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Abstract: We give an interpretation of thet = 1 specialization of the modified Macdonald polynomial as a generating
function of the energy statistics defined on the set of paths arising in the context of Box-Ball Systems (BBS-paths for
short). We also introduce one parameter generalizations of the energy statistics on the set of BBS-paths which all,
conjecturally, have the same distribution.

Résuḿe: Nous donnons une intérpŕetation de la sṕecialisationà t = 1 du polyn̂ome de Macdonald modifié comme
fonction ǵeńeratrice des statistiques d’énergie d́efinies sur l’ensemble des chemins qui apparaissent dans la théorie
des Syst̀emes BBS (BBS-chemins). Nous présentonśegalement des géńeralisations̀a un param̀etre de la statistique
d’énergie sur les chemins BBS qui toutes, conjecturalement, ont la même distribution.
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1 Introduction
The purpose of the present paper is two-fold. First of all we would like to draw attention to a rich com-
binatorics hidden behind the dynamics of Box-Ball Systems, and secondly, to connect the former with
the theory of modified Macdonald polynomials. More specifically, our final goal is to give an interpreta-
tion of the Kostka–Macdonald polynomialsKλ,µ(q, t) as arefined partition functionof a certain box-ball
systems depending on initial dataλ andµ.

Box-Ball Systems (BBS for short) were invented by Takahashi–Satsuma (29; 28) as a wide class of
discrete integrable soliton systems. In the simplest case, BBS are described by simple combinatorial
procedures using boxes and balls. One can see the simplest but still very interesting examples of the BBS
by the free software available at (26). Despite its simple outlook, it is known that the BBS have various
remarkably deep properties:

• Local time evolution rule of the BBS coincides with the isomorphism of the crystal bases (7; 2).
Thus the BBS possesses quantum integrability.
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• BBS are ultradiscrete (or tropical) limit of the usual soliton systems (30; 20). Thus the BBS pos-
sesses classical integrability at the same time.

• Inverse scattering formalism of the BBS (19) coincides with the rigged configuration bijection orig-
inating in completeness problem of the Bethe states (14; 16), see also (25).

Let us say a few words about the main results of this note.

• We will identify the space of states of a BBS with the corresponding weight subspace in the tensor
product of fundamental (or rectangular) representations of the Lie algebragl(n).

• In the case of statisticstau, our main result can be formulated as a computation of the corresponding
partition function for the BBS in terms of the values of the Kostka–Macdonald polynomials att = 1.

• In the case of the statisticsenergy, our result can be formulated as an interpretation of the corre-
sponding partition function for the BBS as theq-weight multiplicity of a certain irreducible rep-
resentation of the Lie algebragl(n) in the tensor product of the fundamental representations. We
expectthat the same statement is valid for the BBS corresponding to the tensor product of rectan-
gular representations.

Let us remind that aq-analogue of the multiplicityof a highest weightλ in the tensor product⊗L
a=1 Vsaωra

of the highest weightsa ωra , a = 1, . . . , L, irreducible representationsVsaωra
of

the Lie algebragl(n) is defined as

q-Mult [Vλ :

L⊗
a=1

Vsaωra
] =

∑
η

Kη,R Kη,λ(q),

whereKη,R stands for the parabolic Kostka number corresponding to the sequence of rectangles
R := {(sraa )}a=1,...,L, see e.g. (15), (18).

A combinatorial description of the modified Macdonald polynomials has been obtained by Haglund–
Haiman–Loehr (5). In Section5 we give an interpretation of two Haglund’s statistics in the context of
the box-ball systems, i.e., in terms of the BBS-paths. Namely, we identify the set of BBS paths of weight
α with the setP(α) which is the weightα component in the tensor product of crystals corresponding to
vector representations. We have observed that from the proof given in (5) one can prove the following
identity ∑

p∈P(α)

qinvµ(p)tmajµ(p) =
∑
η⊢|µ|

Kη,αK̃η,µ(q, t), (1)

see Proposition6.2and Corollary6.3. One of the main problems we are interested in is to generalize the
identity Eq.(1) on more wider set of the BBS-paths.

Our result about connections of the energy partition functions for BBS andq-weight multiplicities sug-
gests a deep hidden connections between partition functions for the BBS and characters of the Demazure
modules, solutions to theq-difference Toda equations, cf.(3), ... .

As an interesting open problem we want to give raise a question about an interpretation of the sums∑
η Kη,R Kη,λ(q, t), whereKη,λ(q, t) denotes the Kostka–Macdonald polynomials (21), asrefined par-

tition functionsfor the BBS corresponding to the tensor product of rectangular representationsR =
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{(sraa )}1≤a≤n. In other words, one can ask: what is a meaning of the second statistics (see (5)) in the
Kashiwara theory (11) of crystal bases (of type A) ?

This paper is abbreviated and updated version of our paper (17). The main novelty of the present paper
is the definition of a one parameter family of statistics on the set of BBS-paths which generalizes those
introduced in (17), see Conjecture7.2. It conjecturally gives a new family of MacMahonian statistics on
the set of transportation matrices, see (15).

Organization of the present paper is as follows. In Section2 we remind algorithms of the combinatorial
R-matrix and the energy functions. In Section3, we introduce the energy statistics and the set of the
BBS. In Section4 we remind definition of box-ball systems and state some of their simplest properties.
In Section5 we remind definition of the Haglund’s statistics and give their interpretation in terms of the
BBS-paths. Sections6 and7 contain our main results and conjectures. In particular it is not difficult to
see that Haglund’s statistics majµ and invµ do not compatible with the Kostka–Macdonald polynomials
for general partitionsλ andµ. In Section6 we state a conjecture which describes the all pairs of partitions
(λ, µ) for those the restriction of the Haglund–Haiman–Loehr formula on the set of highest weight paths
of shapeµ coincide with the Kostka–Macdonald polynomialK̃λ,µ(q, t).

2 Combinatorial R and energy function
Let Br,s be the Kirillov–Reshetikhin crystals of typeA(1)

n (see (11; 12; 10), see also section 2 of (17)).
Herer ∈ {1, 2, · · · , n} ands ∈ Z>0. As the set,Br,s is consisting of all semistandard tableaux of heightr
and widths. In this section, we recall an explicit description of the combinatorialR-matrix (combinatorial
R for short) and energy function onBr,s⊗Br′,s′ . To begin with we define few terminologies about Young
tableaux. Denote rows of a Young tableauxY byy1, y2, . . . yr from top to bottom. Then row wordrow(Y )
is defined by concatenating rows asrow(Y ) = yryr−1 . . . y1. Let x = (x1, x2, . . .) andy = (y1, y2, . . .)
be two partitions. We define concatenation ofx andy by the partition(x1 + y1, x2 + y2, . . .).

Proposition 2.1 ((27)) b⊗b′ ∈ Br,s⊗Br′,s′ is mapped tõb′⊗ b̃ ∈ Br′,s′⊗Br,s under the combinatorial
R, i.e.,

b⊗ b′
R≃ b̃′ ⊗ b̃, (2)

if and only if
(b′ ← row(b)) = (b̃← row(b̃′)). (3)

Moreover, the energy functionH(b ⊗ b′) is given by the number of nodes of(b′ ← row(b)) outside the

concatenation of partitions(sr) and(s′r
′
).

For special cases ofB1,s⊗B1,s′ , the functionH is called unwinding number in (22). Explicit values for
the caseb⊗ b′ ∈ B1,1⊗B1,1 are given byH(b⊗ b′) = χ(b < b′) whereχ(True) = 1 andχ(False) = 0.

In order to describe the algorithm for finding̃b and b̃′ from the data(b′ ← row(b)), we introduce a
terminology. LetY be a tableau, andY ′ be a subset ofY such thatY ′ is also a tableau. Consider the set
theoretic subtractionθ = Y \ Y ′. If the number of nodes contained inθ is r and if the number of nodes
of θ contained in each row is always 0 or 1, thenθ is called verticalr-strip.

Given a tableauY = (b′ ← row(b)), letY ′ be the upper left part ofY whose shape is(sr). We assign
numbers from 1 tor′s′ for each node contained inθ = Y \ Y ′ by the following procedure. Letθ1 be
the verticalr′-strip of θ as upper as possible. For each node inθ1, we assign numbers 1 throughr′ from
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the bottom to top. Next we considerθ \ θ1, and find the verticalr′ strip θ2 by the same way. Continue
this procedure until all nodes ofθ are assigned numbers up tor′s′. Then we apply inverse bumping
procedure according to the labeling of nodes inθ. Denote byu1 the integer which is ejected when we
apply inverse bumping procedure starting from the node with label 1. Denote byY1 the tableau such that
(Y1 ← u1) = Y . Next we apply inverse bumping procedure starting from the node ofY1 labeled by 2,
and obtain the integeru2 and tableauY2. We do this procedure until we obtainur′s′ andYr′s′ . Finally,
we have

b̃′ = (∅ ← ur′s′ur′s′−1 · · ·u1), b̃ = Yr′s′ . (4)

3 Energy statistics and its generalizations on the set of paths
For a pathb1 ⊗ b2 ⊗ · · · ⊗ bL ∈ Br1,s1 ⊗Br2,s2 ⊗ · · · ⊗BrL,sL , let us define elementsb(i)j ∈ Brj ,sj for
i < j by the following isomorphisms of the combinatorialR;

b1 ⊗ b2 ⊗ · · · ⊗ bi−1 ⊗ bi ⊗ · · · ⊗ bj−1 ⊗ bj ⊗ · · ·

≃ b1 ⊗ b2 ⊗ · · · ⊗ bi−1 ⊗ bi ⊗ · · · ⊗ b
(j−1)
j ⊗ b′j−1 ⊗ · · ·

≃ · · ·
≃ b1 ⊗ b2 ⊗ · · · ⊗ bi−1 ⊗ b

(i)
j ⊗ · · · ⊗ b′j−2 ⊗ b′j−1 ⊗ · · · , (5)

where we have writtenbk ⊗ b
(k+1)
j ≃ b

(k)
j ⊗ b′k assuming thatb(j)j = bj .

Define the statisticsmaj(p) by

maj(p) =
∑
i<j

H(bi ⊗ b
(i+1)
j ). (6)

For example, consider a patha = a1 ⊗ a2 ⊗ · · · ⊗ aL ∈ (B1,1)⊗L. In this case, we havea(i)j = ai, since
the combinatorialR act onB1,1 ⊗B1,1 as identity. Therefore, we have

maj(a) =
L−1∑
i=1

(L− i)χ(ai < ai+1). (7)

Define another statisticstauas follows.

Definition 3.1 For the pathp ∈ Br1,s1 ⊗Br2,s2 ⊗ · · · ⊗BrL,sL , defineτ r,s by

τ r,s(p) = maj(u(r)
s ⊗ p), (8)

whereu(r)
s is the highest element ofBr,s.

Here the highest elementu(r)
s ∈ Br,s is the tableau whosei-th row is occupied by integersi. For example,

u
(3)
4 =

1 1 1 1
2 2 2 2
3 3 3 3

. In particular, the statisticsτ r,1 onB1,1 type pathsa ∈ (B1,1)⊗L has the following

form;

τ r,1(a) = L · χ(r < a1) +
L−1∑
i=1

(L− i)χ(ai < ai+1), (9)
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wherea1 denotes the first letter of the patha. Note thatτ1,1 is a special case of the tau functions for
the box-ball systems (20; 24) which originates as an ultradiscrete limit of the tau functions for the KP
hierarchy (9).

Definition 3.2 For compositionµ = (µ1, µ2, · · · , µn), write µ[i] =
∑i

j=1 µj with conventionµ[0] = 0.
Then we define a generalization ofτ r,1 by

τ r,1µ (a) =
n∑

i=1

τ r,1(a[i]), (10)

where
a[i] = aµ[i−1]+1 ⊗ aµ[i−1]+2 ⊗ · · · ⊗ aµ[i]

∈ (B1,1)⊗µi . (11)

Note that we havea = a[1] ⊗ a[2] ⊗ · · · ⊗ a[n], i.e., the patha is partitioned according toµ.

4 Box-ball system
In this section, we summarize basic facts about the box-ball system in order to explain physical origin of
τ1,1. For our purpose, it is convenient to express the isomorphism of the combinatorialR: a⊗ b ≃ b′⊗a′

by the following vertex diagram:

a

b′

b

a′ .

Successive applications of the combinatorialR is depicted by concatenating these vertices.
Following (7; 2), we define time evolution of the box-ball systemT (a)

l . Let u(a)
l,0 = u

(a)
l ∈ Ba,l be the

highest element andbi ∈ Bri,si . Defineu(a)
l,j andb′i ∈ Bri,si by the following diagram.

u
(a)
l,0

b1

b′1

u
(a)
l,1

b2

b′2

u
(a)
l,2 · · · · · · · · · · u

(a)
l,L−1

bL

b′L

u
(a)
l,L

(12)

u
(a)
l,j are usually calledcarrier and we setu(a)

l,0 := u
(a)
l . Then we define operatorT (a)

l by

T
(a)
l (b) = b′ = b′1 ⊗ b′2 ⊗ · · · ⊗ b′L. (13)

Recently (25), operatorsT (a)
l have used to derive crystal theoretical meaning of the rigged configuration

bijection.
It is known ((19) Theorem 2.7) that there exists somel ∈ Z>0 such that

T
(a)
l = T

(a)
l+1 = T

(a)
l+2 = · · · (=: T (a)

∞ ). (14)
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If the corresponding path isb ∈ (B1,1)⊗L, we have the following combinatorial description of the box-
ball system (29; 28). We regard 1 ∈ B1,1 as an empty box of capacity 1, andi ∈ B1,1 as a ball of
label (or internal degree of freedom)i contained in the box. Then we have:

Proposition 4.1 ((7)) For a pathb ∈ (B1,1)⊗L of typeA(1)
n , T (1)

∞ (b) is given by the following procedure.

1. Move every ball only once.

2. Move the leftmost ball with labeln+ 1 to the nearest right empty box.

3. Move the leftmost ball with labeln+ 1 among the rest to its nearest right empty box.

4. Repeat this procedure until all of the balls with labeln+ 1 are moved.

5. Do the same procedure 2–4 for the balls with labeln.

6. Repeat this procedure successively until all of the balls with label2 are moved.

There are extensions of this box and ball algorithm corresponding to generalizations of the box-ball sys-
tems with respect to each affine Lie algebra, see e.g., (8). Using this box and ball interpretation, our
statisticsτ1,1(b) admits the following interpretation.

Theorem 4.2 ((20) Theorem 7.4) For a pathb ∈ (B1,1)⊗L of typeA(1)
n , τ1,1(b) coincides with number

of all balls2, · · · , n+ 1 contained in pathsb, T (1)
∞ (b), · · · , (T (1)

∞ )L−1(b).

Example 4.3 Consider the pathp = a⊗ b wherea = 4311211111, b = 4321111111. Note that we omit
all frames of tableaux ofB1,1 and symbols for tensor product. We computeτ(10,10)(p) by using Theorem
4.2. According to Proposition4.1, the time evolutions of the pathsa andb are as follows:

4 3 1 1 2 1 1 1 1 1
1 1 4 3 1 2 1 1 1 1
1 1 1 1 4 1 3 2 1 1
1 1 1 1 1 4 1 1 3 2
1 1 1 1 1 1 4 1 1 1
1 1 1 1 1 1 1 4 1 1
1 1 1 1 1 1 1 1 4 1
1 1 1 1 1 1 1 1 1 4

4 3 2 1 1 1 1 1 1 1
1 1 1 4 3 2 1 1 1 1
1 1 1 1 1 1 4 3 2 1
1 1 1 1 1 1 1 1 1 4
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Here the left and right tables correspond toa andb, respectively. Rows of left (resp. right) table represent
a, T (1)

∞ (a), · · · , (T (1)
∞ )L(a) (resp., those forb) from top to bottom. Counting letters 2, 3 and 4 in each

table, we haveτ1,1(a) = 16, τ1,1(b) = 10 and we getτ1,1(10,10)(p) = 16 + 10 = 26, which coincides
with the computation by Eq.(9). Meanings of the above two dynamics corresponding to pathsa andb are
summarized as follows:

(a) Dynamics of the patha. In the first two rows, there are two solitons (length two soliton43 and
length one soliton 2), and in the lower rows, there are also two solitons (length one soliton 4 and
length two soliton 32). This is scattering of two solitons. After the scattering, soliton 4 propagates
at velocity one and soliton 32 propagates at velocity two without scattering.
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(b) Dynamics of the pathb. This shows free propagation of one soliton of length three 432 at velocity
three.

5 Haglund’s statistics
Tableaux language description For a given patha = a1⊗a2⊗· · ·⊗aL ∈ (B1,1)⊗L, associate tabloidt
of shapeµ whose reading word coincides witha. For example, to pathp = abcdefgh and the composition
µ = (3, 2, 3) one associates the tabloid

c b a
e d
h g f

. (15)

Denote the cell at thei-th row, j-th column (we denote the coordinate by(i, j)) of the tabloidt by tij .
Attacking region of the cell at(i, j) is all cells(i, k) with k < j or (i+1, k) with k > j. In the following
diagram, gray zonal regions are the attacking regions of the cell(i, j).

�
��=

(i, j)

Follow (5), define|Invij | by

|Invij | = #{(k, l) ∈ attacking region for(i, j) | tkl > tij}. (16)

Then we define
|Invµ(a)| =

∑
(i,j)∈µ

|Invij |. (17)

If we havet(i−1)j < tij , then the cell(i, j) is called bydescent. Then define

Desµ(a) =
∑

all descent (i,j)

(µi − j). (18)

Note that(µi − j) is the arm length of the cell(i, j).

Path language description Consider two pathsa(1), a(2) ∈ (B1,1)⊗µ. We denote bya(1) ⊗ a(2) =
a1 ⊗ a2 ⊗ · · · ⊗ a2µ. Then we define

Inv(µ,µ)(a
(1), a(2)) =

µ∑
k=1

k+µ−1∑
i=k+1

χ(ak < ai). (19)
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For more general casesa(1) ∈ (B1,1)⊗µ1 anda(2) ∈ (B1,1)⊗µ2 satisfyingµ1 > µ2, we define

Inv(µ1,µ2)(a
(1), a(2)) := Inv(µ1,µ1)(a

(1), 1⊗(µ1−µ2) ⊗ a(2)). (20)

Then the above definition of|Invµ(a)| is equivalent to

|Invµ(a)| =
n−1∑
i=1

Inv(µi,µi+1). (21)

Consider two pathsa(1) ∈ (B1,1)⊗µ1 anda(2) ∈ (B1,1)⊗µ2 satisfyingµ1 ≥ µ2. Denotea = a(1) ⊗
a(2). Then define

Des(µ1,µ2)(a) =

µ1∑
k=µ1−µ2+1

(k − (µ1 − µ2)− 1)χ(ak < ak+µ2). (22)

For the tableauT of shapeµ corresponding to the patha, we define

Desµ(T ) =

n∑
i=1

Des(µi,µi+1)(a[i] ⊗ a[i+1]). (23)

Definition 5.1 ((4)) For a patha, statisticsmajµ is defined by

majµ(a) =

µ1∑
i=1

maj(t1,i ⊗ t2,i ⊗ · · · ⊗ tµ′
i,i
). (24)

andinvµ(a) is defined by
invµ(a) = |Invµ(a)| −Desµ(a). (25)

If we associate to a given pathp ∈ P(λ) with the shapeµ tabloidT , we sometimes writemajµ(p) =
maj(T ) andinvµ(p) = inv(T ).

6 Haglund–Haiman–Loehr formula
Let H̃µ(x; q, t) be the (integral form ) modified Macdonald polynomials wherex stands for infinitely many
variablesx1, x2, · · · . HereH̃µ(x; q, t) is obtained by simple plethystic substitution (see, e.g., section 2
of (6)) from the original definition of the Macdonald polynomials (21). Schur function expansion of
H̃µ(x; q, t) is given by

H̃µ(x; q, t) =
∑
λ

K̃λ,µ(q, t)sλ(x), (26)

whereK̃λ,µ(q, t) stands for the following transformation of the Kostka–Macdonald polynomials:

K̃λ,µ(q, t) = tn(µ)Kλ,µ(q, t
−1). (27)

Here we have used notationn(µ) =
∑

i(i − 1)µi. Then the celebrated Haglund–Haiman–Loehr (HHL)
formula is as follows.
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Theorem 6.1 ((5)) Let σ : µ → Z>0 be the filling of the Young diagramµ by positive integersZ>0,
and definexσ =

∏
u∈µ xσ(u). Then the Macdonald polynomial̃Hµ(x; q, t) have the following explicit

formula:
H̃µ(x; q, t) =

∑
σ:µ→Z>0

qinv(σ)tmaj(σ)xσ. (28)

From the HHL formula, we can show the following formula.

Proposition 6.2 For any partitionµ and compositionα of the same size, one has∑
p∈P(α)

qinvµ(p)tmajµ(p) =
∑
η⊢|µ|

Kη,αK̃η,µ(q, t), (29)

whereP(α) stands for the set of typeB1,1 paths of weightα = (α1, α2, . . . , αn+1) andη runs over all
partitions of size|µ|.

Corollary 6.3 The (modified) Macdonald polynomial̃Hµ(x; q, t) have the following expansion in terms
of the monomial symmetric functionsmλ(x):

H̃µ(x; q, t) =
∑
λ⊢|µ|

 ∑
p∈P(λ)

qinvµ(p)tmajµ(p)

mλ(x), (30)

whereλ runs over all partitions of size|µ|.

To find combinatorial interpretation of the Kostka–Macdonald polynomialsK̃λ,µ(q, t) remains signifi-
cant open problem. Among many important partial results about this problem, we would like to mention
the following theorem also due to Haglund–Haiman–Loehr:

Theorem 6.4 ((5) Proposition 9.2) If µ1 ≤ 2, we have

K̃λ,µ(q, t) =
∑

p∈P+(λ)

qinvµ(p)tmajµ(p), (31)

whereP+(λ) is the set of all highest weight elements ofP(λ) according to the reading order explained
in Eq.(15).

It is interesting to compare this formula with the formula obtained by S. Fishel (1), see also (14), (18).
Concerning validity of the formula Eq.(31), we state the following conjecture.

Conjecture 6.5 Explicit formula for the Kostka–Macdonald polynomials

K̃λ,µ(q, t) =
∑

p∈P+(λ)

qinvµ(p)tmajµ(p). (32)

is valid if and only if at least one of the following two conditions is satisfied.

(i) µ1 ≤ 3 andµ2 ≤ 2.

(ii) λ is a hook shape.
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7 Generating function of tau functions
In (17), we give an elementary proof for special caset = 1 of the formula Eq.(29) in the following form.

Theorem 7.1 Letα be a composition andµ be a partition of the same size. Then,∑
p∈P(α)

qmajµ′ (p) =
∑
η⊢|µ|

Kη,α Kη,µ(q, 1). (33)

Conjecture 7.2 Letα be a composition andµ be a partition of the same size. Then,

q−
∑

i>r αi

∑
p∈P(α)

qτ
r,1
µ (p) =

∑
η⊢|µ|

Kη,αK̃η,µ(q, 1). (34)

This conjecture contains Conjecture 5.8 of (17) and Theorem7.1above as special casesr = 1 andr =∞,
respectively. Also, extensions for paths of more general representations without partitionµ are discussed
in Section 5.3 of (17).

Example 7.3 Let us consider caseα = (4, 1, 1) andµ = (4, 2). The following is a list of pathsp and
the corresponding value of tau functionτ2,1(4,2)(p). For example, the top left corner111123 1 means

p = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 3 andτ2,1(4,2)(p) = 1.

111123 1 111132 2 111213 2 111231 3 111312 2 111321 1
112113 3 112131 4 112311 3 113112 3 113121 2 113211 2
121113 4 121131 5 121311 4 123111 5 131112 4 131121 3
131211 4 132111 3 211113 1 211131 2 211311 1 213111 2
231111 3 311112 5 311121 4 311211 5 312111 6 321111 4

Summing up, LHS of Eq.(34) is

q−1
∑

p∈P((4,1,1))

q
τ2,1
(4,2)

(p)
= q5 + 4q4 + 7q3 + 7q2 + 7q + 4

which coincides with the RHS of Eq.(34). Compare this withτ1,1(4,2) data for the same set of paths at
Example 5.9 of (17).
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