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Abstract. In the present paper, we introduce and discuss the no-
tion of monodromically full points of configuration spaces of hyper-
bolic curves. This notion leads to complements to M. Matsumoto’s
result concerning the difference between the kernels of the natu-
ral homomorphisms associated to a hyperbolic curve and its point
from the Galois group to the automorphism and outer automor-

phism groups of the geometric fundamental group of the hyperbolic
curve. More concretely, we prove that any hyperbolic curve over a
number field has many “nonexceptional” closed points, i.e., closed
points which do not satisfy a condition considered by Matsumoto,
but that there exist infinitely many hyperbolic curves which ad-
mit many “exceptional” closed points, i.e., closed points which
do satisfy the condition considered by Matsumoto. Moreover, we
prove a Galois-theoretic characterization of equivalence classes of
monodromically full points of configuration spaces, as well as a
Galois-theoretic characterization of equivalence classes of quasi-
monodromically full points of cores. In a similar vein, we also prove
a necessary and sufficient condition for quasi-monodromically full
Galois sections of hyperbolic curves to be geometric.
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Introduction

In the present §, let l be a prime number, k a field of characteris-

tic 0, k an algebraic closure of k, and X a hyperbolic curve of type

(g, r) over k. Moreover, for an algebraic extension k′ ⊆ k of k, write

Gk′
def
= Gal(k/k′) for the absolute Galois group of k′ determined by

the given algebraic closure k. In the present paper, we introduce and

discuss the notion of monodromically full points of configuration spaces

of hyperbolic curves. The term “monodromically full” is a term intro-

duced by the author in [9], but the corresponding notion was studied

by M. Matsumoto and A. Tamagawa in [12]. If, for a positive integer

n, we write Xn for the n-th configuration space of the hyperbolic curve

X/k, then the natural projection Xn+1 → Xn to the first n factors may

be regarded as a family of hyperbolic curves of type (g, r + n). In the

present paper, we shall say that a closed point x ∈ Xn of the n-th con-

figuration space Xn is l-monodromically full if the k(x)-rational point

— where k(x) is the residue field at x — of Xn ⊗k k(x) determined

by x is an l-monodromically full point with respect to the family of

hyperbolic curves Xn+1 ⊗k k(x) over Xn ⊗k k(x) in the sense of [9],

Definition 2.1, i.e., roughly speaking, the image of the pro-l outer mon-

odromy representation of π1(Xn ⊗k k) with respect to the family of

hyperbolic curves Xn+1 over Xn is contained in the image of the pro-

l outer Galois representation of Gk(x) with respect to the hyperbolic

curve Xn+1 ×Xn Spec k(x) over k(x). (See Definition 3 for the pre-

cise definition of the notion of l-monodromically full points — cf. also

Remark 4.)

By considering the notion of monodromically full points, one can give

some complements to Matsumoto’s result obtained in [13] concerning

the difference between the kernels of the natural homomorphisms asso-

ciated to a hyperbolic curve and its point from the Galois group to the

automorphism and outer automorphism groups of the geometric funda-

mental group of the hyperbolic curve. To state these complements, let

us review the result given in [13]: Write ∆
{l}
X/k for the geometric pro-l

fundamental group of X — i.e., the maximal pro-l quotient of the étale

fundamental group π1(X ⊗k k) of X ⊗k k — and Π
{l}
X/k for the geomet-

rically pro-l fundamental group of X — i.e., the quotient of the étale

fundamental group π1(X) of X by the kernel of the natural surjection

π1(X ⊗k k) � ∆
{l}
X/k. Then since the closed subgroup ∆

{l}
X/k ⊆ Π

{l}
X/k is
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normal in Π
{l}
X/k, conjugation by elements of Π

{l}
X/k determines a com-

mutative diagram of profinite groups

1 −−−→ ∆
{l}
X/k −−−→ Π

{l}
X/k −−−→ Gk −−−→ 1

y eρ
{l}
X/k

y
yρ

{l}
X/k

1 −−−→ Inn(∆
{l}
X/k) −−−→ Aut(∆

{l}
X/k) −−−→ Out(∆

{l}
X/k) −−−→ 1

— where the horizontal sequences are exact, and the left-hand vertical

arrow is, in fact, an isomorphism. On the other hand, if x ∈ X is a

closed point of X, then we have a homomorphism π1(x) : Gk(x) → Π
{l}
X/k

induced by x ∈ X (which is well-defined up to Π
{l}
X/k-conjugation).

In [13], Matsumoto studied the difference between the kernels of the

following two homomorphisms:

ρ
{l}
X/k|Gk(x)

: Gk(x) −→ Out(∆
{l}
X/k) ;

Gk(x)
π1(x)
−→ Π

{l}
X/k

eρ
{l}
X/k
−→ Aut(∆

{l}
X/k) .

Now we shall say that E(X, x, l) holds if the kernels of the above two

homomorphisms coincide and write

XEl ⊆ Xcl

for the subset of the set Xcl of closed points of X consisting of “excep-

tional” x ∈ Xcl such that E(X, x, l) holds (cf. [13], §1, §3, as well as

Definition 4 in the present paper). Then the main result of [13] may

be stated as follows:

Let g ≥ 3 be an integer. Suppose that l divides 2g− 2;

write lν for the highest power of l that divides 2g − 2.

Then there are infinitely many isomorphism classes

of pairs (K, C) of number fields K and proper hy-

perbolic curves C of genus g over K which satisfy the

following condition: For any closed point x ∈ C of C
with residue field k(x), if lν does not divide [k(x) : k],

then E(C, x, l) does not hold.

In the present paper, we prove that if a closed point x ∈ X of the

hyperbolic curve X is l-monodromically full, then E(X, x, l) does not

hold (cf. Proposition 11, (ii)). On the other hand, as a consequence of

Hilbert’s irreducibility theorem, any hyperbolic curve over a number

field has many l-monodromically full points (cf. Proposition 2, as well

as, [12], Theorem 1.2, or [9], Theorem 2.3). By applying these obser-

vations, one can prove the following result, which may be regarded as

a partial generalization of the above theorem due to Matsumoto (cf.

Theorem 1):
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Theorem A (Existence of many nonexceptional closed points).

Suppose that k is a number field. If we regard the set X cl of closed

points of X as a subset of X(C), then the complement

Xcl \XEl ⊆ X(C)

is dense with respect to the complex topology of X(C). More-

over, the intersection

X(k) ∩XEl ⊆ X(k)

is finite.

On the other hand, in [13], §2, Matsumoto proved that for any prime

number l, the triple

(P1
Q \ {0, 1,∞},

→

01, l)

— where
→

01 is a Q-rational tangential base point — is a triple for which

“E(X, x, l)” holds. As mentioned in [13], §2, the fact that “E(X, x, l)”
holds for this triple was observed by P. Deligne and Y. Ihara. However,

by definition, in fact, a tangential base point is not a point. In this sense,

no example of a triple “(X, x, l)” for which E(X, x, l) holds appears in

[13]. The following result is a result concerning the existence of triples

“(X, x, l)” for which E(X, x, l) holds (cf. Theorem 2):

Theorem B (Existence of many exceptional closed points for

certain hyperbolic curves). Suppose that X is either of type

(0, 3) or of type (1, 1). Let Y → X be a finite étale covering over

k which arises from an open subgroup of the geometrically pro-l fun-

damental group Π
{l}
X/k of X and is geometrically connected over k.

(Thus, Y is a hyperbolic curve over k.) Then the subset Y El ⊆ Y cl

is infinite. In particular, the subset XEl ⊆ Xcl is infinite.

Note that in Remark 13, we also give an example of a triple “(X, x, l)”
such that X is a proper hyperbolic curve, and, moreover, E(X, x, l)
holds.

If x ∈ Xn(k) is a k-rational point of the n-th configuration space Xn

of the hyperbolic curve X/k, then it follows from the various definitions

involved that the k-rational point x ∈ Xn(k) determines n distinct k-

rational points of X. Write

X[x] ⊆ X

for the hyperbolic curve of type (g, r + n) over k obtained by taking

the complement in X of the images of n distinct k-rational points of

X determined by x, i.e., X[x] may be regarded as the fiber product of
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the diagram of schemes

Xn+1y

Spec k −−−→
x

Xn .

Here, for two k-rational points x and y of Xn, we shall say that x is

equivalent to y if X[x] ' X[y] over k. In [9], the author proved that

the isomorphism class of a certain (e.g., split — cf. [9], Definition 1.5,

(i)) l-monodromically full hyperbolic curve of genus 0 over a finitely

generated extension of Q is completely determined by the kernel of the

natural pro-l outer Galois representation associated to the hyperbolic

curve (cf. [9], Theorem A). By a similar argument to the argument used

in the proof of [9], Theorem A, one can prove the following Galois-

theoretic characterization of equivalence classes of l-monodromically

full points of configuration spaces (cf. Theorem 3):

Theorem C (Galois-theoretic characterization of equivalence

classes of monodromically full points of configuration spaces).

Let n be a positive integer. Suppose that k is a finitely generated

extension of Q. Then for two k-rational points x and y of Xn which

are l-monodromically full (cf. Definition 3), the following three

conditions are equivalent:

(i) x is equivalent to y.

(ii) Ker(ρ
{l}
X[x]/k) = Ker(ρ

{l}
X[y]/k).

(iii) If we write φx (respectively, φy) for the composite

Gk
π1(x)
−→ π1(Xn)

eρ
{l}
Xn/k
−→ Aut(∆

{l}
Xn/k)

(respectively , Gk

π1 (y)
−→ π1 (Xn)

eρ
{l}
Xn/k

−→ Aut(∆
{l}
Xn/k))

(cf. Definition 1, (ii), (iii)), then Ker(φx) = Ker(φy).

In [17], S. Mochizuki introduced and studied the notion of a k-core

(cf. [17], Definition 2.1, as well as [17], Remark 2.1.1). It follows

from [14], Theorem 5.3, together with [17], Proposition 2.3, that if

2g−2+ r > 2, then a general hyperbolic curve of type (g, r) over k is a

k-core (cf. also [17], Remark 2.5.1). For a hyperbolic curve over k which

is a k-core, the following stronger Galois-theoretic characterization can

be proven (cf. Theorem 4):

Theorem D (Galois-theoretic characterization of equivalence

classes of quasi-monodromically full points of cores). Suppose

that k is a finitely generated extension of Q and that X is a k-

core (cf. [17], Remark 2.1.1). Then for two k-rational points x and y
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of X which are quasi-l-monodromically full (cf. Definition 3), the

following four conditions are equivalent:

(i) x = y.

(ii) x is equivalent to y.

(iii) If we write

Ux
def
= X \ Im(x) ; Uy

def
= X \ Im(y) ,

then the intersection Ker(ρ
{l}
Ux/k)∩Ker(ρ

{l}
Uy/k) is open in Ker(ρ

{l}
Ux/k)

and Ker(ρ
{l}
Uy/k).

(iv) If we write φx (respectively, φy) for the composite

Gk
π1(x)
−→ π1(X)

eρ
{l}
X/k
−→ Aut(∆

{l}
X/k)

(respectively, Gk

π1 (y)
−→ π1 (X )

eρ
{l}
X/k

−→ Aut(∆
{l}
X/k )) ,

then the intersection Ker(φx)∩Ker(φy) is open in Ker(φx) and

Ker(φy).

Finally, in a similar vein, we prove a necessary and sufficient condi-

tion for a quasi-l-monodromically full Galois section (cf. Definition 5)

of a hyperbolic curve to be geometric (cf. Theorem 5):

Theorem E (A necessary and sufficient condition for a quasi-

monodromically full Galois section of a hyperbolic curve to be

geometric). Suppose that k is a finitely generated extension of

Q. Let s : Gk → Π
{l}
X/k be a pro-l Galois section of X (i.e., a continuous

section of the natural surjection Π
{l}
X/k � Gk — cf. [10], Definition 1.1,

(i)) which is quasi-l-monodromically full (cf. Definition 5). Write

φs for the composite

Gk
s
−→ Π

{l}
X/k

eρ
{l}
X/k
−→ Aut(∆

{l}
X/k) .

Then the following four conditions are equivalent:

(i) The pro-l Galois section s is geometric (cf. [10], Definition

1.1, (iii)).

(ii) The pro-l Galois section s arises from a k-rational point of X
(cf. [10], Definition 1.1, (ii)).

(iii) There exists a quasi-l-monodromically full k-rational point

(cf. Definition 3) x ∈ X(k) of X such that if we write φx for

the composite

Gk
π1(x)
−→ Π

{l}
X/k

eρ
{l}
X/k
−→ Aut(∆

{l}
X/k) ,

then the intersection Ker(φs)∩Ker(φx) is open in Ker(φs) and

Ker(φx).
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(iv) There exists a quasi-l-monodromically full k-rational point

(cf. Definition 3) x ∈ X(k) of X such that if we write

U
def
= X \ Im(x) ,

then the intersection Ker(φs) ∩ Ker(ρ
{l}
U/k) is open in Ker(φs)

and Ker(ρ
{l}
U/k).

The present paper is organized as follows: In §1, we introduce and

discuss the notion of monodromically full points of configuration spaces

of hyperbolic curves. In §2, we consider the fundamental groups of con-

figuration spaces of hyperbolic curves. In §3, we consider the kernels

of the outer representations associated to configuration spaces of hy-

perbolic curves. In §4, we prove Theorems A and B. In §5, we prove

Theorems C, D, and E.
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0. Notations and Conventions

Numbers: The notation Primes will be used to denote the set of all

prime numbers. The notation Z will be used to denote the set, group,

or ring of rational integers. The notation Q will be used to denote the

set, group, or field of rational numbers. The notation C will be used

to denote the set, group, or field of complex numbers.

Profinite groups: If G is a profinite group, and H ⊆ G is a closed

subgroup of G, then we shall write NG(H) for the normalizer of H in

G, i.e.,

NG(H)
def
= { g ∈ G | gHg−1 = H } ⊆ G ,

ZG(H) for the centralizer of H in G, i.e.,

ZG(H)
def
= { g ∈ G | ghg−1 = h for any h ∈ H } ⊆ G ,

Z loc
G (H) for the local centralizer of H in G, i.e.,

Z loc
G (H)

def
= lim
−→

H′⊆H

ZG(H ′) ⊆ G
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— where H ′ ⊆ H ranges over the open subgroups of H — Z(G)
def
=

ZG(G) for the center of G, and Z loc(G)
def
= Z loc

G (G) for the local cen-

ter of G. It is immediate from the various definitions involved that

H ⊆ NG(H) ⊇ ZG(H) ⊆ Z loc
G (H) and that if H1, H2 ⊆ G are

closed subgroups of G such that H1 ⊆ H2 (respectively, H1 ⊆ H2;

H1 ∩H2 is open in H1 and H2), then ZG(H2) ⊆ ZG(H1) (respectively,

Z loc
G (H2) ⊆ Z loc

G (H1); Z loc
G (H1) = Z loc

G (H2)).

We shall say that a profinite group G is center-free (respectively,

slim) if Z(G) = {1} (respectively, Z loc(G) = {1}). Note that it follows

from [16], Remark 0.1.3, that a profinite group G is slim if and only if

every open subgroup of G is center-free.

If G is a profinite group, then we shall denote the group of continuous

automorphisms of G by Aut(G) and the group of inner automorphisms

of G by Inn(G) ⊆ Aut(G). Conjugation by elements of G determines a

surjection G� Inn(G). Thus, we have a homomorphism G→ Aut(G)

whose image is Inn(G) ⊆ Aut(G). We shall denote by Out(G) the

quotient of Aut(G) by the normal subgroup Inn(G) ⊆ Aut(G). If,

moreover, G is topologically finitely generated, then one verifies easily

that the topology of G admits a basis of characteristic open subgroups,

which thus induces a profinite topology on the group Aut(G), hence

also a profinite topology on the group Out(G).

Curves: Let S be a scheme and C a scheme over S. Then for a

pair (g, r) of nonnegative integers, we shall say that C is a smooth

curve of type (g, r) over S if there exist a scheme Ccpt which is smooth,

proper, geometrically connected, and of relative dimension 1 over S and

a closed subscheme D ⊆ Ccpt of Ccpt which is finite and étale over S
such that the complement of D in Ccpt is isomorphic to C over S,

any geometric fiber of Ccpt → S is (a necessarily smooth, proper, and

connected curve) of genus g, and, moreover, the degree of the finite

étale covering D ↪→ Ccpt → S is r. Moreover, we shall say that C is a

hyperbolic curve (respectively, tripod) over S if there exists a pair (g, r)
of nonnegative integers such that C is a smooth curve of type (g, r)
over S, and, moreover, 2g − 2 + r > 0 (respectively, (g, r) = (0, 3)).

For a pair (g, r) of nonnegative integers such that 2g−2+r > 0, write

Mg,r for the moduli stack of r-pointed smooth curves of genus g over

Z whose marked points are equipped with orderings (cf. [4], [11]) and

Mg,[r] for the moduli stack of hyperbolic curves of type (g, r) over Z.

Then we have a natural finite étale Galois Sr-covering Mg,r →Mg,[r]

— where Sr is the symmetric group on r letters.

1. Monodromically full points

In the present §, we introduce and discuss the notion of monodromi-

cally full points of configuration spaces of hyperbolic curves. Let Σ ⊆
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Primes be a nonempty subset of Primes (cf. the discussion entitled

“Numbers” in §0), and X and S regular and connected schemes. Sup-

pose, moreover, that X is a scheme over S.

Definition 1.

(i) Let 1 → ∆ → Π → G → 1 be an exact sequence of profi-

nite groups. Suppose that ∆ is topologically finitely generated.

Then conjugation by elements of Π determines a commutative

diagram of profinite groups

1 −−−→ ∆ −−−→ Π −−−→ G −−−→ 1y
y

y

1 −−−→ Inn(∆) −−−→ Aut(∆) −−−→ Out(∆) −−−→ 1

— where the horizontal sequences are exact, and we refer to

the discussion entitled “Profinite Groups” in §0 concerning the

topology of Aut(∆) (respectively, Out(∆)). We shall refer to

the continuous homomorphism

Π −→ Aut(∆) (respectively, G −→ Out(∆))

obtained as the middle (respectively, right-hand) vertical arrow

in the above diagram as the representation associated to 1 →
∆→ Π→ G→ 1 (respectively, outer representation associated

to 1→ ∆→ Π→ G→ 1).

(ii) We shall write

∆Σ
X/S

for the maximal pro-Σ quotient of the kernel of the natural

homomorphism

π1(X) −→ π1(S)

and

ΠΣ
X/S

for the quotient of π1(X) by the kernel of the natural surjection

from the kernel of π1(X) → π1(S) to ∆Σ
X/S . (Note that since

Ker(π1(X) → π1(S)) is a normal closed subgroup of π1(X),

and the kernel of the natural surjection Ker(π1(X)→ π1(S))�

∆Σ
X/S is a characteristic closed subgroup of Ker(π1(X)→ π1(S)),

it holds that the kernel of Ker(π1(X) → π1(S)) � ∆Σ
X/S is a

normal closed subgroup of π1(X).) Thus, we have a commuta-

tive diagram of profinite groups

1 −−−→ Ker(π1(X)→ π1(S)) −−−→ π1(X) −−−→ π1(S)y
y

∥∥∥

1 −−−→ ∆Σ
X/S −−−→ ΠΣ

X/S −−−→ π1(S)
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— where the horizontal sequences are exact, and the vertical

arrows are surjective. If S is the spectrum of a ring R, then we

shall write ∆Σ
X/R

def
= ∆Σ

X/S and ΠΣ
X/R

def
= ΠΣ

X/S .

(iii) Suppose that the natural homomorphism π1(X) → π1(S) is

surjective — or, equivalently, ΠΣ
X/S → π1(S) is surjective — and

that the profinite group ∆Σ
X/S is topologically finitely generated.

Then we have an exact sequence of profinite groups

1 −→ ∆Σ
X/S −→ ΠΣ

X/S −→ π1(S) −→ 1 .

We shall write

ρ̃Σ
X/S : ΠΣ

X/S −→ Aut(∆Σ
X/S)

for the representation associated to the above exact sequence

(cf. (i)) and refer to as the pro-Σ representation associated to

X/S. Moreover, we shall write

ρΣ
X/S : π1(S) −→ Out(∆Σ

X/S)

for the outer representation associated to the above exact se-

quence (cf. (i)) and refer to as the pro-Σ outer representation

associated to X/S. If S is the spectrum of a ring R, then we

shall write ρ̃Σ
X/R

def
= ρ̃Σ

X/S and ρΣ
X/R

def
= ρΣ

X/S . Moreover, if l is

a prime number, then for simplicity, we write “pro-l represen-

tation associated to X/S” (respectively, “pro-l outer represen-

tation associated to X/S”) instead of “pro-{l} representation

associated to X/S” (respectively, “pro-{l} outer representation

associated to X/S”).

(iv) Suppose that the natural homomorphism π1(X) → π1(S) is

surjective — or, equivalently, ΠΣ
X/S → π1(S) is surjective — and

that the profinite group ∆Σ
X/S is topologically finitely generated.

Then we shall write

ΠΣ
X/S � ΦΣ

X/S
def
= Im(ρ̃Σ

X/S)

for the quotient of ΠΣ
X/S determined by the pro-Σ representation

ρ̃Σ
X/S associated to X/S. Moreover, we shall write

π1(S)� ΓΣ
X/S

def
= Im(ρΣ

X/S)

for the quotient of π1(S) determined by the pro-Σ outer rep-

resentation ρΣ
X/S associated to X/S. If S is the spectrum of a

ring R, then we shall write ΦΣ
X/R

def
= ΦΣ

X/S and ΓΣ
X/R

def
= ΓΣ

X/S .

(v) Let π1(X) � Q be a quotient of π1(X). Then we shall say

that a finite étale covering Y → X is a finite étale Q-covering

if Y is connected, and the finite étale covering Y → X arises

from an open subgroup of Q, i.e., the open subgroup of π1(X)
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corresponding to the connected finite étale covering Y → X
contains the kernel of the surjection π1(X)� Q.

Remark 1. If S is the spectrum of a field k, then it follows from [5],

Exposé V, Proposition 6.9, that π1(X)→ π1(S) is surjective if and only

if X is geometrically connected, i.e., X ⊗k k, where k is an algebraic

closure of k, is connected — or, equivalently, X ⊗k ksep, where ksep is

a separable closure of k, is connected. Suppose, moreover, that X is

geometrically connected and of finite type over S. Then it follows from

[5], Exposé IX, Théorème 6.1, that the natural sequence of profinite

groups

1 −→ π1(X ⊗k ksep) −→ π1(X) −→ π1(S) −→ 1

is exact. Thus, it follows from the various definitions involved that ∆Σ
X/k

is naturally isomorphic to the maximal pro-Σ quotient of the étale fun-

damental group π1(X ⊗k ksep) of X ⊗k ksep. In particular, if, moreover,

k is of characteristic 0, then it follows from [6], Exposé II, Théorème

2.3.1, that ∆Σ
X/k is topologically finitely generated.

Remark 2. Suppose that X is a hyperbolic curve over S (cf. the dis-

cussion entitled “Curves” in §0). Then since S is regular, it follows

immediately from [5], Exposé X, Théorème 3.1, that the natural ho-

momorphism π1(ηS)→ π1(S) — where ηS is the generic point of S —

is surjective. Thus, in light of the surjectivity of the natural homomor-

phism π1(X ×S ηS) → π1(ηS) (cf. Remark 1), we conclude that the

natural homomorphism π1(X)→ π1(S) is surjective. In particular, we

have an exact sequence of profinite groups

1 −→ ∆Σ
X/S −→ ΠΣ

X/S −→ π1(S) −→ 1 .

If, moreover, every element of Σ is invertible on S, then it follows from

a similar argument to the argument used in the proof of [7], Lemma

1.1, that ∆Σ
X/S is naturally isomorphic to the maximal pro-Σ quotient of

the étale fundamental group π1(X×S s) — where s→ S is a geometric

point of X — of X×S s. In particular, it follows immediately from the

well-known structure of the maximal pro-Σ quotient of the fundamental

group of a smooth curve over an algebraically closed field of character-

istic 6∈ Σ that ∆Σ
X/S is topologically finitely generated and slim — where

we refer to the discussion entitled “Profinite Groups” in §0 concerning

the term “slim”. Thus, we have continuous homomorphisms

ρ̃Σ
X/S : ΠΣ

X/S −→ Aut(∆Σ
X/S) ;

ρΣ
X/S : π1(S) −→ Out(∆Σ

X/S) .

Moreover, there exists a natural bijection between the set of the cusps

of X/S and the set of the conjugacy classes of the cuspidal inertia

subgroups of ∆Σ
X/S .
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Lemma 1 (Outer representations arising from certain exten-

sions). Let

1 −→ ∆ −→ Π −→ G −→ 1

be an exact sequence of profinite groups. Suppose that ∆ is topologi-

cally finitely generated and center-free. Write

ρ̃ : Π −→ Aut(∆) ; ρ : G −→ Out(∆)

for the continuous homomorphisms arising from the above exact se-

quence of profinite groups (cf. Definition 1, (i)). Then the following

hold:

(i) Ker(ρ̃) = ZΠ(∆). Moreover, the natural surjection Π � G
induces an isomorphism

Ker(ρ̃) (= ZΠ(∆))
∼
−→ Ker(ρ) .

In particular, ∆ ∩Ker(ρ̃) = {1}.
(ii) The normal closed subgroup Ker(ρ̃) ⊆ Π is the maximal nor-

mal closed subgroup N of Π such that N ∩∆ = {1}.
(iii) Write

Aut(∆ ⊆ Π) ⊆ Aut(Π)

for the subgroup of the group Aut(Π) of automorphisms of Π

consisting of automorphisms which preserve the closed sub-

group ∆ ⊆ Π. Suppose that ZΠ(∆) = {1}. Then the natural

homomorphism Aut(∆ ⊆ Π) → Aut(∆) is injective, and its

image coincides with NAut(∆)(Im(ρ̃)) ⊆ Aut(∆), i.e.,

Aut(∆ ⊆ Π)
∼
−→ NAut(∆)(Im(ρ̃)) ⊆ Aut(∆) .

Proof. Assertion (i) follows immediately from the various definitions

involved. Next, we verify assertion (ii). Let N ⊆ Π be a normal closed

subgroup of Π such that Ker(ρ̃) ⊆ N , and, moreover, N ∩ ∆ = {1}.
Write N ⊆ G for the image of N via the natural surjection Π � G.

Then since the image of Ker(ρ̃) ⊆ Π via the natural surjection Π� G is

Ker(ρ) (cf. assertion (i)), we obtain a commutative diagram of profinite

groups

1 −−−→ ∆ −−−→ Π/Ker(ρ̃) −−−→ G/Ker(ρ) −−−→ 1∥∥∥
y

y

1 −−−→ ∆ −−−→ Π/N −−−→ G/N −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows

are surjective. Thus, it follows immediately from the exactness of the

lower horizontal sequence of the above diagram that the homomor-

phism ρ factors through G/N . Therefore, it holds that N = Ker(ρ).

In particular, the right-hand vertical arrow, hence also the middle ver-

tical arrow, is an isomorphism. This completes the proof of assertion
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(ii). Finally, we verify assertion (iii). It follows from the various defini-

tions involved that the natural homomorphism Aut(∆ ⊆ Π)→ Aut(∆)

factors through NAut(∆)(Im(ρ̃)) ⊆ Aut(∆). On the other hand, since

the natural surjection Π � Im(ρ̃) is an isomorphism (cf. assertion

(i)), conjugation by elements of NAut(∆)(Im(ρ̃)) determines a homo-

morphism NAut(∆)(Im(ρ̃)) → Aut(Im(ρ̃)) ' Aut(Π), which factors

through Aut(∆ ⊆ Π) → Aut(Π). Now it may be easily verified that

this homomorphism is the inverse of the homomorphism in question

Aut(∆ ⊆ Π) → NAut(∆)(Im(ρ̃)). This completes the proof of assertion

(iii). �

Lemma 2 (Certain automorphisms of slim profinite groups).

Let G be a slim (cf. the discussion entitled “Profinite Groups” in

§0) profinite group and α an automorphism of G. If α induces the

identity automorphism on an open subgroup, then α is the identity

automorphism of G.

Proof. Let H ⊆ G be an open subgroup of G such that α induces the

identity automorphism of H. To verify Lemma 2, by replacing H by the

intersection of all G-conjugates of H, we may assume without loss of

generality that H is normal in G. Then since ZG(H) = {1}, it follows

immediately from Lemma 1, (iii), that α is the identity automorphism

of G. This completes the proof of Lemma 2. �

Proposition 1 (Fundamental exact sequences associated to cer-

tain schemes). Suppose that the natural homomorphism π1(X) →
π1(S) is surjective and that the profinite group ∆Σ

X/S is topologi-

cally finitely generated and center-free. Then the following hold:

(i) We have a commutative diagram of profinite groups

1 −−−→ ∆Σ
X/S −−−→ ΠΣ

X/S −−−→ π1(S) −−−→ 1
∥∥∥ eρΣ

X/S

y
yρΣ

X/S

1 −−−→ ∆Σ
X/S −−−→ ΦΣ

X/S −−−→ ΓΣ
X/S −−−→ 1

— where the horizontal sequences are exact, and the vertical

arrows are surjective.

(ii) The quotient ΠΣ
X/S � ΦΣ

X/S determined by ρ̃Σ
X/S is the minimal

quotient ΠΣ
X/S � Q of ΠΣ

X/S such that Ker(ΠΣ
X/S � Q)∩∆Σ

X/S =

{1}.

Proof. Assertion (i) (respectively, (ii)) follows immediately from Lemma 1,

(i) (respectively, (ii)). �

Definition 2. Let n be a nonnegative integer and (g, r) a pair of non-

negative integers such that 2g−2+r > 0. Suppose that X is a hyperbolic

curve of type (g, r) over S (cf. the discussion entitled “Curves” in §0).
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(i) We shall write

X0
def
= S

and

Xn

for the n-th configuration space of X/S, i.e., the open subscheme

of the fiber product of n copies of X over S which represents

the functor from the category of schemes over S to the category

of sets given by

T  { (x1, · · · , xn) ∈ X(T )×n | xi 6= xj if i 6= j } .

For a nonnegative integer m ≤ n, we always regard Xn as a

scheme over Xm by the natural projection Xn → Xm to the first

m factors. Then it follows immediately from the various defini-

tions involved that Xn+1 is a hyperbolic curve of type (g, r + n)

over Xn. In particular, if every element of Σ is invertible on S,

then we have continuous homomorphisms

ρ̃Σ
Xn+1/Xn

: ΠΣ
Xn+1/Xn

−→ Aut(∆Σ
Xn+1/Xn

) ;

ρΣ
Xn+1/Xn

: π1(Xn) −→ Out(∆Σ
Xn+1/Xn

)

(cf. Remark 2). Moreover, it follows immediately from the

various definitions involved that Xn is naturally isomorphic

to the (n − m)-th configuration space of the hyperbolic curve

Xm+1/Xm.

(ii) Let m ≤ n be a nonnegative integer, T a regular and connected

scheme over S, and x ∈ Xm(T ) a T -valued point of Xm. Then

we shall write

X[x] ⊆ X ×S T

for the open subscheme of X×S T obtained by taking the com-

plement in X ×S T of the images of the m distinct T -valued

points of X ×S T determined by the T -valued point x. Then it

follows immediately from the various definitions involved that

X[x] is equipped with a natural structure of hyperbolic curve of

type (g, r + m) over T and that the base-change of Xn → Xm

via x is naturally isomorphic to the (n − m)-th configuration

space X[x]n−m of the hyperbolic curve X[x]/T , i.e., we have a

cartesian diagram of schemes

X[x]n−m −−−→ Xny
y

T −−−→
x

Xm .

(iii) Let T be a regular and connected scheme over S and x, y ∈
Xn(T ) two T -valued points of Xn. Then we shall say that x is
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equivalent to y if there exists an isomorphism X[x]
∼
→ X[y] over

T .

Definition 3. Suppose that every element of Σ is invertible on S and

that X is a hyperbolic curve over S. Let n be a positive integer and

T a regular and connected scheme over S. Then we shall say that

a T -valued point x ∈ Xn(T ) of the n-th configuration space Xn of

X/S is Σ-monodromically full (respectively, quasi-Σ-monodromically

full) if the following condition is satisfied: For any l ∈ Σ, if we write

ΓT ⊆ Out(∆
{l}
Xn+1/Xn

) (respectively, Γgeom ⊆ Out(∆
{l}
Xn+1/Xn

)) for the

image of the composite

π1(T )
π1(x)
→ π1(Xn)

ρ
{l}
Xn+1/Xn
→ Out(∆

{l}
Xn+1/Xn

)

(respectively, Ker
(
π1(Xn)→ π1(S)

)
↪→ π1(Xn)

ρ
{l}
Xn+1/Xn
→ Out(∆

{l}
Xn+1/Xn

) )

— cf. Definition 2, (i) — then ΓT contains Γgeom (respectively, ΓT ∩
Γgeom is an open subgroup of Γgeom). Note that since the closed sub-

group Γgeom ⊆ Γ
{l}
Xn+1/Xn

(⊆ Out(∆
{l}
Xn+1/Xn

)) is normal in Γ
{l}
Xn+1/Xn

, one

may easily verify that whether or not ΓT contains Γgeom (respectively,

ΓT ∩Γgeom is an open subgroup of Γgeom) does not depend on the choice

of the homomorphism “π1(T )
π1(x)
→ π1(Xn)” induced by x ∈ Xn(T )

among the various π1(Xn)-conjugates.

Moreover, we shall say that a point x ∈ Xn of Xn is Σ-monodromically

full (respectively, quasi-Σ-monodromically full) if for any l ∈ Σ, the

k(x)-valued point of Xn — where k(x) is the residue field at x — nat-

urally determined by x is Σ-monodromically full (respectively, quasi-

Σ-monodromically full).

If l is a prime number, then for simplicity, we write “l-monodromically

full” (respectively, “quasi-l-monodromically full”) instead of “{l}-mono-

dromically full” (respectively, “quasi-{l}-monodromically full”).

Remark 3. In the notation of Definition 3, as the terminologies sug-

gest, it follows immediately from the various definitions involved that

the Σ-monodromic fullness of x ∈ Xn(T ) implies the quasi-Σ-monodromic

fullness of x ∈ Xn(T ).

Remark 4. In the notation of Definition 3, if S is the spectrum of a

field k of characteristic 0, then it follows immediately from the various

definitions involved that for a closed point x ∈ Xn of Xn with residue

field k(x), the following two conditions are equivalent:

• The closed point x ∈ Xn is a Σ-monodromically full (respec-

tively, quasi-Σ-monodromically full) point in the sense of Defi-

nition 3.

• The k(x)-rational point of Xn ⊗k k(x) determined by x is a Σ-

monodromically full (respectively, quasi-Σ-monodromically full)
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point with respect to the hyperbolic curves Xn+1⊗k k(x)/Xn⊗k

k(x) in the sense of [9], Definition 2.1.

If, moreover, X is the complement P1
k \ {0, 1,∞} of {0, 1,∞} in the

projective line P1
k over k, then since the n-th configuration space Xn of

X/k is naturally isomorphic to the moduli stackM0,n+3⊗Z k of (n+3)-

pointed smooth curves of genus 0 over k-schemes whose marked points

are equipped with orderings, for a closed point x ∈ Xn with residue

field k(x), the following two conditions are equivalent:

• The closed point x ∈ Xn is a Σ-monodromically full (respec-

tively, quasi-Σ-monodromically full) point in the sense of Defi-

nition 3.

• The hyperbolic curve X[x] over k(x) (cf. Definition 2, (ii)) is

a Σ-monodromically full (respectively, quasi-Σ-monodromically

full) hyperbolic curve over k(x) in the sense of [9], Definition

2.2.

Remark 5. In the notation of Definition 3, suppose that S = T . Then

it follows from the various definitions involved that the following two

conditions are equivalent:

(i) The S-valued point x ∈ Xn(S) is a Σ-monodromically full (re-

spectively, quasi-Σ-monodromically full) point.

(ii) For any l ∈ Σ, the composite

π1(S)
π1(x)
→ π1(Xn)

ρ
{l}
Xn+1/Xn

� Γ
{l}
Xn+1/Xn

is surjective (respectively, has open image).

Proposition 2 (Existence of many monodromically full points).

Let Σ be a nonempty finite set of prime numbers, k a finitely gener-

ated extension of Q, X a hyperbolic curve over k (cf. the discussion

entitled “Curves” in §0), n a positive integer, Xn the n-th configuration

space of X/k (cf. Definition 2, (i)), X cl
n the set of closed points of Xn,

and XΣ-MF
n ⊆ Xcl

n the subset of Xcl
n consisting of closed points of Xn

which are Σ-monodromically full (cf. Definition 3). If we regard

Xcl
n as a subset of Xn(C), then the subset

XΣ-MF
n ⊆ Xn(C)

is dense with respect to the complex topology of Xn(C). If,

moreover, X is of genus 0, then the complement

Xn(k) \ (Xn(k) ∩XΣ-MF
n ) ⊆ Xn(k)

forms a thin set in Xn(k) in the sense of Hilbert’s irreducibility theo-

rem.

Proof. This follows from [9], Theorem 2.3, together with Remark 4. �
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2. Fundamental groups of configuration spaces

In the present §, we consider the fundamental groups of configuration

spaces of hyperbolic curves. We maintain the notation of the preceding

§. Suppose, moreover, that

• X is a hyperbolic curve over S (cf. the discussion entitled

“Curves” in §0),

• Σ is either Primes itself (cf. the discussion entitled “Numbers”

in §0), or of cardinality 1, and

• every element of Σ is invertible on S.

Lemma 3 (Fundamental groups of configuration spaces). Let

m < n be nonnegative integers. Then the following hold:

(i) The natural homomorphism π1(Xn) → π1(Xm) is surjective.

Thus, we have an exact sequence of profinite groups

1 −→ ∆Σ
Xn/Xm

−→ ΠΣ
Xn/Xm

−→ π1(Xm) −→ 1 .

(ii) If x → Xm is a geometric point of Xm, then ∆Σ
Xn/Xm

is nat-

urally isomorphic to the maximal pro-Σ quotient of the

étale fundamental group π1(Xn ×Xm x) of Xn ×Xm x.

(iii) Let T be a regular and connected scheme over S and x ∈ Xm(T )

a T -valued point of Xm. Then the homomorphism

∆Σ
X[x]n−m/T −→ ∆Σ

Xn/Xm

determined by the cartesian square of schemes

X[x]n−m −−−→ Xny
y

T −−−→
x

Xm

(cf. Definition 2, (ii)) is an isomorphism. In particular,

the right-hand square of the commutative diagram of profinite

groups

1 −−−→ ∆Σ
X[x]n−m/T −−−→ ΠΣ

X[x]n−m/T −−−→ π1(T ) −−−→ 1

o

y
y

yπ1(x)

1 −−−→ ∆Σ
Xn/Xm

−−−→ ΠΣ
Xn/Xm

−−−→ π1(Xm) −−−→ 1

— where the horizontal sequences are exact (cf. assertion (i))

— is cartesian.

(iv) The natural sequence of profinite groups

1 −→ ∆Σ
Xn/Xm

−→ ∆Σ
Xn/S −→ ∆Σ

Xm/S −→ 1

is exact.
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(v) The profinite group ∆Σ
Xn/Xm

is topologically finitely gener-

ated and slim (cf. the discussion entitled “Profinite Groups”

in §0). Thus, we have

ρ̃Σ
Xn/Xm

: ΠΣ
Xn/Xm

−→ Aut(∆Σ
Xn/Xm

) ;

ρΣ
Xn/Xm

: π1(Xm) −→ Out(∆Σ
Xn/Xm

)

(cf. assertion (i)).

(vi) Let T be a regular and connected scheme over S and x ∈ Xm(T )

a T -valued point of Xm. Then the diagram of profinite groups

π1(T )
ρΣ

X[x]n−m/T

−−−−−−−→ Out(∆Σ
X[x]n−m/T )

π1(x)

y
yo

π1(Xm) −−−−−→
ρΣ

Xn/Xm

Out(∆Σ
Xn/Xm

)

(cf. assertion (v)) — where the right-hand vertical arrow is

the isomorphism determined by the isomorphism obtained in

assertion (iii) — commutes.

(vii) The centralizer Z∆Σ
Xn/S

(∆Σ
Xn/Xm

) of ∆Σ
Xn/Xm

in ∆Σ
Xn/S (cf. as-

sertion (iv)) is trivial.

(viii) The pro-Σ outer representation associated to Xn/Xm

ρΣ
Xn/Xm

: π1(Xm) −→ Out(∆Σ
Xn/Xm

)

factors through the natural surjection π1(Xm) � ΠΣ
Xm/S,

and, moreover, the composite of the natural inclusion ∆Σ
Xm/S ↪→

ΠΣ
Xm/S and the resulting homomorphism ΠΣ

Xm/S → Out(∆Σ
Xn/Xm

)

is injective.

Proof. First, we verify assertion (i). By induction on n −m, we may

assume without loss of generality that n = m + 1. On the other hand,

if n = m + 1, then Xn → Xm is a hyperbolic curve over Xm (cf.

Definition 2, (i)). Thus, the desired surjectivity follows from Remark 2.

This completes the proof of assertion (i). Next, we verify assertion

(ii). It is immediate that there exists a connected finite étale covering

Y → Xm of Xm which satisfies the condition (c) in the statement of [18],

Proposition 2.2, hence also the three conditions (a), (b), and (c) in the

statement of [18], Proposition 2.2. Now it follows from [18], Proposition

2.2, (iii), that if y → Y is a geometric point, then ∆Σ
Xn×XmY/Y is

naturally isomorphic to the maximal pro-Σ quotient of π1(Xn ×Xm y).

On the other hand, it follows from the various definitions involved

that ∆Σ
Xn×XmY/Y is naturally isomorphic to ∆Σ

Xn/Xm
. Thus, assertion

(ii) follows from the fact that any geometric point of Xm arises from

a geometric point of Y . This completes the proof of assertion (ii).

Assertion (iii) follows immediately from assertion (ii). Assertion (iv)
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(respectively, (v)) follows immediately from [18], Proposition 2.2, (iii)

(respectively, (ii)), together with assertion (ii). Assertion (vi) follows

immediately from the various definitions involved. Next, we verify

assertion (vii). Since ∆Σ
Xn/Xm

is center-free (cf. assertion (v)), it holds

that Z∆Σ
Xn/S

(∆Σ
Xn/Xm

)∩∆Σ
Xn/Xm

= {1}. Thus, to verify assertion (vii),

by replacing ∆Σ
Xn/S by the quotient

∆Σ
Xm+1/S ' ∆Σ

Xn/S/∆Σ
Xn/Xm+1

(cf. assertion (iv)) of ∆Σ
Xn/S by ∆Σ

Xn/Xm+1
⊆ (∆Σ

Xn/Xm
⊆) ∆Xn/S, we

may assume without loss of generality that n = m +1. Then it follows

from Lemma 1, (i), that, to verify assertion (vii), it suffices to show

that the outer representation ∆Σ
Xm/S → Out(∆Σ

Xm+1/Xm
) associated to

the exact sequence of profinite groups

1 −→ ∆Σ
Xm+1/Xm

−→ ∆Σ
Xm+1/S −→ ∆Σ

Xm/S −→ 1

(cf. assertion (iv)) is injective. On the other hand, this injectivity

follows immediately from [2], Theorem 1, together with [2], Remark

following the proof of Theorem 1. This completes the proof of asser-

tion (vii). Finally, we verify assertion (viii). The fact that the pro-

Σ outer representation ρΣ
Xn/Xm

factors through the natural surjection

π1(Xm) � ΠΣ
Xm/S follows immediately from assertion (iv). The fact

that the composite in question is injective follows immediately from

assertion (vii), together with Lemma 1, (i). This completes the proof

of assertion (viii). �

Proposition 3 (Base-changing and monodromic fullness). Let

n be a positive integer, T a regular and connected scheme over S, and

x ∈ Xn(T ) a T -valued point of Xn. Then the following hold:

(i) The T -valued point x ∈ Xn(T ) is Σ-monodromically full

(respectively, quasi-Σ-monodromically full) if and only if

the T -valued point of Xn×ST determined by x is Σ-monodromi-

cally full (respectively, quasi-Σ-monodromically full).

(ii) Let T ′ be a regular and connected scheme over S and T ′ → T
a morphism over S such that the natural outer homomorphism

π1(T
′) → π1(T ) is surjective (respectively, has open image,

e.g., T ′ → T is a connected finite étale covering of T ). Then

the T -valued point x ∈ Xn(T ) is Σ-monodromically full

(respectively, quasi-Σ-monodromically full) if and only if

the T ′-valued point of Xn determined by x is Σ-monodromically

full (respectively, quasi-Σ-monodromically full).

Proof. This follows immediately from Lemma 3, (vi), together with

Remark 5. �

Lemma 4 (Extensions arising from FC-admissible outer au-

tomorphisms). Let m < n be positive integers, G a profinite group,
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and

1 −→ ∆Σ
Xn/S −→ En −→ G −→ 1

an exact sequence of profinite groups. Write

φ : G −→ Out(∆Σ
Xn/S)

for the outer representation associated to the above exact sequence

of profinite groups (cf. Definition 1, (i)). Suppose that φ factors

through the closed subgroup

OutFC(∆Σ
Xn/S) ⊆ Out(∆Σ

Xn/S)

— where we refer to [19], Definition 1.1, (ii), concerning “OutFC”.

Write, moreover, Bm for the quotient of En by ∆Σ
Xn/Xm

⊆ (∆Σ
Xn/S ⊆)

En (cf. Lemma 3, (iv)), i.e.,

Bm
def
= En/∆Σ

Xn/Xm
.

Thus, relative to the natural isomorphism

∆Σ
Xm/S ' ∆Σ

Xn/S/∆Σ
Xn/Xm

(cf. Lemma 3, (iv)), we have exact sequences of profinite groups

1 −→ ∆Σ
Xn/Xm

−→ En −→ Bm −→ 1 ;

1 −→ ∆Σ
Xm/S −→ Bm −→ G −→ 1 .

In particular, we obtain continuous homomorphisms

ρ : Bm −→ Out(∆Σ
Xn/Xm

) ;

ρ̃ : Bm −→ Aut(∆Σ
Xm/S)

(cf. Definition 1, (i)). Then the following hold:

(i) The natural surjection Bm � G induces an isomorphism Ker(ρ̃)
∼
→

Ker(φ).

(ii) Ker(ρ) = Ker(ρ̃) = ZBm(∆Σ
Xm/S).

(iii) ZEn(∆Σ
Xn/Xm

) = ZEn(∆Σ
Xn/S).

(iv) The natural surjections En � Bm � G induce isomorphisms

ZEn(∆Σ
Xn/Xm

) (= ZEn(∆Σ
Xn/S))

∼
−→ Ker(ρ)

(= Ker(ρ̃) = ZBm(∆Σ
Xm/S))

∼
−→ Ker(φ) .

Proof. First, we verify assertion (i). Write

Z ⊆ Bm

for the image of the centralizer ZEn(∆Σ
Xn/S) of ∆Σ

Xn/S in En via the

natural surjection En � Bm. Then it follows immediately from the

definition of the closed subgroup Z ⊆ Bm that

Z ⊆ ZBm(∆Σ
Xm/S) .

Now I claim that
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(∗1) the surjection Bm � G induces an isomorphism Z
∼
→ Ker(φ).

Indeed, since ∆Σ
Xn/S is center-free (cf. Lemma 3, (v)), it holds that

∆Σ
Xn/S ∩ ZEn(∆Σ

Xn/S) = {1}. In particular, the natural surjection

ZEn(∆Σ
Xn/S) � Z is an isomorphism. Thus, it follows from the def-

inition of Z ⊆ Bm that the claim (∗1) is equivalent to the fact that the

surjection En � G induces an isomorphism ZEn(∆Σ
Xn/S)

∼
→ Ker(φ).

On the other hand, this follows immediately from the fact that ∆Σ
Xn/S

is center-free (cf. Lemma 3, (v)), together with Lemma 1, (i). This

completes the proof of the claim (∗1). Next, I claim that

(∗2) Z = ZBm(∆Σ
Xm/S).

Indeed, it follows immediately from Lemma 1, (i), together with the

various definitions involved, that the image of ZBm(∆Σ
Xm/S) ⊆ Bm via

the natural surjection Bm � G coincides with the kernel of the com-

posite

G
φ
−→ OutFC(∆Σ

Xn/S) −→ OutFC(∆Σ
Xm/S)

— where the second arrow is the homomorphism induced by the nat-

ural surjection ∆Σ
Xn/S � ∆Σ

Xm/S (cf. Lemma 3, (iv)). Thus, it follows

immediately from [8], Theorem B, that the image of ZBm(∆Σ
Xm/S) ⊆

Bm via the surjection Bm � G coincide with Ker(φ). On the other

hand, since ∆Σ
Xm/S is center-free (cf. Lemma 3, (v)), it holds that

∆Σ
Xm/S ∩ ZBm(∆Σ

Xm/S) = {1}. Thus, since Z ⊆ ZBm(∆Σ
Xm/S), it fol-

lows immediately from the claim (∗1) that Z = ZBm(∆Σ
Xm/S). This

completes the proof of the claim (∗2). Now it follows from Lemma 1,

(i), that Ker(ρ̃) = ZBm(∆Σ
Xm/S). Thus, assertion (i) follows from the

claims (∗1), (∗2). This completes the proof of assertion (i).

Next, we verify assertion (ii). Now I claim that

(∗3) Ker(ρ̃) ⊆ Ker(ρ).

Indeed, it follows from the claim (∗2), together with Lemma 1, (i), that

Ker(ρ̃) = ZBm(∆Σ
Xm/S) = Z. On the other hand, since ZEn(∆Σ

Xn/S) ⊆

ZEn(∆Σ
Xn/Xm

) (cf. Lemma 3, (iv)), it follows from Lemma 1, (i), to-

gether with the definition of Z ⊆ Bm, that Z ⊆ Ker(ρ). This completes

the proof of the claim (∗3). Now it follows immediately from Lemma 3,

(viii), that Ker(ρ)∩∆Σ
Xm/S = {1}. Thus, assertion (ii) follows immedi-

ately from the claim (∗3), together with Lemma 1, (ii). This completes

the proof of assertion (ii).

Next, we verify assertion (iii). Observe that ZEn(∆Σ
Xn/S) ⊆ ZEn(∆Σ

Xn/Xm
)

(cf. Lemma 3, (iv)). Moreover, it follows immediately from Lemma 1,

(i), (respectively, the claim (∗2), together with Lemma 1, (i)) that the

image of ZEn(∆Σ
Xn/Xm

) (respectively, ZEn(∆Σ
Xn/S)) via the natural sur-

jection En � Bm coincides with Ker(ρ) (respectively, Ker(ρ̃)). On

the other hand, it follows from the fact that ∆Σ
Xn/Xm

is center-free (cf.
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Lemma 3, (v)) that ∆Σ
Xn/Xm

∩ ZEn(∆Σ
Xn/Xm

) = {1}. Therefore, asser-

tion (iii) follows immediately from assertion (ii). This completes the

proof of assertion (iii).

Assertion (iv) follows immediately from assertions (i), (ii), and (iii).

�

Remark 6. A similar result to Lemma 4, (ii), can be found in [3],

Theorem 2.5.

Proposition 4 (Two quotients of the fundamental group of a

configuration space). Let m < n be positive integers, T a regular

and connected scheme over S, and x ∈ Xm(T ) a T -valued point of Xm.

Then the following hold:

(i) The kernel of the pro-Σ representation associated to Xm/S

π1(Xm)� ΠΣ
Xm/S

eρΣ
Xm/S
→ Aut(∆Σ

Xm/S)

coincides with the kernel of the pro-Σ outer representation

associated to Xn/Xm

ρΣ
Xn/Xm

: π1(Xm)→ Out(∆Σ
Xn/Xm

)

— i.e., the two quotients ΦΣ
Xm/S and ΓΣ

Xn/Xm
of ΠΣ

Xm/S coin-

cide. In particular, we obtain a commutative diagram of profi-

nite groups

1 −−−→ ∆Σ
Xm/S −−−→ ΠΣ

Xm/S −−−→ π1(S) −−−→ 1
∥∥∥

y
y

1 −−−→ ∆Σ
Xm/S −−−→ ΓΣ

Xn/Xm
−−−→ ΓΣ

Xm/S −−−→ 1

— where the horizontal sequences are exact, and the vertical

arrows are surjective.

(ii) The kernel of the pro-Σ outer representation associated to X[x]n−m/T

ρΣ
X[x]n−m/T : π1(T )→ Out(∆Σ

X[x]n−m/T )

and the kernel of the composite

π1(T )
π1(x)
→ π1(Xm)� ΠΣ

Xm/S

eρΣ
Xm/S
→ Aut(∆Σ

Xm/S)

coincide. In particular, if x ∈ X(T ) is a T -valued point of X,

and we write

U
def
= (X ×S T ) \ Im(x) ,

then the kernel of the pro-Σ outer representation associated to

U/T
ρΣ

U/T : π1(T )→ Out(∆Σ
U/T )

and the kernel of the composite

π1(T )
π1(x)
→ π1(X)� ΠΣ

X/S

eρΣ
X/S
→ Aut(∆Σ

X/S)
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coincide.

(iii) The following two conditions are equivalent:

(iii-1) The T -valued point x ∈ Xn(T ) is Σ-monodromically

full (respectively, quasi-Σ-monodromically full).

(iii-2) For any l ∈ Σ, if we write ΦT ⊆ Aut(∆Xm/S) (respectively,

Φgeom ⊆ Aut(∆Xm/S)) for the image of the composite

π1(T )
π1(x)
→ π1(Xm)� Π

{l}
Xm/S

eρ
{l}
Xm/S
→ Aut(∆Xm/S)

(respectively, Ker
(
π1 (Xm)→ π1 (S )

)
↪→ π1 (Xm)

� Π
{l}
Xm/S

eρ
{l}
Xm/S
→ Aut(∆Xm/S) ),

then ΦT contains Φgeom (respectively, ΦT ∩ Φgeom is an

open subgroup of Φgeom).

(iv) If S = T , then the following two conditions are equivalent:

(iv-1) The S-valued point x ∈ Xn(S) is Σ-monodromically full

(respectively, quasi-Σ-monodromically full).

(iv-2) For any l ∈ Σ, the composite

π1(S)
π1(x)
→ π1(Xm)� Π

{l}
Xm/S

eρ
{l}
Xm/S

� Φ
{l}
Xm/S

is surjective (respectively, has open image).

Proof. Assertion (i) follows immediately from Lemma 4, (ii), together

with Proposition 1, (i). Assertion (ii) follows immediately from as-

sertion (i), together with Lemma 3, (vi). Assertion (iii) follows im-

mediately from assertion (i). Assertion (iv) follows immediately from

assertion (iii). �

Lemma 5 (Extension via the outer universal monodromy rep-

resentations). Let (g, r) be a pair of nonnegative integers such that

2g − 2 + r > 0, n a positive integer, k a field of characteristic 0,

s : Spec k →Mg,r a morphism of stacks (where we refer to the discus-

sion entitled “Curves” in §0 concerning “Mg,r”), and X an r-pointed

smooth curve of genus g over k corresponding to s. By the morphism of

stacksMg,r+n →Mg,r obtained by forgetting the last n sections, regard

the stack Mg,r+n as a stack over Mg,r. Then the morphism of stacks

s naturally induces a morphism Xn → Mg,r+n — where Xn is the n-

th configuration space of X/k (cf. Definition 2, (i)). Moreover, this

morphism and the pro-Σ outer universal monodromy representations

ρΣ
g,r : π1(Mg,r ⊗Z k) −→ Out(∆Σ

g,r) ;

ρΣ
g,r+n : π1(Mg,r+n ⊗Z k) −→ Out(∆Σ

g,r+n)
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(cf. [9], Definition 1.3, (ii)) determine a commutative diagram of profi-

nite groups

1 −−−→ π1(Xn ⊗k k) −−−→ π1(Mg,r+n ⊗Z k) −−−→ π1(Mg,n ⊗Z k) −−−→ 1y ρΣ
g,r+n

y
yρΣ

g,r

1 −−−→ ∆Σ
Xn/k −−−→ Im(ρΣ

g,r+n) −−−→ Im(ρΣ
g,r) −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows

are the natural surjections.

Proof. It follows immediately from the various definitions involved that

one may naturally regard the fiber product of Mg,r+n → Mg,r and

s : Spec k →Mg,r as Xn. Thus, we obtain a morphism Xn →Mg,r+n,

hence also a sequence of stacks Xn⊗kk →Mg,r+n⊗Zk →Mg,r⊗Zk. In

particular, we obtain the top sequence in the commutative diagram of

the statement of Lemma 5, hence also the commutative diagram of the

statement of Lemma 5. Now the exactness of the top sequence in the

commutative diagram of the statement of Lemma 5 follows immediately

from [12], Lemma 2.1.

To verify the exactness of the lower sequence in the commutative

diagram of the statement of Lemma 5, write Π for the quotient of

π1(Mg,r+n⊗Z k) by the kernel of the natural surjection π1(Xn⊗k k)�

∆Σ
Xn/k — i.e., Π

def
= “ΠΣ

Mg,r+n⊗Zk/Mg,r⊗Zk” — and ρ̃ : Π → Aut(∆Σ
Xn/k)

(respectively, ρ : π1(Mg,r ⊗Z k) → Out(∆Σ
Xn/k)) for the representation

(respectively, outer representation) associated to the natural exact se-

quence of profinite groups

1 −→ ∆Σ
Xn/k −→ Π −→ π1(Mg,r ⊗Z k) −→ 1 ,

i.e., ρ̃
def
= “ρ̃Σ

Mg,r+n⊗Zk/Mg,r⊗Zk” (respectively, ρ
def
= “ρΣ

Mg,r+n⊗Zk/Mg,r⊗Zk”).

Then it follows immediately from [8], Theorem B, that Ker(ρ) = Ker(ρΣ
g,r).

On the other hand, it follows immediately from Lemma 3, (viii), to-

gether with the various definitions involved, that ρΣ
g,r+n : π1(Mg,r+n⊗Z

k)→ Out(∆Σ
g,r+n) factors through the natural surjection π1(Mg,r+n⊗Z

k)� Π; moreover, it follows immediately from Lemma 4, (ii), that the

kernel of the homomorphism Π → Out(∆Σ
g,r+n) determined by ρΣ

g,r+n

coincides with Ker(ρ̃). Therefore, the exactness of the lower sequence in

the commutative diagram of the statement of Lemma 5 follows immedi-

ately from Lemma 3, (v), together with Lemma 1, (i). This completes

the proof of Lemma 5. �

Proposition 5 (Monodromically full curves and monodromi-

cally full points). Suppose that S is the spectrum of a field k of char-

acteristic 0. Let n be a positive integer and x ∈ Xn(k) a k-rational point

of Xn. Then the hyperbolic curve X[x] over k is Σ-monodromically
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full (respectively, quasi-Σ-monodromically full) — cf. [9], Defini-

tion 2.2 — if and only if the following two conditions are satisfied:

(i) The hyperbolic curve X over k is Σ-monodromically full

(respectively, quasi-Σ-monodromically full) — cf. [9], Def-

inition 2.2.

(ii) The k-rational point x ∈ Xn(k) of Xn is Σ-monodromically

full (respectively, quasi-Σ-monodromically full).

Proof. Suppose that X is of type (g, r). Now it follows immediately

from the definitions of the terms “monodromically full”, “quasi-monod-

romically full” that, by replacing Σ by {l} for l ∈ Σ, we may as-

sume without loss of generality that Σ is of cardinality 1. More-

over, again by the definitions the terms “monodromically full”, “quasi-

monodromically full”, by replacing k by the (necessarily finite) minimal

Galois extension of k over which X is split (where we refer to [9], Def-

inition 1.5, (i), concerning the term “split”), we may assume without

loss of generality that X is split over k. Then since X is split, the clas-

sifying morphism Spec k →Mg,[r] of the hyperbolic curve X/k factors

through the natural finite étale Galois covering Mg,r →Mg,[r] (cf. the

discussion entitled “Curves” in §0). Let sX : Spec k →Mg,r be a lift of

the classifying morphism Spec k →Mg,[r] of X/k. Then by Lemma 5,

we have a commutative diagram of profinite groups

π1(Spec k)

π1(x)

y

1 −−−→ π1(Xn ⊗k k) −−−→ π1(Xn) −−−→ π1(Spec k) −−−→ 1∥∥∥
y

yπ1(sX)

1 −−−→ π1(Xn ⊗k k) −−−→ π1(Mg,r+n ⊗Z k) −−−→ π1(Mg,r ⊗Z k) −−−→ 1y ρΣ
g,r+n

y
yρΣ

g,r

1 −−−→ ∆Σ
Xn/k −−−→ Im(ρΣ

g,r+n) −−−→ Im(ρΣ
g,r) −−−→ 1

— where the horizontal sequences are exact, and “π1(−)” is the outer

homomorphism induced by “(−)”.

Now it follows from the various definitions involved that the compos-

ite of the three middle vertical arrows π1(Spec k) → Im(ρΣ
g,r+n) coin-

cides with the outer pro-Σ representation ρΣ
X[x]/k associated to X[x]/k,

and the composite of the two right-hand vertical arrows π1(Spec k)→
Im(ρΣ

g,r) coincides with the outer pro-Σ representation ρΣ
X/k associated

to X/k. Therefore, again by the various definitions involved, if we write

ρ : π1(Xn)→ Im(ρΣ
g,r+n) for the composite of the middle vertical arrow

π1(Xn)→ π1(Mg,r+n⊗Z k) and the lower middle vertical arrow ρΣ
g,r+n,

then
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• the hyperbolic curve X[x] is Σ-monodromically full (respec-

tively, quasi-Σ-monodromically full) if and only if the composite

of the three middle vertical arrows — i.e., ρΣ
X[x]/k — is surjective

(respectively, has open image in Im(ρΣ
g,r+n)),

• the hyperbolic curve X is Σ-monodromically full (respectively,

quasi-Σ-monodromically full) if and only if the composite of

the two right-hand vertical arrows — i.e., ρΣ
X/k — is surjective

(respectively, has open image in Im(ρΣ
g,r+n)),

• and the k-rational point x ∈ Xn(k) of Xn is Σ-monodromically

full (respectively, quasi-Σ-monodromically full) if and only if the

image of the composite of the three middle vertical arrows —

i.e., ρΣ
X[x]/k — coincides with the image of ρ (respectively, is an

open subgroup of the image of ρ).

Thus, one may easily verify that Proposition 5 holds. This completes

the proof of Proposition 5. �

Remark 7. In the notation of Proposition 5, since the complement

P1
k \ {0, 1,∞} of {0, 1,∞} in the projective line P1

k over k is a Primes-

monodromically full hyperbolic curve (cf. [9], Definition 2.2, (i)), one

may regard Proposition 5 as a generalization of the second equivalence

in Remark 4.

3. Kernels of the outer representations associated to

configuration spaces

In the present §, we consider the kernels of the outer representations

associated to configuration spaces of hyperbolic curves. We maintain

the notation and assumption of the preceding §. Let n be a positive

integer and Y → Xn a finite étale ΠΣ
Xn/S-covering (cf. Definition 1,

(v)) over S. Suppose, moreover, that

• the natural homomorphism π1(Y ) → π1(S) induced by the

structure morphism Y → S of Y is surjective.

Then we have a commutative diagram of profinite groups

1 −−−→ ∆Σ
Y/S −−−→ ΠΣ

Y/S −−−→ π1(S) −−−→ 1
y

y
∥∥∥

1 −−−→ ∆Σ
Xn/S −−−→ ΠΣ

Xn/S −−−→ π1(S) −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are

open injections. In particular, ∆Σ
Y/S is topologically finitely generated

(cf. Lemma 3, (v)).
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Lemma 6 (Difference between kernels of outer representations

arising from extensions). Let

1 −−−→ ∆′ −−−→ Π′ −−−→ G −−−→ 1

α

y
y

∥∥∥

1 −−−→ ∆ −−−→ Π −−−→ G −−−→ 1

be a commutative diagram of profinite groups, where the horizontal

sequences are exact, and the right-hand vertical arrow is the iden-

tity automorphism of G. Suppose that ∆ and ∆′ are topologically

finitely generated. Write

ρ : G −→ Out(∆) (respectively, ρ′ : G −→ Out(∆′) )

for the outer representation associated to the lower (respectively, top)

horizontal sequence in the above commutative diagram of profinite groups

(cf. Definition 1, (i)). Then the following hold:

(i) If α is injective, then we have a natural exact sequence of

profinite groups

1 −→ Ker(ρ) ∩ Ker(ρ′) −→ Ker(ρ)
ρ′

−→ Im(φ)

— where φ is the outer representation

N∆(∆′)/∆′ −→ Out(∆′)

associated to the exact sequence of profinite groups

1 −→ ∆′ −→ N∆(∆′) −→ N∆(∆′)/∆′ −→ 1

(cf. Definition 1, (i)).

(ii) If α is surjective, then we have an inclusion

Ker(ρ′) ⊆ Ker(ρ) .

(iii) If α is an open injection, and ∆ is slim (cf. the discussion

entitled “Profinite Groups” in §0), then

ZΠ′(∆′) = ZΠ(∆) ∩ Π′ ; Ker(ρ′) ⊆ Ker(ρ) .

Moreover, ZΠ(∆) ⊆ Π′ if and only if Ker(ρ′) = Ker(ρ).

Proof. Assertions (i) and (ii) follow immediately from the various def-

initions involved. Finally, we verify assertion (iii). Since ∆ and ∆′

are center-free, it follows from Lemma 1, (i), that, to verify assertion

(iii), it suffices to verify that ZΠ′(∆′) = ZΠ(∆) ∩ Π′. On the other

hand, since ∆ is slim, this follows immediately from Lemma 2. This

completes the proof of assertion (iii). �

Proposition 6 (Hyperbolic partial compactifications and mon-

odromic fullness). Let T be a regular and connected scheme over S
and x ∈ Xn(T ) a T -valued point of Xn. Suppose that the T -valued

point x ∈ Xn(T ) is Σ-monodromically full (respectively, quasi-Σ-

monodromically full). Then the following hold:
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(i) Let Z be a hyperbolic partial compactification of X over S —

i.e., a hyperbolic curve over S which contains X as an open sub-

scheme over S. (Note that the natural open immersion X ↪→ Z
induces an open immersion Xn ↪→ Zn). Then the T -valued

point of Zn determined by x is Σ-monodromically full (respec-

tively, quasi-Σ-monodromically full).

(ii) Let m < n be a positive integer. Then the T -valued point of

Xm determined by x is Σ-monodromically full (respectively,

quasi-Σ-monodromically full).

Proof. It follows from Proposition 3, (i), that, to verify Proposition 6,

by replacing X by X ×S T , we may assume without loss of generality

that S = T . Let l ∈ Σ be an element of Σ. First, we verify assertion (i).

The natural open immersion X ↪→ Z induces a commutative diagram

of schemes
Xn+1 −−−→ Xny

y

Zn+1 −−−→ Zn ;

thus, we obtain a commutative diagram of profinite groups

1 −−−→ ∆
{l}
Xn+1/Xn

−−−→ Π
{l}
Xn+1/S −−−→ Π

{l}
Xn/S −−−→ 1

y
y

y

1 −−−→ ∆
{l}
Zn+1/Zn

−−−→ Π
{l}
Zn+1/S −−−→ Π

{l}
Zn/S −−−→ 1

— where the horizontal sequences are exact (cf. Lemma 3, (iv)), and

the vertical arrows are surjective (cf. Lemma 3, (ii)). In particular, it

follows immediately from Lemma 6, (ii), that we obtain a natural sur-

jection Γ
{l}
Xn+1/Xn

� Γ
{l}
Zn+1/Zn

. Thus, assertion (i) follows immediately

from Remark 5. This completes the proof of assertion (i). Next, we

verify assertion (ii). Now we have a commutative diagram of schemes

Xn+1 −−−→ Xny
y

Xm+1 −−−→ Xm

— where the left-hand vertical arrow is the projection obtained as

“(x1, · · · , xn+1) 7→ (x1, · · · , xm, xn+1)” and other arrows are the natu-

ral projections. Thus, we obtain a commutative diagram of profinite

groups

1 −−−→ ∆
{l}
Xn+1/Xn

−−−→ Π
{l}
Xn+1/S −−−→ Π

{l}
Xn/S −−−→ 1

y
y

y

1 −−−→ ∆
{l}
Xm+1/Xm

−−−→ Π
{l}
Xm+1/S −−−→ Π

{l}
Xm/S −−−→ 1
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— where the horizontal sequences are exact (cf. Lemma 3, (iv)), and

the vertical arrows are surjective (cf. Lemma 3, (i), (ii)). In particular,

it follows immediately from Lemma 6, (ii), that we obtain a natural

surjection Γ
{l}
Xn+1/Xn

� Γ
{l}
Xm+1/Xm

. Thus, assertion (ii) follows immedi-

ately from Remark 5. This completes the proof of assertion (ii). �

Proposition 7 (Kernels of the outer representations associated

to the fundamental groups of configuration spaces). Let T be a

regular and connected scheme over S and y ∈ Y (T ) a T -valued point

of Y . Write x ∈ Xn(T ) for the T -valued point of Xn determined by y.

Then the following hold:

(i) Ker(ρΣ
Y/S) is an open subgroup of Ker(ρΣ

Xn/S) ⊆ π1(S). More-

over, Ker(ρΣ
Xn/S) = Ker(ρΣ

Y/S) if and only if the covering Y →

Xn is a finite étale ΦΣ
Xn/S-covering (cf. Definition 1, (v)).

(ii) The natural inclusion ΠΣ
Y/S ↪→ ΠΣ

Xn/S induces a commutative

diagram of profinite groups

1 −−−→ ∆Σ
Y/S −−−→ ΦΣ

Y/S −−−→ ΓΣ
Y/S −−−→ 1

y
y

y

1 −−−→ ∆Σ
Xn/S −−−→ ΦΣ

Xn/S −−−→ ΓΣ
Xn/S −−−→ 1

— where the horizontal sequences are exact, the left-hand and

middle vertical arrows are open injection, and the right-hand

vertical arrow is a surjection with finite kernel.

(iii) The kernels of the two composites

π1(T )
π1(y)
→ π1(Y )

eρΣ
Y/S
→ Aut(∆Σ

Y/S) ; π1(T )
π1(x)
→ π1(Xn)

eρΣ
Xn/S
→ Aut(∆Σ

Xn/S)

coincide.

(iv) If Y is a hyperbolic curve over S (thus, n = 1), and we write

UY
def
= (Y ×S T ) \ Im(y) ; UX

def
= (X ×S T ) \ Im(x) ,

then Ker(ρΣ
UY /T ) = Ker(ρΣ

UX/T ).

(v) Suppose that S = T , Σ = {l} for some l ∈ Primes, and that

x ∈ Xn(T ) is l-monodromically full. Then the covering Y →
Xn is an isomorphism if and only if Ker(ρΣ

Y/S) = Ker(ρΣ
Xn/S),

i.e., if the covering Y → Xn is not an isomorphism, then the

cokernel of the natural inclusion Ker(ρΣ
Y/S) ↪→ Ker(ρΣ

Xn/S) (cf.

assertion (i)) is nontrivial. Moreover, if ∆Σ
Y/S ⊆ ∆Σ

Xn/S is

normal, then we have an exact sequence of profinite groups

1 −→ Ker(ρΣ
Y/S) −→ Ker(ρΣ

Xn/S) −→ ∆Σ
Xn/S/∆Σ

Y/S −→ 1 .

Proof. Assertion (i) follows immediately from Lemmas 1, (i); 6, (i),

(iii). Assertion (ii) follows immediately from assertion (i), together with

Proposition 1, (i). Assertion (iii) follows immediately from assertion
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(ii). Assertion (iv) follows immediately from assertion (iii), together

with Proposition 4, (ii). Finally, we verify assertion (v). Since S = T ,

and x ∈ Xn(T ) is l-monodromically full, it follows immediately from

Proposition 4, (iv), that the composite

π1(S)
π1(x)
→ π1(Xn)

eρΣ
Xn/S

� ΦΣ
Xn/S

is surjective. Thus, it follows immediately from assertion (ii) that we

obtain a commutative diagram of profinite groups

1 −−−→ ∆Σ
Y/S −−−→ ΦΣ

Y/S −−−→ ΓΣ
Y/S −−−→ 1

y o

y
y

1 −−−→ ∆Σ
Xn/S −−−→ ΦΣ

Xn/S −−−→ ΓΣ
Xn/S −−−→ 1

— where the horizontal sequences are exact, and the middle vertical

arrow is an isomorphism. Therefore, if the covering Y → Xn is not

an isomorphism, then it holds that the kernel of the natural surjection

ΓΣ
Y/S � ΓΣ

Xn/S is nontrivial. This completes the proof of assertion

(v). �

Remark 8. Let k be a number field (i.e., a finite extension of the field

of rational numbers), (g0, r0) a pair of nonnegative integers such that

2g0 − 2 + r0 > 0, and N ⊆ π1(Spec k) a normal closed subgroup of

π1(Spec k). Write

IGal(l, k, g0, r0, N)

for the set of the isomorphism classes over k of hyperbolic curves C of

type (g0, r0) over k such that the kernels of the pro-l outer representa-

tions associated to C/k

ρ
{l}
C/k : π1(Spec k) −→ Out(∆

{l}
C/k)

coincide with N ⊆ π1(Spec k) (cf. [9], Definition A. 1). Then it follows

from [9], Theorem C, that IGal(l, k, g0, r0, N) is finite. On the other

hand, it follows from Proposition 7, (i), that in general,

IGal(l, k, N)
def
=

⋃

2g−2+r>0

IGal(l, k, g, r, N)

is not finite. Indeed, let C be a hyperbolic curve over k such that there

exists a k-rational point x ∈ C(k) which is not l-monodromically full

(e.g., C is of type (0, 3) — cf. Proposition 11, (ii) below; Theorem 2

below). Then it follows from Remark 5 that the image of the composite

φ : π1(Spec k)
π1(x)
→ π1(C)� Φ

{l}
C/k

is not open. Thus, there exists an infinite sequence of open subgroups

of Φ
{l}
C/k which contain Im(φ)

Im(φ) ⊆ · · · ( Φn ( · · · ( Φ2 ( Φ1 ( Φ0 = Φ
{l}
C/k ,
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hence also an infinite sequence of connected finite étale coverings of C

· · · −→ Cn −→ · · · −→ C2 −→ C1 −→ C0 = C

— where Cn is the finite étale covering of C corresponding to the

open subgroup Φn ⊆ Φ
{l}
C/k. Then for any n, since Im(φ) ⊆ Φn, Cn

is a hyperbolic curve over k; moreover, since Cn is a finite étale Φ
{l}
C/k-

covering (cf. Definition 1, (v)), it follows from Proposition 7, (i), that

Ker(ρ
{l}
C/k) = Ker(ρ

{l}
Cn/k). In particular,

IGal(l, k, Ker(ρ
{l}
C/k)) =

⋃

2g−2+r>0

IGal(l, k, g, r, Ker(ρ
{l}
C/k))

is not finite.

Proposition 8 (Monodromic fullness and finite étale cover-

ings). Suppose that Y is a hyperbolic curve over S (thus, n = 1)

and that Σ = {l} for some l ∈ Primes. Let T be a regular and con-

nected scheme over S and y ∈ Y (T ) a T -valued point of Y . Write

x ∈ X(T ) for the T -valued point of X determined by y. Then the

following hold:

(i) If x ∈ X(T ) is l-monodromically full, then y ∈ Y (T ) is

l-monodromically full.

(ii) x ∈ X(T ) is quasi-l-monodromically full if and only if y ∈
Y (T ) is quasi-l-monodromically full.

Proof. It follows from Proposition 3, (i), that, to verify Proposition 8,

by replacing X by X ×S T , we may assume without loss of generality

that S = T . Then Proposition 8 follows immediately from Propositions

4, (iv); 7, (ii). �

Lemma 7 (Kernels of outer representations associated to cer-

tain finite étale coverings). Suppose that the following five condi-

tions are satisfied:

(i) Y is a hyperbolic curve over S. (Thus, n = 1.)

(ii) Σ = {l} for some l ∈ Primes.

(iii) The subgroup ∆Σ
Y/S ⊆ ∆Σ

X/S is normal, i.e., there exists a geo-

metric point s→ S such that the connected finite étale covering

Y ×S s→ X ×S s is Galois.

(iv) The action of the Galois group Gal(Y ×S s/X ×S s) (cf. con-

dition (iii)) on the set of the cusps of Y ×S s is faithful. (In

particular, if the covering Y → X is not an isomorphism, then

Y , hence also X, is not proper over S.)

(v) Every cusp of Y/S is defined over the connected (possibly

infinite) étale covering of S corresponding to the kernel Ker(ρΣ
X/S) ⊆

π1(S) of ρΣ
X/S .

Then Ker(ρΣ
X/S) = Ker(ρΣ

Y/S).
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Proof. It follows from Proposition 7, (i), that Ker(ρΣ
Y/S) ⊆ Ker(ρΣ

X/S).

Thus, to verify Lemma 7, it suffices to verify that Ker(ρΣ
X/S) ⊆ Ker(ρΣ

Y/S).

Now it follows from condition (iii), together with Lemma 6, (i), that if

we write

φ : ∆Σ
X/S/∆Σ

Y/S −→ Out(∆Σ
Y/S)

for the outer representation associated to the natural exact sequence

of profinite groups

1 −→ ∆Σ
Y/S −→ ∆Σ

X/S −→ ∆Σ
X/S/∆Σ

Y/S −→ 1

(cf. Definition 1, (i)), then the image of Ker(ρΣ
X/S) ⊆ π1(S) via ρΣ

Y/S

contained in Im(φ) ⊆ Out(∆Σ
Y/S), i.e.,

ρΣ
Y/S(Ker(ρΣ

X/S)) ⊆ Im(φ) ⊆ Out(∆Σ
Y/S) .

Now it follows from condition (iv) that the action of Im(φ) on the set

of the ∆Σ
Y/S-conjugacy classes of cuspidal inertia subgroups of ∆Σ

Y/S is

faithful (cf. Remark 2). On the other hand, it follows from condition (v)

that the action of ρΣ
Y/S(Ker(ρΣ

X/S)) on the set of the ∆Σ
Y/S-conjugacy

classes of cuspidal inertia subgroups of ∆Σ
Y/S is trivial. Therefore, it

follows that ρΣ
Y/S(Ker(ρΣ

X/S)) = {1}, i.e., Ker(ρΣ
X/S) ⊆ Ker(ρΣ

Y/S). This

completes the proof of Lemma 7. �

Proposition 9 (Kernels of outer representations associated to

certain coverings of tripods). Let l be a prime number which is

invertible on S. Write P
def
= Spec Z[t±1, 1/(t − 1)] — where t is

an indeterminate — and PS
def
= P ×Spec Z S. Let U → PS be a finite

étale Π
{l}
PS/S-covering (cf. Definition 1, (v)) over S such that U is a

hyperbolic curve over S. Suppose that the following three conditions

are satisfied:

(i) The subgroup ∆
{l}
U/S ⊆ ∆

{l}
PS/S is normal, i.e., there exists a geo-

metric point s→ S such that the connected finite étale covering

U ×S s→ PS ×S s is Galois.

(ii) The action of the Galois group Gal(U ×S s/PS ×S s) (cf. con-

dition (i)) on the set of the cusps of U ×S s is faithful.

(iii) Every cusp of U/S is defined over the connected (possibly

infinite) étale covering of S corresponding to the kernel Ker(ρ
{l}
PS/S) ⊆

π1(S) of ρ
{l}
PS/S.

Let V be a hyperbolic partial compactification of U over S — i.e., a

hyperbolic curve over S which contains U as an open subscheme over S.

Then Ker(ρ
{l}
V/S) = Ker(ρ

{l}
PS/S). In particular, Ker(ρ

{l}
U/S) = Ker(ρ

{l}
PS/S).

Proof. It follows immediately from [8], Theorem C, together with Lemma 6,

(ii), that we obtain natural inclusions

Ker(ρ
{l}
U/S) ⊆ Ker(ρ

{l}
V/S) ⊆ Ker(ρ

{l}
PS/S) .
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Thus, to verify Proposition 9, it suffices to verify that Ker(ρ
{l}
PS/S) ⊆

Ker(ρ
{l}
U/S). On the other hand, this follows immediately from Lemma 7.

�

Remark 9. A similar result to Proposition 9 can be found in [1],

Corollary 3.8.1.

Proposition 10 (Kernels of outer representations associated to

certain hyperbolic curves arising from elliptic curves). Let l be

a prime number which is invertible on S, N a positive integer, and

E an elliptic curve over S. Write o ∈ E(S) for the identity section

of E, E[lN ] ⊆ E for the kernel of the endomorphism of E given by

multiplication by lN , and

Z
def
= E \ Im(o) ; U

def
= E \ E[lN ] .

[Thus, Z (respectively, U) is a hyperbolic curve of type (1, 1) (respectively,

(1, l2N)) over S.] Let V be an open subscheme of Z such that U ⊆

V ⊆ Z. Then Ker(ρ
{l}
V/S) = Ker(ρ

{l}
Z/S). In particular, Ker(ρ

{l}
U/S) =

Ker(ρ
{l}
Z/S).

Proof. Observe that the endomorphism of E given by multiplication

by lN determines an open injection Π
{l}
U/S ↪→ Π

{l}
Z/S over π1(S). First, I

claim that the natural action of the kernel Ker(ρ
{l}
Z/S) ⊆ π1(S) of ρ

{l}
Z/S

on the finite group E[lN ]×S s — where s→ S is a geometric point of

S — is trivial. Indeed, this follows immediately from the existence of a

natural π1(S)-equivariant isomorphism of E[lN ]×S s with ∆
{l}
Z/S/∆

{l}
U/S .

This completes the proof of the above claim. Now it follows from

Lemma 6, (ii), that the natural open immersions U ↪→ V ↪→ Z induce

inclusions

Ker(ρ
{l}
U/S) ⊆ Ker(ρ

{l}
V/S) ⊆ Ker(ρ

{l}
Z/S) .

Thus, to verify Proposition 10, it suffices to verify that Ker(ρ
{l}
Z/S) ⊆

Ker(ρ
{l}
U/S). On the other hand, by applying Lemma 7 to the open

injection Π
{l}
U/S ↪→ Π

{l}
Z/S over π1(S), it follows immediately from the

above claim that Ker(ρ
{l}
Z/S) = Ker(ρ

{l}
U/S). This completes the proof of

Proposition 10. �

4. Some complements to Matsumoto’s result concerning

the representations arising from hyperbolic curves

In the present §, we give some complements to Matsumoto’s result

obtained in [13] concerning the difference between the kernels of the

natural homomorphisms associated to a hyperbolic curve and its point

from the Galois group to the automorphism and outer automorphism

groups of the geometric fundamental group of the hyperbolic curve. Let
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l be a prime number, k a field of characteristic 6= l, and X a hyperbolic

curve over k. Write

Xcl

for the set of closed points of X.

Definition 4. Let x ∈ Xcl be a closed point of X. Then we shall say

that E(X, x, l) holds if the kernel of the composite

π1(Spec k(x))
π1(x)
−→ π1(X)

eρ
{l}
X/k
−→ Aut(∆

{l}
X/k)

— where k(x) is the residue field at x — coincides with the kernel of

the composite

π1(Spec k(x)) −→ π1(Spec k)
ρ
{l}
X/k
−→ Out(∆

{l}
X/k) ,

i.e., the intersection of the closed subgroup

Inn(∆
{l}
X/k) ⊆ Aut(∆

{l}
X/k)

and the image of the composite

π1(Spec k(x))
π1(x)
−→ π1(X)

eρ
{l}
X/k
−→ Aut(∆

{l}
X/k)

is trivial (cf. [13], §1, as well as §3). Note that since the closed subgroup

Inn(∆
{l}
X/k) ⊆ Aut(∆

{l}
X/k) is normal, one may easily verify that whether

or not the intersection in question is trivial does not depend on the

choice of the homomorphism “π1(Spec k(x))
π1(x)
→ π1(X)” induced by

x ∈ X among the various π1(X)-conjugates. Moreover, we shall write

XEl ⊆ Xcl

for the set of closed points x of X such that E(X, x, l) holds.

Proposition 11 (Properties of exceptional points). Let x ∈ X(k)

be a k-rational point of X. Then the following hold:

(i) Write U
def
= X \ Im(x). Then the following four conditions are

equivalent:

(1) E(X, x, l) holds.

(2) The section of the natural surjection π1(X) � π1(Spec k)

induced by x determines a section of the natural surjection

Φ
{l}
X/k � Γ

{l}
X/k (cf. Proposition 1, (i)).

(3) Ker(ρ
{l}
X/k) = Ker(ρ

{l}
U/k).

(4) The cokernel of the natural inclusion Ker(ρ
{l}
U/k) ⊆ Ker(ρ

{l}
X/k)

(cf. Lemma 6, (ii)) is finite.

(ii) The following implications hold:

x is a l-monodromically full point.

=⇒ x is a quasi-l-monodromically full point.
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=⇒ E(X, x, l) does not hold.

Proof. First, we verify assertion (i). The equivalence (1)⇔ (2) follows

immediately from the various definitions involved. The equivalence

(1)⇔ (3) follows from Proposition 4, (ii). The implication (3)⇒ (4) is

immediate. Finally, we verify the implication (4)⇒ (3). Now it follows

immediately from Proposition 4, (ii), together with the various defini-

tions involved, that the natural surjection Γ
{l}
U/k � Γ

{l}
X/k factors through

the natural injection Γ
{l}
U/k ↪→ Φ

{l}
X/k. In particular, the cokernel of the

natural inclusion Ker(ρ
{l}
U/k) ⊆ Ker(ρ

{l}
X/k) may be naturally regarded as

a closed subgroup of ∆
{l}
X/k. Therefore, since ∆

{l}
X/k is torsion-free, if

the cokernel of Ker(ρ
{l}
U/k) ⊆ Ker(ρ

{l}
X/k) is finite, then it is trivial. This

completes the proof of the implication (4)⇒ (3).

Assertion (ii) follows immediately from the equivalence (1)⇔ (3) in

assertion (i), together with the various definitions involved. �

Remark 10. In the notation of Proposition 11, (ii), in general, the

implication

E(X, x, l) does not hold.

=⇒ x is a quasi-l-monodromically full point.

does not hold. Indeed, if we write X = P1
Q \ {0, 1,∞} for the com-

plement of {0, 1,∞} in the projective line PQ over Q and x ∈ X(Q)

for the Q-rational point of X corresponding to 2 ∈ Q \ {0, 1} via the

natural identification Q \ {0, 1} ' X(Q), then the Q-rational point

x ∈ X(Q) is not quasi-l-monodromically full, i.e., the hyperbolic curve

U
def
= X \ Im(x) = P1

Q \ {0, 1, 2,∞} is not quasi-l-monodromically full

(cf. Remark 4, together with the equivalence (ii) ⇔ (iv) in [9], Corol-

lary 7.12). On the other hand, since U = P1
Q \ {0, 1, 2,∞} does not

have good reduction at the nonarchimedean prime 2Z ⊆ Z, if l 6= 2,

then it follows from [21], Theorem 0.8, that the algebraic extension of

Q corresponding to Ker(ρ
{l}
U/Q

) is not unramified over the prime 2Z; in

particular, the natural surjection Γ
{l}
U/Q
� Γ

{l}
X/Q

is not an isomorphism.

Thus, it follows from the equivalence (1)⇔ (3) in Proposition 11, (i),

that E(X, x, l) does not hold.

Proposition 12 (Exceptional points and finite étale coverings).

Let Y → X be a finite étale Π
{l}
X/k-covering (cf. Definition 1, (v)) over k

and y ∈ Y (k) a k-rational point of Y . (Thus, Y is a hyperbolic curve

over k.) Write x ∈ X(k) for the k-rational point of X determined by

y. Then E(X, x, l) holds if and only if E(Y, y, l) holds. If, moreover,

E(X, x, l), hence also E(Y, y, l), holds, then Ker(ρ
{l}
X/k) = Ker(ρ

{l}
Y/k).

Proof. If we write

UX
def
= X \ Im(x) ; UY

def
= Y \ Im(y) ,
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then the diagram of schemes

UY −−−→ Yy

UX −−−→ X

— where the horizontal arrows are open immersion — induces a com-

mutative diagram of profinite groups

Γ
{l}
UY /k −−−→ Γ

{l}
Y/k

o

y
y

Γ
{l}
UX/k −−−→ Γ

{l}
X/k

— where the left-hand vertical arrow is the isomorphism obtained by

Proposition 7, (iv). Now observe that

• the horizontal arrows are surjective (cf. Lemma 6, (ii)), and

• the right-hand vertical arrow is surjective and has finite kernel

(Proposition 7, (i)).

If E(X, x, l) holds, then it follows from the equivalence (1) ⇔ (3)

in Proposition 11, (i), that the lower horizontal arrow is an isomor-

phism. Thus, it follows that the top horizontal arrow and the right-

hand vertical arrow are isomorphisms. In particular, again by the

equivalence (1) ⇔ (3) in Proposition 11, (i), E(Y, y, l) holds, and

Ker(ρ
{l}
X/k) = Ker(ρ

{l}
Y/k).

On the other hand, if E(X, x, l) does not holds, then it follows from

the equivalence (1)⇔ (4) in Proposition 11, (i), that the kernel of the

lower horizontal arrow is infinite. Thus, it follows from the fact that

the kernel of the right-hand vertical arrow in the above diagram is finite

that the kernel of the top horizontal arrow is infinite. In particular,

again by the equivalence (1) ⇔ (4) in Proposition 11, (i), E(Y, y, l)
does not hold. This completes the proof of Proposition 12. �

Theorem 1 (Existence of many nonexceptional points). Let l
be a prime number, k a number field (i.e., a finite extension of the

field of rational numbers), and X a hyperbolic curve over k (cf. the

discussion entitled “Curves” in §0). Then if we regard the set X cl of

closed points of X as a subset of X(C), then the complement

Xcl \XEl ⊆ X(C)

(cf. Definition 4) is dense with respect to the complex topology

of X(C). Moreover, the intersection

X(k) ∩XEl ⊆ X(k)

is finite.
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Proof. The fact that the complement Xcl \XEl is dense with respect to

the complex topology of X(C) follows immediately from Propositions 2;

11, (ii). The fact that X(k)∩XEl is finite follows immediately from the

equivalence (1) ⇔ (3) in Proposition 11, (i); [9], Theorem C; together

with the Lemma 8 below. �

Lemma 8 (Finiteness of the set consisting of equivalent points).

Let n be a positive integer and x ∈ Xn(k) a k-rational point of Xn.

Then the set of k-rational points of Xn which are equivalent to x (cf.

Definition 2, (iii)) is finite.

Proof. Write Xcpt for the smooth compactification of X over k and

x1, · · · , xn ∈ X(k) the n distinct k-rational points of X determined by

x ∈ Xn(k). Now it follows from a similar argument to the argument

used in the proof of [9], Lemma A.6, that by replacing k by a finite

separable extension of k, we may assume without loss of generality that

every cusp of X is defined over k, i.e., X cpt(ksep) \X(ksep) ⊆ Xcpt(k)

— where ksep is a separable closure of k. Write g for the genus of X
and

ng
def
=






3 (if g = 0)

1 (if g = 1)

0 (if g ≥ 2)

and fix ng distinct elements a1, · · · , ang of the set S
def
= Xcpt(ksep) \

X(ksep) (⊆ Xcpt(k)) of cusps of X. Then it is immediate that, to

verify the finiteness of the set of k-rational points of Xn which are

equivalent to x ∈ Xn(k), it suffices to verify the finiteness of the set

{ f ∈ Autk(X
cpt) | {ai}

ng

i=1 ⊆ f(S) ∪ {f(x1), · · · , f(xn)} } .

On the other hand, this finiteness follows from the fact that for any ng

distinct elements b1, · · · , bng of S∪{x1, · · · , xn}, the set

{ f ∈ Autk(X
cpt) | f(bi) = ai for any 1 ≤ i ≤ ng }

is finite. This completes the proof of Lemma 8. �

Remark 11. In [13], Matsumoto proved the following theorem (cf.

[13], Theorem 1):

Let l be a prime number and g ≥ 3 an integer. Suppose

that l divides 2g − 2; write lν for the highest power of

l that divides 2g − 2. Then there are infinitely many

isomorphism classes of pairs (k, X) of number fields

k and hyperbolic curves X of type (g, 0) over k which

satisfy the following condition: For any closed point x ∈
X with residue field k(x), if lν does not divide [k(x) :

k], then E(X, x, l) does not hold.

Theorem 1 may be regarded as a partial generalization of this theorem.
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Proposition 13 (Exceptional points via tripods). Write Pk
def
=

Spec k[t±1, 1/(t−1)] — where t is an indeterminate. Then the following

hold:

(i) Let U → Pk be a finite étale Π
{l}
Pk/k-covering (cf. Definition 1,

(v)) over k. Suppose that the following three conditions are

satisfied:

(1) If ksep is a separable closure of k, then the covering U ⊗k

ksep → Pk ⊗k ksep is Galois.

(2) The action of the Galois group Gal(U⊗kk
sep/Pk⊗kk

sep) (cf.

condition (1)) on the set of cusps of U ⊗k ksep is faithful.

(3) Every cusp of U is defined over the (possibly infinite) Ga-

lois extension of k corresponding to the kernel Ker(ρ
{l}
Pk/k) ⊆

π1(Spec k) of ρ
{l}
Pk/k.

Let V be a hyperbolic partial compactification of U over k —

i.e., a hyperbolic curve over k which contains U as an open

subscheme over k — and x ∈ V cl a closed point of V such that

the complement V \ {x} contains U . Then E(V, x, l) holds.

(ii) Let N be a positive integer. If a closed point x ∈ P cl
k of Pk

is contained in the closed subscheme of Pk determined by the

principal ideal

(tl
N

− 1) ⊆ k[t±1, 1/(t− 1)] ,

then E(Pk, x, l) holds.

Proof. First, we verify assertion (i). By replacing k by the residue field

k(x) at x, we may assume without loss of generality that x ∈ X(k).

Then it follows immediately from Proposition 9 that

Ker(ρ
{l}
V/k) = Ker(ρ

{l}
(V \{x})/k) .

Thus, assertion (i) follows immediately from the equivalence (1) ⇔
(3) in Proposition 11, (i). Assertion (ii) may be verified by applying

assertion (i) to the finite étale covering

U
def
= Spec k[s±1, 1/(slN − 1)] −→ Pk

— where s is an indeterminate — given by “t 7→ slN ”. This completes

the proof of Proposition 13. �

Proposition 14 (Exceptional points via elliptic curves). Let N
be a positive integer and E an elliptic curve over k. Write o ∈ E(k) for

the identity section of E, E[lN ] ⊆ E for the kernel of the endomorphism

of E given by multiplication by lN , and

Z
def
= E \ Im(o) ; U

def
= E \ E[lN ] .

[Thus, Z (respectively, U) is a hyperbolic curve of type (1, 1) (respectively,

(1, l2N)) over k.] Let V be an open subscheme of Z such that U ⊆ V ⊆
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Z and x ∈ V cl a closed point of V such that the complement V \ {x}
contains U . Then E(V, x, l) holds. In particular, for any closed point

z ∈ Zcl of Z contained in E[lN ], E(Z, z, l) holds.

Proof. By replacing k by the residue field k(x) at x, we may assume

without loss of generality that x ∈ X(k). Then it follows immediately

from Proposition 10 that

Ker(ρ
{l}
V/k) = Ker(ρ

{l}
(V \{x})/k) .

Thus, Proposition 14 follows immediately from the equivalence (1) ⇔
(3) in Proposition 11, (i). �

Theorem 2 (Existence of many exceptional points for certain

hyperbolic curves). Let l be a prime number, k a field of charac-

teristic 0, X a hyperbolic curve over k (cf. the discussion entitled

“Curves” in §0) which is either of type (0, 3) or type (1, 1), and

Y → X a finite étale Π
{l}
X/k-covering (cf. Definition 1, (v)) which is

geometrically connected over k. (Thus, Y is a hyperbolic curve

over k.) Then the subset Y El ⊆ Y cl (cf. Definition 4) is infinite. In

particular, the subset XEl ⊆ Xcl is infinite.

Proof. It follows immediately from the definition of the set “(−)El” —

to verify Theorem 2 — by replacing k by the finite Galois extension

of k corresponding to the kernel of the natural action of the absolute

Galois group of k on the set of cusps of X, we may assume without loss

of generality that every cusp of X is defined over k. Then it follows

immediately from Propositions 13, (ii); 14, that the set XEl is infinite.

Therefore, it follows immediately from Proposition 12 that the set Y El

is infinite. This completes the proof of Theorem 2. �

Remark 12. By a similar argument to the argument used in the proof

of Theorem 2, one may also prove the following assertion:

Let l be a prime number, k a field of characteristic 0,

and r ≥ 3 (respectively, r ≥ 1) an integer. Then there

exist a finite extension k′ of k and a hyperbolic curve X
over k′ of type (0, r) (respectively, (1, r)) such that the

subset XEl ⊆ Xcl is infinite.

Indeed, write C0
def
= Spec k[t±1, 1/(t−1)] — where t is an indeterminate

— and C1 for the complement in an elliptic curve E over k of the origin

of E. Let N be a positive integer such that r ≤ lN . Moreover, write

F N
0 ⊆ C0 for the closed subscheme of C0 defined by the principal ideal

(tl
N

− 1) ⊆ k[t±1, 1/(t− 1)]

and F N
1 ⊆ C1 for the closed subscheme of C1 obtained as the kernel

of the endomorphism of E given by multiplication by lN . Now, by

replacing k by a finite extension of k, we may assume without loss

generality that every geometric points of F N
0 , F N

1 , respectively, can be
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defined over k. Then it is immediate that for g = 0 or 1, there exists

an open subscheme Xg ⊆ Cg of Cg such that Xg is of type (g, r), and,

moreover, Xg contains the complement of F N
g in Cg. Now it follows

immediately from Propositions 9, 10, that Ker(ρ
{l}
Cg/k) = Ker(ρ

{l}
Xg/k).

Therefore, by Propositions 13, (ii); 14, together with the equivalence

(1)⇔ (3) in Proposition 11, (i), one may easily verify that the set XEl
g

is infinite. This completes the proof of the above assertion.

Remark 13. An example of a triple “(X, x, l)” such that X is a proper

hyperbolic curve over a number field k, and, moreover, E(X, x, l) holds

is as follows: Suppose that l > 3. Let k be a number field and

U
def
= Spec k[t±1

1 , t±1
2 ]/(tl1 + tl2 + 1)

— where t1 and t2 are indeterminates. Then one may easily verify that

the connected finite étale covering

U −→ Spec k[t±1, 1/(t− 1)]

— where t is an indeterminate — given by “t 7→ tl
1” satisfies the three

conditions appearing in the statement of Proposition 13, (i). In partic-

ular, if we write

X
def
= Proj k[t1, t2, t3]/(tl1 + tl2 + tl3)

— where t1, t2, and t3 are indeterminates — and x
def
= “[1,−1, 0]”

∈ X(k), then it follows immediately from Proposition 13, (i), that

E(X, x, l) holds.

Remark 14. In [13], §2, Matsumoto proved that for any prime number

l, the triple

(P1
Q \ {0, 1,∞},

→

01, l)

— where
→

01 is a Q-rational tangential base point — is a triple for which

“E(X, x, l)” holds. As mentioned in [13], §2, the fact that “E(X, x, l)”
holds for this triple was observed by P. Deligne and Y. Ihara. However,

by definition, in fact, a tangential base point is not a point. In this sense,

no example of a triple “(X, x, l)” for which E(X, x, l) holds appears in

[13].

5. Galois-theoretic characterization of equivalence

classes of monodromically full points

In the present §, we prove that the equivalence class (cf. Definition 2,

(iii)) of a monodromically full point of a configuration space of a hyper-

bolic curve is completely determined by the kernel of the representation

associated to the point (cf. Theorems 3, 4 below). Moreover, we also

give a necessary and sufficient condition for a quasi-monodromically

full Galois section (cf. Definition 5 below) of a hyperbolic curve to be

geometric (cf. Theorem 5 below). We maintain the notation of the
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preceding §. Suppose, moreover, that k is of characteristic 0. Let n be

a positive integer, k an algebraic closure of k, and Gk
def
= Gal(k/k) the

absolute Galois group of k determined by the given algebraic closure k
of k.

Lemma 9 (Equivalence and automorphisms). Let x, y ∈ Xn(k)

be k-rational points of Xn. If there exists an automorphism α of Xn

over k such that y = α◦x, then x is equivalent to y (cf. Definition 2,

(iii)).

Proof. If the hyperbolic curve X is of type (0, 3) (respectively, neither

of type (0, 3) nor of type (1, 1)), then Lemma 9 follows immediately

from [9], Lemma 4.1, (i), (ii) (respectively, [20], Theorem A, Corollary

B; [15], Theorem A). Thus, to verify Lemma 9, it suffices to verify

Lemma 9 in the case where the hyperbolic curve X is of type (1, 1).

Suppose that X is of type (1, 1). Write E for the smooth compactifi-

cation of X over k and o ∈ E(k) for the k-rational point whose image

is the marked divisor of the hyperbolic curve X. Now since X is of

genus 1, by regarding the k-rational point o ∈ E(k) as the origin, one

may regard E as an abelian group scheme over k whose identity sec-

tion is the k-rational point o. Then it follows immediately from [20],

Theorem A, Corollary B; [15], Theorem A, that the group Autk(Xn)

of automorphisms over k of the n-th configuration space Xn of X/k is

generated by the images of the natural inclusions

Autk(X) , Sn ↪→ Autk(Xn)

— where Sn is the symmetric group on n letters — together with the

automorphism of Xn induced by
n︷ ︸︸ ︷

E ×k · · · ×k E −→

n︷ ︸︸ ︷
E ×k · · · ×k E

(x1, · · · , xn) 7→ (x1, x1 − x2, x1 − x3, · · · , x1 − xn) .

Therefore, to verify Lemma 9 in the case where X is of type (1, 1), it

suffices to verify that for any n distinct k-rational points x1, · · · , xn ∈
X(k) of X, the hyperbolic curve of type (1, n + 1)

E \ {o, x1, · · ·xn}

is isomorphic to the hyperbolic curve of type (1, n + 1)

E \ {o, x1, x1 − x2, x1 − x3, · · · , x1 − xn}

over k. On the other hand, one may easily verify that the compos-

ite of the automorphism of E given by multiplication by −1 and the

automorphism of E given by “a 7→ a + x1” determines the desired

isomorphism. This completes the proof of Lemma 9. �

Definition 5. Let Σ′ ⊆ Σ ⊆ Primes be nonempty subsets of Primes

and s a pro-Σ Galois section of Xn/k, i.e., a continuous section of the

natural surjection ΠΣ
Xn/k � Gk (cf. [10], Definition 1.1, (i)). Then



42 YUICHIRO HOSHI

we shall say that s is Σ′-monodromically full (respectively, quasi-Σ′-

monodromically full) if for any l′ ∈ Σ′, the composite

Gk
s
→ ΠΣ

Xn/k � Π
{l′}
Xn/k

ρ
{l′}
Xn+1/Xn

� Γ
{l′}
Xn+1/Xn

(cf. Lemma 3, (viii)) is surjective (respectively, has open image).

If l′ is a prime number, then for simplicity, we write “l′-monodromically

full” (respectively, “quasi-l′-monodromically full”) instead of “{l′}-mono-

dromically full” (respectively, “quasi-{l′}-monodromically full”).

Remark 15. Let Σ ⊆ Primes be a nonempty subset of Primes and

x ∈ Xn(k) a k-rational point of Xn. Then it follows from Remark 5

that the following two conditions are equivalent:

(i) The k-rational point x ∈ Xn(k) is Σ-monodromically full (re-

spectively, quasi-Σ-monodromically full).

(ii) A pro-Primes Galois section of Xn arising from x ∈ Xn(k) (cf.

[10], Definition 1.1, (ii)) is Σ-monodromically full (respectively,

quasi-Σ-monodromically full).

Lemma 10 (Certain two monodromically full Galois sections).

Let s, t be pro-l Galois sections of Xn/k. For a ∈ {s, t}, write φa for

the composite

Gk
a

−→ Π
{l}
Xn/k

eρ
{l}
Xn+1/Xn
−→ Aut(∆

{l}
Xn/k) .

Then the following hold:

(i) If the pro-l Galois sections s and t are l-monodromically full,

and Ker(φs) = Ker(φt), then there exists an automorphism α

of Π
{l}
Xn/k over Gk such that α ◦ s = t.

(ii) If the pro-l Galois sections s and t are quasi-l-monodromically

full, and the intersection Ker(φs)∩Ker(φt) is open in Ker(φs)

and Ker(φt), then — after replacing Gk by a suitable open sub-

group of Gk — there exist

• for a ∈ {s, t}, a finite étale Φ
{l}
Xn/k-covering Ca → Xn over k

(cf. Definition 1, (v)) which is geometrically connected

over k, and

• an isomorphism α : Π
{l}
Cs/k

∼
→ Π

{l}
Ct/k over Gk

such that

• for a ∈ {s, t}, the pro-l Galois section a : Gk → Π
{l}
Xn/k

factors through Π
{l}
Ca/k ⊆ Π

{l}
Xn/k, and

• the composite

Gk
s
−→ Π

{l}
Cs/k

α
∼
−→ Π

{l}
Ct/k

coincides with t.
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Proof. First, we verify assertion (i). Since the pro-l Galois sections s
and t are l-monodromically full, it follows immediately from Proposi-

tion 4, (i), that Im(φs) = Im(φt) = Φ
{l}
Xn/k. Write β for the automor-

phism of Φ
{l}
Xn/k obtained as the composite

Φ
{l}
Xn/k = Im(φs)

∼
←− Gk/N

∼
−→ Im(φt) = Φ

{l}
Xn/k

— where N
def
= Ker(φs) = Ker(φt) ⊆ Gk. Then it follows immediately

from the various definitions involved that this automorphism β is an

automorphism over Γ
{l}
Xn/k. Thus, since the right-hand square in the

commutative diagram of profinite groups appearing in the statement

of Proposition 1, (i), is cartesian, by base-changing β via the natural

surjection Gk � Γ
{l}
Xn/k, we obtain an automorphism α of Π

{l}
Xn/k over

Gk. Now it follows immediately from the various definitions involved

that this automorphism α satisfies the condition in the statement of

assertion (i). This completes the proof of assertion (i).

Next, we verify assertion (ii). To verify assertion (ii), by replacing Gk

by an open subgroup of Gk, we may assume without loss of generality

that Ker(φs) = Ker(φt). (Note that if k′ ⊆ k is a finite extension of k,

then it follows immediately from the various definitions involved that

the pro-l Galois sections of Xn⊗k k′/k′ determined by s, t, respectively,

are quasi-l-monodromically full.) Now since the pro-l Galois sections

s and t are quasi-l-monodromically full, it follows immediately from

Proposition 4, (i), that the images of the homomorphisms φs and φt

are open in Φ
{l}
Xn/k. For a ∈ {s, t}, write

Ca −→ Xn

for the connected finite étale coverings of Xn corresponding to the

open subgroups Im(φa) ⊆ Φ
{l}
Xn/k of Φ

{l}
Xn/k. Then it follows from Propo-

sition 7, (ii), that the natural open injection Π
{l}
Ca

↪→ Π
{l}
Xn/k determines

a diagram of profinite groups

Π
{l}
Ca/k � Φ

{l}
Ca/k = Im(φa) ⊆ Φ

{l}
Xn/k .

Now it follows from Proposition 7, (i), that the natural surjection

Γ
{l}
Ca/k � Γ

{l}
Xn/k is an isomorphism. Write β for the isomorphism ob-

tained as the composite

Φ
{l}
Cs/k = Im(φs)

∼
←− Gk/N

∼
−→ Im(φt) = Φ

{l}
Ct/k

— where N = Ker(φs) = Ker(φt). Then it follows immediately from

the various definitions involved that we obtain a commutative diagram
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of profinite groups

Φ
{l}
Cs/k = Im(φs)

β
−−−→ Im(φt) = Φ

{l}
Ct/ky

y

Φ
{l}
Xn/k Φ

{l}
Xn/ky
y

Γ
{l}
Cs/k = Γ

{l}
Xn/k Γ

{l}
Xn/k = Γ

{l}
Ct/k .

Thus, since the right-hand square in the commutative diagram of profi-

nite groups appearing in the statement of Proposition 1, (i), is carte-

sian, by base-changing β via the natural surjection Gk � Γ
{l}
Xn/k =

Γ
{l}
Cs/k = Γ

{l}
Ct/k, we obtain an isomorphism α : Π

{l}
Cs/k

∼
→ Π

{l}
Ct/k over Gk.

Now it follows immediately from the various definitions involved that

this isomorphism α satisfies the condition in the statement of assertion

(ii). This completes the proof of assertion (ii). �

Theorem 3 (Galois-theoretic characterization of equivalence

classes of monodromically full points of configuration spaces).

Let l be a prime number, n a positive integer, k a finitely gener-

ated extension of Q, k an algebraic closure of k, and X a hyper-

bolic curve over k (cf. the discussion entitled “Curves” in §0). Write

Gk
def
= Gal(k/k) for the absolute Galois group of k determined by the

fixed algebraic closure k and Xn for the n-th configuration space of the

hyperbolic curve X/k (cf. Definition 2, (i)). Then for two k-rational

points x and y of Xn which are l-monodromically full (cf. Defini-

tion 3), the following three conditions are equivalent:

(i) x is equivalent to y (cf. Definition 2, (iii)).

(ii) Ker(ρ
{l}
X[x]/k) = Ker(ρ

{l}
X[y]/k) (cf. Definitions 1, (iii); 2, (ii)).

(iii) If we write φx (respectively, φy) for the composite

Gk
π1(x)
−→ π1(Xn)

eρ
{l}
Xn/k
−→ Aut(∆

{l}
Xn/k)

(respectively , Gk

π1 (y)
−→ π1 (Xn)

eρ
{l}
Xn/k

−→ Aut(∆
{l}
Xn/k))

(cf. Definition 1, (ii), (iii)), then Ker(φx) = Ker(φy).

Proof. It is immediate that the implication (i) ⇒ (ii) holds. On the

other hand, it follows Proposition 4, (ii), that the equivalence (ii) ⇔
(iii) holds. Thus, to verify Theorem 3, it suffices to show the implication

(iii)⇒ (i). Suppose that condition (iii) is satisfied. Then it follows from

Lemma 10, (i), that there exists an automorphism α of Π
{l}
Xn/k over Gk
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such that two homomorphisms

Gk
π1(x)
−→ Π

{l}
Xn/k

α
∼
−→ Π

{l}
Xn/k ; Gk

π1(y)
−→ Π

{l}
Xn/k

coincide. Now it follows from [20], Corollary B; [15], Theorem A, to-

gether with [9], Lemmas 4.1, (i); 4.3, (iii), that the automorphism α of

Π
{l}
Xn/k arises from an automorphism fα of Xn over k. Thus, it follows

from [15], Theorem C, that fα ◦ x = y; in particular, it follows from

Lemma 9 that condition (i) is satisfied. This completes the proof of

Theorem 3. �

Remark 16. If, in Theorem 3, one drops the assumption that x and

y are l-monodromically full, then the conclusion no longer holds in

general. Such a counter-example is as follows: Suppose that l 6= 2. Let

Q be an algebraic closure of Q and ζl ∈ Q a primitive l-th root of unity.

Write k
def
= Q(ζl), X

def
= P1

k \ {0, 1,∞} for the complement of {0, 1,∞}
in the projective line P1

k over k, x ∈ X(k) (respectively, y ∈ X(k)) for

the k-rational point of X corresponding to ζl ∈ k \ {0, 1} (respectively,

ζ2
l ∈ k \ {0, 1}) via the natural identification k \ {0, 1} ' X(k), and

Ux
def
= U \ Im(x) ; Uy

def
= U \ Im(y) .

Then it follows from Proposition 13, (ii), that E(X, x, l) and E(X, y, l)
hold. Thus, it follows from the equivalence (1)⇔ (3) in Proposition 11,

(i), that

Ker(ρ
{l}
X/k) = Ker(ρ

{l}
Ux/k) = Ker(ρ

{l}
Uy/k) ;

in particular, x and y satisfy condition (ii) in the statement of Theo-

rem 3. On the other hand, if l 6= 3, then Ux is not isomorphic to Uy

over k, i.e., x and y do not satisfy condition (i) in the statement of

Theorem 3.

Theorem 4 (Galois-theoretic characterization of equivalence

classes of quasi-monodromically full points of cores). Let l be a

prime number, k a finitely generated extension of Q, k an algebraic

closure of k, and X a hyperbolic curve over k (cf. the discussion entitled

“Curves” in §0) which is a k-core (cf. [17], Remark 2.1.1). Write

Gk
def
= Gal(k/k) for the absolute Galois group of k determined by the

fixed algebraic closure k. Then for two k-rational points x and y of

X which are quasi-l-monodromically full (cf. Definition 3), the

following four conditions are equivalent:

(i) x = y.

(ii) x is equivalent to y.

(iii) If we write

Ux
def
= X \ Im(x) ; Uy

def
= X \ Im(y) ,
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then the intersection Ker(ρ
{l}
Ux/k)∩Ker(ρ

{l}
Ux/k) (Definition 1, (iii))

is open in Ker(ρ
{l}
Ux/k) and Ker(ρ

{l}
Ux/k).

(iv) If we write φx (respectively, φy) for the composite

Gk
π1(x)
−→ π1(X)

eρ
{l}
X/k
−→ Aut(∆

{l}
X/k)

(respectively, Gk

π1 (y)
−→ π1 (X )

eρ
{l}
X/k

−→ Aut(∆
{l}
X/k ))

(cf. Definition 1, (ii), (iii)), then the intersection Ker(φx) ∩
Ker(φy) is open in Ker(φx) and Ker(φy).

Proof. It is immediate that the implications (i) ⇒ (ii) ⇒ (iii) hold.

On the other hand, it follows Proposition 4, (ii), that the equivalence

(iii) ⇔ (iv) holds. Thus, to verify Theorem 4, it suffices to show the

implication (iv) ⇒ (i). Suppose that condition (iv) is satisfied. Then

it follows from Lemma 10, (ii), that — after replacing Gk by a suitable

open subgroup of Gk — there exist

• for a ∈ {x, y}, a finite étale Φ
{l}
X/k-covering Ca → X over k (cf.

Definition 1, (v)) which is geometrically connected over k, and

• an isomorphism α : Π
{l}
Cx/k

∼
→ Π

{l}
Cy/k over Gk

such that

• for a ∈ {x, y}, the pro-l Galois section π1(a) : Gk → Π
{l}
X/k de-

termined by a ∈ X(k) factors through Π
{l}
Ca/k ⊆ Π

{l}
X/k, and

• the two homomorphisms

Gk
π1(x)
−→ Π

{l}
Cx/k

α
∼
−→ Π

{l}
Cy/k ; Gk

π1(y)
−→ Π

{l}
Cy/k

coincide.

(Note that if k′ ⊆ k is a finite extension of k, then it follows from [17],

Proposition 2.3, (i), that X ⊗k k′ is a k′-core.) Now it follows from

[15], Theorem A, that the isomorphism α : Π
{l}
Cx/k

∼
→ Π

{l}
Cy/k arises from

an isomorphism fα : Cx
∼
→ Cy over k; moreover, since X is a k-core, it

follows that the isomorphism fα is an isomorphism over X. Therefore,

it follows immediately from [15], Theorem C, together with the various

definitions involved, that condition (i) is satisfied. This completes the

proof of Theorem 4. �

Theorem 5 (A necessary and sufficient condition for a quasi–

monodromically full Galois section of a hyperbolic curve to be

geometric). Let l be a prime number, k a finitely generated exten-

sion of Q, k an algebraic closure of k, Gk
def
= Gal(k/k) for the absolute

Galois group of k determined by the fixed algebraic closure k, X a hy-

perbolic curve over k (cf. the discussion entitled “Curves” in §0), and

s : Gk → Π
{l}
X/k a pro-l Galois section of X (cf. [10], Definition 1.1, (i))
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which is quasi-l-monodromically full (cf. Definition 5). Write φs

for the composite

Gk
s
−→ Π

{l}
X/k

eρ
{l}
X/k
−→ Aut(∆

{l}
X/k)

(cf. Definition 1, (ii), (iii)). Then the following four conditions are

equivalent:

(i) The pro-l Galois section s is geometric (cf. [10], Definition

1.1, (iii)).

(ii) The pro-l Galois section s arises from a k-rational point of X
(cf. [10], Definition 1.1, (ii)).

(iii) There exists a quasi-l-monodromically full k-rational point

(cf. Definition 3) x ∈ X(k) of X such that if we write φx for

the composite

Gk
π1(x)
−→ Π

{l}
X/k

eρ
{l}
X/k
−→ Aut(∆

{l}
X/k)

(cf. Definition 1, (ii), (iii)), then the intersection Ker(φs) ∩
Ker(φx) is open in Ker(φs) and Ker(φx).

(iv) There exists a quasi-l-monodromically full k-rational point

(cf. Definition 3) x ∈ X(k) of X such that if we write

U
def
= X \ Im(x) ,

then the intersection Ker(φs)∩Ker(ρ
{l}
U/k) (cf. Definition 1, (iii))

is open in Ker(φs) and Ker(ρ
{l}
U/k).

Proof. It follows from Remark 15 that the implication (ii)⇒ (iii) holds.

On the other hand, it follows Proposition 4, (ii), that the equivalence

(iii) ⇔ (iv) holds. Thus, to verify Theorem 5, it suffices to show the

implications (i)⇒ (ii) and (iii)⇒ (i).

To verify the implication (i) ⇒ (ii), suppose that condition (i) is

satisfied. Since the pro-l Galois section s is geometric, there exists a

k-rational point x ∈ Xcpt(k) of the smooth compactification Xcpt of

X such that the image of s is contained in a decomposition subgroup

D ⊆ Π
{l}
X/k of Π

{l}
X/k associated to x. Suppose that x is a cusp of X, i.e.,

an element of Xcpt(k) \X(k). Write I ⊆ D for the inertia subgroup of

D. Then since x is a cusp of X, it follows immediately from [16], Lemma

1.3.7, that D = N
Π

{l}
X/k

(I) and I = N
Π

{l}
X/k

(I)∩∆X/k. Therefore, since the

composite ∆
{l}
X/k ↪→ Π

{l}
X/k � Φ

{l}
X/k is injective (cf. Lemma 3, (v)), if we

write D, I ⊆ Φ
{l}
X/k for the images of the composites D ↪→ Π

{l}
X/k � Φ

{l}
X/k,

I ↪→ Π
{l}
X/k � Φ

{l}
X/k, respectively, then it holds that D ⊆ N

Φ
{l}
X/k

(I) and

I = N
Φ

{l}
X/k

(I) ∩ ∆
{l}
X/k; in particular, D ⊆ Φ

{l}
X/k is not open in Φ

{l}
X/k.

On the other hand, since s is quasi-l-monodromically full, it follows
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immediately from Proposition 4, (ii), that the image of φs, hence also

D ⊆ Φ
{l}
X/k, is open in Φ

{l}
X/k. Thus, we obtain a contradiction. Therefore,

x is not a cusp of X. This completes the proof of the implication

(i)⇒ (ii).

Next, to verify the implication (iii) ⇒ (i), suppose that condition

(iii) is satisfied. Then it follows from Lemma 10, (ii), that — after

replacing Gk by a suitable open subgroup of Gk — there exist

• for a ∈ {s, x}, a finite étale Φ
{l}
X/k-covering Ca → X over k (cf.

Definition 1, (v)) which is geometrically connected over k, and

• an isomorphism α : Π
{l}
Cx/k

∼
→ Π

{l}
Cs/k over Gk

such that

• the pro-l Galois section π1(x) : Gk → Π
{l}
X/k factors through

Π
{l}
Cx/k ⊆ Π

{l}
X/k, and

• the composite

Gk
π1(x)
→ Π

{l}
Cx/k

α
∼
→ Π

{l}
Cs/k ↪→ Π

{l}
X/k

coincides with s.

Now it follows from [15], Theorem A, that the isomorphism α : Π
{l}
Cx/k

∼
→

Π
{l}
Cs/k arises from an isomorphism Cx

∼
→ Cs over k. Therefore, it

follows immediately from Lemma 11 below, together with the various

definitions involved, that condition (i) is satisfied. This completes the

proof of Theorem 5. �

Lemma 11 (Geometricity and base-changing). Suppose that k is

a finitely generated extension of Q. Let Σ ⊆ Primes be a nonempty

subset of Primes, s : Gk → ΠΣ
X/k a pro-Σ Galois section of X/k, and

k′ ⊆ k a finite extension of k. Write Gk′
def
= Gal(k/k′) ⊆ Gk. Then

s is geometric if and only if the restriction s|Gk′
of s to Gk′ ⊆ Gk is

geometric.

Proof. The necessity of the condition is immediate; thus, to verify

Lemma 11, it suffices to verify the sufficiency of the condition. Sup-

pose that the restriction s|Gk′
of s to Gk′ ⊆ Gk is geometric. Now by

replacing k′ by a finite Galois extension of k, we may assume without

loss of generality that k′ is Galois over k. Moreover, by replacing ΠΣ
X/k

by an open subgroup of ΠΣ
X/k which contains the image Im(s) of s, we

may assume without loss of generality that X is of genus ≥ 2. Let

· · · ⊆ ∆n ⊆ · · · ⊆ ∆2 ⊆ ∆1 ⊆ ∆0 = ∆Σ
X/k

be a sequence of characteristic closed subgroups of ∆Σ
X/k such that

⋂

i

∆i = {1} .
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Write Πn
def
= ∆n · Im(s) ⊆ ΠΣ

X/k, Xn → X for the connected finite étale

covering of X corresponding to the open subgroup Πn ⊆ ΠΣ
X/k (thus,

ΠΣ
Xn/k = Πn), and sn : Gk → Πn = ΠΣ

Xn/k for the pro-Σ Galois section

of Xn/k determined by s. Note that it holds that
⋂

i

Πi = Im(s) .

Now I claim that (Xn)cpt(k) 6= ∅ — where (Xn)cpt is the smooth

compactification of Xn. Indeed, since the restriction s|Gk′
is geometric,

it holds that the image of the composite

Gk′

sn|G
k′

↪→ ΠΣ
Xn/k � ΠΣ

(Xn)cpt/k

is a decomposition subgroup D associated to a k′-rational point xn

of (Xn)cpt. On the other hand, since this decomposition subgroup D
associated to xn is contained in the image of the homomorphism sn

from Gk, and k′ is Galois over k, by considering the Im(sn)-conjugates

of D, it follows immediately from [15], Theorem C, that the k′-rational

point xn is defined over k. In particular, it holds that (Xn)cpt(k) 6= ∅.
This completes the proof of the above claim.

Now since the set (Xn)cpt(k) is finite by Mordell-Faltings’ theorem,

it follows from the above claim that the projective limit (X∞)cpt(k) of

the sequence of sets

· · · −→ (Xn)cpt(k) −→ · · · −→ (X2)cpt(k) −→ (X1)cpt(k) −→ (X0)cpt(k)

is nonempty. Let x∞ ∈ (X∞)cpt(k) be an element of (X∞)cpt(k). Then

it follows immediately from the fact that
⋂

i Πi = Im(s) that the pro-Σ

Galois section of X/k arising from x∞ coincides with s. In particular,

s is geometric. This completes the proof of Lemma 11. �

Remark 17. In [10], the author proved that there exist a prime number

l, a number field k, a hyperbolic curve X over k, and a pro-l Galois

section s of X/k such that the pro-l Galois section s is not geometric

(cf. [10], Theorem A). On the other hand, it seems to the author that

the nongeometric pro-l Galois sections appearing in [10] are not quasi-l-
monodromically full. It is not clear to the author at the time of writing

whether or not there exists a pro-l Galois section of a hyperbolic curve

over a number field which is nongeometric and quasi-l-monodromically

full.
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