ") — (r, dr,) on A,(r,s). We also have

EON . WW)”(beWRﬁgM) (970 ),
r<bfli TIM <

(209) — U(Zi)lgiM(bRi_QgM)|VRi_29MbRi_29M |2> 2dV01Ri_29M

@0 = @ (w% - Ugy(bgM)|ngb9M|)2 dvolo
(1)  <C(n) / e <b9M% - Ug;w(b9M>|ngbgM|>2 dvolo
21 < W )2 (i) = Wi )
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for every sufficiently large i. Therefore, by letting ¢ — oo, Proposition 4.5 and Proposition

5.6, we have the assertion. O
The following corollary follows from Proposition 5.20 directly.

COROLLARY 5.21. Let r,s, R be positive numbers with r < s < R and us be a har-
monic function on Brg(p) with us(p) = 0. We assume that U, (r) = U, (s). Then we
have

(W) {dttog, drp) (W) = Uiy, (8) oo (W)

for a.e w € Apy(r,s).

PROPOSITION 5.22. With same assumption as in Corollary 5.21, we have

for everyr <t <t<sandwx € X. Here C =U,_(r).

PROOF. We define a Borel function a on A,(r,s) by

a(t,x) = lim sup oot + 1y ) = oo, x)
h—0 h
By Theorem 3.33 and Corollary 5.21, there exists a Borel set A C A,(r,s) such that
H™(Ay(r,s) \ A) = 0 and that (dry, duw)(2) = a(2) = Cux(2)/rp(2) for every z € A.
On the other hand, for 0 < s < 1y < 59 < s, we put a bi-Lipschitz map ¢(t,z) = (¢, x)
from A,(ro, so) to [ro, so] X X. Then we have H"([ro, so] X X \ ¢(A)) = 0. Therefore by
Fubini’s theorem, there exists a Borel set X C X such that H" (X \ X) = 0 and that
H([ro, so] x{z}\¢(A)) = 0 for every x € X. Thus we have H' (¢~ ([ro, so)| x {z}\¢(A))) =
0 for z € X. For every r € X , by Rademacher’s theorem for Lipschitz functions on R,

S0
(213) Uso (S0, T) — Uso(T0, T) :/ a(t,z)dt
To
(214) :/ a(t,x)dt
rp(¢~ H([ro,s0]x {z}Ne(A)))
Cuo(t,
(215) :/ Cuo(t, ) )
ro(@ Mool x fansa))

(216) - / Mdt.
To

For every x € X, by taking a sequence x; € X satisfying z; — x and dominated conver-
gence theorem, we have

%0 Coo (t, )
t

Uoo (S0, T) — Uso (0, T) = / dt.

T0
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Thus, for every € X, the map f,(t) = uo(f, z) on [r, s] is C'-function, we have
dfs 7 Cfalt)
A
Therefore, we have the assertion. O

PROPOSITION 5.23. Let r,s,0, R,dy be positive numbers with 0 < r < s < R, and

Usos Voo harmonic functions on Brr(p). We assume that max,<i<s U, (t) < dy, v 1S n0t
a constant function on Br(p) and

jos =03

Then, we have

so ] N
5(1)”/ Uso VooV — €Xp (2/ v°‘+(s)d§) ré”/ U VooV
8Bs, (p) 0 N dBry (p)

&\ 6lo+3
< U(d;n,dp) <—0> L (50) oy (S0).

To

2

for every r < rg < so9 < s.

ProoOF. By Theorem 5.9, there exists a sequence of harmonic functions w;, v; on
Biig,(m) such that sup,;(Lipu; + Lipv;) < 00, (4i)r, — Use, (Vi)r, — Voo ON Bgr(p).
By the proof of Proposition 5.20 (or [19, Proposition 4.50]), there exists io such that

2
/R <bIM <sR ()™ (bgM% B UgiM<bgM)|ngbgM|> dvol?™ < W(0;n, do)IJM (R;s)
rR;<bIM <sR;

for every i > iy. Thus, by [19, Corollary 5.24], we have

Riso)' ™" dvolIM 2 o UgiM(é)dA Rirg)t™" dvolé™
(R;s0) w;v;dvold™, — exp —=ds | (R;ro) w;v;dvol?M,
bIM=R;so roR; § bIM =R;rg

6do+3
< U(5;n, do) (5—0) 19 (Rys0) 19 (Riso)

To

2

for i > ig. By rescaling R; gy, we have

_ R
Sé n/ 9 (ui)Ri(’Ui)RidVOlnl—lgM
bRi g]\/I:SO

UR._2 . 2
50 (UZ)RgM (S) 1 szg]u
—exp | 2 ———ds | rg " | (uw;) g, (vi) g, dvol,*
2

r S i T9M—

0 =Tro

So 6do+3 Rf2g R_*2g
< W(d;n,dy) (—) I MM (so) 00 M (s0).

o (ui) Ry (vi) R,
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On the other hand, by Proposition 5.6, we have

R72
/ o (us) r, (vi) g, dvol, ™
bRi IM =s0

1 -2 2
<5 [ (G Favot o = 3 (vl
bt IM =s0 b IM =s0

1 R2
2 i 9M
5 | (vi)g,dvol, "
bRi IM =s0

imoo 1 B 1 _ 1 _
= —/ (Uoo + Voo ) 2dH™ 1——/ u? dH" 1——/ v2 dH" !
2 JoB.,(p) 2 JoB., () 2 JoB., ()

= / Uno Voo dH™ L.
9Bs (p)

Therefore we have the assertion. OJ
The following corollary follows from Proposition 5.23 directly:

COROLLARY 5.24. Let r,s, R be positive numbers with 0 < r < s < R and s, Voo
harmonic functions on Brr(p). We assume that U, (r) = U,

Voo

(s) and vy is not a constant
function on Bgr(p). Then, we have

2C
— _ S0 _ _
3(1) ”/ Uoo Voo dH 4 = (—) ré ”/ Uoo Voo dH™ 1
8Bs, (p) To 9Br (p)

for everyr <ro < sg<s. Here C =U,_(r).
Next proposition follows from Proposition 5.19 directly:

PROPOSITION 5.25. For every non-constant harmonic function u., on C(X) with
Uso(p) = 0, we have
ordotie > 1.

PROPOSITION 5.26. With same assumption as in Lemma 5.6, for every 0 <r < s < R,
we have

s o s
lim F(i:;)le(t)dtz / F,_(t)dt.
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PROOF. Since (b 9v dbfi 9m) — (r, dr,) on A,(r,s), by Corollary 4.37, we have

s

i om (t)dt

(ui)R;

s R72 R2 2
_ [ R %) | 980 (), 0 ) R | ) v gy
R72 T 2 2
r bt IM=¢

VE: “ampR; 9M|
—2
:/ bR._29M< (R_QQM) <VRZ . <ui>Ri7
r i <s

. —2
:/<bR29M< (R gM)(VR gM(ul) VR gMbR gM) (sz QQM)SindVOlRi gur

—

VR;29]\J bR;2gM

2
|VRZ~_29M bRi_2gM |2(bRi_29M)3—ndVO1R;29M
AR

]

PROPOSITION 5.27. For every 0 < r < s < R and harmonic function us on Bg(p),
we have 9k, (1)

r

PROOF. We can assume that the assumption of Proposition 5.6 holds. By (4.3) in
[19], we have

R %gm R %gm
Etiyn, ()_E< or, ()

52Fu1 9]\/[() 52Eul g ( s - B
—/ Ldt—i—/ Ldt—/ tln/2 OV A9 (1) . [Pdvol®s oM it
r Ry “om <y

t
A
bM<t

= 2(Rgnr) (V9 (), V9 (), )

HessRz ,‘(IZM (VRi_QgM ()R, v Cou (ui)Ri>

R; 9M )2

dvol®i "M gy

By Corollary 4.37 and Theorem 5.1, we have

lim (d(uus) , [2vol 0w — / (duc |2

=00 Jplti Tam <y Bi(p)

By dominated convergence theorem, we have
s L L s
lim [ ¢'7" / L 2V (u) p [Pdvol T dt = / tHn / 2|duso|*d Hdt
bR TIM < r By (p)

S2F, (t
[y
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On the other hand, we recall

1

— ()7 pu—
1%520 vol? ({b9m < R}) /b9M<R [Hessanye = 2gar|dvol .

Thus we have

lim [
100 JpRi Tam <y

Therefore we have the assertion. O

We shall give a short review of important works by Ding in [23] and [24]. By Corollary
3.58, X is H" l-rectifiable. By [24, Lemma 4.3], (X, H"!) satisfies weak Poincaré in-
equality of type (1, 2) locally. Thus, by section 4 in [5] (or section 6 in [9]) and Proposition
7.25, we can define the cotangent bundle T*X of X. We denote the differential section
of a Lipschitz function f on X by dxf : X — T*X. By [9, Theorem 6.25], there exists a
unique self-adjoint operator Ax on L?(X) such that

/<de7ng>dH:/ fAngHn
X X

for every f € Hy2(X) and g € Domain(A). For every i, we take a i-th eigenfunction ¢;
on X and the i-th eigenvalue A\; > 0, i.e. Axp; = Ny (0=Xg < Ay < A < -++). We
define the nonnegative number «; by satisfying \; = «a;(a; +n — 2). According to [23],
the function v;(r,z) = r*¢;(z) on C(X) is a harmonic function on C(X). Actually, by
(24, Theorem 4.15], for every Lipschitz function f € K(C(X) \ {p}), we have

(217) /C( (df, dv;)dH" = / /BBT (— o — Dr*i 2 fg,

—1 1
n Oéﬂ"ai_l + —2<de, dx¢l>> dHn_ldT
r

(219) - /aBr (— & — )r2fg,

(220) — (n — Dayr® 2 fg; + )\ir“iQfgbi) dH™ tdr

(218) -

(221) = 0.

Thus, v; is a harmonic function on C(X) \ {p}. Moreover, by [24, Corollary 4.25], v; is
a harmonic function on C(X). By Theorem 5.9, v; is locally Lipschitz. Especially, ¢; is
Lipschitz. Therefore, we have Ay > n — 1 (see [23, Corollary 2.4] and [23, Corollary 2.5]).
On the other hand, it is easy to check

Uy, (s) = oy
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for every s > 0. We say that the function v; is a homogeneous harmonic function with
growth «;. We shall prove that we can apply [24, Theorem 4.15] for every d > 0 and
Uso € HY (M) below. As a corollary, we will give the classification of harmonic functions
with polynomial growth on asymptotic cones (see Theorem 5.34).

We put

ordaotiee = lim U,__(r), ordote, = lin(1) U, (1)

for every harmonic function u., on C(X). By an argument similar to the proof of [19,

Lemma 1.36], we can prove the following proposition:

PROPOSITION 5.28. For harmonic functions s, vs on C(X), we have
Ord oo (Uso + Voo) < Max{ordeglos, OrdoUso }-

DEFINITION 5.29. For harmonic functions .., v, on C(X), we say that u. and vy

/ UooUsodU = 0.
0B1(p)

PROPOSITION 5.30. Let uy be a harmonic function on C(X). We assume that

ordy U, = d < 00 and that v and us are orthogonal for every homogeneous harmonic

are orthogonal if

function v with growth « satisfying o < d. Then, we have
s\ 2d
Dun(9) 2 (2) Dulr)
r

for every 0 <r < s < 0.

PRrROOF. For every i, we take the i-th eigenvalue \; of Ax, a i-th eigenfunction ¢; of
A, the nonnegative number «; satisfying A; = a;(c;+n—2) and a homogeneous harmonic

function v;(t,z) = r*¢;(x) with growth ;. By Corollary 5.24 anf the assumption, we

/ Vil dH" 1 =0
0B¢(p)

for every t > 0 and a; < d. We put A = d(d+n —2). We remark that «; < d holds if and
only if \; < A holds. We put iq = max{i € N|a; < d}. Thus, we have \;, < XA < A 41.
We also remark

dxul?dH" 1
Aiyj4+1 = inf { S ldxu]

have

R

u € Hio(X), us0, / uqudH”_1 =0 forevery 1 <j < id}.
X

Since the k-th eigenvalue A}, of Ayp, () is equal to t=2)\;, we have

faBt@) |doB, (p) oo |*dH"
Jop, () (Uoo)?dH™ !
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Here dyp, ) f is differential section: dyp, ) f : 0Bi(p) — T*0B,(p) of a Lipschitz function
f on OBy(p). On the other hand, by Theorem 3.22 and Proposition 7.22, for a.e. ¢t > 0,
we have |due|*(w) = ({dry, dus)(w))? + |dop, (pytico|*(w) for a.e. w € dB,(p). Therefore,

we have \
/ (|duse|® = (drp, duce)®)dH" ™! > = ul dH™!
0Bt (p) t 0B:(p)
1.e.

3 /BB( ) |duso|?’dH™ " — F,_(t) > M, (t)
t(D

for a.e. t > 0. We shall use the notation: [’ = df/dt for locally Lipschitz functions f
on R below. By Proposition 5.27, D, is locally Lipschitz function on (0,00). By the
definition of D

R, we have

Proposition 7.22 and Rademacher’s theorem for Lipschitz functions on

Uoo )

D, (0)=@-me [

(Lipuoo )?dH™ + t2_”/ (Lipuoo ) 2dH™ !
Bi(p)

0B:(p)

for a.e. t > 0. Therefore, we have

tD, (t) = (2—n)D.(t) - F,

Uoco

(t) > AL (1)

for a.e. £ > 0. On the other hand, by Proposition 5.27, we have D, _(t) = 2F,_(t)/t for

every t > 0. Therefore, we have

% D, (t) = (2= n)Dy(t) > AL,_(%)

for a.e. t > 0. Thus we have

D, (t) 2(2—n) S 201, (1) S 2\
D,_(t) t T tD,_(t) T dt
for a.e. t > 0. Therefore, we have
D, (t) _1/[/2X
222 —Mee LS [ -4 2(2—
& oo > 1 (7 2 )
12X\ +4d — 2nd
223 S
(223) ; y
12d(d —2)+4d — 2nd
(224) _12d(d+n—2)+ n
t d
2d
(225) — =
t
for a.e t > 0. By integrating the inequality above, we have the assertion. O
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PROPOSITION 5.31. Let g be a Lipschitz function on X and f a C?-function on Rxq.
We assume that f(1) = 1, lim,_ f(r) = 0, g # 0 and that function u(r,x) = f(r)g(x)
on C(X)\ {p} is locally Lipschitz and harmonic. Then, there exists A > n — 1 such
that Axg = Ag and that f(r) = rP. Here p is the nonnegative number satisfying A =
p(p+n—2).

PROOF. For every 7, we take the i-th eigenvalue A\; of Ax and a i-th eigenfunction ¢;
of Ax. We put g = > 7 a;¢h in Hyo(X). For every function h on X, we shall define
a function A" on 0B, (p) by h'(r,x) = h(z). It is easy to check that ¢" = > .7 a;¢! in
H,5(0B,(p)). We remark that Agp, (@) = A¢l and Al = r~2);. By [24, Theorem 4.15]
and Corollary 4.37, for every Lipschitz function ¢ € K(C(X) \ {p}), we have

0= / (du, d¢)dH"

/ /83r ( ( dr"’( rlge) - n;lj{n( )9@))+<daBr<p)¢,daBr<p>gr>f(T)) dH" " 'dr

[e.9]

/ /@B ( a1 - n;1%<f>9<w>+f<r>2am:¢f> AH"dr.

=1

Especially, for every Lipschitz function a € K(Rso) and Lipschitz function b on X, we

have

> & f _n-Ldf v\ et

i=1

Since
oo

S22 / (1) dH" = / (dos, g A" < oo,
0By (p) 0B (p)

i=1
the function

g -2 L )0+ £0) Y e

r

on OB, (p) isin L*(0B,(p)). Since the space which consist of Lipschitz functions on 9 B,.(p)
is dence in L*(0B,(p)), we have

> & f n—1df S
0= [ et [ |-Gt =" 5<r>g<x>+f<r>2am

dH" dr

> d?f n—1 df
_ _eJ N H"—ld .
/0 ar) /aBr(p) dr? (rgle) - r dr Z Pl '
On the other hand, it is easy to check that the function ( of r)
2f no1df :
——5(r)g(z Nidi(x)| dH™
/8&(1,) dr? (r)g(w) - r dr Z
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is continuous. Therefore for every r > 0, there exists A(r) C X such that A" (X \
A(r)) =0 and

d? —1d —
) = 0 + T Y ) =0
for every x € A(r). We put
2 df

A= 25 W)+ (=15 (1),

Then, for every Lipschitz function ¢ on X, we have

/ NgpdH™ ! = / ¢ aidigidH"" = / (dx,dxg)dH" "
X X 4 X

Thus, ¢ is a A-eigenfunction. Therefore, by [23, Corollary 2.5], we have A > n — 1. For
every r > 0, we have

a2 f s m—1df o f(r) Z” _
__J Hn r - 2 Hn 1 JN T ) A Hn 1
0 dr? (r) /x g r dr (r) /X g * r? /Xg — ahigi(e)d
d2f 2 n—1 n—1 df 2 n—1 f(’l“) 2 n—1
=-—3 (r)/Xg dH" ™ — . g(r)/xg dH" " + =N /X|ng| dH
d*f n—1df

___J 2dHn71_ / 2dHn71 f(?"))\/ 2dHn71.
0 [ g =50 [ gar+ D00 [

Thus, we have

Ef . n—1df . f(r)
Therefore, we have the assertion. O

Next corollary follows from Proposition 5.26 and Proposition 5.31 directly:

COROLLARY 5.32. Let uy be a nonconstant harmonic function on C(X) with us(p) =
0. We assume that ordpts = 0rdetie, = d < 00. Then, the function g(x) = ux(1,z) on

X is a d(d + n — 2)-eigenfunction of Ax. Moreover, we have uy(r,z) = rig(z).

COROLLARY 5.33. Let us, be a nonconstant harmonic function on C(X). We assume
that us(p) = 0, ordeou = d < 00 and that v and us, are orthogonal for every homogeneous
harmonic function v with growth « satisfying o < d. Then, the function g(x) = ux(1, )

on X is a d(d +n — 2)-eigenfunction of Ax. Moreover we have us(r,z) = rig(z).

PROOF. We fix 0 < r < s < oo. By Proposition 5.14 we have D,_(s)/D,_(r) <
I, (s)/1..(r). By Proposition 5.17, we have




On the other hand, by the assumption and Proposition 5.30, we have

D, (s) - (s>2d.

D,_(r) = \r

Therefore, we have U,_(s) = U,

Uoco

(r). By Corollary 5.32, we have the assertion. O

For every i, we denote the i-th eigenvalue of Ax by A\;(X), (0 = M(X) < M (X) <
A(X) < --+). For A > 0, we put E\(X) = span{¢;; Axd; = Mi(X)di, A\i < A}. Then,
by an argument similar to the proof of [19, Theorem 1.67], we have the following main

theorem in this subsection.

THEOREM 5.34 (Harmonic functions with polynomial growth on asymptotic cones).
For every d > 0, we have

dimHY(C(X)) = dimEyg4n—2)(X).

Especially, we have dimH(C(X)) < oo.

5.2 Gromov-Hausdorff topology on moduli space of asymptotic

cones.

In this subsection, we will study the moduli space of asymptotic cones of a fixed nonneg-
atively Ricci curved manifold M with Euclidean volume growth. In general, asymptotic
cones of M are not unique. See [7] and [73] for such examples. Therefore, we shall con-
sider the moduli space of them: M, = {X: compact geodesic space ; (C(X),p) is an
asymptotic cone of M }. We define a topology on My, by Gromov-Hausdorff distance
dgr. On the other hand, if we put My = {(Ma,mo) : an asymptotic cone of M}
and define a topology on Mo by pointed Gromov-Hausdorff topology, then the canonical
map 7(X) = (C(X),p) from My, to My, give a homeomorphism. We remark that if a

%

') of M converges to some proper geodesic space

sequence of asymptotic cones (M;o, m
(ML, m2), then (M, mZ) is also an asymptotic cone of M. Therefore, by Proposition
2.9, My is compact, especially, M, is compact. The main result in this subsection is the
following theorem. We can regard it as “M-version” of [30, (0.4) Theorem| by Fukaya

or [9, Theorem 7.9] by Cheeger-Colding.

THEOREM 5.35. If X; converges to Xo in My, then (X;, H"™) converges to (X, H"™1).
Moreover, we have

1—00

foe every k > 1. Here, \p(X) is the k-th eigenvalue of the Laplacian Ax on X € M.
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PRrROOF. Let x; be a point in X; and z., a point in X, satisfying that x; — z.. We
take 7 > 0 and € > 0. We put Al(z;) = {(t,z) € C(X;);z € B.(z;),l —e <t <1+e.}.
By Proposition 4.13, we have

lim H"(Al(z;)) = H"(AL(z0))-

By Proposition 7.22, we have

1+e
H™ (AL (1)) = H" " (0By(pi) N Af(x))dt = C(n)eH" (B} ()
1—e
for every 1 < i < oo. Here, p; is the pole of C(X;). Thus, we have (X;, H"™') —
(Xoo, H*™1).  We shall give a proof of second assertion by induction for k. We fix
a subsequence {n(i)}; of N. We take a Lipschitz function on X, satisfying f{'” €
E)\l(X )(Xn(i)) and

n(i)

1 / n(i)\2 -1
Trn—1/v __\ (f ) dH"" =1.
Hn 1(Xn(7,)) Xn(i) !

By the definition, we have

1 / n(i))2 -1
|dfy™ 7dH™ ™ = M (Xnw))-
H Y (X)) Xn(i) ' ©

We define a harmonic function ul ) on C (Xn@)) by ul ('r T) = roi"” f1 ( ). Here a?(i)

is the positive number satisfying A; (X)) = o/f(z)( "@ 4 —2). Since M (X)) = n—1,
we have ozl(z) > 1. Then, by Proposition 3.22, we have

/ (Llpun(l V2dH"
B7(Pns))

/ / ( ) <fn(7' dHn 1d7"+/ / 2041() 2|d fl | dH™™ 1dT
OBr(Pn(i )) OBy (pn(s))

:/0 (al())2r2a?(l) _9 rne 1Hn 1( nz)dr‘i‘\/o ()+n 1— 2)\( nz))Hn 1(X (Z))d’f’

") o (i IO
sy (P | T )|
207" 4+ —2 207" 4 —2

By Li-Schoen’s gradient estimate (Theorem 5.44) and Theorem 5.9, we have

C(n)
Hn(B7 (pn(i)))

On the other hand, by Claim 5.42, we have

Lip(U?(i”Bz(pn(i))) < /B( )(Lipu?(i))2dHn.
7\Pn (i)

A(Xo) < Cln) <H+(X)) =
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for every j. Thus, we have

Llp( |B2(pn(z) ) < C(n VM)

By Proposition 2.11, there exist a subsequence of {m()}; of {n(7)};, a Lipschitz harmonic

function u$® on Bs(ps) , & Lipschitz function f° on X, and a nonnegative real number

m(i) (4)

af® such that u]"" — u$® on Bs(ps), flm(i) — f2° on X, and that of""” — a$°. Thus,

we have u$°(r, x) = r°T f2°(x) on Ba(pso),

t [ Oy = [ (g
i—00 Xomi) -

On the other hand, by Proposition 5.6 and Theorem 5.9, we have

1 1 1
lim ng_n/ |daBt(pm(i))uT(l)|2dH"_1dt = lim (/ tD m (t)dt —/ F o (t)dt)
o0 1—e an(pm(l)) o0 1—e ul 1—e ul
1 1
:/ tDufo (t)dt —/ Fuafo (Zf)dt
1—e¢ 1—e¢

1
= / tSn/ |daBt(poo)u(fo‘2danldt
1—e OBt(poo)

for every 0 < e < 1. Since |daBt(pm(i>)UT(i)| — 207" “2|dx (m( T(i)|2, we have

1 1
m(z n— —n2a™ D _9 m’L n—
/ t3_n/ | doB, (i) U1 ()‘ZdH 1dt:/ e R 1/ |dx, )t @ dH"dt
1—e 8Bt(pm(1)) 1—e¢ X,

m (%)

1
_/ g2or )\1(Xm(z VH" (X )dt
1—e€

1—(1—¢)?n +1 n—
— A (X)) H™ (X (a))-

207" 1
Similarly, we have
' 3—n n—1 ( )204‘1)0—4-1 002 n—1
t |doB, (poo) UT PdH™ 'dt = 207 11 |df e |*dH™ .
1—e OB¢t(poo) + 0o

Therefore, we have
T / AP PAH = lim M (X)) = i / R

m(i)

Therefore, since {n(i)}; is arbitrary, we have

1—00
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On the other hand, by [9, Theorem 7.1], we have

lim sup Ay (X;) < A1 (Xoo).

1—00
Therefore we have

1—00

[ is A\ (X )-eigenfunction.

Next, we fix an integer k£ > 2. We assume that

lim \;(X;) = \j(Xx)

1—00

for every 1 < j < k — 1 and that for every subsequence {n(i)}; of N, there exist
a subsequence {m(i)}; of {n(i)}:, A, ( m(l ))-eigenfunction fmi on X, and \;(Xs)-
eigenfunction f° on X, such that fj — f7° on Xo, Lip(f; Fm | Bo (o) < €05, Vi)
for every 1 < j < k — 1 and that
1 L
m(7) W(Z)dHn 1_
Hnl(Xm(z))\/X l f] jl

m(i)

for every 1 < j <1 < k—1. Especially, {5°}1<j<r—1 are linearly independent in L*(Xo).
We fix a subsequence {n(i)}; of N and take a subsequece {m(i)}; of {n(7)}; as above. We
also take a A\ (X,n(;))-eigenfunction f," @ Such that

1 / m(i)y2 —1
—_— f dH" " =1.
i) Je e

m(7)

We define a harmonic function uzl(i) on C(Xpna)) by u?(i) (ryx) = r® (Z)fk () (). Here

ap'? is the positive number satisfying a"” (" +n — 2) = \p(Xpn(s))-

By Proposition 2.11 and an argument similar to one of the case k = 1, we can assume
that there exist a locally Lipschitz harmonic function u° on C'(X,), a Lipschitz function
¥ on X and a nonnegative number a}° such that Lip(u;n(i)hg2 i) < Clnyk, Vi),
Llpfm(Z < C(n,k, V), u?(i) — u3® on O(Xw), f,T( — [ on X and o/,;n(l) — ae.
Thus, we have u3°(r,z) = r® f°(z). By an argument similar to one of the case k = 1,
we have

lim \df ) PdH ! = / \df e PdH™ "

i—00 X “

On the other hand, by Proposition 4.13,

hm f;n(l)flm(l) danl — / fjgo floodanl )
i—00 Xom(i) Xeo
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for every 1 < j < 1 < k. Thus, we have f* € (span{f®,., f°,})* and f° # 0.

Therefore, by min-max principle, we have

_ Je i

W) = T

Since {n(7)}; is arbitrary, we have

1—00

On the other hand, by [9, Theorem 7.1], we have

lim sup Ay (X;) < Ap(Xoo)-

1—00
Therefore, we have

lim A\r(X;) = M\ (Xoo),

i—00

I is a A (X )-eigenfunction. Thus, by induction, we have the assertion. O]

REMARK 5.36. By the proof of Theorem 5.35, with same assumption as in Theorem
5.35, if a sequence of A\, (X;)-eigenfunction f; on X; converges to some Lipschitz function

2 on Xo, then fo° is also a Ap(X)-eigenfunction.

5.3 Asymptotic behavior of spaces of harmonic functions on

asymptotic cones

In this subsection, we shall give a Weyl type asymptotic formula for harmonic functions
on asymptotic cones of a fixed nonnegatively Ricci curved manifold M with Euclidean
volume growth, as in [22] by Colding-Minicozzi. See [22, Theorem 0.26], [22, Proposition
6.1] and Corollary 5.47. On asymptotic cones of such manifolds, we can give a Weyl type

two-sided bound asymptotic formula. See Theorem 5.43.

PROPOSITION 5.37. For every n-dimensional complete Riemannian manifold M with
Ricy > 0 and Vi > 0, (Mao,moo) € My and d > 0, we have dimH%(M,,) < C(n)d*".
Moreover, for every V> 0, there exists d(V,n) > 1 such that for every n-dimensional
complete Riemannian manifold M with Ricyy > 0 and Vyy > V, d > d(V,n) and
(Moo, moo) € My, we have

dimHY(My.) < C(n)Vyrd™ ™

ProoF. This follows from proofs of [22, Proposition 3.1|, [22, Proposition 6.1] and

Theorem 5.34. We shall introduce important ideas used in proofs of their propositions

108



and give an outline of a proof of our assertion only. We fix V' > 0, an n-dimensional
complete Riemannian manifold M with Ricy; > 0 and Vy; > V and (My,ms) € M M-
There exists a compact geodesic space X such that (M, me) = (C(X),p). We take
dy = di(n) > 1 satisfying that d(d +n — 2) < 2d? for every d > d;. We take an i-th
eigenfunction u; of Ay and the i-th eigenvalue \;(X) of Ax satisfying

/ uindHn_l = 51]
X

We put Ny = max{l € N; \(X) < d(d+n —2)}. Then, we have
/|du,| dH™ ' = \(X) < d(d+n —2)

for every 1 < ¢ < N, On the other hand, by the proof of [22, Proposition 6.1] (and
Proposition 7.25), there exists dy = ds(n, Vi) > dp such that for every d > dy and

{z;}1<i<; which is a maximal 1/d-separated subset of X, we have
[ < C(n)Vyd™ .

We fix C' > 1 and d > dy. (We will decide C' depending only on n later.) Let {z;}1<j<; be
a maximal 1/(Cd)-separated subset of X. We put V = span{u;; 1 <i < N,}. We define
a linear map M from V to R! by

M(v) = (/ vdH"_l,...,/ vdH”_l> :
By cq(z1) By cq(zr)

We put K = KerM. Let wi,..,w, be an L?*(X)-orthonormal basis of K. We take
Wii1,. , Wy, € V satisfying that {w;}1<;<n, are an L?*(X)-orthonormal basis of V. By

Poincaré inequality on X (see [24, Lemma 4.3]), we have

/ 2dHn 1 O(”) / |dwj‘2danl
Bycalwq) <Cd) Byca(zi)

for every 1 < j < k and 1 < i <[. Therefore, we have

l

1< / w
; Byca(z:)
for 1 < 7 < k. Thus we have

C(n) < N L Cln ) 2y o C0)
k< dw;|°dH" < d 2d 2d°N,; < Ny.

We put C' = /2C(n) for C(n) as above. Then we have k < N,/2. Since N; = k +
dim(Image M), we have N; < 21 < C(n)Vy;d"'. On the other hand, by Theorem 5.34,
we have dimH%(M,,) < N4. Therefore, we have the assertion. O

W QdHn—l

il

2 1 om-1 - C(n)
dw;|"dH S(Cd)2

BQ/Cd(wz
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PROPOSITION 5.38. For every V > 0, there exists d(V,n) > 1 such that
dimH*(M.,) > C(n)Vard™™!

holds for every n-dimensional complete Riemannian manifold M with Ricy; > 0 and
Vie >V, d>d(V,n) and (M, mes) € My,

Proor. We fix V > 0, an n-dimensional complete Riemannian manifold M with
Ricys > 0 and Vi >V, and X € Mj,. First, we remark the following. This follows from
Proposition 7.25, directly.

CLAIM 5.39. Let € be a positive number, k a positive integer and {x; }1<i<x points in X.
We assume that {x;}1<i<x are an e-separated subset of X. Then we have k < C(n)/e" .

We shall give an upper bound of the first eigenvalue for Dirichlet problem on each
balls:

CLAIM 5.40. We have
fBr(;c) |dxk[*dH" C(n)

inf

keK(Bp () k0 [ B.(2) k2dHn—1 r2

for everyx € X and 0 <r <.

The proof is as follows. We define a Lipschitz function k on X by k(w) = max{r/2 —
T, w,0}. By the definition, we have k € K(B,(z)),

/ |dxk[2dH™" = H"(B; (x))
B, (z)

and
2 2
/ k*dH™ ' > / k*dH™ ' > / —dH""' > —H""'(B:(x)).
B.(2) By (@) By () 10 16
By Proposition 7.25, we have
Ji, ) [ORPAH" 16 B\ (B,(x) _ C(n)
fBT(ac) k2dHn=t = r2 HY(Br(z)) = r? =
Thus, we have Claim 5.40.
CLAIM 5.41. We have
Hn—l Br
lim sup ﬂ < C(n)
r—0 T

for every x € X.
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The proof is as follows. For every sufficiently small » > 0, we put A = {(s,w) €
C(X);1—r<s<1+rwe B.(x)}. By Proposition 7.22, we have

1+r

(226) H"(Bs,(1,7)) = H" Y(0By(p) N Bs,(1,))dt
(227) > / T 0B, 1 At
(228) > C(n)yrH""(B,(z)).

Therefore, by Bishop-Gromov volume comparison theorem on limit spaces, we have Claim
5.41.

CLAIM 5.42. We have

7x) <00 (i)

for every d > 1.

The proof is as follows. We fix 0 < C' < 1. (We will decide C' depending only on n

later.) We put
H1(X)\ 7
—o 22
(")
and take maximum e-separated subset {z;}1<;<x of X. By Claim 5.39, we have k <

C(n)/e" ' < C(n)d"/(C"'H"(X)). On the other hand, we have

> H"(Bae(ay)) > H'(X).

i=1
By Claim 5.41 and Proposition 7.25, we have H" }(Bs(z;)) < C(n)e"!. Thus, we have

H"HX) < Z H" Y Bae(x;)) < kC(n)e™ 2.

Therefore, we have

Ci(n)H" Y (X) Ci(n) H" 1(X)d S Ci(n)

k> = )
- En—l C’n—l Hn—l(X) - Cn—l

Here C1(n) is a sufficiently small positive constant depending only on n. We define C' by
C = C1(n)"Y= 1, Then, we have k > d. By Claim 5.40, for every 1 < i < k, there exists
¢i € K(Bej10(;)) such that ¢; # 0 and

9 1rrn—1
fBE/lo(xi) do;|*dH 3 o)
fBe/lo(:ci)(@)QdHnﬂ ST
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Since {B/10(;)}; are pairwise disjoint, {¢;}; are linearly independent in L?(X). Then,
for every ai,..,a), € R satisfying S-F_ (a;)? # 0, we have

(229) /X d (i aiqﬁi)

i=1

) <50 [ e

(231) - C@ /X 2

€

2 k
dH"' =) / \d(a;¢)|PdH" !
i=1 /X

k

Z a;Q;

i=1

dH" .

Thus, by min-max principle, we have A\;(X) < C(n)/e?. Therefore, we have

2

M(X) < M(X) < Ce(f) < C(n) (Hn#m) L

Thus, we have Claim 5.42.
The assertion follows from Claim 5.42 and Theorem 5.34. O

The main result in this subsection is the following:

THEOREM 5.43 (Weyl type asymptotic formula on asymptotic cones). For every V >
0, there exists d(n,V') > 1 such that

C(n) " "Wid" ' < dimHY (M) < C(n)Vyd" ™

holds for every n-dimensional complete Riemannian manifold M with Ricyy > 0 and
Vie >V, d>dn,V) and (M, mss) € My

PRrROOF. It follows from Proposition 5.37 and 5.38 directly. O

5.4 A dimension comparison theorem and Liouville type theo-

rem

In this subsection, we shall give a comparison theorem for dimensions between a space
of harmonic functions on a fixed nonnegatively Ricci curved manifold with Euclidean
volume growth, and one on an asymptotic cone of the manifold (Theorem 5.45 below).
Essential tools to prove it are [18, Lemma 3.1] (or [19, Lemma 7.1]) and several properties
of frequency functions on asymptotic cones given in section 5. As a corollary, we will give
a Liouville type theorem on the manifold. See Corollary 5.48. First, we shall introduce
an important mean value inequality for subharmonic functions on nonnegatively Ricci

curved manifolds by Li-Schoen:
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THEOREM 5.44 (Li-Schoen, [61]). Let M be a complete n-dimensional Riemannian
manifold with Ricyy > 0, m a point in M and R a positive number. Then for every

nonnegative subharmonic function f on Bsra(m), we have

C
sup f < & / fdvol.
Br(m)” — VOLBsr(m) Jip,q m)
2
We remark that if Ricy, > 0, then, by Bochner’s formula, for every harmonic function
h on Br(m), we have, |[Vh|? is a subharmonic function. We fix an n-dimensional complete

Riemannian manifold M with Ricy; > 0 and Vi > 0 below.

THEOREM 5.45. For every d > 0, € > 0 and nonnegative integers k < dimH¢(M) — 1
and 0 <1 <k, , there exists (M, Ms) € My such that

| < dimH e () ()

Proor. Without loss of generality, we can assume that £ > 1 and [ > 1. We take
linearly independent harmonic functions uy, us,..., ux € H(M) satisfying u;(m) = 0. We

put
I (wi, uy) :/ (du;, duj)dvol™
bIM <r

for every r > 0. We define u; = 23;11 Nji(r)u; + w;, by satistying J,.(w;,, w;,) = 0 for
1 # j and put

fi(r) :/ |dw; - |*dvol?™.
bIM <r
CLAIM 5.46. We have the following:
1. There exists K > 0 such that f;(r) < K(r?*®2T"+1) for everyi=1,..,k andr > 0.

3. fir) < fi(s) forr <s.

4. fi is a barrier for t”‘QDfUJZ_V{S (t) at every s > 0. Here, for functions g,h on R and
a real number r € R, we say that f is a barrier for g at r if f(r) = g(r) and
f(s) < g(s) for s <r. (see also [18, Definition 4.6]).

By the trivial monotonicity of t""2D9 (t) and an argument similar to the proof of [19,
Proposition 8.6] (or [18, Proposition 4.7]), we have Claim 5.46.

We put A\ = k%m By [18, Lemma 3.1], for every N € Ns,, there exist a subse-
quence {m(N,i)};en of N and a pairwise distinct integers o ,.. ;o € {1,..,k} such that
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fi (NN < g NAZA=24n) £ (N MmN for every j € {al,. ,al} and i € N. By Claim
5.46, we have

. m(N,i)+1\n—2 m(N,i)+1
fj(Nm(N’z)H) > a o ) D%IZNMNJ)H (N o )
fj (Nm(N’i)) N (Nm(N’i»niQDlgUme(N,i)ﬂ (Nm(N’i))
Thus, we have
gM (Nm(N,i)—',-l)
Wi, NmN,)+1 M2d—2+n)+2—n
— < 2N )
Digﬂyl\,m(zv,i)ﬂ (Nm(N’z))
We define a harmonic function w}™ on B](VA/T;(N’O)?ZQM (m) by
(232)
wj-v’i(w) = Wj Nm(N,i)+1

-1
; 1

233 NN : / dw . v i1 |2dvoldM ‘

. ) ( vol? ({bor < Nm(N-}) bgMSNm(N,i)| wi v [Fdvo

We assume that N is sufficiently large below. Then, for z,zs € B](VA/TZ;N’Z.))?QQM (m), by

Li-Schoen’s gradient estimate, we have

(234)

W (1) — w; " (22)]

(235)

< sup ‘ijme(n,i)Jﬁl T1, ToIM
BNm(N,i)%(m

(236)

~1
; 1
NN . o 2dvol
" ( \/VOlgM({bgM < Nm(Va}) A@MSNm(N,z‘) ‘de,N w1 [2dvo )

(237)

1
< C . d 1 m N3 2d ].gM
N W\/ vol# ({bom < Nm(N.)ZN 1) /bgM SNm(N,i)Q wj ymi+ | *dvo

(238)

—1
1 _ m(N,i)\—2
X ; dw; nm(n.i 2dvolIM X T1. L (v )" 2gm
(\/VOIgM({bgM < Nm(N’Z)}) /bgMgNm(NJ) | SN )+1| ) v

(239)
< O(n) NAA=10/2)1=n/ 27 V)20
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By Proposition 2.11 and compactness of M;, without loss of generality, we can as-
sume that there exist Xy € M), and Lipschitz functions wjv > on Byy1o(pn) such that
(M, m, (Nm(N’i))fldM,w;-V’i) - (O(XN)apN,w;-V’OO) (j € {au, -+, au}). On the other
hand,

1
(240) m i)\ — m i))—
vol N D) 2 g B§N (N9) 29M<m)
(Nm(N,i))—2gM N’i 2 I(Nm(N’i))_QgAl
(241) X /;iNm(N’i))_2gM(m) |d w; " |*dvo
1 4
242 = dw; ymeviye |2 (N D)2 dyolom
(242) ‘WWMMWAWWJJ”W”< )

1 -1
- AW vmin it |2dvoldM
T ST gy )

(244) =1+ U(i "n, N).

(243) X <N2m<Nﬂ'>

By Corollary 4.37 and Theorem 5.1, we have

1 / N,00|2
S |dwN > 2dH™ = 1.
H™"(Bi(pn)) JBion)

Similarly, we have
/ (dw;">, dw}"*)dH" = 0
Bi(pn)

for i # j. Therefore, {wjv’oo}j are linearly independent harmonic functions. For conve-
nience, we shall change the notation: {af',..,a"} = {1,..,1}. By Proposition 5.14, we

have

w007 Ty w; 1100 Wi 007 g A d=24n)+2-n

Thus, by Proposition 5.11, we have

100 UwN,oo t
exp/ 21 "t < QNMZ=2Hn)+2n,
r <
1
We take 1 <1 < N/100. Since

foo Uywee(t)
eXp/ 2]Tdt S 2N)\(2d—2+n)+2—n’
l

by Proposition 5.14, we have

2U Nooo (i
( N A) wy' & < 9 NA2d=24n)+2-n
100! N
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ie.

-~ log N log N

20, (1) < o8 ; o8 .
log N —log(100l)  log N — log(1001)

(M2d — 2 +n) + 2 — n).

Therefore, for every [ > 1, there exists Njsuch that U v (a) < AMd—14n/2)+1—n/2+¢€
J
for every N > N;and 1 < a <[. We take 2; € B; (pn). By Li-Schoen’s gradient estimate
10

and Theorem 5.9, we have

1
245 Lipw>°(z1) < C(n —/ Lipw*°)2dHn
20) sl = ¢ )\/ FBon) a7
(246) < Cn, Vi), [I / dw = dHn
B;(pn)
(247) C(n, Var, A, d) / |w}"*|2d H"
9B;(pN)
(248) < C(n, Vag, N, )™ / jw > [2dH?.
Y HH(anpNn oBion)

On the other hand, by Proposition 5.14, we have

(249) I veo(l) = exp / #dt I no(1)
J 1 J

I
A2d — 2 2 — 2
(250) < exp ( / ( i ”);r nt Edt> I nee(1)
1 J
(251) S lA)\(2d72+n)+27n+261wN,oo (1)

J

for N > N,;. By Proposition 5.19, we have
0< I nvo(l) <I Noo(1)U nvoo(1) < D noe(l) = 1.

Thus, we have I, (l) < [M?=2F0+2-n+2¢ Therefore, we have
J

Llp < OO|B ; (pN)) S C(TL, VM; )\’ d)[/\(d71+n/2)7n/2+6.
10

By Proposition 2.11 and compactness of M;, we can assume that there exist X, € My,
and locally Lipschitz harmonic functions w$® € HAI=1Tn/2F1=n/2t¢(C(X ) such that
Xy — X4 and that wJN’OO — w;° on Br(poo) for every R > 0. By Corollary 4.37, we have

-
H"(B1(pos))

Especially, {w$°}; are linearly independent nonconstant harmonic functions. Therefore

/ (dwi®, dwi®)dH™ = d;;.
Bl(pw)

we have the assertion. O
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As a corollary of Theorem 5.45, we have the following result by Colding-Minicozzi:

COROLLARY 5.47 (Colding-Minicozzi, [22]). For every V > 0, there exists d(V,n) > 1
such that
dimHY(M) < C(n)Vyd"

for every d > d(V,n) and n-dimensional complete Riemannian manifold M with Ricp > 0

and Vyy > V.

PROOF. By taking k = [(dimH?%(M) —1)/2] as in Theorem 5.45, the assertion follows
from Theorem 5.43 and Theorem 5.45 directly. Here [a] = inf{l € Z;a < [} for every
a € R. O

We put A\; = inf{\;(X); X € My} and define d; > 1 by

—(n—1)+\/(n—2)2+4)\1.

d1: 2

By Theorem 5.35, we have the following:
1. HY(M,,) = {Constant functions} for every (Mu,moo) € My and 0 < d < dy.
2. H% (ML) # {Constant functions} for some (Mug, 1i10s) € M.

COROLLARY 5.48 (Liouville type theorem). We have H*(M) = { Constant functions}
for every 0 < d < d.

PrROOF. We assume that the assertion is false. We take € > 0 satisfying ¢ < d; — d.
By taking & = [ = 1 as in Theorem 5.45, there exists (My,Mo) € My such that
2 < dimH%¢(M,,). This is a contradiction. O

Finally, we end this subsection by showing the following. See also [20, Conjecture 0.9].

COROLLARY 5.49. Let d be a positive number and uw € HY(M). Then we have

t—oo SGK

lim inf (sup Ugm (ts)) <d

for every compact set K C (0,00).

PROOF. Assume that u is not a constant. By the proof of Theorem 5.45, for every € >
0, there exist sequences of positive numbers { R; };, {Rl}l, an asymptotic cone (M, Ms) €

M u and a nonconstant harmonic function u. € H d+€(Moo) such that R; — oo, ﬁil — 00,

(M, m, R\ dyr) — (Moo, moe), sup; Lipf @ <<u>g

i

ALy, ) < oo for every R > 0
BRZ (ml)
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and that (u)pz (7)) — (7o) for every sequence x; — o, with respect to the conver-

—2
gence (M, m, R, dy;) — (My, moo). By the definition of U9 (t), we have U(}%iR?NI(s) =

)

—2 -2
U IM(s) = UM (R;s) for every s > 0. Thus, since lim;_, (supseK \URi IM(s) — Uuoo(s)o =

(Wg,

0 and U, < d+ ¢, we have liminf, . (sup,cx UM (ts)) < d + €. Therefore, we have the
assertion.
0

6 Stability of lower bounds on Ricci curvature via

Laplacian comparison theorem

In this section, as an application of Theorem 4.27, we shall establish Laplacian comparison

theorem on Ricci limit spaces. For H € R, we define a smooth function k; on R by
Ky(r) + Hkjp(r) =0, k(0) =0, ky(0)=1.
Here f’ = df /dr for every differentiable function f on R. We remark the following;:

1. (Laplacian comparison theorem on manifolds). For every n-dimensional complete
Riemannian manifold M with Ricy, > H(n — 1) and point p € M, we have

ky (pr)

Ary(z) > —(n — 1)EH(W)

for every x € M\ (C, U {p}).

2. For the n-dimensional space form M7, whose sectional curvature is equal to H and

every point p € M, we have

Ary(r) = —(n — 1)%

for every x € My \ (C, U {p}).
3. If an n-dimensional complete Riemannian manifold M satisfies that

ki (p,7)
for every p € M and x € M \ (C, U {p}), then we have Ricy; > H(n — 1).

Ary(z) > —(n—1)

See for instance [4], [7], [53], [72] and [93]. The following theorem is the main result in this
subsection. This formulation is given in [53] by Kuwae-Shioya on weighted Alexandrov

spaces.
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THEOREM 6.1 (Laplacian comparison theorem). Let H be a real number, (Y,y,v)
a (n, H)-Ricci limit space (n > 2), x a point in' Y and R a positive number and [ a

nonnegative valued Lipschitz function on Bgr(x). Then, we have

df,dry)dv > —(n — ; w)dv.
/Bw)m v > —( 1)/33(@@(%@]0()

PRrOOF. Let (M;, m;,vol) — (Y,y,v) with Ricy, > H;(n — 1) satisfying H; — H. We
take L > 1 and z(j) € M; satistying | f|r=(Bg@) + Lipf + v(Bg(z)) < L and z(j) — .
First, we assume that suppfN({z}U0B, , z(z)) = 0. Here, if H <0, then 0B, , 7(z)) =
(). Then there exists 7 > 0 such that suppf N B, ({x} U 8Bﬂ/\/ﬁ(x)> = (). By Theorem

4.27, for every € > 0, there exist an open set Q¢ C Bg(x) \ B <{x} U@Bﬂ/\/ﬁ(x)>,
2L-Lipschitz function f€ on Bg(x) and a sequence of 2L-Lipschitz function ff on Bg(z;)

such that supp f<N B, ({x} U 8Bﬂ/\/ﬁ(x)> = (), suppffNB, <{:c(z)} U 8Bﬂ/\/ﬁ(x(i))) =0,
(ff,dff) — (f<,df€) on Q° and

v (2 UB, ({2} VOB, (o)
= i 5

v(Bg(z))
By Proposition 2.12, we can assume that there exists a finite pairwise disjoint collection
{B,.(x:) h<icn such that Q° = UY, B,.(z;). We take z;(j) € M; satistying z;(j) — .
Then, by Proposition 4.13, we have

(252) / (df. dragy) dvol = / (df, dragy) dyol
Br(x(5)) Br(z(j)\B- ({z(j)}U0B,, /7 (=(5)))

/ |df — df€|2dv < €.
Br(z)

N

(253) = Z /B df;,drr yydvol + W(e;n, L, H)
; z

(254) = Z/ (df€, dry)dv &+ V(e;n, L, H)
i=1 Y Br; (z:(5))

(255) = / (df€,dry)dv £ V(e;n, L, H)

r(z)\B- ({2}U0B,_, /5 (2))

(256) _ / (df*, dr.)dv + (e n, L, H)
BR(QJ)

(257) = / (df ,drs)ydv £ ¥(e;n, L, H)
Br(z)

for every sufficiently large j. On the other hand, for every ¢, there exists a Lipschitz func-

tion t; on M; such that 0 < 1); <1, ¢¢|§T/2({$}U83W/ﬁ($)) =0, %’Mi\E({x}uan/ﬁ(fc)) =
and Lipy; < C(n,7). Since ff 4+ W¥(e;n, L, H) > 0 on Bg(z(i)) for every sufficiently
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large i, we have ff+ WU(e;n, L, H)y; > 0 on Br(x(i)). Therefore by Proposition 4.13 and
Corollary 7.18, we have

(258)

/ (@ (5 +U(ein, Ly HY) . dryge)dvol

Br(z(i))
(259)

) Ky (c@)w), . |

> —(n ULMWER%E5%+W@mmeM@

(260)
Ky, (2(0), w) NEORD)

—(n— 2 T fedvol — U(e;n, Ly H i | dvol

=~ 1>/BR<m<z‘>>EHi(w(i),w)f’ vl = ¥(em. L, )/Bw(i)) ky, x(i),w)w =
(261)

o) kg, (2(i), w

> —(n—l)/ Mfiedv_ol—\lf(e;n,L,H,T,R)
Br( )

(262)
= —(n— 1)/ Eu(@w) ey, U(en, L, H,7, R)
Br(

k/
= —(n— 1)/ by (@) ¢~ wen, L H.7. R)
Br(
for every sufficiently large . Since
[ =t + e, 1)) dwl < W(en, L A7),
Br(z(i))

we have

ky (7 w)

/BR(x)(df, driyydv > —(n — 1) /BR(x) mf(w)dv —V(e;n, L, H, T, R).
By letting € — 0, we have the assertion of the case suppf N ({z} U9IB_, z(z)) = 0.
Next, we shall discuss the assertion of the case suppf N ({z} U9B_, z(x)) # 0. We
assume that H < 0 and liminf, o v(B,(z))/r = 0. We take a sequence of positive numbers
{ri}: satistying r; — 0 and lim; ., v(B,,(z))/r; = 0. We also take a Lipschitz function ¢;
on Y satisfying ¢i|p, ) =1, 0 < ¢; <1, supp¢; C By, (x) and Lipg; < C(n)/r;. We fix
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€ > 0. Then we have

(264) /Y (df, dry)dv — /Y (1= 6.) . dr.)dv| < /Y d(0f)|dv
265 = d(o; f)|dv
(265) /B”(x)| (6.f)]
(266) < <085, @),

On the other hand, since k%, /k; > 0, we have

~

(267) [ = o)sdrydo = - )

(268) > _(n—1)

>~<\b~<\
o |75 7 |1

a

w
Thus, by letting i — oo, we have the assertion of the case H < 0 and lim inf, o v(B,(z))/r =
0.

Next, we shall discuss the assertion the case H < 0, liminf, v (B,(z))/r > 0 and
f(z) = 0. We take a sequence of positive numbers {r;}; satisfying r;, — 0. We also take

¢; as above. Then we have

(269) /Y (df, dry)dv — /Y (1 — 6)f, dr.)dv| < /Y d(0f)|dv

270 = d(o; f)|dv

(270) /B”(I)r (6:f)]

(271) /Bn(x)|f¢+¢ /]

(272) < [ Iflldodo + Lipfo(B, ()
By, (x)

(273) < rLipf 28D 1B, (@)

(274) = 2Lv(B,,(x)).

Therefore, we have the assertion of the case H < 0, liminf, ,ov(B,.(x))/r > 0 and

f(z)=0.
We shall discuss the case H < 0, liminf, v (B,(z))/r > 0 and f(x) > 0. Then we

remark the following:

CLAIM 6.2. We have
lim i(l)qf v_1(0B,(z) \ C;) > 0.
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The proof is as follows. For every sufficiently small » > 0, there exists an isometric

embedding «y from [0, 3r] to Y satisfying v(0) = z. We put x, = v(5r/2). Then we have
v(Bsr(x) \ Bar(z)) 2 v(Byg; (7)) = C(n, H)v(Br(x)).
By [42, Theorem 4.6], we have

(275) v_1(0B,(2) \ C) > vy (0B, () N Cy(Bs,(z) \ Bar(7)))

C(n, H)v(Bs, () \ Bay(x))
(276) Z ol By, (p) — vol Ba, (p)

vol,_1 OB, (p)

(277) > O(n, 1) 2L ) et 5 oy UB @)

T T
Therefore, we have Claim 6.2.
By the assumption, there exist 7o > 0 and 79 > 0 such that f(w) > 7 for every
w € By, (x). Thus, by [42, Theorem 5.2], we have

(278) /Mﬂw)dv > C(n,ro, H, 7'0)/ ! dv

y kn(T,0) Byg () T2 (W)
To
(279) C(n,ro, H, 19 / / —dv 1dr
OB (2)\Cs T
(280) C(nTo,HT)/ UlaBi)\C) r =00
0

Therefore, we have the assertion of the case H < 0, liminf,_ov(B,(z))/r > 0 and
f(z) > 0.

Finally, we shall discuss the assertion of the case H > 0. By rescaling, without loss of
generality, we can assume that H = 1. If R < m, then we can prove the assertion by an
argument similar to one above. Therefore, we assume that R = m and 9B, (x) # () below.
Then, by [6] (or [44]), we have Y = S° %« OB, 2(x). Here, for every metric space X, we
define a distance on [0, 7] x X/{0,7} x X by

(t1,21), (t2, x9) = arccos(cos ty costy + sin ty sin ty cos min{zy, 73, 7}),

S% x X denote this metric space. We take z € 9B,(z). By Bishop-Gromov volume

comparison theorem for v, we have

V(Bi(2)) _o(Y\Bro(2)) . o(By(2)) _ | volBro(p) _ vol Bi(p)

oY) v(Y) B v(Y) =1- vol B(p) ~ volS»

for every 0 < r < 7/2. On the other hand, by Bishop-Gromov volume comparison
theorem, since v(B,(x))/v(Y") > vol B,(p)/vol 8", we have

v(B(x)) _ vol B,.(p)
v(Y) vol S”
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Similarly, we have v(B,(z))/v(Y) = vol B,(p)/vol S". Especially, we have

L uB) L w(Bi(2)  w(Y)
r—0  w,r" r—0  w,r" vol S

Since k7 (r)/k,(r) > 0 for every 0 < r < 7/2, by [42, Theorem 4.2] and [42, Theorem 5.2],

we have
(281) / / / dv_dt
By (x) L] OBi(x)\Cr T=

(282) — C(n) /2 U1(aBt§75) \ Cx)dt

g v (T VOln,1 6Bt
(283) < C(n) /O (Bt( ) i (p;B)dt
(284) < C(n) /’5 @dt < C(n).

We remark that C, = {z} and C, = {z}. Similarly, we have

k(7w
(285) / L_w)‘ dv = /
M\Bg (2) ky (T, w) By (2)

OBt (%

(287) < C(n)/02 v 8Btt( DN < o),

ky (7,)
k (:I; W)

’dv

We take r; > 0 satisfying r; — 0 and ¢; as above. We also take Lipschitz functions ng on
Y satisfying 0 < ¢; < 1, ¢4/ — 1, suppg; C B, (z) and Lipg; < C(n)/r;. Then we

'r/2

have
(288)

/Y<df, dry)dv — /Y< (1= ¢:)(1 — ¢:)f, drs)dv / d(f — (1= ¢:)(1 — &) f)|dv
(289) -/ o s / G
(200) < Lips ) | i 0B
(291) =T Z
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On the other hand, by dominated convergence theorem, we have

(292)

[ = a0 =6 f.dr o
(293)

> - [ P50 -0 - dswar
(204)

> ~(0-1) [ P o - - 1) [ | B0 - 6)(1 - b)) - flwlae
(295)

1—00 E,1<T$(w))
-2 —(n—l)/y_k—l(rmw))f(w)dv.

Therefore we have the assertion. O

We end this section by giving a corollary of Theorem 6.1. The corollary is well known
in the setting of metric measure spaces. See for instance [72, 88, 89, 65, 66, 92, 93]. We

will give a new proof via Laplacian comparison theorem on Ricci limit spaces:

COROLLARY 6.3. Let {H;}i—12. o be a sequence of real numbers, {(M;,m;)}ien a
sequence of pointed n-dimensional complete Riemannian manifolds with Ricy, > H;(n—1)
and (M, Ms) a pointed n-dimensional complete Riemannian manifold (n > 2). We
assume that H; — Hoo and (M;,m;) — (Mwo, Mso). Then we have Ricyr, > Hoo(n — 1).

ProOF. By [6, Theorem 5.9], we have (M;,m;, H") — (Mu, Moo, H™). Then, by
Theorem 6.1, we have, Ar,(w) > —(n — 1)ky_(T,w)/ky_(T,w) for every x € M, and
w € My \ (Cp U{x}). Therefore, we have the assertion. O

7 Appendix

7.1 Infinitesimal doubling condition and Lebesgue set

In this subsection, we shall study metric measure spaces satisfying a good property (Defi-
nition 7.1). On such metric measure spaces, we can construct an outer measure associated
to the measure and give several properties about it. Especially, we will define Lebesgue

set and give several properties of the set (see Corollary 7.6 and Proposition 7.7).

DEFINITION 7.1. Let (Z,v) be a metric measure space, A a Borel subset of Z and
C > 1. We say that (Z,v) satisfies infinitesimal doubling condition on A with doubling
constant C' if the following properties hold:
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1. v(K) < oo for every bounded Borel subset K of A.
2. For every z € A, there exists r > 0 such that
v(Bas(2)) < Cu(Bs(2))
for every 0 < s < r.
We shall give an example:

EXAMPLE 7.2. Let (Y, y,v) be a Ricci limit space, z a point in Y, R a positive number
satisfying dBgr(z) \ C, # (. Then, the metric measure space (0Bg(x),v_1) satisfies

infinitesimal doubling condition on dBg(z) \ C,. In fact, we have

lim sup v_1(0Bg(z) N By(2))
r—0  U_1(0Bgr(x) N B.(2)\ Cy)

< C(n)

for every z € 0Bg(z) \ C,. This follows from [42, Corollary 4.7] and [42, Theorem 5.2].

We fix a metric measure space (Z,v) and a Borel subset A of Z satisfying that (Z,v)
satisfies infinitesimal doubling condition on A with doubling constant C' > 1 below. For
every 0 > 0 and Ac Z, we put

e}

vi(A) = inf {ZU(BU(@)); 0<r <6 Acl/ Bn(xi)}

i=1 i=1

and define an outer measure v* on Z by

v (A) = (lsli)%vg(A).
We also put M = {4 € 2Z;0*(BN A) + v*(B\ A) < v*(B) for every B € 27}. We
shall recall that (Z, M, v*) is a complete measure space and that B(Z) = {B € 2Z; B is
a Borel subset of Z } C M. See for instance chapter 1 in [81]. By the definition, we have
v(A) < v*(A) for every Borel subset A of Z.

PROPOSITION 7.3. We have v*(A) = v(A) for every Borel subset A C A.

~

ProOOF. Without loss of generality, we can assume that v(A) < co. We fix ¢, > 0.
There exists an open set O C Z such that A € O and v(O\ A) < e. For every a € A,
there exists r, > 0 such that B, (a) C O and that v(By(a)) < Cv(B,(a)) for every
0 < r < r,. By Proposition 2.12, there exists a pairwise disjoint collection {B,.,(a;)} such
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that a; € A, r; < min{d,7,,}/100 and A\ UY, B,,(a;) C Ui w1 Bsr, (i) for every N.
Since v(0) < oo, there exists N such that >_°° ., v(B,,(a;)) < e. Then we have

N 00
(296) vi(A) < ZU Z v(Bsy, (a;))
i=1 i=N+1
N
(297) 5g§: B,.(a;)) }: C3u(
i=1 i=N+1
(298) < 0(0) + C% < v(A) + (1 + C?)e.
By letting 6 — 0 and € — 0, we have the assertion. O

The following corollary is a fundamental property for a relation to Hausdorff measure

on metric measure spaces satisfying infinitesimal doubling condition.

COROLLARY 7.4. Assume that there exists a > 0 such that v is Ahlfors a-regular at

every z € A. Then, v and H* are mutually absolutely continuous on A.

PROOF. For every i € N, we put A, = {a € A;i 'r* < v(B,(a)) < ir® for every
0 <r <i '} Let D be a Borel subset of A. First, we assume that H*(D) = 0. Then, we
have H*(D N A;) < H*(D) = 0 for every i. We fix i. Then, for every positive numbers
€,0 satisfying e, 0 << i', there exists a countable collection {B,,(z;)}; such that r; <,
zj € DN A; and Y rf < e Thus, we have > v(B,;(z;)) < V(ei). Therefore, we
have v*(D N A;) = 0. Since (Z,v*, M) is a complete measure space, we have v*(D) = 0.
Especially, we have v(D) = 0. Next, we assume that v(D) = 0. By Proposition 7.3, we
have v*(D N A;) < v*(D) = v(D) = 0 for every i. Then, by an argument similar to that
above, we have H*(D N A;) = 0. Thus, we have H*(D) = 0. O

For subset A ¢ Z , let Leb 121, denote the set of points, a € A, such that for every
€ > 0, there exists r > 0 such that v*(B,(a) N A) > (1 — €)u(B,(a)) for every 0 < s < .
We call Leb A Lebesgue set of A.

PROPOSITION 7.5. We have
v*(A\ Leb A) =0
for every Borel subset A of A.

ProoOF. We fix z € Z and € > 0. For 7 > 0 and N € N, let AT,N, denote the set
of points, a € ANB ~n(2), such that there exists a sequence of positive numbers r; > 0
such that r; — 0 and that v*(B,,(a) N A) < (1 — 7)v(B,,(a)) holds for every i. We
remark that v*(A, y) < v*(A N By(2)) = v(AN By(z)) < co. Thus, by the definition
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of v*, there exists a countable collection { B (z;)}; such that A,y C |2, By, (2;) and
v (Arn) — Doy (B, (2:))] < e. We put O = By (2) N2, Bs,(x;). By the definition of
AT ~ and Proposition 2.12, there exists a pairwise disjoint collection {B,,(a;)}; such that
4; € Ar e, 0(Ban (@) < Cu(Br,(@)), Broon(ai) < O, v(Br () N A) < (1 - 7)o(B,(a)
for every i, and A, y \ Uf\;l B, (a;) € U;2 541 Bsr, (i) for every N. We take N satisfying
> a1 V(Br,(a;)) < e. Then we have

(299) ) < Zv* B,.(a;)) + Z v(Bsy,(as))
(300) < Zv )+ C? Z (B, (a:))
(301) (1—7 Z v ) 4 €C®

(302) <(1- T)U(_O) + €C?

(303) (1—-1) f:v B,,(z;)) + €C?

(304) <(1- T)(U_ “(Arn) +€) + eCP.

By letting € — 0, we have v*(A, y) = 0. Thus, we have A,y € M and v*(A \ Leb A) =
U*(UT>O,N€N Arn) = 0. L

By Proposition 7.5, we remark Leb(Leb(A)) = Leb(A) for every Borel subset A C A.

COROLLARY 7.6 (Lebesgue differentiation theorem for locally bounded functions). Let
f be a Borel function f on Z satisfying that f is locally bounded at every a € A. Then,
there exists a Borel subset A of A such that v(A\ A) = 0 and that for every a € A and
€ > 0, there exists v > 0 such that

—ew(Bu(r) < /B W= @l < (B ()

for every 0 < s <r.

PrOOF. We fix € > 0 and z € A. For every N € N, by Lusin’s theorem, there exists a
compact set K. y C ANBpy(z) such that v(ANBn(z)\ K n) < € and that f is continuous
on K. n. We put IA(QN = Leb K. . Then, it is easy to check that for every = € IA(G,N and
€ > 0, there exists » > 0 such that

~aBe) < [ 1f - 1@ < @)
Bs(x
for every 0 < s < r. Therefore, we have the assertion. O
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We end this subsection by giving a fundamental property of Lebesgue sets for Lipschitz

functions on metric measure spaces satisfying doubling condition:
PROPOSITION 7.7. Assume that the following properties hold:
1. 0 < v(By(z)) for every z € Z and r >0

2. There exist ro > 0 and C' > 1 such that
0(Ban(2)) < Cu(B,(2))
for every z € Z and 0 < r < ry.

Then, for every Lipschitz function f on Z and Borel subset A of Z, we have Lipf(a) =
Lip(f|a)(a) and lipf(a) = lip(f|a)(a) for every a € Leb(A).

Proor. Without loss of generality, we can assume that a is not isolated point. There
exists a sequence a; € Z \ {a} such that a; — a and that |f(a;) — f(a)|/a;;a — Lipf(a).
By the assumption, for every sufficiently large 4, there exists d; € A such that a;a; <
U(a,a;; C)a, a;. Especially we have a; # a, i.e. a is not an isolated point in A. It is easy
to check

|f(a) — f(ai)| fla) — flai)|

lim = lim | =
1—00 0,7 ai 1—00 a’ ai

Therefore, we have Lipf(a) < Lip(f|4)(a). Thus we have the first assertion. Similarly,

we have the second assertion. O

7.2 A proof of Claim 3.25

In this subsection, we shall give a proof of Claim 3.25. We define a function 7; on R* by

m1((21,... ,x;)) = x1. Then, by the definition, we have

H"'(B,(a) N AN (m(a) 1} .

wy—17*

sl; — LebA = {a = (ay,.. ,ax) € A;lim iélf
We define a function f* on R by fA(z) = H* ! (B,(z) N ANy (m(x))) 1a(z). First,
we assume that A is compact.

CLAIM 7.8. The function f is upper semi-continuous. Especially, {2 is H*-measurable

function.

PROOF. Let 7, be a point in A and {z;}; a sequence of points in R* satisfying z; —
Too. It suffices to check that limsup, . fA(z;) < fA(2s). Without loss of generality, we
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can assume that z; € A for every sufficiently large j. We fix 6 > 0. We take a subsequence
{n(i) }ien of N such that

lim H*" (B, (zni)) N AN 77 (m1(20))) = limsup H* ™ (B, (z;) N ANy (mi(z))) -
J—0o0 i—00
On the other hand, since a sequence of compact set {B,(z,;)) N A N a ' (w1 (2,)))} is
precompact with respect to the Hausdroff distance on R*. Thus, without loss of generality,
we can assume that there exists a compact subset K., of R¥ such that B, ()N AN
71 (1 () converges to Ko in the sense of Hausdorff distance on R¥. Then, it is easy

AAAAA

such that r; << 6, B, (200) N AN 77 (m1(70)) € UY, By, (y;) and
N
H* (B (100) VAN T (M1 (2000)) = Y whoarf ™| <6
i=1
Since B, (7)) N AN 7 (71 (700)) is compact, there exists 7o > 0 such that B, (B, (7s) N

Anmii(m(zs))) C Ufil B, (yi). Since B,(,;)) N AN 77 (m1(20()) C Bry(Koo) for
every sufficiently large j, we have B, (z,(;)) N AN (71 (@) C UY, B,,(y;). Thus, we

have
N
(305)  H"'(Bi(wa() NAN T (M) < D H (B (yi) Ny (m(aag))
i=1
N
(306) <> wert!
i=1
(307) < H ' Bi(roo) NAN T 71 (200))) + 6
for every sufficiently large j. Therefore, we have Claim 7.8. O

By Claim 7.8, we have the statement 1 in Claim 3.25. The statement 2 follows from
Lebesgue differentiation theorem on Euclidean spaces. Finally, by Fubini’s theorem, we
have

HY(A\ sly — LebA) = / HYL(AN {t} x R\ sty — LebA)dt = 0.
R

Thus, we have the statement 3. Therefore, we have Claim 3.25 if A is compact.

We shall give a proof of Claim 3.25 in general case. We fix R > 0. There exists a
sequence of compact sets K; C Br(0;) N A such that H*(Br(0;) N A\ K;) — 0(i — o).
By the definition, we have sl; — LebK; C sl — Leb(Br(0x) N A). As an outer measure,
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we have

(308)

H*(Br(0;) N A\ sl; — Leb(Bg(0,) N A)) < H*(Br(0x) N A\ sl; — LebK;)

(309) < H*(Bgr(0,) N A\ K;) + H*(K; \ sl; — lebK;)
(310) =20

Thus, sl; —leb(Bg(0)NA) is a H*-measurable set. Since sl; —LebA = (., sl —Leb(AN
Bgr(0)), we have the statement 1 in Claim 3.25. By Lebesgue differentiation theorem and

Fubini’s theorem, we have statements 2 and 3. Thus, we have Claim 3.25.

7.3 Distributional Laplacian comparison theorem on manifolds

Our aim in this subsection is to state distributional Laplacian comparison theorem on
manifolds we want to use in section 6. It is Corollary 7.18. Throughout this subsection, we
fix a positive number R > 0 and (M, m) be a pointed n-dimensional complete Riemannian
manifold (n > 2). We put C*®(Bg(m)) = {f € C°(Bg(m)); there exist an open subset U
of M and a smooth function g on U such that Bgr(m) C U and g|§R(m) = f}. We define

a linear functional A%ty on C*°(Bgr(m)) by
A%Strm / {(dry,, df ydvol.
Br(m

PROPOSITION 7.9. There exists unique Radon measure Ufénwgl on Br(m) satisfying the

following properties:
1. A smooth function Ar,, on Br(m)\ (C,, U{m}) is in L'(Bgr(m)).
2. supp(vp's) C Cp N Br(m)

3. For every f € C*°(Bgr(m)), we have

Adsty (f) = / FAFdvol + / fdvol,_1 + / fdviine,
Br(m) OB (m)\C Br(m)

4. We have
/ |Ar,|dvol + Usmg & (Bgr(x)) + vol,_1(0Bgr(x) \ Cy) = —2/ Ar,.
Bpr(z) Br(z)N{Ary<0}

Proor. We put S,,M = {u € T,,,M;|u| = 1} and define t(u) > 0 as the supremum
of t € (0,00) such that exp,, su|jp4 is a minimal geodesic segment from m to exp,, tu for
u € Sy, M. We also define a continuous function ¢ on S,,, M by ¢r(u) = min{t(u), R}. We
take a sequence of C*°-functions {gb{,%}] on S,,M and a sequence of open sets O; C S,, M

satisfying the following properties:
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1. 0; C 01, U2, 0i = {u € S,uM;t(u) > R}, pp—j ' < ¢ < g and ¢ (u) < t(u).
2. For every 7, there exists [ such that ¢§%|Oi = R for every j > 1.

REMARK 7.10. There exists {¢%,}; and {O;}; as above. We shall explain it below.
We take a sequence of C'°°-functions wf'% on S,,M satisfying |w{% — Or|Lo(s0) — 0.
Without loss of generality, we can assume that w% < ¢r. We take a sequence of open
subsets O; of S,, M satisfying O; C 0,41 and U2, 0i = {u € S,,M;t(u) > R}. We put
O =A{u € S, M;t(u) > R}. We take a C*-function ¢; on S,,M satisfying 0 < ¢; < 1,
¢ilo, = 1 and suppg; C O;11. We define a C'*-function gsz on S,M by gb?’%j (u) =
(1 — é3(u))Ph(u) + ¢;(u)R. Then, we have ¢% (u) = Vh(u) < ¢r(u) = t(u) for every
u € SpuM\ Oy and ¢ (u) = R for every u € O;. For every i, there exists jo(i)
such that [} — @g|re(s,.a < i7" for every j > jo(i). We put ¢f = Zéj‘)(i). Then,
we have diglo, = R and dig(u) = (1 — 6wV (w) + 6,(u)R < (1 — 6,(u))én(u) +
)R < (1 — 65(u))bn(u) + 6s(u) () = dr(u) < t(u) for every u € O and giy(u) =
(1 — s ()l (u) + ¢i(u)R = (1 — ¢y(u)) 2P (u) < 2P (u) < dp(u) = t(u) for every
u € S M \ O. Therefore, we have ¢'(u) < ¢r(u) and ¢%(u) < t(u) for every u € S, M.
Since dnlo,,, = R, we have |gig(u) — o ()] = |(1 — ¢i(w) 62V () + Gi(w)R — bp(u)| <

(1—¢i(u))|¢j,§(i) (u)—dr(u)|+¢;(u) | R—gpr(u)| < i~! for every u € O;41. On the other hand,
1

since ¢;s,.an0:,, = 0, by an argument similar to one above, we have ¢’ (u) —pr(u)| < i~
for every u € S, M \ O;41. Thus, we get an existence of sequences {(bg%}j and {O;}; as

above.
We define an open subset V3 of M by Vi, = {exp,, tu € M;u € S, M,0 < t < ¢(u)}.

CrAamM 7.11. We have 8V1§; = {exp,,tu € M;u € S, M,t = gbﬂ%(u)} for every j
satisfying j=1 < m, C,,.

The proof is as follows. We take w € (9‘/}%. By the definition, there exist u; € S, M and
0<t; < qﬁfé such that w; = exp, t;u; — w. By the compactness of S,,M, we can assume
that there exist t € [0, R] and u € S,,M such that t;, — t and u; — u. Thus, we have
w = lim; o exp,, tiu; = exp,, tu. Since t; < ¢h(u;), we have t < ¢h(u) < t(u). Thus, we
have w € M\ C,. If t < ¢§%(u), then by the continuity of (b%, there exists 7 > 0 such that
t < @) for every £ and @ € S,, M satisfying |t — t| < 7 and @,u < 7. Thus, we have
exp, tu € M\ E)Vé. This is a contradiction. Therefore, we have gb%(u) > t. Similarly, if
t > ¢§__€(u), by the continuity of gzﬁg%, there exists 7 > 0 such that gbﬂ(ﬁ) < 1 < t(4) for every
t and @ € S,,M satisfying |t —t| < 7 and @,u < 7. Thus, we have exp,, tu € M \ 8VI§;.
This is a contradiction. Therefore, we have OV, C {exp,, tu € M;u € S,,M,t = ¢’y (u)}.
On the other hand, for every u € S,,M, we take a increasing sequence 0 < t; < gzﬁg%(u)

such that t; — ¢} (u). Since exp,, ¢h(u)u = lim; o exp,, t;u € Vi and exp;! |M\Cm
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gives diffeomorphism to the image, we have exp,, ¢%(u)u € M \ Vj. Especially, we have
exp,, Oh(u)u € dV}. Therefore, we have Claim 7.11.

It is easy to check that 8\/]% is a compact (n—1)-dimensional C*°-Riemannian subman-
ifold of M and is diffeomorphic to S~ for every j satisfying j~' < m,C,,. Especially,

V7% is a compact n-dimensional C*-Riemannian submanifold with C**-boundary.

CrAM 7.12. We have (Vry,, Ny)(w) > 0 for every j satisfying 775 < m,Cp,, and

w € OV} Here N,, is the unit outer normal vector of V;% at w.,

Because, since N,, is outer vector, we have (N,,,~'(0)) < 0 for the minimal geodesic y
from w to m. Thus, we have Claim 7.12.

For every j satisfying j=! < m, C,,, we define open subsets Af’j AR of Vé by Af’j =
{w e Vi\ {m}; Arp(w) > 0} and A™ = {w € Vi \ {m}; Ar,,(w) < 0}.

CLAIM 7.13. We have

/ Ar,,dvol < — / Ar,,dvol < 0o.
Af»j AI_%J'

The proof is as follows. We put 6(s,u) = s"~'\/det(gijlexp,, su)) for u € S, M and
0 < s < t(u). Here, ¢;; = g(0/0x;,0/0z;) for a normal coordinate (x1,xa,...,x,) around

m. By rescaling, without loss of generality, we can assume that Ricy; > —(n — 1) on
Bioor(x). Then, we have

hz w
(311) - Argdvol < / (n — 1)Mdvol
AR sinhZ,w
min{¢(u R} ht
(312) / / (n— 1) o1 w)dtdu
Sy M sinh ¢
ht
(313) / / n—1) 20 G tdtdu
S M sm
(314) < / / (n — 1) cosh t sinh"~? tdtdu < oco.
Sy M
Since )
n _—
Arp(w) = — O(m,
rm(Ww) o + O(m, w)

for every w satisfying that m,w is sufficiently small, we have
— 1
(315) / |Ar,|dvol < / (n ) dvol
B-(z) B-(z) , W
(316) / / n—1 0(t, u)dtdu + vol B, (x)
SoM
(317) < C(n /

(318)

-(7)
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Therefore, we have

/ Argdvol = lim [ Ar,dvol.
v =0 JVI\B, (2)
Thus, by divergence formula and Claim 7.12, we have
(319) / Arzdvol = —/ (Vry, Ny)dvol, 1 — lim (—=Vry, Vrg)dvol, 4
Vi ovi 7=0J8B, (z)
(320) = —/ (Vry, Ny)dvol, 1 < 0.
vy

Thus, we have

Ar,dvol + Ardvol < 0.

Al AR
Therefore we have Claim 7.13.

Next claim follows from Claim 7.13 directly:

CLAIM 7.14. We have

/ |Ar,|dvol < —2 Ar dvol < oco.
Vi '

Alj,]

Especially, Ar, € L*(Bg(z)).
Therefore, for f € C*(Bg(x)), we have

(321) APty (f) = lim (df , dr ) dvol
j—o0,7—0 Vé\BT(m)
(322) = lim </ fArxdvol—l—/ (dry,, Ny) fdvol, 4
J=00 =0\ JVI\ B, (m) avj,
(323) —/ (drm,drm>dvoln_1)
8B (m)
(324) :/ fAr,dvol + lim (dry,, Ny) fdvol,_.
Bg(m) I Jovi

CLAIM 7.15. For every w € M, we have

lim 18‘/%08312(@ (w) = Lopg@nc. (w).

Jj—o0
The proof is as follows. We take w € M.
1. The case w € dBgr(m) \ C,. Then, there exists u € S,, M such that R < t(u) and

w = exp,, Ru. By the definition of ¢§%, we have gzﬂ%(u) = R for every sufficiently
large j. Thus, by Claim 7.11, we have w = exp, gbfé(u)u € GV]%. Therefore, we have

im0 1gya008 4 (m) (W) = Lorem)ncm (W)
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2. The case w € (M \ (0Br(m) \ C;n)) NOBr(m). Then w € C,. By Claim 7.11, since

VN C, =0, we have lim; Lovi o8 (m) (w) = 0= Laggmncn (W).
3. The casew € (M\(Bgr(m)\Cy,))\OBg(m). Then, we have w € M\ (OViNOBg(m))
for every j. Especially, lim;_, 18V§maBR(m)<w) =0 = Lopmn\cn (W).

Thus, we have Claim 7.14.
Then, since <Vrmva>f(w)1avgmaBR(m) (w) — f(w) for every w € dBgr(m) \ Cp,, by

dominated convergence theorem, we have

(325)
/ ‘ (Vrm,Nw>fdvoln1—/ (VT Nu) f (W) 1505008 (my (W) dvOl, 1
OVINOBR(m) OBR(m)\Cim R
(326) T%e fdvol,_;.
OBR(mM)\Crm

Therefore, we have
(327)

lim (V7um, Ny) f(w)dvol,_q

i=e Jovi

(328)

= lim / (Vrm, Ny) f(w)dvol,, 1 + / (V7rm, Ny) f(w)dvol,,_4
J700 \ JovindBr(m) OVINOBR(m)

(329)

:/ fdvol,,_1 + lim 4 (Vry, Ny) f(w)dvol,_.
dBr(m)\Cs 3700 JoViNoBR(m)

We define a linear functional ® on C°(Byg(m)) by

O(f) = lim ‘ (V7Tm, Ny) f(w)dvol,_.
770 JgvI\oBg(m)

By Claim 7.12, if f > 0, then ®(f) > 0. Therefore, by Riesz’s theorem, there exists a

Radon measure vys on Bag(m) such that

B(f) = / fuiine.
Bypr(m)

for every f € C2°(Bagr(m)).

sing

CLAIM 7.16. We have supp(vyys) C Br(m), i.e. for every Borel set A C Bag(m) \

Bg(m), we have U;?S’;(A) = 0.
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The proof is as follows. Since v‘gff is a Radon measure, without loss of generality, we

can assume that A is compact. We take 7 > 0 satisfying 7 << min{ A, Br(z), A, 0Bagr(x)}.
We also take ¢ € C°(Byg(x)) satisfying ¢|a = 1, 0 < ¢ < 1, suppp C B.(A). Since
OB, = 0, by the definition of @, we have ®(¢) = 0. On the other hand,

Vi (4) < / PV = B(6) = 0.
7 Bar(x) 7

Thus, we have Claim 7.16.
Since Vi, C Br(m), if f1, fo € C=°(Byg(m)) satisfies f1lBnm) = folBr(m), then we have

/ (T No) fa(w)dvol, y — / (U N fa(w)dvol,
VI\OBR(m) AVIN\OBR(m)

for every j. Especially, we have ®(f;) = ®(f;). By the definition, for every f €
C>®(Bgr(m)), there exists F' € C°(Byg(m)) such that Flgm = f. 1f we put ®(f) =
®(F), then, ®(f) does not depend on the choice of F. Thus for f € C®(Bgr(m)), ®(f

is well defined, we have,

(330) O(f) =P(F) = lim (VTm, Ny) F(w)dvol,,_4
J700 JoviNoBg(m)
(331) = lim (V7 Ny) f(w)dvol,—q

J=00 Jovi\oBg(m)

and

Br(m)

(f) = B(F) = / Fdvi™e — / fdvis.
Bagr(m)

Therefore, we have

A (f) = / f ATy dvol + / fdvol,_y + / fdvys
Br(m) B ’

OBRr(m)\Cm Bgr(m)
for every f € C*°(Bg(w)). By taking f = 1 and the definition of A%r,,. we have
0= Al (1) = / Arypdvol + voly_y (9B(m) \ C) + 03 (Br(m)).
Bpr(m)
Thus, we have

AT == [ A~ 0P\ €2

Especially, we have

(332)
/ | AT |dvol + vol(OBgr(m) \ Cp) 4 U8 (Br(m)) = / | A7, |dvol — / A7, dvol
Br(m) ’ Br(m) Br(m)
(333) = —2/ Ar,,dvol.
Br(m)N{Ar,<0}
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CrAIM 7.17. We have supp(viglrgn) C C,, N Bg(m).

The proos is as follows. First, we shall prove supp(vj%‘}i) C 0Br(m)UC,,. It suffices to
check that v528(A) = 0 for every compact set A C Br(m) satisfying AN(9Bg(m)UC,,) =
(. We take 7 > 0 satisfying 7 << A,C,, UIBgr(m). We also take ¢ € C°(Byr(m))
satisfying 0 < ¢ < 1, ¢|a = 1 and supp¢ C B,(A). Then, we have

Vi (A) < / ¢dv"e = lim (Vrim, Nu)p(w)dvol, .
Bagr(m)

J=00 Jovi\oBg(m)

We take j satisfying j~' < %, and w € OV} \ 0Br(m). By Claim 7.11, there exists
u € S, M such that w = exp, ¢ (u)u. Since pr(u)—j~' < ¢h(u) < ¢r(u), if pr(u) = t(u),
then, since w,C,, < j7! < 05> We have ¢(w) = 0. On the other hand, if ¢r(u) = R, then,

= 0.

since w,@B—R(m) < j7' < &5, we have ¢(w) = 0. Therefqre, we have ¢’av§\aBR(m)

Thus, we have v57%(A) = 0. Finally, we shall prove supp(vz) C Crn N Bg(m). It suffices
to check that vi28(0Bg(m) \ C,) = 0. Since O; is compact, there exists a sequence of
nonincresing sequence 7; > 0 such that 7, — 0 and ¢(u) > R+ 7; for every u € O;. We put
Ui =A{exp,,tu;u € O, R—1; <t < R+7;} and V; = {exp,, tu;;u € Oj, R —1;11/2 <t <
R+ 7i41/2}. Since O; C Oy,q, we have V; C Uy 1. We take ¢; € C°(Bagr(m)) satisfying
¢ily, = 1,0 < ¢; < 1and suppg; C Usy1. We fix 4. Then, since Um@Vé C U;NOBg(m) for
every sufficiently large 5, we have suppg; N (V3 \ 0Br(m)) C U1 N (OVE\ OBgr(m)) = 0

for every sufficiently large j. Thus, we have

(334) VEEEBm V) < [ savis
Bar(m)
(335) = lim (V7Tm, Ny)di(w)dvol,,_4
I790 JoviNoBRr(m)
(336) = 0.

By letting ¢ — oo, we have vjé?f(@BR(x) \ C,) = 0. Therefore, we have Claim 7.17.

Thus, we have the assertion. O
The following corollary is used in the proof of Theorem 6.1. See also [4, Theorem 4.1].

COROLLARY 7.18. Let H be a real number, (M, m) a pointed complete n-dimensional
(n > 2) Riemannian manifold with Ricyy > (n — 1)H, R a positive number and f a
nonnegative valued Lipschitz function on Br(m). Then, we have

ki (M)

/ (df , dr,,)dvol > —(n — 1)/ ————= f(w)dvol.
Bp(m)

Bg(m) kg (M, w)
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7.4 Co-area formula for distance functions

In this subsection, we shall give several measure theoretical properties on non-collapsing
Euclidean cones. For example, we will prove co-area formula for distance functions (see
Proposition 7.22). Throughout this subsection, we fix an (n, —1)-Ricci limit space (n > 2)
(Y, y,v) and assume that the following properties hold:

1. There exists a compact geodesic space X such that diamX < 7 and (Y,y) =
(C(X),p).

2. dimyg X =n — 1. Here, dimyX is the Hausdorff dimension of X.

Then by [7, Theorem 5.9], there exists C' > 0 such that v = CH". First, we shall
recall definitions of lower dimensional Hausdorff measures associated to v and standard
(spherical) Hausdorff measures (see section 2 in [8]). For convenience, we will use the
notaion below: r~*v(B,(z)) =0 for every x € Y and a > 0 if r = 0. For « € R>g, 0 > 0
and a set A C Y, we put

o0

(V_a)s(A) = inf {Z ri (B, (z)); v, €Y, 0<r; <, AC U Bri(x,»)} ,

i=1 =1

(Ha)5(A> = inf {Zwaria; x; € Y7 0<nr< 57 AcC UBm(xl>}

i—1 i=1
and

v_a(A) = lim(v_n)5(A), H(A) = Lim(H*)5(A).

6—0 6—0
For a subset A C {1} x X C C(X). we also put

(v_a)xs(A) = {Z'riav(Bn(xi)); r,e{l}x X, 0<r; <6, AC UBT(@)} ,

i=1

i=1 i=1

(Ha)Xﬁ(A) = {iwaria; x; € {1} X X> 0< T < 57 AC GBn(xz)}

and
(v-a)x(4) = Im(v_o)s(4), H(A) = lim(H*)5(4).

We remark that v_,(A) < (v_4)x(A), H*(A) < H%(A) for every subset A C {1} x X
and that if we define a map ¢ from (X,dx) — ({1} x X,dc(x)) by ¢(z) = (1,2), then
H"Y(A) = Hy ' (¢(A)) for every A C X.

LEMMA 7.19. We have v_1(A) = (v_1)x(A) for every Borel set A C X.
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Proor. We fix sufficiently small positive numbers §,¢ > 0. By definition, there
exists {By,(z;)}; such that 0 < r;, < ¢, x; = (t;,w;) € C(X) = Ryp x X/{0} x X
and |(vl)5(A) — > i (B, (x))] < e. Without loss of generality, we can assume that
B, (z;)) N A # 0 for every i. We put y; = (L,w;) € C(X) and g; = (1,w;) € (R %
X, v/drz + d%). It is easy to check that the map ®;(s,z) = (s, z) from Bs,, (z;) to R x X
gives (14 W(0))-bi-Lipschitz equivalent to the image. Therefore, we have B, (x;) N ({1} x
X) C B(1+W(6))W(yi)' On the other hand, since |t; — 1| < 4, a map ®;(t,w) =
(t+t; — L,w) from Bgywe)r,(9:) to C(X) gives (1 & W(0))-bi-Lipschitz equivalent to
the image. By @Z(g]l) = x;, we have Imagei) C Batw(s)r (z;). Therefore, we have
H™(Baywr, (i) < (1+¥(0) H (Baswr,(€:) < (14 ¥(0))H"(By,(2;)). Thus, since
v=CH", we have

(337) (U-1)x,(14w(6))s Z )'CH™(Basweyr (i)

(338) (14 W(s }:r—%jﬂﬂ B, (z;))

(339) < (1+¥(0))((v-1)x,5(A) +€).

By letting € — 0 and § — 0, we have the assertion. O]

Similarly, we have the following lemma:
LEMMA 7.20. We have Hy '(A) = H"Y(A) for every Borel set A C {1} x X.

We shall remark the following: By Bishop-Gromov volume comparison theorem for
v, there exists V' > 1 such that V=1 < lim, o v(B,(x))/w,r" < V for every € By(p). On
the other hand, since v = CH™, we have lim, o v(B,((t,w)))/w,r™ = lim, o v(B,((s,w)))/w,r™
for every 0 < s <t < oo and w € X. By these facts and Corollary 7.4, it is easy to check
that there exists C7 > 1 such that C;'v_1(A) < H" (A) < Cyv_,(A) for every Borel
subset A of C'(X).

LEMMA 7.21. The product measure H* x H" ' on R x X is equal to H™.

PROOF. It suffices to check that H"([0,a] x A) = aH™ '(A) for every Borel subset
A os X and a > 0. By Corollary 3.58, there exists a Borel subset X of X such that the
following properties hold:

1. H™(X\ X) =0.
2. For every x € X and € > 0, there exist 75 > 0 such that for every 0 < r < g, there
exist a compact set C* C B,(x) and a Lipschitz ¢ from C® to R"~! such that

H (BL@)\CF) _
H (B, (@)
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and that ¢¥ gives (1 4 €)-bi-Lipschitz equivalent to the image.

For every x € X and € > 0, by Fubini’s theorem, we have

(340) H"([0,a] x C7) = (1 £€)H"([0,a] x ¢7(C}))
(341) = (1+e)aH" (47 (CF))
(342) = (1£e)aH"(C)

(343) = (1+e)aH" (B, (x))

for every sufficiently small » > 0. On the other hand, by the proof of [44, Lemma 5.2,
we have H™([0,a] x A) < C(n)aH" '(A) for every A C X. Thus, we have
H™([0,a] x B,(x))

lim L =1
=0 aH"(B,(x))

for every x € X. Therefore, there exists a Borel set A C A such that H"1(A\ A) =0

and _
H" (AN B,())

lim —

r=0 HY(By(x))
for every z € A. We remark that H™([0,a] x (A\ A)) < C(n)aH" (A \ A) = 0. We fix
a sufficiently small € > 0. By Proposition 2.12, there exists a pairwise disjoint collection
{B,,(x:) }ien such that z; € A, r; < e, AA\UY, B, (z;) C UsZ w1 Bsr, (z;) for every N € N
and

a*((0,a] x B, (x;)) 1' ‘H”_l(A N B,(z;))
aH" (B, (z;)) H"Y(B,(z;))
for every 0 < r < r;. We take N satisfying Y- v, H" *(B,,(z;)) < e. Then, we have

—1‘<6

(344) H"([0,a] x A) < iﬂ”([o, al x B,,(x:)) + ii;l H"([0,a] x Bs,,(z;))
(345) < ﬁ; H™([0,a] X By, (z;)) + aC(n) g;l H" ' (Bs,,(2:))
(346) < i H™([0,a] X By, (z;)) + U(e; n, a, Cy)

(347) < aZH” YB,,(;)) + ¥(e;n,a,Cy)

(348) < a(l +e)(H" YA) + €) + U(e;n, a,Cy).
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Therefore, we have
H™([0,a] x A) < aH" '(A).

On the other hand, we have
N N
aH" ' (A) =a (Z H" Y (B,,(x;)) + ¥(e;n, C’l)) <(l+e) ZH”([O, a] x B,,(x;)) +¥(e;n,a,C)
i=1 i=1

and

Z; aHn 1( Tz(xl)\A) .
Bo(20) < C(n)(1+e) H"1(B, (1)) < U(en).

H" ([0, a] x (By,(x:) \ A))
H™([0,a] x

Therefore, we have

(349) aH"'(A) < (1+¢€) Y H™([0,a] x B, (2;)) + ¥(e;n, a,C)

=1

(350) <(1+Y(en)) Z H" (([0,a] x By,(z;)) N A) + ¥(e;n,a,Ch)

(351) < (1+¥Y(en)H™([0,a] x A) 4+ ¥(e;n,a,Ch).

Therefore, we have
aH" ' (A) < H"([0,a] x A).

Thus, we have the assertion. O

PROPOSITION 7.22 (Co-area formula for distance functions on non-collapsing Eu-

/ fdH" = / / fdH™ dt
C(X) 0 0B (p)

PROOF. By [42, Theorem 5.2] and Civ_; < H" ! < Cyv_y, it suffices to check that

clidean cones). We have

for every f € L'(C(X)).

mm—/ H" Y(0B;(p) N B,(z))dt = 1

for every x € C(X) \ {p}. We put R = p,7 > 0 and fix sufficiently small » > 0. Then,
since a map (¢, w) = (t,w) from B,(z) to R x X gives (1+ ¥(r))-bi-Lipschitz equivalent

to the image, we have

Ba-w(m)r(®(2)) C ®(B.(2)) C Buswi-(®(2)).
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On the other hand, by Lemma 7.21 and Fubini’s Theorem, we have

R+(14+Y(r))r

H" (Bt (®(2))) = /R(lJr\I/(r))r H" ' (({t} x X) N Baywee(®(2))) dt.

Since ®(0B;(p) N Br(x)) C ({t} x X) N Baywy)-(P(x)), we have

R+(14+Y(r))r

1" (Bassioy (0(2) > (1= ¥(rim) | oy, TEBBI 0B

Therefore, we have
1 o0
1> limsup ————— H" Y (0B,(p) N B,(x))dt.
> timsup s | OB0) 0B, (@)

Similarly, we have

1 (o]
1 <liminf ———— [ H" (0B B,(x))dt.
e A TEAE) /O (0B:(p) N B, (x))
Therefore, we have the assertion. O

PROPOSITION 7.23. We have v_i(A) = C(n)CH" *(A) for every Borel set A C {1} x
X.

PRrOOF. By [16], we have
L HYB,(2)
r—0  wyr™
for every z € R,(Y). Since R,(Y) N ({1} x X) = {1} x R,,—1(X), by Proposition 7.22,
we have H" 1(X \ R,,_1(X)) = 0. We fix ¢,,7 > 0. We put
H"(B,(a))

Wpr™

=1

A'r = {a € AﬂRn_l(X),

—1‘<eforevery0<r§¢}.

By the definition of v_y, there exists {B,,(z;)}; such that x; € A., r; < min{d, 7} and
lv_1(A) =322 ri (B, (2;))] < e. Thus, we have

i=1"1

(352) (" )s(4,) < iw

(35 < fj L1 (B, 1)
(354) _ fj (1 e 0B, )
(355) <> 0 () + )

By letting 6 — 0, 7 — 0 and € — 0, we have

CH"™Y(A) < 2y (A).

Wn
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CLAIM 7.24. There exists a Borel subset Z of {1} x X such that H" ({1} x X)\ Z) =
0,
n—1/1m
L HABL() 0 ({1) x X))

=1
r—0 wn,lr”*

for every z € Z.

The proof is as follows. Let x be a point in X and {r;}; a sequence of positive
numbers satisfying 7, — 0. We assume that there exists a tangent cone (7,X,0,) of
X at z such that (X, 2,7 'dx) — (7,X,0,). By [44, Claim 4.5] and [7, Theorem 5.9],
we have (C(X),r; "do(x), (1,2), H*) — (R x T, X, (0,0,), H"). Moreover, By the H"~!-
rectifiability of 7, X (Corollary 3.58) and an argument similar to the proof of Lemma
7.21, we have H' x H"™' = H" on R x T, X. Since a sequence of compact sets [—1,1] x
E?ldx () € C(X) converges to [—1,1] x B1(0,), by Proposition 2.14 and Proposition
4.13, we have

lim H™([~1,1] x B} (2)) = H'([~1,1] x Bi(0,)).

1— 00

_ldX

By Proposition 7.22, we have H"([—1,1] x B’

we have

(x)) = 2H"*1(§;; dx(x)). Especially,

lim B (B} X (2)) = H"(B1(0,)).

Therefore, if we put Z =R, (Y) N ({1} x X), then we have Claim 7.24.

We put W = Leb(A N Z) with respect to the measure H"~!. By Proposition 2.12,
there exists a pairwise disjoint collection {B,,(a;)}; such that a; € W, r; < /100, W \
UY, B,.(a) C UiZ va1 Bsr, (a;) for every N and

Hn(Bm(aZ)) — 1+ Hnil(BTi(ai) ﬂW) 1l < e
Wt wn_lr?_l

for every i. We take N satisfying > . H" (B, (a;) N W) < e. Therefore, we have
S vi1t H Y (Bsy,(a;)NW) < U(e;n, C,). Then, by the assumption, we have Y% v wy 7" <
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U(e;n, Cy). Therefore, we have

(356) (v-1)s(W) < im‘ (B, (@) + iNO;I(M)‘lv(En(ai))

(357) < iri_lC’H”(Eri(ai)) + i C(n)Cri!

(358) < i r '\CH"(B,,(a;)) + ¥(e;n, C,C)

(359) < i Cw,r? 14 €) + ¥(e;n, C,CY)

(360) < 5:’1 (1+¢€) i H" Y B,,(a;) " W) + ¥(e;n, C,Ch)
(361) < f:j (1+ e);—l(W) +W(e;n, C,Cy).

By letting 6 — 0 and € — 0, we have

Thus, we have the assertion. O
We end this subsection by giving a proof of the following proposition:

PROPOSITION 7.25. We have

. tn—l -
H" N (By(x)) < Cln) o= H H(By(x))
forevery0 <s<t<mwandz e X.

ProoOF. We remark that there exists Cy > 1 such that for every metric space X , a bi-
Lipschitz map f¢ (%) = (1,%) from X to {1} x X c C(X) satisfies Lip fy +Lipf)f(1 < Cs.
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Therefore, by [42, Theorem 5.7] and Proposition 7.22, we have

(362)  H"'(Bi(x)) < C(n)H" N (Beye(1,2) N ({1} x X))
(363) = CO(n)C 'v_1(Bey(1,2) N ({1} x X))
< C(n)v (Cp(Beye(1,z) N ({1} x X)) N Ap(max{0,1 — Cst}, 1))

(364) = Cvol A, (max{0, 1 — Ct}, 1)
C
(365) < C(Z)U(Bg,cﬁu, z))
C(n)t"
(366) <AL By, (1,)
tnfl 1+C;13
(367) < C(n) / H* (0B, (p) N Byr, (1, 2))dr
s max{O,l—Cgls} ?
tn—l 1+C;15
(368) <C(n)—: / " P H" (OB, (p) N By, (1, 2))dr
" Jmax{0,1-C5 s} 2
n—1
(369) < C(n)tsn sH" Y (9B1(p) N Be1,(1,2))
tnfl
(370) < C(n) prr H" "1 (0B1(p) N Bg;1,(1, 7))
tnfl 3
(371) < C(n) = H" ' (B(x))
0
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