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INTEGRAL SECTIONS OF SOME ELLIPTIC K3 SURFACE VIA
THE BINARY GOLAY CODE

HISANORI OHASHI

Abstract. We study the Mordell-Weil lattice E(K) of the elliptic K3 surface
y2 = x3 + t11 − t in characteristic 11. We give an exact description of E(K) by
using an embedding into a Niemeier lattice. Then we use the properties of the
binary Golay code to enumerate the number of low length vectors. In particular
we can compute the kissing number of this lattice (equivalently the number of
integral sections) theoretically. We also answer a question posed by Dolgachev and
Keum, showing that there are infinitely many wild automorphisms on the surface
with an isolated fixed point.

1. Introduction

A K3 surface is a smooth projective surface S defined over an algebraically closed

field k such that KS ∼ 0 and H1(S,OS) = 0. One remarkable aspect of the theory

of K3 surfaces is the close connection between finite symplectic automorphisms of

K3 surfaces and the Mathieu group M24, the oldest finite simple group of sporadic

type [8, 7, 5, 6]. In this paper we want to take up a slightly different viewpoint of

this special connection. It is concerned with the theory of Mordell-Weil lattices [11].

Let f : S → C an elliptic surface with at least one singular fiber and a section

(O). Its generic fiber is an elliptic curve (E/K,O) defined over the function field

K = k(C). We denote by (P ) the section corresponding to a K-rational point

P ∈ E(K).

P ∈ E //
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˜
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��
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Spec K //
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In this setting, one defines the canonical height pairing ( , ) which gives E(K)/(torsion)

a structure of (in general Q-valued) positive-definite lattice [11]. (E(K), ( , )) is

called the Mordell-Weil lattice of f .
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2 Mordell-Weil lattice

In this paper we let S be the unique supersingular K3 surface with Artin invariant

σ = 1 in characteristic 11. This surface plays a crucial role in papers [12, 6] in

different ways. They both find an elliptic surface structure on S which can be

written as

(1.1) y2 = x3 + t11 − t, k = F11,

(see also [6, Lemma 3.5]). Our main theorem gives an exact description of the

Mordell-Weil lattice of this elliptic surface in terms of the Niemeier lattice (see The-

orem 2.1) L(A24
1 ).

Theorem 1.1. Let {e1, · · · , e24} be the basis of A24
1 and we assume that {1, · · · , 12}

constitutes an umbral dodecad of the binary Golay code. Then the Mordell-Weil

lattice E(K) of (1.1) is isomorphic to the orthogonal complement of the sublattice

N ⊂ L(A24
1 ) generated by{

e1,
1

2
(e1 + · · · + e12),

1

2
(e13 + · · · + e24), e24

}
.

The binary Golay code and an umbral dodecad is an important ingredient in the

construction of L(A24
1 ), see Section 3 for a summary. The Mathieu group M24 appears

as the automorphism group of the binary Golay code. We will make a full use of this

fact in our computation of the number of integral sections of (1.1), see below. We

also apply our study of Mordell-Weil lattice to solve the problem posed in [6].

Before introducing these applications, we would like to include an interpretation

of our result into purely lattice-theoretic terms.

Theorem 1.2 (= Theorem 3.1). Let M be an integral even positive-definite lattice

with the following numerical invariants. rank(M) = 20, the discriminant group

AM ' (Z/11Z)2, the minimal norm µM ≥ 4 and #O(M) is divisible by 11. Then

this lattice M can be embedded into L(A24
1 ) in such a way that the orthogonal

complement N is generated by{
e1,

1

2
(e1 + · · · + e12),

1

2
(e13 + · · · + e24), e24

}
,

where we put the condition that {1, · · · , 12} is an umbral dodecad of the binary

Golay code.

Section 3 is devoted to the proof of this theorem. The reduction of Theorem 1.1

to Theorem 1.2 is verified at the end of Section 2. Via the isomorphism M ' E(K),
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the minimal vectors of M and the integral sections of (1.1) correspond to each other;

hence the kissing number (see Section 2) and the number of integral sections coincide.

The computation of them is our first application.

An integral section of the elliptic surface f : S → C is a section (P ) such that

(P ) ∩ (O) = ∅. It is an analogue of integral points of elliptic curves. In the case of

rational elliptic surfaces, they are studied in detail in [13]. The properties of integral

sections of elliptic K3 surfaces are not known. Especially the problem of finding

a K3 surface with the largest number of integral sections remains unsolved [13, II,

Question 4.3]. The next proposition computes the number of integral sections of

(1.1) by using Theorem 1.1 and the connection to Mathieu group M24.

Proposition 1.3 (= Proposition 4.2). The kissing number of the lattice M is 12540.

Equivalently, we have 12540 integral points on the elliptic curve (1.1).

Our enumeration is based on the properties of binary Golay code and M24, espe-

cially the famous Steiner property (Proposition 4.1). Using the same method, we can

further compute the number of vectors of next length, see Proposition 4.4.

Our next application is concerned with the automorphisms of S. An automorphism

of a K3 surface in characteristic p is wild if it is of order p. Wild automorphisms

are classified in [4, 5] according to the structures of their fixed loci. In characteristic

11, the possibility of the fixed locus is either a connected curve or an isolated one

point, but the existence of the latter case has not been confirmed yet. Since for

characteristic p ≤ 7 we have such automorphisms and for characteristic p ≥ 13

there are no such automorphisms, this problem of existence in characteristic 11 is

interesting (see the sentence before Corollary 3.3 of [6]). We will prove the following

existence result (Proposition 5.5).

Proposition 1.4. There exist infinitely many P ∈ E(K) with the associated auto-

morphism tP α has an isolated fixed point.

Actually we will be able to give a more precise information for P with several

byproducts in Section 5. First we will give a slightly different construction of the

automorphism group PSL(2, F11) · Z/12Z of the surface S. It is interesting that it

seems that the difference corresponds to the exceptional isomorphism PSU2(11) '
PSL(2, F11) of [6, Lemma 3.5]. With the help of [9], we can prove that every element

of the Mordell-Weil lattice E(K) is defined over F112(t), Proposition 5.2. These
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together gives a very explicit description of the isometry group O(E(K)), Corollary

5.3. Combining these considerations and [6, Lemma 3.2], we obtain Proposition 5.5.

The strategy of the proof of Theorem 1.2 is as follows. We embed M into some

Niemeier lattice L by constructing the orthogonal complement N , as in [7]. The

difficulty is in determining L. Here the important tool is the existence of isometry of

order 11. Together with the structure theory of isometry groups of Niemeier lattices,

it excludes 21 of 24 Niemeier lattices. The impossibility of the Leech lattice is easily

seen. We show that the lattice L(A12
2 ) can also be excluded by reducing the problem

to the condition µM ≥ 4. Here we have to recall the properties of ternary Golay

codes; a summary is included in Section 3 for the convenience. In this way we can

show that L ' L(A24
1 ). Again we use the condition on µM to see the uniqueness of

the embedding and we obtain Theorem 1.2.

Perhaps it is interesting to investigate an extension of Theorem 1.2 to other prime

p. In fact for p ≡ 3( mod 4), p ≥ 11 we have a Mordell-Weil lattice of supersingular

K3 surface with Artin invariant 1 which has an embedding into some Niemeier lattice.

But for p 6= 11 our method in this paper is not effective. The author does not know

any work related to this direction.

Finally we remark that our lattice E(K) is the one listed in [1] as (PSL(2, F11) ×
D12).C2.

Acknowledgement. The author is grateful to Professor Shigeru Mukai for intro-

ducing him to the papers [5, 6]. The author is grateful to Professor Tetsuji Shioda

for the comments on the first draft of this paper and showing his private note. His

suggestion of considering integral sections led this paper into this form. The author

is grateful to Professor Matthias Schütt for pointing out a mistake in the first form

of Theorem 3.1.

The author is supported by global COE program of Kyoto university. This work

is supported by KAKENHI 21840031.

2. Lattices

A lattice L is a free Z-module of finite rank endowed with a symmetric bilinear

form ( , ). We shall restrict ourselves to integral lattices in the sense that ( , )

takes values in Z. L is even if (l2) is even for all l ∈ L. The symbol ⊕ indicates an

orthogonal sum. A sublattice M is said to be primitive if L/M is torsion-free. For a
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positive-definite lattice L, the minimal norm µL is the number inf{(l2) | L 3 l 6= 0}.
The number of elements l for which (l2) = µL is called the kissing number of the

lattice.

Let L be an (integral) even lattice. L is said to be nondegenerate (resp. unimod-

ular) if the natural map L → L∗ = Hom(L, Z) is injective (resp. bijective). These

conditions are equivalent to that the determinant d(L) of the Gram matrix is 6= 0

(resp. = ±1). If L is nondegenerate, a canonical quadratic form qL : AL → Q/2Z is

induced on the factor group AL = L∗/L. We call (AL, qL) the discriminant quadratic

form of L. For basic results on discriminant forms, we refer to [10].

We denote by U the hyperbolic lattice defined by the Gram matrix

(
0 1

1 0

)
.

Am, Dn and El (m ≥ 1, n ≥ 4, l = 6, 7, 8) denotes the positive-definite root lat-

tice associated to the Dynkin diagram of each type.

O(L) denotes the group of self-isometries. An element l ∈ L of norm (l2) = 2

is called a root. A root l determines a reflection sl ∈ O(L) by sl(x) = x − (x, l)l.

The Weyl group W (L) is the normal subgroup of O(L) generated by all reflections

in roots.

A positive-definite even unimodular lattice of rank 24 is called a Niemeier lattice.

They are classified by Niemeier:

Theorem 2.1. There are 24 isomorphism classes of Niemeier lattices. Each of them

is uniquely determined by the sublattice R generated by all roots.

In this paper we denote by L(R) the Niemeier lattice whose root sublattice is R. A

detailed account of Niemeier lattices is in [3, Chapters 16 and 18]. The construction

of L(A12
2 ) and L(A24

1 ) will be recalled in Section 3, too.

Reduction of Theorem 1.1 to Theorem 1.2. The verification is easy. We see

that the singular fibers of (1.1) consists of 12 cuspidal fibers (type II in Kodaira’s

notation) at t = 0, 1, · · · , 10,∞. In particular all the fibers are irreducible. By

the isomorphism E(K) ' NS(S)/(trivial lattice) we see that E(K) is torsion-free,

rank E(K) = 20 and AE(K) ' (Z/11Z)2 because S is supersingular with σ = 1.

Moreover the canonical height pairing in E(K) takes the form (P, P ) = 4+2(P,O)S,

where ( , )S denotes the intersection pairing on S. Thus E(K) is integral valued,

even and µE(K) ≥ 4 follows. The last condition of Theorem 1.2 is verified by the

existence of the automorphism α : (x, y, t) 7→ (x, y, t + 1) preserving fibers and (O).
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This induces an isometry of E(K) of order 11, hence 11 | #O(E(K)). This completes

the reduction.

As a further remark, we see that

P is integral ⇔ (P 2) = 4.

On the other hand, we see in Section 4 that in fact µM = 4. Hence integral sections

and minimal vectors coincide via our identification.

3. The embedding theorem

In this section we prove Theorem 1.2.

Theorem 3.1 (=Theorem 1.2). Let M be an integral even positive-definite lattice

with the following numerical invariants. rank(M) = 20, the discriminant group

AM ' (Z/11Z)2, the minimal norm µM ≥ 4 and #O(M) is divisible by 11. Then

this lattice M can be embedded into L(A24
1 ) in such a way that the orthogonal

complement N is generated by{
e1,

1

2
(e1 + · · · + e12),

1

2
(e13 + · · · + e24), e24

}
,

where we put the condition that {1, · · · , 12} is an umbral dodecad of the binary

Golay code.

We note that for the proof we have to consider also the ternary Golay code besides

the binary Golay code. We include a summary of both in this section.

We start the proof of the theorem. To begin with, let us consider a lattice N

which is generated by g1, · · · , g4 whose Gram matrix in terms of this basis is given

by

(
2 1

1 6

)
⊕

(
6 1

1 2

)
. By the classification of finite quadratic forms [10, Section 1]

we see that the discriminant forms of M and N are both isomorphic to (Z/11Z)2

equipped with the quadratic form q(l1) = q(l2) = 2/11, q(l1 + l2) = 4/11 mod 2Z,

where {l1, l2} are the standard generators. Let {m1,m2} and {n1, n2} be such

generators of (AM , qM) and (AN , qN). Because we have the congruence

12 + 42 + (±4)2 ≡ 0 mod 11,

the subgroup of AM ⊕ AN generated by m1 + 4n1 + 4n2 and m2 + 4n1 − 4n2 is a

totally isotropic subgroup. Hence we can take an overlattice L of M ⊕ N which is

even unimodular of rank 24. Namely L is a Niemeier lattice.
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Our next task is to determine L. Let us pick up an isometry φ of M of order 11,

which exists by the assumption. The group O(AM , qM) ' O−1(2, F11) is isomorphic

to the dihedral group D12 of order 24. Hence φ extends to an element of O(L),

which we still denote by φ, that acts on N trivially. Then we use the assumption

µM ≥ 4 to see that φ gives a nontrivial element of order 11 in the factor group

O(L)/W (L) by [7, Lemma 6]. Let us consult [3, Table 16.1]. There the order of

the group O(L)/W (L) is presented as the number | G1 | · | G2 | except for the

case of Leech lattice Λ. As we have seen it is divisible by 11, so we have either

L ' L(A12
2 ), L(A24

1 ) or Λ. Obviously N has a root, so that L = Λ is excluded.

Impossibility of L = L(A12
2 ). Here we exclude the possibility of L = L(A12

2 ).

Let us recall the structure of the Niemeier lattice of type A12
2 . Let e, f be the

basis of root lattice A2 with relations (e2) = (f2) = 2, (e, f) = −1. The dual lattice

A∗
2 is generated by A2 and the element h̃ = (e + 2f)/3, and the discriminant group

A∗
2/A2 is isomorphic to F3 = Z/3Z generated by the residue class h of h̃. We fix this

isomorphism. Let ei, fi (1 ≤ i ≤ 12) be the basis of 12 copies of A2 and we regard them

as generators of R = A12
2 . We obtain the isomorphism R∗/R ' F12

3 ; the Niemeier

lattice L(A12
2 ) is defined as the overlattice of R, such that L(A12

2 )/R = C12 ⊂ R∗/R,

where the ternary Golay code C12 is a particular 6-dimensional subspace of F12
3 with

special properties.

To formulate the property of C12, we introduce the following. For an element

x = x1h1 + · · · + x12h12 ∈ F12
3 , the Hamming weight is by definition

wt(x) = #{i | xi 6= 0}.

One of special properties of C12 is that, for elements x ∈ C12, the Hamming weight

takes only values 0, 6, 9 or 12. In fact the number of elements of each Hamming weight

is known, 1, 264, 440 or 24 respectively, but we don’t need these precise numbers.

We prepare two lemmas.

Lemma 3.2. Let A2 be the root lattice and A∗
2 its dual. We can classify all low-

length vectors in A∗
2 easily and we obtain the following.

(1) Every element x ∈ A∗
2 has either (x2) = 0, 2/3, 2 or (x2) ≥ 8/3.

(2) If (x2) = 2/3, then there exists some root r ∈ A2 such that (r, x) = 0.

(3) If (x2) = 6, then there exist no roots r ∈ A2 such that (r, x) = 1.

(4) There exist no elements x ∈ A∗
2 with (x2) = 4.
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Lemma 3.3. For a subset B ⊂ L(A12
2 ), let n(B) be the following:

n(B) := #

{
i

there exist some root r in the i-th component of A12
2

which is orthogonal to every element of B.

}
.

Here the i-th component is the sublattice generated by ei and fi. Then, For any root

r ∈ L(A12
2 ) we have n(B ∪ {r}) ≥ n(B) − 1.

Proof. Because every root of L(A12
2 ) is contained in one unique component, the in-

equality holds. ¤

In the following we show that any embedding k of N into L(A12
2 ) has some root

in its orthogonal complement, so that we get a contradiction to the assumption on

the minimal norm of M . We put gi := k(gi). Since g1, g4 are roots, by Lemma 3.3 it

is sufficient to see n(g2, g3) ≥ 3. Let us classify elements x of L(A12
2 ) with norm 6.

By Lemma 3.2(1), wt(x) = 12 is not the case. Similarly if wt(x) = 9 then x is the

sum of elements from 9 of 12 components, all of which is of norm 2/3. We describe

this situation by saying that x is of the form 9 · (2/3). In the same way if wt(x) = 6

then x is of the form either 6 · (2/3) + (2) or 5 · (2/3) + (8/3). If wt(x) = 0 then x

is of the form either 3 · (2) or (6) by using Lemma 3.2(4). We apply this to x = g2

and g3. Considering the existence of g1 and g4, Lemma 3.2(3) excludes the case of

the form (6).

Thus we obtain four possibilities for the form of each g2 and g3. In every combi-

nation, we will see the minimum possibility of the value n(g2, g3) as in the following

table.

forms of g2 and g3 9 · (2/3) 6 · (2/3) + (2) 5 · (2/3) + (8/3) 3 · 2

9 · (2/3) 3 5 6 9

6 · (2/3) + (2) 4 5 8

5 · (2/3) + (8/3) 5 8

3 · (2) 6

In the table, because we have a symmetry the entries below the diagonal are

kept blank. Let us confirm the table in the case g2 is of the form 9 · (2/3) and g3

is 6 · (2/3) + (2), for example. We prepare 12 boxes which corresponds to the 12

components of (A2)
12. For each g2 or g3, we write the numbers 2/3, 2 and 8/3 in the

box arbitrarily, but in the way obeying the given form of g2 or g3.
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g2 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3

g3 2/3 2/3 2/3 2/3 2/3 2/3 2

sum 2/3 2/3 2/3 4/3 4/3 4/3 4/3 4/3 4/3 2 0 0

Below the box we add the ”sum” row, whose entry is just the sum in the box. The

values n(g2, g3) in the table is just the number of entries in the sum which is ≤ 2/3. It

is a consequence of Lemma 3.2 (2). Thus the minimum of n(g2, g3) happens exactly

when the overlap between 2/3 entries of g2 and g3 is maximal and other entries are

scattered. The other cases are treated in the same way.

Since the value n(g2, g3) is always more than 2, the case L = L(A12
2 ) is excluded.

A summary on L(A24
1 ). Let us recall the structure of L(A24

1 ). Let ei, (1 ≤ i ≤ 24)

be the basis of R = A24
1 with the relation (e2

i ) = 2, (ei, ej) = 0. We have the

isomorphism R∗/R ' F24
2 . In the vector space F24

2 , we have a special 12-dimensional

subspace called the binary Golay code C24. The Niemeier lattice L(A24
1 ) is defined as

L(A24
1 )/R = C24 ⊂ R∗/R.

We remark that F24
2 ' R∗/R has the basis {(1/2)ei | 1 ≤ i ≤ 24}. This space can

be identified naturally with the power set 2Ω of Ω = {1, 2, · · · , 24}, whose addition

is given by the symmetric difference A ª B = (A ∪ B) − (A ∩ B) between subsets

A,B ⊂ Ω. For I ⊂ Ω, if we write xI :=
∑

i∈I(1/2)ei then the Hamming weight of xI

is just #I. In the following, we identify elements of C24 with subsets of Ω.

It is known that the Hamming weight of elements of the binary Golay code C24

takes only values 0, 8, 12, 16 and 24. We call an element of weight 8 a (special)

octad, and weight 12 an (umbral) dodecad. It is known that there are 759 octads

and 2576 dodecads. Since there exists an element of weight 24, C24 (as a subset

of 2Ω) is closed under taking complements. Permutations of Ω that preserves C24

constitute the Mathieu group M24. This is one of the finite simple groups of sporadic

type. M24 acts on the set of dodecads transitively and the stabilizer subgroup is

isomorphic to M12, [2, Theorem 15]. This M12 is 1 + 3 transitive on the dodecad

and its complement. We use this fact frequently. For the account of these beautiful

facts, we refer to [2].

Conclusion. So far we have proved L = L(A24
1 ). In this case we can show that

the embedding of N is unique up to automorphisms, and obtain Theorem 3.1. As in

the case of L(A12
2 ) let k : N → L(A24

1 ) be the given embedding such that M is the
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orthogonal complement of k(N). We put gi = k(gi). An element x ∈ L(A24
1 ) with

(x2) = 6, such as g2, g3, is either of the form 12 · (1/2) (wt(x) = 12), 8 · (1/2) +

(2) (wt(x) = 8) or 3 · (2). But here it is easy to see that to have no roots in the

orthogonal complement, g2 and g3 both has to be of the form 12 · (1/2) and their

underlying dodecads must be complementary, so that there exists a dodecad D such

that g2 = (1/2)
∑

i∈D(±ei) and g3 = (1/2)
∑

i∈Ω−D(±ei). We can re-index Ω so that

we can assume D = {1, 2, · · · , 12}. On the other hand, by the 1 + 3 transitivity, we

can assume g1 = ±e1 and g4 = ±e24. Finally we can adjust the signature by the

Weyl group action, and we obtain Theorem 3.1.

4. Low length vectors

Let L(A24
1 ) be the Niemeier lattice of type A24

1 and N be the primitive sublattice

generated by {e1,
1
2
(e1 + · · · + e12),

1
2
(e13 + · · · + e24), e24}, where D1 = {1, · · · , 12}

is a dodecad. We refer to [3] or the previous section for the summary on L(A24
1 ).

Let M be the orthogonal complement of N . In this section we compute the number

of vectors of norm 4 and 6 in M . The number of norm 4 vectors has a meaning:

it is the kissing number of M , or the number of integral points of the elliptic curve

y2 = x3 + t11 − t as we explained in the introduction.

We put D2 = Ω −D1.

4.1. minimal vectors. Elements of L of norm 4 is easily seen to be one of the

following forms:

• Type I: ±ej ± ek for j 6= k,

• Type II:
∑

i∈O ±(1/2)ei for O an octad.

The condition for a vector of type I to be orthogonal to N is that, either {j, k} ⊂
D1 − {1} or {j, k} ⊂ D2 − {24}, and it is of the form ±(ej − ek). Thus we obtain

2

(
11

2

)
+ 2

(
11

2

)
= 220 vectors.

Next we consider type II vectors. The choice of sign depends on (#O∩D1, #O∩
D2), so in general let us call O an (a, b)-octad if (#O∩D1, #O∩D2) = (a, b). There

exist (2, 6), (4, 4) and (6, 2)-octads.

Let S be the set of (6, 2)-octads. Recall that the Steiner property of the binary

Golay code is the following proposition.

Proposition 4.1. For any 5-element subset A of Ω, there exists a unique octad that

contains A.
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By this property, for any 5-element set A ⊂ D1, we have a unique octad that

contains A, which is necessarily a (6, 2)-octad. This correspondence is clearly 6 to 1,

so #S =

(
12

5

)
/6 = 132. On the other hand, S has the involution ι : O 7→ O ªD1,

which gives a bijection between the subsets S+ = {O ∈ S | 1 ∈ O} and S− = {O ∈
S | 1 6∈ O}. Thus #S+ = S− = 66.

Let us consider next the map ϕ : S → T := {2 points of D2},O 7→ O ∩ D2.

This is compatible with ι and defines S/ι ' S− → T . Since the stabilizer M12

is 1 + 3 transitive on D1 and D2, ϕ is surjective. Then the accidental equality

#T =

(
12

2

)
= 66 shows that ϕ induces a bijection of S− and T .

Thus, we see that there are

(
11

2

)
= 55 (6, 2)-octads which is disjoint from

{1, 24}. Since there exists an involution that exchanges D1 and D2, the same number

of (2, 6)-octads exist. By [2, Table 10.1], there exist exactly 330 octads which is

disjoint from {1, 24}. Hence we have 220 (4, 4)-octads which is disjoint from {1, 24}.
Taking the choice of sign into consideration, we obtain

55

(
6

3

)(
2

1

)
+ 220

(
4

2

)(
4

2

)
+ 55

(
2

1

)(
6

3

)
= 12320

vectors of type II. In sum, we obtain

Proposition 4.2. The kissing number of the lattice M is 12540. Equivalently, we

have 12540 integral points on the elliptic curve (1.1).

We summarize the following lemma for the use in the next subsection.

Lemma 4.3. The number of (6, 2), (4, 4) or (2, 6)-octads which is disjoint from

{1, 24} is 55, 220 or 55 respectively.

4.2. Norm 6 vectors. We can compute in the same way the number of vectors of

norm 6 in M . It might be of another interest, so let us include here. Vectors of norm

6 in L(A24
1 ) are one of the following forms.

• Type I: ±ej ± ek ± el for j 6= k 6= l 6= j,

• Type II: ±ej +
∑

i∈O ±(1/2)ei for O an octad which doesn’t contain j,

• Type III:
∑

i∈D ±(1/2)ei for D a dodecad.

Type I vectors cannot be orthogonal to N . Type II vectors are easily counted using

Lemma 4.3. For example, if O is a (6, 2)-octad and j ∈ D1 then the choice of j has
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5, the sign has 2

(
6

2

)(
2

1

)
, so there are 5 · 60 · 55 = 16500 vectors, etc. Here we

obtain 220440 vectors.

The counting of Type III vectors can also be reduced to Lemma 4.3. As in the

previous subsection, the main point is the number of (4, 8)-dodecads D disjoint from

{1, 24}. Such D are in one-to-one correspondence to (4, 4)-octads O such that 1 6∈ O
and 24 ∈ O by O = D ªD2. We denote by Q the set of these octads.

Let R be the set of 4 element subsets of D1 − {1}. Clearly #R = 330. We have

a natural injection Q → R,O 7→ O ∩ D1. For an element A ∈ R, A ∪ {24} defines

uniquely an octad O′ by the Steiner property. Moreover O′ 6∈ Q if and only if O′ is a

(6, 2)-octad that contains 24. By the bijection S/ι ' T from the previous subsection,

we have eleven such O′ with 1 ∈ O′ and eleven such O′′ with 1 6∈ O′′, so we obtain

the number #Q = #R − 11 · 5 − 11 ·

(
6

4

)
= 110.

Using [2, table 1.2] as in the previous subsection, we see that the number of (4, 8),

(6, 6) and (8, 4)-octads disjoint from {1, 24} is 110, 396 and 110 respectively. Taking

the sign into consideration, we obtain

110

(
4

2

)(
8

4

)
+ 396

(
6

3

)(
6

3

)
+ 110

(
8

4

)(
4

2

)
= 250800

vectors of Type III. In sum, we obtain

Proposition 4.4. There are 471240 vectors of norm 6 in M .

5. Automorphisms

Let S be the elliptic K3 surface defined by y2 = x3 + t11 − t in characteristic

11. There exist many symmetries on the surface S, as shown in [6]. Let us give

a slightly different description. Let α be the automorphism defined by (x, y, t) 7→
(x, y, t + 1), β be defined by (x, y, t) 7→ (x/t4, y/t6,−1/t). Moreover let γ be defined

by (x, y, t) 7→ (ζ2x, ζ3y, ζ6t), where ζ = ζ60 ∈ F112 is a primitive 60-th root of unity

in characteristic 11. We note that they all preserve the zero-section (O).

Let H = 〈α, β〉. The fundamental defining relation for PSL(2, F11),

(5.1) PSL(2, F11) = 〈a, b | a11 = (a4ba6b)2 = 1, (ab)3 = b2〉,

found in ATLAS shows that H ' PSL(2, F11). In particular H is symplectic. Let

G = 〈α, β, γ〉. By the relation γ12 = αd9
βαdβαd9

β where d = ζ6 is an element in F11,
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and by the fact that γ5 acts on S purely non-symplectically, we obtain the structure

of G:

G ' PSL(2, F11) · Z/12Z.

Thus G has order 7920. In [6] they use the automorphism group GU(2, 11)/{±1} of

the surface S. Although they are isomorphic, GU(2, 11)/{±1} ' PSL(2, F11)·Z/12Z,

this isomorphism is not canonical and corresponds to the change of variables (done

over F114) in [6, Lemma 3.5]. We also note that the action of our G is defined over

the quadratic extension F112 , since ζ ∈ F112 .

Remark 5.1. γ30 is the inversion of the fibers. Its fixed locus consists of (O) and

a curve C of genus 10. C passes through the 12 cusps of the singular fibers. The

quotient S/γ30 is hence the Hirzebruch surface of degree 4. Since γ30 is in the center

of G, G/γ30 acts on C. This gives one counterexample to the Hurwitz’s formula

# Aut(C) ≤ 84(g − 1), which is valid in characteristic zero.

Let us combine Theorem 3.1 and these automorphism groups.

Proposition 5.2. Every element of the Mordell-Weil lattice E(K) is defined over

F112(t). Namely the minimal splitting field is F112(t).

Proof. Since all the fibers of the fibration are irreducible, we have a natural isomor-

phism NS(S) ' U ⊕ E(K). G acts on E(K) as isometries, and since the represen-

tation of Aut(S) on NS(S) is faithful, we see G ⊂ O(E(K)).

Let us consider the Frobenius map η, which acts on a section (x(t), y(t)) ∈ E(K)

by 11-th power on the coefficients, where we regard x(t), y(t) as rational functions

in t. This map is well-defined since the equation of S is defined over the prime field.

By [11, Proposition 8.13], η acts on E(K) as isometries.

On the other hand, [9, Theorem IX.1] finds a group named [L2(11)
2(3)

⊗ D12]20 of

order 15840 and maximal in GL(20, Q), together with the numerical invariants of

a lattice on which it acts. Our Theorem 3.1 shows that their lattice coincide with

E(K). Therefore #O(E(K)) = 15840. Since any power of η does not come from

Aut(S) except for the identity map, η is at most order 2. This shows that every

section is defined over at most F112(t).

In the other direction, obviously γ sends a section defined over F11(t) to one over

F112(t), thus η is not identical on E(K). ¤

Corollary 5.3. The orthogonal group O(E(K)) is generated by G and the Frobenius

η.
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On a question of Dolgachev and Keum. In [6] they posed the following question:

Is there a τ ∈ E(K) such that the fixed locus Sτα consists of an isolated point? Here

τ is considered as a fiberwise translation automorphism of S. Our arguments give

an answer to this question.

In the following, for P ∈ E(K), the translation automorphism is denoted by tP .

[6, Lemma 3.2] shows that tP α has order 11.

Lemma 5.4. tP α has an isolated fixed point if and only if (P ) and (O) do not meet

over t = ∞.

Proof. By the definition of α, the fixed point locus of tP α is contained in the fiber S∞

over t = ∞. S∞ is a cuspidal curve and therefore its group structure is isomorphic

to Ga. Since tP acts on it by a translation, the lemma is clear. ¤

Thus every integral section induces such an automorphism. In fact, Proposition

5.2 gives infinitely many such.

Proposition 5.5. Sections P ∈ E(K) with #StP α < ∞ consist of the set-theoretic

complement to a sublattice of E(K) of index 112. In particular there exist infinitely

many P ∈ E(K) whose tP α has an isolated fixed point.

Proof. We consider the specialization homomorphism

sp : E(K) → S#
∞ ' Ga, P 7→ (P ) ∩ S∞.

Explicitly, we can write down sp(x(t), y(t)) = limt→∞(x/t4)/(y/t6) under the identi-

fication Ga = F11. This is an integer-coefficient rational function in the coefficients

of x(t), y(t). By Proposition 5.2 the image of sp is contained in the subfield F112 .

On the other hand, for P ∈ E(K), we see that sp(γ(P )) = ζ−11sp(P ). If P is inte-

gral, since sp(P ) 6= 0, this element and sp(γ(P )) spans the subfield F112 . Thus sp is

surjective onto F112 and the proposition follows. ¤
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