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The perturbative invariants of rational homology 3-spheres
can be recovered from the LMO invariant

Takahito Kuriya, Thang T. Q. Le, Tomotada Ohtsuki

Abstract

We show that the perturbative g invariant of rational homology 3-spheres can be recovered from
the LMO invariant for any simple Lie algebra g, i.e., the LMO invariant is universal among the
perturbative invariants. This universality was conjectured in [25]. Since the perturbative invariants
dominate the quantum invariants of integral homology 3-spheres [13, 14, 15], this implies that the
LMO invariant dominates the quantum invariants of integral homology 3-spheres.

1 Introduction

In the late 1980s, Witten [33] proposed topological invariants of a closed 3-manifold
M for a simple compact Lie group G, which is formally presented by a path integral
whose Lagrangian is the Chern-Simons functional of G connections on M . There are
two approaches to obtain mathematically rigorous information from a path integral: the
operator formalism and the perturbative expansion. Motivated by the operator formalism
of the Chern-Simons path integral, Reshetikhin and Turaev [31] gave the first rigorous
mathematical construction of quantum invariants of 3-manifolds, and, after that, rigorous
constructions of quantum invariants of 3-manifolds were obtained by various approaches.
When M is obtained from S3 by surgery along a framed knot K, the quantum G invariant
τG
r (M) of M is defined to be a linear sum of the quantum (g, Vλ) invariant Qg,Vλ(K) of

K at an rth root of unity, where g is the Lie algebra of G, and Vλ denotes the irreducible
representation of g whose highest weight is λ. On the other hand, the perturbative
expansion of the Chern-Simons path integral suggests that we can obtain the perturbative
g invariant (a power series) when we fix g, and obtain the LMO invariant (an infinite
linear sum of trivalent graphs) when we make the perturbative expansion without fixing
g. As a mathematical construction, we can define the perturbative g invariant τg(M) of a
rational homology 3-sphere M by arithmetic perturbative expansion of τPG

r (M) as r → ∞
[27, 32, 23], where PG denotes the quotient of G by its center. Further, we can present the

LMO invariant ẐLMO(M) [25] of a rational homology 3-sphere M by the Aarhus integral
[5]. It was conjectured [25] that the perturbative g invariant can be recovered from the

LMO invariant by the weight system Ŵg for any simple Lie algebra g. In the sl2 case,
this has been shown in [28]. See Figures 1 and 2, for these invariants and relations among
them.

The aim of this paper is to show the following theorem.
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Theorem 1.1 (see [3, 21]1). Let g be any simple Lie algebra. Then, for any rational
homology 3-sphere M ,

Ŵg

(
ẐLMO(M)

)
= |H1(M ; Z)|(dim g− rank g)/2 τg(M),

where |H1(M ; Z)| denotes the cardinality of the first homology group H1(M ; Z) of M .

We give two proofs of the theorem: a geometric proof (Sections 4.1 and 5.2) and an
algebraic proof (Sections 4.2 and 5.1). The theorem implies that the LMO invariant
dominates the perturbative invariants. Further, since the perturbative invariants domi-
nate the quantum Witten-Reshetikhin-Turaev invariants of integral homology 3-spheres
[13, 14, 15], it follows from the theorem that the LMO invariant dominates the quantum
invariants of integral homology 3-spheres.2

Let us explain a sketch of the proof when M is obtained by surgery on a knot. The
LMO invariant ẐLMO(M) can be presented by the Aarhus integral [5]. It is shown from

this presentation that the image Ŵg

(
ẐLMO(M)

)
can be presented by an integral of Gauss

type over the dual g∗, or alternatively by an expansion given in terms of the Laplacian
∆g∗ of g∗. On the other hand, as we explain in Section 6.2, the perturbative invariant
τg(M) is presented by a Gaussian integral over h∗, where h is a Cartan subalgebra of g, or

1It was announced in [3] that the perturbative g invariant can be recovered from the LMO invariant. However, their
proof is not published yet. The first author [21] showed a proof, but his proof is partially incomplete. The aim of this paper
is to show a complete proof of the theorem.

2For rational homology 3-spheres, it is known [9] that the quantum WRT invariant τ
SO(3)
r (M), at roots of unity of order

co-prime to the order of the first homology group, can be obtained from the perturbative invariant τsl2 (M). Hence, the

LMO invariant ẐLMO(M) dominates τ
SO(3)
r (M) for those roots of unity.
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alternatively by an expansion given in terms of the Laplacian ∆h∗ of h∗. We then show that

Ŵg

(
ẐLMO(M)

)
= τg(M) by establishing a result relating integrals over g∗ and integrals

over h∗, similar to the well known Weyl reduction integration formula. Alternatively, we
show Ŵg

(
ẐLMO(M)

)
= τg(M) by using Harish-Chandra restriction theorem that relates

the Laplacian ∆g∗ on g∗ to the Laplacian ∆h∗ on h∗. For a sketch of the algebraic proof,
see also Figure 3.
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Figure 3: Sketch of the algebraic proof of Theorem 1.1, when M is obtained from S3 by surgery along a
framed knot K

In case when M is obtained by surgery on a link we also present two proofs. The
first one is more algebraic. We reduce the theorem to the case of surgery on knots by
using the fact that the operators involved are invariant under the action of g. The other
proof has quite a different flavor. We show that two multiplicative finite type invariants
of rational homology spheres are the same if they agree on the set of rational homology
spheres obtained by surgery on knots (for finer results see Theorem 5.4). This result is

also interesting by itself. The theorem then follows, since both Ŵg

(
ẐLMO(M)

)
and τg(M),

up to any degree, are finite type. This part relates the paper to the origin of the theory:
The discovery of the perturbative invariant of homology 3-spheres for SO(3) case [27]
leads the third author to define finite type invariants of 3-manifolds.

The paper is organized, as follows. In Section 2, we review definitions of terminologies,
and show some properties of Jacobi diagrams. In Section 3, we present the proof of the
main theorem, based on results proved later. We consider the knot case in Section 4 and
the link case in Section 5. In Section 6, we discuss how the perturbative invariant can
be obtained as an asymptotic expansion of the Witten-Reshetikhin-Turaev invariant, and
give a proof that our formula of the perturbative invariant is coincident with that given
in [23]. We also show that finite parts of the perturbative invariant τg are of finite type.

The third author would like to thank Susumu Ariki for pointing out Harish-Chandra’s
restriction formula when he tried to prove Proposition 4.4 in the sl3 case. The authors
would like to thank Dror Bar-Natan, Kazuo Habiro, Andrew Kricker, Lev Rozansky,
Toshie Takata and Dylan Thurston for valuable comments and suggestions on early ver-
sions of the paper.
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2 Preliminaries

In this section, we recall basic facts about Lie algebras in Section 2.1 and theory of the
Kontsevich invariant in Section 2.3. We show some facts about Laplacian operators in
Euclidean spaces in Section 2.2, and present the LMO invariant in Section 2.4.

2.1 Lie algebra

In this paper, G is a compact connected simple Lie group, g its Lie algebra and h a fixed
Cartan subalgebra of g. Up to scalar multiplication, there is a unique Ad-invariant inner
product on g. The complexification gC of g can be presented as gC = g +

√
−1 g. Then

hC = h +
√
−1 h is a Cartan subalgebra of gC .

There is a root system ΦC ⊂ (hC)
∗ of the pair (gC , hC). It is known that ΦC, as well as

the weights of g-modules, are purely imaginary, i.e., ΦC ⊂ (
√
−1 h)∗ ≡

√
−1 h∗. Following

the common convention in Lie algebra theory (see e.g. [16]), we call β ∈ h∗ a real root
(resp. a real weight of a g-module) if

√
−1 β is a root (resp. a weight of the g-module).

We normalize the invariant inner product so that the square length of every short root
is 2. We denote by W the Weyl group, Φ+ the set of positive real roots of g, and ρ
the half-sum of positive real roots. Let φ+ be the number of positive roots of g. One
has φ+ = (dim g − dim h)/2 = (dim g − rank g)/2. We denote by Vλ the irreducible
representation of g whose highest weight is

√
−1 λ.

Let S(g) and U(g) be respectively the symmetric tensor algebra and the universal
enveloping algebra of g. One can naturally identify S(g) with P (g∗), the algebra of
polynomial functions on g∗. Throughout the paper, ~ is a formal parameter, and q =
e~ ∈ R[[~]]. One considers S(g)[[~]] as a ring of functions on g∗ with values in R[[~]].

The following W -skew-invariant functions D is important to us:

D(λ) :=
∏

α∈Φ+

(λ, α)

(ρ, α)
.

When λ − ρ is a dominant real weight, D(λ) is the dimension of Vλ−ρ.
We identify h∗ with a subspace of g∗ using the invariant inner product. For a function

g on g∗, its restriction to h∗ will be denoted by P(g).
A source of function on h∗ is given by the enveloping algebra U(g). For g ∈ U(g) we

define a polynomial function, also denoted by g, on h∗ as follows. Suppose λ − ρ is a
dominant real weight. One can take the trace TrVλ−ρ

(g) of the action of g in the g-module
Vλ−ρ. It is known that there is a unique polynomial function, denoted by also by g, on h∗

such that g(λ) = TrVλ−ρ
(g).

There is a vector space isomorphism Υg : S(g) → U(g), known as the Duflo-Kirillov
map (see [7, 2, 8]). We can extend Υg multi-linearly to a vector space isomorphism
Υg : S(g)⊗` → U(g)⊗`. When restricted to the g-invariant parts, Υg : S(g)g → U(g)g is
an algebra isomorphism. Note that U(g)g is the center of the algebra U(g).
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2.2 Laplacian and Gaussian integral on a Euclidean space

Let V be a Euclidean space. In our applications we will always have V = g or V = h with
the Euclidean structure coming from the invariant inner product. As usual, one identifies
the symmetric algebra S(V ) with the polynomial function algebra P (V ∗). The Laplacian
∆V , associated with the Euclidean structure of V , acts on S(V ) = P (V ∗) and is defined
by

∆V =
∑

i

∂2
xi

,

where xi’s are coordinate functions with respect to an orthonormal basis of V . It is known
that for x, y ∈ V , 1

2
∆V (xy) = (x, y), the inner product of x and y.

Let ~ be a formal parameter. For a non-zero real number f let us consider the following

operator E (f)
V : S(V ) = P (V ∗) → R[1/~] expressed through an exponent of the Laplacian

and the evaluation at 0:

E (f)
V (g) = exp

(
− ∆

2f~

)
(g)

∣∣
x=0

∈ R[1/~].

Because ∆V is a second order differential operator, it is easy to see that if g is a homoge-
neous polynomial, then

E (f)
V (g) =

{
0 if deg(g) is odd,

scalar
~deg(g)/2 if deg(g) is even.

(1)

Adjoining ~, we get an extension E (f)
V : S(V )((~)) = P (V ∗)((~)) → R((~)) as follows. If

g =
∑∞

n=−∞ gn ~n with gn ∈ S(V ), then

E (f)
V (g) =

∑
n

E (f)
V (gn)~n ∈ R((~)).

There is a generalization to the multi-variable case. Suppose f := (f1, . . . , f`) is an
`-tuple of non-zero real numbers and g1 ⊗ · · · ⊗ g` ∈ S(V )⊗`, then we define

E (f)
V (g1 ⊗ · · · ⊗ g`) =

∏̀
j=1

E (fj)
V (gj).

Formally we can put E (f)
V =

⊗
j E

(fj)
V . Again there is an obvious extension E (f)

V :

S(V )⊗`((~)) → R((~)).

2.3 Jacobi diagrams, weight systems, and the Kontsevich invariant

In this section, we review Jacobi diagrams, weight systems, and the Kontsevich invariant
of framed string links. For details see e.g. [29].

A uni-trivalent graph is a graph every vertex of which is either univalent or trivalent.
A uni-trivalent graph is vertex-oriented if at each trivalent vertex a cyclic order of edges
is fixed. For a 1-manifold Y , a Jacobi diagram on Y is the manifold Y together with a
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vertex oriented uni-trivalent graph such that univalent vertices of the graph are distinct
points on Y . In figures we draw Y by thick lines and the uni-trivalent graphs by thin
lines, in such a way that each trivalent vertex is vertex-oriented in the counterclockwise
order. We define the degree of a Jacobi diagram to be half the number of univalent and
trivalent vertices of the uni-trivalent graph of the Jacobi diagram. We denote by A(Y ) the
quotient vector space spanned by Jacobi diagrams on Y subject to the following relations,
called the AS, IHX, and STU relations respectively,

= − , = − , = − .

For S = {x1, · · · , x`}, a Jacobi diagram on S is a vertex-oriented uni-trivalent graph
whose univalent vertices are labeled by elements of S. We denote by A(∗S) the quotient
vector space spanned by Jacobi diagrams on S subject to the AS and IHX relations. In
particular, when S consists of a single element, we denote A(∗S) by A(∗). A(∅) and
A(∗S) form algebras with respect to the disjoint union of Jacobi diagrams, and A(t` ↓)
forms an algebra with respect to the vertical composition of copies of t` ↓.

We briefly review weight systems; for details, see [1, 29]. We define the weight system
Wg(D) of a Jacobi diagram D by “substituting” g into D, i.e., putting D in a plane,
Wg(D) is defined to be the composition of intertwiners, each of which is given at each
local part of D as follows.

RxB

g ⊗ g

g ⊗ gx
R

gx[ · , · ]

g ⊗ g

Here, the first map is the invariant form of g, and the second map is the map taking 1
to

∑
i Xi ⊗ Xi, where {Xi}i∈I is an orthonormal basis of g with respect to the invariant

form, and the third map is the Lie bracket of g. For D1 ∈ A(∗) and D2 ∈ A(↓), we
have the following intertwiners as the compositions of the above maps, and we can define
Wg(D1) ∈ S(g) and Wg(D2) ∈ U(g) as the images of 1 by these maps.

D1

S(g)x
R

D2

U(g)x
R

In a similar way, we can also define Wg : A(t` ↓) →
(
U(g)⊗`

)g
and Wg : A(∗S) →(

S(g)⊗`
)g

; they are algebra homomorphisms. Note that there is a standard degree on the

polynomial algebra S(g)⊗` which carries over to U(g)⊗` by the Poincare-Birkhoff-Witt
isomorphism. If D is a diagram with k univalent vertices, then Wg(D) has degree ≤ k.
The weight system WgC

is defined in the same way. Since WgC
= Wg by definition, we

denote WgC
by Wg. Further, we define Ŵg by Ŵg(D) = Wg(D) ~d for a Jacobi diagram D

of degree d.
There is a formal Duflo-Kirillov algebra isomorphism Υ : A(∗) → A(↓) (see [2, 8]).

The obvious multi-linearly extension Υ : A({x1, . . . , x`}) → A(t` ↓) is not an algebra

6



isomorphism, but a vector space isomorphism. The following diagram is commutative [2,
Theorem 3].

A(∗) Ŵg−−−→ S(g)g[[~]] P (g∗)g[[~]]

Υ

y∼= Υg

y∼= ∼=
yP

A(↓) −−−→
Ŵg

U(g)g[[~]]
∼=−−−→
ψg

P (h∗)W [[~]]

(2)

Here, P (h∗)W denotes the algebra of W -invariant polynomial functions on h∗. Υ denotes
the Duflo-Kirillov isomorphism. ψg denotes the Harish-Chandra isomorphism; for λ ∈ h∗,
ψg(z)(λ) is defined to be the scalar by which z ∈ U(g)g acts on the irreducible represen-
tation of g whose highest weight is λ − ρ. In other words, ψg(z)(λ) = z(λ)/D(λ). P is
the restriction map from g∗ to h∗.

A string link is an embedding ϕ of ` copies of the unit interval, [0, 1] × {1}, · · · ,
[0, 1] × {`}, into [0, 1] × C, so that ϕ

(
(ε, j)

)
= (ε, j) for all ε ∈ {0, 1} and 1 ≤ j ≤ `.

We obtain a link from a string link by closing each component of t` ↓. A (string) link is
called algebraically split if the linking number of each pair of components is 0.

The Kontsevich invariant Z(T ) [20, 24] of an `-component framed string link T is
defined to be in A(t` ↓); for its construction, see, e.g., [24, 29]. Let ν = Z(U), the
Kontsevich invariant of the unknot U with framing 0; the exact value of ν is calculated
in [8]. Using the Poincare-Birkhoff-Witt isomorphism A(S1) ∼= A(↓) (see [1]), we will
consider ν as an element in A(↓).

Let ∆(`) : A(↓) → A(t` ↓) be the cabling operation which replaces an arrow by `
parallel copies (see e.g. [24, Section 1]). The modification Ž(T ) of Z(T ) used in the
definition of the LMO invariant is

Ž(T ) := ν⊗`
(
∆`(ν)

)
Z(T ).

Applying Υ−1 followed by the weight map, we define the following element:

Q̌g(T ) = Ŵg

(
Υ−1

(
Ž(T )

))
∈

(
S(g)⊗`

)g
[[~]]. (3)

2.4 Presentations of the LMO invariant

In this section, we recall and modify a formula of the LMO invariant [25] of a rational
homology 3-sphere M using the Aarhus integral [5] for the case when M is obtained by
surgery along an algebraically split link.

Suppose T is an algebraically split `-component string link with 0 framing on each
component, and L is its closure. Suppose the components of T are ordered. Let f =
(f1, . . . , f`) be an `-tuple of ` non-zero integers, and M be the rational homology 3-sphere
obtained by surgery on L with framing f1, . . . , f`.

Let θ ∈ A(∅) be the following Jacobi diagram

θ = ∈ A(∅). (4)
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Define

I(T, f) := exp
(
−

∑
j fj

48
θ
)〈 ∏

j

exp
(
− 1

2fj

∂xj
∂xj)

,
(
Υ−1

)
Ž(T )

〉
∈ A(∅). (5)

Here, for a Jacobi diagram D1 whose univalent vertices are labeled by ∂xj
’s and a Jacobi

diagram D2 whose univalent vertices are labeled by xj’s, we define the bracket by

〈D1, D2〉 =
(

the sum of all ways of gluing the ∂xj
-labeled univalent vertices

of D1 to the xj-labeled univalent vertices of D2 for each j

)
∈ A(∅),

if the number of ∂xj
-labeled univalent vertices of D1 are equal to the number of xj-labeled

univalent vertices of D2 for each j, and put 〈D1, D2〉 = 0 otherwise. In particular, when
T =↓ is the trivial string link, one has

I(↓,±1) = exp
(
∓ 1

48
θ
)〈

exp
(
∓ 1

2

∂x ∂x )
, Υ−1(ν2)

〉
∈ A(∅),

Then, the LMO invariant of M is presented by3

ẐLMO(M) =
I(T, f)∏`

j=1 I(↓, sign(fj))
∈ A(∅). (6)

We remark that the presentation (6) is obtained from [6, Theorem 6], noting that (with
notations from [6])

Å0(L) =

∫ ( ∏
j

Υ−1
xj

)(
Ž(L)

)
dX,

( ∏
j

Υ−1
xj

)(
Ž(L)

)
=

( ∏
j

Υ−1
xj

)(
Ž(T )

)
exp

(
−

∑
j fj

48
θ
) ∏

j

exp
(fj

2 xj xj

)
,

which are obtained from Lemma 3.8 and Corollaries 3.11 and 3.12 of [6].

3 Proof of the main theorem

In this section we show the proof of the main theorem in Section 3.2 based on results
proved in later sections.

3.1 Comparing the LMO invariant and the perturbative invariant

We again assume M,L, T, f the same as in Section 2.4. Recall that in (3) we defined
Q̌g(T ) ∈ (S(g)⊗`)g[[~]].

3The bracket of this presentation is called the Aarhus “integral”, since its corresponding Lie algebra version is actually
an integral on (g∗)⊕` [3].
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Proposition 3.1. Assume the above notations.
a) The LMO invariant of M , after applied by the weight map, has the following presen-
tation

Ŵg(Ẑ
LMO(M)) =

I1(T, f)∏`
j=1 I1(↓, sign(fj))

, (7)

where

I1(T, f) =

(∏̀
j=1

q−fj |ρ|2/2

)
E (f)

g

(
Q̌g(T )

)
.

b) The perturbative invariant has the following presentation

τg(M) =
I2(T, f)∏`

j=1 I2(↓, sign(fj))
, (8)

where

I2(T, f) =

(∏̀
j=1

q−fj |ρ|2/2

)
E (f)

h

(
D⊗` Υg(Q̌

g(T ))
)
.

Proof. Apply the algebra map Ŵg to (6),

Ŵg(Ẑ
LMO(M)) =

Ŵg(I(T, f))∏`
j=1 Ŵg

(
I(↓, sign(fj))

) .

Using Lemmas 3.3, 3.4 and the definition of I(T, f) in (5) we get

Ŵg(I(T, f)) = I1(T, f),

which proves part (a) of the proposition. Part (b) will be proved in Section 6.3.

To prove the main theorem one needs to understand the relation between E (f)
g and E (f)

h .
We will prove the following proposition in Sections 4 and 5.

Proposition 3.2. There is a non-zero constant cg such that for g ∈ (S(g)⊗`)g[[~]] and
any `-tuple f = (f1, . . . , f`) of non-zero integers one has

E (f)
g (g) =

(∏̀
j=1

(−2fj~)φ+ cg

)
E (f)

h

(
D⊗` Υg(g)

)
. (9)

3.2 Proof of Main Theorem

Now we can prove Theorem 1.1. First we assume that M can be obtained by surgery
along an algebraically split link L. We assume T, f as in Section 2.4. One has

I1(T, f) =

(∏̀
j=1

q−fj |ρ|2/2

)
E (f)

g

(
Q̌g(T )

)
9



=

(∏̀
j=1

q−fj |ρ|2/2

) (∏̀
j=1

(−2fj~)φ+ cg

)
E (f)

h

(
D⊗` Υg

(
Q̌g(T )

))
=

(∏̀
j=1

(−2fj~)φ+ cg

)
I2(T, f), (10)

where the second equality follows from Proposition 3.2 since Q̌g(T ) ∈ (S(g)⊗`)g[[~]]. In
particular, applying (10) for (T, f) = (↓, sign(fj)), then taking the product when j runs
from 1 to `, one has∏̀

j=1

I1(↓, sign(fj)) =
∏̀
j=1

((
− 2 sign(fj)~

)φ+ cg I2

(
↓, sign(fj)

))
, (11)

Dividing (10) by (11) and using Proposition 3.1, we have

Ŵg(Ẑ
LMO(M)) =

∏̀
j=1

|fj|φ+ τg(M)

= |H1(M, Z)| τg(M).

This completes the proof the Theorem 1.1 for the case when M can be obtained by surgery
along an algebraically split link.

Let us consider the general case, when M is an arbitrary rational homology 3-sphere.
It is known [27] that, there exist some lens spaces L(m1, 1), · · · , L(mN , 1) such that
the connected sum M#L(m1, 1)# · · ·#L(mN , 1) can be obtained from S3 by surgery
along some algebraically split framed link. Since the LMO invariant and the perturbative
invariant are multiplicative with respect to the connected sum, it follows from the above
case that

Ŵg

(
ẐLMO(M)

)
·
∏

i

Ŵg

(
ẐLMO

(
L(mi, 1)

))
= |H1(M ; Z)|φ+ τg(M) ·

∏
i

(∣∣H1

(
L(mi, 1); Z

)∣∣φ+ τg
(
L(mi, 1)

))
.

In particular, since the lens space L(mi, 1) can be obtained from S3 by surgery along a
framed knot, it also follows from the above case that

Ŵg

(
ẐLMO

(
L(mi, 1)

))
=

∣∣H1

(
L(mi, 1); Z

)∣∣φ+ τg
(
L(mi, 1)

)
.

Further, since the leading coefficient of the LMO invariant is 1, the value of the above
formula is non-zero. Therefore, as the quotient of the above two formulas, we obtain the
required formula. This completes the proof of Theorem 1.1 in the general case.

3.3 Some lemmas on weights of Jacobi diagrams

In this section, we show some lemmas on Jacobi diagrams which are used in the proof of
Proposition 3.1.
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Lemma 3.3. For a Jacobi diagram D ∈ A(∗) and a non-zero real number f ,

Ŵg

(〈
exp

(−1

2f

∂x ∂x )
, D

〉)
= E (f)

g

(
Ŵg(D)

)
.

Proof. The bracket can be presented in terms of differentials as explained in [3, Appendix].
We verify this for the required formula concretely.

By expanding the exponential, it is sufficient to show that

Wg

(〈( ∂x ∂x )d
, D

〉)
= ∆d

g∗

(
Wg(D)

)∣∣
Xi=0

. (12)

Since both sides are equal to 0 unless D has 2d legs, we can assume that D has 2d legs.
When d = 1, (12) is shown by

Wg

(〈 ∂x ∂x

, D
〉)

= Wg

(
2

D

)
= 2 B

(
Wg(D)

)
= ∆g∗

(
Wg(D)

)
,

where B is the invariant form. When d = 2, putting Wg(D) =
∑

k Y1,kY2,kY3,kY4,k for
Yi,j ∈ g, (12) is shown by

Wg

(〈( ∂x ∂x)2
, D

〉)
=

∑
τ

Wg

( τ

D

)
=

∑
τ,k

B(Yτ(1),k, Yτ(2),k) B(Yτ(3),k, Yτ(4),k)

=
∑
τ,i,j,k

∂Xi
(Yτ(1),k) ∂Xi

(Yτ(2),k) ∂Xj
(Yτ(3),k) ∂Xj

(Yτ(4),k) = ∆2
g∗

(
Wg(D)

)
,

where the sum of τ runs over all permutations on {1, 2, 3, 4}. For a general d, we can
show (12) in the same way as above.

Lemma 3.4 ([21]). For the Jacobi diagram θ given in (4), Wg(θ) = 24 |ρ|2, where ρ is
the half-sum of positive roots.

Proof. It is shown from the definition of the weight system (see, e.g., [29]) that

Wg

( )
= Cad Wg

( )
and Wg

( )
= dim g,

where Cad denotes the eigenvalue of the Casimir element on the adjoint representation of
g. Hence, Wg(θ) = Cad dim g.

It is known that, Cad = (δ, δ + 2ρ), where δ is the highest weight of the adjoint
representation, which is longest positive root. In our normalization of the inner product,
(δ, δ) = 2d and (δ, ρ) = dh∨ − d, where h∨ denotes the dual Coxeter number of g and d is
the maximal absolute value of the off-diagonal entries of the Cartan matrix. Therefore,
Wg(θ) = 2dh∨ dim g.

Further, it is known [10, 47.11] (adjusted to our normalization of the inner product)
that 2dh∨ dim g = 24|ρ|2. Hence, we obtain the required formula.
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4 The knot case

The aim of this section is to prove Proposition 3.2 for the case ` = 1. We call this the
knot case, since Proposition 3.2 with ` = 1 is enough to prove the main theorem for the
case when M is obtained by surgery on a knot. We show a geometric proof in Section 4.1
and an algebraic proof in Section 4.2.

4.1 Geometric approach

Geometric proof of Proposition 3.2 in the knot case. Since ` = 1, g ∈ S(g)g[[~]]. Without
loss of generality, one can assume that g ∈ S(g)g. We will write f1 = f . Note that g is a
function on g; it’s restriction on h∗ is denoted by P(g). On the other hand, Υg(g) ∈ U(g)
defines a function on h∗, see Section 2.1. From the commutativity of Diagram 2, we have
that, as functions on h∗,

Υg(g) = DP(g). (13)

The left-hand side of (9) is E (f)
g (g), which, by Proposition 4.1, can be expressed by an

integral:

LHS of (9) = E (f)
g (g) =

1

(4π)dim g/2

∫
g∗

e−|x|2/4 g(
x√

−2f~
)dx

The integrand is invariant under the co-adjoint action. Hence, according to Proposition
4.3 below, one can reduce the integral to an integral over the Cartan subalgebra:

LHS of (9) =
c̃g

(4π)dim g/2

∫
h∗
D2(x) e−|x|2/4P(g)

( x√
−2f~

)
dx. (14)

Here, c̃g is a non-zero constant depending on the Lie algebra g only.
We turn to the right-hand side of (9). Using (13) one has

RHS of (9) = cg (−2f~)φ+ E (f)
h (D2P(g)).

Again using Proposition 4.1 we have

RHS of (9) = cg (−2f~)
1

(4π)dim h/2

∫
h∗

e−|x|2/4 D2
( x√

−2f~

)
g
( x√

−2f~

)
dx. (15)

Because D2 is a homogeneous polynomial of degree 2φ+, one has

D2(x) = (−2f~)φ+ D2
( x√

−2f~

)
.

With cg = c̃g

(4π)φ+
, from (14) and (15) we see that

LHS of (9) = RHS of (9).
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4.1.1 Gaussian integral and E(f)
V

Suppose V is a Euclidean space and f a non-zero number. The following lemma says that

the operator E (f)
V can be expressed by an integral.

Lemma 4.1. Suppose g ∈ S(V )((h)), considered as a function on V ∗ with values in R((h)).
Then

E (f)
V (g) =

1

(4π)dim V/2

∫
V ∗

e−|x|2/4 g
( x√

−2f~

)
dx. (16)

Remark 4.2. Here, g
(

x√
−2f~

)
is the function on V ∗ with values in C((~1/2)) defined as

follows. If g is of the form g = zd where z ∈ V , then

g
( x√

−2f~

)
:= g(x)

(
(
√

−2f~)−d
)

.

The square root in the right-hand side does not really appear, since if d is odd, then both
sides of (16) are 0.

Proof. We can assume that g ∈ S(V ). Every polynomial is a sum of powers of linear
polynomials. Since both sides of (16) depend linearly on g, we can assume that g is a
power of a linear polynomial. By changing coordinates one can assume that g = xd

1,
where x1 is the first of an orthonormal basis x1, . . . , xn of V . The statement now reduces
to the case when V is one-dimensional, which follows from a simple Gaussian integral
calculation, see e.g. [7, Lemma 2.11].

4.1.2 Reduction from g∗ to h∗

Proposition 4.3. Suppose g is a G-invariant function on g∗. Then∫
g∗

g dx = c̃g

∫
h∗
D2 P(g) dx

provided that both side converges absolutely. Here, c̃g is a non-zero constant depending
only on g.

Proof. It is clear that if such c̃g exists, then it is non-zero, since there are G-invariant
functions g, e.g. g(x) = exp(−|x|2), for which the left-hand side is non-zero.

The co-adjoint action of G on g∗ is well-studied in the literature. A point x ∈ g∗ is
regular if its orbit G · x is a submanifold of dimension dim g− dim h = 2φ+, the maximal
possible dimension. It is known that the set of non regular points has measure 0. Every
orbit has non-empty intersection with h∗, and if x is regular, then G · x ∩ h∗ has exactly
|W | points. Since the function g is constant on each orbit, we have∫

g∗
g(x)dx =

1

|W |

∫
h∗

Vol(G · x)P(g)(x)dx.

The volume function is also well-known; it can be calculated, for example, from [7,
Chapter 7]:

Vol(G · x) = c̃′gD2(x) (17)
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where c̃′g is a constant. From (17) we can deduce the proposition, with c̃g = c̃′g/|W |.
Here is a simple proof4 of (17). We will identify g with g∗ via the invariant inner

product. Let H be the maximal abelian subgroup of G whose Lie algebra is h. The space
G/H is a homogeneous G-space. The tangent space of G/H at H can be identified with
h⊥, with inner product induced from the invariant; from this we define a Riemannian
metric on G/H. When x ∈ h is a regular, its stationary group is isomorphic to the torus
H. The map ϕ : G/H → G ·h, defined by g → g ·x with g ∈ G, is a diffeomorphism. The
tangent space of G · x at x can also be identified with the same h⊥ with the same inner
product. It is easy to see that ϕ at H has derivative dϕH = − ad(x) : h⊥ → h⊥. Let us
calculate the determinant of dϕ. Because G/H is G-homogeneous and ϕ is G-equivariant,
| det(dϕ)| is constant on G/H, hence | det(dϕ)| = | det(ad(x)|. To calculate | det(ad(x)|,
it’s easier to use the complexification of the adjoint representation, since ad(x) is diagonal
in the complexified representation. The complexified h⊥

C has the standard Chevalley basis
Eα, Fα, α ∈ Φ+ such that ad(x)Eα = i(x, α)Eα and ad(t)Fα = −i(x, α)Fα. It follows that
|dϕ| =

∏
α∈Φ+

|(x, α)|2. Hence

Vol(G · x) = Vol(G/H)
∏

α∈Φ+

|(x, α)|2 = c̃′gD2(x),

where c̃′g = Vol(G/H)
∏

α∈Φ+
|(ρ, α)|2.

4.2 Algebraic approach

In this section, we show an algebraic proof of Proposition 3.2 in the knot case, i.e. the
case ` = 1. We also verify some formulas of the proof in the sl2 case and in the sl3 case
in Sections 4.2.1 and 4.2.2 respectively.

Algebraic proof of Proposition 3.2 in the knot case. Again we can assume that g ∈ S(g)g.
By definition, the left-hand side of (9) is

E (f)
g (g) = exp

(
− 1

2f~
∆g∗

)(
g
)∣∣∣

x=0
.

By expanding the exponential,

LHS of (9) =
∑
d≥0

(
− 1

2f~
)d 1

d !
∆d

g∗(gd), (18)

where gd is the degree 2d part of g.

Let us turn to the right-hand side of (9). Recall that D has degree φ+. By (13)

LHS of (9) = cg(−2f~)φ+ E (f)
h (D2P(g))

= cg(−2f~)φ+ exp
(
− 1

2f~
∆h∗

)(
D2 P(g)

)∣∣∣
x=0

4The authors thank A. Kirillov Jr. for supplying them the proof.
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= cg(−2f~)φ+

∑
d≥0

(
− 1

2f~
)d+φ+ 1

(d + φ+)!
∆

d+φ+

h∗

(
D2 P(gd)

)
= cg

∑
d≥0

(
− 1

2f~
)d 1

(d + φ+)!
∆

d+φ+

h∗

(
D2 P(gd)

)
. (19)

Comparing (18) and (19) by using Proposition 4.4 below, we have immediately

LHS of (9) = RHS of (9) .

This completes the algebraic proof of Proposition 3.2 in the knot case.

Proposition 4.4. For any homogeneous polynomial g ∈ S(g)g of degree 2d,

cg

d !
∆d

g∗(g) =
1

(d + φ+)!
∆

d+φ+

h∗

(
D2 P(g)

)
,

where cg is a non-zero constant depending on g only.

Proof. Since the right hand side is not identically 0, if such a cg exists, then it is non-zero.

We show that the identity of the proposition holds true if we take cg = ∆
φ+

h∗

(
D2

)
/(φ+)!.

Since ∆d
g∗(g) is a scalar, we have that

D∆d
g∗(g) = DP

(
∆d

g∗(g)
)

= ∆d
h∗

(
D g

)
,

where we obtain the second equality by applying Proposition 4.6 below repeatedly. Hence,
substituting the above formula,

∆
φ+

h∗

(
D2 ∆d

g∗(g)
)

= ∆
φ+

h∗

(
D∆d

h∗

(
DP(g)

))
.

Further, since the left-hand side is presented by ∆
φ+

h∗

(
D2 ∆d

g∗(g)
)

= ∆
φ+

h∗ (D2) ∆d
g∗(g) =

cg · φ+! ∆d
g∗(g), the required formula is reduced to

∆
d+φ+

h∗

(
D2 P(g)

)
=

(
d + φ+

φ+

)
∆

φ+

h∗

(
D∆d

h∗

(
DP(g)

))
.

It is sufficient to show this formula.
By putting g′ = DP(g), the above formula is rewritten,

∆
d+φ+

h∗

(
D g′) =

(
d + φ+

φ+

)
∆

φ+

h∗

(
D∆d

h∗(g
′)
)
.

As for ∆
d+φ+

h∗ in the left-hand side, since ∆h∗(D) = 0 by Lemma 4.5 below, φ+ copies

of ∆h∗ in ∆
d+φ+

h∗ act on D. The number of choices of these φ+ copies is the binomial
coefficient in the right-hand side. Further, these φ+ copies with D can be replaced by a
differential operator with scalar coefficients, and this differential operator commutes ∆h∗ .
Hence, we obtain the above formula.
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Lemma 4.5. One has ∆h∗(D) = 0.

Proof. Note that D is a W -anti-symmetric polynomial. Actually, there is no W -anti-
symmetric polynomial of degree lower than that of D. This follows from the well-known
fact that the ring of W -anti-symmetric polynomials on h∗ is the free module over the
ring of W -symmetric polynomials spanned by D. Since ∆h∗ is W -invariant, ∆h∗(D) is a
W -anti-symmetric polynomial of lower degree, hence it is 0.

The following proposition is a reformulation of Harish-Chandra’s restriction formula;
see [17, Proposition II.3.14], [18, Theorem 2.1.8].

Proposition 4.6. For any g ∈ S(g)g

DP
(
∆g∗(g)

)
= ∆h∗

(
DP(g)

)
.

Proof. By using the invariant form, we identify g and g∗, and identify h and h∗. Further,
D ∈ P (h∗) is identified with D∗ ∈ P (h) given by

D∗(X) =
∏

α∈Φ+

α(X)

(ρ, α)

for X ∈ h. Then, the required formula is identified with Harish-Chandra’s restriction
formula (see [17, Proposition II.3.14], [18, Theorem 2.1.8]).

4.2.1 The sl2 case

Although we have proved Propositions 4.4, we will write down explicitly the identity of
this proposition in the case of sl2 (and sl3 in the next section), and verify Propositions
4.4 and 4.6 by direct calculation. The reader will see that the identity is quite non-trivial.

We recall that gC is spanned by

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

According to the convention, we give the invariant form by (X,Y ) = Tr(XY ). We regard
H, E, F as variables in the following of this section. The Cartan subalgebra h is spanned
by H. We choose the fundamental weight Λ ∈ h∗ such that Λ(H) = 1. Since |H|2 = 2,
|Λ|2 = 1

2
. Further, since Φ+ = {2Λ}, ρ = Λ. We put λ = nΛ. We denote by Vn the

n-dimensional irreducible representation, which is the irreducible representation whose
highest weight is λ− ρ. Since the Laplacian ∆g∗ is characterized by 1

2
∆g∗(XY ) = (X,Y ),

it is presented by ∆g∗ = 2(∂2
H + ∂E∂F ), which acts on S(gC) = C[H,E, F ]. Similarly, the

Laplacian ∆h∗ is presented by ∆h∗ = 2 ∂2
n, which acts on PC(h∗)W = C[n2]. It is known

that S(gC)
g = C[C], where C is the Casimir element given by C = 1

2
H2 + 2EF .

When g = sl2, Proposition 4.4 is rewritten,

4

d !
∆d

g∗(C
d) =

1

(d + 1)!
∆d+1

h∗

(
n2 P(Cd)

)
,
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where P : C[C] −→ C[n2] is given by P(C) = n2/2. Since ∆d
g∗(C

d) = (2d+1)!
2d and

∆d+1
h∗

(
n2 P(Cd)

)
= (2d+2)!

2d , we can verify Proposition 4.4 for g = sl2, by calculating both
sides of the above formula concretely.

When g = sl2, Proposition 4.6 is rewritten,

nP
(
∆g∗(g)

)
= ∆h∗

(
nP(g)

)
for g ∈ S(gC)

g = C[C]. We verify this formula, as follows. It is sufficient to show the

formula when g = Cd. Then, ∆g∗(C
d) = d(2d+1)Cd−1 and nP

(
∆g∗(C

d)
)

= d(2d+1)
2d−1 n2d−1.

On the other hand, ∆h∗
(
nP(Cd)

)
= ∆h∗

(
n2d+1

2d

)
= d(2d+1)

2d−1 n2d−1. Hence, Proposition 4.6
was verified for g = sl2.

4.2.2 The sl3 case

In this section, we give some calculation to verify Propositions 4.4 and 4.6 concretely,
when g = sl3.

We recall that gC is spanned by

H1 =

(
1 0 0
0 −1 0
0 0 0

)
, H2 =

(
0 0 0
0 1 0
0 0 −1

)
, E1 =

(
0 1 0
0 0 0
0 0 0

)
, E2 =

(
0 0 0
0 0 1
0 0 0

)
,

E3 =

(
0 0 0
0 0 0
1 0 0

)
, F1 =

(
0 0 0
1 0 0
0 0 0

)
, F2 =

(
0 0 0
0 0 0
0 1 0

)
, F3 =

(
0 0 1
0 0 0
0 0 0

)
According to the convention, we give the invariant form by (X,Y ) = Tr(XY ). We
regard H1, H2, · · · as variables in the following of this section. The Cartan subalgebra
h is spanned by H1 and H2. We choose the fundamental weights Λ1, Λ2 ∈ h∗ such that
Λi(Hi) = 1 for i = 1, 2, and Λi(Hj) = 0 if i 6= j. Further, since Φ+ = {2Λ1 − Λ2, Λ1 +
Λ2, 2Λ2 −Λ1}, ρ = Λ1 + Λ2. We put λ = nΛ1 + mΛ2. We denote by Vn,m the irreducible
representation of sl3 whose highest weight is λ−ρ, which is the irreducible representation
presented by the following Young diagram.

· · ·
· · · · · ·︸ ︷︷ ︸

n−1︸ ︷︷ ︸
m−1

Since the Laplacian ∆g∗ is characterized by 1
2
∆g∗(XY ) = (X,Y ), it is presented by

∆g∗ = 2
(
∂2

H1
+ ∂2

H2
− ∂H1∂H2 + ∂E1∂F1 + ∂E2∂F2 + ∂E3∂F3

)
,

which acts on S(gC) = C
[
H1, H2, E1, E2, E3, F1, F2, F3

]
. Similarly, the Laplacian ∆h∗ is

presented by
∆h∗ = 2

(
∂2

n + ∂2
m − ∂n∂m

)
,

which acts on PC(h∗)W = C[n,m]W . The map

P : C[H1, H2, E1, E2, E3, F1, F2, F3]
g −→ C[n, m]W

is given by P(H1) = n, P(H2) = m, P(Ei) = P(Fi) = 0. Further, D(λ) = nm(n+m)/2.
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When g = sl3, Proposition 4.4 is rewritten,

24

d !
∆d

g∗(g) =
1

(d + 3)!
∆d+3

h∗

(
D2 P(g)

)
(20)

for any homogeneous polynomial g ∈ S(gC)
g of degree 2d. Further, Proposition 4.6 is

rewritten,

DP
(
∆g∗(g)

)
= ∆h∗

(
DP(g)

)
(21)

for any g ∈ S(gC)
g. It is known that S(gC)

g = C[C,C3], where

C =
1

3
(H2

1 + H2
2 + H1H2) + E1F1 + E2F2 + E3F3

C3 = −1

9
(H1 − H2)(H2 − H3)(H3 − H1) + 3E1E2E3 + 3F1F2F3

+ E1E1(H2 − H3) + E2E2(H3 − H1) + E3F3(H1 − H2),

putting H3 = −H1−H2. By computer calculation, we can verify (20) and (21) for concrete
g ∈ S(gC)

g of small degrees putting g to be polynomials in C and C3.

5 The link case

In Section 4, we gave proofs of Proposition 3.2, and hence Theorem 1.1, in the knot case.
Here we give a proof of Proposition 3.2 in the general case in Section 5.1. In Section 5.2,
we also show that, without Proposition 3.2 for the case ` > 1, one can still prove the main
theorem using general results on finite type invariants.

5.1 The link case by direct calculation

Proof of Proposition 3.2 in the link case. The left-hand side of (9) is

LHS of (9) = E (f)
g (g) =

(⊗̀
j=1

E (fj)
g

)
(g).

Note that E (f)
h acts on P (h∗). We define a modification of E (f)

h , which acts on the bigger
space P (g∗) = S(g), as follows:

Ẽ (f)
h (g) :=

(
−2fj~)φ+ cg

)
E (f)

h (DΥg(g)). (22)

Then the right-hand side of (9) can be rewritten as

RHS of (9) =

(⊗̀
j=1

Ẽ (fj)
h

)
(g).

Proposition 3.2 becomes the statement that for any g ∈ (S(g)⊗`)g,(⊗̀
j=1

E (fj)
g

)
(g) =

(⊗̀
j=1

Ẽ (fj)
h

)
(g),
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which is the case m = ` of the following identity,( ⊗
1≤j≤m

E (fj)
g ⊗

⊗
m<j≤`

Ẽ (fj)
h

)
(g) =

⊗̀
j=1

Ẽ (fj)
h (g). (23)

We will prove (23) by induction on m. The case m = 0 is a tautology. Note also that
when ` = 1, the identity holds since we proved it in Section 4. We put

g′ =
( ⊗

1≤j<m

E (fj)
g ⊗

⊗
m<j≤`

Ẽ (fj)
h

)
(g) ∈ S(g).

Then equality (23) becomes

E (fm)
g (g′) = Ẽ (fm)

h (g′) . (24)

Since E (fj)
g and Ẽ (fj)

h are intertwiners by Lemmas 5.1 and 5.2 below, g′ ∈ S(g)g. Hence,
(24) follows from the case ` = 1, completing the induction.

Lemma 5.1. The map E (f)
g : S(g)[[~]] → R((~)) is an intertwiner with respect to the

action of g.

Proof. By definition, E (f)
g takes a monomial of odd degree in S(g) to 0. It is enough

to consider the case g = Y1Y2 · · ·Y2d where each Yj is a linear form. Then E (f)
g takes

Y1Y2 · · ·Y2d to a constant multiple of∑
τ

B(Yτ(1), Yτ(2)) · · ·B(Yτ(2d−1), Yτ(2d)),

where the sum runs over all permutations on {1, 2, · · · , 2d} and B is the invariant inner

product. Since the invariant form B is an intertwiner, E (f)
g is also an intertwiner.

Another proof is to use Proposition 4.1 to present E (f)
g by an integral:

E (f)
g (g) =

1

(4π)dim g/2

∫
g∗

e−|x|2/2 g

(
x√

−2f~

)
dx .

Since |x|2 and dx are G-invariant, the right-hand side is G-invariant.

Lemma 5.2. The map Ẽ (f)
h : S(g)[[~]] → R((~)) is an intertwiner with respect to the

action of g.

Proof. Since the g acts trivially on R, it is sufficient to show that

Ẽ (f)
h

(
adX(g)

)
= 0

for X ∈ g and g ∈ S(g). Using the definition of Ẽ (f)
h in (22), this is equivalent to

E (f)
h

(
DΥg (adX(g))

)
= 0.
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It is enough to show that Υg (adX(g)) = 0 as a function on h∗. Evaluating Υg (adX(g))
on λ ∈ h∗ such that λ − ρ is a dominating weight, one has

Υg (adX(g)) (λ) = TrVλ−ρ
Υg (adX(g)) by definition

= TrVλ−ρ
adX (Υg(g)) since Υg is an intertwiner

= TrVλ−ρ
(X Υg(g) − Υg(g) X) by definition of adX on U(g)

= 0.

5.2 The link case through the knot case

Here we give another approach to the link case using general results on finite type invari-
ants. We will prove that if two multiplicative finite type invariants of rational homology
3-spheres coincide on the set of rational homology 3-spheres obtained by surgery on knots,
then they are equal.

Let H1 be the set of all integral homology 3-spheres which can be obtained by surgery
along knots with framing ±1, and H⊕

1 the set of all finite connected sums of elements in
H1.

5.2.1 Finite type invariants of rational homology 3-spheres

We summarize here some basic facts about finite type invariants of rational homology
3-spheres (Ohtsuki, Goussarov-Habiro, for details see [11, 12]).




Y-graph-with-leaves its neighborhood 
surgery link

Figure 4:

Consider the standard Y -graph in R3, see Figure 4. A Y -graph C in M is the image
of an embedding of a small neighborhood of the standard Y -graph into M . Let L be
the six-component link in a small neighborhood of the standard Y -graph as shown in
Figure 4, each component having framing 0. The surgery of M along the image of the
six-component link is called a Y -surgery along C, denoted by MC .

Matveev [26] proved that M and M ′ are related by a finite sequence of Y -surgeries if
and only if there is an isomorphism from H1(M, Z) onto H1(M

′, Z) preserving the linking
form on the torsion group. For a 3-manifold M let C(M) be the free R-module with basis
all 3-manifolds which have the same H1 and linking form as M . Here R is a commutative
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ring with unit. For example, C(S3) is the free R-module spanned by all integral homology
3-spheres. We will always assume that 2 is invertible in R. Actually, for the application
in this paper, it’s enough to consider the case when R is a field of characteristic 0.

Let E be a finite collection of disjoint Y -graphs in a 3-manifold N . Define

[N,E] =
∑
E′⊂E

(−1)|E
′|NE′ .

Define FnC(M) as R-submodule of C(M) spanned by all [N,E] such that N is in C(M)
and |E| = n. Any invariant I of 3-manifolds in C(M) with values in an R-module A can
be extended linearly to an R-linear function I : C(M) → A. Such an invariant I is a
finite type invariant of order ≤ n if I|Fn+1 = 0. Matveev’s result shows that an invariant
of degree 0 is a constant invariant in each class C(M).

Goussarov and Habiro showed that F2n−1 = F2n. There is a surjective map

W : GrnA(∅) → F2nC(M)/F2n+1C(M),

known as the universal weight map, defined as follows. Suppose D ∈ GrnA(∅) is a Jacobi
graph of degree n. Embed D into S3 arbitrarily. Then from the image of D construct a
set E of Y -graphs as in Figure 5.

Figure 5:

By definition, [M#S3, E] ∈ F2nC(M). A priori, [M#S3, E] depends on the way D is
embedded in S3. However,

W (D) := [M#S3, E] (mod F2n+1C(M))

depends only on D as an element in A(∅). Moreover, the map W : GrnA(∅) → F2nC(M)/F2n+1C(M),
known as the universal weight, is surjective.

Lemma 5.3. Suppose D is connected. Then S3
E can be obtained by surgery on S3 along

a knot with framing ±1, S3
E ∈ H1.

Proof. Choose a sublink E ′ of E consisting of all components of E except for one compo-
nent K, and do surgery along this sublink. Using repeatedly the move which removes a
zero-framing trivial knot together with another knot piercing the trivial knot, it is easy
to see that the resulting manifold is still S3. Let K ′ be the image of K is the resulting
S3. Now one has S3

E = S3
K′ , an integral homology 3-sphere. The framing of K ′ must be

±1 because the resulting is an integral homology 3-sphere.
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If I is a finite type invariant of degree ≤ 2n, then its n-th weight is defined as the
composition

w
(n)
I = I ◦ W : GrnA(∅) → V.

It is clear that if w
(n)
I = 0, then I has degree ≤ 2n − 2.

5.2.2 Multiplicative finite type invariants and surgery on knots

The following result shows that finite invariants are determined by their values on a
smaller subset of the set of all applicable 3-manifolds. Besides application to the proof of
the LMO conjecture, the result is also interesting by itself.

Theorem 5.4.
a) Suppose I is a finite type invariant of integral homology 3-spheres with values in an
R-module A such that I(M) = 1 for every M ∈ H⊕

1 . Then I(M) = 1 for every integral
homology 3-sphere.
b) Suppose I is a multiplicative finite type invariant of rational homology 3-spheres with
values in an R-algebra A. If I(M) = 1 for every M ∈ H1 and every lens space M =
L(p, 1), then I(M) = 1 for every rational homology 3-sphere. In particular, if I(M) = 1
for any rational homology 3-sphere obtained by surgery on knots, then I(M) = 1 for any
rational homology 3-sphere.

Proof. a) Suppose I has degree ≤ 2n. Let D be a Jacobi diagram of degree n. Suppose
D =

∏s
j=1 Dj. Let Ej be the Y -graphs corresponding to Dj as constructed in Subsection

5.2.1, and E = ts
j=1Ej. Since each of S3

Ej
is in H1 by Lemma 5.3, S3

E = #s
j=1S

3
Ej

is in

H⊕
1 .
Then

w
(n)
I (D) = I([S3, E])

= I(S3) − I(S3
E)

= 0 because S3
E ∈ H⊕

1 .

It follows that I is an invariant of degree ≤ 2n − 2. Induction then shows that I is
an invariant of degree 0, or just a constant invariant. Hence I(M) = I(S3) = 1 for every
integral homology 3-sphere M .

b) Suppose I is a finite type invariant of degree ≤ 2n, and D a Jacobi diagram of
degree n. Let us restrict I on the class C(M). One has

w
(n)
I (D) = I([M#S3, E])

= I(M) − I(M#S3
E)

= I(M) − I(M) I(S3
E) because I is multiplicative

= 0

Hence again I is an invariant of degree 0, or I is a constant invariant on every class C(M).
Since I(M) = 1 for every lens space of the form L(p, 1), it follows that if a rational

homology sphere M belongs to C(N), where N is the connected sum of a finite number
of lens spaces of the form L(p, 1), then I(M) = 1.
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Ohtsuki’s lemma [27] says that for every rational homology sphere M , there are lens
spaces L(p1, 1), . . . , L(ps, 1) such that the linking form of N = M#(#s

j=1L(pj, 1)) is the
sum of the linking forms of a finite number lens spaces of the form L(p, 1). Since I is
multiplicative

I(N) = I(M)
s∏

j=1

I(L(pj, 1)).

With I(N) = 1 = I(L(pj, 1)), it follows that I(M) = 1.

5.2.3 Another proof of Theorem 1.1 in the link case

Proof of Theorem 1.1 in the link case. When R is a field of characteristic 0, the LMO
invariant is universal for finite type. This fact can be reformulated as W : GrnA(∅) →
F2nC(M)/F2n+1C(M) is a bijection. This was proved for integral homology 3-spheres by
Le [22] and for general rational homology spheres by Habiro. In particular, this result

says that the part of degree ≤ n of ẐLMO is a (universal) finite type invariant of degree
≤ 2n.

Note that Ŵg(Ẑ
LMO) and τ g are multiplicative invariant with values in R[[~]]. By

Proposition 6.1 below, the part τg
≤n of degree less than or equal to n of τg is a finite

type invariant of degree ≤ 2n. Let I = |H1|φ+τ g/Ŵg(Ẑ
LMO). Then the part I≤n of degree

less than or equal to n is an invariant of degree less than or equal to 2n. Clearly I≤n is
multiplicative. Moreover I≤n(M) = 1 if M is obtained by surgery on knots by the knot
case. Hence by Theorem 5.4, I≤n = 1. Since this holds true for every n one has I = 1, or

Ŵg(Ẑ
LMO) = τg.

6 Presentations of the perturbative invariants

In this section we discuss the perturbative invariants. In particular, we prove part (b)
of Proposition 3.2 and show that the degree n part of the perturbative is a finite type
invariant of order ≤ 2n. We also give a informal way to explain how one can arrives at
the formula of the perturbative invariant given by Proposition 3.2.

6.1 Perturbative expansion of a Gaussian integral

In this section, we explain how a Gaussian integral with a formal parameter in the expo-
nent can be understood in perturbative expansions. For the perturbative expansion of a
Gaussian integral, see also [3, Appendix].

Suppose V is a finite-dimensional Euclidean space, f be a non-zero integer, R ∈ S(V ) =
P (V ∗). The Gaussian integral

I =

∫
V ∗

ef~|x|2/2 R(x) dx
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does not make sense if ~ is a formal parameter. If ~ is a real number such that f~ < 0,
then the integral converges absolutely, and one can calculate the integral as follows. A
substitution x = u/

√
−2f~ leads to

I =
1

(−2f~)dim V/2

∫
V ∗

e−|u|2/4 R(
u√

−2f~
) du

=

(
2π

−f~

)dim V/2

E (f)
h (R) by Proposition 4.1.

If ~ is a formal parameter, the right-hand side still makes sense as an element in R[1/h].
Thus we should declare

∫
V ∗

ef~|x|2/2 R(x) dx =

(
2π

−f~

)dim V/2

E (f)
h (R) (25)

for a formal parameter ~. Note that if R ∈ S(V )[[~]] then the right-hand side makes sense
in R((h)).

6.2 Derivation of the perturbative invariants from the WRT invariant

First we review the 3-manifold WRT invariant, for details see e.g. [23]. We again assume
M is obtained by surgery on an algebraically split link L with framing f = (f1, . . . , f`).
Let L0 be the link L with all framings 0, and T is an algebraically string link (with 0
framing on each component) such that its closure is L0.

For an `-tuple (Vλ1−ρ, . . . , Vλ`−ρ) of g-modules one can define the quantum link invariant
Qg;Vλ1−ρ,...,Vλ`−ρ(L0) of the link L0, (see [31], we use here notations from the book [29]).
This invariant can be calculated though the Kontsevich invariant by results of [19, 24]:

Qg;Vλ1−ρ,...,Vλ`−ρ(L0) =
(
Z(T ) ∆(`)(ν)

)
(λ1, . . . , λ`). (26)

In particular, when L0 = U , the unknot with framing 0, Qg;Vλ−ρ(U) is called the quantum
dimension of Vλ−ρ, denoted by q-D(λ); its value is well-known:

q-D(λ) =
∏

α∈Φ+

[
(λ, α)

][
(ρ, α)

] , (27)

where [n] := (qn/2 − q−n/2)/(q1/2 − q−1/2). Recall that we always have q = e~.
The quantum invariant of L differs from that of L0 by the framing factors, which will

play the role of the exponential function in the Gaussian integral:

Qg;Vλ1−ρ,...,Vλ`−ρ(L) =

(∏̀
j=1

qfj(|λj |2−|ρ|2)/2

)
Qg;Vλ1−ρ,...,Vλ`−ρ(L0). (28)
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The normalization used in the definition of the WRT invariant is

FL(λ1, . . . , λ`) :=

(∏̀
j=1

q-D(λj)

)
Qg;Vλ1−ρ,...,Vλ`−ρ(L).

Using (26) and (28) one can show that

FL(λ1, . . . , λ`) =
(
q−

P

j fj |ρ2|/2
) (

e
P

j fj~|λj |2/2 R(λ1, . . . , λ`)
)

, (29)

where R = D⊗` Υg

(
Q̌g(T )

)
= FL0 .

Suppose q is a complex root of unity of order r. Then it is known [23] that the function
FL(λ1, . . . , λ`) is component-wise invariant under the translation by rα for any α in the
root lattice. Let Dr ⊂ h∗ be any fundamental domain of the translations by rα with α in
the root lattice. Then, with q an r-th root of 1,

I(L) :=
∑

λj∈Dr

FL(λ1, . . . , λ`) (30)

is invariant under the handle slide move. A standard normalization of I(L) gives us an
invariant of 3-manifolds, which is the WRT invariant.

Because of the translational invariance of FL, we could define the WRT invariant if we
replace Dr by NDr in (30), where N is any positive integer. Let N → ∞, we should sum
over all the weight lattice in (30) which does not converge. Instead, we use integral over
h∗, i.e., instead of I(L) we consider the integral∫

(h∗)`

FL(λ1, . . . , λ`)dλ1 . . . dλ`,

which does not make sense. However, using FL(λ1, . . . , λ`) in (29), the integral has the
form of a Gaussian integral discussed in the previous section. According to (25), the
above integral should be a constant multiple of following modification of I(L):

I2(T, f) :=

(∏̀
j=1

q−fj |ρ|2/2

)
E (f)

h

(
D⊗` Υg(Q̌

g(T ))
)
,

which leads to the formula in Proposition 3.2.

6.3 Proof of Proposition 3.1(b)

First we review Le’s formula of τg, for details, see [23]. As noted in the previous section,
as functions on (h∗),

FL0 = D⊗` Υg

(
Q̌g(T )

)
.

Let O(f) : P (h∗) = S(h) → R[1/~] be the unique linear operator defined by

O(f)(βk) =

0 if k is odd,

q−f |ρ|2/2(2d − 1)!!
(
− |β|2

f

)d~−d if k = 2d.
(31)
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for β ∈ h. We also define its multi-linear extension

O(f) : S(h)⊗`[[~]] → R((h)), O(f) :=
⊗̀
j=1

O(fj).

Let
I ′
2(T, f) := O(f) (FL0) = O(f)

(
D⊗` Υg(Q̌

g(T ))
)
.

Then the τg(M) is given by [23]

τg(M) =
I ′
2(T, f)∏`

j=1 I ′
2(↓, sign(fj))

.

To prove part (b) of Proposition 3.2 one needs only to show that I2(T ; f) = I ′
2(T ; f).

It is enough to show that

O(f)(g) = q−f |ρ|2/2E (f)
g (g) (32)

for every g ∈ S(h). Since both operators O(f) and E (f)
g are linear and G-invariant, it is

sufficient to consider the case when g = xk
1, where x1 is the first vector of an orthonormal

basis x1, . . . , xn of h. In this case ∆h =
∑

∂2
xj

, and one can easily calculate E (f)
g (xk

1) =

exp(− ∆h

−2f~)(xk
1)|xj=0,

exp(
∆h

−2f~
)(xk

1)|xj=0 =
∑

d

∆d

d!(−2f~)d
(xk

1)

=

0 if k is odd,

(2d − 1)!!
(
− 1

f

)d~−d if k = 2d,

which is precisely the right-hand side of (31) without the factor q−f |ρ|2/2 (with β = x1).
This proves (32).

6.4 The coefficients of τg are of finite type

Proposition 6.1. The degree n part of the perturbative invariant τg is a finite type
invariant of degree ≤ 2n.

Remark 6.2. The proposition is a consequence of the main theorem. However, we used
this proposition in the alternative proof of the main theorem in Section 5.2. This is the
reason why we give here a proof of the proposition independent of the main theorem.

Proof. Let M be a rational homology 3-sphere and E a collection of 2n + 1 disjoint Y -
graphs in M . We only need to prove that τg([M,E]) ∈ ~n+1Q[[~]].

By taking connecting sum with lens spaces, we assume that the pair (M,E) can be
obtained from (S3, E) by surgery along an algebraically split link L ⊂ S3. By adding
trivial knots with framing ±1 (which are unlinked with L) to L if needed, we can assume
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that the leaves of E ∈ S3 form a zero-framing trivial link. Let L0 be the link L with 0
framing, and choose a string link T in a cube such that L0 is the closure of T . We can
assume that E is also in the cube.

For a sub-collection E ′ ⊂ E let LE′ be the link obtained by surgery of S3 along E ′ (see
[12, 11]). We define similarly (L0)E′ and TE′ . Clearly (L0)E′ is the closure of TE′ .

For every link L and every Y -graph C whose leaves are a zero-framing trivial link, the
moves from L to LC is a repetition of the Borromeo move (see [12, 11]):

Figure 6:

Hence, by [22, Lemma 5.3], Z(T −TC) has i-degree ≥ 1. Here x ∈ A(t` ↓) has i-degree
≥ k if it is a linear combinations of Jacobi diagrams with at least k trivalent vertices. It
follows that Ž([T,E]) has i-degree ≥ 2n + 1, where [T,E] :=

∑
E′⊂E(−1)|E

′|TE′ .
Note that all the links LE′ , E ′ ⊂ E are algebraically split, having the same number of

components, and having same the framings f = (f1, . . . , f`). By definition, one has

[M,E] =
∑
E′⊂E

(−1)|E
′|(S3)LE′

Hence

τg([M,E]) =
∑
E′⊂E

(−1)|E
′|τg

(
(S3)LE′

)
=

∑
E′⊂E

(−1)|E
′| I2(TE′ , f)∏`

j=1 I2

(
↓, sign(fj)

)
=

I2([T,E], f)∏`
j=1 I2

(
↓, sign(fj)

)
=

(∏`
j=1 q−fj |ρ|2/2

)
E (f)

h

(
D⊗` Ž([T,E])

)
∏`

j=1 I2

(
↓, sign(fj)

) . (33)

By Lemma 6.3 below, since Ž([T,E]) has i-degree ≥ 2n + 1, the numerator of (33)
belongs to ~−`φ++n+1R[[~]], while the denominator has the form ~−`φ+u, where u is a unit
in R[[h]]. It follows that the right hand side of (33) belongs to ~n+1R[[~]].

Lemma 6.3. a) Suppose D ∈ A(t` ↓) is a Jacobi diagram having ≥ 2n + 1 trivalent

vertices, then E (f)
h

(
D⊗` Ŵg(D))

)
∈ ~−`φ++n+1R[[~]].

b) The lowest degree of ~ in I2

(
↓,±1

)
∈ R[[h]] is ~−φ+, i.e. ~φ+I2

(
↓,±1

)
is invertible

in R[[~]].

27



Proof. a) Suppose D has degree d. Then D has 2d vertices, among which 2d− 2n− 1 are
univalent. It follows that Wg(D), as element of U(g)⊗`, has degree ≤ (2d − 2n − 1), and,
as a function on (h∗)`, is a polynomial of degree ≤ `φ+ +(2d−2n−1), see [23]. Hence the

degree of D⊗` Wg(D) is ≤ 2`φ++2d−2n−1. Recall that E (f)
h (g) lower the degree of ~ by at

most half the degree of g. The degree of ~ in E (f)
h

(
D⊗` Ŵg(D)

)
= ~d E (f)

h

(
D⊗` Wg(D)

)
is at

least d− 1
2
(2`φ++2d−2n−1) = 1/2+n−`φ+. Hence E (f)

h

(
D⊗` Ŵg(D)

)
∈ ~−`φ++n+1R[[~]].

b) By definition

I2

(
↓,±1

)
= q∓|ρ|2/2 E (±1)h(D Ž(↓)).

For the trivial knot everything can be calculated explicitly. One has D Ž(↓) = (q-D)2,
and using (27) one can easily show that

D Ž(↓) = D2

(
1 +

∞∑
k=1

gk~2k

)
,

where gk has degree exactly 2k. Thus

q±|ρ|2/2 I2

(
↓,±1

)
= E (±1)

h (D)2 + E (±1)
h

(
∞∑

k=1

gkD2~2k

)
.

since deg(gk) = 2k, and deg(D2) = 2φ+, the second term belongs to ~1−φ+R[[~]], while
the first term is

E (±1)
h (D)2 = ~−φ+

∆
φ+

h (D2)

(φ+)!(∓2)φ+
= ~−φ+

cg

(∓2)φ+
.

Since cg 6= 0 and q±|ρ|2/2 is invertible, we conclude that hφ+I2

(
↓,±1

)
is invertible in

R[[~]].

References

[1] Bar-Natan, D., On the Vassiliev knot invariants, Topology 34 (1995) 423–472.

[2] Bar-Natan, D., Garoufalidis, S., Rozansky, L., Thurston, D.P., Wheels, wheeling, and the Kontsevich
integral of the unknot, Israel J. Math. 119 (2000) 217–237.

[3] , The Aarhus integral of rational homology 3-spheres I: A highly non trivial flat connection
on S3, Selecta Math. (N.S.) 8 (2002) 315–339.

[4] , The Aarhus integral of rational homology 3-spheres II: Invariance and universality, Selecta
Math. (N.S.) 8 (2002) 341–371.

[5] , The Aarhus integral of rational homology 3-spheres III: The relation with the Le-Murakami-
Ohtsuki invariant, Selecta Math. (N.S.) 10 (2004) 305–324.

[6] Bar-Natan, D., Lawrence, R., A rational surgery formula for the LMO Invariant, Israel J. Math.
140 (2004) 29–60.

[7] Berline, N., Getzler, E., Vergne, M., Heat kernels and Dirac operators. Springer-Verlag, Berlin, 2004.

28



[8] Bar-Natan, D., Le, T.T.Q., Thurston, D.P., Two applications of elementary knot theory to Lie
algebras and Vassiliev invariants, Geometry and Topology 7 (2003) 1–31.

[9] Beliakova, A., Buehler, I., Le, T., A unified quantum SO(3) invariant for rational homology 3-
spheres, arXiv:0801.3893.

[10] Freudenthal, H., de Vries, H., Linear Lie groups, Pure and Applied Mathematics 35, Academic
Press, New York-London 1969.

[11] Garoufalidis, S., Goussarov, M., Polyak., Calculus of clovers and finite type invariants of 3-
manifolds, Geom. Topol. 5 (2001), 75–108 (electronic).

[12] Habiro K., Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 183.

[13] Habiro, K., On the quantum sl2 invariants of knots and integral homology spheres, Invariants of knots
and 3-manifolds (Kyoto 2001), 161–181, Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry,
2002.

[14] , A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres, Invent. Math.
171 (2008) 1–81.

[15] Habiro, K., Le, T.T.Q., in preparation.

[16] Hall, B., Lie groups, Lie algebras, and representations: an elementary introduction, Graduate Text
in Mathematics 222. Springer–Verlag, New York, 2003

[17] Helgason, S., Groups and geometric analysis. Integral geometry, invariant differential operators, and
spherical functions, Mathematical Surveys and Monographs 83. American Mathematical Society,
Providence, RI, 2000.

[18] Howe, R., Tan, E.-C., Non-abelian harmonic analysis, Applications of SL(2, R), Universitext.
Springer-Verlag, New York, 1992.

[19] Kassel, C., Quantum groups, Graduate Texts in Mathematics 155. Springer-Verlag, New York, 1995.

[20] Kontsevich, M., Vassiliev’s knot invariants, Adv. in Sov. Math 16(2) (1993) 137–150.

[21] Kuriya, T., On the LMO conjecture, preprint, arXiv:0803.1732.

[22] Le, T.T.Q., An invariant of integral homology 3-spheres which is universal for all finite type invari-
ants, AMS translation series 2, Eds. V. Buchtaber and S. Novikov 179 (1997) 75–100.

[23] , Quantum invariants of 3-manifolds: integrality, splitting, and perturbative expansion, Pro-
ceedings of the Pacific Institute for the Mathematical Sciences Workshop “Invariants of Three-
Manifolds” (Calgary, AB, 1999). Topology Appl. 127 (2003) 125–152.

[24] Le, T.T.Q., Murakami, J., The universal Vassiliev-Kontsevich invariant for framed oriented links,
Compositio Math. 102 (1996) 41–64.

[25] Le, T.T.Q., Murakami, J., Ohtsuki, T., On a universal perturbative invariant of 3-manifolds, Topol-
ogy 37 (1998) 539–574.

[26] Matveev, S., Generalized surgery of 3-dimensional manifolds and representations of homology 3-
spheres (in Russian), Mat. Zametki, 42 (1987), 268–275.

[27] Ohtsuki, T., A polynomial invariant of rational homology 3-spheres, Invent. Math. 123 (1996) 241–
257.

29



[28] , The perturbative SO(3) invariant of rational homology 3-spheres recovers from the universal
perturbative invariant, Topology 39 (2000) 1103–1135.

[29] , Quantum invariants, — A study of knots, 3-manifolds, and their sets, Series on Knots and
Everything 29. World Scientific Publishing Co., Inc., 2002.

[30] N. Yu. Reshetikhin, V. Turaev, Ribbon graphs and their invariants derived from quantum groups,
Commun. Math. Phys., 127 (1990), 1–26.

[31] Reshetikhin, N., Turaev, V.G., Invariants of 3-manifolds via link polynomials and quantum groups,
Invent. Math. 103 (1991) 547–597.

[32] Rozansky, L. Witten’s invariants of rational homology spheres at prime values of K and trivial
connection contribution, Comm. Math. Phys. 180 (1996) 297–324.

[33] Witten, E., Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351–
399.

Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
E-mail address: marron@kurims.kyoto-u.ac.jp

School of Mathematics, 686 Cherry Street, Georgia Tech, Atlanta, GA 30332, USA
E-mail address: letu@math.gatech.edu

Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
E-mail address: tomotada@kurims.kyoto-u.ac.jp

30


	web-title.pdf
	RIMS1697

