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ON THE SPIN-REFINED RESHETIKHIN-TURAEV
SU(2) INVARIANTS OF LENS SPACES

KENTA OKAZAKI

Abstract. We give an explicit presentation of the value of the spin-refined Reshetikhin-
Turaev SU(2) invariants of lens spaces. Using this result, we also present the value
of spin-refined Turaev-Viro SU(2) invariants of lens spaces.

0. Introduction

The quantum invariants of closed oriented 3-manifolds associated with a semisim-

ple Lie group were proposed by Witten [Wit89], and rigorously constructed by

Reshetikhin-Turaev [ReTu91], called the Reshetikhin-Turaev invariants.

When the Lie group is SU(2), two kinds of refinements of the Reshetikhin-Turaev

invariants were defined by Kirby-Melvin [KiMe91] at r-th root of unity for even r: the

invariants of 3-manifolds with first (Z/2Z)-cohomology classes for r ≡ 2 (mod 4),

and with spin structures for r ≡ 0 (mod 4).

For lens spaces, the Reshetikhin-Turaev SU(2) invariants were calculated by Kirby-

Melvin [KiMe91], Jeffrey [Jef92], Yamada [Yam95], and Li-Li [LiLi96], and the re-

fined Reshetikhin-Turaev SU(2) invariants associated with first (Z/2Z)-cohomology

classes by Sato [Sat06].

In this paper, we calculate the refined Reshetikhin-Turaev SU(2) invariants of lens

spaces associated with spin structures. To see this, we set up some notation. Let ζn

denote the n-th root of unity exp(2π
√
−1/n). Fix a positive odd integer p. Let p∗

be the inverse of p modulo 8. For a rational number n/m with m coprime to p, let

(n/m)∨ denote nm ∈ Z/pZ, where m is the inverse of m modulo p.

Theorem 1. Let a > 0 and b be integers with a even, (a, b) = 1 and (a, p) = 1. Let

Θ be a spin structure of the lens space L(a, b). Then the spin-refined Reshetikhin-

Turaev SU(2) invariant of L(a, b) at 4p-th root of unity τ4p(L(a, b), Θ) is presented

by

τ4p(L(a, b), Θ) =
(

a
p

)
ζ
−( 3

4
s(b,a)+ δ

8a
)∨

p ζ
−3p∗µ(L(a,b),Θ)
16

ζp∗

8 − ζ−p∗

8

ζ8p − ζ−1
8p

,

where
( ·

p

)
is the Legendre symbol, s(b, a) the Dedekind sum, and µ(M, Θ) the µ-

invariant of the spin manifold (M, Θ). We will define the sign δ = ±1 by (10) in

§2.
1



2 KENTA OKAZAKI

On the other hand, Roberts [Rob97] defined the spin-refined Turaev-Viro invari-

ants1 of 3-manifolds associated with spin structures and second (Z/2Z)-homology

classes, and pointed out the relation with the spin-refined Reshetikhin-Turaev in-

variants (see [Rob97, Theorem 3.6] and (11) ).

Using Theorem 1 and the equality (11), we can derive these invariants of lens

spaces as follows:

Corollary 2. Under the same assumption as in Theorem 1 and for y ∈ H2(L(a, b), Z/2Z),

the refined Turaev-Viro invariants at 4p-th root of unity TV4p(L(a, b), Θ, y) is pre-

sented by

TV4p(L(a, b), Θ, 0) =
2

|ζ8p − ζ−1
8p |2

,

TV4p(L(a, b), Θ, y) =
2 ζ

−3p∗(µ−µ′)
16

|ζ8p − ζ−1
8p |2

·
{

1 a ≡ 0 mod 4

ζ−δ·4a
p a ≡ 2 mod 4

for y 6= 0.

where we put µ = µ(L(a, b), Θ), µ′ = µ(L(a, b), Θ′) with Θ′ a spin structure of L(a, b)

distinct from Θ.

The paper is organized as follows: In §1 we review the definition of the spin-

refined Reshetikhin-Turaev invariants. In §2 we prove Theorem 1 and in §3 we

derive Corollary 2.

I am deeply grateful to Tomotada Ohtsuki whose insightful comments made enor-

mous contribution to my work. I would also like to thank Takefumi Nosaka whose

constructive comments and warm encouragements.

1. Review of the invariants

The spin-refined Reshetikhin-Turaev SU(2) invariants of spin 3-manifolds were

defined by Kirby-Melvin [KiMe91]. By using linear skein, combinatorial definition

of these invariants were given by Blanchet [Bla92]. In this section, we review the

Blanchet’s definition.

Fix a positive odd integer p. We put [i] =
ζ i
8p − ζ−i

8p

ζ8p − ζ−1
8p

for non-negative integer i.

Let (F, 2i) denote a surface F with ordered 2i points on ∂F . We define the vector

space S(F, 2i) over C by

S(F, 2i) = spanC{tangle diagrams on F}/ ∼ .

Here D is tangle diagrams on (F, 2i) if D is tangle diagrams on F , and ∂D is equal

to the fixed 2i points. The equivalent relation “∼” is generated by the isotopies of

1in Roberts’ paper, this invariants are denoted by CH(M,Θ, y), and τr(M,Θ) by I(M,Θ).
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tangle diagrams on the surface F and the skein relations below:

= ζ16p + ζ−1
16p , = (−ζ8p − ζ−1

8p ) ∅ ,

where ∅ means an empty diagram. We denote S(F, 0) by S(F ) for short. Re-

mark that S(S2) is isomorphic to C by the isomorphism D 7→ 〈D〉, where 〈D〉 is

the Kauffman bracket of D. We define inductively the Jones-Wenzl idempotents
i

∈ S([0, 1]2, 2i) as follows [Lic93]:

i

=
1

i-1

+
[i − 1]

[i] 1 1

i-2
i-1 i-1

（i ≥ 2）,
1

= ,

where the strand with a number i stands for the union of i parallel copies of one

strand. We can show that 〈
i

〉 = (−1)i[i + 1] (i ≥ 1) by induction on i.

Define two elements ω0 and ω1 in S(S1 × [0, 1]) by

ω0 =
∑

0≤i<4p
i:even

[i + 1]
i

, ω1 = −
∑

0≤i<4p
i:odd

[i + 1]
i

.

Let L = L1 ∪ · · · ∪ LN be a framed link on a surface F with a link diagram D =

D1 ∪ · · · ∪ DN . For x1, . . . , xN ∈ Z/2Z = {0, 1}, define 〈Lωx1
1 ∪ · · · ∪ L

ωxN
N 〉 ∈ C by

substituting ωx`
for each component D`. For example,〈

ω1

ω0

〉
= −

∑
0≤i,j<4p

i: even, j: odd

[i + 1][j + 1]

〈
i

j

〉
.

Remark that this definition is independent of the choice of a diagram D (see [Bla92]).

The following equalities are known [Lic93].

i

= (−1)iζ
(i+1)2−1
16p

i

,(1)

i

j = (−1)j [(i + 1)(j + 1)]

[i + 1]

i

.(2)

Let M be a closed connected oriented 3-manifold, and Θ a spin structure of M . M

is obtained from S3 by a surgery along some framed link L = L1∪· · ·∪LN in S3 (see

[Kir78]). Let B be the linking matrix of L. It is known [KiMe91] that the set of spin

structures on M can be identified with the set {x ∈ (Z/2Z)N |Bx ≡ t(b11, . . . , bNN)

(mod 2)}, where b11, . . . , bNN are the diagonal entries of B. Let x = t(x1, . . . , xN) be
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the element in this set corresponding to Θ. Then the spin-refined Reshetikhin-Turaev

SU(2) invariant τ4p(M, Θ) is defined as follows:

τ4p(M, Θ) = c
−σ+

+ c
−σ−
− 〈Lωx1

1 ∪ · · · ∪ L
ωxN
N 〉 ,(3)

where c± = 〈Uω1
± 〉 (U± is the trivial knot with framing ±1), and σ± is a number of

the positive/negative eigenvalues of B. It is known that the right-hand side of (3) is

independent of the choice of the framed link L [KiMe91, Bla92].

2. Proof of Theorem 1

In this section, we calculate the value of τ
SU(2)
4p (L(a, b), Θ) and prove Theorem 1.

We choose a continued fraction expansion of a/b :

a

b
= m1 −

1

m2 − . . .
− 1

mN

(|mk| ≥ 2) .

It is known that L(a, b) is obtained from S3 by a surgery along the framed link

m1 m2 mN

in S3, where mi on each component means the framing. We put

B =


m1 1

1 m2
. . .

. . . . . . 1

1 mN

, e1 =


1

0
...

0

, eN =


0
...

0

1

.(4)

Remark that B is the linking matrix of L, and det B = a.

Let Θ be the spin structure of the lens space L(a, b). We set x = t(x1, . . . , xN) ∈
(Z/2Z)N corresponds to Θ, satisfying

Bx ≡ t(m1, . . . ,mN) (mod 2).(5)

Proof of Theorem 1. We first calculate the normalization constant c
σ+

+ c
σ−
− . By defi-

nition and the formula (1),

c+ = −
∑

0≤i<4p
i:odd

[i + 1]〈
i

〉 = −
∑

0<i≤4p
i:odd

ζ
(i+1)2−1
16p [i + 1]2

= −
ζ−1
16p

(ζ8p − ζ−1
8p )2

∑
j∈Z/2pZ

ζj2

4p(ζ
2j
4p − 2 + ζ−2j

4p ) =
2 ζ−3

16p

ζ8p − ζ−1
8p

∑
j∈Z/2pZ

ζj2

4p

=
2 ζ−3

16p

ζ8p − ζ−1
8p

∑
γ∈Z/2Z

ζpγ2

4 Gp,
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where we put i = 2j − 1 in the third equality, j = 2k + pγ in the fifth equality, and

denote Gaussian sum
∑

k∈Z/pZ

ζk2

p by Gp. Since a = det B > 0 is equal to the product of

the eigenvalues of B, σ− is even. Remark that c− is equal to the complex conjugate

of c+ and that
∑

k∈Z/pZ

ζ−k2

p =
(−1

p

)
Gp. Thus we get

c
σ+

+ c
σ−
− =

2Nζ−3 σ
16p

(ζ8p − ζ−1
8p )N

( ∑
γ∈Z/2Z

ζpγ2

4

)σ+
( ∑

γ∈Z/2Z

ζ−pγ2

4

)σ−
GN

p ,

where σ = σ+ − σ− is the signature of B.

Now we calculate τ4p(L(a, b), Θ). By the definition (3),

τ4p(L(a, b), Θ) = c
−σ+

+ c
−σ−
−

∑
0≤i`<4p

i`−x` : even

(−1)x1+···+xN [i1 + 1] . . . [iN + 1]〈
i1 i2 iN

m1 m2 mN

〉 .

Applying the formulae (1) and (2) repeatedly and substituting the indices i` for i`−1

(` = 1, . . . , N), this is equal to

(−1)κc
−σ+

+ c
−σ−
−

∑
0<i`≤4p

i`−x` : odd

ζ
m1i21+···+mN i2N−trB
16p [i1][i1i2] . . . [iN−1iN ][iN ] ,

where κ = m1x1 + · · · + mNxN . Since this formula is symmetric with respect to the

substitutions i1 → −i1, . . . , iN → −iN , this is equal to

(−1)κ 2Nc
−σ+

+ c
−σ−
−

(ζ8p − ζ−1
8p )N+1

∑
0≤i`<4p

i`−x` : odd

ζ
m1i21+···+mN i2N+2(i1+i1i2+···+iN−1iN )
16p (ζ2iN

16p − ζ−2iN
16p )

= C
∑
±

±
∑

i∈(Z/4pZ)N

i≡y (mod 2)

ζ
tiBi+2t(e1±eN )i
16p ,

where we put i = t(i1, . . . , iN), y = x + t(1, . . . , 1), and

C =
(−1)κζ3σ−trB

16p

ζ8p − ζ−1
8p

( ∑
γ∈Z/2Z

ζpγ2

4

)−σ+
( ∑

γ∈Z/2Z

ζ−pγ2

4

)−σ−
G−N

p .

Thus

τ4p(L(a, b), Θ) = C
∑
±

±ζ
tyBy+2t(e1±eN )y
16p

∑
j∈(Z/2pZ)N

ζ
tjBj+2tu±j
4p(6)

= C
∑
±

±ζ
tyBy+2t(e1±eN )y
16p

∑
‚∈(Z/2Z)N

ζ
p(t‚B‚+2tu±‚)
4

∑
k∈(Z/pZ)N

ζ
tkBk+tu±k
p

= δ C ζ
tyBy+2t(e1+δeN )y
16p

∑
‚∈(Z/2Z)N

ζ
p(t‚B‚+2tuδ‚)
4

∑
k∈(Z/pZ)N

ζ
tkBk+tuδk
p ,
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where we put i = 2j + y in the first equality, j = 2k + p γ, u± = 1
2
(By + e1 ± eN) in

the second equality, and use Lemma 3 below in the last equality. Remark that, since

By ≡ e1 + eN (mod 2) by the definition of B and the equality (5), u± is a vector

whose entries are integers.

In a similar way, we can show that

τ4(L(a, b), Θ)
∣∣
ζp∗
16

= δC ′ζ
p∗{tyBy+2t(e1+δeN )y}
16

∑
‚∈(Z/2Z)N

ζ
p(t‚B‚+2tuδ‚)
4 ,(7)

where τ4(L(a, b), Θ)
∣∣
ζp∗
16

denotes the value obtained from τ4(L(a, b), Θ) by replacing

ζ16 with ζp∗

16 , and we put

C ′ =
(−1)κζ

p∗(3σ−trB)
16

ζp∗

8 − ζ−p∗

8

( ∑
γ∈Z/2Z

ζpγ2

4

)−σ+
( ∑

γ∈Z/2Z

ζ−pγ2

4

)−σ−
.

Comparing (6) and (7), we get

(8) τ4p(L(a, b), Θ)

= δ
(

a
p

) ζp∗

8 − ζ−p∗

8

ζ8p − ζ−1
8p

ζ16{tyBy+2(e1+δeN )y+3σ−trB}∨
p G−N

p

∑
k∈(Z/pZ)N

ζ
tkBk+tuδk
p τ4(L(a, b), Θ)

∣∣
ζp∗
16

,

Since B is symmetric, there exists P ∈ GL(N, Z/pZ) such that tPBP is diagonal.

Thus by putting tPBP = (b1) ⊕ · · · ⊕ (bN), Puδ = t(c1, . . . , cN), we see∑
k∈(Z/pZ)N

ζ
tkBk+tuδk
p =

∑
k′∈(Z/pZ)N

ζ
tk′(tPBP )k′+t(P uδ)k′

p(9)

=
N∏

`=1

∑
j`∈Z/pZ

ζ
b`j

2
` +c`j`

p =

(
b1...bN

p

)
ζ
−(4b1c21+···+4bN c2N )
p GN

p

=

(
det(tPBP )

p

)
ζ−4{t(P uδ)(tPBP )−1(P uδ)}∨
p GN

p

=
(

a
p

)
ζ−4(tuδB−1uδ)∨

p GN
p

=
(

a
p

)
ζ
−16{tyBy+2t(e1+δeN )y+te1B−1e1+teNB−1eN+δ 2

a
}∨

p GN
p ,

where we put k = Pk′ in the first equality.

Substituting (9) into (8) and using Lemma 4 below, we get

τ4p(L(a, b), Θ) =
(

a
p

) ζp∗

8 − ζ−p∗

8

ζ8p − ζ−1
8p

ζ
−( 3

4
s(b,a)+ δ

8a
)∨

p τ4(L(a, b), Θ)
∣∣
ζp∗
16

.

Further, since [KiMe91, Example8.31] says that

τ4(L(a, b), Θ) = ζ
−3µ(L(a,b),Θ)
16 ,
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we obtain the required formula. ¤

Lemma 3. Let d ∈ (Z/2Z)N be a non-zero vector satisfying Bd ≡ 0 (mod 2). Recall

that u± = 1
2
(By + e1 ± eN), and its entries are integers. Put a sign δ by

δ = ζ
tdBd+2tu+d
4 = (−1)

1
2

tdBd+tu+d.(10)

Then it holds ∑
‚∈(Z/2Z)N

ζ
p(t‚B‚+2tu−δ‚)
4 = 0.

Proof. Since (tdBd + 2tu+d)− (tdBd + 2tu−d) ≡ 2teNd ≡ 2 (mod 4), we can check

ζ
tdBd+2tu−δd
4 = −1. Thus∑

‚∈(Z/2Z)N

ζ
p(t‚B‚+2tu−δ‚)
4 =

∑
‚′∈(Z/2Z)N

ζ
p{t(‚′+d)B(‚′+d)+2tu−δ(‚′+d)}
4

= ζ
p(tdBd+2tu−δd)
4

∑
‚′∈(Z/2Z)N

ζ
p(t‚′B‚′+2tu−δ‚′)
4

= −
∑

‚∈(Z/2Z)N

ζ
p(t‚B‚+2tu−δ‚)
4 ,

where we put γ ′ = γ − d in the first equality. Thus we obtain the lemma. ¤

Lemma 4. With the above notation, the following equality holds:

3σ − trB = te1B
−1e1 + teNB−1eN − 12s(b, a) .

Proof. In the same fashion as [KiMe91, §2.3], we can derive

3{sgn(a0a1) + · · · + sgn(aN−1aN)} − trB = te1B
−1e1 + teNB−1eN − 12s(b, a),

where

a0 = 1, ai = det


m1 1

1 m2
. . .

. . . . . . 1

1 mi

 (i = 1, . . . , N).

Since it is known that σ = sgn(a0a1) + · · · + sgn(aN−1aN) (for example, see [Mac46,

Theorem 34.3]), we obtain the lemma. ¤

3. Proof of Corollary 2

In this section we prove the Corollary 2. For a positive integer p, an oriented closed

3-manifold M , a spin structure Θ of M , and y ∈ H2(M, Z/2Z), [Rob97, Theorem3.6]

says that

TV4p(M, Θ, y) = τ4p(M, Θ)τ4p(M, Θ + D(y)),(11)

where D(y) ∈ H1(M, Z/2Z) is the Poincaré dual of y. Remark that the set of spin

structures is affinely isomorphic to H1(M, Z/2Z), so Θ + D(y) makes sense. Let



8 KENTA OKAZAKI

Θ, Θ′ be the distinct spin structures of the lens space L(a, b). Using this formula and

Theorem 1, we obtain

TV4p(L(a, b), Θ, 0) = |τ4p(L(a, b), Θ)|2 =
2

|ζ8p − ζ−1
8p |2

,

and

TV4p(L(a, b), Θ, y) = τ4p(L(a, b), Θ)τ4p(L(a, b), Θ′)

=
2

|ζ8p − ζ−1
8p |2

ζ
−3p∗(µ−µ′)
16 ζ−8a(δ−δ′)

p

for y 6= 0, where δ′ is the “Θ′-version” of δ, similarly defined as (10). Now we can

check by definition that δ′ = (−1)a/2δ. This completes the proof of the corollary.
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