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Abstract

We construct a model of the affine nil-Hecke algebra as a subalge-
bra of the Nichols-Woronowicz algebra associated to a Yetter-Drinfeld
module over the affine Weyl group. We also discuss the Peterson iso-
morphism between the homology of the affine Grassmannian and the
small quantum cohomology ring of the flag variety in terms of the
braided differential calculus.

Introduction

The cohomology ring of the flag variety is a fundamental object of research
in the study of the Schubert calculus. Fomin and the first author [4] gave
a combinatorial model of the cohomology H∗(Fln) ring of the flag variety
of type A as a commutative subalgebra of a quadratic algebra En. It is
remarkable that the algebra En has a natural quantum deformation Eq

n so
that Eq

n contains the quantum cohomology ring QH∗(Fln) as a commutative
subalgebra.

It has been observed by Milinski and Schneider [11] and by Majid [10]
that the defining relations of the Fomin-Kirillov quadratic algebra En are
understandable from the viewpoint of a certain kind of braided Hopf algebra
called the Nichols-Woronowicz algebra. Bazlov [2] constructed the model
of the coinvariant algebra of the finite Coxeter groups as a commutative
subalgebra of the Nichols-Woronowicz algebra. At the same time, the nil-
Coxeter algebra, which is dual to the coinvariant algebra, is also realized as
a subalgebra of the Nichols-Woronowicz algebra.

The braided analgue of the symmetric or exterior algebra was introduced
by Woronowicz [14] for the study of the differential forms on the quantum
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groups. For a given braided vector space M over a field K of characteristic
zero, the braided analogue B(M) of the symmetric algebra of M is defined to
be the quotient of the free tensor algebra of M by the kernel of the braided
symmetrizer. It is known that the algebra B(M) is a braided graded Hopf
algebra characterized by the following conditions:
(1) B0(M) = K,
(2) B1(M) = M = {primitive elements in B(M)},
(3) B1(M) generates B(M) as an algebra.
The Hopf algebra characterized by the above conditions has been studied by
Nichols [12] and named the Nichols algebra by Andruskiewitsch and Schnei-
der [1]. The study of the algebra B(M) from the viewpoint of the free braided
differential calculus was developed by [9]. In this paper we will call B(M)
the Nichols-Woronowicz algebra simply following [2].

The aim of this paper is to construct the nil-Hecke algebra as a subalgebra
of an extension of the Nichols-Woronowicz algebra Baff associated to a Yetter-
Drinfeld module over the affine Weyl groups. Our construction is analogous
to the one in [2, Section 6].

It is known that the affine Grassmannian Ĝr := G(C((t)))/G(C[[t]]) of
a semisimple Lie group G is homotopic to the loop group ΩK of the max-
imal compact subgroup K ⊂ G. The homology H∗(Ĝr) ∼= H∗(ΩK) carries
an associative algebra structure induced by the Pontryagin product. The
strucuture of the Pontryagin ring H∗(ΩK) has been determined by Bott [3].
The Schubert calculus for Kac-Moody flag varieties was studied by Kostant
and Kumar [6] by using the nil-Hecke algebra. Peterson [13] stated that the

torus-equivariant homology HT
∗ (Ĝr) of the affine Grassmannian is isomorphic

to the so-called Peterson subalgebra of the affine nil-Hecke algebra. So our
construction gives a model of HT

∗ (Ĝr) as a commutative subalgebra of the
Nichols-Woronowicz algebra Baff(S), see Theorem 3.1.

Peterson [13] also pointed out that the Pontryagin ring HT
∗ (Ĝr) is isomor-

phic to the small quantum cohomology ring QH∗
T (G/B) of the corresponding

flag variety G/B as an algebra after a suitable localization. The affine Bruhat

operator acting on HT
∗ (Ĝr) introduced by Lam and Shimozono [7] gives an

explicit comparison between the multiplicative structure of HT
∗ (Ĝr) and that

of QH∗
T (G/B). In this paper, we will realize the affine Bruhat operator as a

braided differential operator acting on our algebra Baff .
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1 Affine nil-Hecke algebra

Let G be a simply-connected semisimple complex Lie group and W its Weyl
group. Denote by ∆ the set of the roots. We fix the set ∆+ of the positive
roots by choosing a set of simple roots α1, . . . , αr. The Weyl group W acts
on the weight lattice P and the coroot lattice Q∨ of G. The affine Weyl group
Waff is generated by the affine reflections sα,k, α ∈ ∆, k ∈ Z, with respect to
the affine hyperplanes Hα,k := {λ ∈ P ⊗ R | ⟨λ, α∨⟩ = k}. The affine Weyl
group is the semidirect product of W and Q∨, i.e., Waff = W nQ∨. The affine
Weyl group Waff is generated by the simple reflections s1 := sα1,0, . . . , sr :=
sαr,0 and s0 := sθ,1 where θ = −α0 is the highest root. The affine Weyl group
W has the presentation as a Coxeter group as follows:

Waff = ⟨s0, . . . , sr | s2
0 = · · · = s2

r = 1, (sisj)
mij = 1⟩.

Definition 1.1. The affine nil-Coxeter algebra A0 is the associative algebra
generated by τ0, . . . , τr subject to the relations

τ 2
0 = · · · = τ 2

r = 0, (τiτj)
[mij/2]τ

νij

i = (τjτi)
[mij/2]τ

νij

j ,

where νij := mij − 2[mij/2].

For a reduced expression x = si1 · · · sil of an element x ∈ Waff , the element
τx := τi1 · · · τil ∈ A0 is independent of the choice of the reduced expression of
x. It is known that {τx}x∈Waff

form a linear basis of A0.
The nil-Coxeter algebra A0 acts on S := SymPQ via

τ0(f) := ∂α0(f) = −(f − sθ,0f)/θ,

τi(f) := ∂αi
(f) = (f − sαi,0f)/αi, i = 1, . . . , r,

for f ∈ S.

Definition 1.2. ([6]) The nil-Hecke algebra A is defined to be the cross
product A0 n S, where the cross relation is given by

τif = ∂αi
(f) + si(f)τi f ∈ S, i = 1, . . . , r.
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Here, we summarize some known results on the homology of the affine
Grassmannian. The affine Grassmannian Ĝr := G(C((t)))/G(C[[t]]) is ho-
motopic to the loop group ΩK of the maximal compact subgroup K ⊂ G.
Let T ⊂ G be the maximal torus. An associative algebra structure on the T -
equivariant homology group HT

∗ (Ĝr) ∼= HT
∗ (ΩK) is induced from the group

multiplication

ΩK × ΩK → ΩK.

It is known that the algebra HT
∗ (Ĝr) is commutative. The algebra HT

∗ (ΩK)
is called the Pontryagin ring.

We regard the T -equivariant homology HT
∗ (Ĝr) as an S-algebra by iden-

tifying S = H∗
T (pt). The diagonal embedding

ΩK → ΩK × ΩK

induces a coproduct on HT
∗ (Ĝr).

Proposition 1.1. ([13]) The T -equivariant homology HT
∗ (Ĝr) is isomorphic

to the centralizer ZA(S) of S in A as Hopf algebras.

2 Nichols-Woronowicz algebra for affine Weyl

groups

We briefly recall the construction of the Nichols-Woronowicz algebra associ-
ated to a braided vector space. Let M be a vector space over a field of charac-
teristic zero and ψ : M⊗2 → M⊗2 be a fixed linear endomorphism satisfying
the braid relations ψiψi+1ψi = ψi+1ψiψi+1 where ψi : M⊗n → M⊗n is a linear
endomorphism obtained by applying ψ to the i-th and (i+1)-st components.
Denote by si the simple transposition (i, i+1) ∈ Sn. For any reduced expres-
sion w = si1 · · · sil ∈ Sn, the endomorphism Ψw = ψi1 · · ·ψil : M⊗n → M⊗n is
well-defined. The Woronowicz symmetrizer [14] is given by σn :=

∑
w∈Sn

Ψw.

Definition 2.1. ([14]) The Nichols-Woronowicz algebra associated to a braided
vector space M is defined by

B(M) :=
⊕
n≥0

M⊗n/Ker(σn),

where σn : M⊗n → M⊗n is the Woronowicz symmetrizer.
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Definition 2.2. A vector space M is called a Yetter-Drinfeld module over
a group Γ, if the following conditions are satisfied:
(1) M is a Γ-module,
(2) M is Γ-graded, i.e. M =

⊕
g∈Γ Mg, where Mg is a linear subspace of M,

(3) for h ∈ Γ and v ∈ Mg, h(v) ∈ Mhgh−1 .

The Yetter-Drinfeld module M over a group Γ is naturally braided with
the braiding ψ : M⊗2 → M⊗2 defined by ψ(a⊗ b) = g(b)⊗ a for a ∈ Mg and
b ∈ M.

In the following we are interested in the Yetter-Drinfeld module over the
affine Weyl groups Waff . Denote by tλ ∈ Waff the translation by λ ∈ Q∨. We
define a Yetter-Drinfeld module Vaff over Waff by

Vaff :=
⊕

α∈∆,k∈Z

Q · [α, k]/([α, k] + [−α,−k]),

where the Waff acts on Vaff by

w[α, k] := [w(α), k], w ∈ W, tλ[α, k] := [α, k + (α, λ)], λ ∈ Q∨.

The Waff-grading is given by degWaff
([α, k]) := sα,k. Then it is easy to check

the conditions in Definition 2.1. Now we have the Nichols-Woronowicz alge-
bra Baff := B(Vaff) associated to the Yetter-Drinfeld module Vaff .

Let BW be the Nichols-Woronowicz algebra associated to the Yetter-
Drinfeld module V = ⊕α∈∆Q · [α]/([α] + [−α]) as in [2, Section 4].

Lemma 2.1. (1) We have a surjective homomorphism π : Baff → BW ,
π([α, k]) := [α].
(2) The algebra Baff acts on S via [α, k]f = ∂α(f) for all k ∈ Z.

Proof. (1) Denote by ψ and ψ̄ the braidings on Vaff and V respectively.
Let π̃ : ⊕nVaff

⊗n → ⊕nV
⊗n be the lift of π. Since

ψ([α, k] ⊗ [β, l]) = [sα(β), l − ⟨α∨, β⟩k] ⊗ [α, k]

and ψ̄([α] ⊗ [β]) = [sα(β)] ⊗ [α], the map π̃ sends the kernel of the braided
symmetrizer σn of Vaff

⊗n to that of V ⊗n.
(2) In [2], it is shown that the algebra BW acts on the coinvariant algebra
SW via [α] 7→ ∂α. Let SW be the W -invariant subalgebra of S. Then we have
the decomposition S = SW ⊗ SW . The operator ∂α extends SW -linearly to
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the operator on S. Hence BW acts on S. We have seen the existence of the
natural projection π from Baff to B, so π induces the action of Baff on S.

Let us define the extension Baff(S) = Baff n S by the cross relation

[α, k]f = ∂αf + sα,0(f)[α, k], [α, k] ∈ Vaff , f ∈ S.

Proposition 2.1. There exists a homomorphism φ : A → Baff(S) given by
τ0 7→ [α0,−1], τi 7→ [αi, 0], i = 1, . . . , r, and f 7→ f, f ∈ S.

Proof. It is enough to check the Coxeter relations among φ(τ0), . . . , φ(τr)
in Baff(S) based on the classification of the affine root systems. This is done
by the direct computation of the symmetrizer for the subsystems of rank 2
in the similar manner to [2, Section 6].

Example 2.1. Here we list the Coxeter relations in Baff involving [θ, 1] =
−[α0,−1] for the root systems of rank 2. Let (ε1, . . . , εr) be an orthonormal
basis of the r-dimensional Euclidean space. Put [ij, k] := [εi−εj, k], [ij, k] :=
[εi + εj, k], [i, k] := [εi, k] and [α] := [α, 0].
(i) (Type A2 case)

[13, 1][23][13, 1] + [23][13, 1][23] = 0, [13, 1][12][13, 1] + [12][13, 1][12] = 0

(ii) (Type B2 case)

[12, 1][2][12, 1][2] = [2][12, 1][2][12, 1]

(iii) (Type G2 case) Let α1, α2 be the simple roots for G2-system. We assume
that α1 is a short root and α2 is a long one. Then we have θ = 3α1 + 2α2.

[θ, 1][α2][θ, 1] + [α2][θ, 1][α2] = 0.

3 Model of nil-Hecke algebra

The connected components of P ⊗R \∪α∈∆+,k∈ZHα,k are called alcoves. The
affine Weyl group Waff acts on the set of the alcoves simply and transitively.

Definition 3.1. ([8]) (1) A sequence (A0, . . . , Al) of alcoves Ai is called an
alcove path if Ai and Ai+1 have a common wall and Ai ̸= Ai+1.
(2) An alcove path (A0, . . . , Al) is called reduced if the length l of the path
is minimal among all alcove paths connecting A0 and Al.

(3) We use the symbol Ai
β,k−→ Ai+1 when Ai and Ai+1 have a common wall

of the form Hβ,k and the direction of the root β is from Ai to Ai+1.
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The alcove A◦ defined by the inequalities ⟨λ, α∨
0 ⟩ ≥ −1 and ⟨λ, α∨

i ⟩ ≥ 0,
i = 1, . . . , r, is called the fundamental alcove. For a reduced alcove path

γ : A0 = A◦ β1,k1−→ · · · βl,kl−→ Al, we define an element [γ] ∈ Baff by

[γ] := [−β1,−k1] · · · [−βl,−kl].

When Al = x−1(A◦) for x ∈ Waff , we will also use the symbol [x] instead of
[γ], since [γ] depends only on x thanks to the Yang-Baxter relation.

For a braided vector space M, it is known that an element a ∈ M acts
on B(M∗) as a braided differential operator (see [2], [9]). Let us identify M∗

with M via the Waff-invariant inner product ( , ) given by

([α, k], [β, l]) =

{
1, if α = β and k = l,
0, otherwise,

for α, β ∈ ∆+, k, l ∈ Z. In our case, the differential operator
←−
D [α,k], [α, k] ∈

Vaff , acting from the right is determined by the following characterization:
(0) (c)

←−
D [α,k] = 0, c ∈ Q,

(1) ([α, k])
←−
D [β,l] = ([α, k], [β, l]),

(2) (FG)
←−
D [α,k] = F (G

←−
D [α,k]) + (F

←−
D [α,k])sα,k(G),

for α, β ∈ ∆, k, l ∈ Z, F,G ∈ Baff . The operator
←−
D [α,k] extends to the one

acting on Baff(S) by the commutation relation f · ←−D [α,k] =
←−
D [α,k] · sα,k(f),

f ∈ S.
We use the abbreviation

←−
D 0 :=

←−
D [α0,−1],

←−
D i :=

←−
D [αi,0], i = 1, . . . , r.

For x ∈ Waff , fix a reduced decomposition x = si1 · · · sil . We define the

corresponding braided differential operator
←−
D x acting on Baff by the formula

←−
D x :=

←−
D il · · ·

←−
D i1 ,

which is also independent of the choice of the reduced decomposition of x
because of the braid relations.

Lemma 3.1. For x ∈ Waff , take a reduced alcove path γ from the fundamen-
tal alcove A◦ to x−1(A◦). Then, we have ([γ])

←−
D x = 1.

Proof. Let us take a reduced path

γ : A0 = A◦ β1,k1−→ A1
β2,k2−→ · · · βl,kl−→ Al = x−1(A◦).
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Define a sequence σ1, . . . , σl ∈ Waff inductively by

σ1 := sβ1,k1 , σj+1 := σjsβj+1,kj+1
σj.

Then it is easy to see that σν(Aj) ̸= A◦, 1 ≤ ν ≤ j − 1, σj(Aj) = A◦ and the
walls σj(Hβj+1,kj+1

) are corresponding to simple roots. Hence, σ1, . . . , σl are
simple reflections. This sequence gives a reduced expression x = σl · · · σ1.
Put σi = sαij

. Since the direction of βj+1 is chosen to be from Aj to Aj+1,
we have

[γ]
←−
D x = ([β1, k1])

←−
D i1 · (σ1([β2, k2]))

←−
D i2 · · · (σl−1([βl, kl]))

←−
D il = 1.

Example 3.1. (A2-case) The standard realization is given by α1 = ε1 − ε2,
α2 = ε2 − ε3, α0 = ε3 − ε1. Consider the translation tα1 by the simple root
α1. If we take a reduced path

γ : A0 = A◦ −α2,0−→ A1
α1,1−→ A2

−α0,1−→ A3
α1,2−→ A4 = tα1(A

◦),

then we have [γ] = [23][21,−1][31,−1][21,−2]. On the other hand, the dif-
ferential operator corresponding to t−α1 is given by

←−
D 2

←−
D 0

←−
D 2

←−
D 1, where←−

D 0 =
←−
D [31,−1],

←−
D 1 =

←−
D [12],

←−
D 2 =

←−
D [23]. It is easy to check by direct com-

putation

([23][21,−1][31,−1][12, 2])
←−
D 2

←−
D 0

←−
D 2

←−
D 1 = 1.

Theorem 3.1. The algebra homomorphism φ : A → Baff(S) is injective.

Proof. The nil-Hecke algebra A is also Waff-graded. Since the homomor-
phism φ : A → Baff(S) preserves the Waff-grading, it is enough to check
φ(τx) ̸= 0, for x ∈ Waff in order to show the injectivity of φ. On the other
hand, Baff

op acts on Baff itself via the braded differential operators. Let γ be
a reduced alcove path from A◦ to x−1(A◦). Then we have ([γ])

←−
D x = 1 from

Lemma 3.1. This shows
←−
D x ̸= 0, so φ(τx) ̸= 0.

This theorem implies the following (see Proposition 1.1):

Corollary 3.1. The T -equivariant Pontryagin ring HT
∗ (Ĝr) is a subalgebra

of Baff(S).

By taking the non-equivariant limit, we also have:

Corollary 3.2. The Pontryagin ring H∗(Ĝr) is a subalgebra of Baff .
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4 Affine Bruhat operators

We denote by x → y the cover relation in the Bruhat ordering of Waff , i.e.
y = xsα,k for some α ∈ ∆ and k ∈ Z, and l(y) = l(x) + 1.

We will use some terminology from [7]. Denote by Q̃ the set of antidom-
inant elements in Q∨. An element x ∈ Waff can be expressed uniquely as a
product of form x = wtvλ ∈ Waff with v, w ∈ W, λ ∈ Q̃. We say that x = wtvλ

belongs to the ”v-chamber”. An element λ ∈ Q̃ is called superregular when
|⟨λ, α⟩| > 2(#W )+2 for all α ∈ ∆+. If λ ∈ Q̃ is superregular, then x = wtvλ

is called superregular. The subset of superregular elements in Waff is de-
noted by Waff

sreg. We say that a property holds for sufficiently superregular
elements Waff

ssreg ⊂ Waff if there is a positive constant k ∈ Z such that the
property holds for all x ∈ Waff

sreg satisfying the following condition:

y ∈ Waff , y < x, and l(x) − l(y) < k ⇒ y ∈ Waff
sreg.

The meaning of Waff
ssreg depends on the context, see [7, Section 4] for the

details. For v ∈ W, consider the S-submodule M ssreg
v in Baff generated by the

sufficiently superregular elements [x] where x belongs to the v-chamber.

Lemma 4.1. Let x ∈ Waff . For α ∈ ∆ and k ∈ Z>0, we have

[x]
←−
D [α,k] =

{
[xsα,k], if l(x) = l(xsα,k) + 1,

0, otherwise.

Proof. The fundamental alcove A◦ is contained in the region {λ ∈ P ⊗
R|⟨λ, α∨⟩ < k} for α ∈ ∆ and k ∈ Z>0. Let us choose any reduced path

γ : A0
β1,k1−→ · · · βl,kl−→ Al = x−1(A◦) with ki ≥ 0. If l(x) > l(xsα,k), then

(βi, ki) = (α, k) for some i. Take the largest i and consider the path

γ′ : A0
β1,k1−→ · · · βi−1,ki−1−→ Ai−1

β′
i+1,k′

i+1−→ sα,k(Ai+1)
β′

i+2,k′
i+2−→ · · ·

· · ·
β′

l,k
′
l−→ sα,k(Al) = sα,kx

−1(A◦) = (xsα,k)
−1(A◦),

where (β′
j, k

′
j) is determined by the condition sα,k(Hβj ,kj

) = Hβ′
j ,k′

j
. If l(x) =

l(xsα,k) + 1, then the path γ′ is a reduced path. In this case, we have

[x]
←−
D [α,k] = [xsα,k]. If l(x) > l(xsα,k) + 1, the above path γ′ is not reduced

and [x]
←−
D [α,k] = 0. When l(x) < l(xsα,k), the element [α, k] does not appear

in the monomial [γ], so we have [x]
←−
D [α,k] = 0.
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Proposition 4.1. ([7, Proposition 4.1]) Let λ ∈ Q̃ be superregular. For
x = wtvλ and y = xsvα,−n with v, w ∈ W, we have the cover relation y → x
if and only if one of the following conditions holds:
(1) l(wv) = l(wvsα) − 1 and n = ⟨λ, α⟩, giving y = wsv(α)tv(λ),
(2) l(wv) = l(wvsα)+⟨α∨, 2ρ⟩−1 and n = ⟨λ, α⟩+1, giving y = wsv(α)tv(λ+α∨),
(3) l(v) = l(vsα) + 1 and n = 0, giving y = wsv(α)tvsα(λ),
(4) l(v) = l(vsα) − ⟨α∨, 2ρ⟩ + 1 and n = −1, giving y = wsv(α)tvsα(λ+α∨).

In [7], the first kind of the conditions (1) and (2) are called the near
relation because x and y belong to the same chamber. In this paper we
denote the near relation by y →near x.

The affine Bruhat operator Bµ : S⟨Waff
ssreg⟩ → S⟨Waff

sreg⟩, µ ∈ P, due to
Lam and Shimozono [7, Section 5] is an S-linear map defined by the formula

Bµ(x) = (µ − wvµ)x +
∑

α∈∆+

∑
xsv(α),k→nearx

⟨α∨, µ⟩xsv(α),k

for x = wtvλ ∈ Waff
ssreg. We also introduce the operator βµ

v , µ ∈ P, acting on
each M ssreg

v by

βµ
v ([x]) := (µ − wvµ)[x] + [x]

∑
α∈∆+,k>1

⟨α∨, µ⟩←−D [v(α),k],

where x = wtvλ ∈ Waff
ssreg. Denote by Waff

ssreg(v) the subset of Waff con-
sisting of the superregular elements belonging to the v-chamber. Fix a left
S-module isomorphism

ι : S⟨Waff
ssreg(v)⟩ → M ssreg

v

x 7→ [x].

Proposition 4.2. For each v ∈ W and a sufficiently superregular element
x ∈ Waff

ssreg(v),

βµ
v ([x]) = ι(Bµ(x)).

Proof. This can be shown by using Lemma 4.1 and Proposition 4.1.

βµ
v ([x]) = (µ − wvµ)[x] + [x]

∑
α∈∆+,k>1

⟨α∨, µ⟩←−D [v(α),k]
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= (µ − wvµ)[x] +
∑

α∈∆+

∑
k>1,l(xs[v(α),k])=l(x)−1

⟨α∨, µ⟩[xsv(α),k]

= (µ − wvµ)[x] +
∑

α∈∆+

∑
xsv(α),k→nearx

⟨α∨, µ⟩[xsv(α),k] = ι(Bµ(x)).

Remark 4.1. In [5] the authors introduced the quantization operators ηα

acting on the model of H∗(G/B) ⊗ C[q1, . . . , qr] realized as a subalgebra
of BW ⊗ C[q1, . . . , qn−1]. For a superregular element λ ∈ Q̃ and w ∈ W,
consider a homomorphism θλ

w from the λ-small elements (see [7, Section 5])
of H∗(G/B) ⊗ C[q] to Baff defined by

θλ
w(qµσv) := [vw−1tw(λ+µ)],

where σv is the Schubert class of G/B corresponding to v ∈ W and qµ =
qµ1

1 · · · qµr
r for µ =

∑r
i=1 µiα

∨
i . The following is an interpretation of the for-

mula of [7, Proposition 5.1] in our setting:

θλ
w(ηα(σ)) = βϖα

w (θλ
w(σ)).

5 Quadratic relations

For α ∈ ∆+ and v ∈ W, let us define the operator Dv(α) by

Dv(α) :=
∑
k>1

←−
D [v(α),k].

Then we have

βµ
v ([x]) = (µ − wvµ)[x] + [x]

∑
α∈∆+

⟨α∨, µ⟩Dv(α).

In the following, we discuss the relations among the operators Dv(α), α ∈
∆+, for the root system of type An−1. For simplicity, we consider only non-
equivariant case with v = id. Take the standard realization of the An−1-
system:

∆ = {εi − εj | 1 ≤ i, j ≤ n, i ̸= j}.
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Put D(ij) := Did.(εi − εj) for 1 ≤ i < j ≤ n, and D(ij) := −D(ji) for i > j.
In this situation, we have a formula for the non-equivariant limit β̄εi

id. of the
operator βεi

id. :

β̄εi
id. =

∑
j ̸=i

D(ij).

Note that this formula is analogous to the definition of the Dunkl elements
in [4].

Let Ti, 1 ≤ i ≤ n − 1, be linear operators on M ssreg defined by Ti([x]) :=
[xtαi

], where x ∈ Waff and αi = εi−εi+1. It is easy to check from Proposition
4.1 that (Ti[x])D(jk) = Ti([x]D(jk)). Our next goal is to show that the
operators D(ij) satisfy the defining relations of the quantum deformation Eq

n

of the Fomin-Kirillov quadratic algebra [4].

Proposition 5.1. (i) For 1 ≤ i < j ≤ n, we have

D(ij)2 =

{
Ti, if j = i + 1,
0, otherwise.

(ii) If {i, j} ∩ {k, l} = ∅, then we have D(ij)D(kl) = D(kl)D(ij).
(iii) For 1 ≤ i, j ≤ n, i ̸= j, we have

D(ij)D(jk) + D(jk)D(kl) + D(ki)D(ij) = 0.

Proof. First of all, let us check the equality (i). We have

D(ij)2 =
∑
k,l>1

←−
D [ij,k]

←−
D [ij,l].

Let λ ∈ Q̃ be sufficiently superregular. For x = wtλ ∈ Waff , assume
that [x]

←−
D [ij,k]

←−
D [ij,l] ̸= 0. Then we have the arrows xsij,k →near x and

xsij,ksij,l →near xsij,k in the Bruhat ordering. From the conditions (1) and
(2) in Proposition 4.1, one of the following conditions holds:
Case (1): k = −⟨λ, εi − εj⟩ and l(w) = l(wsij) − 1,
Case (2): k = −⟨λ, εi − εj⟩ − 1 and l(w) = l(wsij) + ⟨εi − εj, 2ρ⟩ − 1.
In Case (1), since the arrow xsij,ksij,l = wsijtλsij,l →near xsij,k must come
from the condition (2) of Proposition 4.1, we have ⟨εi − εj, 2ρ⟩ − 1 = 1. This
equality implies that εi − εj is a simple root αi, and we get

[x]D(i i + 1)2 = [x]
←−
D [αi,−⟨λ,αi⟩]

←−
D [αi,−⟨λ,αi⟩−1] = [xtαi

] = Ti[x].
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In Case (2), since the arrow xsij,ksij,l = wsijtλ+εi−εj
sij,l →near xsij,k comes

from the condition (1) of Proposition 4.1, we again obtain ⟨εi−εj, 2ρ⟩−1 = 1
and εi − εj = αi. Hence we get

[x]D(i i + 1)2 = [x]
←−
D [αi,−⟨λ,αi⟩−1]

←−
D [αi,−⟨λ,αi⟩−2] = [xtαi

] = Ti[x].

If j ̸= i + 1, we have D(ij)2 = 0. The relations (ii) and (iii) follow from the
identities [ij, a][kl, b] = [kl, b][ij, a] for {i, j} ∩ {k, l} = ∅, and

[ij, a][jk, b] + [jk, b][ki,−a − b] + [ki,−a − b][ij, a] = 0

in Baff .

Remark 5.1. The operators Dv(α) induce the quantum Bruhat representa-
tion of Eq

n via θλ
v .
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