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Abstract. In a series of works [18, 21, 19, 20, 23, 22], Geiß-Leclerc-Schröer defined the
cluster algebra structure on the coordinate ring C[N(w)] of the unipotent subgroup, asso-
ciated with a Weyl group element w. And they proved cluster monomials are contained
in Lusztig’s dual semicanonical basis S∗. We give a set up for the quantization of their
results and propose a conjecture which relates the quantum cluster algebras in [4] to the
dual canonical basis Bup. In particular, we prove that the quantum analogue Oq[N(w)] of
C[N(w)] has the induced basis from Bup, which contains quantum flag minors and satisfies a
factorization property with respect to the ‘q-center’ of Oq[N(w)]. This generalizes Caldero’s
results [7, 8, 9] from ADE cases to an arbitary symmetrizable Kac-Moody Lie algebra.
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1. Introduction

1.1. The canonical basis B and the dual canonical basis Bup. Let g be a symmetriz-
able Kac-Moody Lie algebra, Uq(g) its associated quantized enveloping algebra, and U−

q (g)
its negative part. In [39], Lusztig constructed the canonical basis B of U−

q (g) by a geomet-
ric method when g is symmetric. In [25], Kashiwara constructed the (lower) global basis
Glow(B(∞)) by a purely algebraic method. Grojnowski-Lusztig [24] showed that the two
bases coincide when g is symmetric. We call the basis the canonical basis. There are two
remarkable properties of the canonical basis, one is the positivity of structure constants of
multiplication and comultiplications, and another is Kashiwara’s crystal structure B(∞),
which is a combinatorial machinery useful for applications to representation theory, such as
tensor product decomposition.
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Since U−
q (g) has a natural pairing which makes it into a (twisted) self-dual bialgebra, we

consider the dual basis Bup of the canonical basis in U−
q (g). We call it the dual canonical

basis.

1.2. Cluster algebras. Cluster algebras were introduced by Fomin and Zelevinsky [15] and
intensively studied also with Berenstein [16, 2, 17] with an aim of providing a concrete and
combinatorial setting for the study of Lusztig’s (dual) canonical basis and total positivity.
Quantum cluster algebras were also introduced by Berenstein and Zelevinsky [4], Fock and
Goncharov [13, 14, 12] independently. The definition of (quantum) cluster algebra was moti-
vated by Berenstein and Zelevinsky’s earlier work [3] where combinatorial and multiplicative
structures of the dual canonical basis were studied for g = sl2 and sl3. Let us quote from [15]:

We conjecture that the above examples can be extensively generalized: for any
simply-connected connected semisimple group G, the coordinate rings C[G]
and C[G/N ], as well as coordinate rings of many other interesting varieties
related to G, have a natural structure of a cluster algebra. This structure
should serve as an algebraic framework for the study of “dual canonical basis”
in these coordinate rings and their q-deformations. In particular, we conjecture
that all monomials in the variables of any given cluster (the cluster monomials)
belong to this dual canonical basis.

In [2], it was shown that the coordinate ring of the double Bruhat cell has a part of structures
of a cluster algebra.

A cluster algebra A is a subalgebra of rational function field Q(x1, x2, · · · , xr) of r inde-
terminates which is equipped with a distinguished set of generators (cluster variables) which
is grouped into overlapping subsets (clusters) consisting of precisely r elements. Each subset
is defined inductively by a sequence of certain combinatorial operation (seed mutations) from
the initial seed. The monomials in the variables of a given single cluster are called cluster
monomials. However, it is not known that a cluster algebra have a basis, related to the dual
canonical basis, which includes all cluster monomials in general.

1.3. Cluster algebra and the dual semicanonical basis. In a series of works [18, 21, 19,
20, 23, 22], Geiß, Leclerc and Schröer introduced a cluster algebra structure on the coordinate
ring C[N(w)] of the unipotent subgroup associated with a Weyl group element w. Furthermore
they show that the dual semicanonical basis S∗ is compatible with the inclusion C[N(w)] ⊂
U(n)∗gr and contains all cluster monomials. Here the dual semicanonical basis is the dual basis
of the semicanonical basis of U(n), introduced by Lusztig [40, 44], and “compatible” means
that S∗ ∩ C[N(w)] forms a C-basis of C[N(w)].

It is known that canonical and semicanonical bases share similar combinatorial properties
(crystal structure), but they are different (examples can be found in [32] 1).

1.4. Cluster algebra and the dual canonical basis. Our main result is to give a set up
of a quantum analogue of Geiß-Leclerc-Schröer’s results:

(1) The dual canonical basis is compatible with the quantum unipotent subgroupOq[N(w)]
which is a quantum analogue of C[N(w)], that is Bup(w) := Bup ∩Oq[N(w)] forms a
Q(q)-basis of Oq[N(w)]. (See Theorem 4.22.)

1In [32], S is the specialization of the dual canonical basis, while Σ is the dual semicanonical basis thanks
to [22].
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(2) Quantum flag minors are mutually q-commuting and their monomials are contained
in the dual canonical basis up to some q-shifts. Here quantum flag minors are defined
as certain matrix coefficients with respect to extremal vectors in integrable highest
weight modules. (See Theorem 6.20.)

(3) The “q-center” of Oq[N(w)] is generated by some of the quantum flag minors. More-
over any dual canonical basis element in Bup(w) can be factored into the product
of an element in the “q-center” of Oq[N(w)] and an “interval-free” element. (See
Theorem 6.21.)

When g is of type ADE, Caldero proved the above results in a series of works [7, 8, 9] (see
also [6, 6.3]). (Oq[N(w)] is denoted by Uq(nw) in [9].) We generalize them to an arbitary
symmetrizable Kac-Moody Lie algebra. Key tools are the Poincaré-Birkhoff-Witt basis of
Oq[N(w)] and the crystal structures. They are already used by Caldero, but the author
cannot follow several claims, and give a self-contained proof in this paper.

1.5. Quantization conjectures and its consequences. The above properties (1), (2), (3)
can be thought as a part of structures of a quantum cluster algebra. The corresponding
properties of the “classical limit” C[N(w)] were shown in [23] if the dual canonical basis
is replaced by the dual semicanoncial basis. We conjecture that remaining structures of a
quantum cluster algebra exist on Oq[N(w)] as in [23]. Let Oq[N(w)]A be the integral form
defined by the dual canonical basis Bup(w) where A = Q[q±].

Conjecture 1.1 (Quantization conjecture). (1) We take a reduced expression w̃ = (i1, · · · , il)
of the Weyl group element w, then we have an isomorphism of algebras

Φ ew : A q(Γ ew,Λ ew)⊗Z[q±] Q[q±] ' Oq[N(w)]A,

which sends the initial seed to the quantum flag minors {∆q
si1

···sik
$ik

,$ik
}1≤k≤l, defined as

matrix coefficients of certain extremal vectors associated with w̃, where Γ ew is the frozen quiver
in [2] and [23] and Λ ew is the compatible pair in [4, §10.3].

(2) Under this isomorphism, the quantum cluster monomials of A q(Γ ew,Λ ew) are contained
in the dual canonical base Bup(w) up to some q-shifts.

Let A → C be the algebra homomorphism defined by q 7→ 1. If we specialize Conjecture
1.1 to q = 1, we obtain the following “weak” conjecture.

Conjecture 1.2 (Weak quantization conjecture). (1) Let w̃ be as above, We have an iso-
morphism of algebras

Φ ew : A (Γ ew)⊗Z C ' C[N(w)],
which sends the initial seed to the specialized quantum flag minors {∆si1

···sik
$ik

,$ik
}1≤k≤l,

where Γ ew is the frozen quiver as above.
(2) Under this isomorphism, the cluster monomials of C[N(w)] are contained in the spe-

cialized dual canonical base Bup(w) at q = 1.

Some parts of Conjecture 1.1 were shown for A2, A3, A4 cases with w = w0 in [3] and [18,
§12] and A(1)

1 with w = c2 in [32].
The definition of the quantum cluster algebra A q(Γ ew,Λ ew) will not be explained. So we

explain the meaning of this conjecture as properties of the dual canonical basis without
referring to the axiom of a quantum cluster algebra [4].

An element x ∈ Bup \ {1} is called prime if it does not have a non-trivial factorization
x = qNx1x2 with x1, x2 ∈ Bup and N ∈ Z. A subset x = {x1, · · · , xl} ⊂ Bup is called strongly
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compatible if for any m1, · · · ,ml ∈ Z≥0, the monomial xm1
1 · · ·xml

l ∈ qZBup, that is xm1
1 · · ·xml

l
is contained in the dual canonical basis Bup up to some q-shifts. In particular, x is contained
in a compatible family, then it satisfies xm ∈ qZBup for any m ≥ 1. A strongly compatible
subset x = {x1, · · · , xl} is called maximal in Bup(w) if y ∈ Bup(w) satisfies yxi ∈ qZBup(w)
for any xi, then there exists m1, · · · ,ml and N such y = qNxm1

1 · · ·xml
l .

Our quantization conjecture means that there are lots of maximal strongly compatible
subsets of Bup(w), constructed recursively from {∆q

si1
···sik

$ik
,$ik

}1≤k≤l. For example, for
finite type g with w = c2 for a (bipartite) Coxeter element c, it is expected that the dual
canonical basis Bup(w) is covered by the (finite) union of the maximal compatible families.
But the union is not the whole Bup(w) in general.

Our quantization conjecture implies several conjectures on (quantum) cluster algebras. Let
us spell out a few.

If g is symmetric, we have the positivity result for the dual canonical base by the con-
struction of [39]. This implies the positivity conjecture for the quantum cluster algebras
A q(Γ ew,Λ ew), stating that cluster monomials are Laurent polynomials with positive coeffi-
cients in q and cluster variables of any seed. This conjecture is known only special cases:

• cluster algebras of finite type [16],
• cluster algebras with bipartite seeds [47],
• cluster algebras coming from triangulated surfaces [45],
• acyclic cluster algebras at the initial seed [49].

In fact, these results apply only to cluster algebras, not quantum ones except [49]. Thus
we have much stronger positivity.

The quantization conjecture also provides us a monoidal categorification of C[N(w)] in the
sense of Hernandez-Leclerc [35]. It roughly says that there is a monoidal abelian category
N(w) whose complexified Grothendieck ring K0(N(w))⊗Z C has the cluster algebra structure
of C[N(w)] so that the cluster monomials are classes of simple objects. If the weak quantizaton
conjecture is true (and g is symmetric), the category N(w) is given as the category of finite
dimensional modules of the (equivariant) Ext algebras of the simple (equivariant) perverse
sheaves belonging to Bup(w). Thanks to [53], N(w) is also considered as the extension-
closed subcategory of the module category of Khovanov-Lauda-Rouquier’s algebra [30, 29, 51]
consisting of finite dimensional modules whose composition factors are contained in Bup(w).

When g is symmetric, Geiß, Leclerc and Schröer conjecture that certain dual semicanonical
basis elements are specialization of the corresponding dual canonical basis elements. This is
called the open orbit conjecture. This class of the dual semicanonical basis element contains
all the cluster monomials. (Conjecturally it exactly consists of the cluster monomials [5,
Conjecture II 5.3].) The open orbit conjecture for the cluster monomials is equivalent to the
weak quantization conjecture.

This paper is organized as follows. In §2, we give a review the quantized enveloping
algebra and its canonical basis. In §3, we give a review the dual canonical basis Bup and
its multiplicative properties. In §4, we define the quantum unipotent subgroup and prove its
compatibility with the dual canonical basis. In §5, we define the quantum closed unipotent
cell and study its relationship with the quantum unipotent subgroup. In §6, we give quantum
flag minors and prove their multiplicative properties.

Acknowledgement. The author is grateful to his advisor Hiraku Nakajima for his valuable
comments and his sincere encouragement.
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2. Preliminaries: Quantized enveloping algebras and the canonical bases

We briefly recall the definition of the quantized enveloping algebra and its canonical base
in this section.

2.1. Definition of Uq(g).

2.1.1. A root datum consists of

(1) h: a finite-dimensional Q-vector space,
(2) a finite index set I,
(3) P ⊂ h∗: a lattice (weight lattice),
(4) P∨ = HomZ(P,Z) with natural pairing 〈 , 〉 : P ⊗ P∨ → Z,
(5) αi ∈ P for i ∈ I (simple roots),
(6) hi ∈ P∨ for i ∈ I (simple coroots),
(7) (·, ·) a Q-valued symmetric bilinear form on h∗

satisfying following conditions:

(a) 〈hi, λ〉 = 2(αi, λ)/(αi, αi) for i ∈ I and λ ∈ P ,
(b) aij = 〈hi, αj〉 = 2(αi, αj)/(αi, αi) gives a symmetrizable generalized Cartan matrix,

i.e., 〈hi, αi〉 = 2, and 〈hi, αj〉 ∈ Z≤0 and 〈hi, αj〉 = 0 ⇔ 〈hj , αi〉 = 0 for i 6= j,
(c) (αi, αi) ∈ 2Z>0, i.e. di := (αi, αi)/2 ∈ Z>0,
(d) {αi}i∈I are linearly independent.

We call (I, h, ( , )) a Cartan datum. Let Q =
⊕

i∈I Zαi ⊂ P be the root lattice. Let
Q± = ±

∑
i∈I Z≥0αi. Fot ξ =

∑
i∈I ξiαi ∈ Q, we define tr(ξ) =

∑
i∈I ξi. And we assume that

there exists $i ∈ P such that 〈hi, $j〉 = δi,j for any i, j ∈ I. We call $i the fundamental
weight corrsponding to i ∈ I. We say λ ∈ P is dominant if 〈hi, λ〉 ≥ 0 for any i ∈ I
and denote by P+ the set of dominant integral weights. We denote by P :=

⊕
i∈I Z$i and

P+ := P ∩ P+ =
⊕

i∈I Z≥0$i.

2.1.2. Let (I, h, ( , )) be a Cartan datum. Let g be the symmetrizable Kac-Moody Lie algebra
corresponding to the generalized Cartan matrix A = (aij) with the Cartan subalgebra h, i.e.,
g is the Lie algebra generated by {h;h ∈ h}, ei, and fi (i ∈ I) with the following relations:

(i) [h, h′] = 0 for h, h′ ∈ h,
(ii) [h, ei] = 〈h, αi〉 ei, [h, fi] = −〈h, αi〉 fi,
(iii) [ei, fj ] = δijhi, and
(iv) (adei)1−〈hi,αj〉ej = (adfi)1−〈hi,αj〉fj = 0 for i 6= j.

We denote the Lie subalgebra generated by {fi}i∈I by n.

2.1.3. Suppose a root datum is given. We introduce an indeterminate q. For i ∈ I, we set
qi = q(αi,αi)/2. For ξ =

∑
i∈I ξiαi ∈ Q, we set qξ :=

∏
i∈I(qi)

ξi = q(ξ,ρ), where ρ is the sum of
all fundamental weights. We define Q-subalgebras A0, A∞ and A of Q(q) by

A0 := {f ∈ Q(q); f is regular at q = 0},
A∞ := {f ∈ Q(q); f is regular at q = ∞},
A := Q[q±].
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2.1.4. The quantized enveloping algebra Uq(g) associated with a root datum is the Q(q)-
algebra generated by ei, fi (i ∈ I), qh (h ∈ d−1P ∗) with the following relations:

(i) q0 = 1, qhqh′ = qh+h′ ,
(ii) qheiq

−h = q〈h,αi〉ei, q
hfiq

−h = q−〈h,αi〉fi,
(iii) eifj − fjej = δij(ti − t−1

i )/(qi − q−1
i ),

(iv)
1−aij∑
k=0

(−1)ke
(k)
i eje

(1−aij−k)
i =

1−aij∑
k=0

(−1)kf
(k)
i fjf

(1−aij−k)
i = 0 (q-Serre relations),

where ti = q
(αi,αi)

2
hi , [n]i = (qn

i − q−n
i )/(qi − q−1

i ), [n]i! = [n]i[n − 1]i · · · [1]i for n > 0 and
[0]! = 1, e(k)

i = eki /[k]i!, f
(k)
i = fk

i /[k]i! for i ∈ I and k ∈ Z≥0.

2.1.5. Let U+
q (g) (resp. U−

q (g)) be the Q(q)-subalgebra of Uq(g) generated by ei (resp. fi)
for i ∈ I. Then we have the triangular decomposition

Uq(g) ' U−
q (g)⊗Q(q) Q(q)[P∨]⊗Q(q) U+

q (g),

where Q(q)[P∨] is the group algebra over Q(q), i.e.,
⊕

h∈P∨ Q(q)qh.

2.1.6. For ξ ∈ Q, we define its root space Uq(g)ξ by

Uq(g)ξ = {x ∈ Uq(g)|qhxq−h = q〈h,ξ〉x for any h ∈ P ∗}.
Then we have the root space decomposition

U±
q (g) =

⊕
ξ∈Q±

Uq(g)ξ.

An element x ∈ Uq(g) is homogenous if x ∈ Uq(g)ξ for some ξ ∈ Q, and we set wt(x) = ξ.

2.1.7. Let U−
q (g)A be the A-subalgebra of U−

q (g) generated by f (k)
i for i ∈ I and k ∈ Z≥0.

Let (U−
q (g)A)ξ := U−

q (g)A ∩U−
q (g)ξ. We have

U−
q (g)A =

⊕
ξ∈Q−

(U−
q (g)A)ξ.

2.1.8. We define a Q(q)-algebra anti-involution ∗ : Uq(g) → Uq(g) by

∗(ei) = ei, ∗(fi) = fi, ∗(qh) = q−h.(2.1)

We call this the ∗-involution.
We define a Q-algebra automorphism : Uq(g) → Uq(g) by

ei = ei, fi = fi, q = q−1, qh = q−h.(2.2)

We call this the bar involution.
We remark that these two involutions preserve U+

q (g) and U−
q (g), and we have ◦∗ = ∗◦ .

2.1.9. In this article, we choose the coproduct on Uq(g) following [25]:

∆(qh) = qh ⊗ qh,(2.3a)

∆(ei) = ei ⊗ t−1
i + 1⊗ ei,(2.3b)

∆(fi) = fi ⊗ 1 + ti ⊗ fi.(2.3c)
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2.1.10. We introduce Lusztig’s Q(q)-valued symmetric nondegenerate bilinear form ( , )L on
U−

q (g). We first define a Q(q)-algebra structure on U−
q (g)⊗U−

q (g) by

(x1 ⊗ y1)(x2 ⊗ y2) = q−(wt(x2),wt(y1))x1x2 ⊗ y1y2,

where xi, yi (i = 1, 2) are homogenous elements.
Let r : U−

q (g) → U−
q (g)⊗U−

q (g) be a Q(q)-algebra homomorphism defined by

r(fi) = fi ⊗ 1 + 1⊗ fi (i ∈ I).
We call this the twisted coproduct.

By [41, 1.2.5], the algebra U−
q (g) has a unique nondegenerate Q(q)-valued symmetric bi-

linear form ( , )L : U−
q (g)×U−

q (g) → Q(q) which satisfies

(1, 1)L = 1,(2.4a)

(fi, fj)L =
δi,j

1− q2i
,(2.4b)

(x, yy′)L = (r(x), y ⊗ y′)L,(2.4c)

(xx′, y)L = (x⊗ x′, r(y))L,(2.4d)

where the form on U−
q (g)⊗U−

q (g) is defined by (x1 ⊗ y1, x2 ⊗ y2)L = (x1, x2)L(y1, y2)L.

2.1.11. The relation between the coproduct ∆ and the twisted coproduct r is given as follows:

Lemma 2.5. For homogenous x ∈ U−
q (g)ξ, we have

(2.6) ∆(x) =
∑

x(1)t−wt(x(2)) ⊗ x(2),

where r(x) =
∑
x(1) ⊗ x(2), tξ = qν(ξ), and ν(ξ) =

∑
i

(αi,αi)
2 ξihi for ξ =

∑
ξiαi ∈ Q.

2.1.12. For i ∈ I, we define the unique Q(q)-linear map ir : U−
q → U−

q (resp. ri : U−
q → U−

q )
given by ir(1) = 0, ir(fj) = δi,j (resp. ri(1) = 0, ri(fj) = δi,j) for any i, j ∈ I and

ir(xy) = ir(x)y + q−(wt x,αi)xir(y),(2.7a)

ri(xy) = q−(wt y,αi)ri(x)y + xri(y)(2.7b)

for homogenous x, y ∈ U−
q . From the definition, we have

(fix, y)L =
1

1− q2i
(x, iry)L,(2.8a)

(xfi, y)L =
1

1− q2i
(x, riy)L.(2.8b)

2.2. Canonical basis of U−
q (g). In this subsection, we give a brief review of the theory of

the canonical base following Kashiwara [25, 28]. Note that Kashiwara call it the lower global
base.

2.2.1.

Lemma 2.9 ([25, Lemma 3.4.1], [48]). For x ∈ U−
q (g) and any i ∈ I, we have

[ei, x] =
ri(x)ti − t−1

i ir(x)
qi − q−1

i

.
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2.2.2. Kashiwara [25, §3.4] has proved that there is a unique non-degenerate symmetric
bilinear form (·, ·)K on U−

q (g) such that

(fix, y)K = (x, iry)K ,(2.10a)

(1, 1)K = 1.(2.10b)

Lemma 2.11 ([25, Lemma 3.4.7], [41, Lemma 1.2.15]). For x ∈ U−
q (g) with ir(x) = 0 for

any i ∈ I and wt(x) 6= 0, then we have x = 0.

2.2.3. We have the following relation between Kashiwara’s bilinear form ( , )K and Lusztig’s
one ( , )L.

Lemma 2.12 ([34, 2.2]). For homogenous x, y ∈ U−
q (g)ξ with ξ = −

∑
niαi ∈ Q−, we have

(x, y)K =
∏
i∈I

(1− q2i )
ni(x, y)L.

This can be proved by an induction on wt(x) by using Lemma 2.11, (2.10a) and (2.8a).

Lemma 2.13 ([41, Lemma 1.2.8(b)]). For any homogenous x, y ∈ U−
q (g), we have

(x, y)K = (x∗, y∗)K .

2.2.4. The reduced q-analogue Bq(g) of a symmetrizable Kac-Moody Lie algebra g is the
Q(q)-algebra generated by ir and fi with the q-Boson relations irfj = q−(αi,αj)fj ir + δi,j for
i, j ∈ I and the q-Serre relations for ir and fi for i ∈ I. Then U−

q (g) becomes a Bq(g)-modules
by Lemma 2.9.

By the q-Boson relation, any element x ∈ U−
q (g) can be uniquely written as x =

∑
n≥0 f

(n)
i xn

with ir(xn) = 0 for any n ≥ 0. So we define Kashiwara’s modified root operators f̃i and ẽi by

ẽix =
∑
n≥1

f
(n−1)
i xn,

f̃ix =
∑
n≥0

f
(n+1)
i xn.

By using these operators, Kashiwara introduced the crystal basis (L (∞),B(∞)) of U−
q (g):

Theorem 2.14 ([25]). Let

L (∞) :=
∑

l≥0,i1,i2,··· ,il∈I

A0f̃i1 · · · f̃il1 ⊂ U−
q (g),

B(∞) := {f̃i1 · · · f̃il1 mod qL (∞); l ≥ 0, i1, i2, · · · , il ∈ I} ⊂ L (∞)/qL (∞).

Then we have the followings:
(1) L (∞) is a free A0-module with Q(q)⊗A0 L (∞) = U−

q (g).
(2) ẽiL (∞) ⊂ L (∞) and f̃iL (∞) ⊂ L (∞).
(3) B(∞) is a Q-basis of L (∞)/qL (∞).
(4) f̃i : B(∞) → B(∞) and ẽi : B(∞) → B(∞) ∪ {0}.
(5) For b ∈ B(∞) with ẽi(b) 6= 0, we have f̃iẽib = b.

We call (L (∞),B(∞)) the (lower) crystal basis of U−
q (g), and L (∞) the (lower) crystal

lattice. We denote 1 mod qL (∞) ∈ B(∞) by u∞ hereafter. For b ∈ B(∞), we set εi(b) :=
max{n ∈ Z≥0; ẽni b 6= 0} <∞, and ẽmax

i (b) := ẽ
εi(b)
i b ∈ B(∞).
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2.2.5. We have the following compatibility of the ∗-involution with the crystal lattice L (∞).

Theorem 2.15 ([25, Proposition 5.2.4], [26, Theorem 2.1.1]). We have

∗(L (∞)) = L (∞),(2.16a)

∗(B(∞)) = B(∞).(2.16b)

For i ∈ I and b ∈ B(∞), we set

f̃∗i (b) := (∗ ◦ f̃i ◦ ∗)(b),(2.17a)

ẽ∗i (b) := (∗ ◦ ẽi ◦ ∗)(b).(2.17b)

For b ∈ B(∞), we set ε∗i (b) := max{n ∈ Z≥0; ẽ∗ni b 6= 0} <∞. We have ε∗i (b) = εi(∗b).

2.2.6. We recall some results on relationship between the crystal lattice L (∞) and Kashi-
wara’s form (·, ·)K .

Proposition 2.18 ([25, Proposition 5.1.2]). We have

(L (∞),L (∞))K ⊂ A0.

Therefore the Q-valued inner product on L (∞)/qL (∞) given by (·, ·)|q=0 is well-defined,
which we denote by (·, ·)0. Then we have the following properties:

(1) (ẽiu, u′)0 = (u, f̃iu
′)0 for u, u′ ∈ L (∞)/qL (∞),

(2) B(∞) ⊂ L (∞)/qL (∞) is an orthonormal basis with respect to ( , )0.
Moreover we have

(2.19) L (∞) = {x ∈ U−
q (g); (x,L (∞))K ⊂ A0},

that is the crystal lattice L (∞) is a self-dual lattice with respect to (·, ·)K .

2.2.7. Let : Q(q) → Q(q) be the Q-algebra involution sending q to q−1. Let V be a vector
space over Q(q), L0 be an A0-submodule of V , L∞ be an A∞-submodule of V , and VA be
an A-submodule of V . We set E := L0 ∩L∞ ∩ VA.

Definition 2.20. We say that a triple (L0,L∞, VA) is balanced if each L0,L∞, and VA
generates V as Q(q)-vector space and if one of the following equivalent conditions is satisfied

(1) E → L0/qL0 is an isomorphism,
(2) E → L∞/q

−1L∞ is an isomorphism,
(3) (L0 ∩ VA)⊕ (q−1L∞ ∩ VA) → VA is an isomorphism,
(4) A0⊗QE → L0, A∞⊗QE → L∞, A⊗QE → VA, and Q(q)⊗QE → V are isomorphisms.

Theorem 2.21 ([25, Theorem 6]). The triple (L (∞),L (∞),U−
q (g)A) is balanced.

Let Glow : L (∞)/qL (∞) → E := L (∞) ∩ L (∞) ∩ U−
q (g)A be the inverse of E ∼−→

L (∞)/qL (∞). Then {Glow(b); b ∈ B(∞)} forms an A-basis of U−
q (g)A. This basis is

called the canonical basis of U−
q (g). Using this characterization, we obtain the following

compatibility of the canonical basis and the ∗-involution.

Proposition 2.22. We have
∗Glow(b) = Glow(∗b).
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2.2.8. For integrable highest weight modules, we can define the (lower) crystal basis and
the canonical basis of them as for U−

q (g), see [25, Theorem 2, Theorem 6] for more details.
Let M be an integrable Uq(g)-module and M =

⊕
λ∈P Mλ be its weight decomposition. For

u ∈ Ker(ei) ∩Mλ and 0 ≤ n ≤ 〈hi, λ〉, we define Kashiwara’s modified operators or (lower)
crystal operators ẽlowi and f̃ low

i by

ẽlowi (f (n)
i u) = f

(n−1)
i u,

f̃ low
i (f (n)

i u) = f
(n+1)
i u.

Here we understand f
(−1)
i u and f

(〈hi,λ〉+1)
i u as 0. Note that we denote the operators f̃i and

ẽi in [25, 2.2] by f̃ low
i and ẽlowi following [27].

Let λ ∈ P+ and V (λ) be the integrable highest weight Uq(g)-module generated by a highest
weight vector uλ of weight λ. Let L low(λ) be the A0-submodule spanned by f̃ low

i1
· · · f̃ low

il
uλ.

Let Blow(λ) be the subset of L low(λ)/qsL low(λ) consisting of the non-zero vectors of the
form f̃ low

i1
· · · f̃ low

il
uλ, that is

L low(λ) :=
∑

A0f̃
low
i1 · · · f̃ low

il
uλ ⊂ V (λ),

Blow(λ) := {f̃ low
i1 · · · f̃ low

il
uλ mod qL low(λ)} \ {0} ⊂ L low(λ)/qsL low(λ).

Theorem 2.23 ([25, Theorem 2]). (1) L low(λ) is a free A0-submodule with Q(q) ⊗A0

L low(λ) ' V (λ) and L low(λ) =
⊕

µ∈P L low(λ)µ where L low(λ)µ = L low(λ) ∩Mµ.
(2) ẽlowi L low(λ) ⊂ L low(λ) and f̃ low

i L low(λ) ⊂ L low(λ).
(3) Blow(λ) is a Q-basis of L low(λ)/qL low(λ) and Blow(λ) =

⊔
µ∈P Blow(λ)µ where

Blow(λ)µ = Blow(λ) ∩L low(λ)µ/qL low(λ)µ.
(4) For i ∈ I, we have ẽiB(λ) ⊂ B(λ) ∪ {0} and f̃iB(λ) ⊂ B(λ) ∪ {0}.
(5) For b, b′ ∈ Blow(λ), b′ = f̃ low

i b is equivalent to b = ẽlowi b′.

We call (L low(λ),Blow(λ)) the lower crystal basis of V (λ), and L low(λ) the lower crystal
lattice.

Let be the bar-involution defined by Puλ = Puλ. Set V (λ)A := U−
q (g)Auλ.

Theorem 2.24 ([25, Theorem 6]). The triple (L low(λ),L low(λ), V (λ)A) is balanced.

Let Glow
λ be the inverse of L low(λ) ∩ L low(λ) ∩ V (λ)A

∼−→ L low(λ)/qL low(λ). We call
Glow

λ (Blow(λ)) the canonical basis of V (λ).

2.2.9. We have a compatibility of the (lower) crystal basis of U−
q (g) and the integrable

modules V (λ). Let πλ : U−
q (g) → V (λ) be the U−

q (g)-module homomorphism defined by
x 7→ xuλ.

Theorem 2.25 ([25, Theorem 5]). We have the following properties:
(1) πλL (∞) = L (λ), hence πλ induces a surjection homomorphism πλ : L (∞)/qL (∞) →

L low(λ)/qL low(λ).
(2) πλ induces a bijection {b ∈ B(∞);πλ(b) 6= 0} ' Blow(λ).
(3) f̃ low

i ◦ πλ(b) = πλ ◦ f̃i(b) if πλ(b) 6= 0.
(4) ẽlowi ◦ πλ(b) = πλ ◦ ẽi(b) if ẽi ◦ πλ(b) 6= 0.

We denote the inverse of the bijection πλ by jλ.



QUANTUM UNIPOTENT SUBGROUP AND DUAL CANONICAL BASIS 11

2.2.10. We also have a compatibility of the canonical basis of U−
q (g) and the integrable

modules V (λ) via πλ.

Theorem 2.26 ([25, 7.3 Lemma 7.3.2]). For λ ∈ P+ and b ∈ B(∞) with πλ(b) 6= 0, we have

Glow(b)uλ = Glow
λ (πλ(b)).

2.2.11. For the canonical basis, we have the following expansion of left and right multiplica-
tion with respect to f (m)

i .

Theorem 2.27 ([26, (3.1.2)]). For b ∈ B(∞), we have

f
(m)
i Glow(b) =

[
εi(b) +m

m

]
Glow(f̃m

i b) +
∑

εi(b′)>εi(b)+m

f
(m)
bb′;i(q)G

low(b′),(2.28a)

Glow(b)f (m)
i =

[
ε∗i (b) +m

m

]
Glow(f̃∗mi b) +

∑
ε∗i (b′)>ε∗i (b)+m

f
∗(m)
bb′;i (q)Glow(b′),(2.28b)

where f (m)
bb′;i(q) = f

(m)
bb′;i(q), f

∗(m)
bb′;i (q) = f

∗(m)
bb′;i (q) ∈ A.

As a corollary of the above theorem, we have the following compatibilities of the right and
left ideals fn

i U−
q (g) and U−

q (g)fn
i with the canonical basis.

Theorem 2.29 ([25, Theorem 7]). For i ∈ I and n ≥ 1, we have

fn
i U−

q (g) ∩U−
q (g)A =

⊕
b∈B(∞),εi(b)≥n

AGlow(b),

U−
q (g)fn

i ∩U−
q (g)A =

⊕
b∈B(∞),ε∗i (b)≥n

AGlow(b).

2.3. Abstract crystal. The notion of a (abstract) crystal was introduced in [26] by ab-
stracting the crystal basis of U−

q (g) and of irreducible highest weight representations which
are constructed in [25]. We recall it briefly. For more detail, see [28].

2.3.1.

Definition 2.30. A crystal B associated with a root datum is a set B endowed with maps
wt: B → P, εi, ϕi : B → Z t {−∞}, ẽi, f̃i : B → B t {0} (i ∈ I) satisfying following
conditions:

(a) ϕi(b) = εi(b) + 〈hi,wt(b)〉,
(b) wt(ẽib) = wt(b) + αi, εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1, if ẽib ∈ B,
(c) wt(f̃ib) = wt(b)− αi, εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1, if f̃ib ∈ B,
(d) b′ = f̃ib⇔ b = ẽib

′ for b, b′ ∈ B,
(e) if ϕi(b) = −∞ for b ∈ B, then ẽib = f̃ib = 0.

Let wti(b) = 〈hi,wt(b)〉.

Definition 2.31. For given two crystals B1,B2 and h ∈ Z≥1 , a map ψ : B1t{0} → B2t{0}
is called a morphism of amplitude h of crystals from B1 to B2 if it satisfies the following
properties for b ∈ B1 and i ∈ I:

(a) ψ(0) = 0,
(b) wt(ψ(b)) = hwt(b), εi(ψ(b)) = hεi(b), ϕi(ψ(b)) = hϕi(b) if ψ(b) ∈ B2,
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(c) ẽhi ψ(b) = ψ(ẽib) if ψ(b) ∈ B2, ẽib ∈ B1,
(d) f̃h

i ψ(b) = ψ(f̃ib) if ψ(b) ∈ B2, f̃ib ∈ B1.
When h = 1, it is simply called a morphism of crystal. A morphism ψ : B1 → B2 is strict if
ψ commutes with ẽi, f̃i for all i ∈ I without any restriction. A strict morphism ψ : B1 → B2

is called an strict embedding if ψ is an injective map from B1 t {0} to B2 t {0}.

Definition 2.32. The tensor product B1 ⊗ B2 of crystals B1 and B2 is defined to be the
set B1 ×B2 with maps given by

wt(b1 ⊗ b2) = wt(b1) + wt(b2),(2.33a)

εi(b1 ⊗ b2) = max(εi(b1), εi(b2)− wti(b1)),(2.33b)

ϕi(b1 ⊗ b2) = max(ϕi(b2), ϕi(b1) + wti(b2)),(2.33c)

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2),
b1 ⊗ ẽib2 otherwise,

(2.33d)

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),
b1 ⊗ f̃ib2 otherwise.

(2.33e)

Here (b1, b2) is denoted by b1 ⊗ b2 and 0⊗ b2, b1 ⊗ 0 are identified with 0.

Iterating (2.33d) and (2.33e), we obtain the followings:

ẽni (b1 ⊗ b2) =


ẽni b1 ⊗ b2 if ϕi(b1) ≥ εi(b2),
ẽ
n−εi(b2)+ϕi(b2)
i b1 ⊗ ẽ

εi(b2)−ϕi(b1)
i if εi(b2) ≥ ϕi(b1) ≥ εi(b2)− n,

b1 ⊗ ẽni b2 if εi(b2)− n ≥ ϕi(b1).
(2.34a)

f̃n
i (b1 ⊗ b2) =


f̃n

i b1 ⊗ b2 if ϕi(b1) ≥ εi(b2) + n,

f̃
ϕi(b1)−εi(b2)
i b1 ⊗ f̃

n−ϕi(b1)+εi(b2)
i b2 if εi(b2) + n ≥ ϕi(b1) ≥ εi(b2),

b1 ⊗ f̃n
i b2 if εi(b2) ≥ ϕi(b1),

(2.34b)

2.3.2. The (lower) crystal basis B(∞) of U−
q (g) is an example of an abstract crystal. The

same is true for Blow(λ) of V (λ) for λ ∈ P+. We may also write B(λ) instead of Blow(λ),
when it is considered as an abstract crystal.

Example 2.35. For i ∈ I, let Bi = {bi(n);n ∈ Z}. We can endow it with a structure of the
abstract crystal by wt(bi(n)) = nαi, εi(bi(n)) = −n, ϕi(bi(n)) = n, εj(bi(n)) = ϕj(bi(n)) =
−∞, for j 6= i, and

f̃jbi(n) =

{
bi(n− 1) if j = i,

0 if j 6= i,

ẽjbi(n) =

{
bi(n+ 1) if j = i,

0 if j 6= i.

2.3.3. For the crystal B(∞), we have the following strict embedding.

Theorem 2.36 ([26, Theorem 2.2.1]). (1) For each i ∈ I, there exits a strict embedding
Ψi : B(∞) → B(∞)⊗Bi which satisfies Ψi(u∞) = u∞ ⊗ bi.
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(2) If Ψi(b) = b′ ⊗ f̃n
i bi, we have

Ψi(ẽ∗i b) =

{
b′ ⊗ f̃n−1

i bi if n ≥ 1,
0 if n = 0,

Ψi(f̃∗i b) = b′ ⊗ f̃n+1
i bi.

(3) Im Ψi = {b′ ⊗ f̃n
i bi; ε

∗
i (b

′) = 0, n ≥ 0}.

By the above theorem, we have Ψi(b) = ẽ∗max
i b⊗f̃ε∗i (b)

i bi. For a sequence (i1, i2, · · · , ir) ∈ Ir,
we have a strict embedding

Ψ(i1,i2,··· ,ir) := (Ψir ⊗ · · · ⊗ 1) · · · (Ψi2 ⊗ 1)Ψi1 : B(∞) ↪→ B(∞)⊗Bir ⊗ · · · ⊗Bi1 .

2.3.4. For m ≥ 1, we have the following crystal morphism of amplitude m which is called
inflation of order m in [28, Definition 8.1.4].

Proposition 2.37 ([28, Proposition 8.1.3], [46, Proposition 3.2]). (1) For m ∈ Z≥1, there
exists a unique crystal morphism Sm : B(∞) → B(∞) of amplitude m satisfying

wt(Smb) = mwt(b), εi(Smb) = mεi(b), ϕi(Smb) = mϕi(b),

Sm(ẽib) = ẽmi Sm(b), Sm(f̃ib) = f̃m
i Sm(b),

Sm(u∞) = u∞.

(2) Let b ∈ B(∞). Then we have (∗◦Sm)(b) = (Sm◦∗)(b). In particular, for any b ∈ B(∞),
we have

ε∗i (Smb) = mε∗i (b), ϕ∗i (Smb) = mϕ∗i (b),

Sm(ẽ∗i b) = ẽ∗mi Sm(b), Sm(f̃∗i b) = f̃∗mi Sm(b).

3. The dual canonical basis

3.1. In this subsection, we recall the definition of the dual canonical basis and its charac-
trization in terms of the dual bar involution σ with a balanced triple. We define Bup ⊂ U−

q (g)
by the dual basis of B under the Kashiwara’s bilinear form ( , )K . We define the dual bar
involution σ : U−

q (g) → U−
q (g) so that

(σ(x), y)K = (x, y)K

holds for any y ([4, 10.2]). This is well-defined since (·, ·)K is non-degenerate. By its definition,
we have σ(x) = x for x ∈ Bup and this is a Q-linear involutive automorphism of U−

q (g) which
satisfies σ(fx) = fσ(x) for any f ∈ Q(q) and x ∈ U−

q (g).

3.1.1. For ξ =
∑
ξiαi ∈ Q, we define

(3.1) N(ξ) :=
1
2

(
(ξ, ξ) +

∑
ξi(αi, αi)

)
=

1
2

((ξ, ξ) + 2(ξ, ρ)) .

We have N(−αi) = 0 for any i ∈ I and N(ξ + η) = N(ξ) +N(η) + (ξ, η) for any ξ, η ∈ Q.
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Proposition 3.2. We assume x, y ∈ U−
q (g) are homogenous.

(1) If r(x) =
∑
x(1) ⊗ x(2), we have

r(x) =
∑

q−(wt x(1),wt x(2))x(2) ⊗ x(1).

(2) We set {x, y}K := (x, y)K , then we have

{x, y}K = qN(wt x)(x, ∗y)K .

(3) We have

σ(x) = qN(wt x)(∗ ◦ )(x).

Proof. For convenience of the reader, we give a proof.
(1) We follow the argument in [41, 1.2.10]. For generators of U−

q (g), we have r(fi) =
fi ⊗ 1 + 1 ⊗ fi = r(fi). We prove the assertion by the induction on wt, so we assume
that (1) holds for homogenous x′, x′′ and show that it holds also for x = x′x′′. First we
write r(x′) =

∑
x′(1) ⊗ x′(2) and r(x′′) =

∑
x′′(1) ⊗ x′′(2). By assumption, we have r(x′) =∑

q
−(wt x′

(1)
,wt x′

(2)
)
x′(2) ⊗ x′(1) and r(x′′) =

∑
q
−(wt x′′

(1)
,wt x′′

(2)
)
x′′(2) ⊗ x′′(1). We have r(x′x′′) =

r(x′)r(x′′) =
∑
q
−(wt x′

(2)
,wt x′′

(1)
)
x′1x

′′
1 ⊗ x′2x

′′
2 and

r(x′)r(x′′) =
∑

q
−(wt x′′

(1)
,wt x′′

(2)
)−(wt x′

(1)
,wt x′

(2)
)−(wt x′

(1)
,wt x′′

(2)
)
x′(2)x

′′
(2) ⊗ x′(1)x

′′
(1).

Then the assertion follows.
(2) We follow the argument in [41, Lemma 1.2.11 (2)]. For the generators, we have

{fi, fi}K = (fi, fi)K = qN(wt fi)(fi, fi)K .
We prove the assertion by the induction on tr(wtx) = tr(wt y). We prove that (2) holds

for y = y′y′′ and for any x assuming it holds for y′, y′′. First we write r(x) =
∑
x(1) ⊗ x(2)

with x(1) and x(2) homogenous. We have

(x, y)K

= (r(x), y′ ⊗ y′′) =
∑

q−(wt x(1),wt x(2))(x(2) ⊗ x(1), y′ ⊗ y′′)K

=
∑

q−(wt x(1),wt x(2))(x(2), y′)K(x(1), y′′)K

=
∑

q−(wt x(1),wt x(2))−N(wt x(1))−N(wt x(2))(x(2), ∗y′)K(x(1), ∗y′′)K

=
∑

q−N(wt x)(x(2), ∗y′)K(x(1), ∗y′′)K ,

where we have used the induction hypothesis in the fourth equality. On the other hand, we
have

q−N(wt x)(x, ∗y)K

= q−N(wt x)(r(x), ∗y′′ ⊗ ∗y′)K

= q−N(wt x)
∑

(x(1) ⊗ x(2), ∗y′′ ⊗ ∗y′)K .

Hence we obtain the assertion.
(3) We have (σ(x), y) = (x, y) = qN(wt(x))(x, ∗y) = qN(wt(x))((∗ ◦ )(x), y), where we used

Lemma 2.13. Since this holds for any y, assertion follows. q.e.d
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3.1.2. By its construction, we have a characterization of the dual canonical basis Bup in
terms of the dual bar involution σ and the crystal lattice L (∞) of U−

q (g). We note that
L (∞) is a self-dual A0 lattice, see (2.19), and hence we do not need to the introduce the
dual lattice of L (∞).

Proposition 3.3. We set

U−
q (g)up

A := {x ∈ U−
q (g); (x,U−

q (g)A)K ⊂ A}.

Then (L (∞), σ(L (∞)),U−
q (g)up

A ) is a balanced triple for the dual canonical basis Bup.

Here we have the following isomorphism of Q-vector spaces:

L (∞) ∩ σ(L (∞)) ∩U−
q (g)up

A
∼−→ L (∞)/qL (∞).

We denote its inverse by Gup. Then we have Bup = Gup(B(∞)).

3.1.3. The above proposition gives a characterization of the dual canonical basis elements.

Corollary 3.4 ([36, Proposition 16]). A homogenous x ∈ U−
q (g)up

A ∩ L (∞) ∩ σ(L (∞)) is
an element of the dual canonical basis if and only if there exists b ∈ B(∞) such that

σ(x) = x,

x ≡ bmod qL (∞).

3.1.4. We have the following compatibility of the dual canonical basis and the ∗-involution
from Proposition 2.22.

Lemma 3.5. For b ∈ B(∞), we have

Gup(∗b) = ∗Gup(b).

3.2. Compatible subset. In this subsection, we introduce the concept of compatible sub-
sets of B(∞). Roughly speaking, they are closed under the multiplication up to q-shifts,
considered as subsets of the dual canonical basis Bup.

3.2.1. By Proposition 3.2 (3), we obtain the following.

Proposition 3.6. For homogenous x1, x2 ∈ U−
q (g), we have

(3.7) σ(x1x2) = q(wt x1,wt x2)σ(x2)σ(x1).

Then we obtain the following property.

Corollary 3.8. Let b1, b2 ∈ B(∞) and consider the following expansion

Gup(b1)Gup(b2) =
∑

wt(b)=wt(b1)+wt(b2)

db
b1,b2(q)G

up(b).

Then we have db
b1,b2

(q−1) = q(wt b1,wt b2)db
b2,b1

(q). In particular, if we have Gup(b1)Gup(b2) =
qNGup(b1 ~ b2) for b1 ~ b2 ∈ B(∞) and N ∈ Z, then we have

Gup(b1)Gup(b2) = q−N−(wt b1,wt b2)Gup(b2)Gup(b1).
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Proof. The first statement is clear from (3.7). Suppose that Gup(b1)Gup(b2) = qNGup(b1 ~b2)
for b1 ~ b2 ∈ B(∞) and N ∈ Z, i.e., db

b1,b2
(q) = qNδb,b1~b2 for b1 ~ b2 ∈ B(∞). Then we have

db
b2,b1(q) = q−(wt b1,wt b2)db

b1,b2(q
−1) = q−(wt b1,wt b2)q−Nδb,b1∗b2 .

This implies that if Gup(b1) and Gup(b2) satisfies db
b1,b2

(q) = qNδb,b1~b2 for some b1 ~ b2 ∈
B(∞), then Gup(b1) and Gup(b2) q-commutes. q.e.d

Motivated by this corollary, we introduce the following definition.

Definition 3.9. (1) We denote x ' y for x, y ∈ U−
q (g) if there exists N ∈ Z such that

x = qNy.
(2) For b1, b2 ∈ B(∞), we call b1 and b2 are multiplicative or compatible if there exists a

unique b1 ~ b2 ∈ B(∞) such that

Gup(b1 ~ b2) ' Gup(b1)Gup(b2).

By Corollary 3.8 this condition is independent of the order on b1 and b2. We write b1⊥b2
when this holds.

(3) Elements b1, · · · , bl ∈ B(∞) are called compatible if the following holds

Gup(b1) · · ·Gup(bl) ' Gup(b1 ~ · · ·~ bl)

for a unique b1 ~ · · · ~ bl ∈ B(∞). This condition is also independent of the ordering on
b1, · · · , bl.

(4) An element b ∈ B(∞) is called real if Gup(b)Gup(b) ' Gup(b[2]) for a unique b[2] ∈
B(∞), that is b⊥b.

(5) An element b ∈ B(∞) is called strongly real if Gup(b)m ' Gup(b[m]) for a unique
b[m] ∈ B(∞) for any m, that is b, · · · , b︸ ︷︷ ︸

m times

is compatible for any m.

(6) Elements b1, · · · , bl is called strongly compatible if for anym1, · · · ,ml ∈ Z≥0, the product
Gup(b1)m1 · · ·Gup(bl)ml ' Gup(b[m1]

1 ~ · · ·~ b
[ml]
l ) for a unique b[m1]

1 ~ · · ·~ b
[ml]
l ∈ B(∞).

Remark 3.10. For b1, b2 ∈ B(∞), we say a pair (b1, b2) is quasi-commutative if we have
Gup(b1)Gup(b2) ' Gup(b2)Gup(b1) following [3] and [50]. In [3], Berenstein and Zelevin-
sky conjectured that the quasi-commutativity and compatibility is equivalent. The above
corollary proves the Reineke’s result that the compatibility for b1 and b2 implies the quasi-
commutativity generalizes Reineke’s result from when g is symmetric to arbitrary symmetriz-
able g.

Remark 3.11. The relation b1⊥b2 is not an equivalence relation, as there exists b which
does not satisfies b⊥b. In particular, such elements are counter-examples for Berenstein-
Zelevinsky’s conjecture in [3]. In [33], Leclerc said that b is real if b⊥b and imaginary other-
wise. He constructed examples of imaginary elements in [33]. Other examples closely related
to this paper are given in [32, Corollary 4.4].

Remark 3.12. Even if b1⊥b2, we can not determine N in db
b1,b2

= qNδb,b1~b2 in terms of
weight of b1, b2. In §4, we have its explicit form in terms of the Lusztig data of b and b′

associated with a reduced expression w̃.

Corollary 3.13. (1) If b1⊥b2, then ∗b1⊥ ∗ b2.
(2) If b is real, then ∗b is also real.
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3.2.2. Let ir
(m) := ir

m/[m]! and ri
(m) := ri

m/[m]!. These operators are adjoint of the
left and right multiplications of f (m)

i by (2.10a). From Theorem 2.27, we get the following
expansions for the actions of ir

(m) := ir
m/[m]! and ri(m) := ri

m/[m]!.

Theorem 3.14. For b ∈ B(∞), we have

ir
(m)Gup(b) =

[
εi(b)
m

]
Gup(ẽmi b) +

∑
εi(b′)<εi(b)−m

E
(m)
bb′;i(q)G

up(b′),(3.15a)

ri
(m)Gup(b) =

[
ε∗i (b)
m

]
Gup(ẽ∗mi b) +

∑
ε∗i (b′)<ε∗i (b)−m

E
∗(m)
bb′;i (q)Gup(b′),(3.15b)

where E(m)
bb′;i(q) = E

(m)
bb′;i(q), E

∗(m)
bb′;i (q) = E

∗(m)
bb′;i (q) ∈ A.

As a special case, we have the following result.

Corollary 3.16 ([27, Lemma 5.1.1.]). Let b ∈ B(∞) with εi(b) = c (resp. ε∗i (b) = c). Then
we have ir

(c)Gup(b) = Gup(ẽmax
i b) (resp. ri(c)Gup(b) = Gup(ẽ∗max

i b)).

By the above corollary and (2.7a), we obtain the following result.

Corollary 3.17 ([50, Lemma 2.1]). For b1, b2 ∈ B(∞) with

Gup(b1)Gup(b2) =
∑

db
b1,b2(q)G

up(b),

we have εi(b) ≤ εi(b1) + εi(b2) for any i ∈ I if db
b1,b2

(q) 6= 0. An equality holds at least one b.

If fact, we can prove prove db
b1,b2

(q) = 0 if εi(b) > εi(b1)+εi(b2) by the descending induction
on εi(b). In particular, the positivity of db

b1,b2
, assumed in [50], is not used in the proof. The

second assertion follows from

ir
(εi(b1)+εi(b2))(Gup(b1)Gup(b2))

= qNGup(ẽmax
i b1)Gup(ẽmax

i b2)

=
∑

εi(b1)+εi(b2)=εi(b)

qNdb
b1,b2(q)G

up(ẽmax
i b)

(3.18)

for some N ∈ Z.
As a corollary of Corollary 3.16 and Corollary 3.17, we obtain the following criterion.

Corollary 3.19. (1) If b1⊥b2, then ẽmax
i b1⊥ẽmax

i b2 for any i ∈ I. In fact, we have εi(b1~b2) =
εi(b1) + εi(b2) and ẽmax

i (b1) ~ ẽmax
i (b2) = ẽmax

i (b1 ~ b2). Similar statement holds for ẽ∗max
i .

(2) If b is (resp. strongly) real, ẽmax
i (b) is (resp. strongly) real for any i ∈ I. In fact, we have

εi(b[m]) = mεi(b) and (ẽmax
i b)[m] = ẽmax

i (b[m]) for m = 2 (resp. any m). Similar statement
holds for ẽ∗max

i .

Lemma 3.20. If b is (resp. strongly) real, we have b[2] = S2(b) (resp. b[m] = Sm(b)).

Proof. For any b with tr(wt(b)) > 0, there exists i ∈ I such that εi(b) > 0. Therefore we can
connect b to u∞ by a path consisting of (strongly) real elements by successive applications of
ẽmax
i ’s. From the formula in Corollary 3.19 (2), we get the assertion. q.e.d
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3.3. Compatibilities of the dual canonical basis. In this subsection, we study the dual
canonical basis of integrable highest weight modules and its compatibilities with tensor prod-
ucts.

3.3.1. We recall the definition of the dual canonical base of the integrable highest weight
module V (λ) following [27, 4.2]. Kashiwara call it the upper global basis. Let M be an
integrable Uq(g)-module with a weight decomposition M =

⊕
λ∈P Mλ. For u ∈ Ker(ei)∩Mλ

and 0 ≤ n ≤ 〈hi, λ〉, we define other modified root operators called the upper crystal operators:

ẽup
i (f (n)

i u) =
[〈hi, λ〉 − n+ 1]i

[n]i
f

(n−1)
i u,

f̃up
i (f (n)

i u) =
[n+ 1]i

[〈hi, λ〉 − n]i
f

(n+1)
i u.

We have a Q(q)-linear anti-automorphism ϕ on Uq(g) defined by

ϕ(ei) = fi, ϕ(fi) = ei, ϕ(qh) = qh.(3.21)

For λ ∈ P+, we have a unique symmetric non-degenerate bilinear form ( , )λ : V (λ)⊗V (λ) →
Q(q) which satisfies

(ϕ(x)u, v)λ = (u, xv)λ, for u, v ∈ V (λ) and x ∈ Uq(g),(3.22a)

(uλ, uλ)λ = 1.(3.22b)

Then we have

(ẽup
i u, v)λ = (u, f̃ low

i v)λ,(3.23a)

(f̃up
i u, v)λ = (u, ẽlowi v)λ.(3.23b)

Using (·, ·)λ, we define the dual bar involution σλ by

(σλu, v)λ := (u, v)λ.

This is well-defined since (·, ·)λ is a non-degenerate bilinear form. We set

V (λ)up
A := {u ∈ V (λ); (u, V (λ)A)λ ⊂ A},(3.24a)

L up(λ) := {u ∈ V (λ); (u,L low(λ))λ ⊂ A0}.(3.24b)

Then we have σλ(L up(λ)) = {u ∈ V (λ); (u,L low(λ))λ ⊂ A∞}. Kashiwara denote σλ(L up(λ))
by L

up
(λ). The triple (L up(λ), σλ(L up(λ)), V (λ)up

A ) is balanced by [27, Lemma 2.2.3].

Proposition 3.25. Let Bup(λ) be the dual basis of Blow(λ) with respect to the induced
pairing (·, ·)λ : L up(λ)/qL up(λ)×L low(λ)/qL low(λ) → Q, then the pair (L up(λ),Bup(λ))
is an upper crystal base, that is

(1) L up(λ) is a free A0-module with Q(q)⊗A0 L up(λ) ' V (λ),
(2) f̃up

i L up(λ) ⊂ L up(λ) and ẽup
i L up(λ) ⊂ L up(λ),

(3) Bup(λ) ⊂ L up(λ)/qL up(λ) is a Q-basis,
(4) ẽup

i Bup(λ) ⊂ Bup(λ) t {0} and f̃up
i Bup(λ) ⊂ Bup(λ) t {0},

(5) For b, b′ ∈ Bup(λ), b = f̃up
i b′ is equivalent to ẽup

i b = b′.
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Let Gup
λ be the inverse of V (λ)up

A ∩L up(λ) ∩ σλ(L up(λ)) ∼−→ L up(λ)/qL up(λ). The set
Gup

λ (Bup(λ)) is called the dual canonical basis of V (λ). By its construction, the dual canonical
basis is the dual basis of the canonical basis with respect to ( , )λ. We also have

(3.26) L up(λ)µ = q(λ,λ)/2−(µ,µ)/2L low(λ)µ for µ ∈ P,

see [27, (4.2.9)]. By (3.26), we obtain an isomorphism L up(λ)/qL up(λ) ' L low(λ)/qL low(λ).
Through this identification, we have a bijection Bup(λ) ' Blow(λ), and this bijection is an
isomorphism of abstract crystals associated with upper and lower crystal basis. Hence we can
identify Bup(λ) with Blow(λ) and denote both by B(λ) hereafter. If µ ∈ Wλ, this identifi-
cation is given by the identity as (λ, λ) = (µ, µ). We can also prove that the canonical base
elements and the dual canonical base elements coincide in this case.

Remark 3.27. For U−
q (g), we consider the Q(q)-linear anti-automorphism a of the reduced

q-analogue Bq(g) defined by

a(ir) = fi, a(fi) = ir.(3.28)

Since the (lower) crystal lattice is self-dual by Kashiwara’s bilinear form (·, ·)K , we do not
need to consider the dual lattice of L (∞).

3.3.2. Using the pairing ( , )λ, we consider an Q(q)-linear embedding jλ : V (λ) → U−
q (g)

which is defined in the following commutative diagram:

V (λ)

jλ

��

∼ // V (λ)∗

π∗λ
��

U−
q (g) ∼ // U−

q (g)∗,

where the horizontal isomorphisms are induced by the non-degenerate inner products on
V (λ) and U−

q (g) and the right vertical homomorphism is the transpose of U−
q (g)-module

homomorphism πλ : U−
q (g) → V (λ) given by P 7→ Puλ. Then for b ∈ B(λ), we have

jλG
up
λ (b) = Gup(jλ(b)), where jλ in the right hand side was defined just after Theorem 2.25.

Thanks to this equality, there is no fear of confusion even though we use the same symbol jλ
for different maps.

3.3.3. We use the following result in [36, 7.3.2]. For λ, λ1, λ2, · · · , λr ∈ P+ with λ =
∑

j λj ,
let Φ(λ1, · · · , λr) : V (λ1 + λ2 + · · ·+ λr) → V (λ1)⊗ · · · ⊗ V (λr) be the unique Uq(g)-module
homomorphism with Φ(λ1, · · · , λr)(uλ) = uλ1 ⊗ · · · ⊗ uλr . Then we have the corresponding
embeddings

Φ(λ1, · · · , λr) : B(λ) ↪→ B(λ1)⊗ · · · ⊗B(λr),

Φ(λ1, · · · , λr)(L low(λ)) ⊂ L low(λ1)⊗A0 · · · ⊗A0 L low(λr).

(See [25, §4.2].) Hence we obtain

Φ(λ1, · · · , λr)(Glow
λ (b)) ≡ Glow

λ1
(b1)⊗ · · · ⊗Glow

λr
(br) mod q(L low(λ1)⊗ · · · ⊗L low(λr))

for Φ(λ1, · · · , λr)(b) = b1 ⊗ · · · ⊗ br for some bj ∈ Blow(λj).
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Let qλ1,··· ,λr : V (λ1)⊗· · ·⊗V (λr) → V (λ) be the homomorphism defined by the commutative
diagram

V (λ1)⊗ · · · ⊗ V (λr)

qλ1,··· ,λr

��

∼ // V (λ1)∗ ⊗ · · · ⊗ V (λr)∗

Φ(λ1,··· ,λr)∗

��
V (λ) ∼ // V (λ)∗,

where the upper horizontal isomorphism is induced by the non-degenerate inner product
(·, ·)λ1,··· ,λr := (·, ·)λ1 · · · (·, ·)λr on V (λ1) ⊗ · · · ⊗ V (λr), the lower horizontal isomorphism is
induced by the non-degenrate inner product (·, ·)λ on V (λ) and the right vertical homomor-
phism is the transpose of Φ(λ1, · · · , λr).

Proposition 3.29. Let λ1, · · · , λr ∈ P+ and bj ∈ B(λj) (1 ≤ j ≤ r). Assume that there
exists b1 � · · · � br ∈ B(

∑
λj) with Φ(λ1, λ2, · · · , λr)(b1 � · · · � br) = b1 ⊗ · · · ⊗ br ∈ B(λ1) ⊗

· · · ⊗B(λr). Then we have the following equality

qλ1,··· ,λr(G
up
λ1

(b1)⊗ · · · ⊗Gup
λr

(br)) = Gup
λ (b1 � b2 � · · · � br) mod qL up(λ).

We give the proof for a completeness.

Proof. We have qλ1,··· ,λr(L
up(λ1) ⊗A0 · · · ⊗A0 L up(λr)) ⊂ L up(λ), in particular we have

qλ1,··· ,λr(G
up
λ1

(b1)⊗ · · · ⊗Gup
λr

(br)) ∈ L up(λ).
Hence to show the statement, it suffices to compute the following inner product

(qλ1,··· ,λr(G
up
λ1

(b1)⊗ · · · ⊗Gup
λr

(br)), Glow
λ (b))λ|q=0

for b ∈ B(λ). By its definition of qλ1,··· ,λr , this is equal to (b1⊗· · ·⊗br,Φ(λ1, · · · , λr)(b))λ1,··· ,λr |q=0.
Since the tensor product of the dual canonical basis is the dual of the tensor product of the
canonical basis, this is equal to δb1⊗···⊗br,Φ(λ1,··· ,λr)(b) = δb1�b2�···�br,b. Hence we obtained the
assertion. q.e.d

3.3.4. To compute a product of dual canonical basis elements of integble highest weight
modules, we need the following modification of the coproduct as in [36, 7.2.5, 7.2.6].

Lemma 3.30. For λ, µ ∈ P+, let rλ,µ : U−
q (g) → U−

q (g) ⊗ U−
q (g) be the Q(q)-linear map

defined by
rλ,µG

low(b) =
∑
b1,b2

db
b1,b2(q)q

−(wt(b2),λ)Glow(b1)⊗Glow(b2)

for Glow(b) ∈ U−
q (g) with r(Glow(b)) =

∑
b1,b2

db
b1,b2

(q)Glow(b1)⊗Glow(b2). Then we have the
commutative diagram of Q(q)-vector spaces

U−
q (g)

πλ+µ //

rλ,µ

��

V (λ+ µ)

Φ(λ,µ)

��
U−

q (g)⊗U−
q (g)

πλ⊗πµ

// V (λ)⊗ V (µ).

Using the above modification, we obtain the following formula.

Proposition 3.31. For b1 ∈ B(λ) and b2 ∈ B(µ), we have

q(wt b2−µ,λ)Gup(jλ(b1))Gup(jµ(b2)) = jλ+µqλ,µ(Gup
λ (b1)⊗Gup

µ (b2)).
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3.3.5. Combining Proposition 3.31 with Proposition 3.29, we obtain the following proposi-
tion.

Proposition 3.32. Let λ1, · · · , λr ∈ P+ and bj ∈ B(λj) (1 ≤ j ≤ r). Assume that there
exists b1 � · · · � br ∈ B(

∑
λj) with Φ(λ1, λ2, · · · , λr)(b1 � · · · � br) = b1 ⊗ · · · ⊗ br ∈ B(λ1) ⊗

· · · ⊗B(λr). Then there exists a unique m ∈ Z such that

qmGup(jλ1(b1)) · · ·Gup(jλr(br)) = Gup(jP
λi

(b1 � · · · � br))mod qL (∞).

4. Quantum unipotent subgroup and the dual canonical basis

4.1. The Lie algebra n(w).

4.1.1. Let w ∈ W be an element of the Weyl group associated with g. Let ∆+(w) :=
∆+ ∩ w∆− = {α ∈ ∆+|w−1α < 0} ⊂ ∆+. We have the following description of ∆+(w) as
follows ([31, Lemma 1.3.14]).

For a Weyl group element w, let w̃ = (i1, i2, · · · , il) ∈ R(w) be a reduced expression of w,
where R(w) is the set of reduced expression of w. For each 1 ≤ k ≤ l = l(w), we set

βk := si1si2 · · · sik−1
(αik).

Then ∆+(w) has cardinality exactly equal to l = l(w) and we have

∆+(w) = {βk}1≤k≤l.

Let

n(w) =
⊕

α∈∆+(w)

g−α.

Let N(w) be the corresponding (pro-)unipotent (pro-) group in [31, VI]. Then N(w) is a
unipotent algebraic group of dimension l(w) and its Lie algebra is n(w). We can identify the
restricted dual U(n(w))∗gr of U(n(w)) with the coordinate ring of N(w), that is U(n(w))∗gr '
C[N(w)], see [23, 5.2] for more details.

4.2. Braid group symmetry on Uq(g). We define (quantum) root vectors, using Lusztig’s
braid group symmetry {Ti} on Uq(g). See [41, Chapter 32] for more details.

4.2.1. Following [41, 37.1.3], we define the Q(q)-algebra automorphisms T ′i,e : Uq(g) → Uq(g)
for i ∈ I and e ∈ {±1} by

T ′i,e(q
h) = qsi(h),(4.1a)

T ′i,e(ei) = −teifi,(4.1b)

T ′i,e(fi) = −eit−e
i ,(4.1c)

T ′i,e(ej) =
∑

r+s=−〈hi,αj〉

(−1)rqer
i e

(r)
i eje

(s)
i for j 6= i,(4.1d)

T ′i,e(fj) =
∑

r+s=−〈hi,αj〉

(−1)rq−er
i f

(s)
i fjf

(r)
i for j 6= i.(4.1e)
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For i ∈ I and e ∈ {±1}, we also define the Q(q)-algebra automorphisms T ′′i,e : Uq(g) →
Uq(g) by

T ′′i,−e(q
h) = qsi(h),(4.2a)

T ′′i,−e(ei) = −fit
−e
i ,(4.2b)

T ′′i,−e(fi) = −tei ei,(4.2c)

T ′′i,−e(ej) =
∑

r+s=−〈hi,αj〉

(−1)rqer
i e

(s)
i eje

(r)
i for j 6= i,(4.2d)

T ′′i,−e(fj) =
∑

r+s=−〈hi,αj〉

(−1)rq−er
i f

(r)
i fjf

(s)
i for j 6= i.(4.2e)

We have

(4.3) T ′i,eT
′′
i,−e = T ′′i,−eT

′
i,e = id.

In the following, we write Ti = T ′′i,1 and T−1
i = T ′i,−1 as in [52, Proposition 1.3.1].

4.2.2. We define a q-analogue of the action of the Weyl group on integrable module following
[41, Chapter 5] and [52]. We use a q-analogue of exponential expq(x) defined by

expq(x) :=
∑
n≥0

qn(n−1)/2

[n]q!
xn.

We have

(4.4) expq(x) expq−1(−x) = 1.

For i ∈ I, we define Si ([52, (1.2.2), (1.2.13)]) by

Si := expq−1
i

(q−1
i eit

−1
i ) expq−1

i
(−fi) expq−1

i
(qieiti)q

hi(hi+1)/2
i(4.5a)

= expq−1
i

(−q−1
i fiti) expq−1

i
(ei) expq−1

i
(−qifit

−1
i )qhi(hi+1)/2

i .(4.5b)

For integrable Uq(g)-modules, the action of Si is well-defined. It is known that the action of
{Si}i∈I satisfies the braid group relations for the Weyl group W .

The braid group symmetry {Ti}i∈I defined above is described as

(4.6) Ti(x) = SixS
−1
i ,

where the elements are considered in the endomorphism ring of integrable modules, see [52,
1.3] for more details.

4.2.3. We have the following relationship between Ti, T
−1
i and the ∗-involution.

Proposition 4.7 ([41, 37.2.4]). We have

∗ ◦ Ti ◦ ∗ = T−1
i .(4.8)

4.3. Quantum nilpotent subalgebra U−
q (w, e).
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4.3.1. We define root vectors associated with w̃ = (i1, · · · , il) ∈ R(w) for w ∈ W . See [41,
Proposition 40.1.3, Proposition 41.1.4] for more detail. For w ∈ W and w̃ ∈ R(w), we define
βk as above. We define the root vectors Fe(βk) associated with βk ∈ ∆(w) and e ∈ {±1} by

Fe(βk) := T e
i1 · · ·T

e
ik−1

(fik).

It is known that Fe(βk) ∈ U−
q (g). We note that Fe(βk) does depend on the choice of w̃ ∈ R(w).

We define its divided power by

Fe(cβk) := T e
i1 · · ·T

e
ik−1

(f (c)
ik

)

for c ≥ 1. It is known that Fe(cβk) ∈ U−
q (g)A.

4.3.2.

Theorem 4.9 ([41, Proposition 40.2.1, Proposition 41.1.3]). (1) For w ∈ W , w̃ ∈ R(w),
e ∈ {±1} and c ∈ Zl

≥0, we set

Fe(c, w̃) :=

{
Fe(c1β1) · · ·Fe(clβl) if e = +1,
Fe(clβl) · · ·Fe(c1β1) if e = −1.

Then {Fe(c, w̃)}c∈Zl
≥0

forms a basis of a subspace U−
q (w, e) of U−

q (g) which does not depend
on w̃.

(2) We have Fe(c, w̃) ∈ U−
q (g)A for any c ∈ Zl

≥0.

4.3.3. We recall commutation relations for root vectors and its divied powers {F (ckβk)}1≤k≤l,ck≥1,
known as the Levendorskii-Soibelman formula. See [38], [1] or [48] for more details.

In this subsections, we give statements for the e = +1 case. We can obtain the correspond-
ing results for the e = −1 case, applying the ∗-involution (4.8). So we denote Fe(cβ), Fe(c, w̃)
by F (cβ), F (c, w̃) by omitting e.

Let w ∈W , w̃ = (i1, i2, · · · , il) ∈ R(w) and fix a total order on ∆+(w) given by

β1 < β2 < · · · < βl.

Theorem 4.10 ([48, Proposition 3.6], [38, 5.5.2 Proposition]). For j < k, let us write

F (ckβk)F (cjβj)− q−(cjβj ,ckβk)F (cjβj)F (ckβk) =
∑

fc′F (c′, w̃)

with fc′ ∈ Q(q). If fc′ 6= 0, then c′j < cj and c′k < ck with
∑

j≤m≤k c
′
mβm = cjβj + ckβk.

4.3.4. The following proposition is a consequence of Theorem 4.10. (cf. [37, 2.4.2 Proposition
Theorem b)] and [11, 2.2 Proposition].)

Proposition 4.11. Let w̃ = (i1, i2, · · · , il) be a reduced expression for w ∈W and e ∈ {±1}.
Then the subspace U−

q (w, e) is a Q(q)-subalgebra generated by {Fe(βk)}1≤k≤l.

We call it the quantum nilpotent subalgebra associated with w ∈W .

4.3.5. We define a lexicographic order ≤ on Zl
≥0 associated with w̃ ∈ R(w) by

c = (c1, c2, · · · , cl) < c′ = (c′1, c
′
2, · · · , c′l)

⇐⇒ there exists 1 ≤ p ≤ l such that c1 = c′1, · · · , cp−1 = c′p−1, cp < c′p.

The following theorem is obtained as a consequence of the Levendorskii-Soibelmann formula.
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Theorem 4.12. Let w ∈ W and w̃ ∈ R(w) be its reduced expression. For c ∈ Zl
≥0, we

consider the following Q(q)-subspace F ew
≤cU

−
q (w):

F ew
≤cU

−
q (w) :=

⊕
c′≤c

Q(q)F (c′, w̃).

Then
(1) {F ew

≤cU
−
q (w)}c∈Zl

≥0
forms an increasing filtration on U−

q (w).

(2) The associated graded algebra gr ewU−
q (w) is generated by {gr ew(F (βk))|1 ≤ k ≤ l} with

relations:
gr ew(F (βk))gr ew(F (βj)) = q−(βj ,βk)gr ew(F (βj))gr ew(F (βk)) (j < k).

We call this the De Concini-Kac filtration.

4.4. PBW basis and the canonical base. In this subsection, we recall compatibilities
between Lusztig’s braid symmetry {Ti}i∈I and the canonical base. For more details, see [41,
Chapter 38], [43] and [52].

Lemma 4.13 ([41, Proposition 38.1.6, Lemma 38.1.5]). (1) For i ∈ I, we have

U−
q [i] :={x ∈ U−

q ; ir(x) = 0},
={x ∈ U−

q ;T−1
i (x) ∈ U−

q },
∗U−

q [i] :={x ∈ U−
q ; ri(x) = 0},

={x ∈ U−
q ;Ti(x) ∈ U−

q }.

(2) For i ∈ I, we have the following orthogonal decompositions:

U−
q = U−

q [i]⊕ fiU−
q = ∗U−

q [i]⊕U−
q fi.

From Lemma 4.13 and Theorem 2.29, we obtain the following result.

Proposition 4.14. For n ≥ 0 and i ∈ I, the subspaces
⊕n

k=0 f
k
i U−

q [i] and
⊕n

k=0
∗U−

q [i]fk
i

are compatible with the dual canonical base and we have
n⊕

k=0

fk
i U−

q [i] =
⊕

b∈B(∞),εi(b)≤n

Q(q)Gup(b),

n⊕
k=0

∗U−
q [i]fk

i =
⊕

b∈B(∞),ε∗i (b)≤n

Q(q)Gup(b).

Let iπ : U−
q → U−

q [i] (resp. πi : U−
q → ∗U−

q [i]) be the orthogonal projection whose kernel
is fiU−

q (g) (resp. U−
q (g)fi). The following result is due to Saito and Lusztig.

Theorem 4.15 ([52, Prospoition 3.4.7, Corollary 3.4.8], [43, Theorem 1.2]). For b ∈ B(∞)
with ε∗i (b) = 0, we have

Ti(πiGlow(b)) = iπ(Glow(Λi(b))) ∈ L (∞),

where Λi : {b ∈ B(∞); ε∗i (b) = 0} → {b ∈ B(∞); εi(b) = 0} is the bijection given by Λi(b) =
f̃
∗ϕi(b)
i ẽ

εi(b)
i b and its inverse is given by Λ−1

i (b) = f̃
ϕ∗i (b)
i ẽ

∗ε∗i (b)
i b.

By Theorem 4.15, we obtain the following result.
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Theorem 4.16 ([52, Theorem 4.1.2], [43, Proposition 8.2]). For w ∈W , w̃ = (i1, i2, · · · , il) ∈
R(w) and e ∈ {±1},

(1) we have Fe(c, w̃) ∈ L (∞) and

be(c, w̃) = Fe(c, w̃) mod qL (∞) ∈ B(∞).

(b) The map Zl
≥0 → B(∞) which is defined by c 7→ be(c, w̃) is injective. We denote the

image by B(w, e) and this does not depend on a choice of w̃ ∈ R(w).

For fixed w̃ ∈ R(w), we denote the inverse of c 7→ be(c, w̃) by Le, ew : B(w, e) → Zl
≥0. This

map is called Lusztig data of b associated with w̃.

4.4.1. As a corollary of the above description, we have the following properties.

Corollary 4.17. (1) We have ΛiSm(b) = SmΛi(b) for b ∈ {b ∈ B(∞); ε∗i (b) = 0}.
(2) We have Sm : B(w, e) → B(w, e) for any m ≥ 1 and Sm(be(c, w̃)) = be(mc, w̃).
(3) We have ∗(B(w, e)) = B(w,−e) and ∗be(c, w̃) = b−e(c, w̃).

4.5. Inner products of PBW basis. By 2.12, we have the following modification of [41,
Proposition 38.2.1].

Proposition 4.18. For x, y ∈ U−
q (g)ξ with x, y ∈ U−

q [i] (resp. with x, y ∈ ∗U−
q [i]), we have

(x, y)K = (1− q2i )
−〈hi,ξ〉(T−1

i x, T−1
i y)K (resp. (1− q2i )

−〈hi,ξ〉(Tix, Tiy)K).

4.5.1. We have the following formula for inner product of PBW basis with respect to Lusztig’s
bilinear form ( , )L. For more details, see [41, Propsition 38.2.3].

Proposition 4.19. Let w ∈W and w̃ ∈ R(w) with l = `(w). We have

(F (c, w̃), F (c′, w̃))L =
l∏

k=1

δck,c′k

ck∏
s=1

1
1− q2s

i

=
l∏

k=1

δck,c′k
(−1)ck

q
− ck(ck+1)

2
ik

(qik − q−1
ik

)ck [ck]!ik
.

4.6. Compatibility with Ti and the dual canonical base.

4.6.1. By using the above results, we obtain the following compatibility between the dual
canonical basis and Lusztig’s braid group symmetry Ti.

Theorem 4.20. For b ∈ B(∞) wiht ε∗i (b) = 0, we have

(1− q2i )
〈hi,ξ〉TiG

up(b) = Gup(Λib).

Proof. We shall prove that ((1 − q2i )
〈hi,ξ〉TiG

up(b), Glow(b′))K = δb′,Λi(b). By Lemma 4.13,
(1 − q2i )

〈hi,ξ〉(TiG
up(b), Glow(b′))K is equal to (1 − q2i )

〈hi,ξ〉(TiG
up(b), iπGlow(b′))K . By the

Proposition 4.18, this is equal to (Gup(b), T−1
i

iπGlow(b′))K . Using Theorem 4.15, we have

(Gup(b), T−1
i

iπGlow(b′))K = (Gup(b), πiGlow(Λ−1
i b′))K

= (Gup(b), Glow(Λ−1
i b′))K = δb,Λ−1

i (b′).

Then we obtain the assertion. q.e.d

As a corollary, we obtain the following multiplicative properties.

Corollary 4.21. (1) For b1, b2 ∈ B(∞) with ε∗i (b1) = ε∗i (b2) = 0 (resp. εi(b1) = εi(b2) = 0)
and b1⊥b2, we have Λi(b1)⊥Λi(b2) (resp. Λ−1

i (b1)⊥Λ−1
i (b2)).

(2) If b ∈ B(∞) with ε∗i (b) = 0 (resp. εi(b) = 0) is (strongly) real, then Λi(b) (resp. Λ−1
i (b))

is also (strongly) real.
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4.7. Compatibility with the dual canonical basis. In this subsection, we prove the com-
patibility of the dual canonical basis with the Q(q)-subalgebra U−

q (w, e). This is a straight-
forward generalization of [9, 2.2 Proposition] and [32, Theorem 4.1]. Here we fix w ∈W and
w̃ ∈ R(w).

Theorem 4.22. For w ∈ W and e ∈ {±1}, the triple (U−
q (w, e) ∩ L (∞),U−

q (w, e) ∩
σ(L (∞)),U−

q (w, e) ∩U−
q (g)up

A ) is balanced, in particular we have

U−
q (w, e) ∩U−

q (g)up
A =

⊕
b∈B(w,e)

AGup(b).

The proof of this theorem occupies the rest of this subsection. As in [36, 3.4], [34, Propo-
sition 31, Corollary 41] and [9], we first prove that the dual root vectors are contained in the
dual canonical basis and then prove the unitriangular property of upper global basis with
respect to the dual PBW basis. The compatibility with the dual canonical basis is its direct
consequence.

Our proof needs an extra step from ones in [36, 34, 9], as it is not known that the PBW
basis is an A-basis of U−

q (g)A ∩U−
q (w) unless g is of finite or affine type.

4.7.1.

Proposition 4.23. (1) For i ∈ I and n ≥ 1, let

F up(nαi) :=
f

(n)
i

(f (n)
i , f

(n)
i )K

.

Then we have F up(nαi) ∈ Bup, (F up
αi )n ∈ qZBup and F up(nαi)F up(mαi) = qmn

i F up((m+n)αi)
(2) For n ≥ 1 and 1 ≤ k ≤ l, let

F up(nβk) :=
F (nβk)

(F (nβk), F (nβk))K
.

Then we have F up(nβk) ∈ Bup, F up(βk)n ∈ qZBup and F up(nβk)F up(mβk) = qmn
ik
F up((m+

n)βk)

Proof. Since F (n)
i are the canonical base elements and dimU−

q (g)−nαi = 1 for any n ≥ 1,
F up(nαi) are the dual canonical base elements by its definition. By Proposition 4.19 and
Lemma 2.12, we have

(F (n)
i , F

(n)
i )K = (1− q2i )

n/

n∏
j=1

(1− q2j
i ) =

1
[n]i!

q
n(n−1)

2
i .

Therefore we have (F up(αi))n = q
n(n−1)

2
i F up(nαi) ∈ Bup, in particular F up(αi) is a strongly

real element. Applying Theorem 4.20, we obtain the result for F up(nβk) for 1 ≤ k ≤ l. q.e.d

4.7.2. For the computation of the action of the dual bar involution σ, we need an integrality
property of the Levendorskii-Soibelman’s formula for the dual root vectors and its multiple.
For w ∈W , w̃ ∈ R(w) and e ∈ {±1}, we set

F up
e (c, w̃) :=

1
(Fe(c, w̃), Fe(c, w̃))K

Fe(c, w̃).

This is the dual basis of {Fe(c, w̃)} with respect to Kashiwara’s bilinear form (·, ·)K . As
before, when we consider only the e = 1 case, we omit the subscript e.
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Theorem 4.24 (dual Levendorskii-Soibelman formula). For j < k, we write

F up(ckβk)F up(cjβj)− q−(cjβj ,ckβk)F up(cjβj)F up(ckβk) =
∑

f∗c′F
up(c′, w̃).

Then f∗c′ ∈ A and if f∗c′ 6= 0, then c′j < cj and c′k < ck with
∑

j≤m≤k c
′
mβm = cjβj + ckβk.

Proof. Firstly, a weaker statement that f∗c′ ∈ Q(q) with the above conditions follows from
Theorem 4.10 and Proposition 4.19. Let us prove that f∗c′ ∈ A. Since the twisted coproduct r
preserves the A-form U−

q (g)A, the dual integral form U−
q (g)up

A is an A-subalgebra of U−
q (g).

Therefore the left hand side belongs to U−
q (g)up

A by Proposition 4.23. Taking the inner product
with F (c′, w̃), we find f∗c′ ∈ A thanks to Theorem 4.9. q.e.d

In particular, we have theA-subalgebra U−
q (w, e)up

A of U−
q (w, e) generated by {F up(cβk)}1≤k≤l,c≥1.

This subalgebra has a free A-basis {F up
e (c, w̃); c ∈ Zl

≥0}. We call this base the dual PBW
basis.

4.7.3. We compute the action of the dual bar involution σ on the dual PBW basis. The
following is straightforward generalization of [9, 2.1 Corollary (i)], and follows from (3.7) and
Theorem 4.24.

Proposition 4.25. We have

σ(F up(c, w̃)) = F up(c, w̃) +
∑
c′<c

f∗c,c′(q)F
up(c′, w̃),

where f∗c,c′(q) ∈ A.

4.7.4.

Theorem 4.26. (1) Let w ∈ W and w̃ ∈ R(w). Then there exists a unique A-basis
{Bup(c, w̃); c ∈ Zl

≥0} of U−
q (w, e)up

A with the following properties:

σ(Bup(c, w̃)) = Bup(c, w̃),(4.27a)

F up(c, w̃) = Bup(c, w̃) +
∑
c′<c

ϕc,c′B
up(c′, w̃), ϕc,c′ ∈ qZ[q].(4.27b)

(2) We have Bup(c, w̃) = Gup(b(c, w̃)).

Proof. The proof of (1) is the same as one for the existence of Kazhdan-Lusztig polynomials.
The only claim we need is Proposition 4.25.

(2) Since we have fc(q) = (F (c, w̃), F (c, w̃))K ∈ A0 and fc(0) = 1, we obtain

Bup(c, w̃) ≡ F up(c, w̃) ≡ b(c, w̃) mod qL (∞).

Therefore (2) follows from (1) and Proposition 3.4. q.e.d

As a corollary, we have U−
q (w, e)up

A = U−
q (w, e) ∩ U−

q (g)up
A since {Gup(b)}b∈B(∞) is an

A-basis of U−
q (g)up

A . Together with this result, Theorem 4.26 implies Theorem 4.22.
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4.8. In this subsection, we study basic commutation relation among the dual canonical basis
of U−

q (w, e = 1). The following is a generalization of [50, Proposition 4.2], and follows from
the characterization of dual canonical basis in terms of dual PBW basis. For c, c′ ∈ Zl

≥0, we
set

c ew(c, c′) =
∑
l<k

(ckβk, c
′
lβl)−

1
2

∑
k

ckc
′
k(βk, βk).

Proposition 4.28. We have

Gup(b(c, w̃))Gup(b(c′, w̃)) = q−c ew(c,c′)Gup(b(c + c′, w̃)) +
∑

ddc,c′(q)G
up(b(d, w̃)),

where d < c + c′ and ddc,c′(q) ∈ A.

Corollary 4.29. If b(c, w̃)⊥b(c′, w̃), we have

Gup(b(c, w̃))Gup(b(c, w̃)) ' Gup(b(c + c′, w̃)),

that is b(c, w̃) ~ b(c′, w̃) = b(c + c′, w̃).

4.8.1. Using Proposition 4.28, we have the following expression of q-power of the q-commuting
dual canonical basis elements in B(w, e = 1) as in [36, Proposition 18].

Proposition 4.30. If Gup(b(c, w̃))Gup(b(c′, w̃)) = q−N ew(c,c′)Gup(b(c′, w̃))Gup(b(c, w̃)), then
we have

(4.31) N ew(c, c′) = c ew(c, c′)− c ew(c′, c).

4.9. In this subsection, we recall the specialization of U−
q (w, e) at q = 1.

4.9.1. We have the following property of the specialization of U−
q at q = 1.

Theorem 4.32 ([41, §33.1]). There is an isomorphism of algebras:

Φ: U(n) ∼−→ C⊗A U−
q (g)A

which sends fi to fi.

Let r : U(n) → U(n) ⊗ U(n) be the coproduct defined by r(f) = f ⊗ 1 + 1 ⊗ f for f ∈ n.
Here we note that U(n) is generated by {fi}i∈I as algebra. Since the specializatioin of the
twisted coproduct satisfies this relation on the generators, the above is an isomorphism of
bialgebras.

4.9.2. Let C[N ] be the restricted dual of the universal enveloping algebra U(n) of the Lie
algebra n, that is

C[N ] :=
⊕
ξ∈Q

U(n)∗ξ .

We take the dual U−
q (g)up

A of U−
q (g)A as before. Since the multiplication of U−

q (g) pre-
serves U−

q (g)A, the twisted coproduct r preserves the dual integral form U−
q (g)up

A , that is
r(U−

q (g)up
A ) ⊂ U−

q (g)up
A ⊗U−

q (g)up
A .

Let r∗ : C[N ] ⊗ C[N ] → C[N ] be a product so that 〈r∗(ϕ⊗ ϕ′), x〉 = 〈ϕ⊗ ϕ′, r(x)〉 holds
for any x ∈ U(n) and µ∗ : C[N ] → C[N ] ⊗ C[N ] be a coproduct so that 〈µ∗(ϕ), x⊗ x′〉 =
〈ϕ, µ(x⊗ x′)〉 holds for any x, x′ ∈ U(n), where µ : U(n) ⊗ U(n) → U(n) is the product on
U(n). The above isomorphism Φ induces the following.
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Proposition 4.33. There is an isomorphism of bialgebras

Φup : C⊗A U−
q (g)up

A
∼−→ C[N ],

that is we have

µ∗ ◦ Φup = (Φup ⊗ Φup) ◦ r,
r∗ ◦ (Φup ⊗ Φup) = Φup ◦ µ.

4.9.3. Let

σi := exp(−fi) exp(ei) exp(−fi)

= exp(ei) exp(−fi) exp(ei),

for i ∈ I. Then we have

(σi)−1 = exp(fi) exp(−ei) exp(fi)

= exp(−ei) exp(fi) exp(−ei).

(This (σi)−1 is equal to si used in [23, 7.1].) The action of σi is well-defined on integrable
g-modules, especially on the adjoint representation of g. Under the specialization at q = 1,
we have σi = Si|q=1.

4.9.4. For w̃ ∈ R(w) and e ∈ {±1}, let

fe(βk) := σe
i1 · · ·σ

e
ik−1

(fik).

Then we have fe(βk) ∈ g−βk
and

n(w) =
⊕

1≤k≤l

Cfe(βk).

By the definition, fe(βk) is the specialization of Fe(βk).

4.9.5. Let C[N(w)] be the restricted dual of the universal enveloping algebra U(n(w)) as-
sociated with n(w). We consider a basis of n(w) given by {fe(βk)}1≤k≤l and also a basis
{fe(βk)}1≤k≤l ∪ {f ′k} of g which includes {fe(βk)}1≤k≤l as in [23, 4.3]. Here we fix a total
order on the basis of g by

fe(β1) < · · · < fe(βk) < f ′1 < f ′2 < · · · .

By the Poincaré-Birkhoff-Witt basis theorem, we have a basis of U(n) given by

fe((c,d), w̃) :=

{
fe(β1)(c1) · · · fe(βl)(cl)f ′1

(d1) · · · when e = 1,
· · · f ′1

(d1)fe(βl)(cl) · · · fe(β1)(c1) when e = −1,

and also a basis of U(n(w)) given by

fe(c, w̃) :=

{
fe(β1)(c1) · · · fe(βl)(cl) when e = 1,
fe(βl)(cl) · · · fe(β1)(c1) when e = −1,

where x(c) = xc/c! for x ∈ g and c ∈ Z≥0. We have Φ(fe(c, w̃)) = Fe(c, w̃)|q=1.
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4.9.6. Let {f∗e (c, w̃)} (resp. {f∗e ((c,d), w̃)}) be the dual basis of {fe(c, w̃)} (resp. {fe((c,d), w̃)}).
Using these, we obtain a section of C[N ] → C[N(w)] as algebras.

Lemma 4.34. Let π̃∗w : C[N(w)] → C[N ] be a C-linear homomorphism defined by

π̃∗w(f∗e (c, w̃)) := f∗e ((c, 0), w̃).

Then it is an algebra embedding.

Proof. First 〈π̃∗w(f∗e (c1, w̃)) · π̃∗w(f∗e (c2, w̃)), fe((c′,d′), w̃)〉 is equal to〈
π̃∗w(f∗e (c1, w̃))⊗ π̃∗w(f∗e (c2, w̃)), r(fe((c′,d′), w̃))

〉
.

We note that

(4.35) r(fe((c′,d′), w̃)) =
∑

c′1+c′2=c′,d′1+d′2=d′

fe((c′1,d′1), w̃))⊗ fe((c′2,d′2), w̃)).

Hence the above is equal to δc1+c2,c′δ0,d′ . On the other hand, we consider〈
π̃∗w(f∗e (c1, w̃) · f∗e (c2, w̃)), fe((c′,d′), w̃)

〉
.

By (4.35), we have f∗e (c1, w̃) · f∗e (c2, w̃) := r∗(f∗e (c1, w̃) ⊗ f∗e (c2, w̃)) = f∗e (c1 + c2, w̃). Then
the above is equal to 〈π̃∗w(f∗e (c1 + c2, w̃)), fe((c′,d′), w̃)〉 = δc1+c2,c′δ0,d′ . Then the assertion
holds. q.e.d

By [23, Proposition 8.2], this embedding does not depend on the choice of w̃ ∈ R(w) and
of the basis of g.

4.9.7. We study the image of U−
q (w, e)up

A ⊗A C under the isomorphism Φup.

Lemma 4.36. Let f ∈ gα with α ∈ ∆+ \∆+(w), we have

〈f,Φup(Gup(b)|q=1)〉 = 0

for b ∈ B(w, e).

Proof. Suppose that b ∈ B(w, e) and f ∈ gα with 〈f,Φup(Gup(b)|q=1)〉 6= 0. Then we have

α =
∑

1≤k≤l

akβk

for some ak ∈ Z≥0. By the definition of ∆+(w), we have w−1α ∈ ∆+ and w−1(
∑

1≤k≤l akβk) ∈
Q−. This is a contradiction. Hence we get the assertion. q.e.d

4.9.8. We have the following formula of the (twisted) coproduct of the root vectors F (βk),
see [10, 3.5 Corollary 3].

Proposition 4.37. We have the following expansion:

r(F (βk))− (1⊗ F (βk) + F (βk)⊗ 1) =
∑
c

xc ⊗ F (c, w̃),

where xc ∈ U−
q (g) and if xc 6= 0, then ck′ = 0 for k′ ≥ k.

We have the compatibility of the twisted coproduct r with U−
q (w, e) (cf. [37, 2.4.2 Theorem

c)]).
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Proposition 4.38. We have

r(U−
q (w,+1)up

A ) ⊂ U−
q (g)up

A ⊗U−
q (w,+1)up

A ,

r(U−
q (w,−1)up

A ) ⊂ U−
q (w,−1)up

A ⊗U−
q (g)up

A ,

that is U−
q (w,+1)up

A (resp. U−
q (w,−1)up

A ) is a left (resp. right) U−
q (g)up

A -comodule.

Proof. Recall that we proved U−
q (w, e)up

A = U−
q (w, e) ∩ U−

q (g)up
A during the proof of Theo-

rem 4.22. Since r preserves the dual A-form U−
q (g)up

A , it suffices to prove a weaker statement,
that is

r(U−
q (w,+1)) ⊂ U−

q (g)⊗U−
q (w,+1),

r(U−
q (w,−1)) ⊂ U−

q (w,−1)⊗U−
q (g).

Moreover if we apply the ∗-involution, we obtain the claim for the e = −1 case from the claim
for the e = 1 case. So it is enough to prove the e = 1 case. This assertion is a consequence of
Proposition 4.11 and Proposition 4.37. q.e.d

4.9.9.

Theorem 4.39. Under the algebra homomorphism Φup, we have

C⊗A U−
q (w, e)up

A ' C[N(w)].

In view of this theorem, the quantum nilpotent subalgebra U−
q (w, e) can be considered as

the “quantum coordinate ring” of the corresponding unipotent subgroup N(w), so we call it
the quantum unipotent subgroup and denote it by Oq[N(w)].

Proof. We compute the following inner product:〈
Φup(F up

e (c, w̃)|q=1), fe((c′,d′), w̃)
〉
.

First we have〈
Φup(F up

e (c, w̃)|q=1), fe((c′,d′), w̃)
〉

=

{
〈µ∗(Φup(F up

e (c, w̃)|q=1), fe((c′, 0), w̃)⊗ fe((0,d′), w̃)〉 when e = 1
〈µ∗(Φup(F up

e (c, w̃)|q=1), fe((0,d′), w̃)⊗ fe((c′, 0), w̃)〉 when e = −1

=

{
〈(Φup ⊗ Φup)(r(F up

e (c, w̃)|q=1)), fe((c′, 0), w̃)⊗ fe((0,d′), w̃)〉 when e = 1
〈(Φup ⊗ Φup)(r(F up

e (c, w̃)|q=1)), fe((0,d′), w̃)⊗ fe((c′, 0), w̃)〉 when e = −1

= 0

if d′ 6= 0. This follows from Lemma 4.36 and Proposition 4.38. Hence it suffices to compute
the following form 〈

Φup(F up
e (c, w̃)|q=1), fe(c′, w̃)

〉
.

This is equal to 〈F up
e (c, w̃)|q=1,Φ(fe(c′, w̃))〉 = 〈F up(c, w̃)|q=1, Fe(c′, w̃)|q=1〉 = δc,c′ . Hence

we have Φup(F up
e (c, w̃)|q=1) = f∗e ((c, 0), w̃) and the assertion. q.e.d

5. Quantum closed unipotent cell and the dual canonical basis

5.1. Demazure-Schubert filtration U−
w. We recall the definition of the Demazure-Schubert

filtration U−
w associated with a Weyl group element w ∈W .
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5.1.1. Let i = (i1, · · · , il) be a sequence in I and U−
i the Q(q)-linear subspace spanned by

the monomials F (a1)
i1

· · ·F (al)
i1

for all (a1, a2, · · · , al) ∈ Zl
≥0, that is

U−
i :=

∑
a1,a2,··· ,al∈Z≥0

Q(q)F (a1)
i1

· · ·F (al)
i1

.

By its definition, this is a Q(q)-subcoalgebra of U−
q . We have the following compatibility with

the canonical base.

Proposition 5.1 ([42, 4.2]). The subcoalgebra U−
i is compatible with the canonical basis B,

that is there exists a subset Bi(∞) of B(∞) such that

U−
i =

⊕
b∈Bi(∞)

Q(q)Glow(b).

Remark 5.2. If we consider the A-subspace (U−
i )A spanned by the monomials F (a1)

i1
· · ·F (al)

il
,

then (U−
i )A is a A-subcoalgebra of U−

q and we have

(U−
i )A =

⊕
b∈Bi(∞)

AGlow(b).

Remark 5.3. By the construction of U−
i , it is clear that

∗(U−
i ) = U−

iopp ,

∗(Bi(∞)) = Biopp(∞),

where iopp = (il, il−1, · · · , i1) for i = (i1, i2, · · · , il).

5.1.2. For w ∈W , we consider U−ew associated with w̃ = (i1, · · · , il) ∈ R(w). Then it is known
that U−ew does not depend on the choice of the reduced expression w̃ ([42, 5.3]). Therefore we
denote U−ew by U−

w and also Bi(∞) by Bw(∞) by abuse of notations. By their constructions,
we have

∗(U−
w) = U−

w−1 ,(5.4a)

∗(Bw(∞)) = Bw−1(∞).(5.4b)

5.1.3. Following [4, 9.3], we define the quantum closed unipotent cell Oq[Nw] associated with
w by

Oq[Nw] := U−
q (g)/(U−

w)⊥ = U−
q (g)/

⊕
b/∈Bw(∞)

Q(q)Gup(b).

Let ι∗w : U−
q (g) → Oq[Nw] be the natural projection. Since (U−

w)⊥ =
⊕

b/∈Bw(∞) Q(q)Gup(b)
is compatible with Bup, the natural projection induces an bijection {Gup(b); b ∈ Bw(∞)} '
{ι∗w(Gup(b)); b ∈ Bw(∞)}. Moreover, (U−

w)⊥ is a two-sided ideal since U−
w is a subcoalgebra.

Thus Oq[Nw] has an induced algebra structure.

5.2. Demazure module and its crystal. In this subsection, we recall the definition of the
extremal vector uwλ and the associated Demazure module Vw(λ). In particular, we remind
that Bw(∞) can be considered as a certain limit of the Demazure crystal.
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5.2.1. For i ∈ I, we consider the subalgebra Uq(g)i generated by ei, fi, ti. Consider the
(l + 1)-dimensional irreducible representation of Uq(g)i with a highest weight vector u(l)

0 , let
u

(l)
k := f

(k)
i u

(l)
0 (1 ≤ k ≤ l). We have

(5.5) Si(u
(l)
k ) = (−1)l−kq

(l−k)(k+1)
i u

(l)
l−k.

In particular, we have

Si(u
(l)
l ) = u

(l)
0 ,(5.6a)

Si(u
(l)
0 ) = (−qi)lu

(l)
l .(5.6b)

5.2.2. For λ ∈ P and w ∈ W , let us denote by uwλ the canonical basis element of weight
wλ. We have the following description ([26, 3.2] and [41, Lemma 39.1.2]):

uwλ = uλ if w = 1,

usiwλ = f
(m)
i uwλ = S−1

i uwλ if m = 〈hi, wλ〉 ≥ 0.

Recall that uwλ is also the dual canonical basis element. For w̃ ∈ R(w), we have

(5.7) uwλ = S−1
i1
· · ·S−1

il
uλ.

5.2.3. We recall basic properties of the Demazure module, see [26, §3] or [28, Chapitre 9]
for more details. Let λ ∈ P+ and V (λ) be the integrable highest weight Uq(g)-module with
a highest weight vector uλ of weight λ. Let Vw(λ) := U+

q (g)uwλ. This U+
q (g)-module is

called the Demazure module associated with w and λ. We have the following properties of
the Demazure module Vw(λ).

Proposition 5.8. Let w ∈W and w̃ = (i1, · · · , il) ∈ R(w) be a reduced expression of w.
(1) We have

Vw(λ) =
∑

a1,··· ,al∈Z≥0

Q(q)F (a1)
i1

· · ·F (al)
il

uλ.

(2) We define Bw(λ) ⊂ B(λ) by

Bw(λ) :={f̃a1
i1
· · · f̃al

ir
uλ ∈ B(λ); (a1, · · · , al) ∈ Zl

≥0 \ {0}}(5.9a)

={b ∈ B(λ); ẽmax
il

· · · ẽmax
i1 b = uλ}.(5.9b)

Then we have

Vw(λ) =
⊕

b∈Bw(λ)

Q(q)Glow
λ (b).

(3) For i ∈ I, we have

ẽiBw(λ) ⊂ Bw(λ) t {0}.

We call Bw(λ) the Demazure crystal.
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5.2.4. We have a similar description of Bw(∞) as Bw(λ). Thus Bw(∞) can be interpreted
as certain limit of the Demazure crystal.

Proposition 5.10 ([26, Corollary 3.2.2]). Let w ∈W and (i1, · · · , il) ∈ R(w) be its reduced
expression.

(1) We have

Bw(∞) ={f̃a1
i1
· · · f̃al

ir
u∞ ∈ B(∞); (a1, · · · , al) ∈ Zl

≥0 \ {0}}(5.11a)

={b ∈ B(∞); ẽmax
il

· · · ẽmax
i1 b = u∞}.(5.11b)

(2) For i ∈ I, we have

(5.12) ẽiBw(∞) ⊂ Bw(∞) t {0}.

5.3. To study multiplicative properties of U−
q (w, e), we relate it to the quantum closed

unipotent cell Oq[Nw]. The following is a generalization of [9, 3.2 Lemma]. This can be
considered as a quantum analogue of [23, Corollary 15.7].

Theorem 5.13. For w ∈W and e ∈ {±1}, we have the following embedding of algebras:

U−
q (w, e) ↪→ Oq[Nw−e ].

Proof. We consider the composite of the inclusion U−
q (w, e) ↪→ U−

q (g) and the natural pro-
jection ι∗w−e : U−

q (g) → Oq[Nw−e ]. Since both homomorphisms are algebra homomorphisms,
we obtain an algebra homomorphism

U−
q (w, e) → Oq[Nw−e ].

Since U−
q (w, e) is compatible with Bup and ι∗w−e induces an bijection {Gup(b); b ∈ Bw−e(∞)} '

{ι∗w−e(Gup(b)); b ∈ Bw−e(∞)}, it suffices to prove the corresponding assertion for the crys-
tals, that is B(w, e) ↪→ Bw−e(∞). Since we have ∗(B(w, e)) = B(w,−e) and ∗(Bw(∞)) =
Bw−1(∞), it is enough to prove the claim for the e = 1 case.

We prove B(w, 1) ⊂ Bw−1(∞) by the induction on l = `(w). For l = 1 case, by the
constructions of B(si, e) and Bsi(∞), we have B(si, e) = Bsi(∞) for any i ∈ I and e ∈ {±1}.
Let w̃ = (i1, · · · , il) ∈ R(w) be a reduced expression. For l ≥ 2, we can assume that, for
w≥2 := si2 · · · sil ∈ W , w̃≥2 = (i2, i3, · · · , il) ∈ R(w≥2) and c≥2 = (c2, c3, · · · , cl) ∈ Zl−1

≥0 , we
have

b≥2 := F (c≥2, w̃≥2) mod qL (∞) ∈ Bw−1
≥2

(∞)

by the induction hypothesis. Note that ẽmax
i1

b≥2 ∈ Bw−1
≥2

(∞) by Lemma 5.10 (2). Since

∗(Bw(∞)) = Bw−1(∞), we have f̃
∗ϕi1

(b≥2)

i1
ẽmax
i1

b≥2 ∈ Bw−1(∞). In view of [26, Theorem

3.3.2], it suffices to prove f̃i1(f̃
∗ϕi1

(b≥2)

i1
ẽmax
i1

b≥2) ∈ Bw−1(∞). We consider the image of it
under the Kashiwara embedding Ψi1 : B(∞) → B(∞) ⊗Bi1 and show that the image of it
is contained in Bw−1

≥2
(∞)⊗Bi1 . Since Ψi1 is a strict embedding, we have

Ψi1(f̃i1(f̃
∗ϕi1

(b≥2)

i1
ẽmax
i1 b≥2)) =f̃i1(Ψi1(f̃

∗ϕi1
(b≥2)

i1
ẽmax
i1 b≥2))

=f̃i1(ẽ
max
i1 b≥2 ⊗ f̃

ϕi1
(b≥2)

i1
bi1).

If ϕi1(ẽ
max
i1

b≥2) ≤ εi1(f̃
ϕi1

(b≥2)

i1
), we have f̃i1(ẽ

max
i1

b≥2⊗ f̃
ϕi1

(b≥2)

i1
bi1) = ẽmax

i1
b≥2⊗ f̃

ϕi1+1(b≥2)

i1
bi1 .

This is contained in Bw−1
≥2

(∞)⊗Bi1 .
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Suppose ϕi1(ẽ
max
i1

b≥2) > εi1(f̃
ϕi1

(b≥2)

i1
). This means that εi1(b≥2) > 0. Let S be the i1-

string which contains b≥2 and ẽmax
i1

(b≥2). Note that b≥2 6= ẽmax
i1

(b≥2). Since both b ≥ 2 and
ẽmax
i1

b≥2 are in Bw−1
≥2

(∞), we have S ∩Bw−1
≥2

(∞) = S by [26, Proposition 3.3.4]. Hence we get
the assertion. q.e.d

6. Construction of initial seed: Quantum flag minors

In this section, we give a construction of the quantum initial seed in Conjecture 1.1 which
corresponds to the initial seed in [23]. We only consider the e = −1 case, but the other case
follows by applying the ∗-involution.

6.1. Quantum generalized minors.

6.1.1. We first define a quantum generalized minor. This is a q-analogue of a (restricted)
generalized minor Dwλ = Dwλ,λ which is defined in [23, 7.1].

Definition 6.1 (quantum generalized minor). For λ ∈ P+ and w ∈W , let

∆wλ = ∆wλ,λ := jλ(uwλ).

We call it a quantum generalized minor. When λ is a fundamental weight, we call it a quantum
flag minor.

By its definition, it is given by a matrix coefficient as

(∆wλ,λ, P ) = (uwλ, Puλ).

6.1.2. The following result for extremal vectors is well-known.

Lemma 6.2 ([48, Lemma 8.6]). For λ, µ ∈ P+ and w ∈W , we have

Φ(λ, µ)(uw(λ+µ)) = uwλ ⊗ uwµ.

It follows that
qλ,µ(uwλ ⊗ uwµ) = uwλ+wµ.

Therefore we get
q(wµ−µ,λ)∆wλ∆wµ = ∆w(λ+µ)

by Proposition 3.31. In particular, ∆w,λ is strongly real for any w ∈W and λ ∈ P+.

6.1.3. We describe extremal vectors in terms of the PBW basis. This is a straight forward
generalization of [7]. For 1 ≤ k ≤ l, we define the following operations as in [23, 9.8],

k− := max(0, {1 ≤ s ≤ k − 1; is = ik}),
kmax := max{1 ≤ s ≤ l; is = ik}.

Proposition 6.3. For 0 ≤ k ≤ l, we define nk by

nk(j) :=

{
1 if ij = ik, j ≤ k,

0 otherwise.

If i = ik (here we understand i = ik holds for any i if k = 0), we have Fe=−1(mnk; w̃)um$i =
usi1

···sik
m$i for m ≥ 1.
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Proof. We follow the argument in [7, 2.1 Lemma]. We prove the assertion by an induction on
k. The assertion is trivial when k = 0. Note that

F−1(mnk, w̃) = T−1
i1
· · ·T−1

ik−1
(F (m)

ik
)F−1(mnk− , w̃).

Therefore we have

F−1(mnk, w̃)um$ = T−1
i1
· · ·T−1

ik−1
(F (m)

ik
)usi1

···si
k−

m$i

by the induction hypothesis. By (4.6), this is equal to

S−1
i1
· · ·S−1

ik−1
(F (m)

ik
)Sik−1

· · ·Si1S
−1
i1
· · ·S−1

ik−
um$i

= S−1
i1
· · ·S−1

ik−1
(F (m)

ik
)Sik−1

· · ·Sik−+1
um$i .

Since none of ik−+1, · · · , ik−1 is i, this is equal to

S−1
i1
· · ·S−1

ik−1
(F (m)

ik
)um$i .

By (5.7), this is nothing but S−1
i1
· · ·S−1

ik
um$i . Therefore the assertion also holds for k. q.e.d

By the above proposition, we have πm$ik
(b−1(mnk; w̃)) 6= 0 for any 1 ≤ k ≤ l and m ≥ 1.

Hence jm$ik
(usi1

···sik
m$ik

) = Gup(b−1(mnk, w̃)) for any 1 ≤ k ≤ l. As a special case, we
obtain the following result.

Corollary 6.4. For w ∈W and fix w̃ ∈ R(w). For i ∈ I, we set ni by nkmax with ik = i. For
λ ∈ P+, we set nλ :=

∑
i∈I λini ∈ Zl

≥0. Then we have

(6.5) ∆wλ = Gup(b−1(nλ, w̃)).

Proof. By Proposition 6.3, we have

(6.6) ∆wm$i = Gup(b−1(mni, w̃))

for any i ∈ I. Then by (6.6), Lemma 6.2 and Corollary 4.29, we obtain the assertion. q.e.d

6.2. Commutativity relations. In this subsection, we prove that quantum generalized mi-
nors {∆wλ} q-commute with Gup(b) for b ∈ Bw(∞) in the quotient Oq[Nw]. It means that
∆wλ and Gup(b) q-commute up to (U−

w)⊥. By Theorem 5.13, they literally q-commute when
b ∈ Bw(w,−1). We denote the projection of Gup(b) to Oq[Nw] also by Gup(b) for brevity.

6.2.1. For the proof of certain q-commutativity relation, we need to use the quasi R-matrix.
We recall its properties.

First we consider another coproduct ∆ defined by ( ⊗ ) ◦∆ ◦ . We have an analogue of
Lemma 2.5:

∆(qh) = qh ⊗ qh,(6.7a)

∆(ei) = ei ⊗ ti + 1⊗ ei,(6.7b)

∆(fi) = fi ⊗ 1 + t−1
i fi.(6.7c)

We consider the following completion

U+
q (g)⊗̂U−

q (g) =
⊕
ξ∈Q

∏
ξ=ξ′+ξ′′

U+
q (g)ξ′ ⊗U−

q (g)ξ′′ .
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Note that the counit ε extends to the completion. In [41, Chapter 4], Lusztig has shown that
there exists a unique intertwiner Ξ ∈ U+

q (g)⊗̂U−
q (g) such that

(6.8) Ξ ◦∆(x) = ∆(x) ◦ Ξ for any x ∈ Uq(g),

ε(Ξ) = 1, and Ξ ◦ Ξ = Ξ ◦ Ξ = 1. We have an analogue of Lemma 2.5:

(6.9) ∆(x) =
∑

q−(wt x(1),wt x(2))x(2)twt x(1)
⊗ x(1),

for any x ∈ U−
q (g) with r(x) =

∑
x(1) ⊗ x(2). In particular, we have

(6.10) ∆(x)(uλ ⊗ uµ) =
∑

q−(wt x(1),wt x(2))x(2)twt x(1)
uλ ⊗ x(1)uµ,

for such x ∈ U−
q (g).

6.2.2.

Proposition 6.11. For b ∈ Bw(µ) and uwλ ∈ Bw(λ), we have the following q-commutation
relation in Oq[Nw]:

jλ(uwλ)Gup(jµ(b)) ' Gup(jµ(b))jλ(uwλ).

Proof. Since we only consider the equality in quantum closed unipotent cell Oq[Nw], it is
enough to check that inner products with x ∈ U−

w are the same up to some q-shifts, and the
q-shifts do not depend on choice of x. By Proposition 3.31, this is equal to

(uwλ ⊗Gup
µ (b),∆(x)(uλ ⊗ uµ))λ,µ,

where (·, ·)λ,µ denotes the inner product on V (λ) ⊗ V (µ) defined by (u ⊗ u′, v ⊗ v′)λ,µ :=
(u, v)λ(u′, v′)µ. We use the quasi R-matrix to rewrite this as

(uwλ ⊗Gup
µ (b), (Ξ ◦∆(x) ◦ Ξ)(uλ ⊗ uµ))λ,µ.

Since the action of the quasi R-matrix is trivial on the highest weight vector, this is equal to

(uwλ ⊗Gup
µ (b), (Ξ ◦∆(x))(uλ ⊗ uµ))λ,µ.

Since the inner product has an adjoint property for ϕ, this is equal to

((ϕ⊗ ϕ)(Ξ)(uwλ ⊗Gup
µ (b)), (∆(x))(uλ ⊗ uµ))λ,µ.

Note that (∆(x))(uλ ⊗ uµ) is contained in the tensor product of Demazure modules Vw(λ)⊗
Vw(µ) by §5.2.3. By the form of quasi R-matrix (6.8) and the definition of ϕ, the nontrivial
part of (ϕ ⊗ ϕ)(Ξ)(uwλ ⊗ Gup

µ (b)) is not contained in the tensor product Vw(λ) ⊗ Vw(µ),
therefore the above is equal to

(uwλ ⊗Gup
µ (b), (∆(x))(uλ ⊗ uµ))λ,µ.

By (6.9), this is equal to

(uwλ ⊗Gup
µ (b), (flip ◦∆(x))(uλ ⊗ uµ))λ,µ,

and also to
(jλ(uwλ)⊗Gup(jµb), (flip ◦ r(x))K

up to some q-shifts, where flip(P ⊗Q) := Q⊗ P . Therefore we get

(jλ(uwλ)Gup(jµ(b)), x)K ' (Gup(jµ(b))jλ(uwλ), x)K

for any x ∈ U−
w . Here we note that q-shifts depend only on the weights of uwλ and jµ(b), and

is independent of x. Then we obtain the assertion. q.e.d
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Restricting the above equality, we obtain the following q-commutativity relations inOq[N(w)].

Corollary 6.12. For c ∈ Zl
≥0, we have

Gup(b−1(c, w̃))∆wλ ' ∆wλG
up(b−1(c, w̃)).

6.3. Factorization of q-center. In this subsection, we prove the multiplicative property of
Bw(∞) with respect to the quantum minors {∆wλ}λ∈P+ in Oq[Nw]. This is a generalization
of [8, 3.1], [9] and [32, Lemma 4.2]. This result can be considered as a q-analogue of [23,
Lemma 15.8].

6.3.1. Using Corollary 3.17 and (3.18) inductively, we obtain the following lemma.

Lemma 6.13. Let w ∈W and w̃ = (i1, · · · , il) ∈ R(w) as above. We define

ε ew(b) := (εi1(b), εi2(ẽ
max
i b), · · · , εil(ẽ

max
il−1

· · · ẽmax
i1 b))

for b ∈ B(∞). For b1, b2 ∈ B(∞), let us write

Gup(b1)Gup(b2) =
∑

db
b1,b2(q)G

up(b)

with db
b1,b2

(q) ∈ A. If db
b1,b2

(q) 6= 0, then ε ew(b) ≤ ε ew(b1)+ε ew(b2), where ≤ is the lexicographic
order on Zl

≥0 as in §4.3.5.
Let b ∈ Bw(∞) with ε ew(b) = ε ew(b1)+ε ew(b2) for b1, b2 ∈ Bw(∞). Then we have db

b1,b2
(q) =

qN for some N ∈ Z.

6.3.2.

Proposition 6.14. Let w ∈W and λ, µ ∈ P+. For b ∈ Bw(µ) and uwλ ∈ Bw(λ), there exists
b′ ∈ Bw(λ+ µ) such that

Φ(λ, µ)(b′) = uwλ ⊗ b,

and we have an equality in Oq[Nw]:

∆wλG
up(jµ(b)) ' Gup(jλ+µ(b′)).

Proof. Fix w̃ = (i1, · · · , il) ∈ R(w), we have

ẽmax
i1 (uwλ ⊗ b) = uw≥2λ ⊗ ẽmax

i1 b

by the tensor product rule (2.34a) for crystal operators and ϕi1(uwλ) = 0. Using this recur-
sively, we get

ẽmax
il

· · · ẽmax
i1 (uwλ ⊗ b) = uλ ⊗ uµ.

In particular, there exists b′ ∈ Bw(λ+µ) such that Φ(λ, µ)(b′) = uwλ⊗b. By Proposition 3.31
and Proposition 3.29, we have

(6.15) q(wt b−µ,λ)∆wλG
up(jµb) = Gup(jλ+µ(b′)) +

∑
f b′′

b,wλ(q)Gup(b′′)

for some f b′′
b,wλ(q) ∈ qZ[q]. By the second assertion of Lemma 6.13, we have f jλ+µ(b′)

b,wλ (q) = 0
as in [8, 1.8 Proposition (i)].

Applying the dual bar-involution σ, we obtain

(6.16) q−(wt b−µ,λ)+(wt b−µ,wλ−λ)Gup(jµb)∆wλ = Gup(jλ+µ(b′)) +
∑

f b′′
b,wλ(q−1)Gup(b′′).
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By Proposition 6.11, we have Gup(jµb)∆wλ = qm∆wλG
up(jµb) for some m ∈ Z in Oq[Nw] It

is equal to

(6.17) q−(wt b−µ,λ)+(wt b−µ,wλ−λ)+m∆wλG
up(jµb) = Gup(jλ+µ(b′)) +

∑
f b′′

b,wλ(q−1)Gup(b′′).

Therefore we obtain f b′′
b,wλ(q) = 0 for any b′′ by comparing (6.15) and (6.17). q.e.d

Since there exists µ ∈ P+ such that πµ(b) 6= 0, we obtain the following theorem.

Theorem 6.18. Let b ∈ Bw(∞) and λ ∈ P+. There exists b′ ∈ Bw(∞) such that

∆wλG
up(b) ' Gup(b′)

in Oq[Nw].

Taking b from B(w,−1), we obtain the following theorem by Corollary 4.29.

Theorem 6.19. For c ∈ Zl
≥0 and λ ∈ P+, we have

∆wλG
up(b−1(c, w̃)) ' Gup(b−1(c + nλ, w̃)).

6.3.3. The following is a generalization of Caldero’s result [8, 2.1 Lemma, 2.2 Theorem]. It
follows from Theorem 6.18 by an induction on the length of w.

Theorem 6.20. Let w ∈W and fix w̃ ∈ R(w). We set

∆ ew,k := ∆si1
···sik

$ik

for 1 ≤ k ≤ l. Then {∆ ew,k}1≤k≤l forms a strongly compatible subset.

6.3.4. Following [23, 15.5], we call c ∈ Zl
≥0 interval-free if c satisfies the following conditions:

c(i) := min{ck; ik = i} = 0

for any i ∈ I. By definition, ϕc := c−
∑

i∈I c
(i)ni ∈ Zl

≥0 is interval free. We have the following
factorization property with respect to the extremal vectors {∆wλ}λ∈P+ .

Theorem 6.21. For c ∈ Zl
≥0, we set λ(c) :=

∑
i∈I c

(i)$i ∈ P+. Then we have

Gup(b−1(c, w̃)) ' Gup(b−1(ϕc, w̃))∆wλ(c).
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[19] C. Geiß, B. Leclerc, and J. Schröer. Verma modules and preprojective algebras. Nagoya Math. J., 182:241–
258, 2006.
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