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BIRATIONAL UNBOUNDEDNESS OF LOG TERMINAL
Q-FANO VARIETIES AND RATIONALLY CONNECTED
STRICT MORI FIBER SPACES

TAKUZO OKADA

ABSTRACT. In this paper, we show that (Q-factorial and log terminal) Q-Fano
varieties with Picard number one are birationally unbounded in each dimension
> 3. This result has been settled for 3-folds by J. Lin and n-folds with n > 6
by the author. We also prove that rationally connected Mori fiber spaces are
birationally unbounded even if we fix dimensions of both total and base spaces.

1. INTRODUCTION

In this paper, a normal projective variety defined over the filed of complex numbers
is said to be a (resp. terminal, resp. canonical) Q-Fano variety if it is Q-factorial,
log terminal (resp. terminal, resp. canonical) and its anticanonical divisor is ample.

It is known that suitably restricted classes of Q-Fano varieties are bounded.
For examples, smooth Fano manifolds of arbitrary dimension are bounded (Kollar-
Miyaoka-Mori [11]) and canonical Q-Fano threefolds are bounded (Kollar-Miyaoka-
Mori-Takagi [12]). There is a famous conjecture on the boundedness of Q-Fano
varieties.

Conjecture 1.1 (Borisov-Alexeev-Borisov). Fiz a number ¢ > 0. Then Q-Fano
varieties with log discrepancies > € are bounded.

This conjecture is proved for surfaces by Alexeev [1] and Nikulin [15], and for
toric case by Borisov-Borisov [3].

If we consider every Q-Fano varieties then they are unbounded even in the two
dimensional case. We consider the generalized birational version of boundedness.

Definition 1.2. A class U of varieties is birationally bounded if there is a morphism
p: X — S between algebraic schemes such that every member of U is birational to
one of the geometric fibers of ¢. We say that U is birationally unbounded if it is not
birationally bounded.

In dimension two, Q-Fano varieties, which are usually called log Del Pezzo sur-
faces, are rational and hence they are birationally bounded in a trivial sense. This
cannot hold anymore in higher dimensional cases. Lin [13] proved that Q-Fano
threefolds with Picard number one are birationally unbounded and the author [16]
proved the same result in each dimension at least six. Following is one of the main
theorems of this paper, which completes the study of birational unboundedness of
Q-Fano varieties in arbitrary dimension > 3.
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Theorem 1.3. Fiz n > 3. Then Q-Fano n-folds with Picard number one are bira-
tionally unbounded.

This implies that we cannot drop the assumption on ¢ in Conjecture 1.1 even
if we replace the boundedness by the birational boundedness. In dimension three,
this provides an alternate proof of Lin’s result. He constructed an infinite sequence
of conic bundles over P?, which are birational to Q-Fano threefolds, and showed
that they are birationally unbounded. As an immediate corollary to Theorem 1.3,
smooth rationally connected n-folds are birationally unbounded if n > 3 since every
Q-Fano variety is rationally connected (Hacon-McKernan [7] and Zhang [17]). We
can prove a finer result as we will explain below.

Definition 1.4. A normal projective variety X together with a morphism ¢: X — S
onto a normal projective variety S is said to be a Mori fiber space if

X has only terminal singularities,

¢ has connected fibers,

— K is relatively ample over S, and

dim S < dim X.

We say that a Mori fiber space ¢: X — S is strict if dim S > 0, that is, X is not
a terminal Q-Fano variety with Picard number one. For positive integers n and m
with 0 <m <n-—1, a (n,m)-Mori fiber space is a Mori fiber space whose total space
has dimension n and whose base space has dimension m.

The minimal model program reduces the birational classification of rationally
connected varieties to that of Mori fiber spaces over rationally connected bases.
Then the study of n-dimensional Mori fiber spaces can be divided into n cases,
namely, (n,m)-Mori fiber spaces for 0 < m < n — 1. In dimension three, there are
three classes: terminal (Q-Fano threefolds with Picard number one, conic bundles
over rational surfaces and Del Pezzo fiber spaces over P!. We will construct an
infinite sequence of families of (n,m)-Mori fiber spaces for 1 < m < n — 1 and
consider the birational unboundedness of those families.

Theorem 1.5. Fizn > 3 and m such that 1 < m < n — 1. Then n-dimensional
smooth Mori fiber spaces over m-dimensional smooth rational varieties are bira-
tionally unbounded. In particular, rationally connected (n, m)-Mori fiber spaces are
birationally unbounded.

It follows that m-dimensional rationally connected Mori fiber spaces over m-
dimensional bases are birationally unbounded for m > 0, while terminal Q-Fano
n-folds are conjectured to be bounded. In dimension three, neither conic bundles
over rational surfaces nor Del Pezzo fiber spaces over P! are birationally bounded
while terminal Q-Fano threefolds are bounded.

This paper is organized as follows. In Section 2, we briefly recall Kollar’s reduction
modulo p method to construct non-ruled varieties as a covering spaces. An important
part in this section is to construct a specific invertible sheaf on those covering spaces
as a subsheaf of the sheaf of differential (n — 1)-forms, where n is the dimension of
the covering space. In Section 3, we give a criterion for such a specific invertible
sheaf to be birationally invariant. In Section 4, we construct an infinite sequence of
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families of (n, m)-Mori fiber spaces for n > 3 and 2 < m < n — 1, and study their
properties especially when the ground field k has characteristic 2. Those (n, m)-Mori
fiber spaces are obtained by blowing the singular loci of suitable Q-Fano weighted
hypersurfaces. In Section 5, we construct an infinite sequence of families of (n,1)-
Mori fiber spaces (i.e. conic bundles) as double covers of suitable toric varieties
for n > 3. The birational invariance of the specific invertible sheaf enables us to
bound the dimensions of birationally trivial subfamilies of the families constructed
in Sections 4 and 5, which is a key to the proof of main theorems. We prove main
theorems in Section 6. On the one hand, we show that if (n, m)-Mori fiber spaces
defined over C are birationally bounded then there are “large” birationally trivial
families of families of (n,m)-Mori fiber spaces defined over k which are constructed
in Sections 4 or 5. On the other hand, explicit computations of the dimensions of the
birationally trivial subfamilies show that they are not so “large”, which completes
the proof of main theorems.

Acknowledgments. The author would like to thank Professor Shigefumi Mori for
various suggestions and warm encouragements. The author is partially supported
by GCOE, Kyoto University, and by Grant-in-Aid for Young Scientists (Start-up),
No. 21840032, Japan Society for the Promotion of Science.

2. PRELIMINARIES

In this section, we recall results of Kollar from [8], [9] and [10] on the construction
of a specific line bundle on suitable cyclic covering spaces, and then we partially
generalize the argument. In this section, we work over an algebraically closed field
k of characteristic p > 0.

For an invertible sheaf N on a scheme and a positive integer k, we write N'* and
N~F instead of N®F and (N ~1)®¥, respectively.

Let us fix notation which we assume throughout the present section. Let X be a
smooth variety of dimension n > 3 over k, £ a line bundle on X, m > 0 an integer
divisible by p and s a global section of £™. We denote by m: W — X the total
space of L. We have

T L=L3mOw=LOOxOL LD .

Let w be the global section of 7#*£ which corresponds to 1 € Ox and we define
Y = X[ %/s] to be the subscheme of W which is the zero locus of the global section
w™—m*s of m*L™. With a slight abuse of notation, we also denote by 7: X[ %/s] — X
the restriction of W — X. We call X[ %/s] the covering of X obtained by taking m-th
root of s.

2.1. Cyclic covering method. For reader’s convenience, we collect here some def-
initions and results which are due to Kollar without proofs.

Definition-Lemma 2.1 (Definition-Lemma V.5.4, [9]). There is a natural differ-
ential

d: L™ — L™ ® O,
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constructed as follows. Let 7 be a local generator of £, t = f7™ a local section of
L™ and the x; local coordinates. Set
d(t) :== Z gﬂi T"dx;.
This is independent of the choices made and thus defines d.
For the global section s of L™, we can view d(s) as a sheaf homomorphism Ox —
LT ® Q}( Taking a Tensor product with L7, we obtain ds: L™ — Qk

Lemma 2.2 (Lemma V.5.3, [9]). (1) There is an exact sequence
0— Q% — Qlyly — 7L~ 0.
(2) We have Oy (=Y) = m*L™™ and there is an exact sequence

—m d
L™ 25 Ol ly — Q) — 0.

(3) The image of dy is contained in 7 Q% and dy: 7* L™ — 7*QL coincides

with —m*ds.

Definition 2.3. We define F = F(L, s) := Coker(ds). We denote by M = M(L, s)
the double dual of the sheaf /\"_]L F and by ¢: Q;‘(_l — M the natural map.

Lemma 2.4. We have an isomorphism M =2 wx ® L™ and an injection 7* M —
(Q}fl)\/v‘
Proof. By Lemma 2.2, we have an exact sequence

0 — Coker |:7T*£7m &, ™| - Q) -7 Lt =0
and the sheaf on the left is isomorphic to 7#*F. This gives rise to an injection
M= (N"LF)Y s (@), 0
Lemma 2.5 (Lemma V.5.9, [9]). Let z1,...,x, be local coordinates of X at a closed

point x and write s = f1", where f € Ox, and T is a local generator of L. Let

o dzy A+ Adai A+ Adoy
= f Jo;
fori=1,...,n (n; is undefined if Of /0x; is identically zero). Then q(n;) = £q(n;)
and they give local generators of M.

Let us recall definitions and basic properties of critical points, which are necessary
to analyze the singularity of Y.

Definition-Lemma 2.6 (cf. V.5.4, [9]). Let z be a closed point of X and z1,...,z,
be local coordinates of X at z. We say that s has a critical point at x if d(s) €
(L™ ® QL) vanishes at x. Assume that s has a critical point at z. Pick a local
generator 7 of £ at z and write s = fr".

(1) The matrix
_ (9
H(S) o <8x28xj>

is called the Hessian of s. The rank of H(s) at a point x is independent of
the choices of the local coordinates and the local generator of L.




BIRATIONAL UNBOUNDEDNESS 5

(2) We say that s has a nondegenerate critical point at x € X if the rank of the
Hessian H(s)(z) is n.

(3) If n is even or p # 2 and n is odd then s has a nondegenerate critical point
at z if and only if in suitable local coordinates f can be written as

f=c+ziza+a3za+ -+ xpn_12, + f3,

where ¢ € k and f3 € m3.

(4) If p =2 and n is odd then every critical point is degenerate.

(5) Assume that p = 2 and n is odd. A critical point of s is called almost
nondegenerate if length Ox ,/(0f/0x1,...,0f/0x,) = 2. Equivalently, in
suitable local coordinates f can be written as

f=cH4ax? + xoxs + x4x5 + - - - + Tp17, + b2 + f3,
where a,b,c € k, b# 0, f3 € m3 and the coefficients of 3 in f3 is 0.

We need to treat the case where critical points are not isolated. Hence we intro-
duce the notion “admissible critical points”.

Definition 2.7. Let (X,z) be a germ of a smooth variety and a closed point z.
We say that s has an admissible critical point at x € X if we may choose local
coordinates x1,...,x, of X at x such that, for some k£ > 3, s can be written as

+{am%+x2x3+x4m5+---+mk1xk+g, if p=2 and k is odd,
s=c

T1To +T3T4 + -+ Tp_ 1Tk + G, if k£ is even,
where a,c € k, g = g(z1,...,7,) € (21,...,2%)% and that the set of critical points
of s is precisely the set (x1 = -+ =z = 0) around z. If p = 2 and k is odd then we

further require that the coefficient of 23 in g is nonzero.

Note that if s has an isolated critical point at x then it is an admissible critical
point if and only if it is an (almost) nondegenerate critical point.

Lemma 2.8. Let (X, x) be a germ of a smooth variety and a closed point x. Assume
that p = m = 2, that is, the ground field k has characteristic 2 and s is a global
section of L2. If s has an admissible critical point at © € X then the morphism
re: Y =Y = X[/s] obtained by blowing up along the singular locus gives a resolu-
tion of singularities of (X,x). Moreover, the injection ™M — (Q% )V lifts to an
injection r*m* M — Q?,,_l.

Proof. Let x1,...,x, be local coordinates of X at x and k > 3 a positive integer
for which s can be written as in Definition 2.7. We shall prove the assertion only
when k is even. The case where k is odd can be proved similarly. Since Y is
defined by the equation w?
(w =21 = --- = x = 0) after replacing w by w — y/c. Thus Y is defined on a

smooth variety W with local coordinates w, x1,...,x, by the equation

— s = 0, we see that the singular locus of Y is exactly

w? — (122 + 2324 + - + 212K+ g9) =0,

where g € (x1,...,7;)3. Let W' — W be the blow up along (w = x1 = -- -z}, = 0)
and Y’ the strict transform of Y on W’. Then the exceptional divisor of W’/ — W is
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covered by open subsets U, ..., U] and U}, where (z; = 0) (resp. (w = 0)) defines
the exceptional divisor on U! (resp. U})).

On Uj, we may choose coordinates w’, z, ..., &}, Tpt1, ..., 2n of W, where 2} =
x1, o, = x;/xy for 2 <i <k and v’ = w/x;. Y’ is defined on Ui by the equation

w'? = (ah + 2haly + -+ 2h @) + ) =0,

where ¢ = g(z), o), ... 22, xpqa, .. @) /2’2 vanishes along the exceptional
divisor. It follows that Y’ is smooth along Uj. We can prove that Y’ is smooth
along U/ for ¢ = 1,...,k similarly.

On U,,, we may choose coordinates w', &, ..., &}, Zp41,. .., Tn, Where w' = w and
z; =xz;/wfori=1,...,k and Y’ is defined by the equation

1 — (2o +axy + -+ 22 +¢') =0,

where ¢’ = g(w'z}, ..., w'rl, Tpq1,. .. , @) /w'? vanishes along the exceptional divi-
sor. This shows that Y’ is smooth.

By Lemma 2.5, we can explicitly write down local generator 7n*n; of m* M using
local coordinates z,...,z, and it is easy to see that r;7*n; does not have a pole
along each exceptional divisor. Thus, we have an injection r;7*M — Q?,,_l. (]

Remark 2.9. Let X° denote the open subset of X which is obtained by removing
the set of critical points of s and Y° be the inverse image of X°. Then Y° is smooth
and there is an injection 7*L|yo < 7Tyo. This injection can be seen as a foliation
and the corresponding quotient is 7|yo: Y° — X°. We refer the readers to [14, Part
I, Lecture III] for a detailed account of foliations in positive characteristics.

2.2. Non-ruledness criteria. We collect non-ruledness criteria which are due to
Koll4r.

Lemma 2.10 (Lemma 7, [8]). Let X be a smooth proper variety and M a big line
bundle on X. Assume that there is an injection M — Q% for some i > 0.
Then X is not separably uniruled.

Theorem 2.11 (Theorem 3.1.2, [10]). Let f: Y — X be a surjective morphism
between smooth proper varieties. Let M be a big line bundle on X and assume that
for some ¢ > 0 there is a nonzero map

he f*M — Q.
Let F = k(X) be the field of rational functions on X and Y the generic fiber of f.
Then there is a one-to-one correspondence between degree d separable unrulings of

Y and degree d separable unirulings of Yr. In particular, Y is ruled if and only if
Yr is ruled over F.

3. BIRATIONAL INVARIANCE OF 7*M

We will keep notation in the previous section. In this section, we shall give a
criterion for r*7* M to be birationally invariant assuming that X is a toric variety.
Let N be a lattice, M = Homyz(N, Z) its dual and ¥ a fan in Ng = N ®z R. Let
X = Xy be the toric variety defined by X. In this section, we assume that the
ground field k is an algebraically closed field of characteristic p > 0 and that X is
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smooth and projective. We denote by ¥(1) the one dimensional cones in ¥ and, for a
cone o in 3, we set o(1) = {p | p € £(1) and p C o}. Let r be the Picard number of
X and d = |X(1)|. We see that n = dim X = d—r since X is assumed to be smooth.
We define S = Sy, := k[z, | p € £(1)] which is a polynomial ring in d variables.
For a torus invariant divisor D = 3 » @pDp, we can associate the monomial I p ),
which we denote by 2”. We grade S by deg(z”) = [D] € Div(X), where Div(X) is
the divisor class group. For a divisor class a € Div(X), let S, = @deg(xp):a k- zP
so that we have S =
X.

Let F' be a graded S-module, that is, F' is a S-module and there is a direct
sum decomposition F' = @aeDiv(X) F, such that S, - Fg C Fyyp for all o, 8 €
Div(X). We can define a sheaf of Ox-modules F as follows. Let ¢ € & be a cone

a€Div(X )Sa. We call S the homogeneous coordinate ring of

and 0¥ C Mg be its dual cone. Set 27 = Hp¢0(1) z,. Then there is a natural
isomorphism k[o¥ N M] 2 (S, )0, where S, is the localization of S at z7. It follows
that X, = Spec(S,)o is an affine open subset of X. Put F, = F®gS,. Taking degree

0 part, we get a (Sy)o-module (F, ), which determines a quasi-coherent sheaf (F, ( )0
on X,. It can be checked that these X, cover X and these sheaves patch together
to give a quasi-coherent sheaf F on X. We refer the readers to [4] for a detailed
account of this subject.

Proposition 3.1 (Proposition 1.1, [4]). If « = [D] € Div(X) then there is an
isomorphism
¢p: So — H(X,0x(D)).

Proposition 3.2 (Proposition 3.1, [4]). The map sending F to F is an ezact functor
from graded S-modules to quasi-coherent Ox-modules.

Definition 3.3. Let E be the graded S-module P ,c5 1) S(,) with basis e, in
degree —a,. We define a (degree 0) homomorphism

U: S9" = S @7 Homy(Div(X),Z) — E

of graded S-modules by

V(Fev) =13 o ¥(@n)zocy,
for a homogeneous element f € S and ¢ € Hom(Div(X),Z).

Lemma 3.4. There is an isomorphism CokerW = Tx and the associated exact
sequence

0— 5% Y, F — Coker ¥ — 0

1s the generalized Fuler sequence
0—OF — @pem) Ox(D,) — Tx — 0.

Proof. The homomorphism OF" — @ ,Ox(D,) in the generalized Euler sequence
is equal to the homomorphism

Ox ®z Hom(Div(X),Z) — €D Ox(D,)

peX(1)
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defined by sending 1 ® 9 to (¢(a,)z,),, which obviously coincides with ¥: S®7 —
E. O

Let £ be a line bundle on X and s a global section of L™, where m is a positive
integer divisible by p. Let f = [£] € Pic(X) = Div(X). We identify s with an
element of Sy,5 via the isomorphism HY(X,£™) = S,,5. As in Definition-Lemma
2.1, we have a homomorphism ds: L™ — Q}( Let dsV: Tx — L™ be the dual of
ds. We shall reconstruct ds" in the toric case.

Definition 3.5. We define a (degree 0) homomorphism ©%: E — S(mf3) of graded

S-modules by 5
0L (X fen) =D, fpa;p.

Definition-Lemma 3.6. The composite ©, o U: S — G 5 is a zero map so
that there is induced a homomorphism Coker ¥ — S(m/3), which we denote by

©,. Moreover, the induced homomorphism O : Cgl_{\e_r/\ll — S(mp) coincides with
dsV: Tx — L™.
Proof. We have
0s
(OLoW)(1®¢) = Zgbapxpa = mfs,

where the last equality is so called generalized Euler relations. This shows that
©% o ¥ = 0 since the ground field has characteristic p and m is divisible by p. The
last assertion follows from the construction and Lemma 3.4. g

Definition 3.7. We denote by V = Vg the k-vector space

Vi=Ey)= ZpEA(l) Sa,€p-
For ¢ € Hom(Div(X),Z), we define
Uy 2= ZpeA(l) Y([Dp])wpe, € V.
We denote by V' the subspace of V' spanned by {vy, | ¥ € Homgz(Div(X),Z)}.
We define 0,: V — S,,,3 to be the map

By: V = Ey 2% S(mB)y = Sims.

We may identify V with H°(X, @ » Ox(D,)). Then V" is considered as the image
of HO(X,0%") under the map ®.
Definition 3.8. Let D be a torus invariant divisor on X with a class a = [D] €
Div(X). We define Vp = E(a)o = >_,caa) Sa,+atp- Let V], be the degree 0
part of the image of ¥(a): S(a)®" — E(a), which is a subspace of Vp. We define
0sp: Vb — Smp+a to be the degree 0 part of the map ©/(a): E(a) — S(mf + «).

We have an exact sequence

0 — 5(@)® X B(a) — Coker(¥(a)) — 0
and the corresponding exact sequence is

0— Ox(D @TH@ Ox(D,+ D) —Tx(D)—0
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which is the generalized Euler sequence tensored with Ox (D).

Lemma 3.9. Let D be a torus invariant divisor on X with a class o = [D] €
Div(X). Assume that the set of critical points of s has codimension at least two and
HY(X,0x(D)) =0. Then H°(X,FV(D)) = 0 if and only if the kernel of the map
0s.0: VD — Smpta is V).

Proof. We have a sequence
0 — FY(D) — Tx(D) — L™(D) — 0

which is exact outside the closed subset on which s has a critical points. It follows
that HY(X, FY(D)) = 0 if and only if the map p: H*(X,7x (D)) — H°(X,L™(D))
is injective. We have the following exact sequence

0— Ox(D)®" — @pem) Ox(D, + D) — Tx(D) — 0.
The assumption H'(X,Ox (D)) = 0 shows that the sequence
0— HY(X,0x(D))* — @ H(X,0x(D,+ D)) — H(X,Tx(D)) =0
p

is exact. It follows that H%(X, 7x (D)) is naturally isomorphic to Vp/V},. Hence we
have the following commutative diagram:

6S,D

VD Smﬁ

| -

H(X,Tx(~D)) —= HO(X, L™(D)),

and the kernel of the map Vp — H%(X,7x (D)) is V},. From this, we see that ¢ is
injective if and only if the kernel of 05 p is V7. g

Proposition 3.10. Let Y = X[%/s], M = M(L,s) and D be a torus invariant
divisor on X such that Ox (D) = L~ ® M. Assume that the set of critical points
of s has codimension at least two and H*(X, L' ® M) = 0. Then, if the kernel of
0s.p is Vi, then we have HO(Y,7*M) = HO(Y, (Q% 1H)VV).

In particular, for any resolution r:Y' — Y of singularities of Y such that
the injection ™M — (Qy Y)YV lifts to an injection r*m*M — Q7' we have
HOY', r*m* M) = HO(Y', Q).

Proof. Let X° be the open subset of X obtained by removing the set of critical

points of s and Y° := 771(X°) the smooth locus of Y. For a sheaf H on X, we

denote by H° the restriction on H to X°. By Lemma 2.2, there is an exact sequence
0— 1" F° = Qo - 7L 50

of locally free sheaves on Y°, where F = F(L, s) is the cokernel of ds: £7™ — Q1.
Taking a (n — 1)-th wedge product, we obtain an exact sequence

-2
0— m"M° — Q@zl — " (ﬁo_l ® /\n .7:0) — 0.
Since F° is a locally free sheaf of rank n — 1, we have an isomorphism

N (/\nilj—“") ®F° =M @ FV.
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Set G = L'@M@FV. Tt follows that the assertion H°(Y, 7*M) = HO(Y, (Qy H)VV)
follows from the assertion H%(Y,7*G) = 0 since X \ X° has codimension at least
two in X. The latter follows from H° (X,G) = 0 since we have m,7*G = 1,0y G =
G (G® LY and L is effective.

We have an exact sequence

O—>£_md—8>(2§(o—>.7:°—>0
of locally free sheaves on X°. Taking a dual and then taking a tensor product with
L£o71 ® M° =2 Oxo(D), we get an exact sequence
0— G° — Txo(D) — L°™(D) — 0.
Thus, we see that H(X, G) = 0 if and only if the map H°(X, Tx (D)) — H®(X, L™(D))
is injective. By Lemma 3.9, the latter is equivalent to Ker s p = VJ,. 0

If £71 ® M is nef and big, which is the case in our applications, then we can
show that the assumption H'(X, £L~! ® M) = 0 is automatically satisfied using the
following vanishing theorem.

Theorem 3.11 (Batyrev-Borisov vanishing, Theorem 2.5, [2]). Let D be a nef Q-
Cartier divisor on a complete toric variety X. Then

H'(X,0x(-D)) =0,
for all i # k(D).
Lemma 3.12. Assume that L is nef and big. Then, H*(X, L' ® M) = 0.

Proof. We have L1 M =2 L71® (wx ® L™) 2wy ® L™ L. By the Serre duality, it
suffices to show that H"~ (X, £~(m=1)) = 0. This follows from Theorem 3.11. [

4. NON-RULED MORI FIBER SPACES

In this section, we construct a sequence of families of Q-Fano weighted hypersur-
faces and study their properties. We refer the readers to [5] for definitions and basic
properties of weighted projective spaces.

For a (resp. homogeneous) ring A and (resp. homogeneous) elements fi,..., fi,
of A, we denote by

(fi=r=In=0)
the subscheme of Spec A (resp. Proj A) defined by the (resp. homogeneous) ideal
generated by f1,..., fi,. For positive integers ag, ..., a; and my,...,mg, we denote
by P(ag™,ai™, ..., a;."*) the weighted hypersurface
mo mi mg

——
P(ag,...,a0,Q1,...,QTy ..., Qly- .., Qf).

In the following, we assume that positive integers [, m and n satisfy the following
condition.

Condition 4.1.
n—m

+1<Ii<n—m.

We note that [, m and n necessarily satisfy [ > 2, n —m > 2 and n > 3 since
n—m>(n—-—m)/2+ 1.
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Definition 4.2. Let k be a field and a a positive integer. We denote by k[xo, . . ., 2]

and k[xq, ..., Ty, w] the graded rings with degx; = 1 for 0 < i < m, degx; = a for
m+1 < i < n and degw = la. For an integer d, we denote by k[zg,...,zs]q
the degree d part of the graded ring k[xo,...,z,] with the above grading. For
f=f(xo,...,zy) € klzo,...,2n]24, we define a weighted hypersurface

Xf = (’U)2 - f(.’L‘(), s 7$n) = 0) - P(1m+17 an—m,la) = PI'Oj(k'[CCo, SRR xmy])
of degree 2la.

In this section, we fix positive integers [, m, n, a and weighted homogeneous poly-
nomial f = f(zo,...,x,) of degree 2la and put X = Xy. We assume that f is
general.

Definition 4.3. We denote by P and V' the weighted projective spaces
P=PA™" ¢"™) and V =PI a"™ la),

respectively. For i = 0,1,...,n+ 1, we denote by p; the vertex (0:---:1:---:0),
where the 1 is in the i-th position. We denote by 7mx: X — P the projection from
the point pp+1 € V. Let p: W — V be the blow up of V along the closed subscheme
(o =+ =xm;m =0) and 0: @ — P the blow up of P along the closed subscheme
(xg = -+ = oy, = 0). Let Y be the strict transform of X in W and denote by
p: Y — X the induced birational morphism. We denote by my: Y — @ the natural
projection which sits in the following commutative diagram:

y s x

Q T> P.
We often drop the subscript Y and write 7 instead of 7y .

4.1. Non-ruledness. In this subsection, we work over an algebraically closed field
k of characteristic 2 unless otherwise specified.

Let P = P(ay, ..., ay) be a weighted projective space and Z a subscheme of P. For
an integer k, we denote by Op(k) the tautological sheaf and by Oz(k) the restriction
of Op(k) to Z.

Definition 4.4. We denote by £ the invertible sheaf c*Op(la) on Q.

We identify f with a global section of Op(2la) and let s be the pullback o*f of
f, which is a global section of £? = 0*Og(2la). Let V° be the open subset of V
obtained by removing the point p,+1, and W° be the open subset of W which is the
inverse image of V° via the map W — V.

Lemma 4.5. Y is the covering Q[\/s] of Q taking a root of s € H°(Q, L?) and the
morphism m:'Y — @Q coincides with the covering map Q[\/s] — Q.

Proof. The natural projection V° — P can be seen as the total space of the line
bundle Op(la). Hence the morphism W*° — (@ can be seen as the total space of the
line bundle £ = 0*Op(la). The assertion follows easily. O
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Lemma 4.6. Assume that n is even (resp. odd). Then f has only (resp. almost)
nondegenerate critical points on the smooth locus of P.

Proof. Let U be the smooth locus of P, that is, U = P\ (zg = - -+ = ;», = 0). Since
Condition 4.1 in particular implies that [ > 2, it is easy to see that, for every closed
point p € U, the restriction map

HO(P,0p(2la)) — Op(2la) ® (Op/my)

is surjective, where m, is the maximal ideal of the local ring Op. Hence a general
f has only (almost) nondegenerate critical points on U (cf. [9, Chapter V, Exercise
5.7]). O

Lemma 4.7. The closed subset

_(of _oF _  _9f _
Cr(f) = (3:130 G - Oz, _0>

of P consists of closed points.

Proof. Lemma 4.6 implies that Cr(f) consists of closed points if it is restricted on the

smooth locus of P. It is sufficient to show that Cr(f)N(zg = - -+ = x,, = 0) consists of
closed point assuming that @ > 2. We may write f = g(xpm+1, ..., 2n)+h(x0, ..., Tpn),
where g consists of the monomials in z,,y1,...,2,. We have
9y 99
()N (a0 =+ = =0) = (Gt == 2L = 0) (a0 =+ = = )

The right hand side consists of closed points if a general homogeneous polynomial
of degree 21 has only isolated critical points on P!, which can be easily verified.
Thus, Cr(f) is a finite set of closed points. O

We denote by P; the open subset (x; # 0) of P and by 7;: P, — P, the orbifold
chart. By a slight abuse of notation, we think of xg,...,Z;,...,z, as affine coordi-
nates of P, & A" under the identification. Note that 7;: P, — P; is an isomorphism
fori=0,1,...,m. Fori =m+1,...,n, the finite group scheme p, = Speck|t]/(t%)
acts on P; by

z; ®t, for j =0,1,
zj—x; ®1, otherwise,

and P; is the geometric quotient P;/p,. The blow up o can be described as fol-
lows. For simplicity, we work over P,. Let Q, — P, be the blow up along
(xg = +++ = xym = 0). Then the action of p, on P, naturally extend to an ac-
tion on Q,, and the geometric quotient Q; = Q; /1, is the inverse image of P; by
o. We see that Q,, is covered by open subsets Uy, ..., U,_1 where the exceptional
divisor is defined by z; on U;. For example, on Uy, we can choose affine coordinates
T, Ty, Xy, Tt s - - -, T, Where af = x;/xo for 1 < ¢ < m. Then the action of
p, on Up is given by o — x9 @1, 2} - 2}, @ 1 for 1 <i < m, and z; — z; ® 1 for
m+1<j <n-—1. It follows that the geometric quotient U; is the affine space with
affine coordinates z(, = «, 2, ..., 2}, Tm+1, .- ., Tn—1 and the exceptional divisor of
o is defined by .
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Lemma 4.8. The global section s = o*f has only admissible critical points on Q
and the set Cr(s) of critical points of s endowed with the reduced induced scheme
structure is smooth. Moreover, Cr(s) consists of isolated closed points and closed
sets of codimension n —m + 1.

Proof. By Lemma 4.6, s has only (almost) nondegenerate critical points outside the
exceptional divisor E and hence it is sufficient to consider critical points contained
in E. Let Cr(s) denote the set of critical points of s.

We write f = fo+ fi+- -+ far, where f; = fi(xo,...,zy) has (o, ..., zy,)-degree
ia, and let D be the strict transform of the divisor (f; +---+ foy = 0) C P. By
(2o, ..., Tm)-degree, we mean the degree of a polynomial in the polynomial ring
k(zm+1s. .., 2n)[T0,- .., 2m]. Let Z be the closed subset (g = -+ = z,,, = 0) of P.
We shall show that the set Cr(s)NE is the disjoint union of DNo~!(p), where p runs
over the set Cr(f) N Z. We work over the open subset P, = (z,, # 0). Put 2, =1
and we identify zo, ..., z,_1 as affine coordinates of P,. We see that o~ 1(P,) can
be covered by open subsets Uy, U, ..., U, where the exceptional divisor is defined
by ¢ on U;.

Put z{, = z§ and 2} = z;/xo for 1 < i < m. Then x(,...,2Z),, Tmi1,---,Tn-1
form affine coordinates of Uy. Put ¢; = fi(1,2},...,2),, Zm+t1,--.,2n-1,1). Then,
we have o* f; = x'oigi on Uy and hence

* 2
S0 = 3’U0 - (U f)’Uo = g0 +x691 +$6 h = go +$6Z7

where h =3, m{)i_Qgi and z = g; +x(h is the defining equation for D. An explicit
calculation shows that

990 90
Cr(sg) N (8:cm+1 9z z=0
Note that we have
Cr(f)mZmPn:< 990 _ . _ 99 :0>mPn.
Tim+1 Orp_q

This shows that Cr(s) N E coincides with Upecy(f)nzo ™ (p) N D and is smooth on
Up. Let q be any closed point of Cr(s) N ENUp and let p = o(q). We shall show
that s has an admissible critical point at q. By replacing homogeneous coordinates
Tyt1y- -5 Ty, We may assume that p = p,. Then o7 1(p) = (2 = Zmi1 = -+ =
ZTp—1 =0) on Uy. Put k =n —m — 1. We may write

Tmt1Tm42 * + Tpn—2Tn_1 + i), if k is even,
go =

ax?nJrl + Tg2Tmis + -+ Tn—2Tn—1 + g(, if kis odd,

where g, consists of monomials of degree > 3 in 41, ..., Zp—1 and if k is even then
the coefficient of 3, ; in g{ is nonzero. Therefore, we see that s has an admissible
critical point at q since the hypersurface D = (z = 0) is smooth and passes through
q.

Arguing in the same way for other open subsets Uy, ..., Uy, and then for other P;,
m < i < n, we see that Cr(s)N E is the union of smooth subvarieties o1 (p)N D and
s has only admissible critical points on (). It is easy to see that each components
o~ 1(p) N D has codimension n — m + 1, which completes the proof. O
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Remark 4.9. Over a field of characteristic 0, the same argument shows that so =
go + x(z on Uy, where we use the same notation as in the proof of Lemma 4.8. But
the difference is that the set Cr(f) N Z N P, is empty. It follows that we may write

n
— c+ E ;T
go i=m+1 v
41 Tm42* * + Tn—2Tn_1 + gj, if k£ is even,
ax? g + Tmi2Tmis + - + Tn_oTn_1 + g}, if kis odd,

where (ap+1,...,a,) # (0,...,0). This observation will be used in the proof of
Lemma 6.2.

Lemma 4.10. There is a resolution r: Y' — Y of singularities of Y such that the
injection ™ M(L, s) — (1YY lifts to an injection r*m* M(L, s) — QL.

Proof. This follows from Lemmas 2.8 and 4.8. U

Set F = F(L,s) and M = M(L, s), which are defined in Section 2.

For each ¢ = 0,1,...,n, let D; be the Cartier divisor on ) which is the strict
transform of the Weil divisor (z; = 0) C P, and let E be the exceptional divisor of
the blow up o: Q — P.

Lemma 4.11. M is ample (resp. nef and big) if and only if a > m + 1 (resp.
a>m+1).

Proof. By Lemma 2.4, M is isomorphic to £?®wg. It is easy to see that a Q-divisor
aDg+ BE is ample (resp. nef and big) if and only if 0 < a8 < « (resp. 0 < aff < ).
Note that D1 ~ Dg for 0 < i <m and D; ~aDg+ E for m+ 1 <i <n. We have

2 ~ % _ " .
L2 ®wo = 0" Op(2la) ® O ( S D E)
= 0o(((2l —n+m)a—m—1)Dy+ (2l —n+m —1)E).
Thus, our claim can be proved easily. ]

Definition 4.12. A variety X is said to be ruled (resp. uniruled, resp. separably
uniruled) if there is a variety Y with dimY = dim X — 1 and a map P! x Y --» X
which is birational (resp. dominant, resp. dominant and separable).

Theorem 4.13. We assume that 1 + (n —m)/2 <1 < n—m. Then the following
assertions hold for any a > m + 1.

(1) If Xy is defined over C and f is very general then Xy is a non-ruled Q-Fano
variety with Picard number one and has at most log terminal singularities.
Moreover, Yy is smooth and it has a structure of (n,m)-Mori fiber space over
P,

(2) If Xy is defined over an algebraically closed field of characteristic 2 and f is
general then Xy is not separably uniruled.

Proof. We shall prove (2). Put X = X;. By Lemmas 4.10 and 4.11, the invertible
sheaf r*7* M is big and there is an injection r*7*M — Qg’;,—l. It follows from
Theorem 2.10 that Y’ is not separably uniruled.

Assume that X = X is defined over C. Then the non-ruledness of X follows
from (2) by the degeneration method [9, Theorems 1.6 and 1.8]. We shall show that
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X is quasismooth, that is, the affine cone C'x of X is smooth outside the origin. We
see that

0 0 0
Sing(CX):(Eé):(%:m:&;i:w:O)ﬂ(wQ—f:O)
_(po 0L _0F 9 _ _

(f(?xoaxl 8xn0>ﬂ(w0).

By the criterion [6, Theorem 8.1], we see that the weighted hypersurface in P defined
by f is quasismooth, which implies that Sing(Cx) = {0}. Thus X is quasismooth.
It follows that X is Q-factorial and has only cyclic quotient singularities. By the
adjunction formula, we have Ox(Kx) = Ox(c), where

c=2la—(m+1+n—-—m)at+la)=(I1—-—n+m)a—(m+1).

By Condition 4.1, we have ¢ < —(m+1), which shows that X is a Q-Fano variety. We
see from [5, Theorem 3.2.4] that the Picard number of X is one. Finally, let X --»
P™ be the projection to the first m+1 coordinates xq, . . . , . Then the induced map
Yy --» P™ is a morphism and it is a Mori fiber space whose general fiber is isomorphic
to a (smooth) Fano weighted hypersurface of degree 2[ in P(1"~™*+1 [). U

4.2. Bounding birationally trivial subfamilies.

Definition 4.14. We denote by X.™™ — S{™™ (resp. '™ _ §/(mm™) the
family of Xy defined over C (resp. k), and by Y™ (resp. '™ the family of
Y defined over C (resp. k).

In the following, we put X! = X'"™™ and &/ = &™) We shall bound the
dimensions of birationally trivial subfamilies of X)/S/ and then prove main theo-
rems. Throughout the subsection we assume that (I,m,n) satisfies Condition 4.1
and a > m + 1.

We see that £7! @ M = Og(D), where

D:=—((n—m—-Ula+m+1)Dyg—(n—m—I1+1)E.
Note that —D is effective and hence H(Q, Ox (D)) = 0. Let S be the homogeneous
coordinate ring of @) and V the k-vector space defined in Definition 3.7.
Lemma 4.15. Ifl <n —m then Vp =0.

Proof. Let
€ =0q(Do) ®---0q(Dm) & O@(Dmy1) & -+ © Og(Dn) ® Og(E)
~ 0g(Do)*™! & Og(aDy + E)¥"™ & Og(E).
be the locally free sheaf which sits in the middle of the generalized Euler sequence.

We have Vp =2 H(Q,£(D)). Tt is easily verified that none of Dy + D, aDy + E + D
and E + D is effective if [ < n — m, which shows that H°(Q,&(D)) = 0. O

Proposition 4.16. We have HO(Y',r*7* M) = HO(Y', Q).

Proof. By Lemma 3.12, we have H'(Q, Ox (D)) = 0. Hence by Proposition 3.10, it
suffices to show that the kernel of 05 p is V.

If I <n—m then Vp = 0 by Lemma 4.15, and there is nothing to prove. We may
assume that [ = n —m. It is easy to see that V/, = 0. Let y; be the homogeneous



16 TAKUZO OKADA

coordinate corresponds to D; for 0 < ¢ < n and 3’ be the one corresponds to FE.
Then S =Kk[yi,...,Yn,y’]. The section s can be expressed as

1 1
s =51, um ) = Fwor™ vy Ymits - Un) € Sap,

where § = [£] € Pic(Q) = Div(Q), and we may write

121 120—1 /
S=y Sty So1—1+ -+ ys1+ so,

where s; = si(y1,....yn) is homogeneous of degree 23 — [iE]. Note that sy =
50(Ym+15 - -+ Yn) is @ polynomial in yp,11,...,9y,. We have Vp = (P Sip,+pjei) ©
S[E+D]e’ , where e; and €' are the generators. It is easy to see that Sip;+p) = 0
for © = 0,...,m, and Sjp;p; = 0. Hence an element v € Vp can be written as

U= gm+1€m+1 + ** gnen, Where g; € Sip, 1 p] = Sj(a—m—1)D,]- 1t follows that g; is a
polynomial in yo, ..., Ym. Suppose that 05(v) = 0. Then we have

R n a(y/jsj) CNCE i 9sj _
0s(v) = ijo Zi:erl gZTyj B ZJ:O Y Zi:erl gi dyi N

In particular, we must have

n 850
Zi:erl oy ~ 0

This shows that g; = 0 for every ¢ since g; is a polynomial in yg,...,y, and sg is a
general polynomial in ¥, 41,...,ys (cf. Remark 4.17 below). This shows that 6, p
is injective. O
Remark 4.17. Let g = g(z1, .. ., 2n) be a (usual) homogeneous polynomial of degree

d with coefficients in an algebraically closed field and put g; = dg/0z;. Assume that
g is general. We claim that S; # S, where S; = N;4(g; = 0) and S = N(g; = 0).

We may write g = x‘f + x‘ll_lhl + -+ x1hg_1 + hq, where hj = hj(z2,...,2,) is a
homogeneous polynomial of degree j in xo,...,x,. We see that
Ohg Ohg
and
Ohy Ohg
_ = h ] = e = e = — = .
S|(21—0) ( d—1 8$2 8$n 0>

Since g is general, we see that both hy_q and hg are general. It follows that S is a
proper subset of S7. Similarly, we have S; # S for every i.

In the proof of Lemma 4.16, sp is a homogeneous polynomial in yy41,- .., Yn.
From the claim above, for each i, we may find o = (41, ..., 0,) € k"™ such that
(0s0/0y;)(c) = 0 for j # i and (0so/0y;)(a) # 0. It then follows that g; = 0.

Lemma 4.18. The rational map defined by the complete linear system of r*n* M is
the composite my or: Y — Q of r and 7y .

Proof. We have M =2 L?> ® wq. As in the proof of Lemma 4.11, we have
M=Z0y((2l—n+m)a—m—1)Hy+ (2l —n+m —1)E,).

We deduce from (2l —n+m)a —m —1 < la that 7§, M is not very ample. Since M
is ample on @ by Lemma 4.11 and @ is a smooth complete toric variety, it is indeed
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very ample on Q. It follows that the image of the rational map defined by r*mj. M
coincides with 7y o r. O

Let Xy and X, be general members of the family &} /S;,. We denote by ps: Yy —
Xy and My, etc, for the corresponding blow up and invertible sheaf, etc.

Lemma 4.19. Assume that there is a birational map ¢: Xy --» X,. Then, ¢ is an
isomorphism. Moreover, there is an automorphism p: P — P such that the diagram

X; s X,
w| |
P T> P
commutes.

Proof. Let ¢: Yy --» Yy and ¢/: Y]ﬁ -—+ Y be the induced birational maps. By
Proposition 4.16 and Lemma 4.18, there is an automorphism A of @ which sits in
the commutative diagram

v; sy,
o

We see that Yy and Y are normalizations of @ in the function field of Y]ﬁ and
Yy, respectively. In other words, they appear as Stein factorizations of Y; — @ and
Yg’ — @, respectively. It follows that the birational map v is in fact an isomorphism.
The isomorphism 7 : Yy — Y, descend to an isomorphism Xy — X, which coincides
with ¢. The automorphism A of @ also descends to an automorphism p of P and
we have the desired commutative diagram. 0

Lemma 4.20. The following are equivalent.

(1) Xy and Xy are birational.

(2) Xy and X4 are isomorphic.

(3) There is an automorphism p of P and a weighted homogeneous polynomial
h € k[zo, ..., Tn)ia such that f = u*g + h2.

Proof. The equivalence of (1) and (2) in proved in Lemma 4.19. Assume that (3)
holds. Let 1 be the automorphism of V' defined by ¥ *x; = p*z; fori =0,1...,n and
p*w = w — h. Then the restriction of ¢ on X defines an isomorphism Xy — X,.
Conversely, assume that there is an isomorphism ¢: Xy — X,. By Lemma 4.19,
there is an automorphism p of P such that pomx, = mx, o p. We may write
o w = aw+ h for some a € k and h € k[xo, ..., Zn]is. We see that 0 = ¢*(w? —g) =
a?w? 4+ h? + p*g in the coordinate ring k[xo, . . . , 2, w]/(w? — f) of the affine cone of
X . It follows that there is an element 3 € k such that a?w?+h?+p*g = B(w? — f)
in k[zg, ..., 2n, w]. If =0 then a = 0 and ¢*g = h?. This is impossible since g is
general. Thus, we have o? = 3 and ¢*g = h% — Bf. Since g € k[zo,...,z,] we see
that p*g = p*g. This is (3). O
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Remark 4.21. Let X, and X} be sufficiently general members of the family X, /S,
and A} /Sy defined over C, respectively. Then X, is never birational to X} unless
a = b. This can be seen as follows. If there is a birational map ¢: X, — X; then
Lemma 6.3 shows that a reduction modulo 2 model ¢’ of ¢ is a birational map.
But, by Lemma 4.19, we must have an isomorphism between P(1™*! ¢"~™) and
P(1™+1 p"~™), which is impossible unless a = b.

Lemma 4.22. The dimension of Aut P is at most (n—m) dimKk[xg, ..., zm]e+ (n—
m)% + (m + 1)2.

Proof. Let u be an automorphism of P. We may write p*z; = aéi)a:o + et a%)a:m
for t = 0,...,m and u*x; = h; +67(7?+1.Tm+1 —i-‘-'—i-@(f)xn fori =m+1,...,n,
where ag-i),ﬁj(i) € k and h; = h;i(xo,...,Zn) is a homogeneous polynomial of degree
a. Therefore, the dimension of Aut P is at most

(m+1)% + (n — m)(dimk[zg, ..., Zmle + (n —m))
= (n—m)dimk[zo, ..., zmls + (n —m)* + (m + 1),
which completes the proof. O

Lemma 4.23. Let s, be a general point of S,,. Then there is a closed subvariety C,
of S, with the following properties.
(1) Cl, parametrizes the members of X, /S, which are birational to the member

corresponds to s,.
(2) dimS), — dimC}, — o0 as a — o©.

Proof. We see that Aut P naturally acts on S/, that is, there is a morphism
Aut P xS, — 8!,

which sends (u, [g]) to [u*g]. Let Aut P - s/, be the closure of the image of Aut P x
{s,}. Let 7/ be the linear subspace of S/ which corresponds to the vector subspace
{h? | h € K[xo,...,Tn)ia} of K[To, ..., Zn]oia- Let C. be the cone over the image
of Aut P - s/, under the projection S, --+ PV from the linear subspace 7. By the
construction and Lemma 4.20, we can verify (1).

We have

dimC, < dim Aut P - s/, + (dim 7, + 1)
< dim Aut P + h°(P, Op(la)).

For integers k > 0 and i > 0, let d(k, ) be the dimension of the degree i part of a
(usual) polynomial ring in k variables. Then we have

2l

dim 8, = h'(P,0p(2la)) =1 =Y  d(n—m,2 —i)d(m + 1,ia) — 1

=0
and
l
K (P,0p(la)) = 2,70 d(n —m,l —i)d(m +1,ia).

By Lemma 4.22, we have dim Aut P < (n —m)d(m+1,a) + ¢, where ¢ = (n—m)? +
(m+1)2. Note that d(k,0) = 1, d(k,1) = k for every k, and d(k,) < d(k,7) if i < j.
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Combining altogether, we see that
dimS!, — dimC},
21 . .

> Zi:l—l-l d(n —m,2l —i)d(m + 1,ia) — (n —m)d(m + 1,a) —c—1
>d(m+1,2la) +d(n—m,1)dim+ 1,2l — 1)a) — (n—m)d(m+1,a) —c—1
>d(m+1,2la) —c—1.

Therefore, we have (2) since d(m + 1,2la) — oo as a — oo. O

5. NON-RULED CONIC BUNDLES

In this section, we shall construct a sequence of families of non-ruled conic bundles
and study their properties.

5.1. Non-ruledness.

Definition 5.1. Let a be a positive integer. Let k[xq,...,z,—1] be a graded ring
whose grading is given by degz; = 1 for 0 < ¢ < n — 2 and degz,_1 = a, and
E[yo, y1] the usual polynomial ring. We define P = P(1""!,a) and P! with homo-

geneous coordinates xq,...,T,_1 and yo,y1, respectively. Let p1: P — P(l"‘l,a)
and py: P — P! be the projections. Let op: Q — P be the blow up of P at the
singular point (0 : ---: 0 : 1) and set 0 = op x id: @ x P! — P x P!, We de-

note by £ the pullback 0*Opyp1(la,1), where Opypi(la,1) is the invertible sheaf
P10pn—1,4)(la) @ p5O0p1(1) on P x P!, Let f = f(wo,...,%n_1,Y0,%1) be a general
homogeneous polynomial of bidegree (2la,2), that is, a general global section of
Opypt(2la,?2), and s = o* f be the pullback of f which is a global section of £2. We
set X = P xPy/fland Y = Q x P}[\/3].

Note that o: Q x P! — P x P! is the blow up of P x P! along the singular locus
(1‘0:---:1}”_2:0).

Lemma 5.2. s has only (almost) nondegenerate critical points on Q x P*.

Proof. Tt follows from [10, Lemma 2.2.3] that f has only (almost) nondegenerate
critical points on the smooth locus of P x P!. We shall show that s does not have a
critical point on E. We write f = foyg + fiyoyr + f2y7, where f; is a homogeneous
polynomial of degree 2la in xg,...,T,—1. Then we have s = Soyg + s190y1 + S293,
where s; = o* f;.

Let U be an open subset of @ x P! on which 7o does not vanish. Then, by setting
Yo = 1, we have s = sg + s1y1 + SQy% on U and s; does not involve y;. It follows
that ds/0y; = s1. Thus the set of critical points of s which lie on F is contained
in (s; = 0) N E. Note that f; is general and hence f; does not pass through the
singular point of P. This shows that (s; = 0)NE = 0 and s does not have a critical
point on FE. O

Let 7: Y — Y be the resolution of singularities of Y which is given in Lemma
2.8. Put M := M(L,s). We see that M = wg,p1 ® £* and we have an injection
r*m* M — Q?,,_l.

Let D; be the strict transform of the Weil divisor (z; =0) C P x P! for 0 <i <
n — 1, E the exceptional divisor of o and H; the divisor (y; = 0) on Q x P! for
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i = 0,1. Similarly, let D! be the strict transform of the Weil divisor (x; = 0) C P
and E’ the exceptional divisor of op. We have ¢; D} = D; and ¢f E' = E. Note that
Dy, ...,Dn_1,Ho.H; and E are the torus invariant prime divisors on Q x P'. We
see that D; ~ Dy for 1 <i<n—2, D, 1 ~aDyg+ E and Hy ~ Hy so that the
divisor class group Div(Q x P!) 2 Pic(Q x P!) is a free abelian group generated by
Dy, Hy and E. Similarly, Div(Q) = Pic(Q) is a free abelian group generated by Dj,
and F'.
We have

L= O'*OPXHM (l(l7 1) = OQXPI (laDO +IE + HO)
and

M = wQX[P’l ® £2

O (XK )
= Oguxpr (((20 = 1)a — (n — 1)) Do + (21 — 2)E).
Set M :=((2l —1)a— (n—1))Do + (2 — 2)E.

Lemma 5.3. Assume that a > n — 1. Then M is the pullback of a very ample
invertible sheaf on Q.

Proof. We see that M is the pullback of Og (M), where M’ = ((21—1)a—(n—1))Dj+
E’. The toric variety  has Picard number two and two contractions op: Q — P and
Q — P2, where the latter is the composite of op and the projection P --» P?—2
to the first n — 1 coordinates zg,...,T,_2. From this we deduce that a divisor
aD{,+ BE' is ample if and only if 0 < a8 < a. Moreover, an ample Cartier divisor
on (Q is very ample since ) is smooth. It follows that M’ is very ample if and only
if a > n — 1, which completes the proof. O

Theorem 5.4. Assume thatn > 3 and a > n — 1. Then the following hold.

(1) If Y = Q x P'[\/s] is defined over C then it is a smooth non-ruled variety
which has a conic bundle structure g om: Y — Q.

(2) If Y = Q x P[\/s] is defined over an algebraically closed field k of charac-
teristic 2 then it is not ruled.

Proof. (1) follows from (2). We shall prove (2). By Theorem 2.11 and Lemma 5.3, it
suffices to show that the generic fiber Yz of g1om: Y — ( is non-ruled over F', where
F is the fields of rational functions on ). Working on a suitable open subset of ), we
can identify F' with the field k(z1,...,z,-1). We see that Y is the conic defined in
}P’% with homogeneous coordinates yo, y1, w by the equation w? = ayg + byoy1 + cy?,
where a,b, ¢ € k[x1,...,2,-1]. Thus Yr is not ruled over F' by Theorem 2.11. [

Remark 5.5. Let A be the discriminant divisor of the conic bundle Y — Q. Then
we have Og(A) = L% If | = 1 then 4Kg + A ~ —4(n — 1)Dy — 4E is not effective
for any a. Hence, in this case, nonrationality of Y cannot follow from the Sarkisov’s
criterion.

5.2. Bounding birationally trivial subfamilies. In this subsection, we assume
that n >3, >1and a >n—1.
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Definition 5.6. Let X" " — SV (resp. A/~ _, /(mn=Dy 16 the family
of degree 2 covers P x P![\/f] of P x P! ramified in a divisor of bidegree (2la,?2)
defined over C (resp. k), and by yirnh o gln=) (resp. Y'on=) _, grlnn=1)

be the family of @ x P![/s] defined over C (resp. k).

In the following, we put X, = xr(mn=1) S, = S’V and similarly for V! and
S/. We shall bound the dimensions of birationally trivial subfamilies of X /S!. The
argument is basically the same as in Section 4.2.

Lemma 5.7. We have H'(Y',r*m*M) = HO(Y', Q% ).
Proof. We see that L7 @ M = Og,p1(D), where
D=((l-1)a—(n—1)Dy+(l—2)E — Hy

is a torus invariant divisor. It is easy to see that HY(Q x PL,L~' @ M) = 0.
Hence, by Proposition 3.10 and Lemma 3.12, we need to show that 0, p: Vp —
S5~ is injective, where 8 = [£] and v = [D] are the classes in Div(Q). We have
H(Q %P, Ogup1 (Di + D)) = HY(Q x P!, Ogupi (E+ D)) = 0 since the coefficients
of Hy in the divisors D; + D and E + D are negative. It follows that we have an
isomorphism
Vb = S0 © Sy, o) = S5,

where § = [Ho + D] = [H; + D] € Div(Q x P1). Via the isomorphism above, 6 p
maps (to,t1) € S§2 to to(ds/dyo) + t1(ds/0y1). Assume that 05 p(to,t1) = 0. We
may write s = soyg + 5193 + s2yoy1 for some s; € S, It follows that 65 p(to,t1) =
tosay1 +t152y0 = s2(toy1 +t1y1) = 0. Note that so # 0 since s is general. This shows
that tg = t; = 0 since ¢; is a polynomial in zg, ..., 2,-1 and z. for i =0, 1. O

Let f1 and fy be general global sections of Opypi(2la,2) and put s; = o*f;. We
put X; = P x Pl[\/sﬁ-] and Y; = Q x Pl[\/sj-]. We denote by m;: ¥; — @ x P! the

covering map.

Lemma 5.8. Assume that there is a birational map : Y, --+ Yo. Then ¢ is an
isomorphism and there is an isomorphism v: Q x P! — @Q x P! such that my 0 ) =
vom. Moreover, there is a nonzero a € k and a global section t of L such that
v*sg = sy + t2.

Proof. Let r;: Y] — Y; be a resolution of singularities of ¥; such that ri7 M —

Q?,_Tl, where M; = M(L,s;), for i = 1,2. Let ¢': Y] --» YJ be the birational

map induced by 9. By Lemma 5.7, we have HO(Y/ riniM;) = HO(YZ-’,Q;TI).

(2
It follows that the image of the map ®; defined by the complete linear system of
rimfM; is a birational invariant of Y. Lemma 5.3 shows that ®; is the morphism
Ty

Y/ - Y I Q x P! o, Q. Thus, we have an isomorphism vg: @ — @ such that
the diagram

RN ¢
L
Q——=0Q

commutes.
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Let Ui be the open subset of Y{ on which ¢’ is defined. By Lemma 5.3, rf7*M;
is generated by global sections for i = 1,2 and 9'* induces an isomorphism between
HO(Yy, r3m3Ms) and HO(Y{,rimiM;i). Tt follows that we have an isomorphism
(w'|U{)*r§7r§M2 o ri‘ﬁ/\/lﬂU{. Let Uy and Us be open subsets of Y7 and Y3, respec-
tively, such that 1 induces an isomorphism : U; — Us. We have an isomorphism
(Y], ) T My = TiMy|y,. Since M; = 7} (woxpr ® £?) and wy, = 7 (woxpr ® L),
we have 7L = 1M ® wy,. Thus, we have an isomorphism L[y, = (Y|y,)*13L
which sits in the following commutative diagram

TUl - (¢|U1)*TU2

71-*‘C”U1 — (¢’U1)*ﬂ-;£

This shows that we have a birational map v: Q x P! --» Q x P! which restricts
to an isomorphism 71 (U;) — m2(Usz) such that mp 0 ¢p = v o m since the injection
m; L — Ty, is a foliation and the quotient is the morphism m;: ¥; — @ X P! for
i =1,2 (cf. Remark 2.9).

We see that the following diagram

QxPl - ">QxP!

qll iql

Q Q

vQ

commutes. This implies that v is an isomorphism. Then the map 1 is also an
isomorphism since Y7 and Y5 are the normalizations of @ x P! in the function field
of Y7 and Y5, respectively.

We have an isomorphism v*£ =2 £ which induces an isomorphism ¥ of the total
spaces of L such that the restriction of ¥ to Y7 coincides with v). Y is the zero locus of
w? —7rs; € HY (W, L?), where w; € HO(W,7fL). We must have U*wy = aw; +7t

for some o € k* and t € H°(Q, £). Therefore, we have

TV sy = Y mhsy = Yrws = oPw? + mit? = 7 (a?s) +12),
which completes the proof. ]
Definition 5.9. We define G = Aut(P) x Aut(P') which can be seen as a subgroup
of the automorphism group of P x P

Lemma 5.10. Notation as above. The following are equivalent.

(1) X1 and Xy are isomorphic.

(2) X1 and Xy are birational.

(3) There is an automorphism ju € G of P x P, a nonzero a € k and a homo-
geneous polynomial g of bidegree (la, 1) such that u* fo = afy + g°.

Proof. The implication (1) = (2) is obvious. Assume that (3) holds. Then, using u,
we can construct an automorphism the total space of Opypi(la,1) which restricts
to an isomorphism between X; and Xo, which proves (1).
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We assume that (2) holds and let ¢: X7 --+ X3 be a birational map. Then ¢ in-
duces a birational map v: Y7 --+ Y5. By Lemma 5.8, v is an isomorphism.Moreover,
there are isomorphisms v: Q xP! — Q xP! and vg: Q — @ such that giov = vgoqq
and v*sy = asy +t2 for some o € k* and t € HY(Q x P!, £). The isomorphisms v
and v descend to isomorphisms p: P x P! — P x P! and pup: P — P, respectively,
such that p; o u = pp o p; and that the diagram

Xy B X

L

P><IP>17>P><IP’1

commutes since the contractions @ xP! — PxP! and Q — P are unique. By arguing
in the same way as in the proof of Lemma 5.8, we see that ¢ is an isomorphism and
w* fa = afy + g%, where g is the element of H°(P,Op(la,1)) such that o*g = .

It remains to show that u € G. Let p/ = (up x id)~! o 1 be the automorphism of
PxP!. Then y'is an automorphism of P xP! over P and hence we have p/ = id x pup1
for some pp1 € Aut(P!). It follows that p = pup x pupr € G. O

Lemma 5.11. We have dim G < 3(dimk|[xo, ..., Tn—2]s + (n — 1)?).
Proof. O

Lemma 5.12. Let s, be a general point of SI,. Then there is a closed subvariety C,,
of S, with the following properties.

(1) Cl parametrizes the members of X. /S, which are birational to the member
corresponds to s.,.
(2) dimS), — dimC, — o0 as a — o©.

Proof. By Lemma 5.10, we can construct C, with the property (1) in the same way
as in the proof of Lemma 4.23 and we have

dimC, < dim G + h°(P x P, Opyp1(la, 1)).
Let d(m) be the dimension of the k-vector space k[zo, ..., Zp—2]m. We have
. . 2l . l .
dim S, — dimCl, > 3 Zz‘:o d(ia) — 3 (d(a) + (n — 1)?) — 2 Zi:O d(ia)
2l
LN _ 12
>3 Zi:lﬂ d(ia) —2d(a) —3(n —1)2 +1
> d(2la) —3(n—1)2 +1.

This shows (2) since d(2la) — oo as a — oo. O

6. BIRATIONAL UNBOUNDEDNESS
In this section, we shall prove Theorems 1.3 and 1.5.
6.1. Reduction modulo two.

Definition 6.1. We say that a family of varieties is birationally trivial if every two
members of the family are birational.
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Let X,/S, = X (n,m) / chn’m) be either the family of Q-Fano weighted hypersurfaces
defined in Section 4 or the family of degree 2 covers of P(1"~! a) x P! defined in
Section 5 and let V,/S, = Xa(”’m) /S((ln’m) be the corresponding family obtained by
blowing up X,. Let X; and Xs be sufficiently general members of the family X, /S,.
Let Y; be the variety obtained by blowing up X; so that it is a general member of
Va/Sa. We assume that there is a birational map ¢: X; --+ X5. Then, we may find
a discrete valuation ring A with the following properties.

(1) A is a subring of C and its residue field is of characteristic 2.
(2) X7 and X5 descend to projective schemes X1 and X9 over Spec A.
(3) ¢ descends to a birational map ®: X; --» X3 defined over Spec A.

Note that Y; descends to projective scheme 9); over Spec A for i = 1,2. Let
¢+ X] --» X} be the induced rational map between geometric special fibers of
X1 — Spec A and X2 — Spec A. We call X{, X} and ¢ a reduction modulo 2 model
of X1, Xy and ¢, respectively.

Lemma 6.2. Let Y =Y, and A a discrete valuation ring as above. Then there
is a resolution Y — 2 of singularities of Y such that each exceptional divisor is
contained in the special fiber and is geometrically ruled.

Proof. The singular locus of ) coincides with that of the special fiber of ) — Spec A.
Let C be an irreducible component of the singular locus of ) and ¢ be a uniformizing
parameter of A. If C' is a point then it is proved in [16, Proof of Lemma 3.1] that
the blow up at the point resolves the singularity and the exceptional divisor is ruled.
Hence we may assume that dim C' > 0. By Lemma 4.8 and Remark 4.9, we may
choose coordinates x4, ..., x, such that

s=cH+tlarxy + - agxp) + bixira + - - + bp_1Tk—12% + ¢,

where ¢, b; are unit elements of A, a; € A with (a1,...,ax) # (0,...,0) and g is
contained in the ideal (z1,...,z%)3. Here we assume that k is even for simplicity of
the proof. It follows that ) is defined by the equation

y? = tlagry + -+ + aprr) + byrixs + -+ bp_1xp_12k + ¢

and the singular locus C' is defined by the ideal (¢,21,...,2%). Let 9" — ) be the
blow up along C. Then an explicit calculation shows that it resolves the singularity
and that the exceptional divisor is isomorphic to Z x C, where Z is the quadric
hypersurface defined by

V2 =T(a1 X1+ +apXp) + bizn Xo + - + b1 Xp_1.2,

in P**1 with homogeneous coordinates X7, ..., X, Y, T over the residue field of A.
Possibly taking a field extension, we see that Z is a cone over a quadric. Hence
E =2 7 x C is geometrically ruled. O

Lemma 6.3. Let X; and Xo be sufficiently general members of the family X,/S,
and assume that there is a birational map p: X1 --+ Xo. Then, a reduction modulo
2 model ¢': X1 --+ X} of ¢ is a birational map.

Proof. Let A be a suitable discrete valuation ring as above so that X;, Xs and ¢
descend to X1, Xo and ®. Let 9: Y] --» Y5 be the induced birational map. We
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see that i descends to a birational map ¥: Q); --+ o defined over Spec A. By
Theorems 4.13 and 5.4, the reduction modulo 2 model Y; of ¥; is not geometrically
ruled. Therefore, by Lemma 6.2, ¥ does not contract Y7 and induces a birational
map ¢’: Y7 --» Y. Thus a reduction modulo 2 model ¢': Y{ --» Y3 of ¢, and hence
¢, is a birational map. O

The following result reduces the proof of Theorem 1.3 to bound the birationally
trivial subfamilies of X/ /S, = X'(™) /§/(m™) iy characteristic 2.

Proposition 6.4. Suppose that the varieties in the infinite sequences of families
X,/Sa are birationally bounded. Then, there exists a constant R’ such that, for
every positive integer a and a general point s, € S.,, there is a closed subvariety B,
of S with the following properties.

(1) B!, parametrizes a birationally trivial family.

(2) Bl passes through s.,.

(3) dimS, —dim B, < R'.

Proof. This is the combination of [16, Proposition 3.1 and Proposition 3.2], where
the sequence X /S, of families are different from ours. Let us explain how to modify
proofs.

The proof of [16, Proposition 3.1] applies to any sequence of families of varieties. It
follows that we obtain a closed subvariety B, of S, which parametrizes a birationally
trivial family and which contains a given general point s, € S, with dim S, —
dim B, < R. Let B, be a reduction modulo 2 model of B,. It is enough to show
that B], parametrizes a birationally trivial family (cf. [16, Proof of Proposition 3.2]).
To this end, we need to show that a reduction modulo 2 model of a birational map
p: Xt --» X, between two general members parametrized by B, is birational. Thus,
by Lemma 6.3, we have the result. 0

6.2. Proof of main theorems.

Proof of Theorem 1.5. Let n > 3 and m be integers with 1 < m < n —1. If
m < n — 2 then we may pick (I,m,n) which satisfies Condition 4.1. In this case,
let {X,/S, = xfmm) /Sc(bn’m)} be the sequence of families of Q-Fano weighted hy-
persurfaces with the fixed (I,m,n) defined in Section 4. If m = n — 1 then let
{Xa/Sa = X("v”*)/sé”’”‘”} be the sequence of degree 2 covers of P(1""1 a) x P!
defined in Section 5.

Suppose that n-dimensional smooth Mori fiber spaces over m-dimensional smooth
rational varieties are birationally bounded. By Theorems 4.13 and 5.4, the corre-
sponding family )V, /S, is a family of smooth (n,m)-Mori fiber spaces over a rational
base. It follows that the varieties in the sequence of families {X,/S,} are bira-
tionally bounded. By Proposition 6.4, there are closed subvarieties B, of S through
a given general point s/, which parametrize birationally trivial families such that
dim S!, — dim B), is bounded from above by a constant R’ which does not depend on
a. Let C/ be the subvariety obtained in Lemma 4.23 or 5.12. By the property (1) of
Lemma 4.23 or 5.12, we may assume that Bl, C C.. It follows that

dim S, — dimC), < dim S, — dim B, < R'.
This contradicts to (2) of Lemma 4.23 or 5.12 and the proof is completed. U
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Proof of Theorem 1.3. Let (I, m,n) be a triplet which satisfies Condition 4.1 and let
{X,/S.} be the family of Q-Fano weighted hypersurfaces with the given (I,m,n)
defined in Section 4. The proof of Theorem 1.5 shows that varieties in the sequence

{X,/S,} are birationally unbounded, which immediately implies the birational un-

boundedness of Q-Fano n-folds with Picard number one. O
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