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ABSTRACT. In the present paper, we discuss a problem concern-
ing monodromic fullness of hyperbolic curves over number fields
posed by M. Matsumoto and A. Tamagawa in the case where a
given hyperbolic curve is of genus 0.
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INTRODUCTION

Write Primes for the set of all prime numbers. In [4], M. Mat-
sumoto and A. Tamagawa posed the following problem concerning
monodromic fullness of hyperbolic curves over number fields (cf.
[4], Problem 4.1):

Let X be a hyperbolic curve over a number field [where
we refer to the discussion entitled “Curves” (respec-
tively, “Numbers”) in “Notations and Conventions”
concerning the term “hyperbolic curve” (respectively,
“number field”)]. Then are the following three condi-
tions equivalent?

(MT1) X is quasi-Primes-monodromically full (cf. [2], Def-
inition 2.2, (iii)).

(MT2) There exists a prime number l such that X is l-
monodromically full (cf. [2], Definition 2.2, (i)).

(MT3) There exists a finite subset Σ ⊆ Primes of Primes

such that X is (Primes \ Σ)-monodromically full.
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Note that this is an analogue for hyperbolic curves of the equivalences
“(1) ⇔ (2) ⇔ (3)” in the following result due to J. P. Serre (cf. [5]):

Let E be an elliptic curve over a number field k, k an
algebraic closure of k, and Gk

def
= Gal(k/k). Moreover,

for each prime number l, write Tl(E) for the l-adic Tate
module of E. Then the following four conditions are
equivalent:
(0) E does not admit complex multiplication over k.
(1) For any prime number l, the image of the pro-l

Galois representation Gk → Aut(Tl(E)) is an open
subgroup of Aut(Tl(E)).

(2) There exists a prime number l such that the pro-l
Galois representation Gk → Aut(Tl(E)) is surjec-
tive.

(3) There exists a finite subset Σ ⊆ Primes of Primes

such that if l 6∈ Σ, then the pro-l Galois represen-
tation Gk → Aut(Tl(E)) is surjective.

In the present paper, we discuss the above problem due to M. Mat-
sumoto and A. Tamagawa in the case where the given hyperbolic
curve X is of genus 0. More concretely, we prove the following two
results.

Theorem A. Let k be a number field. Then there exists a split (where we
refer to the discussion entitled “Curves” in “Notations and Conventions”
concerning the term “split”) hyperbolic curve of type (0, 4) over k which
satisfies (MT3), hence also (MT2), but does not satisfy (MT1). More-
over, for any positive integer r > 4, there exists a split hyperbolic curve of
type (0, r) over k which satisfies (MT2) but does not satisfy (MT1).

Theorem B. Let k be an imaginary quadratic field and X a hyperbolic
curve of type (0, 4) over a subfield k0 of k such that X ⊗k0

k is split.
Then the following four conditions are equivalent:

(1) There exists a prime number l such that X is quasi-l-monodromi-
cally full (cf. [2], Definition 2.2, (iii)).

(2) There exists a prime number l such that X is l-monodromically
full (cf. [2], Definition 2.2, (i)).

(3) There exists a finite subset Σ ⊆ Primes of Primes such that X is
(Primes \ Σ)-monodromically full.

(4) mX (cf. [2], Definition 7.10) does not contain any unit of the ring
of integers of k, i.e., if X ⊗k0

k is isomorphic to

P
1
k \ {0, 1, λ,∞}

— where λ ∈ k \ {0, 1} — over k, then

{λ, 1 − λ,
λ

λ − 1
} ∩ o×k = ∅
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— where ok is the ring of integers of k.
In particular, the equivalence “(MT2) ⇔ (MT3)” for such an X holds.
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NOTATIONS AND CONVENTIONS

Numbers: The notation Primes will be used to denote the set of all
prime numbers. The notation Z will be used to denote the ring of
rational integers. If p is a prime number, then the notation Fp will be
used to denote the finite field with p elements and the notation Zp

will be used to denote the p-adic completion of Z. We shall refer to a
finite extension of the field of rational numbers as a number field.

Profinite Groups: If G is a profinite group, then we shall write Aut(G)

for the group of (continuous) automorphisms of G, Inn(G) ⊆ Aut(G)

for the group of inner automorphisms of G, and

Out(G)
def
= Aut(G)/Inn(G) .

If, moreover, G is topologically finitely generated, then one verifies eas-
ily that the topology of G admits a basis of characteristic open sub-
groups, which thus induces a profinite topology on the group Aut(G),
hence also a profinite topology on the group Out(G).

Curves: Let k be a field and X a scheme over k. For a pair (g, r)
of nonnegative integers, we shall say that X is a smooth curve of type
(g, r) over k if there exist a scheme X cpt of dimension 1 which is
smooth, proper, and geometrically connected over k and a closed
subscheme D ⊆ Xcpt of Xcpt which is étale and of degree r over k
such that the complement of D in Xcpt is isomorphic to X over k,
and, moreover, a geometric fiber of Xcpt → Spec k is (a necessarily
smooth, proper, and connected curve) of genus g. Note that it fol-
lows immediately that if X is a smooth curve of type (g, r) over k,
then the pair “(Xcpt, D)” is uniquely determined up to isomorphism. We
shall say that X is a hyperbolic curve over k if there exists a pair (g, r)
of nonnegative integers such that 2g − 2 + r > 0, and, moreover, X
is a smooth curve of type (g, r) over k. We shall say that X is a tripod
over k if X is a smooth curve of type (0, 3) over k. (Thus, any tripod
over k is a hyperbolic curve over k.) Suppose that there exists a pair
(g, r) of nonnegative integers such that X is a smooth curve of type
(g, r) over k. Then we shall say that X is split if “D” appearing in the
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definition of the term “smooth curve of type (g, r)” is isomorphic to
the disjoint union of r copies of Spec k over k.

PROOFS OF MAIN RESULTS

Let k be a field of characteristic 0 and k an algebraic closure of k.
Write Gk

def
= Gal(k/k) for the absolute Galois group of k determined

by the algebraic closure k and

M
def
= P

1
k \ {0, 1,∞} = Spec k[t±1, 1/(1 − t)]

— where t is an indeterminate — for the split tripod over k (where
we refer to the discussion entitled “Curves” in “Notations and Con-
ventions” concerning the terms “split” and “tripod”). Now we have
a natural identification

M(k) ' k \ {0, 1}

and an exact sequence of profinite groups

1 −→ π1(M⊗k k) −→ π1(M) −→ Gk −→ 1 .

Moreover, for each prime number l, write

µl∞ ⊆ k
×

for the subgroup of k
×

of all l-powers roots of unity.

Definition 1. Let l be a prime number.
(i) We shall write

∆{l}

for the maximal pro-l quotient of π1(M⊗k k).
(ii) Since the closed subgroup π1(M ⊗k k) ⊆ π1(M) of π1(M)

is normal, conjugation by elements of π1(M) naturally deter-
mines continuous homomorphisms

π1(M) −→ Aut(∆{l}) ; Gk −→ Out(∆{l})

— where we refer to the discussion entitled “Profinite Groups”
in “Notations and Conventions” concerning the profinite topolo-
gies of Aut(∆{l}) and Out(∆{l}). We shall write

ρ̃{l} ; ρ{l}

for the above continuous homomorphisms, respectively. It
follows immediately from the various definitions involved
that these homomorphisms fit into the following commuta-
tive diagram of profinite groups

1 −−−→ π1(M⊗k k) −−−→ π1(M) −−−→ Gk −−−→ 1y eρ{l}

y
yρ{l}

1 −−−→ Inn(∆{l}) −−−→ Aut(∆{l}) −−−→ Out(∆{l}) −−−→ 1
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— where the horizontal sequences are exact; moreover, since
∆{l} is center-free, the left-hand vertical arrow factors as the
composite of the natural surjection π1(M⊗k k) � ∆{l} and the
natural isomorphism ∆{l} ∼

→ Inn(∆{l}).
(iii) We shall write

π1(M) � Φ{l} (respectively, Gk � Gtpd-l
k )

for the quotient of π1(M) (respectively, Gk) by the kernel of
the homomorphism ρ̃{l} (respectively, ρ{l}). Thus, the commu-
tative diagram in (ii) determines an exact sequence of profi-
nite groups

1 −→ ∆{l} −→ Φ{l} −→ Gtpd-l
k −→ 1 .

(iv) We shall write
ktpd-l (⊆ k)

for the algebraic extension of k corresponding to the quotient
Gk � Gtpd-l

k , i.e., Gtpd-l
k = Gal(ktpd-l/k).

Remark 2. In [3], the notation ∆
{l}
M/k (respectively, ρ̃

{l}
M/k; ρ

{l}
M/k; Φ

{l}
M/k;

Γ
{l}
M/k) was used to denote the object ∆{l} (respectively, ρ̃{l}; ρ{l}; Φ{l};

Gtpd-l
k ) defined in Definition 1 of the present paper (cf. [3], Definition

1).

Lemma 3. Let l be a prime number and λ ∈ k \ {0, 1}. Then the following
three conditions are equivalent:

(1) The split hyperbolic curve of type (0, 4) over k

P
1
k \ {0, 1, λ,∞}

is l-monodromically full (respectively, quasi-l-monodromically
full) [cf. [2], Definition 2.2].

(2) The k-rational point of M naturally corresponding to λ ∈ k\{0, 1}
is l-monodromically full (respectively, quasi-l-monodromically
full) [cf. [3], Definition 3].

(3) The image of the composite

Gk −→ π1(M) −→ Φ{l}

— where the first arrow is the outer homomorphism induced by λ ∈
k \ {0, 1} ' M(k) — is Φ{l} (respectively, is an open subgroup of
Φ{l}).

Proof. The equivalence “(1) ⇔ (2)” follows from the second equiva-
lence in [3], Remark 4. The equivalence “(2) ⇔ (3)” follows from [3],
Proposition 4, (iv). �

Definition 4 (cf. [1], §2.3; 2.5). Let l be an odd prime number.
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(i) We shall write
Sl

for the minimal set of finite subsets of P
1

k
(k) ' k∪{∞} which

satisfies the following three conditions:
(1) {0, 1,∞} ∈ Sl.
(2) If S ∈ Sl, then { a ∈ k | al ∈ S } ∪ {∞} ∈ Sl.
(3) If S ∈ Sl, and φ is an automorphism of P

1

k
over k such

that {0, 1,∞} ⊆ φ(S), then φ(S) ∈ Sl.
(ii) We shall write

El ⊆ k
×

for the subgroup of k
×

generated by the elements of S\{0,∞}
for all S ∈ Sl.

Some of main results of [1] are as follows.

Proposition 5. Let l be an odd prime number. Then the following hold:
(i) ktpd-l = k(El).

(ii) (El)
l = El.

(iii) µl∞ ⊆ El.

Proof. This follows from [1], Theorems A and B. �

Lemma 6. Let l be an odd prime number. Then l ∈ El.

Proof. It follows from condition (1) of Definition 4, (i), that {0, 1,∞} ∈
Sl. Thus, it follows from condition (2) of Definition 4, (i), that

S
def
= {0, 1, ζl, ζ

2
l , · · · , ζ l−1

l ,∞} ∈ Sl

— where ζl ∈ k is an l-th root of unity. Now since the automorphism
φ of P

1

k
over k given by “t 7→ 1 − t” satisfies that {0, 1,∞} ⊆ φ(S), it

follows from condition (3) of Definition 4, (i), that

φ(S) = {1, 0, 1 − ζl, 1 − ζ2
l , · · · , 1 − ζ l−1

l ,∞} ∈ Sl .

Therefore,

l =

l−1∏

i=1

(1 − ζ i
l ) ∈ El .

This completes the proof of Lemma 6. �

Lemma 7. Let l be a prime number. Suppose that µl∞ ⊆ k. For each
positive integer n, write

Cln
def
= Spec k[x±1, y±1]/(xln + yln + 1) −→ M

— where x and y are indeterminates — for the finite étale Galois (Z/lnZ)⊕2-
covering of M given by “t 7→ xln” and

π1(M) � Ql ' Z
⊕2
l

for the quotient of π1(M) determined by the Cln’s. Then the quotient
π1(M) � Ql factors through the quotient π1(M) � Φ{l}.
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Proof. To verify Lemma 7, it is immediate that it suffices to verify the
fact that for any positive integer n, the quotient π1(M) � (Z/lnZ)⊕2

determined by the finite étale covering Cln → M factors through
the quotient π1(M) � Φ{l}. Moreover, to verify this fact, it fol-
lows immediately from [3], Proposition 7, (i), that it suffices to verify
that the kernel of the pro-l outer Galois representation associated to
M/k (i.e., Ker(ρ{l})) coincides with the kernel of the pro-l outer Galois
representation associated to Cln/k. On the other hand, this follows
immediately from [3], Proposition 9. This completes the proof of
Lemma 7. �

Proposition 8. Let l be an odd prime number and λ ∈ k \ {0, 1}. If either
λ ∈ El ∩ k (cf. Definition 4, (ii)) or λ is a root of unity, then the split
hyperbolic curve of type (0, 4) over k

P
1
k \ {0, 1, λ,∞}

is not quasi-l-monodromically full.

Proof. To verify Proposition 8, it follows immediately from Lemma 3,
together with the exactness of the sequence appearing in Definition 1,
(iii), that, by replacing k by ktpd-l ⊆ k, we may assume without loss
of generality that k = ktpd-l. Write φ for the composite

Gk −→ π1(M) −→ Ql

— where the first arrow is the outer homomorphism induced by
λ ∈ k \ {0, 1} ' M(k), and the second arrow is the natural sur-
jection from π1(M) to the quotient Ql defined in the statement of
Lemma 7 (cf. Proposition 5, (i), (iii)). Moreover, for each positive
integer n, write φn for the composite of φ and the natural surjection
Ql � Ql/l

nQl (' (Z/lnZ)⊕2) and kn ⊆ k for the finite Galois ex-
tension of k corresponding to the quotient of Gk determined by the
homomorphism φn. Then it follows immediately from the definition
of the finite étale covering Cln → M (where we refer to the statement
of Lemma 7 concerning “Cln → M”) that

kn = k(λ1/ln , (1 − λ)1/ln) .

Now I claim that for any positive integer n, it holds that kn =

k((1 − λ)1/ln). Indeed, if λ ∈ El, then it follows immediately from
Proposition 5, (i), (ii), that λ1/ln ∈ El ⊆ ktpd-l = k; in particular,
kn = k(λ1/ln , (1 − λ)1/ln) = k((1 − λ)1/ln). On the other hand, if λ
is a root of unity, then it follows immediately from Proposition 5, (i),
(iii), that λ1/ln ∈ k(µl∞, λ) ⊆ ktpd-l(λ) = k(λ); in particular, kn =

k(λ1/ln , (1 − λ)1/ln) = k((1 − λ)1/ln). This completes the proof of the
above claim.
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Now it follows immediately from Lemma 3 that the hyperbolic
curve of type (0, 4) over k

P
1
k \ {0, 1, λ,∞}

is quasi-l-monodromically full if and only if the image of the composite

Gk −→ π1(M) −→ Φ{l}

— where the first arrow is the outer homomorphism induced by
λ ∈ k \ {0, 1} ' M(k) — is an open subgroup of Φ{l}. In particular, it
follows from Lemma 7 that if P

1
k\{0, 1, λ,∞} is quasi-l-monodromically

full, then the image of φ is an open subgroup of Ql. On the other
hand, it follows immediately from the above claim that for any pos-
itive integer n, the image of φn is a cyclic group. In particular, the
image of φ is not open in Ql. Therefore, P

1
k \ {0, 1, λ,∞} is not quasi-l-

monodromically full. This completes the proof of Proposition 8. �

Proof of Theorem A. Let l be an odd prime number. Then since l ∈
El (cf. Lemma 6), it follows immediately from Proposition 8 that the
hyperbolic curve of type (0, 4) over k

X
def
= P

1
k \ {0, 1, l,∞}

is not quasi-l-monodromically full. On the other hand, since neither
l, 1 − l, nor l/(l − 1) is a unit of the ring of integers of k, it follows
from [2], Corollary 7.11, that there exists a finite subset Σ ⊆ Primes of
Primes such that X is (Primes \ Σ)-monodromically full. In particular,
X satisfies the condition (MT3) but does not satisfy the condition
(MT1). This completes the proof of the fact that there exists a split
hyperbolic curve of type (0, 4) over k which satisfies (MT3), hence also
(MT2), but does not satisfy (MT1).

Moreover, let r > 4 be a positive integer and l′ 6∈ Σ a prime num-
ber. Then it follows from [3], Proposition 2, that there exists an l′-
monodromically full k-rational point x (cf. [3], Definition 3) of the
(r − 4)-th configuration space of the hyperbolic curve X/k. Since X
is l′-monodromically full and x is l′-monodromically full, it follows from
[3], Proposition 5, that the split hyperbolic curve Y of type (0, r) de-
termined by x — i.e., the hyperbolic curve obtained by taking the
complement in X of the images of r − 4 distinct k-rational points of
X determined by x — is l′-monodromically full. In particular, Y sat-
isfies the condition (MT2). On the other hand, since Y ⊆ X , and
X is not quasi-l-monodromically full, it follows from [2], Remark 2.2.5,
that Y is not quasi-l-monodromically full. In particular, Y does not sat-
isfy the condition (MT1). This completes the proof of the fact that for
any positive integer r > 4, there exists a split hyperbolic curve of type
(0, r) over k which satisfies (MT2) but does not satisfy (MT1). �

Proof of Theorem B. The implication “(4) ⇒ (3)” follows from [2],
Corollary 7.11. The implications “(3) ⇒ (2) ⇒ (1)” are immediate.
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The implication “(1) ⇒ (4)” follows from Proposition 8, together
with the fact that every unit of the ring of integers of an imaginary
quadratic field is a root of unity. �
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