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BIRATIONAL UNBOUNDEDNESS OF LOG TERMINAL
Q-FANO VARIETIES AND RATIONALLY CONNECTED

STRICT MORI FIBER SPACES

TAKUZO OKADA

Abstract. In this paper, we show that (Q-factorial and log terminal) Q-Fano

varieties with Picard number one are birationally unbounded in each dimension

≥ 3. This result has been settled for 3-folds by J. Lin and n-folds with n ≥ 6

by the author. We also prove that rationally connected Mori fiber spaces are

birationally unbounded even if we fix dimensions of both total and base spaces.

1. Introduction

In this paper, a normal projective variety defined over the filed of complex numbers
is said to be a (resp. terminal, resp. canonical) Q-Fano variety if it is Q-factorial,
log terminal (resp. terminal, resp. canonical) and its anticanonical divisor is ample.

It is known that suitably restricted classes of Q-Fano varieties are bounded.
For examples, smooth Fano manifolds of arbitrary dimension are bounded (Kollár-
Miyaoka-Mori [11]) and canonical Q-Fano threefolds are bounded (Kollár-Miyaoka-
Mori-Takagi [12]). There is a famous conjecture on the boundedness of Q-Fano
varieties.

Conjecture 1.1 (Borisov-Alexeev-Borisov). Fix a number ε > 0. Then Q-Fano
varieties with log discrepancies > ε are bounded.

This conjecture is proved for surfaces by Alexeev [1] and Nikulin [15], and for
toric case by Borisov-Borisov [3].

If we consider every Q-Fano varieties then they are unbounded even in the two
dimensional case. We consider the generalized birational version of boundedness.

Definition 1.2. A class V of varieties is birationally bounded if there is a morphism
φ : X → S between algebraic schemes such that every member of V is birational to
one of the geometric fibers of φ. We say that V is birationally unbounded if it is not
birationally bounded.

In dimension two, Q-Fano varieties, which are usually called log Del Pezzo sur-
faces, are rational and hence they are birationally bounded in a trivial sense. This
cannot hold anymore in higher dimensional cases. Lin [13] proved that Q-Fano
threefolds with Picard number one are birationally unbounded and the author [16]
proved the same result in each dimension at least six. Following is one of the main
theorems of this paper, which completes the study of birational unboundedness of
Q-Fano varieties in arbitrary dimension ≥ 3.
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Theorem 1.3. Fix n ≥ 3. Then Q-Fano n-folds with Picard number one are bira-
tionally unbounded.

This implies that we cannot drop the assumption on ε in Conjecture 1.1 even
if we replace the boundedness by the birational boundedness. In dimension three,
this provides an alternate proof of Lin’s result. He constructed an infinite sequence
of conic bundles over P2, which are birational to Q-Fano threefolds, and showed
that they are birationally unbounded. As an immediate corollary to Theorem 1.3,
smooth rationally connected n-folds are birationally unbounded if n ≥ 3 since every
Q-Fano variety is rationally connected (Hacon-McKernan [7] and Zhang [17]). We
can prove a finer result as we will explain below.

Definition 1.4. A normal projective varietyX together with a morphism ϕ : X → S

onto a normal projective variety S is said to be a Mori fiber space if

• X has only terminal singularities,
• ϕ has connected fibers,
• −KX is relatively ample over S, and
• dimS < dimX.

We say that a Mori fiber space ϕ : X → S is strict if dimS > 0, that is, X is not
a terminal Q-Fano variety with Picard number one. For positive integers n and m

with 0 ≤ m ≤ n−1, a (n,m)-Mori fiber space is a Mori fiber space whose total space
has dimension n and whose base space has dimension m.

The minimal model program reduces the birational classification of rationally
connected varieties to that of Mori fiber spaces over rationally connected bases.
Then the study of n-dimensional Mori fiber spaces can be divided into n cases,
namely, (n,m)-Mori fiber spaces for 0 ≤ m ≤ n − 1. In dimension three, there are
three classes: terminal Q-Fano threefolds with Picard number one, conic bundles
over rational surfaces and Del Pezzo fiber spaces over P1. We will construct an
infinite sequence of families of (n,m)-Mori fiber spaces for 1 ≤ m ≤ n − 1 and
consider the birational unboundedness of those families.

Theorem 1.5. Fix n ≥ 3 and m such that 1 ≤ m ≤ n − 1. Then n-dimensional
smooth Mori fiber spaces over m-dimensional smooth rational varieties are bira-
tionally unbounded. In particular, rationally connected (n,m)-Mori fiber spaces are
birationally unbounded.

It follows that n-dimensional rationally connected Mori fiber spaces over m-
dimensional bases are birationally unbounded for m > 0, while terminal Q-Fano
n-folds are conjectured to be bounded. In dimension three, neither conic bundles
over rational surfaces nor Del Pezzo fiber spaces over P1 are birationally bounded
while terminal Q-Fano threefolds are bounded.

This paper is organized as follows. In Section 2, we briefly recall Kollár’s reduction
modulo pmethod to construct non-ruled varieties as a covering spaces. An important
part in this section is to construct a specific invertible sheaf on those covering spaces
as a subsheaf of the sheaf of differential (n− 1)-forms, where n is the dimension of
the covering space. In Section 3, we give a criterion for such a specific invertible
sheaf to be birationally invariant. In Section 4, we construct an infinite sequence of
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families of (n,m)-Mori fiber spaces for n ≥ 3 and 2 ≤ m ≤ n − 1, and study their
properties especially when the ground field k has characteristic 2. Those (n,m)-Mori
fiber spaces are obtained by blowing the singular loci of suitable Q-Fano weighted
hypersurfaces. In Section 5, we construct an infinite sequence of families of (n, 1)-
Mori fiber spaces (i.e. conic bundles) as double covers of suitable toric varieties
for n ≥ 3. The birational invariance of the specific invertible sheaf enables us to
bound the dimensions of birationally trivial subfamilies of the families constructed
in Sections 4 and 5, which is a key to the proof of main theorems. We prove main
theorems in Section 6. On the one hand, we show that if (n,m)-Mori fiber spaces
defined over C are birationally bounded then there are “large” birationally trivial
families of families of (n,m)-Mori fiber spaces defined over k which are constructed
in Sections 4 or 5. On the other hand, explicit computations of the dimensions of the
birationally trivial subfamilies show that they are not so “large”, which completes
the proof of main theorems.

Acknowledgments. The author would like to thank Professor Shigefumi Mori for
various suggestions and warm encouragements. The author is partially supported
by GCOE, Kyoto University, and by Grant-in-Aid for Young Scientists (Start-up),
No. 21840032, Japan Society for the Promotion of Science.

2. Preliminaries

In this section, we recall results of Kollár from [8], [9] and [10] on the construction
of a specific line bundle on suitable cyclic covering spaces, and then we partially
generalize the argument. In this section, we work over an algebraically closed field
k of characteristic p > 0.

For an invertible sheaf N on a scheme and a positive integer k, we write N k and
N−k instead of N⊗k and (N−1)⊗k, respectively.

Let us fix notation which we assume throughout the present section. Let X be a
smooth variety of dimension n ≥ 3 over k, L a line bundle on X, m > 0 an integer
divisible by p and s a global section of Lm. We denote by π : W → X the total
space of L. We have

π∗π
∗L = L ⊗ π∗OW = L ⊕OX ⊕ L−1 ⊕ L−2 ⊕ · · · .

Let w be the global section of π∗L which corresponds to 1 ∈ OX and we define
Y = X[ m

√
s] to be the subscheme of W which is the zero locus of the global section

wm−π∗s of π∗Lm. With a slight abuse of notation, we also denote by π : X[ m
√
s] → X

the restriction of W → X. We call X[ m
√
s] the covering of X obtained by taking m-th

root of s.

2.1. Cyclic covering method. For reader’s convenience, we collect here some def-
initions and results which are due to Kollár without proofs.

Definition-Lemma 2.1 (Definition-Lemma V.5.4, [9]). There is a natural differ-
ential

d : Lm → Lm ⊗ Ω1
X ,
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constructed as follows. Let τ be a local generator of L, t = fτm a local section of
Lm, and the xi local coordinates. Set

d(t) :=
∑ ∂f

∂xi
τmdxi.

This is independent of the choices made and thus defines d.
For the global section s of Lm, we can view d(s) as a sheaf homomorphism OX →

Lm ⊗ Ω1
X . Taking a Tensor product with L−m, we obtain ds : L−m → Ω1

X .

Lemma 2.2 (Lemma V.5.3, [9]). (1) There is an exact sequence

0 → π∗Ω1
X → Ω1

W |Y → π∗L−1 → 0.

(2) We have OY (−Y ) ∼= π∗L−m and there is an exact sequence

π∗Y L−m dY−−→ Ω1
W |Y → Ω1

Y → 0.

(3) The image of dY is contained in π∗Ω1
X and dY : π∗L−m → π∗Ω1

X coincides
with −π∗ds.

Definition 2.3. We define F = F(L, s) := Coker(ds). We denote by M = M(L, s)
the double dual of the sheaf

∧n−1 F and by q : Ωn−1
X → M the natural map.

Lemma 2.4. We have an isomorphism M ∼= ωX ⊗ Lm and an injection π∗M ↪→
(Ωn−1

X )∨∨.

Proof. By Lemma 2.2, we have an exact sequence

0 → Coker
[
π∗L−m dY−−→ π∗Ω1

X

]
→ Ω1

Y → π∗L−1 → 0

and the sheaf on the left is isomorphic to π∗F . This gives rise to an injection
M = (

∧n−1 F)∨∨ ↪→ (Ωn−1
X )∨∨. �

Lemma 2.5 (Lemma V.5.9, [9]). Let x1, . . . , xn be local coordinates of X at a closed
point x and write s = fτm, where f ∈ OX,x and τ is a local generator of L. Let

ηi =
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

∂f/∂xi

for i = 1, . . . , n (ηi is undefined if ∂f/∂xi is identically zero). Then q(ηi) = ±q(ηj)
and they give local generators of M.

Let us recall definitions and basic properties of critical points, which are necessary
to analyze the singularity of Y .

Definition-Lemma 2.6 (cf. V.5.4, [9]). Let x be a closed point of X and x1, . . . , xn
be local coordinates of X at x. We say that s has a critical point at x if d(s) ∈
Γ(Lm ⊗ Ω1

X) vanishes at x. Assume that s has a critical point at x. Pick a local
generator τ of L at x and write s = fτm.

(1) The matrix

H(s) :=
(

∂2f

∂xi∂xj

)
is called the Hessian of s. The rank of H(s) at a point x is independent of
the choices of the local coordinates and the local generator of L.
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(2) We say that s has a nondegenerate critical point at x ∈ X if the rank of the
Hessian H(s)(x) is n.

(3) If n is even or p ̸= 2 and n is odd then s has a nondegenerate critical point
at x if and only if in suitable local coordinates f can be written as

f = c+ x1x2 + x3x4 + · · · + xn−1xn + f3,

where c ∈ k and f3 ∈ m3
x.

(4) If p = 2 and n is odd then every critical point is degenerate.
(5) Assume that p = 2 and n is odd. A critical point of s is called almost

nondegenerate if lengthOX,x/(∂f/∂x1, . . . , ∂f/∂xn) = 2. Equivalently, in
suitable local coordinates f can be written as

f = c+ ax2
1 + x2x3 + x4x5 + · · · + xn−1xn + bx3

1 + f3,

where a, b, c ∈ k, b ̸= 0, f3 ∈ m3
x and the coefficients of x3

1 in f3 is 0.

We need to treat the case where critical points are not isolated. Hence we intro-
duce the notion “admissible critical points”.

Definition 2.7. Let (X,x) be a germ of a smooth variety and a closed point x.
We say that s has an admissible critical point at x ∈ X if we may choose local
coordinates x1, . . . , xn of X at x such that, for some k ≥ 3, s can be written as

s = c+

{
ax2

1 + x2x3 + x4x5 + · · · + xk−1xk + g, if p = 2 and k is odd,

x1x2 + x3x4 + · · · + xk−1xk + g, if k is even,

where a, c ∈ k, g = g(x1, . . . , xn) ∈ (x1, . . . , xk)3 and that the set of critical points
of s is precisely the set (x1 = · · · = xk = 0) around x. If p = 2 and k is odd then we
further require that the coefficient of x3

1 in g is nonzero.

Note that if s has an isolated critical point at x then it is an admissible critical
point if and only if it is an (almost) nondegenerate critical point.

Lemma 2.8. Let (X,x) be a germ of a smooth variety and a closed point x. Assume
that p = m = 2, that is, the ground field k has characteristic 2 and s is a global
section of L2. If s has an admissible critical point at x ∈ X then the morphism
rx : Y ′ → Y = X[

√
s] obtained by blowing up along the singular locus gives a resolu-

tion of singularities of (X,x). Moreover, the injection π∗M ↪→ (Ωn−1
Y )∨∨ lifts to an

injection r∗π∗M ↪→ Ωn−1
Y ′ .

Proof. Let x1, . . . , xn be local coordinates of X at x and k ≥ 3 a positive integer
for which s can be written as in Definition 2.7. We shall prove the assertion only
when k is even. The case where k is odd can be proved similarly. Since Y is
defined by the equation w2 − s = 0, we see that the singular locus of Y is exactly
(w = x1 = · · · = xk = 0) after replacing w by w −

√
c. Thus Y is defined on a

smooth variety W with local coordinates w, x1, . . . , xn by the equation

w2 − (x1x2 + x3x4 + · · · + xk−1xk + g) = 0,

where g ∈ (x1, . . . , xk)3. Let W ′ → W be the blow up along (w = x1 = · · ·xk = 0)
and Y ′ the strict transform of Y on W ′. Then the exceptional divisor of W ′ →W is
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covered by open subsets U ′
1, . . . , U

′
k and U ′

w, where (xi = 0) (resp. (w = 0)) defines
the exceptional divisor on U ′

i (resp. U ′
w).

On U ′
1, we may choose coordinates w′, x′1, . . . , x

′
k, xk+1, . . . , xn of W ′, where x′1 =

x1, x′i = xi/x1 for 2 ≤ i ≤ k and w′ = w/x1. Y ′ is defined on U ′
1 by the equation

w′2 − (x′2 + x′3x
′
4 + · · · + x′k−1x

′
k + g′) = 0,

where g′ = g(x′1, x
′
2x

′
1, . . . , x

′
kx

′
1, xk+1, . . . , xn)/x′

2
1 vanishes along the exceptional

divisor. It follows that Y ′ is smooth along U ′
1. We can prove that Y ′ is smooth

along U ′
i for i = 1, . . . , k similarly.

On U ′
w, we may choose coordinates w′, x′1, . . . , x

′
k, xk+1, . . . , xn, where w′ = w and

x′i = xi/w for i = 1, . . . , k and Y ′ is defined by the equation

1 − (x′1x
′
2 + x′3x

′
4 + · · · + x′k−1x

′
k + g′) = 0,

where g′ = g(w′x′1, . . . , w
′x′k, xk+1, . . . , xn)/w′2 vanishes along the exceptional divi-

sor. This shows that Y ′ is smooth.
By Lemma 2.5, we can explicitly write down local generator π∗ηi of π∗M using

local coordinates x1, . . . , xn and it is easy to see that r∗xπ
∗ηi does not have a pole

along each exceptional divisor. Thus, we have an injection r∗xπ
∗M ↪→ Ωn−1

Y ′ . �

Remark 2.9. Let X◦ denote the open subset of X which is obtained by removing
the set of critical points of s and Y ◦ be the inverse image of X◦. Then Y ◦ is smooth
and there is an injection π∗L|Y ◦ ↪→ TY ◦ . This injection can be seen as a foliation
and the corresponding quotient is π|Y ◦ : Y ◦ → X◦. We refer the readers to [14, Part
I, Lecture III] for a detailed account of foliations in positive characteristics.

2.2. Non-ruledness criteria. We collect non-ruledness criteria which are due to
Kollár.

Lemma 2.10 (Lemma 7, [8]). Let X be a smooth proper variety and M a big line
bundle on X. Assume that there is an injection M ↪→ Ωi

X for some i > 0.
Then X is not separably uniruled.

Theorem 2.11 (Theorem 3.1.2, [10]). Let f : Y → X be a surjective morphism
between smooth proper varieties. Let M be a big line bundle on X and assume that
for some i > 0 there is a nonzero map

h : f∗M → Ωi
Y .

Let F = k(X) be the field of rational functions on X and YF the generic fiber of f .
Then there is a one-to-one correspondence between degree d separable unrulings of
Y and degree d separable unirulings of YF . In particular, Y is ruled if and only if
YF is ruled over F .

3. Birational invariance of π∗M

We will keep notation in the previous section. In this section, we shall give a
criterion for r∗π∗M to be birationally invariant assuming that X is a toric variety.

Let N be a lattice, M = HomZ(N,Z) its dual and Σ a fan in NR = N ⊗Z R. Let
X = XΣ be the toric variety defined by Σ. In this section, we assume that the
ground field k is an algebraically closed field of characteristic p > 0 and that X is
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smooth and projective. We denote by Σ(1) the one dimensional cones in Σ and, for a
cone σ in Σ, we set σ(1) = {ρ | ρ ∈ Σ(1) and ρ ⊂ σ}. Let r be the Picard number of
X and d = |Σ(1)|. We see that n = dimX = d−r since X is assumed to be smooth.
We define S = SΣ := k[xρ | ρ ∈ Σ(1)] which is a polynomial ring in d variables.
For a torus invariant divisor D =

∑
ρ aρDρ, we can associate the monomial

∏
ρ x

aρ
ρ ,

which we denote by xD. We grade S by deg(xD) = [D] ∈ Div(X), where Div(X) is
the divisor class group. For a divisor class α ∈ Div(X), let Sα =

⊕
deg(xD)=α k · xD

so that we have S =
⊕

α∈Div(X) Sα. We call S the homogeneous coordinate ring of
X.

Let F be a graded S-module, that is, F is a S-module and there is a direct
sum decomposition F =

⊕
α∈Div(X) Fα such that Sα · Fβ ⊂ Fα+β for all α, β ∈

Div(X). We can define a sheaf of OX -modules F̃ as follows. Let σ ∈ Σ be a cone
and σ∨ ⊂ MR be its dual cone. Set xσ̂ =

∏
ρ/∈σ(1) xρ. Then there is a natural

isomorphism k[σ∨ ∩ M] ∼= (Sσ)0, where Sσ is the localization of S at xσ̂. It follows
thatXσ = Spec(Sσ)0 is an affine open subset ofX. Put Fσ = F⊗SSσ. Taking degree

0 part, we get a (Sσ)0-module (Fσ)0, which determines a quasi-coherent sheaf (̃Fσ)0
on Xσ. It can be checked that these Xσ cover X and these sheaves patch together
to give a quasi-coherent sheaf F̃ on X. We refer the readers to [4] for a detailed
account of this subject.

Proposition 3.1 (Proposition 1.1, [4]). If α = [D] ∈ Div(X) then there is an
isomorphism

ϕD : Sα → H0(X,OX(D)).

Proposition 3.2 (Proposition 3.1, [4]). The map sending F to F̃ is an exact functor
from graded S-modules to quasi-coherent OX-modules.

Definition 3.3. Let E be the graded S-module
⊕

ρ∈Σ(1) S(αρ) with basis eρ in
degree −αρ. We define a (degree 0) homomorphism

Ψ: S⊕r = S ⊗Z HomZ(Div(X),Z) → E

of graded S-modules by

Ψ(f ⊗ ψ) = f
∑

ρ∈Σ(1)
ψ(αρ)xρeρ,

for a homogeneous element f ∈ S and ψ ∈ Hom(Div(X),Z).

Lemma 3.4. There is an isomorphism C̃okerΨ ∼= TX and the associated exact
sequence

0 → S̃⊕r Ψ̃−→ Ẽ → C̃okerΨ → 0

is the generalized Euler sequence

0 → O⊕r
X →

⊕
ρ∈Σ(1)

OX(Dρ) → TX → 0.

Proof. The homomorphism O⊕r
X →

⊕
ρOX(Dρ) in the generalized Euler sequence

is equal to the homomorphism

OX ⊗Z Hom(Div(X),Z) →
⊕

ρ∈Σ(1)
OX(Dρ)
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defined by sending 1 ⊗ ψ to (ψ(αρ)xρ)ρ, which obviously coincides with Ψ̃ : S̃⊕r →
Ẽ. �

Let L be a line bundle on X and s a global section of Lm, where m is a positive
integer divisible by p. Let β = [L] ∈ Pic(X) ∼= Div(X). We identify s with an
element of Smβ via the isomorphism H0(X,Lm) ∼= Smβ. As in Definition-Lemma
2.1, we have a homomorphism ds : L−m → Ω1

X . Let ds∨ : TX → Lm be the dual of
ds. We shall reconstruct ds∨ in the toric case.

Definition 3.5. We define a (degree 0) homomorphism Θ′
s : E → S(mβ) of graded

S-modules by

Θ′
s

(∑
ρ
fρeρ

)
=

∑
ρ
fρ

∂s

∂xρ
.

Definition-Lemma 3.6. The composite Θ′
s ◦ Ψ: S⊕r → Smβ is a zero map so

that there is induced a homomorphism CokerΨ → S(mβ), which we denote by

Θs. Moreover, the induced homomorphism Θ̃s : C̃okerΨ → S̃(mβ) coincides with
ds∨ : TX → Lm.

Proof. We have

(Θ′
s ◦ Ψ)(1 ⊗ ϕ) =

∑
ϕ(αρ)xρ

∂s

∂xρ
= mβs,

where the last equality is so called generalized Euler relations. This shows that
Θ′
s ◦ Ψ = 0 since the ground field has characteristic p and m is divisible by p. The

last assertion follows from the construction and Lemma 3.4. �

Definition 3.7. We denote by V = VΣ the k-vector space

V := E0 =
∑

ρ∈∆(1)
Sαρeρ.

For ψ ∈ Hom(Div(X),Z), we define

vψ :=
∑

ρ∈∆(1)
ψ([Dρ])xρeρ ∈ V.

We denote by V ′ the subspace of V spanned by {vψ | ψ ∈ HomZ(Div(X),Z)}.
We define θs : V → Smβ to be the map

θs : V = E0
(Θ′

s)0−−−→ S(mβ)0 = Smβ.

We may identify V with H0(X,
⊕

ρOX(Dρ)). Then V ′ is considered as the image
of H0(X,O⊕r

X ) under the map Φ.

Definition 3.8. Let D be a torus invariant divisor on X with a class α = [D] ∈
Div(X). We define VD := E(α)0 =

∑
ρ∈∆(1) Sαρ+αeρ. Let V ′

D be the degree 0
part of the image of Ψ(α) : S(α)⊕r → E(α), which is a subspace of VD. We define
θs,D : VD → Smβ+α to be the degree 0 part of the map Θ′

s(α) : E(α) → S(mβ + α).

We have an exact sequence

0 → S(α)⊕r
Ψ(α)−−−→ E(α) → Coker(Ψ(α)) → 0

and the corresponding exact sequence is

0 → OX(D)⊕r →
⊕

ρ
OX(Dρ +D) → TX(D) → 0
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which is the generalized Euler sequence tensored with OX(D).

Lemma 3.9. Let D be a torus invariant divisor on X with a class α = [D] ∈
Div(X). Assume that the set of critical points of s has codimension at least two and
H1(X,OX(D)) = 0. Then H0(X,F∨(D)) = 0 if and only if the kernel of the map
θs,D : VD → Smβ+α is V ′

D.

Proof. We have a sequence

0 → F∨(D) → TX(D) → Lm(D) → 0

which is exact outside the closed subset on which s has a critical points. It follows
that H0(X,F∨(D)) = 0 if and only if the map φ : H0(X, TX(D)) → H0(X,Lm(D))
is injective. We have the following exact sequence

0 → OX(D)⊕r →
⊕

ρ∈Σ(1)
OX(Dρ +D) → TX(D) → 0.

The assumption H1(X,OX(D)) = 0 shows that the sequence

0 → H0(X,OX(D))⊕r →
⊕

ρ
H0(X,OX(Dρ +D)) → H0(X, TX(D)) → 0

is exact. It follows that H0(X, TX(D)) is naturally isomorphic to VD/V ′
D. Hence we

have the following commutative diagram:

VD
θs,D //

��

Smβ

ϕmβ

��
H0(X, TX(−D))

φ // H0(X,Lm(D)),

and the kernel of the map VD → H0(X, TX(D)) is V ′
D. From this, we see that φ is

injective if and only if the kernel of θs,D is V ′
D. �

Proposition 3.10. Let Y = X[ m
√
s], M = M(L, s) and D be a torus invariant

divisor on X such that OX(D) ∼= L−1 ⊗M. Assume that the set of critical points
of s has codimension at least two and H1(X,L−1 ⊗M) = 0. Then, if the kernel of
θs,D is V ′

D then we have H0(Y, π∗M) ∼= H0(Y, (Ωn−1
Y )∨∨).

In particular, for any resolution r : Y ′ → Y of singularities of Y such that
the injection π∗M ↪→ (Ωn−1

Y )∨∨ lifts to an injection r∗π∗M ↪→ Ωn−1
Y ′ , we have

H0(Y ′, r∗π∗M) ∼= H0(Y ′,Ωn−1
Y ′ ).

Proof. Let X◦ be the open subset of X obtained by removing the set of critical
points of s and Y ◦ := π−1(X◦) the smooth locus of Y . For a sheaf H on X, we
denote by H◦ the restriction on H to X◦. By Lemma 2.2, there is an exact sequence

0 → π∗F◦ → Ω1
Y ◦ → π∗L◦−1 → 0

of locally free sheaves on Y ◦, where F = F(L, s) is the cokernel of ds : L−m → Ω1
X .

Taking a (n− 1)-th wedge product, we obtain an exact sequence

0 → π∗M◦ → Ωn−1
Y ◦ → π∗

(
L◦−1 ⊗

∧n−2
F◦

)
→ 0.

Since F◦ is a locally free sheaf of rank n− 1, we have an isomorphism∧n−2
F◦ ∼=

(∧n−1
F◦

)
⊗F◦ = M◦ ⊗F◦∨.



10 TAKUZO OKADA

Set G = L−1⊗M⊗F∨. It follows that the assertionH0(Y, π∗M) ∼= H0(Y, (Ωn−1
Y )∨∨)

follows from the assertion H0(Y, π∗G) = 0 since X \ X◦ has codimension at least
two in X. The latter follows from H0(X,G) = 0 since we have π∗π∗G = π∗OY ⊗G ∼=
G ⊕ (G ⊕ L−1) and L is effective.

We have an exact sequence

0 → L−m ds−→ Ω1
X◦ → F◦ → 0

of locally free sheaves on X◦. Taking a dual and then taking a tensor product with
L◦−1 ⊗M◦ ∼= OX◦(D), we get an exact sequence

0 → G◦ → TX◦(D) → L◦m(D) → 0.

Thus, we see thatH0(X,G) = 0 if and only if the mapH0(X, TX(D)) → H0(X,Lm(D))
is injective. By Lemma 3.9, the latter is equivalent to Ker θs,D = V ′

D. �

If L−1 ⊗ M is nef and big, which is the case in our applications, then we can
show that the assumption H1(X,L−1 ⊗M) = 0 is automatically satisfied using the
following vanishing theorem.

Theorem 3.11 (Batyrev-Borisov vanishing, Theorem 2.5, [2]). Let D be a nef Q-
Cartier divisor on a complete toric variety X. Then

H i(X,OX(−D)) = 0,

for all i ̸= κ(D).

Lemma 3.12. Assume that L is nef and big. Then, H1(X,L−1 ⊗M) = 0.

Proof. We have L−1⊗M ∼= L−1⊗ (ωX⊗Lm) ∼= ωX⊗Lm−1. By the Serre duality, it
suffices to show that Hn−1(X,L−(m−1)) = 0. This follows from Theorem 3.11. �

4. Non-ruled Mori fiber spaces

In this section, we construct a sequence of families of Q-Fano weighted hypersur-
faces and study their properties. We refer the readers to [5] for definitions and basic
properties of weighted projective spaces.

For a (resp. homogeneous) ring A and (resp. homogeneous) elements f1, . . . , fm
of A, we denote by

(f1 = · · · = fm = 0)

the subscheme of SpecA (resp. ProjA) defined by the (resp. homogeneous) ideal
generated by f1, . . . , fm. For positive integers a0, . . . , ak and m0, . . . ,mk, we denote
by P(am0

0 , am1
1 , . . . , amk

k ) the weighted hypersurface

P(
m0︷ ︸︸ ︷

a0, . . . , a0,

m1︷ ︸︸ ︷
a1, . . . , a1, . . . ,

mk︷ ︸︸ ︷
ak, . . . , ak).

In the following, we assume that positive integers l, m and n satisfy the following
condition.

Condition 4.1.
n−m

2
+ 1 ≤ l ≤ n−m.

We note that l,m and n necessarily satisfy l ≥ 2, n − m ≥ 2 and n ≥ 3 since
n−m ≥ (n−m)/2 + 1.
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Definition 4.2. Let k be a field and a a positive integer. We denote by k[x0, . . . , xn]
and k[x0, . . . , xn, w] the graded rings with deg xi = 1 for 0 ≤ i ≤ m, deg xi = a for
m + 1 ≤ i ≤ n and degw = la. For an integer d, we denote by k[x0, . . . , xn]d
the degree d part of the graded ring k[x0, . . . , xn] with the above grading. For
f = f(x0, . . . , xn) ∈ k[x0, . . . , xn]2la, we define a weighted hypersurface

Xf := (w2 − f(x0, . . . , xn) = 0) ⊂ P(1m+1, an−m, la) = Proj(k[x0, . . . , xn, y])

of degree 2la.

In this section, we fix positive integers l,m, n, a and weighted homogeneous poly-
nomial f = f(x0, . . . , xn) of degree 2la and put X = Xf . We assume that f is
general.

Definition 4.3. We denote by P and V the weighted projective spaces

P = P(1m+1, an−m) and V = P(1m+1, an−m, la),

respectively. For i = 0, 1, . . . , n+ 1, we denote by pi the vertex (0 : · · · : 1 : · · · : 0),
where the 1 is in the i-th position. We denote by πX : X → P the projection from
the point pn+1 ∈ V . Let ρ : W → V be the blow up of V along the closed subscheme
(x0 = · · · = xm = 0) and σ : Q → P the blow up of P along the closed subscheme
(x0 = · · · = xm = 0). Let Y be the strict transform of X in W and denote by
ρ : Y → X the induced birational morphism. We denote by πY : Y → Q the natural
projection which sits in the following commutative diagram:

Y

πY

��

ρ // X

πX

��
Q

σ
// P.

We often drop the subscript Y and write π instead of πY .

4.1. Non-ruledness. In this subsection, we work over an algebraically closed field
k of characteristic 2 unless otherwise specified.

Let P = P(a0, . . . , an) be a weighted projective space and Z a subscheme of P. For
an integer k, we denote by OP(k) the tautological sheaf and by OZ(k) the restriction
of OP(k) to Z.

Definition 4.4. We denote by L the invertible sheaf σ∗OP (la) on Q.

We identify f with a global section of OP (2la) and let s be the pullback σ∗f of
f , which is a global section of L2 = σ∗OQ(2la). Let V ◦ be the open subset of V
obtained by removing the point pn+1, and W ◦ be the open subset of W which is the
inverse image of V ◦ via the map W → V .

Lemma 4.5. Y is the covering Q[
√
s] of Q taking a root of s ∈ H0(Q,L2) and the

morphism π : Y → Q coincides with the covering map Q[
√
s] → Q.

Proof. The natural projection V ◦ → P can be seen as the total space of the line
bundle OP (la). Hence the morphism W ◦ → Q can be seen as the total space of the
line bundle L = σ∗OP (la). The assertion follows easily. �
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Lemma 4.6. Assume that n is even (resp. odd). Then f has only (resp. almost)
nondegenerate critical points on the smooth locus of P .

Proof. Let U be the smooth locus of P , that is, U = P \ (x0 = · · · = xm = 0). Since
Condition 4.1 in particular implies that l ≥ 2, it is easy to see that, for every closed
point p ∈ U , the restriction map

H0(P,OP (2la)) → OP (2la) ⊗ (OP /m
4
p)

is surjective, where mp is the maximal ideal of the local ring OP,p. Hence a general
f has only (almost) nondegenerate critical points on U (cf. [9, Chapter V, Exercise
5.7]). �

Lemma 4.7. The closed subset

Cr(f) :=
(
∂f

∂x0
=

∂f

∂x1
= · · · =

∂f

∂xn
= 0

)
of P consists of closed points.

Proof. Lemma 4.6 implies that Cr(f) consists of closed points if it is restricted on the
smooth locus of P . It is sufficient to show that Cr(f)∩(x0 = · · · = xm = 0) consists of
closed point assuming that a ≥ 2. We may write f = g(xm+1, . . . , xn)+h(x0, . . . , xn),
where g consists of the monomials in xm+1, . . . , xn. We have

Cr(f) ∩ (x0 = · · · = xm = 0) =
(

∂g

∂xm+1
= · · · =

∂g

∂xn
= 0

)
∩ (x0 = · · · = xm = 0).

The right hand side consists of closed points if a general homogeneous polynomial
of degree 2l has only isolated critical points on Pn−m−1, which can be easily verified.
Thus, Cr(f) is a finite set of closed points. �

We denote by Pi the open subset (xi ̸= 0) of P and by τi : P̃i → Pi the orbifold
chart. By a slight abuse of notation, we think of x0, . . . , x̂i, . . . , xn as affine coordi-
nates of P̃i ∼= An under the identification. Note that τi : P̃i → Pi is an isomorphism
for i = 0, 1, . . . ,m. For i = m+1, . . . , n, the finite group scheme µa = Spec k[t]/(ta)
acts on P̃i by

xj 7→

{
xj ⊗ t̄, for j = 0, 1,

xj 7→ xj ⊗ 1, otherwise,

and Pi is the geometric quotient P̃i/µa. The blow up σ can be described as fol-
lows. For simplicity, we work over Pn. Let Q̃n → P̃n be the blow up along
(x0 = · · · = xm = 0). Then the action of µa on P̃n naturally extend to an ac-
tion on Q̃n and the geometric quotient Qi = Q̃i/µa is the inverse image of Pi by
σ. We see that Q̃n is covered by open subsets Ũ0, . . . , Ũn−1 where the exceptional
divisor is defined by xi on Ũi. For example, on Ũ0, we can choose affine coordinates
x0, x

′
1 · · · , x′m, xm+1, . . . , xn, where x′i = xi/x0 for 1 ≤ i ≤ m. Then the action of

µa on Ũ0 is given by x0 7→ x0 ⊗ t̄, x′i 7→ x′i ⊗ 1 for 1 ≤ i ≤ m, and xj 7→ xj ⊗ 1 for
m+ 1 ≤ j ≤ n− 1. It follows that the geometric quotient Ui is the affine space with
affine coordinates x′0 = xa0, x

′
1, . . . , x

′
m, xm+1, . . . , xn−1 and the exceptional divisor of

σ is defined by x′0.
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Lemma 4.8. The global section s = σ∗f has only admissible critical points on Q

and the set Cr(s) of critical points of s endowed with the reduced induced scheme
structure is smooth. Moreover, Cr(s) consists of isolated closed points and closed
sets of codimension n−m+ 1.

Proof. By Lemma 4.6, s has only (almost) nondegenerate critical points outside the
exceptional divisor E and hence it is sufficient to consider critical points contained
in E. Let Cr(s) denote the set of critical points of s.

We write f = f0 +f1 + · · ·+f2l, where fi = fi(x0, . . . , xn) has (x0, . . . , xm)-degree
ia, and let D be the strict transform of the divisor (f1 + · · · + f2l = 0) ⊂ P . By
(x0, . . . , xm)-degree, we mean the degree of a polynomial in the polynomial ring
k(xm+1, . . . , xn)[x0, . . . , xm]. Let Z be the closed subset (x0 = · · · = xm = 0) of P .
We shall show that the set Cr(s)∩E is the disjoint union of D∩σ−1(p), where p runs
over the set Cr(f) ∩ Z. We work over the open subset Pn = (xn ̸= 0). Put xn = 1
and we identify x0, . . . , xn−1 as affine coordinates of P̃n. We see that σ−1(Pn) can
be covered by open subsets U0, U1, . . . , Um, where the exceptional divisor is defined
by xai on Ui.

Put x′0 = xa0 and x′i = xi/x0 for 1 ≤ i ≤ m. Then x′0, . . . , x
′
m, xm+1, . . . , xn−1

form affine coordinates of U0. Put gi = fi(1, x′1, . . . , x
′
m, xm+1, . . . , xn−1, 1). Then,

we have σ∗fi = x′0
igi on U0 and hence

s0 := s|U0 = (σ∗f)|U0 = g0 + x′0g1 + x′0
2
h = g0 + x′0z,

where h =
∑

i≥2 x
′
0
i−2gi and z = g1 +x′0h is the defining equation for D. An explicit

calculation shows that

Cr(s0) ∩ E =
(

∂g0
∂xm+1

= · · · =
∂g0
∂xn−1

= z = 0
)
.

Note that we have

Cr(f) ∩ Z ∩ Pn =
(

∂g0
∂xm+1

= · · · =
∂g0
∂xn−1

= 0
)
∩ Pn.

This shows that Cr(s) ∩ E coincides with ∪p∈Cr(f)∩Zσ
−1(p) ∩ D and is smooth on

U0. Let q be any closed point of Cr(s) ∩ E ∩ U0 and let p = σ(q). We shall show
that s has an admissible critical point at q. By replacing homogeneous coordinates
xm+1, . . . , xn, we may assume that p = pn. Then σ−1(p) = (x′0 = xm+1 = · · · =
xn−1 = 0) on U0. Put k = n−m− 1. We may write

g0 =

{
xm+1xm+2 · · · + xn−2xn−1 + g′0, if k is even,

ax2
m+1 + xm+2xm+3 + · · · + xn−2xn−1 + g′0, if k is odd,

where g′0 consists of monomials of degree ≥ 3 in xm+1, . . . , xn−1 and if k is even then
the coefficient of x3

m+1 in g′0 is nonzero. Therefore, we see that s has an admissible
critical point at q since the hypersurface D = (z = 0) is smooth and passes through
q.

Arguing in the same way for other open subsets U1, . . . , Um and then for other Pi,
m < i < n, we see that Cr(s)∩E is the union of smooth subvarieties σ−1(p)∩D and
s has only admissible critical points on Q. It is easy to see that each components
σ−1(p) ∩D has codimension n−m+ 1, which completes the proof. �



14 TAKUZO OKADA

Remark 4.9. Over a field of characteristic 0, the same argument shows that s0 =
g0 + x′0z on U0, where we use the same notation as in the proof of Lemma 4.8. But
the difference is that the set Cr(f) ∩ Z ∩ Pn is empty. It follows that we may write

g0 = c+
∑n

i=m+1
aixi

+

{
xm+1xm+2 · · · + xn−2xn−1 + g′0, if k is even,

ax2
m+1 + xm+2xm+3 + · · · + xn−2xn−1 + g′0, if k is odd,

where (am+1, . . . , an) ̸= (0, . . . , 0). This observation will be used in the proof of
Lemma 6.2.

Lemma 4.10. There is a resolution r : Y ′ → Y of singularities of Y such that the
injection π∗M(L, s) ↪→ (Ωn−1

Y )∨∨ lifts to an injection r∗π∗M(L, s) ↪→ Ωn−1
Y ′ .

Proof. This follows from Lemmas 2.8 and 4.8. �

Set F = F(L, s) and M = M(L, s), which are defined in Section 2.
For each i = 0, 1, . . . , n, let Di be the Cartier divisor on Q which is the strict

transform of the Weil divisor (xi = 0) ⊂ P , and let E be the exceptional divisor of
the blow up σ : Q→ P .

Lemma 4.11. M is ample (resp. nef and big) if and only if a > m + 1 (resp.
a ≥ m+ 1).

Proof. By Lemma 2.4, M is isomorphic to L2⊗ωQ. It is easy to see that a Q-divisor
αD0 +βE is ample (resp. nef and big) if and only if 0 < aβ < α (resp. 0 < aβ ≤ α).
Note that D1 ∼ D0 for 0 ≤ i ≤ m and Di ∼ aD0 + E for m+ 1 ≤ i ≤ n. We have

L2 ⊗ ωQ ∼= σ∗OP (2la) ⊗OQ

(
−

∑n

i=0
Di −E

)
∼= OQ(((2l − n+m)a−m− 1)D0 + (2l − n+m− 1)E).

Thus, our claim can be proved easily. �

Definition 4.12. A variety X is said to be ruled (resp. uniruled, resp. separably
uniruled) if there is a variety Y with dimY = dimX − 1 and a map P1 × Y 99K X
which is birational (resp. dominant, resp. dominant and separable).

Theorem 4.13. We assume that 1 + (n −m)/2 ≤ l ≤ n −m. Then the following
assertions hold for any a ≥ m+ 1.

(1) If Xf is defined over C and f is very general then Xf is a non-ruled Q-Fano
variety with Picard number one and has at most log terminal singularities.
Moreover, Yf is smooth and it has a structure of (n,m)-Mori fiber space over
Pm.

(2) If Xf is defined over an algebraically closed field of characteristic 2 and f is
general then Xf is not separably uniruled.

Proof. We shall prove (2). Put X = Xf . By Lemmas 4.10 and 4.11, the invertible
sheaf r∗π∗M is big and there is an injection r∗π∗M ↪→ Ωn−1

Y ′ . It follows from
Theorem 2.10 that Y ′ is not separably uniruled.

Assume that X = Xf is defined over C. Then the non-ruledness of X follows
from (2) by the degeneration method [9, Theorems 1.6 and 1.8]. We shall show that
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X is quasismooth, that is, the affine cone CX of X is smooth outside the origin. We
see that

Sing(CX) =
(
∂f

∂x0
=

∂f

∂x1
= · · · =

∂f

∂xn
= w = 0

)
∩ (w2 − f = 0)

=
(
f =

∂f

∂x0
=

∂f

∂x1
= · · · =

∂f

∂xn
= 0

)
∩ (w = 0).

By the criterion [6, Theorem 8.1], we see that the weighted hypersurface in P defined
by f is quasismooth, which implies that Sing(CX) = {0}. Thus X is quasismooth.
It follows that X is Q-factorial and has only cyclic quotient singularities. By the
adjunction formula, we have OX(KX) ∼= OX(c), where

c = 2la− (m+ 1 + (n−m)a+ la) = (l − n+m)a− (m+ 1).

By Condition 4.1, we have c ≤ −(m+1), which shows thatX is a Q-Fano variety. We
see from [5, Theorem 3.2.4] that the Picard number of X is one. Finally, let X 99K
Pm be the projection to the firstm+1 coordinates x0, . . . , xm. Then the induced map
Yf 99K Pm is a morphism and it is a Mori fiber space whose general fiber is isomorphic
to a (smooth) Fano weighted hypersurface of degree 2l in P(1n−m+1, l). �

4.2. Bounding birationally trivial subfamilies.

Definition 4.14. We denote by X (n,m)
a → S(n,m)

a (resp. X ′(n,m)
a → S ′(n,m)

a ) the
family of Xf defined over C (resp. k), and by Y(n,m)

a (resp. Y ′(n,m)
a ) the family of

Yf defined over C (resp. k).

In the following, we put X ′
a = X ′(n,m)

a and S ′
a = S ′(n,m)

a . We shall bound the
dimensions of birationally trivial subfamilies of X ′

a/S ′
a and then prove main theo-

rems. Throughout the subsection we assume that (l,m, n) satisfies Condition 4.1
and a > m+ 1.

We see that L−1 ⊗M ∼= OQ(D), where

D := −((n−m− l)a+m+ 1)D0 − (n−m− l + 1)E.

Note that −D is effective and hence H0(Q,OX(D)) = 0. Let S be the homogeneous
coordinate ring of Q and V the k-vector space defined in Definition 3.7.

Lemma 4.15. If l < n−m then VD = 0.

Proof. Let
E = OQ(D0) ⊕ · · ·OQ(Dm) ⊕OQ(Dm+1) ⊕ · · · ⊕ OQ(Dn) ⊕OQ(E)
∼= OQ(D0)⊕m+1 ⊕OQ(aD0 + E)⊕n−m ⊕OQ(E).

be the locally free sheaf which sits in the middle of the generalized Euler sequence.
We have VD ∼= H0(Q, E(D)). It is easily verified that none of D0 +D, aD0 +E +D

and E +D is effective if l < n−m, which shows that H0(Q, E(D)) = 0. �

Proposition 4.16. We have H0(Y ′, r∗π∗M) ∼= H0(Y ′,Ωn−1
Y ′ ).

Proof. By Lemma 3.12, we have H1(Q,OX(D)) = 0. Hence by Proposition 3.10, it
suffices to show that the kernel of θs,D is V ′

D.
If l < n−m then VD = 0 by Lemma 4.15, and there is nothing to prove. We may

assume that l = n −m. It is easy to see that V ′
D = 0. Let yi be the homogeneous
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coordinate corresponds to Di for 0 ≤ i ≤ n and y′ be the one corresponds to E.
Then S = k[y1, . . . , yn, y

′]. The section s can be expressed as

s = s(y1, . . . , yn, y
′) = f(y0y

′1/a, . . . , ymy
′1/a, ym+1, . . . , yn) ∈ S2β,

where β = [L] ∈ Pic(Q) ∼= Div(Q), and we may write

s = y′
2l
s2l + y′

2l−1
s2l−1 + · · · + y′s1 + s0,

where si = si(y1, . . . .yn) is homogeneous of degree 2β − [iE]. Note that s0 =
s0(ym+1, . . . , yn) is a polynomial in ym+1, . . . , yn. We have VD = (

⊕
S[Di+D]ei) ⊕

S[E+D]e
′, where ei and e′ are the generators. It is easy to see that S[Di+D] = 0

for i = 0, . . . ,m, and S[E+D] = 0. Hence an element v ∈ VD can be written as
v = gm+1em+1 + · · · gnen, where gi ∈ S[Di+D] = S[(a−m−1)D0]. It follows that gi is a
polynomial in y0, . . . , ym. Suppose that θs(v) = 0. Then we have

θs(v) =
∑2l

j=0

∑n

i=m+1
gi
∂(y′jsj)
∂yj

=
∑2l

j=0
y′
j
∑n

i=m+1
gi
∂sj
∂yi

= 0.

In particular, we must have ∑n

i=m+1
gi
∂s0
∂yi

= 0.

This shows that gi = 0 for every i since gi is a polynomial in y0, . . . , ym and s0 is a
general polynomial in ym+1, . . . , yn (cf. Remark 4.17 below). This shows that θs,D
is injective. �

Remark 4.17. Let g = g(z1, . . . , zn) be a (usual) homogeneous polynomial of degree
d with coefficients in an algebraically closed field and put gi = ∂g/∂zi. Assume that
g is general. We claim that Si ̸= S, where Si = ∩j ̸=i(gj = 0) and S = ∩(gj = 0).
We may write g = xd1 + xd−1

1 h1 + · · · + x1hd−1 + hd, where hj = hj(x2, . . . , xn) is a
homogeneous polynomial of degree j in x2, . . . , xn. We see that

S1|(x1=0) =
(
∂hd
∂x2

= · · · =
∂hd
∂xn

= 0
)

and

S|(x1=0) =
(
hd−1 =

∂hd
∂x2

= · · · =
∂hd
∂xn

= 0
)
.

Since g is general, we see that both hd−1 and hd are general. It follows that S is a
proper subset of S1. Similarly, we have Si ̸= S for every i.

In the proof of Lemma 4.16, s0 is a homogeneous polynomial in ym+1, . . . , yn.
From the claim above, for each i, we may find α = (αm+1, . . . , αn) ∈ kn−m such that
(∂s0/∂yj)(α) = 0 for j ̸= i and (∂s0/∂yi)(α) ̸= 0. It then follows that gi = 0.

Lemma 4.18. The rational map defined by the complete linear system of r∗π∗M is
the composite πY ◦ r : Y ′ → Q of r and πY .

Proof. We have M ∼= L2 ⊗ ωQ. As in the proof of Lemma 4.11, we have

M ∼= OY (((2l − n+m)a−m− 1)H0 + (2l − n+m− 1)Eρ).

We deduce from (2l− n+m)a−m− 1 < la that π∗YM is not very ample. Since M
is ample on Q by Lemma 4.11 and Q is a smooth complete toric variety, it is indeed
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very ample on Q. It follows that the image of the rational map defined by r∗π∗YM
coincides with πY ◦ r. �

Let Xf and Xg be general members of the family X ′
a/S ′

a. We denote by ρf : Yf →
Xf and Mf , etc, for the corresponding blow up and invertible sheaf, etc.

Lemma 4.19. Assume that there is a birational map φ : Xf 99K Xg. Then, φ is an
isomorphism. Moreover, there is an automorphism µ : P → P such that the diagram

Xf
φ //

πXf

��

Xg

πXg

��
P µ

// P

commutes.

Proof. Let ψ : Yf 99K Yg and ψ′ : Y ′
f 99K Y ′

g be the induced birational maps. By
Proposition 4.16 and Lemma 4.18, there is an automorphism λ of Q which sits in
the commutative diagram

Yf
ψ //

πYf

��

Yg

πYg

��
Q

λ
// Q.

We see that Yf and Yg are normalizations of Q in the function field of Y ′
f and

Y ′
g , respectively. In other words, they appear as Stein factorizations of Y ′

f → Q and
Y ′
g → Q, respectively. It follows that the birational map ψ is in fact an isomorphism.

The isomorphism ψ : Yf → Yg descend to an isomorphism Xf → Xg, which coincides
with φ. The automorphism λ of Q also descends to an automorphism µ of P and
we have the desired commutative diagram. �

Lemma 4.20. The following are equivalent.

(1) Xf and Xg are birational.
(2) Xf and Xg are isomorphic.
(3) There is an automorphism µ of P and a weighted homogeneous polynomial

h ∈ k[x0, . . . , xn]la such that f = µ∗g + h2.

Proof. The equivalence of (1) and (2) in proved in Lemma 4.19. Assume that (3)
holds. Let ψ be the automorphism of V defined by ψ∗xi = µ∗xi for i = 0, 1 . . . , n and
µ∗w = w − h. Then the restriction of ψ on Xf defines an isomorphism Xf → Xg.
Conversely, assume that there is an isomorphism φ : Xf → Xg. By Lemma 4.19,
there is an automorphism µ of P such that µ ◦ πXf

= πXg ◦ φ. We may write
φ∗w = αw+h for some α ∈ k and h ∈ k[x0, . . . , xn]la. We see that 0 = φ∗(w2−g) =
α2w2 +h2 +φ∗g in the coordinate ring k[x0, . . . , xn, w]/(w2−f) of the affine cone of
Xf . It follows that there is an element β ∈ k such that α2w2 +h2 +φ∗g = β(w2−f)
in k[x0, . . . , xn, w]. If β = 0 then α = 0 and φ∗g = h2. This is impossible since g is
general. Thus, we have α2 = β and φ∗g = h2 − βf . Since g ∈ k[x0, . . . , xn] we see
that φ∗g = µ∗g. This is (3). �
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Remark 4.21. Let Xa and Xb be sufficiently general members of the family Xa/Sa
and Xb/Sb defined over C, respectively. Then Xa is never birational to Xb unless
a = b. This can be seen as follows. If there is a birational map φ : Xa → Xb then
Lemma 6.3 shows that a reduction modulo 2 model φ′ of φ is a birational map.
But, by Lemma 4.19, we must have an isomorphism between P(1m+1, an−m) and
P(1m+1, bn−m), which is impossible unless a = b.

Lemma 4.22. The dimension of AutP is at most (n−m) dim k[x0, . . . , xm]a+(n−
m)2 + (m+ 1)2.

Proof. Let µ be an automorphism of P . We may write µ∗xi = α
(i)
0 x0 + · · ·+ α

(i)
m xm

for i = 0, . . . ,m and µ∗xi = hi + β
(i)
m+1xm+1 + · · · + β

(i)
n xn for i = m + 1, . . . , n,

where α(i)
j , β

(i)
j ∈ k and hi = hi(x0, . . . , xm) is a homogeneous polynomial of degree

a. Therefore, the dimension of AutP is at most

(m+ 1)2 + (n−m)(dim k[x0, . . . , xm]a + (n−m))

= (n−m) dim k[x0, . . . , xm]a + (n−m)2 + (m+ 1)2,

which completes the proof. �

Lemma 4.23. Let s′a be a general point of S′
a. Then there is a closed subvariety C′

a

of S ′
a with the following properties.

(1) C′
a parametrizes the members of X ′

a/S ′
a which are birational to the member

corresponds to s′a.
(2) dimS ′

a − dim C′
a → ∞ as a→ ∞.

Proof. We see that AutP naturally acts on S ′
a, that is, there is a morphism

AutP × S ′
a → S ′

a,

which sends (µ, [g]) to [µ∗g]. Let AutP · s′a be the closure of the image of AutP ×
{s′a}. Let T ′

a be the linear subspace of S ′
a which corresponds to the vector subspace

{h2 | h ∈ k[x0, . . . , xn]la} of k[x0, . . . , xn]2la. Let C′
a be the cone over the image

of AutP · s′a under the projection S ′
a 99K PN from the linear subspace T ′

a . By the
construction and Lemma 4.20, we can verify (1).

We have

dim C′
a ≤ dim AutP · s′a + (dim T ′

a + 1)

≤ dim AutP + h0(P,OP (la)).

For integers k > 0 and i ≥ 0, let d(k, i) be the dimension of the degree i part of a
(usual) polynomial ring in k variables. Then we have

dimS ′
a = h0(P,OP (2la)) − 1 =

∑2l

i=0
d(n−m, 2l − i)d(m+ 1, ia) − 1

and

h0(P,OP (la)) =
∑l

i=0
d(n−m, l − i)d(m+ 1, ia).

By Lemma 4.22, we have dim AutP ≤ (n−m)d(m+1, a)+ c, where c = (n−m)2 +
(m+1)2. Note that d(k, 0) = 1, d(k, 1) = k for every k, and d(k, i) ≤ d(k, j) if i < j.
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Combining altogether, we see that

dimS ′
a − dim C′

a

≥
∑2l

i=l+1
d(n−m, 2l − i)d(m+ 1, ia) − (n−m)d(m+ 1, a) − c− 1

≥ d(m+ 1, 2la) + d(n−m, 1)d(m+ 1, (2l − 1)a) − (n−m)d(m+ 1, a) − c− 1

≥ d(m+ 1, 2la) − c− 1.

Therefore, we have (2) since d(m+ 1, 2la) → ∞ as a→ ∞. �

5. Non-ruled conic bundles

In this section, we shall construct a sequence of families of non-ruled conic bundles
and study their properties.

5.1. Non-ruledness.

Definition 5.1. Let a be a positive integer. Let k[x0, . . . , xn−1] be a graded ring
whose grading is given by deg xi = 1 for 0 ≤ i ≤ n − 2 and deg xn−1 = a, and
k[y0, y1] the usual polynomial ring. We define P = P(1n−1, a) and P1 with homo-
geneous coordinates x0, . . . , xn−1 and y0, y1, respectively. Let p1 : P → P(1n−1, a)
and p2 : P → P1 be the projections. Let σP : Q → P be the blow up of P at the
singular point (0 : · · · : 0 : 1) and set σ = σP × id : Q × P1 → P × P1. We de-
note by L the pullback σ∗OP×P1(la, 1), where OP×P1(la, 1) is the invertible sheaf
p∗1OP(1n−1,a)(la) ⊗ p∗2OP1(1) on P × P1. Let f = f(x0, . . . , xn−1, y0, y1) be a general
homogeneous polynomial of bidegree (2la, 2), that is, a general global section of
OP×P1(2la, 2), and s = σ∗f be the pullback of f which is a global section of L2. We
set X = P × P1[

√
f ] and Y = Q× P1[

√
s].

Note that σ : Q× P1 → P × P1 is the blow up of P × P1 along the singular locus
(x0 = · · · = xn−2 = 0).

Lemma 5.2. s has only (almost) nondegenerate critical points on Q× P1.

Proof. It follows from [10, Lemma 2.2.3] that f has only (almost) nondegenerate
critical points on the smooth locus of P ×P1. We shall show that s does not have a
critical point on E. We write f = f0y

2
0 + f1y0y1 + f2y

2
1, where fi is a homogeneous

polynomial of degree 2la in x0, . . . , xn−1. Then we have s = s0y
2
0 + s1y0y1 + s2y

2
1,

where si = σ∗fi.
Let U be an open subset of Q×P1 on which y0 does not vanish. Then, by setting

y0 = 1, we have s = s0 + s1y1 + s2y
2
1 on U and si does not involve y1. It follows

that ∂s/∂y1 = s1. Thus the set of critical points of s which lie on E is contained
in (s1 = 0) ∩ E. Note that f1 is general and hence f1 does not pass through the
singular point of P . This shows that (s1 = 0)∩E = ∅ and s does not have a critical
point on E. �

Let r : Y ′ → Y be the resolution of singularities of Y which is given in Lemma
2.8. Put M := M(L, s). We see that M ∼= ωQ×P1 ⊗ L2 and we have an injection
r∗π∗M ↪→ Ωn−1

Y ′ .
Let Di be the strict transform of the Weil divisor (xi = 0) ⊂ P × P1 for 0 ≤ i ≤

n − 1, E the exceptional divisor of σ and Hi the divisor (yi = 0) on Q × P1 for
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i = 0, 1. Similarly, let D′
i be the strict transform of the Weil divisor (xi = 0) ⊂ P

and E′ the exceptional divisor of σP . We have q∗1D
′
i = Di and q∗1E

′ = E. Note that
D0, . . . , Dn−1, H0.H1 and E are the torus invariant prime divisors on Q × P1. We
see that Di ∼ D0 for 1 ≤ i ≤ n − 2, Dn−1 ∼ aD0 + E and H0 ∼ H1 so that the
divisor class group Div(Q× P1) ∼= Pic(Q× P1) is a free abelian group generated by
D0,H0 and E. Similarly, Div(Q) ∼= Pic(Q) is a free abelian group generated by D′

0

and E′.
We have

L ∼= σ∗OP×P1(la, 1) ∼= OQ×P1(laD0 + lE +H0)

and

M ∼= ωQ×P1 ⊗ L2

∼= OQ×P1

(
−

∑n−1

i=0
Di −

∑1

i=0
Hi − E

)
⊗ L2

∼= OQ×P1(((2l − 1)a− (n− 1))D0 + (2l − 2)E).

Set M := ((2l − 1)a− (n− 1))D0 + (2l − 2)E.

Lemma 5.3. Assume that a > n − 1. Then M is the pullback of a very ample
invertible sheaf on Q.

Proof. We see that M is the pullback of OQ(M ′), whereM ′ = ((2l−1)a−(n−1))D′
0+

E′. The toric varietyQ has Picard number two and two contractions σP : Q→ P and
Q → Pn−2, where the latter is the composite of σP and the projection P 99K Pn−2

to the first n − 1 coordinates x0, . . . , xn−2. From this we deduce that a divisor
αD′

0 + βE′ is ample if and only if 0 < aβ < α. Moreover, an ample Cartier divisor
on Q is very ample since Q is smooth. It follows that M ′ is very ample if and only
if a > n− 1, which completes the proof. �

Theorem 5.4. Assume that n ≥ 3 and a > n− 1. Then the following hold.

(1) If Y = Q × P1[
√
s] is defined over C then it is a smooth non-ruled variety

which has a conic bundle structure q1 ◦ π : Y → Q.
(2) If Y = Q × P1[

√
s] is defined over an algebraically closed field k of charac-

teristic 2 then it is not ruled.

Proof. (1) follows from (2). We shall prove (2). By Theorem 2.11 and Lemma 5.3, it
suffices to show that the generic fiber YF of q1◦π : Y → Q is non-ruled over F , where
F is the fields of rational functions on Q. Working on a suitable open subset of Q, we
can identify F with the field k(x1, . . . , xn−1). We see that YF is the conic defined in
P2
F with homogeneous coordinates y0, y1, w by the equation w2 = ay2

0 + by0y1 + cy2
1,

where a, b, c ∈ k[x1, . . . , xn−1]. Thus YF is not ruled over F by Theorem 2.11. �

Remark 5.5. Let ∆ be the discriminant divisor of the conic bundle Y → Q. Then
we have OQ(∆) ∼= L4. If l = 1 then 4KQ + ∆ ∼ −4(n− 1)D0 − 4E is not effective
for any a. Hence, in this case, nonrationality of Y cannot follow from the Sarkisov’s
criterion.

5.2. Bounding birationally trivial subfamilies. In this subsection, we assume
that n ≥ 3, l ≥ 1 and a > n− 1.
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Definition 5.6. Let X (n,n−1)
a → S(n,n−1)

a (resp. X ′(n,n−1)
a → S ′(n,n−1)

a ) be the family
of degree 2 covers P × P1[

√
f ] of P × P1 ramified in a divisor of bidegree (2la, 2)

defined over C (resp. k), and by Y(n,n−1)
a → S(n,n−1)

a (resp. Y ′(n,n−1)
a → S ′(n,n−1)

a )
be the family of Q× P1[

√
s] defined over C (resp. k).

In the following, we put X ′
a = X ′(n,n−1), S ′

a = S ′(n,n−1), and similarly for Y ′
a and

S ′
a. We shall bound the dimensions of birationally trivial subfamilies of X ′

a/S ′
a. The

argument is basically the same as in Section 4.2.

Lemma 5.7. We have H0(Y ′, r∗π∗M) ∼= H0(Y ′,Ωn−1
Y ′ ).

Proof. We see that L−1 ⊗M ∼= OQ×P1(D), where

D = ((l − 1)a− (n− 1))D0 + (l − 2)E −H0

is a torus invariant divisor. It is easy to see that H0(Q × P1,L−1 ⊗ M) = 0.
Hence, by Proposition 3.10 and Lemma 3.12, we need to show that θs,D : VD →
S2β+γ is injective, where β = [L] and γ = [D] are the classes in Div(Q). We have
H0(Q×P1,OQ×P1(Di+D)) = H0(Q×P1,OQ×P1(E+D)) = 0 since the coefficients
of H0 in the divisors Di + D and E + D are negative. It follows that we have an
isomorphism

VD ∼= S[H0+D] ⊕ S[H1+D]
∼= S⊕2

δ ,

where δ = [H0 + D] = [H1 + D] ∈ Div(Q × P1). Via the isomorphism above, θs,D
maps (t0, t1) ∈ S⊕2

δ to t0(∂s/∂y0) + t1(∂s/∂y1). Assume that θs,D(t0, t1) = 0. We
may write s = s0y

2
0 + s1y

2
1 + s2y0y1 for some si ∈ S2βx . It follows that θs,D(t0, t1) =

t0s2y1 + t1s2y0 = s2(t0y1 + t1y1) = 0. Note that s2 ̸= 0 since s is general. This shows
that t0 = t1 = 0 since ti is a polynomial in z0, . . . , zn−1 and ze for i = 0, 1. �

Let f1 and f2 be general global sections of OP×P1(2la, 2) and put si = σ∗fi. We
put Xi = P × P1[

√
si] and Yi = Q × P1[

√
si]. We denote by πi : Yi → Q × P1 the

covering map.

Lemma 5.8. Assume that there is a birational map ψ : Y1 99K Y2. Then φ is an
isomorphism and there is an isomorphism ν : Q × P1 → Q × P1 such that π2 ◦ ψ =
ν ◦ π1. Moreover, there is a nonzero α ∈ k and a global section t of L such that
ν∗s2 = αs1 + t2.

Proof. Let ri : Y ′
i → Yi be a resolution of singularities of Yi such that r∗i π

∗
iM ↪→

Ωn−1
Y ′

i
, where Mi = M(L, si), for i = 1, 2. Let ψ′ : Y ′

1 99K Y ′
2 be the birational

map induced by ψ. By Lemma 5.7, we have H0(Y ′
i , r

∗
i π

∗
iMi) ∼= H0(Y ′

i ,Ω
n−1
Y ′

i
).

It follows that the image of the map Φi defined by the complete linear system of
r∗i π

∗
iMi is a birational invariant of Y ′

i . Lemma 5.3 shows that Φi is the morphism
Y ′
i

ri−→ Yi
πi−→ Q × P1 q1−→ Q. Thus, we have an isomorphism νQ : Q → Q such that

the diagram

Y1
ψ //

��

Y2

��
Q

νZ

// Q

commutes.
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Let U ′
1 be the open subset of Y ′

1 on which ψ′ is defined. By Lemma 5.3, r∗i π
∗Mi

is generated by global sections for i = 1, 2 and ψ′∗ induces an isomorphism between
H0(Y ′

2 , r
∗
2π

∗
2M2) and H0(Y ′

1 , r
∗
1π

∗
1M1). It follows that we have an isomorphism

(ψ′|U ′
1
)∗r∗2π

∗
2M2

∼= r∗1π
∗
1M1|U ′

1
. Let U1 and U2 be open subsets of Y1 and Y2, respec-

tively, such that ψ induces an isomorphism ψ : U1 → U2. We have an isomorphism
(ψ|U1)

∗π∗2M2
∼= π∗1M1|U1 . Since Mi

∼= π∗i (ωQ×P1 ⊗ L2) and ωYi
∼= π∗i (ωQ×P1 ⊗ L),

we have π∗iL ∼= π∗iM ⊗ ωYi . Thus, we have an isomorphism π∗1L|U1
∼= (ψ|U1)

∗π∗2L
which sits in the following commutative diagram

TU1

∼= // (ψ|U1)
∗TU2

π∗L|U1

∼= //
?�

OO

(ψ|U1)
∗π∗2L

?�

OO

This shows that we have a birational map ν : Q × P1 99K Q × P1 which restricts
to an isomorphism π1(U1) → π2(U2) such that π2 ◦ ψ = ν ◦ π1 since the injection
π∗iL ↪→ TYi is a foliation and the quotient is the morphism πi : Yi → Q × P1 for
i = 1, 2 (cf. Remark 2.9).

We see that the following diagram

Q× P1 ν //

q1

��

Q× P1

q1

��
Q

νQ

// Q

commutes. This implies that ν is an isomorphism. Then the map ψ is also an
isomorphism since Y1 and Y2 are the normalizations of Q× P1 in the function field
of Y1 and Y2, respectively.

We have an isomorphism ν∗L ∼= L which induces an isomorphism Ψ of the total
spaces of L such that the restriction of Ψ to Y1 coincides with ψ. Yi is the zero locus of
w2
i −π∗i si ∈ H0(W,π∗iL2), where wi ∈ H0(W,π∗iL). We must have Ψ∗w2 = αw1+π∗1t

for some α ∈ k× and t ∈ H0(Q,L). Therefore, we have

π∗1ν
∗s2 = ψ∗π∗2s2 = ψ∗w2

2 = α2w2
1 + π∗1t

2 = π∗1(α
2s1 + t2),

which completes the proof. �

Definition 5.9. We define G = Aut(P )×Aut(P1) which can be seen as a subgroup
of the automorphism group of P × P1.

Lemma 5.10. Notation as above. The following are equivalent.

(1) X1 and X2 are isomorphic.
(2) X1 and X2 are birational.
(3) There is an automorphism µ ∈ G of P × P1, a nonzero α ∈ k and a homo-

geneous polynomial g of bidegree (la, 1) such that µ∗f2 = αf1 + g2.

Proof. The implication (1) ⇒ (2) is obvious. Assume that (3) holds. Then, using µ,
we can construct an automorphism the total space of OP×P1(la, 1) which restricts
to an isomorphism between X1 and X2, which proves (1).
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We assume that (2) holds and let φ : X1 99K X2 be a birational map. Then φ in-
duces a birational map ψ : Y1 99K Y2. By Lemma 5.8, ψ is an isomorphism.Moreover,
there are isomorphisms ν : Q×P1 → Q×P1 and νQ : Q→ Q such that q1◦ν = νQ◦q1
and ν∗s2 = αs1 + t2 for some α ∈ k× and t ∈ H0(Q × P1,L). The isomorphisms ν
and νQ descend to isomorphisms µ : P ×P1 → P ×P1 and µP : P → P , respectively,
such that p1 ◦ µ = µP ◦ p1 and that the diagram

X1
φ //

��

X2

��
P × P1

µ
// P × P1

commutes since the contractionsQ×P1 → P×P1 andQ→ P are unique. By arguing
in the same way as in the proof of Lemma 5.8, we see that φ is an isomorphism and
µ∗f2 = αf1 + g2, where g is the element of H0(P,OP (la, 1)) such that σ∗g = t.

It remains to show that µ ∈ G. Let µ′ = (µP × id)−1 ◦ µ be the automorphism of
P×P1. Then µ′ is an automorphism of P×P1 over P and hence we have µ′ = id×µP1

for some µP1 ∈ Aut(P1). It follows that µ = µP × µP1 ∈ G. �

Lemma 5.11. We have dimG ≤ 3(dim k[x0, . . . , xn−2]a + (n− 1)2).

Proof. �

Lemma 5.12. Let s′a be a general point of S′
a. Then there is a closed subvariety C′

a

of S ′
a with the following properties.

(1) C′
a parametrizes the members of X ′

a/S ′
a which are birational to the member

corresponds to s′a.
(2) dimS ′

a − dim C′
a → ∞ as a→ ∞.

Proof. By Lemma 5.10, we can construct C′
a with the property (1) in the same way

as in the proof of Lemma 4.23 and we have

dim C′
a ≤ dimG+ h0(P × P1,OP×P1(la, 1)).

Let d(m) be the dimension of the k-vector space k[x0, . . . , xn−2]m. We have

dimS ′
a − dim C′

a ≥ 3
∑2l

i=0
d(ia) − 3

(
d(a) + (n− 1)2

)
− 2

∑l

i=0
d(ia)

≥ 3
∑2l

i=l+1
d(ia) − 2d(a) − 3(n− 1)2 + 1

≥ d(2la) − 3(n− 1)2 + 1.

This shows (2) since d(2la) → ∞ as a→ ∞. �

6. Birational unboundedness

In this section, we shall prove Theorems 1.3 and 1.5.

6.1. Reduction modulo two.

Definition 6.1. We say that a family of varieties is birationally trivial if every two
members of the family are birational.
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Let Xa/Sa = X (n,m)/S(n,m)
a be either the family of Q-Fano weighted hypersurfaces

defined in Section 4 or the family of degree 2 covers of P(1n−1, a) × P1 defined in
Section 5 and let Ya/Sa = X (n,m)

a /S(n,m)
a be the corresponding family obtained by

blowing up Xa. Let X1 and X2 be sufficiently general members of the family Xa/Sa.
Let Yi be the variety obtained by blowing up Xi so that it is a general member of
Ya/Sa. We assume that there is a birational map φ : X1 99K X2. Then, we may find
a discrete valuation ring A with the following properties.

(1) A is a subring of C and its residue field is of characteristic 2.
(2) X1 and X2 descend to projective schemes X1 and X2 over SpecA.
(3) φ descends to a birational map Φ: X1 99K X2 defined over SpecA.

Note that Yi descends to projective scheme Yi over SpecA for i = 1, 2. Let
φ′ : X ′

1 99K X ′
2 be the induced rational map between geometric special fibers of

X1 → SpecA and X2 → SpecA. We call X ′
1, X

′
2 and φ′ a reduction modulo 2 model

of X1, X2 and φ, respectively.

Lemma 6.2. Let Y = Yi and A a discrete valuation ring as above. Then there
is a resolution Y′ → Y of singularities of Y such that each exceptional divisor is
contained in the special fiber and is geometrically ruled.

Proof. The singular locus of Y coincides with that of the special fiber of Y → SpecA.
Let C be an irreducible component of the singular locus of Y and t be a uniformizing
parameter of A. If C is a point then it is proved in [16, Proof of Lemma 3.1] that
the blow up at the point resolves the singularity and the exceptional divisor is ruled.
Hence we may assume that dimC > 0. By Lemma 4.8 and Remark 4.9, we may
choose coordinates x1, . . . , xn such that

s = c+ t(a1x1 + · · · akxk) + b1x1x2 + · · · + bk−1xk−1xk + g,

where c, bi are unit elements of A, ai ∈ A with (a1, . . . , ak) ̸= (0, . . . , 0) and g is
contained in the ideal (x1, . . . , xk)3. Here we assume that k is even for simplicity of
the proof. It follows that Y is defined by the equation

y2 = t(a1x1 + · · · + akxk) + b1x1x2 + · · · + bk−1xk−1xk + g

and the singular locus C is defined by the ideal (t, x1, . . . , xk). Let Y′ → Y be the
blow up along C. Then an explicit calculation shows that it resolves the singularity
and that the exceptional divisor is isomorphic to Z × C, where Z is the quadric
hypersurface defined by

Y 2 = T (a1X1 + · · · + akXk) + b1x1X2 + · · · + bk−1Xk−1xk

in Pk+1 with homogeneous coordinates X1, . . . , Xk, Y, T over the residue field of A.
Possibly taking a field extension, we see that Z is a cone over a quadric. Hence
E ∼= Z × C is geometrically ruled. �

Lemma 6.3. Let X1 and X2 be sufficiently general members of the family Xa/Sa
and assume that there is a birational map φ : X1 99K X2. Then, a reduction modulo
2 model φ′ : X ′

1 99K X ′
2 of φ is a birational map.

Proof. Let A be a suitable discrete valuation ring as above so that X1, X2 and φ

descend to X1, X2 and Φ. Let ψ : Y1 99K Y2 be the induced birational map. We
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see that ψ descends to a birational map Ψ: Y1 99K Y2 defined over SpecA. By
Theorems 4.13 and 5.4, the reduction modulo 2 model Y ′

i of Yi is not geometrically
ruled. Therefore, by Lemma 6.2, Ψ does not contract Y1 and induces a birational
map ψ′ : Y1 99K Y2. Thus a reduction modulo 2 model ψ′ : Y ′

1 99K Y ′
2 of ψ, and hence

φ′, is a birational map. �

The following result reduces the proof of Theorem 1.3 to bound the birationally
trivial subfamilies of X ′

a/S ′
a = X ′(n,m)

a /S ′(n,m)
a in characteristic 2.

Proposition 6.4. Suppose that the varieties in the infinite sequences of families
Xa/Sa are birationally bounded. Then, there exists a constant R′ such that, for
every positive integer a and a general point s′a ∈ S ′

a, there is a closed subvariety B′
a

of S ′
a with the following properties.
(1) B′

a parametrizes a birationally trivial family.
(2) B′

a passes through s′a.
(3) dimS ′

a − dimB′
a ≤ R′.

Proof. This is the combination of [16, Proposition 3.1 and Proposition 3.2], where
the sequence X ′

a/S ′
a of families are different from ours. Let us explain how to modify

proofs.
The proof of [16, Proposition 3.1] applies to any sequence of families of varieties. It

follows that we obtain a closed subvariety Ba of Sa which parametrizes a birationally
trivial family and which contains a given general point sa ∈ Sa with dimSa −
dimBa ≤ R. Let B′

a be a reduction modulo 2 model of Ba. It is enough to show
that B′

a parametrizes a birationally trivial family (cf. [16, Proof of Proposition 3.2]).
To this end, we need to show that a reduction modulo 2 model of a birational map
φ : Xf 99K Xg between two general members parametrized by Ba is birational. Thus,
by Lemma 6.3, we have the result. �

6.2. Proof of main theorems.

Proof of Theorem 1.5. Let n ≥ 3 and m be integers with 1 ≤ m ≤ n − 1. If
m ≤ n − 2 then we may pick (l,m, n) which satisfies Condition 4.1. In this case,
let {Xa/Sa = X (n,m)

a /S(n,m)
a } be the sequence of families of Q-Fano weighted hy-

persurfaces with the fixed (l,m, n) defined in Section 4. If m = n − 1 then let
{Xa/Sa = X (n,n−1)/S(n,n−1)

a } be the sequence of degree 2 covers of P(1n−1, a) × P1

defined in Section 5.
Suppose that n-dimensional smooth Mori fiber spaces over m-dimensional smooth

rational varieties are birationally bounded. By Theorems 4.13 and 5.4, the corre-
sponding family Ya/Sa is a family of smooth (n,m)-Mori fiber spaces over a rational
base. It follows that the varieties in the sequence of families {Xa/Sa} are bira-
tionally bounded. By Proposition 6.4, there are closed subvarieties B′

a of S ′
a through

a given general point s′a which parametrize birationally trivial families such that
dimS ′

a− dimB′
a is bounded from above by a constant R′ which does not depend on

a. Let C′
a be the subvariety obtained in Lemma 4.23 or 5.12. By the property (1) of

Lemma 4.23 or 5.12, we may assume that B′
a ⊂ C′

a. It follows that

dimS ′
a − dim C′

a ≤ dimS ′
a − dimB′

a ≤ R′.

This contradicts to (2) of Lemma 4.23 or 5.12 and the proof is completed. �
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Proof of Theorem 1.3. Let (l,m, n) be a triplet which satisfies Condition 4.1 and let
{Xa/S ′

a} be the family of Q-Fano weighted hypersurfaces with the given (l,m, n)
defined in Section 4. The proof of Theorem 1.5 shows that varieties in the sequence
{Xa/Sa} are birationally unbounded, which immediately implies the birational un-
boundedness of Q-Fano n-folds with Picard number one. �
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