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Abstract

The paper relates the 4-fold symmetric quandle homotopy (cocycle) invariants with topological

objects. We show that the 4-fold symmetric quandle homotopy invariants are at least as

powerful as the Dijkgraaf-Witten invariants. As an application, for an odd prime p, we show

that the quandle cocycle invariant of a link in S3 using the Mochizuki 3-cocycle is equivalent

to the Dijkgraaf-Witten invariant with respect to Z/pZ of the double covering of S3 branched

along the link. We also reconstruct the Chern-Simons invariant of closed 3-manifolds as a

quandle cocycle invariant via the extended Bloch group, in analogy to [IK].
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1 Introduction

Our motivation stems from a topic of Dijkgraaf-Witten invariant described in (1) be-

low. Let M be an oriented compact 3-manifold. Dijkgraaf and Witten [DW] discussed

the relation between Chern-Simons action and Wess-Zumino-Witten term on M through

the cohomology of the Eilenberg-MacLane space H3(K(G, 1);Z), where G is a compact

Lie group. If M has no boundary, then the quantum field theory of the Chern-Simons

functional in H3(K(G, 1);C/Z) can be interpreted as an obstruction class in the oriented

bordism group Ω3(K(G, 1)). Furthermore, one of their noteworthy results is that, when G

is finite, the path integral of the distribution function of a 3-cocycle ψ ∈ H3(K(G, 1);A)

reduces to a finite sum

DWψ(M) =
∑

f∈Homgrp(π1(M),G)

⟨f ∗(ψ), [M ]⟩ ∈ Z[A], (1)

where [M ] ∈ H3(M ;A) is the fundamental class of M . From a mathematical viewpoint,

Wakui [W] rigorously formulated DWψ(M) of certain 3-cocycles ψ ∈ H3(G;A) in terms

of a triangulation of M . Recently, the first author [H1] reformulated the Wakui formula

as a “quandle cocycle invariant” of links, using the fact that any closed 3-manifold is a

4-fold branched covering of S3.

Inspired by her work, the second author [N2] introduced a 4-fold symmetric quandle

homotopy invariant of 3-manifolds using a quandle G̃c. Here, G is a finite group and c ∈ G

is its central element satisfying c2 = e, and G̃c is a certain quandle defined with respect

to the pair of (G, c). The invariant of M is defined to be a set of “G̃c-colorings” with a

grading by an abelian group Π4f
2,ρ(G̃c). Here, ifM is a 4-fold branched covering of S3 along

a link L, a G̃c-coloring is roughly a homomorphism π1(S
3 \L) → G4oS4 compatible with

the monodromy π1(S
3 \L) → S4. On the other hand, the group Π4f

2,ρ(G̃c) is defined to be

a certain link bordism group of G̃c-colorings. The previous paper [N2] studied the quandle

structure of G̃c and estimated Π4f
2,ρ(G̃c) in an algebraic viewpoint. It is shown [N2, §7]

that the invariant produces the above quandle cocycle invariants considered in [H1].

In this paper, we topologically study the 4-fold symmetric quandle homotopy invariant.

For this, we give a topological interpretation of the G̃c-colorings, and relate the group

Π4f
2,ρ(G̃c) with some topological objects. We first show a natural bijection between G3 ×

Homgrp(π1(M), G) and the set of G̃c-colorings (Theorem 3.3). Note that the set of G̃c-

colorings is a classical invariant and is independent of the central element c ∈ G.

We next give our invariants some functoriality (§3.4). We introduce a fundamental

symmetric quandle SQ(M) of M (Definition 3.5). SQ(M) is roughly defined to be a

universal quandle representing the all G̃c-colorings. Using the bijection of Theorem 3.3 and

the universality, we show that the quandle SQ(M) is quandle isomorphic to G̃(M)c(M),

where G(M) := π1(M) × Z/2Z and c(M) := (e, 1) ∈ G(M) (Corollary 3.6). Further,

we define the fundamental class to be a canonical class of a link bordism using SQ(M)
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(Definition 3.7). Consequently, the study of the 4-fold homotopy invariant of M is a

research of the fundamental class using relativity to other 4-fold symmetric quandles G̃c

(see §3.4 for detail).

Next, in order to study the group Π4f
2,ρ(G̃c) mentioned above, we compare the4-fold

symmetric quandle homotopy invariants with the Dijkgraaf-Witten invariants given in

(1). For this, we take a perspective of a bordism group rather than the state sum formula.

We then work with the bordism Dijkgraaf-Witten invariant defined by using an oriented

bordism group Ω3(G, c) of the pair of (G, c) (see §5.1). From the viewpoint regarding

Π4f
2,ρ(G̃c) as a certain link bordism, we canonically obtain an epimorphism Π4f

2,ρ(G̃c) →
Ω3(G, c), and show that the bordism invariant is derived from the 4-fold symmetric quandle

homotopy invariant (Theorem 5.4). We remark that, when c = e, the bordism Dijkgraaf-

Witten invariant produces DWψ(M) in (1) for any 3-cocycle ψ ∈ H3(K(G, 1);A) (see

Remark 5.1); hence, so does the 4-fold symmetric quandle homotopy invariant. For the

future, it is a problem whether the epimorphism is isomorphic or not (Problem 5.7). If

this is isomorphic, the two invariants in Theorem 5.4 are equivalent.

As an application of bordism groups, we succeed in giving a topological interpretation

of two combinatorial invariants of links. For an odd m ∈ Z, the dihedral quandle Rm is

defined to be Z/mZ with a binary operation x ∗ y = 2y − x. Then the quandle homotopy

invariant of oriented links L ⊂ S3 with respect to Rm is defined by a combinatorial method

(see, e.g., [FRS, N1]). Let ML be the double branched cover of the link L. Then we show

that the quandle homotopy invariant of L is equivalent to the Dijkgraaf-Witten invariant

of ML with respect to G = Z/mZ (Corollary 5.9). As a special case, if m is a prime p,

then it is known [N1] that “the quandle cocycle invariant Φθp(L) ∈ Z[t]/(tp − 1) using

Mochizuki 3-cocycle” is equivalent to the quandle homotopy invariant of links, leading to

an equality Φθp(L) = atnDWψ(ML) for some a, n ∈ Z (Corollary 5.11). As a corollary, we

compute the Dijkgraaf-Witten invariants of some 3-manifolds (Example 5.12, 5.13, 5.14),

using known values of the quandle cocycle invariants Φθp(L) in [AS, Iwa1, Iwa2].

In another direction, when G = SL(2;C) or PSL(2;C), we discuss the Cheeger-Chern-
Simons class Ĉ2 ∈ H3(G;C/4π2Z). Given a homomorphism f : π1(M) → G, the Chern-

Simons invariant of M is defined to be the pairing ⟨f ∗(Ĉ2), [M ]⟩ ∈ C/4π2Z. It had been

a long-standing problem to provide a computation of the Cheeger-Chern-Simons class

and the Chern-Simons invariant. Dupont [Dup] gave an answer modulo π2Q. Lifting his

formula, Neumann [Neu] has obtained an explicit formula for Ĉ2 with G = PSL(2;C) via
the extended Bloch group B̂(C), and a computation of the Chern-Simons invariant in term

of a triangulation of M . Further, Dupont, Goette and Zickert succeeded in an extension

of the formula suitable for G = SL(2;C) [DG, DZ]. From quandle theory, Inoue-Kabaya

[IK] in ’09 reconstructed the Chern-Simons invariant of knot complements S3 \ K as a

quandle cocycle invariant, using B̂(C). In this paper, as an analogy, for G = SL(2;C),
we reconstruct the Chern-Simons invariant of closed 3-manifolds as a quandle cocycle
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invariant through B̂(C), using the Dupont formula [Dup] and a result in [H1] (Theorem 6.5

and §6.4). Similar to Inoue-Kabaya’s result [IK], a benefit of our reformulation is that we

can combinatorially compute the Chern-Simons invariant only from the homomorphism

f : π1(M) → SL(2;C) and the monodromy ϕ : π1(S
3 \ L) → S4 of a 4-fold branched

covering M → S3, without using triangulation of M .

Lastly, we outline the reconstruction. The point follows from the Dupont formula

[Dup] rather than B̂(C). He reformulated 6Ĉ2 as a function on a configuration space

Conf4(SL(2;R)). The reformulation is adequate for a result of the first author [H1];

hence, we succeed in reconstructing 6 multiple of the Chern-Simons invariant (Theorem

6.5). Finally, the Chern-Simons invariant makes a recovery from the multiplication by 6,

using the Dijkgraaf-Witten invariants with respect to cyclic groups (§6.4).
This paper is organized as follows. In §2, we review some notation of 4-fold sym-

metric quandle homotopy invariants. In §3, we give a topological interpretation of the

G̃c-colorings. In §4, we show the connected sum formula. In §5, we compare the 4-fold

symmetric quandle homotopy invariant with the bordism Dijkgraaf-Witten invariant. In

§6, we reformulate the Chern-Simons invariant as a quandle cocycle invariant.

2 Review: 4-fold symmetric quandle homotopy invariant

We briefly review some notation of 4-fold symmetric quandle homotopy invariants in [N2,

§2 and 3]. Throughout this paper, manifolds are assumed to be C∞-smooth, oriented,

connected and compact. Unless §5, we assume that manifolds have no boundary.

We first review symmetric quandles introduced by Kamada [Kam]. A symmetric quan-

dle is a triple of a set X, a binary operation ∗ on X and an involution ρ : X → X

satisfying that, for any x, y, z ∈ X, x ∗ x = x, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), ρ(x ∗ y) =
ρ(x) ∗ y, (x ∗ y) ∗ ρ(y) = x. For example, S := {(ij) ∈ S4} with x ∗ y := yxy and ρ(x) = x

is a symmetric quandle. We give another example introduced in [N2, Example 4.1] as

follows. We consider a pair of a group G and its central element c ∈ G such that c2 = e,

where e ∈ G is the identity element. Such a pair of (G, c) is called a cored group. Putting

T12 := {(i, j) ∈ Z2|1 ≤ i, j ≤ 4, i ̸= j}, we define G̃c to be a quotient set G×T12/∼, where

the equivalence relation ∼ on G × T12 is defined by (g, i, j) ∼ (g−1c, j, i), for (i, j) ∈ T12

and g ∈ G. We equip G̃c with an operation ∗ : G̃c × G̃c → G̃c defined by

(g, i, j) ∗ (g′, i, j) = (g′g−1g′, i, j), (g, i, j) ∗ (g′, j, k) = (gg′, i, k),

(g, i, j) ∗ (g′, k, l) = (g, i, j),

where i, j, k, l are distinct indices. Further, define ρ : G̃c → G̃c by ρ(g, i, j) = (gc, i, j).

Then (G̃c, ρ) is a symmetric quandle. Moreover, putting a projection pG̃c
: G̃c → S

which sends (g, i, j) to (ij) ∈ S, the triple of (G̃c, ρ, pG̃c
) satisfies the axioms of the 4-fold

symmetric quandle (see [N2, Definition 3.1] for detail). Remark that if G = {e}, then
G̃e

∼= S.
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For simplicity, in this paper we denote three elements (e, 1, 2), (e, 2, 3), (e, 3, 4) ∈ G̃c

by e12, e23, e34, respectively.

We review Xρ-colorings. Let D be an unoriented link diagram on R2. For a symmetric

quandle (X, ρ), anXρ-coloring ofD is a map C : {the two normal orientations on arcs of D}
→ X satisfying the following two conditions:

(X1) For the two orientations α1, α2 of the same arc as shown in Figure 1, the colors

satisfy C(α1) = ρ
(
C(α2)

)
. (Hence, we will later draw the only one color of the two).

(X2) At each crossing shown in Figure 1, the three orientations satisfy C(γ) = C(α)∗C(β).

α1

α2

C(α1) = ρ
(
C(α2)

)
α β

γ

C(γ) = C(α) ∗ C(β)

Figure 1: The conditions of symmetric colorings on orientations.

Note that the conditions (X1)(X2) are well-defined by the axioms of symmetric quandles.

Denote by ColX,ρ(D) the set of all Xρ-colorings of D. It is known [KO, Proposition 6.2]

that, if two diagrams D1 and D2 are related by Reidemeister moves, there exists a bijection

between ColX,ρ(D1) and ColX,ρ(D2).

For a symmetric quandle (X, ρ), an (X, ρ)-set is a set Λ equipped with a map ∗ :

Λ × X −→ Λ satisfying (λ ∗ x) ∗ x′ = (λ ∗ x′) ∗ (x ∗ x′) and (λ ∗ x) ∗ ρ(x) = λ for any

λ ∈ Λ and x, x′ ∈ X. For example, X is an (X, ρ)-set itself by the quandle operation. An

XΛ-coloring of D is defined to be an Xρ-coloring of D with an assignment of elements

of Λ to each complementary regions of D such that, for each regions separated by the arc

with a color x ∈ X, the colors and assignments satisfy the following picture.

x [λ]

[λ′]
λ ∗ x = λ′. (λ, λ′ ∈ Λ)

We will interpret 3-manifolds as Sid-colorings, where S = {(ij) ∈ S4} as above. It is

well-known that any 3-manifold M is a 4-fold simple covering of S3 branched over a link

L with its monodromy ϕ : π1(S
3 \ L) → S4. Remark that ϕ is surjective and sends each

meridian of L to a transposition in S4 (see, e.g., [N2, §2.2]). A link diagram D of L with

such a monodromy ϕ is called a labeled diagram and denoted by Dϕ. Notice that a labeled

diagram can be regarded as an Sid-coloring of D by Wirtinger presentation (see [PS, §24]
for detail). A labeled diagram Dϕ is said to be 3-fold, if its subdiagram of Dϕ labeled by

(34) is a single unknot as shown in Figure 2. It is known that M can be regarded as a

3-fold labeled diagram Dϕ (see, e.g., [R, §10.D]). We fix three orientations α12, α23, α34 of

three distinct arcs in Dϕ labeled by (12), (23), (34) ∈ S4 as shown in Figure 2, respectively.
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We denote by Cole12,e23,e34
G̃c,ρ

(Dϕ) the subset of G̃c-colorings C of D such that pG̃c
(C) = Dϕ

and these orientations αij are colored by eij = (e, i, j) ∈ G̃c, for (ij) ∈ {(12), (23), (34)}.

Dϕ (34)

(23)

(12)

α34

α23

α12

Figure 2: A 3-fold labeled diagram with three orientations α12, α23, α34.

For a cored group (G, c), we review an abelian group Π4f
2,ρ(G̃c) defined in [N2, §3.1].

Π4f
2,ρ(G̃c) is defined by a quotient set of all G̃c-colorings of all link diagrams D modulo

Reidemeister moves, symmetric concordance relations and MI, II moves. Here, symmetric

concordance relations and MI, II moves are local moves as shown in Figure 3 and 4, respec-

tively. Then we impose an abelian structure on Π4f
2,ρ(G̃c) by letting disjoint union define our

multiplication. For a labeled diagram Dϕ, we put a map Ξ4f
G̃c
(Dϕ; •) : Cole12,e23,e34G̃c,ρ

(Dϕ) →
Π4f

2,ρ(G̃c) which sends a G̃c-coloring of Dϕ to the canonical class (see [N2, (3)]).

Let M be a 3-manifold presented by a 3-fold labeled diagram Dϕ. When G is finite,

the second author defined a 4-fold symmetric quandle homotopy invariant of M by the

following formula (see [N2, Definition 3.3 and Lemma 4.6]).

Ξ4f
G̃c
(M) = |G|3

∑
C∈Col

e12,e23,e34
G̃c,ρ

(Dϕ)

Ξ4f
G̃c
(Dϕ;C) ∈ Z[Π4f

2,ρ(G̃c)]. (2)

The definition does not depend on the choice of labeled diagrams and the three arcs (see

[N2, Theorem 3.4 and Lemma 4.6]).

aρ(a)

aρ(a)

a
ρ(a)ρ(a)

a

a ρ(a)

∅

Figure 3: symmetric concordance relations. Here a ∈ G̃c.

3 4-fold symmetric quandle homotopy invariants as natural trans-
formations

In §3.2, we give a topological meaning of G̃c-colorings. In §3.3, we introduce a fundamental

symmetric quandle SQ(M) of a 3-manifold M , and give an interpretation of G̃c-colorings

6



(g, i, j) (h, j, k) (g, i, j) (h, j, k)

(g, i, j) (h, j, k)

(gh, i, k)

(f, k, l)(g, i, j)

(f, k, l)(g, i, j)

(g, i, j) (f, k, l)

Figure 4: MI, II moves of G̃c-colorings. Here, (g, i, j), (h, j, k), (f, k, l) ∈ G̃c, and i, j, k, l are distinct.

as a representable functor using SQ(M). Further, we interpret a 4-fold symmetric quandle

homotopy invariant as a natural transformation.

3.1 Preliminaries: the symmetric link quandle and the associated group

Let L be an unoriented link in S3. We briefly review the symmetric link quandle of L

introduced by Kamada [Kam]. Let SQ(L) be the set of homotopy classes of all pairs of

(D, γ), where D means an oriented meridian disk of L and γ means a path in S3 \ L
starting from a point of the boundary ∂D and ending at a fixed base point in S3 \ L. We

equip SQ(L) with a binary operation given by

[(D1, γ1)] ∗ [(D2, γ2)] := [(D1, γ1 · γ−1
2 · ∂D2 · γ2)],

and an involution ρ of SQ(L) given by ρ([(D, γ)]) = [(−D, γ)], where −D stands for the

disk D with the opposite orientation. Then SQ(L) turns out to be a symmetric quandle

(see also [KO, Example 2.4]).

We will explain the correspondence (3) below. Let (X, ρ) be a symmetric quandle and

D an unoriented link diagram of L. Let us denote by HomsQnd(SQ(L), X) the set of maps

SQ(L) → X preserving the operations ∗ and ρ, which are called (symmetric quandle)

homomorphisms. Kamada [Kam] gave a canonical bijection

Q(•) : ColX,ρ(D) −→ HomsQnd(SQ(L), X), (3)

where, for an Xρ-coloring C, Q(C) is defined to be a homomorphism sending the meridian

disk of an arc α to the color of C on α. This bijection is analogous to [Joy, §16].
We study labeled diagrams from a view of SQ(L). Recall that any labeled diagram Dϕ

can be regarded as an Sid-coloring. By substituting the bijection (3) to X = S, we see that
the map ϕ ∈ HomsQnd(SQ(L),S) associated to Dϕ through (3) is surjective. We denote

three meridian disks obtained from the previous arcs α12, α23, α34, by D12, D23, D34 ∈
SQ(L), respectively. Then, as a restriction of the bijection (3), we obtain a bijection

Cole12,e23,e34
G̃c,ρ

(Dϕ) ≃ Hom
(D12,D23,D34)(e12,e23,e34)
4sQnd (SQ(L), G̃c), (4)

where Hom
(D12,D23,D34)(e12,e23,e34)
4sQnd (SQ(L), G̃c) is defined to be the set of symmetric homo-

morphisms f : SQ(L) → G̃c satisfying f(Dij) = eij = (e, i, j) ∈ G̃c and pG̃c
◦ f = ϕ ∈

HomsQnd(SQ(L),S).
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We review the associated group [KO] of a symmetric quandle (X, ρ) defined by the

following presentation:

As(X)ρ = ⟨x ∈ X | y · (x ∗ y) = x · y, ρ(x) = x−1 (x, y ∈ X)⟩.

Notice that a symmetric quandle homomorphism f : (X, ρ) → (X ′, ρ′) induces a group

homomorphism As(f) : As(X)ρ → As(X ′)ρ′ .

Lastly, we discuss a canonical map iX : X → As(X)ρ defined by iX(x) = x. Note that

if X = G̃c, then iG̃c
is injective (cf. [N2, Lemma 3.8]). Further, we consider the case where

X is the link quandle SQ(L). Put a map iL : SQ(L) → π1(S
3 \ L) given by that, for a

meridian disk D, iL(D) ∈ π1(S
3 \ L) corresponds with a loop of the boundary ∂D. Then

iL passes to a group homomorphism As(SQ(L))ρ → π1(S
3 \ L). It can be verified that

this is an isomorphism by Wirtinger presentation (cf. [Joy, §14 and 15]). Moreover, we

can check that iL is entirely the above map iX : X → As(X)ρ with X = SQ(L), and that

the image Im(iL) consists of the conjugacy classes of the meridians of L.

3.2 G̃c-colorings of labeled diagrams

Our objective is to show Theorem 3.3.

Given a labeled diagram Dϕ which presents a 3-manifold M , we first introduce the

associated cored group denoted by (Gϕ, cϕ) as follows. Recall the associated monodromy

representation ϕ : π1(S
3\L) −→ S4 in §3.1. Let (S4)1 denote a subgroup {σ ∈ S4 | σ(1) =

1} (∼= S3). Let S̃3 \ L be the 4-fold (unbranched) covering associated to ϕ. Then an

isomorphism π1(S̃3 \ L) ∼= ϕ−1((S4)1) is known (see, e.g., [H1, §3.1]) and the boundary of

S̃3 \ L consists of 3♯L-tori. Let D be a link diagram of L, and l the number of the arcs

of D. For 1 ≤ t ≤ l, we let m̃t,j ∈ π1(S̃3 \ L) be the meridian associated obtained from

each lifted arcs, where j ∈ {1, 2, 3}. We may assume that, for 1 ≤ t ≤ l, m̃t,1 ∈ π1(S̃3 \ L)
is obtained from the branched locus of index 2. Then, we define a normal subgroup of

π1(S̃3 \ L) by

Nϕ = ⟨[m̃t,1, π1(S̃3 \ L)], m̃t,1(m̃t′,1)
−1, (m̃t,1)

2, m̃t,2, m̃t,3 (1 ≤ t, t′ ≤ l)⟩, (5)

where [m̃t,1, π1(S̃3 \ L)] are their commutator subgroups and the symbol ‘⟨ ⟩’ temporarily

stands for the normal closure in π1(S̃3 \ L). Define a group Gϕ = π1(S̃3 \ L)/Nϕ. Notice

π1(M) ∼= π1(S̃3 \ L)/⟨m̃t,j (1 ≤ t ≤ l, 1 ≤ j ≤ 3)⟩ by Van Kampen theorem, leading

a canonical epimorphism Gϕ −→ π1(M). We can verify the epimorphism is a central

extension, and the kernel is either Z/2Z or 0. Let us denote by cϕ a generator of the

kernel. We define a cored group (Gϕ, cϕ) as required.

Proposition 3.1. Let (G, c) be a cored group, and Dϕ a labeled diagram which presents a

3-manifold M . Then, there is a canonical bijection

Cole12,e23,e34
G̃c,ρ

(Dϕ) ≃ HomGrpc
(Gϕ, G), (6)
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where HomGrpc
(Gϕ, G) is defined to be the set of group homomorphisms f : Gϕ → G

satisfying f(cϕ) = c ∈ G.

Proof. In the case of c = e, the first author proved this theorem (see [H1, Proposition 3.5]).

In general of c, our proof is analogous to her proof. Then, we sketch a proof of Proposition

3.1. We often regard C ∈ Cole12,e23,e34
G̃c,ρ

(Dϕ) as a homomorphism ψ : SQ(L) → G̃c by (4).

First, given a symmetric quandle homomorphism ψ : SQ(L) → G̃c, we construct

Ψ ∈ HomGrpc
(Gϕ, G) as follows. We consider an injection χ : G̃c → G4 o S4 defined

by χ(g, i, j) = (a1, a2, a3, a4, (ij)), where g = ai = ca−1
j and ak = e (k ̸= i, j). Here S4

acts on G4 by the transformations of components of G4. The map χ induces a group

homomorphism χ̄ : As(G̃c) → G4 o S4. Further, by the previous subsection, we have a

commutative diagram:

SQ(L)

iL
��

ψ
// G̃c� _

i
G̃c

��

� v

χ

((RRRRRRRRRRRRRRRR

π1(S
3 \ L)

As(ψ)
// As((G̃c)ρ) χ̄

// G4 oS4

Denote by Ψ̄ a composite group homomorphism χ̄ ◦ As(ψ). Hence, for each meridian

m ∈ π1(S
3 \ L), if the associated arc of Dϕ is colored by (g, i, j) ∈ G̃c, then

Ψ̄(m) = (a1, a2, a3, a4, (ij)), where g = ai = ca−1
j and ak = e (k ̸= i, j). (7)

Let us recall that π1(S̃3 \ L) ∼= ϕ−1((S4)1) is a subgroup of π1(S
3 \ L). Denote by Ψ̃

the restriction of Ψ̄ on π1(S̃3 \ L). Then, the image of Ψ̃ is contained in the subgroup

G4o(S4)1 ⊂ G4oS4. Let π
1
G : G4o(S4)1 −→ G be the projection on the first component

in G4. Then by (7) we can check that the composite homomorphism π1
G ◦ Ψ̃ sends each

meridians m̃t,1 ∈ π1(S̃3 \ L) to c ∈ G. Therefore π1
G ◦ Ψ̃ induces a homomorphism Ψ :

(Gϕ, cϕ) −→ (G, c) as desired.

Conversely, given Ψ ∈ HomGrpc
(Gϕ, G), we will construct a G̃c-coloring. Put the canon-

ical section s1G : G −→ (S4)1nG4 of π1
G. We define Ψ̃ to be a composite s1G◦Ψ◦πGϕ

, where

πGϕ
is the canonical projection π1(S̃3 \ L) −→ Gϕ. According to [H1], we have known the

group presentations of π1(S
3 \L) and π1(S̃3 \ L), although we do not write them (see [H1,

§3.1] for more details). Then we can verify that π1(S
3 \ L) is generated by elements of

π1(S̃3 \ L) and three elements iL(D12), iL(D23), iL(D34) ∈ π1(S
3 \ L), that is,

π1(S
3 \ L) = ⟨π1(S̃3 \ L), iL(D12), iL(D23), iL(D34)⟩.

Moreover, we can verify that Ψ̃ uniquely extends to a homomorphism Ψ̄ : π1(S
3 \ L) −→

G4oS4 given by Ψ̄(iL(Dij)) = χ(eij) ∈ G4oS4 (see [H1, Page 278]). Then Ψ̄ satisfies the

condition (7). Hence, Im(Ψ̄) is contained in Im(χ). We thus have a map ψ : SQ(L) −→ G̃c

given by (χ)−1 ◦ Ψ ◦ iL (see the diagram below). Further, since χ(G̃c) ⊂ G4 oS4 is the

9



conjugacy class of (c, e, e, e, (12)), we can check that the map ψ is a symmetric quandle

homomorphism SQ(L) → G̃c. By the bijection (4), we obtain the required G̃c-coloring of

Dϕ whose arcs αij are colored by (e, i, j) ∈ G̃c.

The two constructions give the required 1 : 1 correspondence. For an understanding of

the proof, we put the following commutative diagram:

Gϕ

Ψ

��

π1(S̃3 \ L)
πGϕoo

Ψ̃
��

� � // π1(S
3 \ L)

Ψ̄

��

SQ(L)

ψ

��

iLoo

G G4 o (S4)1
π1
Goo � � // G4 oS4 G̃c

? _
χoo

We next discuss the projection Gϕ → π1(M) mentioned above.

Lemma 3.2. Let M be a 3-manifold. There exists a 3-fold labeled diagram Dϕ which

presents M such that the projection has a splitting: Gϕ ∼= π1(M)× Z/2Z.

Proof. It is shown [HMT] that there exists a 3-fold irregular branched covering p :M → S3

such that the set of points at which p fails to be a local homeomorphism bounds a disk in

M . We put the associated 3-fold labeled diagram Dϕ.

Let us construct a homomorphism f : Gϕ → Z/2Z as follows. Let ϕ : π1(S
3 \ K) →

S3 be the monodromy, where K is a knot in S3. Let l̃ (resp. m̃) ∈ π1(S̃3 \K) be

the longitude (resp. meridian) of a torus in S̃3 \K of local index 2. Put a map ιM :

H1(S̃3 \K;Z) → H1(M ;Z) induced by the inclusion S̃3 \K ↪→ M . Since l̃ bounds a

disk in M , we have ιM(l̃) = 0 ∈ H1(M ;Z). Therefore, by a Mayer-Vietoris argument, we

conclude that H1(S̃3 \K;Z) ∼= H1(M ;Z)⊕ Z, where the direct summand Z is generated

by m̃ ∈ H1(S̃3 \K;Z). Putting the projection H1(S̃3 \K;Z) → Z, we define a composite

homomorphism by

π1(S̃3 \K) −−−→ H1(S̃3 \K;Z) proj.−−−−→ Z proj.−−−−→ Z/2Z,

where the first map is the abelinization. Therefore, from the definition of Gϕ, the composite

induces a required homomorphism f : Gϕ → Z/2Z satisfying f(cϕ) = 1.

On the other hand, recall that the projection Gϕ → π1(M) is a central extension, and

that the kernel is either 0 or Z/2Z. Since f gives a crossed section of Gϕ → π1(M), we

easily see Gϕ ∼= π1(M)× Z/2Z as desired.

In conclusion, we give a topological interpretation of G̃c-colorings:

Theorem 3.3. For a cored group (G, c) and a labeled diagram Dϕ which presents a 3-

manifold M , we thus have a bijection

ColG̃c,ρ
(Dϕ) ≃ G3 × Homgrp(π1(M), G), (8)

where ColG̃c,ρ
(Dϕ) is the set of G̃c-colorings C satisfying pG̃c

(C) = Dϕ ∈ ColS,id(D).

10



Proof. Since the set ColG̃c,ρ
(Dϕ) depends on only M (see [N2, Proposition 3.2]), we may

choose a 3-fold labeled diagram Dϕ in Lemma 3.2. Since Gϕ = π1(M) × Z/2Z, we notice

a bijection HomGrpC(Gϕ, G) ≃ Homgrp(π1(M), G). Further, a bijection ColG̃c,ρ
(Dϕ) ≃

G3×Cole12,e23,e34
G̃c,ρ

(Dϕ) is shown [N2, Lemma 4.6]. Hence, the required bijection is obtained

from Proposition 3.1.

As a result, for a finite cored group (G, c), the cardinally of G̃c-colorings is a classical

invariant, and does not depend on the central element c ∈ G. Hence, our next step in §4
is to study the group Π4f

2,ρ(G̃c).

Incidentally, as a corollary, we give a topological interpretation of colorings of core

quandles. Given a group G, we equip G with a symmetric quandle operation of g ∗ h =

hg−1h and ρ = idG, called a core quandle.

Corollary 3.4. Let D be a link diagram of a link L, and G a group. Denote by QG the core

quandle on G. Let ML be the double branched covering of S3 branched over the link. Then

the set of QG-colorings ColQG,id(D) is in 1:1 correspondence with G×Homgrp(π1(ML), G).

Proof. By Figure 5, we obtain a labeled diagram Dϕ from D, where we equip all arcs

of D with labels (12) ∈ S and add two unknots labeled by (23) and (34). Then Dϕ

presents ML. Note that the core quandle QG is isomorphic to the subquandle composed

of {(g, 1, 2) ∈ G̃e} by definitions. Hence, a QG-coloring of D is regarded as a G̃e-coloring

of the labeled diagram Dϕ, i.e., a homomorphism π1(ML) → G by Theorem 3.3.

D D
(23)

(34)

Figure 5: A labeled diagram Dϕ obtained from a link diagram D.

3.3 A fundamental symmetric quandle of a 3-manifold

For a 3-manifoldM , we will define a fundamental symmetric quandle ofM and investigate

its property.

Let Dϕ be a labeled diagram which presents M . Recall the associated symmetric

quandle epimorphism ϕ : SQ(L) → S in §3.1. We consider the following equivalent

relations on SQ(L):

R3,ϕ
L := ⟨xij ∗ yjk = ρ(yjk) ∗ xij (xij ∈ ϕ−1(ij), yjk ∈ ϕ−1(jk))⟩

R4,ϕ
L := ⟨zij ∗ wkl = zij (zij ∈ ϕ−1(ij), wkl ∈ ϕ−1(kl))⟩

11



Then, we define the quotient symmetric quandle SQ(L)/⟨R3,ϕ
L , R4,ϕ

L ⟩. It goes without

saying that the quotient quandle satisfies the axioms of the 4-fold symmetric quandle

by definition (see [N2, Definition 4.1]). By a discussion similar to [N2, Proposition 3.2],

if two labeled diagrams Dϕ and D′
ϕ′ are related by some finite sequences of Reidemeis-

ter moves and MI, MII moves with G = {e}, then we can obtain a symmetric quandle

isomorphism SQ(L)/⟨R3,ϕ
L , R4,ϕ

L ⟩ ∼= SQ(L′)/⟨R3,ϕ′

L′ , R
4,ϕ′

L′ ⟩. Thus, by the result in [Apo],

SQ(L)/⟨R3,ϕ
L , R4,ϕ

L ⟩ does depend on only the 3-manifold M (see also [N2, Theorem 2.1]).

Definition 3.5. For a labeled diagram Dϕ of a 3-manifold M , we define a fundamental

symmetric quandle of M by the quandle SQ(L)/⟨R3,ϕ
L , R4,ϕ

L ⟩. We denote it by SQ(M).

Assume that Dϕ is 3-fold. We use notation D12, D23, D34 ∈ SQ(L) in §3.1. Re-

call the category of 4-fold symmetric quandles denoted by Qnd4s (see [N2, Corollary

4.3]). The objects of Qnd4s consist of G̃c with respect to cored groups (G, c). Let

us denote by HomQnd4s(SQ(M), G̃c) the set of morphisms in Qnd4s from SQ(M) to

G̃c (see [N2, §4.1] for detail). Remark a natural bijection HomQnd4s(SQ(M), G̃c) ≃
Hom

(D12,D23,D34)(e12,e23,e34)
4sQnd (SQ(M), G̃c) described in [N2, Remark 4.4]. By the correspon-

dence (4) and Proposition 3.1, we thus have a bijection

HomQnd4s(SQ(M), G̃c) ≃ Cole12,e23,e34
G̃c

(Dϕ). (9)

Although the definition of SQ(M) seems ad hoc, we give its concrete presentation as

follows:

Corollary 3.6. For a 3-manifold M , there exists a symmetric quandle isomorphism

SQ(M) ∼= G̃(M)c(M), where
(
G(M), c(M)

)
is a cored group (π1(M)× Z/2Z, (e, 1)).

Proof. Let Dϕ be a 3-fold labeled diagram which presents M in Lemma 3.2. Recall an

equivalence of categories between Qnd4s and the category of cored groups (see [N2, Corol-

lary 4.3]). Hence, there exists a bijection

HomGrpc
(G(M), G) ≃ HomQnd4s(G̃(M)c(M), G̃c),

for any cored group (G, c). By the canonical bijections (6) and (9), we have a natural

equivalence of the following functors from Qnd4s to the category of sets:

HomQnd4s(SQ(M), •̃c) ≃ HomQnd4s(G̃(M)c(M), •̃c).

Hence, by Yoneda embedding, we conclude SQ(M) ∼= G̃(M)c(M).

3.4 4-fold symmetric quandle homotopy invariants as natural transformations

Furthermore, we define a fundamental class of M , and give an interpretation of the 4-fold

symmetric quandle homotopy invariant as a natural transformation.
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We fix a 3-fold labeled diagram Dϕ which presents a 3-manifold M . Let us regard

HomQnd4s(SQ(M), •̃) as a functor from the category of 4-fold symmetric quandles. Fur-

ther, we interpret the group Π4f
2,ρ(•̃) described in §2 as such a functor. We now iden-

tify HomQnd4s(SQ(M), G̃c) with Cole12,e23,e34
G̃c,ρ

(Dϕ) by (9). Thus the map Ξ4f
G̃c
(Dϕ, †) :

Cole12,e23,e34
G̃c,ρ

(Dϕ) → Π4f
2,ρ(G̃c) can be regarded as a natural transformation:

Ξ4f
•̃ (Dϕ; †) : HomQnd4s(SQ(M), •̃) −→ Π4f

2,ρ(•̃). (10)

Let us consider a set of such natural transformations: by Yoneda lemma, we have a

bijection

Nat
(
HomQnd4s(SQ(M), •̃),Π4f

2,ρ(•̃)
)
≃ Π4f

2,ρ(SQ(M)),

which sends Ξ4f
•̃ (Dϕ; †) to Ξ4f

SQ(M)(Dϕ; idSQ(M)), where idSQ(M) is the identity map of

SQ(M).

Definition 3.7. LetM be a 3-manifold, and SQ(M) the fundamental symmetric quandle

of M . A fundamental class of M is defined to be Ξ4f
SQ(M)(Dϕ; idSQ(M)) ∈ Π4f

2,ρ(SQ(M)).

By the naturality, we can reformulate the formula (2) of the 4-fold homotopy invariant as

Ξ4f
G̃c
(M) = |G|3 ·

∑
F∈HomQnd4s (SQ(M),G̃c)

F∗
(
Ξ4f
SQ(M)(Dϕ; idSQ(M))

)
∈ Z[Π4f

2,ρ(G̃c)]. (11)

In conclusion, the study of the 4-fold symmetric quandle homotopy invariant of M is

roughly the research of Π4f
2,ρ(SQ(M)) and of the fundamental class using relativity to

other 4-fold symmetric quandles G̃c.

Remark 3.8. We compare the fundamental classes of knots with those of 3-manifolds. In

the theory of quandle homotopy invariants valued in π2(BX), the second author showed

that, for any non-trivial knots K, the homotopy group of the “knot quandle” is isomorphic

to Z generated by the “fundamental class” (see [N1, Corollary 4.17]). On the other hand,

on the 4-fold homotopy invariant of 3-manifolds M , Π4f
2,ρ(SQ(M)) is always neither Z nor

generated by the fundamental class, but Π4f
2,ρ(SQ(M)) does depend on M .

4 Formulas for the connected sum and the opposite orientation

In this section, we show the formulas of the 4-fold quandle homotopy invariant for the

connected sum and the opposite orientation.

Proposition 4.1. Let M1 and M2 be 3-manifolds. Let M1#M2 denote the connected sum

of M1 and M2. For a finite cored group (G, c),

Ξ4f
G̃c
(M1) · Ξ4f

G̃c
(M2) = |G|3 · Ξ4f

G̃c
(M1#M2) ∈ Z[Π4f

2,ρ(G̃c)]. (12)
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Proof. The proof is analogous to [N1, Proposition 5.1]. Let D1 and D2 be 3-fold labeled

diagrams which present 3-manifolds M1 and M2, respectively. Then, by Proposition 4.3

below, M1#M2 is presented by D1#D2 as shown in Figure 6. Let α1
ij, α

2
ij, βl be arcs

of D1, D2, D1#D2 shown in Figure 6, respectively. Also, define Cole12,e23,e34
G̃c,ρ

(D1#D2) to

be the subset of ColG̃c,ρ
(D1#D2) such that β1, β3, β5 are colored by e12, e23, e34 ∈ G̃c,

respectively. Remark that, for a G̃c-coloring C ∈ Cole12,e23,e34
G̃c,ρ

(D1#D2), it follows from

Lemma 4.2 below that the arcs β2 and β4 are colored by e12 and e23, respectively.

D1 D2 D1#D2
α1
12 α2

12

α1
23 α2

23

(34) (34)

β1

β3

β2

β4

β5 (34)

Figure 6: Labeled diagrams of D1, D2 and D1#D2 with some arcs.

By the formula (2), the left hand side of (12) is

Ξ4f
G̃c
(M1) · Ξ4f

G̃c
(M2) = |G|6

∑
(C1,C2)∈Col

e12,e23,e34
G̃c,ρ

(D1)×Col
e12,e23,e34
G̃c,ρ

(D2)

Ξ4f
G̃c
(M1;C1) · Ξ4f

G̃c
(M2;C2).

Note that there is a natural 1-1 correspondence between Cole12,e23,e34
G̃c,ρ

(D1)×Cole12,e23,e34
G̃c,ρ

(D2)

and Cole12,e23,e34
G̃c,ρ

(D1#D2), which preserves the multiplication in Π4f
2,ρ(G̃c). Therefore,

Ξ4f
G̃c
(M1) · Ξ4f

G̃c
(M2) = |G|6

∑
C∈Col

e12,e23,e34
G̃c,ρ

(D1#D2)

Ξ4f
G̃c
(D1#D2;C) = |G|3 · Ξ4f

G̃c
(M1#M2),

where we use the formula (2) again in the second equality.

We show Lemma 4.2 and Proposition 4.3, which are used in the proof of Proposition 4.1.

Lemma 4.2. Let D1#D2 be a labeled diagram as shown in Figure 6. For any C ∈
Cole12,e23,e34

G̃c,ρ
(D1#D2), the orientations β2 and β4 are colored by e12 and e23, respectively.

Proof. Let us regard G̃c as a (G̃c, ρ)-set with the canonical action (see §2). For κ ∈ G̃c,

put the associated (G̃c)Λ-coloring as illustrated in Figure 7 whose region with the infty is

assigned by κ. Then, by the coloring condition of the middle region, we have

(κ ∗ e12) ∗ ρ(g, 1, 2) = (κ ∗ e23) ∗ ρ(h, 2, 3). (13)

Since κ ∈ G̃c is arbitrary, by applying κ = e34 ∈ G̃c to the equality (13), we have

e34 = (e34 ∗ e12) ∗ ρ(g, 1, 2) = (e34 ∗ e23) ∗ ρ(h, 2, 3) = (e, 4, 2) ∗ ρ(h, 2, 3) = (h−1, 3, 4).

Hence, h = e. Similarly, by applying κ = (e, 1, 4) to (13), we obtain g = e as required.
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D1 D2[(κ ∗ e12) ∗ ρ(g, 1, 2)] = [(κ ∗ e23) ∗ ρ(h, 2, 3)]

[κ]

e12
(g, 1, 2)

(h, 2, 3)

e23
[κ ∗ e23]

[κ ∗ e12]

Figure 7: C ∈ Cole12,e23,e34
G̃c,ρ

(D1#D2) with arcs β1, β2, β3 and β4

We will show a presentation of a labeled diagram of the connected sum.

Proposition 4.3. We let D1 and D2 be labeled diagrams presenting 3-manifolds M1 and

M2, respectively. Then the connected sum ofM1 andM2 is presented by the labeled diagram

obtained from a transformation of D1 and D2 as illustrated in Figure 8.

D1 D2 D1 D2

(12)

(23)

(34)

(12)

(23)

(34)

(12)

(23)

(34)

Figure 8: A transformation for a covering presentation of the connected sum of two 3-manifolds

We remark that this transformation does not depend on the choice of arcs of labeled

diagrams D1 and D2, with the labels (12), (23) and (34).

Proof. We first explain a branched covering of a 3-ball B3. We put three trivial tangles T
in B3 shown in Figure 9. Since π1(B

3\T ) is a free group of rank 3, we put a homomorphism

π1(B
3 \ T ) → S4 which sends the three meridians to (12), (23), (34) ∈ S4, respectively.

Notice that a 4-fold branched covering associated to the homomorphism is also a 3-ball

(cf. [PS, Example 23.5]).

L1 L2

N2N1

Figure 9: : The tangle T in B3 and two neighborhoods N1 ⊂ S3 and N2 ⊂ S3.

Next, let L1 ⊂ S3 and L2 ⊂ S3 be links corresponding to the labeled diagrams D1 and

D2, respectively. We remove from S3 an open 3-ball N1 (resp. N2) which intersects L1
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(resp. L2) transversally at 6-points as shown in Figure 9. Notice that, for i ∈ {1, 2}, the
4-fold covering branched over the tangles Li \ (Ni ∩ Li) ⊂ S3 \Ni is precisely Mi \ B3 by

the previous discussion. Note that the boundaries of the pairs of
(
S3 \N1, L1 \ (N1 ∩L1)

)
and of

(
S3 \N2, L2 \ (N2 ∩ L2)

)
are homeomorphic. We attach S3 \N1 to S3 \N2 by the

homeomorphism, similar to the right in Figure 8. In sequel, the 4-fold covering branched

over the resulting link turns out to be the connected sum of M1 and M2 by definition.

Lastly, we will deal with the quandle homotopy invariant of the inverse orientation.

Proposition 4.4. Let −M denote the 3-manifold M with the opposite orientation. For a

finite cored group (G, c),

Ξ4f
G̃c
(−M) = ι

(
Ξ4f
G̃c
(M)

)
∈ Z[Π4f

2,ρ(G̃c)],

where ι is a map of Z[Π4f
2,ρ(G̃c)] induced by ι(x) = x−1 for any x ∈ Π4f

2,ρ(G̃c).

Proof. We choose a labeled diagram Dϕ of M . Then the mirror image −Dϕ presents

−M . It follows from the definition of G̃c-colorings that there exists a natural bijection φ :

ColG̃c,ρ
(Dϕ) → ColG̃c,ρ

(−Dϕ). From the definition of Π4f
2,ρ(G̃c), we have Ξ

4f
G̃c
(−Dϕ;φ(C)) =

ι
(
Ξ4f
G̃c,ρ

(Dϕ;C)
)
∈ Π4f

2,ρ(G̃c). Hence, we obtain the required formula.

5 Dijkgraaf-Witten invariant

In this section, we compare the quandle homotopy invariants with bordism Dijkgraaf-

Witten invariants. In §5.1, we prepare the bordism Dijkgraaf-Witten invariant. In §5.2,
we show that the 4-fold symmetric quandle homotopy invariant is at least as strong as

the bordism Dijkgraaf-Witten invariant (Theorem 5.4). We sometimes consider manifolds

with some boundaries.

5.1 Preliminary: bordism Dijkgraaf-Witten invariant

Let (G, c) be a cored group and let n ∈ Z be ≥ 3. In this subsection, we make a modifica-

tion of Dijkgraaf-Witten invariant in the view of an oriented bordism group of (G, c). To

do this, we begin constructing the oriented bordism group. We consider a pair of a closed

n-manifoldM without boundary and a homomorphism π1(M) → G. Then a set Ωn(G, c) is

defined to be the quotient of such pairs of (M , π1(M) → G) subject to the following (G, c)-

bordant equivalence. Such a pair (M , f : π1(M) → G) is (G, c)-bordant, if there exist an

(n+1)-manifold W , two homomorphisms f̄ : π1(W )×Z/2Z → G and f̃ : π1(M) → Z/2Z
such that f̄(e, 1) = c ∈ G, the boundary is ∂W = M , and f = f̄ ◦

(
(iM)∗ × f̃

)
, where

iM : M → W is the natural inclusion. Further, Ωn(G, c) has an abelian group structure

by the connected sum. More precisely, for such two pairs of (Mi, fi : π1(Mi) → G) with

i ∈ {1, 2}, the multiplication is defined by

(M1, f1 : π1(M1) → G) · (M2, f2 : π1(M2) → G) := (M1#M2, f1∗f2 : π1(M1#M2) → G),
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where f1 ∗ f2 is the free product of f1 and f2. The inverse element of (M, f : π1(M) → G)

is (−M, f : π1(M) → G). We call Ωn(G, c) the oriented bordism group of (G, c). By

using the obstruction theory, we notice that, when c = e, the group Ωn(G, e) coincides

with the usual oriented (SO-)bordism group of the Eilenberg-MacLane space K(G, 1) (cf.

[DW, §6.4]). It is known [Con, Theorem 15.2] that there is an isomorphism Ωn(G, e) ∼=∑
n=p+qHp(K(G, 1); Ωq(pt.)) modulo the class of torsion groups of odd order. In the case

where G is a finite subgroup of SU(2), Katsube has obtained the complete list of Ωn(G, e)

[Kat].

Next, we construct bordism Dijkgraaf-Witten invariants. We fix an n-manifoldM with

no boundary. We put a natural map ΩGc
n (M ; •) from Homgrp(π1(M), G) to Ωn(G, c) which

sends f : π1(M) → G to the canonical class [(M, f)]. If G is finite, then the bordism

Dijkgraaf-Witten invariant of M is defined by

DWGc
Ω (M) :=

∑
f∈Homgrp(π1(M),G)

ΩGc
n (M ; f) ∈ Z[Ωn(G, c)].

Although the definition seems naive, however, this formulation plays a key role to study

a relation to 4-fold symmetric quandle homotopy invariants in §5.2.
We now discuss the usual Dijkgraaf-Witten invariant of M given in (1) with using a

group cocycle ψ ∈ Hn(K(G, 1);A), where A is a trivial coefficient group. Here we assume

c = e. For this, recall Thom homomorphism τG,A : Ωn(G, e) → Hn(K(G, 1);A) obtained by

assigning to every pair of (M, f) the image of [M ] under f∗ : Hn(M ;A) → Hn(K(G, 1);A),

where [M ] ∈ Hn(M ;A) is the fundamental class of M . Then, in the case of c = e, the

usual Dijkgraaf-Witten invariant of M with ψ ∈ Hn(K(G, 1);A) can be formulated as

DWψ(M) =
∑

f∈Homgrp(π1(M),G)

⟨ψ, f∗([M ])⟩ =
∑

f∈Homgrp(π1(M),G)

⟨ψ, τG,A(ΩGe
n (M ; f))⟩ ∈ Z[A], (14)

where ⟨ , ⟩ means the canonical pairing. Furthermore, in a special case of G = SL(2;C),
let Ĉ2 ∈ H3(K(G, 1);C/4π2Z) be the Cheeger-Chern-Simons class introduced in [CS]. The

pairing ⟨Ĉ2, τG,C/4π2Z(Ω
Ge
3 (M ; f))⟩ ∈ C/4π2Z of f : π1(M) → G is called the Chern-Simons

invariant of f , which we will discuss in §6.

Remark 5.1. We see that, in the case n = 3 and A = Z, the Thom homomorphism τG,Z

gives rise to an isomorphism Ω3(G, e) ∼= H3(K(G, 1);Z) by Atiyah-Hirzebruch spectral

sequence. In conclusion, this implies an equivalence between 3-dimensional Dijkgraaf-

Witten invariants coming from the oriented bordism group and from the group homology.

Remark 5.2. We remark a relation between Ωn(G, c) and Ωn(G, e). By definition, (G, c)-

bordance is stronger than (G, e)-bordance, unless c = e. We thus have a natural epimor-

phism Ωn(G, e) → Ωn(G, c), which implies bordism Dijkgraaf-Witten invariants of (G, c)

are derived from that of (G, e).
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5.2 From Π4f
2,ρ(G̃c) to the oriented bordism group Ω3(G, c)

Returning into the 4-fold symmetric quandle homotopy invariant, we mainly deal with

3-manifolds without boundary. Our goal is to obtain an epimorphism ΦΠΩ : Π4f
2,ρ(G̃c) →

Ω3(G, c) (Theorem 5.4). For this, the following is a key lemma:

Lemma 5.3. Assume that two G̃c-colorings C1 ∈ ColG̃c,ρ
(Dϕ) and C2 ∈ ColG̃c,ρ

(D′
ϕ′) are

related by Reidemeister moves, MI, MII moves or symmetric concordance relations. For

i ∈ {1, 2}, let Ci correspond to a 3-manifold Mi with π1(Mi) → G by Theorem 3.3. Then

their connected sum
(
(−M1)#M2, π1(M1#M2) → G

)
is (G, c)-bordant.

We defer the proof later, and will state Theorem 5.4. Put a composite map ColG̃c,ρ
(Dϕ) →

G3 × Homgrp(π1(M), G)
proj−→ Homgrp(π1(M), G), where the first map is the bijection ob-

tained from Theorem 3.3. Moreover, recall the definition of Π4f
2,ρ(G̃c) in §2. By running

over all homomorphisms f : π1(M) → G of all 3-manifolds and over all G̃c-coloring of all

link diagrams, the maps ColG̃c,ρ
(Dϕ) → Homgrp(π1(M), G) give rise to a map

ΦΠΩ : Π4f
2,ρ(G̃c) −→ Ω3(G, c). (15)

By the presentation of the connected sum in Proposition 4.3, the map is multiplicative.

Moreover, the homomorphism is surjective by construction. In conclusion, when G is

finite, we easily see

Theorem 5.4. Let (G, c) be a finite cored group. Then the bordism Dijkgraaf-Witten

invariant is derived from the 4-fold symmetric quandle homotopy invariant by the formula

|G|3 ·DWGc
Ω (M) = ΦΠΩ

(
Ξ4f
G̃c
(M)

)
∈ Z[Ω3(G, c)].

In particular, when c = e, the Dijkgraaf-Witten invariant DWψ(M) of ψ ∈ H3(K(G, 1);A)

is derived from Ξ4f
G̃e
(M) through the formula (14).

Remark 5.5. Let Ξ4f
SQ(M)(Dϕ; idSQ(M)) be the fundamental class of M defined in §3.4.

Then we have ΦΠΩ

(
Ξ4f
SQ(M)(Dϕ; idSQ(M))

)
= (M, idπ1(M)) ∈ Ω3(G(M), c(M)).

Remark 5.6. Wakui [W] formulated the Dijkgraaf-Witten invariant DWψ(M), and rig-

orously proved the topological invariance under “normalized conditions” of 3-cocycles ψ

(see (17) for the definition). However, some 3-cocycles can not be related to any non-

trivial normalized 3-cocycle up to coboundary. For instance, G = Z/6Z has no normalized

3-cocycle, while H3(K(G, 1)) does not vanish. Namely, for some 3-cocycles ψ, the formu-

las in [W] are not permitted to manage DWψ(M). However, Theorem 5.4 enables us to

deal with DWψ(M) of any 3-cocycle ψ from the perspective of 4-fold symmetric quandle

homotopy invariants Ξ4f
G̃c
(M).

Proof of Lemma 5.3. First, note that if C1 and C2 are related by some sequences of Reide-

meister moves, MI and MII moves, then Dϕ and D′
ϕ′ present the same 3-manifoldM1 (see,
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e.g., [N2, §2.2] for details). Further, C1 and C2 present the same pair of (M1, π1(M1) → G).

Therefore,
(
(−M1)#M2, π1(M1#M2) → G

)
is (G, c)-bordant.

Next, assume that C1 and C2 are related by one of concordance relations shown as

in the left of Figure 10. It is known that S2 × S1 is presented by the labeled diagram

consisting of four unknots illustrated in Figure 10 (see [R, §10.C.3]). Hence the labeled

C1 C2

(g, 1, 2) (cg, 1, 2)

(12) (12)

(34)(23)

DD

S2 × S1

Figure 10: A symmetric concordance relation and the labeled diagram of S2 × S1

diagram D′
ϕ′ presents M2 =M1#(S2 × S1) by Proposition 4.3. We therefore have(

(−M1)#M2, π1(M1#M2) → G
)
=

(
(−M1)#M1#(S2×S1), π1(M1#M1#(S2×S1)) → G

)
.

To show its (G, c)-bordance, we have to check that, for any f : π1(S
2 × S1) → G, the

pair of
(
S2 × S1, f : π1(S

2 × S1) → G
)
is (G, c)-bordant. In fact, (B3 × S1, f̄ = f :

π1(B
3 × S1) → G

)
gives the required (G, c)-bordance, where B3 is a 3-ball.

Next, we assume that C1 and C2 are related by another symmetric concordance relation

shown in Figure 11. Let us define a surface FL embeded in S3×[0, 1] as follows. Let L1 and

L2 ⊂ S3 be links corresponding to C1 and C2, respectively. Let NC1 ⊂ S3 and NC2 ⊂ S3

C1 C2mij
α

mij
β mij

γ mij
δ

FL
C2

C1NC1
NC2

Figure 11: Another symmetric concordance relation and a suddle of FL ∩ (BC × [0, 1])

be neighborhoods illustrated as Figure 11. Then we define FL ∩
(
(S3 \NC1)× [0, 1]

)
to be(

L1 \ (L1 ∩NC1)
)
× [0, 1], and define FL ∩ (NC1 × [0, 1]) to be a saddle shown in Figure 11.

We construct a branched covering of S3 × [0, 1] branched over FL as follows. Denote

two arcs by mij
α and mij

β (resp. mij
γ and mij

δ ) on C1 (resp. C2) as shown in Figure 11. Note

that π1(S
3 × [0, 1] \ FL) is presented by

π1(S
3 × [0, 1] \ FL) = π1(S

3 \ L1)/⟨mij
α = mij

β ⟩ = π1(S
3 \ L2)/⟨mij

γ = mij
δ ⟩.
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We put the monodromies ϕ : π1(S
3 \ L1) → S4 and ϕ′ : π1(S

3 \ L2) → S4 associated

to C1 and C2, respectively. Then, they can be uniquely extended to a homomorphism

ϕ̃ : π1(S
3 × [0, 1] \FL) → S4. We denote by W the associated 4-fold branched covering of

S3 × [0, 1]. Remark that the boundaries of W are precisely (−M1) ⊔M2.

Next, let us construct a homomorphism fW : π1(W ) × Z/2Z → G as follows. We put

the covering W \ F̃L → S3 × [0, 1] \ FL associated to ϕ̃, where F̃L is a surface composed

of the preimage of the branched locus in W . Note that the fundamental group can be

formulated as

π1(W \ F̃L) ∼= π1(S̃3 \ L1)/⟨m̃ij
α = m̃ij

β ⟩ ∼= π1(S̃3 \ L2)/⟨m̃ij
γ = m̃ij

δ ⟩.

We define the quotient group G(W ) by

G(W ) := π1(S̃3 \ L1)/⟨Nϕ, m̃
ij
α = m̃ij

β ⟩ ∼= π1(S̃3 \ L2)/⟨Nϕ, m̃
ij
γ = m̃ij

δ ⟩, (16)

where Nϕ is the normal subgroup given in (5). Similar to Lemma 3.2, we can see G(W ) ∼=
π1(W )×Z/2Z. On the other hand, by the proof of Proposition 3.1, the G̃c-colorings C1 and

C2 give rise to homomorphisms Ψ̃f1 : π1(S̃3 \ L1) → G4 o (S4)1 and Ψ̃f2 : π1(S̃3 \ L2) →
G4 o (S4)1, respectively. By projecting on the first component πG1 : G4 o (S4)1 → G, we

notice

c = πG1 (Ψ̃f1(m̃
ij
α )) = πG1 (Ψ̃f1(m̃

ij
β )) = πG1 (Ψ̃f2(m̃

ij
γ )) = πG1 (Ψ̃f2(m̃

ij
δ )) ∈ G.

Hence, it follows from the presentation (16) that Ψ̃f1 and Ψ̃f2 passes to a homomorphism

fW : G(W ) = π1(W ) × Z/2Z → G. For the natural inclusions i1 : M1 → W and

i2 : M2 → W , we see f1 = fW ◦ (i1)∗ and f2 = fW ◦ (i2)∗ by construction. Therefore, fW

gives a (G, c)-bordance of (−M1)#M2.

About Theorem 5.4, we pose a problem:

Problem 5.7. Is the epimorphism ΦΠΩ isomorphic? For what kinds of cored groups (G, c)

are the 4-fold symmetric quandle homotopy invariants stronger than Dijkgraaf-Witten

invariants?

Note that if the epimorphism ΦΠΩ is isomorphic, then the two invariants are equivalent

by Theorem 5.4. If we expect that ΦΠΩ is isomorphic, it would come down to a problem

whether any 4-manifold with boundaries is a 4-fold simple covering branched over a locally

flat surface in a 4-ball or not. For reference, we remark the result of Iori and Piergallini

[IP], which says that any PL closed 4-manifold is a 5-fold simple covering of S4 branched

over a locally flat surface in S4.

On the other hand, in order to show that the epimorphism ΦΠΩ would not be isomor-

phic, 4-fold symmetric quandle cocycle invariants [N2, §7] might be useful, since they are

computable and are derived from 4-fold symmetric quandle homotopy invariants.
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5.3 Applications

We give two corollaries of Theorem 5.4. First, we conclude the 4-fold symmetric quandle

homotopy invariant of (G, c) = (Z/2Z, 0).

Corollary 5.8. For (G, c) = (Z/2Z, 0), Π4f
2,ρ(G̃c) ∼= Z/2Z. Further, the 4-fold symmetric

quandle homotopy invariant equals the Dijkgraaf-Witten invariant of G.

Proof. By [N2, Proposition 6.6], Π4f
2,ρ(G̃e) is either 0 or Z/2Z. However, the group ho-

mology H3(G;Z) is Z/2Z. Since H3(G;Z) ∼= Ω3(G, e), we have Π4f
2,ρ(G̃c) ∼= Z/2Z by the

epimorphism (15). Further, Theorem 5.4 immediately results the latter statement.

Next, we give another corollary (Corollary 5.9). For this, we briefly review the quandle

homotopy invariant of a dihedral quandle (see [N2, §9] for detail). The dihedral quandle

Rm of odd order is defined by Z/mZ with a binary operation x ∗ y = 2y− x. Let L be an

oriented link in S3, and Do an oriented link diagram of L. Then an Rm-coloring of Do is

defined by a map from arcs on Do to Rm satisfying the right of Figure 1 at each crossings.

Let us denote by ColRm(Do) the set of Rm-colorings of Do. Further, Π2(Rm) is defined by

the quotient of all Rm-colorings of all oriented link diagrams subject to Reidemeister moves

and concordance relations. Π2(Rm) has an abelian group structure by disjoint union. The

quandle homotopy invariant of L is defined by the formula

ΞoRm
(L) =

∑
C∈ColRm (Do)

ΞoRm
(Do;C) ∈ Z[Π2(Rm)],

where ΞoRm
(Do; •) is a map ColRm(Do) → Π2(Rm) sending an Rm-coloring of Do to the

canonical class. The second author showed [N1, Remark 4.4] that Π2(Rm) is a quotient of

Z/mZ, and [N1, Proposition 4.1] that if m is odd prime, then Π2(Rm) ∼= Z/mZ 1.

Corollary 5.9. Let m be an odd number, and ML the double branched covering of a link

L ⊂ S3. Then, Π2(Rm) ∼= Z/mZ. Moreover, the quandle homotopy invariant ΞoRm
(L)

is equal to a scalar multiple of the bordism Dijkgraaf-Witten invariant DWGe
Ω (ML) ∈

Z[Ω3(G, e)], where G = Z/mZ and we identify Ω3(G, e) with Z/mZ.

Proof. We first give a commutative diagram below. Let D be a link diagram of L without

orientation. We consider the subquandle composed of {(g, 1, 2) ∈ G̃e | g ∈ G}, which is

isomorphic to Rm by definition. Then, regarding D as a labeled diagram Dϕ similar to

Figure 5, we obtain ColRm,id(D) ≃ G × Cole12,e23,e34
G̃e,ρ

(Dϕ). Further, there is a canonical

bijection PRm : ColRm(Do) → ColRm,id(D) (see [N2, (1)]). Then, from the definitions of

the quandle homotopy invariant and of the bordism Dijkgraaf-Witten invariant, we obtain

the following commutative diagram:

1In [N1], the second author discussed a homotopy group π2(BRm). Π2(Rm) ∼= π2(BRm) is known (see also [N2, §6.1]).
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ColRm(Do)
PRm //

Ξo
Rm

(Do;•)
��

ColRm,id(D) 1:1 // G× Cole12,e23,e34
G̃e,ρ

(Dϕ)

Ξ4f
G̃e

(Dϕ;•)
��

Corollary 3.4 // G× Hom(π1(ML), G)

ΩGe
3 (ML; •)

��
Π2(Rm)

P4f
// Π4f

2,ρ(G̃e)
ΦΠΩ // Ω3(G, e)

Here, ΦΠΩ : Π4f
2,ρ(G̃e) → Ω3(G, e) is the homomorphism given in (15), and P4f : Π2(Rm) →

Π4f
2,ρ(G̃e) is the homomorphism defined in [N2, Remark 6.4]. Notice that the top maps

are bijective by Corollary 3.4. Hence, to complete the proof, it suffices to show that the

composite P4f ◦ ΦΠΩ is isomorphic, since Ω3(G, e) ∼= H3(K(G, 1);Z) ∼= Z/mZ.
To show the isomorphism, it is enough to prove the surjection, since Π2(Rm) is a

quotient of Z/mZ. Notice that Ω3(G, e) is generated by the lens space L(m, 1) with the

identity map idZ/mZ : π1(L(m, 1)) → Z/mZ. Remark that the double branched covering of

the (m, 2)-torus knot T (m, 2) is precisely L(m, 1). By Theorem 3.3 we have a non-trivial

Rm-coloring CT (m,2) of T (m, 2) corresponding with idZ/mZ : π1(L(m, 1)) → Z/mZ. Hence,
P4f ◦ ΦΠΩ is surjective by the above commutative diagram.

Remark 5.10. The first author [H2] shows the similar equivalence between the “quandle

3-cocycle invariant” of L and the Dijkgraaf-Witten invariant ofML. However, her result is

shown in a certain condition of group 3-cocycles: for instance, if m is divisible by 3, then

her equivalence holds only for trivial 3-cocycles. Note that in Corollary 5.9 we drop the

condition. Further, since it is known (see [N1]) that the quandle homotopy invariant is

the universal among quandle cocycle invariants, Corollary 5.9 is a generalization of [H2].

However, it is not easy to directly compute the quandle homotopy invariant. In the

case where m = p is an odd prime, let us compute the invariant by using a shadow cocycle

invariant. For this, we recall that Mochizuki [Moc] calculated the third “quandle coho-

mology” H3
Q(Rp;Z/pZ) ∼= Z/pZ and obtained a presentation of the generator θp, called

Mochizuki 3-cocycle. The cocycle θp gives an invariant Φθp(L) ∈ Z[Z/pZ] of links L, called
a shadow cocycle invariant (see, e.g., [Iwa2, §2] for detail). The second author showed [N1,

Corollary 4.2] that, under the isomorphism Π2(Rp) ∼= Z/pZ, the shadow cocycle invariant

Φθp(L) equals a scalar multiple of the quandle homotopy invariant ΞoRp
(L) ∈ Z[Π2(Rp)].

In conclusion, by Corollary 5.9, we immediately give the shadow cocycle invariant a topo-

logical meaning as follows:

Corollary 5.11. With notation L ⊂ S3 and ML in Corollary 5.9, if p is an odd prime,

then the shadow cocycle invariant Φθp(L) equals a scalar multiple of the Dijkgraaf-Witten

invariant DWGe
Ω (ML) ∈ Z[Ω3(G, e)], where (G, e) = (Z/pZ, 0) and Ω3(G, e) ∼= Z/pZ.

We note that DWψ(ML) in (1) equals DWGe
Ω (ML) up to scalar multiples by Remark 5.1.

The shadow cocycle invariants of several links have been computed. Using the compu-

tations, we give some values of the Dijkgraaf-Witten invariants as follows.
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Example 5.12. For integers l and n, we consider the 2-bridge link of type (l, n). Putting

an odd integer s < l such that sn = 1 (mod l), the 2-fold branched covering of S3 branched

along the link is the lens space L(l, s) (see [R, §10.C. Exercise 6]). According to [Iwa1,

Theorem 1.1], if l is divisible by p, then

DWGe
Ω

(
L(l, s)

) ·
= Φθp(L) = p2

∑
0≤i≤p−1

t
−ls
p
i2 ∈ Z[t]/(tp − 1) ∼= Z[Z/pZ];

otherwise, the Dijkgraaf-Witten invariant is trivial. The results of the lens spaces are

shown in various ways (see, e.g., [DW, MOO, W]).

Example 5.13. For an integer n and an odd number l, we consider the (l, n)-torus link

T (l, n). It is known (see [R, §10.E. Exercise 5]) that the double covering branched over

the link is the Brieskorn manifold M(2, l, n) defined by

M(2, l, n) := {(u, v, w) ∈ C3 | u2 + vl + wn = 0, |u|2 + |v|2 + |w|2 = 1}.

According to [AS, Theorem 6.3], if l is divisible by p and n is even, then

DWGe
Ω

(
M(2, l, n)

) ·
= Φθp(T (l, n)) = p

∑
0≤i≤p−1

t
−ln
2p

i2 ∈ Z[t]/(tp − 1);

otherwise, the invariant is trivial.

Example 5.14. We consider the pretzel link of type (m1, . . . ,mn) (see [Iwa2, Figure 1]).

The double branched cover of the link is the Seifert manifold denoted by (S2;m1, . . . ,mn).

Hence, the Dijkgraaf-Witten invariant of the Seifert manifold equals a scalar multiple of

the corresponding computation described in [Iwa2, Theorem 1.1], although we omit writing

it.

6 Chern-Simons invariant as a quandle cocycle invariant

Our goal of this section is to reconstruct the Chern-Simons invariant of closed 3-manifolds

as a certain quandle cocycle invariant (Theorem 6.5). §6.1 and 6.2 are the preparation. In

this section, we follow two notation: “4-fold symmetric quandle 2-cocycles” and “4-fold

symmetric quandle cocycle invariants” (see [N2, §7.1 and 7.2] for the definitions).

6.1 Review: 4-fold symmetric quandle cocycle from normalized group cocycle

We review a 4-fold symmetric quandle cocycle introduced in [H1]. For a cored group (G, c),

we recall a map ∗ : G4 × G̃c → G4 defined by

(s1, s2, s3, s4)∗(g, 1, 2) = (cgs2, g
−1s1, s3, s4), (s1, s2, s3, s4)∗(g, 1, 3) = (cgs3, s2, g

−1s1, s4),

(s1, s2, s3, s4)∗(g, 1, 4) = (cgs4, s2, s3, g
−1s1), (s1, s2, s3, s4)∗(g, 2, 3) = (s1, cgs3, g

−1s2, s4),

(s1, s2, s3, s4)∗(g, 2, 4) = (s1, cgs4, s3, g
−1s2), (s1, s2, s3, s4)∗(g, 3, 4) = (s1, s2, cgs4, g

−1s3),
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where g ∈ G and (s1, s2, s3, s4) ∈ G4. Then it is not hard to see that G4 is a (G̃c, ρ)-set

via the operation ∗. We fix the case of c = e later.

We briefly review the group cohomology. Let Bn(G) be the free Z-module generated

by symbols (g1, . . . , gn) ∈ Gn. The differential map ∂n : Bn(G) → Bn−1(G) is defined by

∂n(g1, . . . , gn) := (g2, . . . , gn) +
n−1∑
t=1

(−1)t(g1, . . . , gtgt+1, . . . , gn) + (−1)n(g1, . . . , gn−1).

The pair of (Bn(G), ∂n) is a complex called the inhomogeneous complex ofG. The homology

is denoted by Hn(G;Z). Dually, for an abelian group A, we can define the cochain complex

(Hom(Bn(G), A), (∂n)
∗). A 3-cocycle θ of the cochain complex is said to be (strong)

normalized, if it satisfies the following: for any x, y ∈ G,

θ(e, x, y) = θ(x, e, y) = θ(x, y, e) = θ(x, x−1, y) = θ(x, y−1, y) = 1A. (17)

This definition is stronger than the usual one by adding the last two equalities.

For a normalized 3-cocycle θ, we give a function Xθ : G
4 × G̃e × G̃e → A as follows:

Xθ

(
(s1, s2, s3, s4), (g, i, j), (g

′, i, j)
)

= θ(g, g−1g′, g′−1gsj) · θ(g′, g′−1g, g−1si) · θ(g′g−1g′, g′−1g, sj) · θ(g′, g−1g′, g′−1si),

Xθ

(
(s1, s2, s3, s4), (g, i, j), (g

′, j, k)
)
= θ(g′−1, g−1, si)

−1 · θ(g′−1, g−1, gsj),

Xθ

(
(s1, s2, s3, s4), (g, i, j), (g

′, k, l)
)
= 1A.

The function Xθ is introduced in [H1, §4.2], and the first author showed [H1, Proposition

4.1] that the resulting map Xθ : G
4× G̃e× G̃e → A is a 4-fold symmetric quandle 2-cocycle

in the sense of [N2, §7.2].
Recall that if given 4-fold symmetric quandle 2-cocycle ψ and a G̃e-coloring C ∈

ColG̃e,ρ
(Dϕ), we obtain an invariant Φψ(Dϕ;C) ∈ A called a 4-fold symmetric quandle

cocycle invariant (see [N2, §7.2]). Moreover, the first author showed

Theorem 6.1. ([H1, Theorem 4.2.]) Let θ be a normalized 3-cocycle of G. Under the

correspondence between Cole12,e23,e34
G̃e,ρ

(Dϕ) and Hom(π1(M), G) by Theorem 3.3, for any

Cf ∈ Cole12,e23,e34
G̃e,ρ

(Dϕ) corresponding with f ∈ Hom(π1(M), G), the 4-fold symmetric quan-

dle cocycle invariant ΦXθ
(Dϕ;Cf ) = ⟨f ∗(θ), [M ]⟩ ∈ A.

Remark 6.2. The first author [H1] stated this statement with respect to finite groups.

However, her proof holds for any group G as well. We further remark that a (G̃c, ρ)-set was

called a “switching map” and the 4-fold symmetric quandle cocycle invariant was called

“the state sum” in [H1]. It is shown [N2, Proposition 7.4] that the value ΦXθ
(Dϕ;Cf ) is

derived from the 4-fold symmetric quandle homotopy invariant with G̃c.
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On the other hand, we prepare the homogenous cochain of G. From now on, we fix

G = SL(2;C). Let Cn(G) denote the free Z-module on all (n + 1)-tuples ⟨g0, . . . , gn⟩ ∈
Gn+1. Define the differential map by

δn : Cn(G) → Cn−1(G), ⟨g0, . . . , gn⟩ 7→
n∑
t=0

(−1)t⟨g0, . . . , gt−1, gt+1, . . . , gn⟩.

The complex (C∗(G), δ∗) is called the homogenous complex of G. Further, put a sub-

module C ̸=
n (G) generated by all (n+1)-tuples ⟨g0, . . . , gn⟩ of distinct elements of G. Then

(C ̸=
∗ (G), δ∗) is a subcomplex. Since G is infinite, the complexes (C∗(G), δ∗) and (C ̸=

∗ (G), δ∗)

are acyclic (see, e.g., [DZ, Lemma 1.3]). Let us regard Cn(G) and C ̸=
n (G) as projective

right Z[G]-modules by the diagonal action of G. Hence, the inclusion C ̸=
n (G) ↪→ Cn(G)

induces an isomorphism between the homologies of (Cn(G) ⊗Z[G] Z, δn ⊗Z[G] id) and of

(C ̸=
n (G)⊗Z[G] Z, δn ⊗Z[G] id), where we regard Z as a trivial left Z[G]-module. Also, it is

well-known that the complex Bn(G) above is chain isomorphic to Cn(G)⊗Z[G]Z via a map

∆n : Bn(G) −→ Cn(G), (g1, . . . , gn) 7−→ ⟨e, g1, g1g2, . . . , g1g2 · · · gn⟩. (18)

6.2 Review: Cheeger-Chern-Simons class from the extended Bloch group.

In this section, we recall a description of the Cheeger-Chern-Simons class. Our brief

description follows from Dupont, Goette and Zickert [DG, §2 and §4], [DZ, §2 and §3].
We will construct a map Ĉ2 : Z ̸=

3 (G) → C/4π2Z as follows, where Z ̸=
3 (G) is a Z-

submodule {σ ∈ C ̸=
3 (G) | δ3(σ) = 0}. Recall the natural representation of G = SL(2;C)

on C2. For any basis σ =
∑

m am⟨g
(m)
0 , g

(m)
1 , g

(m)
2 , g

(m)
3 ⟩ ∈ Z ̸=

3 (G) with am ∈ Z, we choose

an element vσ ∈ C2 \ {0} such that det(g
(m)
k · vσ, g(m)

l · vσ) ̸= 0 for each 0 ≤ k < l ≤ 3 and

m. Let us denote g
(m)
k · vσ by vmk for short. We prepare a homomorphism given by

Z : C ̸=
3 (G) −→ Z⟨(C \ {0, 1})× 2Z× 2Z⟩, σ 7−→

∑
m

am(zm, pm, qm),

where the triple of (zm, pm, qm) is defined by the following formulae:

zm :=
det(vm0 , v

m
3 ) det(v

m
1 , v

m
2 )

det(vm0 , v
m
2 ) det(v

m
1 , v

m
3 )
,

π
√
−1pm = Log det(vm0 , v

m
3 )+Log det(vm1 , v

m
2 )−Log det(vm0 , v

m
2 )−Log det(vm1 , v

m
3 )−Log(zm),

π
√
−1qm = Log det(vm0 , v

m
2 )+Log det(vm1 , v

m
3 )−Log det(vm0 , v

m
1 )−Log det(vm2 , v

m
3 )−Log

( 1

1− zm

)
.

Remark that Z depends on the choice of elements vσ ∈ C2 \ {0}, and Z is written by Φ◦λ
in [DZ]. Further, put a map

L : (C \ {0, 1})× 2Z× 2Z −→ C/4π2Z,

(z; p, q) 7−→ −
∫ z

0

Log(1− t)

t
dt +

1

2

(
Log(z) + 2π

√
−1p

)(
Log(1− z) + 2π

√
−1q)

)
− π2

6
.
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In summary, a map Ĉ2 : Z
̸=
3 (G) → C/4π2Z is defined by the composite L ◦ Z.

In addition, since Z ̸=
3 (G) is a direct summand of C ̸=

3 (G) as a free Z-module by definition,

we extend Ĉ2 to a homomorphism from C ̸=
3 (G). It is shown [DG, Theorem 4.1] that Ĉ2

is a 3-cocycle, and that Ĉ2 coincides with the Cheeger-Chern-Simons class H3(G;Z) →
C/4π2Z. Further, it is known that the map Ĉ2 does not depend on the choice of elements

vσ ∈ C2 \ {0} above (see, e.g., [DZ, Proposition 3.4] ).

Remark 6.3. The (more) extended pre-Bloch group P̂(C) described in [DG] can be

defined as a quotient group of the free module Z⟨(C \ {0, 1}) × 2Z × 2Z⟩ (see also [Neu,

§2]). The extended Bloch group B̂(C) is defined by a subgroup of P̂(C). The map Ĉ2

factors through B̂(C) (see [DG]).

6.3 Chern-Simons invariant as a quandle cocycle invariant

We put the projection 2 P ̸=
3 : C3(G) → C ̸=

3 (G) and a multiplication by 6: C/4π2Z 6−→
C/4π2Z. Using the map ∆3 in (18) and the Cheeger-Chern-Simons class Ĉ2, we denote

by C
B

2 a composite

B3(G)
∆3−−−→ C3(G)

P ̸=
3−−−→ C ̸=

3 (G)
Ĉ2−−→ C/4π2Z 6−→ C/4π2Z.

Lemma 6.4. The composite C
B

2 : B3(G) −→ C/4π2Z is a normalized 3-cocycle.

We defer the proof later. Combing this with Theorem 6.1, we immediately conclude

Theorem 6.5. Let G = SL(2;C). Let C
B

2 ∈ B3(G;C/4π2Z) be as above. Let X
C

B
2

:

G4 × G̃e × G̃e → C/4π2Z be the map given in §6.1. For f ∈ Hom(π1(M), G), we put the

associated G̃e-coloring Cf ∈ Cole12,e23,e34
G̃e,ρ

(Dϕ) by Proposition 3.1. Then, the 4-fold sym-

metric quandle cocycle invariant coincides with 6 multiple of the Chern-Simons invariant:

ΦX
C
B
2

(D;Cf ) = 6⟨f ∗(Ĉ2), [M ]⟩ ∈ C/4π2Z.

We now explain some benefits of Theorem 6.5. Following the description of [Neu,

Z], for the computation of the Chern-Simons invariant we have to choose a (flattened)

triangulation of M . However, in general, a triangulation of M is composed of many

simplicies, which makes the computation complicated.

On the other hand, we recall that 4-fold symmetric quandle cocycle invariants are com-

putable by a presentation of the cocycle. Thereby, Theorem 6.5 says that if we know a

labeled diagram presenting M and a G̃e-coloring corresponding with π1(M) → G, the

formulation in Theorem 6.5 makes the Chern-Simons invariant computable without tri-

angulation of M . Also, in [Neu], Neumann dealt with only hyperbolic 3-manifolds M

with the holonomy presentation π1(M) → G. Notice that Theorem 6.5 are applied to any

closed 3-manifolds M with any presentations π1(M) → G, similar to [Z].

2Caution: the projection P ̸=
3 never commutes with the boundary map δn.
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In general, for any 3-manifoldM , it is not easy to find a labeled diagram ofM . However,

if we find a labeled diagram of M , for f : π1(M) → G, it is easy to find a G̃c-coloring Cf

corresponding with f by Proposition 3.1. We expect a good computer program for the

calculation of the Chern-Simons invariant of f from labeled diagrams. It goes without

saying that a double branched covering of a link L is precisely presented by a diagram

of L with a label (12), similar to Figure 5. So, the Chern-Simon invariants of the double

branched coverings of S3 would be easily computable.

Proof of Lemma 6.4. . The proof follows the arguments of Neumann [Neu] and Dupont-

Zickert [DZ]. Let us decompose C/4π2Z ∼= R/4π2Z ⊕ R
√
−1. We shall refer to the real

and imaginary parts of C
B

2 separately.

First, notice that the imaginary part Im(C
B

2 ) : B3(SL(2;C)) → R is equal to the map

Im(c) defined by Dupont (see [Dup, §1]). Further, Dupont showed [Dup, Proposition 3.1]

that Im(c) equals the volume form of the de Rham cohomology H3
dR(SL(2;C);R). Since

the imaginary part of Cheeger-Chern-Simons class Ĉ2 is the volume form, Im(C
B

2 ) =

Im(Ĉ2).

Next, we consider the real part Re(C
B

2 ). Recall the fact by Dupont, Parry and Sah

[DPS]: the inclusion SL(2;R) ↪→ SL(2;C) induces an isomorphism

H3(SL(2;R);Z) ∼= {σ ∈ H3(SL(2;C);Z) | τσ = σ},

where τ is the involution induced by complex conjugation. This means that it suffices to

study the restriction of Re(C
B

2 ) on SL(2;R)4. Remark that the restriction coincides with

the homomorphism l defined in [Dup, §1]. Further, it is shown [Dup, Theorem 1.11] that
1

4π2Re(C
B

2 ) is equal to the imaginary part of Cheeger-Chern-Simons class in R/1
6
Z.

In summary, the function C
B

2 is a 3-cocycle of SL(2;C). Further, from the definition

of the map ∆3 given in (18), we immediately see that C
B

2 is normalized.

6.4 Recovery of Chern-Simons invariant from the multiplication by 6.

We also discuss a recovery of the Chern-Simons invariant in Theorem 6.5 from the multipli-

cation by 6. To begin, we recall the decomposition of the divisible Z-module C/4π2Z, that
is, C/4π2Z ∼= Q/Z⊕

(⊕
λ∈ΛQ

)
, where Λ is a uncoutable set of formal indices. Note that

we may regard the canonical inclusion Q/Z ↪→ C/4π2Z as the direct summand. Hence, for

the required recovery, it sufficies to assume that the Chern-Simons invariant lies in Q/Z.
Using isomorphisms Q/Z ∼= lim

−→
Z/nZ ∼= lim

−→
H3(Z/nZ;Z), we recall an inclusion ι :

Q/Z ↪→ H3(SL(2;C);Z) induced by the map Z/nZ ↪→ SL(2;C) sending 1 to the ma-

trix of a rotation of 2π/n (see [DZ, (1-5)]). Moreover, it is known [DG, Corollary 3.5 and

Theorem 4.1] that for any α ∈ Q/Z we have Ĉ2

(
ι(α)

)
/4π2 = α. In particular, a composite

H3(Z/mZ;Z) ∼= Z/mZ ↪→ Q/Z ι
↪→ H3(SL(2;C);Z) induces a surjection

H3(SL(2;C);C/4π2Z) −→ H3(Z/mZ;C/4π2Z) ∼= Z/mZ, (19)
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which sends the Cheeger-Chern-Simons class Ĉ2 to a generator of Z/mZ. Hence, if the

Chern-Simons invariant is contained in Q/Z, the invariant is equivalent to the Dijkgraaf-

Witten invariants of Z/mZ for all m ∈ Z. In particular, if we know the values of the

Dijkgraaf-Witten invariants of Z/6aZ for all a ∈ N, the Chern-Simons invariant makes a

recovery from the multiplication by 6 in Theorem 6.5, as required.

It is not so difficult to compute the Dijkgraaf-Witten invariant of Z/6aZ. For example,

it is known [MOO] that this invariant of M is derived from U(1)-quantum invariant,

and can be computable from the linking matrix of the Kirby diagram of M or from the

cohomology ring H∗(M ;Z/6Z). In conclusion, the recovery can be obtained by an easy

calculation.

Lastly, we discuss normalized 3-cocycles of cyclic groups, and a non-recovery of the

Cheeger-Chern-Simon class Ĉ2. The following corollary is useful for the discussion in [H2].

Corollary 6.6. Let m ∈ Z. For ϕ ∈ H3(Z/mZ;A), there exists a representative normal-

ized 3-cocycle which is cohomologous to 6ϕ.

Proof. By Lemma 6.4, the induced 3-cocycle of C
B

2 via the surjection (19) is normalized.

Remark 6.7. We discussed the recovery of the Chern-Simons invariant. On the other

hand, we will explain why the Cheeger-Chern-Simon class Ĉ2 can not be recovered from the

multiplication by 6 as follows. From the definition of B3(G;A), we can verify that Z/2Z
and Z/3Z have no non-trivial normalized 3-cocycle (see also Remark 5.6). Hence, if we

assumed that Ĉ2 ∈ H3(G;C/4π2Z) could be normalized, then some 3-cocycle of Z/2Z and

Z/3Z would be normalized via the inclusion Z/mZ ↪→ G, which implies a contradiction.

Therefore, for the application of Theorem 6.1 using a normalized 3-cocycle, we have to

choose C
B

2 rather than the original Cheeger-Chern-Simons class Ĉ2.
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