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Abstract: We give an interpretation of the= 1 specialization of the modified Macdonald polynomial as a generating
function of the energy statistics defined on the set of paths arising in the context of Box-Ball Systems (BBS-paths for
short). We also introduce one parameter generalizations of the energy statistics on the set of BBS-paths which all,
conjecturally, have the same distribution.

Résurré: Nous donnons une igtpiétation de la sgcialisationrat = 1 du polyrome de Macdonald moddicomme

fonction cerératrice des statistiquesédiergie @finies sur 'ensemble des chemins qui apparaissent danédaeh
des Systmes BBS (BBS-chemins). Nousgsentonggalement desggéralisationsa un pararatre de la statistique
d’énergie sur les chemins BBS qui toutes, conjecturalement, orér@endistribution.
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1 Introduction

The purpose of the present paper is two-fold. First of all we would like to draw attention to a rich com-
binatorics hidden behind the dynamics of Box-Ball Systems, and secondly, to connect the former with
the theory of modified Macdonald polynomials. More specifically, our final goal is to give an interpreta-
tion of the Kostka—Macdonald polynomial§, ,, (g, t) as arefined partition functiorof a certain box-ball
systems depending on initial datand .

Box-Ball Systems (BBS for short) were invented by Takahashi-SatdReh&® as a wide class of
discrete integrable soliton systems. In the simplest case, BBS are described by simple combinatorial
procedures using boxes and balls. One can see the simplest but still very interesting examples of the BBS
by the free software available #8). Despite its simple outlook, it is known that the BBS have various
remarkably deep properties:

e Local time evolution rule of the BBS coincides with the isomorphism of the crystal b@sB.
Thus the BBS possesses quantum integrability.
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e BBS are ultradiscrete (or tropical) limit of the usual soliton systdBs[Z0). Thus the BBS pos-
sesses classical integrability at the same time.

¢ Inverse scattering formalism of the BEEJ coincides with the rigged configuration bijection orig-
inating in completeness problem of the Bethe stdidd16), see alsdZD).

Let us say a few words about the main results of this note.

o We will identify the space of states of a BBS with the corresponding weight subspace in the tensor
product of fundamental (or rectangular) representations of the Lie alg&lbra

¢ Inthe case of statistidau, our main result can be formulated as a computation of the corresponding
partition function for the BBS in terms of the values of the Kostka—Macdonald polynomiais at

e In the case of the statisti@nergy our result can be formulated as an interpretation of the corre-
sponding partition function for the BBS as theveight multiplicity of a certain irreducible rep-
resentation of the Lie algebgd(n) in the tensor product of the fundamental representations. We
expectthat the same statement is valid for the BBS corresponding to the tensor product of rectan-
gular representations.

Let us remind that g-analogue of the multiplicitypf a highest weight in the tensor product
®§:1 Vsaw,, Of the highest weight, w,,, a = 1,..., L, irreducible representatioris, ,, of
the Lie algebral(n) is defined as

L
Q'Mu“: [V)\ : ® V;‘,,,wra] = Z Kn.,R Kn.,/\(Q)v

a=1 n

where K,, r stands for the parabolic Kostka number corresponding to the sequence of rectangles

R:={(s;*)}a=1....L, see e.g[19), @.

A combinatorial description of the modified Macdonald polynomials has been obtained by Haglund—
Haiman—Loehr[§). In Sectiorfdwe give an interpretation of two Haglund's statistics in the context of
the box-ball systems, i.e., in terms of the BBS-paths. Namely, we identify the set of BBS paths of weight
a with the setP(«) which is the weightx component in the tensor product of crystals corresponding to
vector representations. We have observed that from the proof givi) ané can prove the following
identity

Z qinvu(p)tmaj“(P) — Z Knva[%m#(q’t), (1)
pEP(a) Nt

see Propositio.2and Corollary6.3 One of the main problems we are interested in is to generalize the
identity Eq.[l) on more wider set of the BBS-paths.

Our result about connections of the energy partition functions for BBSameight multiplicities sug-
gests a deep hidden connections between partition functions for the BBS and characters of the Demazure
modules, solutions to thedifference Toda equations, @)( ... .

As an interesting open problem we want to give raise a question about an interpretation of the sums
> Kn.r Kna(q,1), whereK, (g, t) denotes the Kostka-Macdonald polynomif®)( asrefined par-
tition functionsfor the BBS corresponding to the tensor product of rectangular representétioas
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{(s7*)}1<a<n- In other words, one can ask: what is a meaning of the second statisticB)(seethe
Kashiwara theonyD) of crystal bases (of type A) ?

This paper is abbreviated and updated version of our pA@er The main novelty of the present paper
is the definition of a one parameter family of statistics on the set of BBS-paths which generalizes those
introduced in[[@, see Conjectul@2 It conjecturally gives a new family of MacMahonian statistics on
the set of transportation matrices, $&8)(

Organization of the present paper is as follows. In Se@iae remind algorithms of the combinatorial
R-matrix and the energy functions. In Sectf@nhwe introduce the energy statistics and the set of the
BBS. In Sectio we remind definition of box-ball systems and state some of their simplest properties.
In Sectiorfg we remind definition of the Haglund's statistics and give their interpretation in terms of the
BBS-paths. Sectiorfd and[7l contain our main results and conjectures. In particular it is not difficult to
see that Haglund’s statistics magnd iny, do not compatible with the Kostka—Macdonald polynomials
for general partitions. andy. In Sectiorfgwe state a conjecture which describes the all pairs of partitions
(\, p) for those the restriction of the Haglund—Haiman-Loehr formula on the set of highest weight paths
of shapeu coincide with the Kostka-Macdonald polynomis, ,, (g, t).

2 Combinatorial R and energy function

Let B™* be the Kirillov—Reshetikhin crystals of typé%l) (seel[T @2 [0, see also section 2 dIL{)).
Herer € {1,2,--- ,n}ands € Z-. As the setB™* is consisting of all semistandard tableaux of height
and widths. In this section, we recall an explicit description of the combinatdtimhatrix (combinatorial

R for short) and energy function dB">* @ B™ +*'. To begin with we define few terminologies about Young
tableaux. Denote rows of a Young tableatkby y1, yo, . . . y- from top to bottom. Then row worehw(Y)

is defined by concatenating rowsasv(Y) = y,yr—1...y1. Lete = (1, 22,...) andy = (y1,y2,...)

be two partitions. We define concatenationcaindy by the partition(x; + y1, z2 + yo, .. .).

Proposition 2.1 (B3) bV € B™*@B"* is mappedtd’ ®b € B ® B"* under the combinatorial
R,ie.,
b 2 @), @

if and only if y }
(b < row(b)) = (b + row(V')). (3)
Moreover, the energy functioH (b ® ') is given by the number of nodes(@f < row(b)) outside the

’

concatenation of partitionss”) and (s'" ).

For special cases d#!*® B%*', the functionH is called unwinding number if29). Explicit values for
the casé @ v’ € B! @ B! are given byH (b® b') = x(b < b') wherex(True) = 1 andx(False) = 0.

In order to describe the algorithm for findibgandd’ from the data’ « row(b)), we introduce a
terminology. LetY” be a tableau, anH’ be a subset of” such thaft” is also a tableau. Consider the set
theoretic subtractiof = Y\ Y’. If the number of nodes containedfris » and if the number of nodes
of # contained in each row is always 0 or 1, theis called vertical-strip.

Given a tableal” = (¥’ + row(b)), letY”’ be the upper left part df whose shape i&"). We assign
numbers from 1 to’s’ for each node contained th= Y \ Y’ by the following procedure. Le&t; be
the verticalr’-strip of 6 as upper as possible. For each nodé;inwe assign numbers 1 throughfrom
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the bottom to top. Next we considén 6;, and find the verticat’ strip 6, by the same way. Continue
this procedure until all nodes @f are assigned numbers up t’. Then we apply inverse bumping
procedure according to the labeling of nodeg.inDenote byu, the integer which is ejected when we
apply inverse bumping procedure starting from the node with label 1. Dendte e tableau such that
(Y1 + u1) = Y. Next we apply inverse bumping procedure starting from the nodd tdbeled by 2,
and obtain the integer, and tableals. We do this procedure until we obtain.,, andY;.,. Finally,
we have

V = (0 ¢ Uprgrtiyrgr—1 -+ u1), b="Y,. 4)

3 Energy statistics and its generalizations on the set of paths

Forapathh; @ b, ® --- ® by, € B @ B™%2 @ ... ® B">L let us define element§i) € B"i»% for
i < j by the following isomorphisms of the combinatoriaj
b1®b2®~-~®b¢,1®bi®-~-®bj,1®bj®--~
~ b1®b2®...®bi71®bi®...®b;j71)®b;71®...
~ b1®b2®"'®bi—1®b§‘i)®"'®b;‘—2®b;—l®"'a %)

where we have writtety, ® bgk“) ~ bg.k) ® b, assuming thab§:7> =b;.
Define the statisticaaj(p) by

maj(p) = Y H(b; @b, (6)
i<j
For example, consider a paih= a; ® as @ --- ® ar, € (B>)®L, In this case, we ha\/@§i) = a;, Since
the combinatoriaR act onB'! ® B''! as identity. Therefore, we have

L-1

maj(a) = Y (L —i)x(a; < ai1). @)

i=1
Define another statistidau as follows.
Definition 3.1 For the pathp € B"** @ B™*? @ --- ® B"-°L, definer™* by
7" (p) = maj(u{”) @ p), ®)
whereu!” is the highest element &f"*.

Here the highest element” € B"* is the tableau whoseth row is occupied by integeis For example,
1/1]1]1
uf’) =[2]227]2]. In particular, the statistics™! on B! type paths: € (B%!)®” has the following
3131313

L1
N a) = L-x(r <a1) + Y (L —i)x(ai < aiga), 9)

i=1
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wherea; denotes the first letter of the path Note thatr! is a special case of the tau functions for
the box-ball system$( [24) which originates as an ultradiscrete limit of the tau functions for the KP
hierarchy[@).

Definition 3.2 For compositiony = (p1, fi2, - -+ , fin), WIit€ pp; = Z;Zl 1j with conventiory, = 0.
Then we define a generalizationdf! by

o a) =Y " ag), (10)
=1
where
Qi) = Qup;_q+1 ® Appi_q+2 ®---® ane € (Bl’l)®ui' (11)

Note that we have = aj;) ® ajg) ® - - - ® apy), i.€., the pathu is partitioned according to.

4 Box-ball system

In this section, we summarize basic facts about the box-ball system in order to explain physical origin of
711, For our purpose, it is convenient to express the isomorphism of the combindtoriab b ~ b’ ® a’

by the following vertex diagram:
-

b/
Successive applications of the combinatoRak depicted by concatenating these vertices.
Following (& ), we define time evolution of the box-ball systd?ﬁ‘). Letu%) = ul(") € B%! be the
highest element ang € B"i-5:, Defineul(f‘j) andb; € B"i-*i by the following diagram.

b b, o, (12)
ul(‘;) are usually calledarrier and we seul(_%) .= u{”). Then we define operatdi® by
Ty =t =, @by@--- @b, (13)
Recently £5), operatoréfl(“) have used to derive crystal theoretical meaning of the rigged configuration
bijection.
It is known ([I9 Theorem 2.7) that there exists soine Z-, such that

I =T =1 = (= TY). (14)
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If the corresponding path s € (B11)®L, we have the following combinatorial description of the box-

ball system[Zg 8. We regar € BY! as an empty box of capacity 1, a@ € BY! as a ball of
label (or internal degree of freedorngontained in the box. Then we have:

Proposition 4.1 ([)) For a pathb € (BY!)®L of type AL, Téé)(b) is given by the following procedure.
1. Move every ball only once.
2. Move the leftmost ball with labed + 1 to the nearest right empty box.
3. Move the leftmost ball with label + 1 among the rest to its nearest right empty box.
4. Repeat this procedure until all of the balls with label- 1 are moved.
5. Do the same procedure 2—4 for the balls with lahel
6. Repeat this procedure successively until all of the balls with l1atzek moved.

There are extensions of this box and ball algorithm corresponding to generalizations of the box-ball sys-
tems with respect to each affine Lie algebra, see @)}., sing this box and ball interpretation, our
statisticsr 1! (b) admits the following interpretation.

Theorem 4.2 (20) Theorem 7.4) For a pathb € (BY1)®L of typeAL, 71:1(b) coincides with number
of allballs2,--- ,n + 1 contained in path$, To(i)(b), (Téi))L—l(b).

Example 4.3 Consider the path = a ® b wherea = 4311211111, b = 4321111111. Note that we omit
all frames of tableaux aB':! and symbols for tensor product. We computg 10y (p) by using Theorem
[Z2 According to Propositiol.]] the time evolutions of the patlasandb are as follows:

43 11211111 43 21111111
114 3 121111 11143 2 1111
1111413 2 11 11111143 21
111114113 2 1111111114
1111114111 1111111111
1111111411 1111111111
1111111141 1111111111
1111111114 1111111111

Here the left and right tables corresponditandb, respectively. Rows of left (resp. right) table represent
a, Téé)(a), (TS))L(a) (resp., those fob) from top to bottom. Counting letters 2, 3 and 4 in each
table, we have'!(a) = 16, 7'(b) = 10 and we get;; ,, (p) = 16 + 10 = 26, which coincides
with the computation by E{@}. Meanings of the above two dynamics corresponding to pathwlb are
summarized as follows:

(a) Dynamics of the patla. In the first two rows, there are two solitons (length two solit@nand
length one soliton 2), and in the lower rows, there are also two solitons (length one soliton 4 and
length two soliton 32). This is scattering of two solitons. After the scattering, soliton 4 propagates
at velocity one and soliton 32 propagates at velocity two without scattering.
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(b) Dynamics of the path. This shows free propagation of one soliton of length three 432 at velocity

three.

5 Haglund’s statistics

Tableaux language description For a given path = a1 ®a,®---®ar, € (B%!)®F, associate tabloitl
of shape: whose reading word coincides with For example, to path = abcdefgh and the composition

= (3,2, 3) one associates the tabloid

clb
eld .
hlglf]

al

(15)

Denote the cell at théth row, j-th column (we denote the coordinate by )) of the tabloidt by ¢;;.
Attacking region of the cell ati, j) is all cells(i, k) with & < j or (i + 1, k) with & > j. In the following

diagram, gray zonal regions are the attacking regions of théicgl.

(i,4)

o

Follow @), define|Inv,;| by

|Inv,;| = #{(k,1) € attacking region fofi, j) | tx > t;;}.

Then we define

v, (a)| = > [vil.

(i,7)En

If we havet;_1); < t;;, then the celli, j) is called bydescentThen define

Desu(@ = > (ui—j),

all descent (4,5)

Note that(y; — j) is the arm length of the cef, j).

(16)

17)

(18)

Path language description Consider two patha) a(? ¢ (B'1)®*, We denote by, ® a(?) =

a1 ®az ® -+ ® ag,. Then we define

po k+p—1

Inv(, . (a Z Z (ar < ai).

k=1 i=k+1

(19)
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For more general case$") € (B'')®# anda® € (BY!')®#2 satisfyingu; > p2, we define

IHV(M,MZ)(G(”, a(2)) = Inv(m»m)(a(l)v 18(m1—h2) & a(2)). (20)
Then the above definition ¢fnv,, ()| is equivalent to
n—1
v, ()] = ) IV, - (21)
i=1

Consider two patha") ¢ (B11)®# anda(? ¢ (BY!)®#2 satisfyingu, > p2. Denotea = oY) ®
a®. Then define

M1

Des(/th/m)(a) = Z (k - (Ml - /1'2) - 1)X(ak < ak+,u2)~ (22)
k=p1—p2+1

For the tablead” of shapeu. corresponding to the path we define

DeSM(T) = Z Des(ui,#i+1)(a[i] & a[i+1]). (23)

=1
Definition 5.1 (@) For a patha, statisticsmayj,, is defined by

M1
maju(a) = Zmaj(tl,i & t2,i ®- - t;Li,i)' (24)

i=1

andinv,(a) is defined by
inv,(a) = [Inv,(a)| — Des,(a). (25)

If we associate to a given pathe P(A) with the shape: tabloid 7', we sometimes writenaj,, (p) =
maj(T) andinv,, (p) = inv(T).

6 Haglund—Haiman—-Loehr formula

Let Hﬂ(x; q,t) be the (integral form ) modified Macdonald polynomials whestands for infinitely many
variablesry, z2, - --. HereH,(z; ¢,t) is obtained by simple plethystic substitution (see, e.g., section 2
of @) from the original definition of the Macdonald polynomia&I). Schur function expansion of
H,(x;q,t) is given by
Hy(ziq,t) =Y K ulg, t)sa(z), (26)
A

wheref(w(q, t) stands for the following transformation of the Kostka—Macdonald polynomials:

f()\,u (qa t) = tn(u)K)\,;t(qa t_l)- (27)

Here we have used notatieriy) = >, (i — 1)i;. Then the celebrated Haglund—Haiman—Loehr (HHL)
formula is as follows.
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Theorem 6.1 (B) Leto : u — Z-q be the filling of the Young diagram by positive integer&-,

and definer? = Hue“ T,(y)- Then the Macdonald polynomiﬁ{“(a:;q,t) have the following explicit
formula:
HM (.’I}; q, t) — Z qmv(a)tmaj(o)xU. (28)
o:u—Z>o

From the HHL formula, we can show the following formula.

Proposition 6.2 For any partitiony and compositiora of the same size, one has

Z gvn (P gmai, (p) — Z Kn,akn,ﬂ(q’t)a (29)
pEP(a) Nl
whereP(«) stands for the set of typB!:! paths of weightv = (a1, as, ..., a,1) andn runs over all

partitions of sizgp|.

Corollary 6.3 The (modified) Macdonald polynomiéllﬂ(a;; q,t) have the following expansion in terms
of the monomial symmetric functions, (z):

Hu(wig, )= S | S0 ¢me@main® | iy (a), (30)
A-[p] \peP(N)

where) runs over all partitions of siz&u|.

To find combinatorial interpretation of the Kostka—Macdonald polynonﬁaj§t(q, t) remains signifi-
cant open problem. Among many important partial results about this problem, we would like to mention
the following theorem also due to Haglund—Haiman—-Loehr:

Theorem 6.4 (B) Proposition 9.2) If 4, < 2, we have
[N(A7N(q7 t) = Z qinvu (p)tmaju(p)’ (31)
pEP+(N)

whereP, () is the set of all highest weight elementsRif\) according to the reading order explained

in Eq.09.

It is interesting to compare this formula with the formula obtained by S. Fifhet¢e alsdid), (I3.
Concerning validity of the formula E@L), we state the following conjecture.

Conjecture 6.5 Explicit formula for the Kostka—Macdonald polynomials
Kaulg,)= Y gm™rPmaie), (32)
PEP+(A)
is valid if and only if at least one of the following two conditions is satisfied.
(i) p1 <3andpg < 2.

(ii) Ais ahook shape.
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7 Generating function of tau functions

In @@, we give an elementary proof for special case 1 of the formula EqE9) in the following form.

Theorem 7.1 Leta be a composition and be a partition of the same size. Then,

g @ = N K o Ky (g, ). (33)

pEP(a) N

Conjecture 7.2 Leta be a composition and be a partition of the same size. Then,
g Zir g =Y KpaKyulg,1). (34)
pEP () 0kl

This conjecture contains Conjecture 5.8 (and Theorerff . Jabove as special cases- 1 andr = oo
respectively. Also, extensions for paths of more general representations without parttieriscussed
in Section 5.3 oflT?).

Example 7.3 Let us consider case = (4,1,1) andu = (4,2). The following is a list of pathg and
the corresponding value of tau functi@ﬁl’l )(p). For example, the top left cornet11123 1| means

r=[1]e[1]e[1]e[1]e[2]e[3]and}), @

111123 1| 111132 2| 111213 2 | 111231 3| 111312 2| 111321 1
112113 3 | 112131 4| 112311 3 | 113112 3| 113121 2 | 113211 2
121113 4 | 121131 5| 121311 4 | 123111 5| 131112 4| 131121 3
131211 4| 132111 3| 211113 1 | 211131 2| 211311 1 | 213111 2
231111 3| 311112 5| 311121 4| 311211 5 | 312111 6| 321111 4

Summing up, LHS of EJ3?) is
2,1 - .
Y @ = 14t + 7 + T+ Tg + 4
peP((4,1,1))

which coincides with the RHS of E@4). Compare this Wltl’r(1412 data for the same set of paths at
Example 5.9 ofl{D).
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