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ON THE SPIN-REFINED RESHETIKHIN-TURAEV
SU(2) INVARIANTS OF LENS SPACES

KENTA OKAZAKI

ABSTRACT. We give an explicit presentation of the value of the spin-refined Reshetikhin-
Turaev SU(2) invariants of lens spaces. Using this result, we also present the value
of spin-refined Turaev-Viro SU(2) invariants of lens spaces.

0. INTRODUCTION

The quantum invariants of closed oriented 3-manifolds associated with a semisim-
ple Lie group were proposed by Witten [Wit89], and rigorously constructed by
Reshetikhin-Turaev [ReTu91], called the Reshetikhin-Turaev invariants.

When the Lie group is SU(2), two kinds of refinements of the Reshetikhin-Turaev
invariants were defined by Kirby-Melvin [KiMe91] at r-th root of unity for even r: the
invariants of 3-manifolds with first (Z/2Z)-cohomology classes for r = 2 (mod 4),
and with spin structures for r =0 (mod 4).

For lens spaces, the Reshetikhin-Turaev SU(2) invariants were calculated by Kirby-
Melvin [KiMe91], Jeffrey [Jef92], Yamada [Yam95], and Li-Li [LiLi96], and the re-
fined Reshetikhin-Turaev SU(2) invariants associated with first (Z/2Z)-cohomology
classes by Sato [Sat06].

In this paper, we calculate the refined Reshetikhin-Turaev SU(2) invariants of lens
spaces associated with spin structures. To see this, we set up some notation. Let (,
denote the n-th root of unity exp(2mv/—1/n). Fix a positive odd integer p. Let p*
be the inverse of p modulo 8. For a rational number n/m with m coprime to p, let
(n/m)¥ denote nm € Z/pZ, where m is the inverse of m modulo p.

Theorem 1. Let a > 0 and b be integers with a even, (a,b) =1 and (a,p) = 1. Let
© be a spin structure of the lens space L(a,b). Then the spin-refined Reshetikhin-
Turaev SU(2) invariant of L(a,b) at 4p-th root of unity T4,(L(a,b),O) is presented
by
s(b,a)+ 6 vVoo— a —
rlLla,b),0) = (&) ¢ Eri gnane & Z 6T
C CSp

where (1—9) is the Legendre symbol, s(b,a) the Dedekind sum, and u(M,©) the -

invariant of the spin manifold (M,©). We will define the sign 6 = +1 by (10) in

§2.
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On the other hand, Roberts [Rob97] defined the spin-refined Turaev-Viro invari-
ants' of 3-manifolds associated with spin structures and second (Z/27)-homology
classes, and pointed out the relation with the spin-refined Reshetikhin-Turaev in-
variants (see [Rob97, Theorem 3.6] and (11) ).

Using Theorem 1 and the equality (11), we can derive these invariants of lens
spaces as follows:

Corollary 2. Under the same assumption as in Theorem 1 and fory € Hy(L(a,b),Z/27),
the refined Turaev-Viro invariants at 4p-th root of unity TVy,(L(a,b),©,y) is pre-
sented by

2
TViy(L(a,b),©,0) = IR
P 8p
267 ) a=0 mod 4
TVip(L(a,b),0,y) = m. (% a=2 mod4 Jory #0.

where we put = p(L(a,b),0), 1 = p(L(a,b),©") with ©" a spin structure of L(a,b)
distinct from ©.

The paper is organized as follows: In §1 we review the definition of the spin-
refined Reshetikhin-Turaev invariants. In §2 we prove Theorem 1 and in §3 we
derive Corollary 2.

I am deeply grateful to Tomotada Ohtsuki whose insightful comments made enor-
mous contribution to my work. I would also like to thank Takefumi Nosaka whose
constructive comments and warm encouragements.

1. REVIEW OF THE INVARIANTS

The spin-refined Reshetikhin-Turaev SU(2) invariants of spin 3-manifolds were
defined by Kirby-Melvin [KiMe91]|. By using linear skein, combinatorial definition
of these invariants were given by Blanchet [Bla92]. In this section, we review the

Blanchet’s definition.
Csp Cp for non-negative integer i.

C C8p
Let (F,2i) denote a surface F' with ordered 2i points on 0F. We define the vector

space S(F,2i) over C by

Fix a positive odd integer p. We put [i] =

S(F,2i) = spanc{tangle diagrams on F'}/ ~ .

Here D is tangle diagrams on (F,2i) if D is tangle diagrams on F', and 0D is equal

« 7
~

to the fixed 2¢ points. The equivalent relation is generated by the isotopies of

lin Roberts’ paper, this invariants are denoted by CH(M,©,y), and 7,.(M,©) by I(M,0).
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tangle diagrams on the surface F' and the skein relations below:

/ Clﬁp) (JF Clﬁpv Q CSp C8p ) 0,

where () means an empty diagram. We denote S(F,0) by S(F) for short. Re-
mark that S(S?) is isomorphic to C by the isomorphism D +— (D), where (D) is
the Kauffman bracket of D. We define inductively the Jones-Wenzl idempotents

—{— € 500,117, 2i) as follows [Lic93]:
i i-1 — 1] 4 -2 i
_||_:—|]—+[2 ]ﬂmzzm, Hl = ;
1 1 1

where the strand with a number i stands for the union of ¢ parallel copies of one

1
strand. We can show that ( d) ) = (=1)[i + 1] (: > 1) by induction on 1.
Define two elements wy and w; in S(S* x [0,1]) by

wo=3 [i+1] , == 3 fi+1] .

0<i<4p 0<i<4p
i:even i:odd

Let L = L;U---U Ly be a framed link on a surface F' with a link diagram D =
DyU---UDy. For zy,...,ax € Z/27 = {0,1}, define (L;"* U---U Ly~) € C by
substituting w,, for each component D,. For example,

() - e (Tiw)

i even j: odd

Remark that this definition is independent of the choice of a diagram D (see [Bla92]).
The following equalities are known [Lic93].

0 ey - v ——.
2) .@ﬂ e T

Let M be a closed connected oriented 3-manifold, and © a spin structure of M. M
is obtained from S? by a surgery along some framed link L = L;U---U Ly in S® (see
[Kir78]). Let B be the linking matrix of L. It is known [KiMe91] that the set of spin
structures on M can be identified with the set {x € (Z/2Z)"|Bx = (b1, ...,byN)
(mod 2)}, where by1, ..., byy are the diagonal entries of B. Let © = *(x1,...,zx) be
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the element in this set corresponding to ©. Then the spin-refined Reshetikhin-Turaev
SU(2) invariant T4,(M, ©) is defined as follows:

(3) Tap(M,0) = .7 c " (L7 U---ULYN),

where cx = (U{') (U is the trivial knot with framing £1), and o is a number of
the positive/negative eigenvalues of B. It is known that the right-hand side of (3) is
independent of the choice of the framed link L [KiMe91, Bla92].

2. PROOF OF THEOREM 1

In this section, we calculate the value of TEPU(Z)(L(CL, b),©) and prove Theorem 1.
We choose a continued fraction expansion of a/b:
1

a

- = — >2).

;= rr— (|me| > 2)
1

my

It is known that L(a,b) is obtained from S® by a surgery along the framed link

CO 0D in S*, where m; on each component means the framing. We put
mp m2 my

(4) B =
Remark that B is the linking matrix of L, and det B = a.

Let © be the spin structure of the lens space L(a,b). We set @ = *(x1,...,2n) €
(Z/2Z)N corresponds to O, satisfying

(5) Bx ="'(my,...,my) (mod 2).

Proof of Theorem 1. We first calculate the normalization constant ¢ ¢”". By defi-

nition and the formula (1),

== S i+ == 3 @y

0<i<4p 0<i<4p
i:odd i:odd

_ (CB <1628 ) Z €4p _2_+_Q;)2j> _C C16p Z <4p

JEZ)2pT. CSP JEZ)2pT.

2C16p Z Cf’y Gp,

G CSP VEL/2Z
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where we put ¢ = 25 — 1 in the third equality, j = 2k 4+ py in the fifth equality, and
denote Gaussian sum Z ij by Gp. Since a = det B > 0 is equal to the product of

keZ/pZ
the eigenvalues of B, o_ is even. Remark that c_ is equal to the complex conjugate

of ¢, and that Z C;kz = <_?1> G,. Thus we get

keZ/pZ

G = gy (S @) (T )

~EZ/2Z. ~EZ/2Z

where 0 = 0, — o_ is the signature of B.
Now we calculate 74,(L(a,b), ©). By the definition (3),

Tap(L(a,0),0) = ¢ 7 el Z (—1)m b 1] fin + 1](7%”ﬂ> |

0<i,<4p my mz my
ig—xTp:even

Applying the formulae (1) and (2) repeatedly and substituting the indices i, for i, — 1
(¢=1,...,N), this is equal to

(—1)Fc;7 7" ittt maiy =B o] lin—rin][in]
P

0<ip<4p
ip—xp:odd

where Kk = myxy + - - - + myxy. Since this formula is symmetric with respect to the
substitutions i1 — —iy,...,1xy — —iy, this is equal to

(- 1)”2NCIU+C:U_ 3 (it R 2 vz 1) (20 e 2in

N+1 16p 16p
(CSP C ) 0<i,<4p
ip—xy :odd
tiBi+2t(e1ten)i
=C E + g Ci6p ,
+ i€(Z/4pT)N
1=y (mod 2)

where we put i = (iy,...,in), y =z +(1,...,1), and

(—1)~Gig, "™ 7 L\
C_g g8p<z ) (ZQ)GP

VEZ/2Z YEZ/2Z
Thus
©) alLlo.).0) = CRo£qEHY 5 G
JEZ/2pZ)N
_CZ j:C1yBy+2t e1ten)y Z Cf(t‘YB‘YJerui‘Y) Z C;kBk+tuik
YE(Z/22)N ke(z/pz)N

_ tyBy+2'(e1+den)y p(*yBy+2tusy) thkthuak
= 0C (g E 4y E Cp

Ye(Z/22)N €(Z/pZ)N
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where we put ¢ = 27 + y in the first equality, j = 2k +p~, uy = %(By+ e; tey)in
the second equality, and use Lemma 3 below in the last equality. Remark that, since
By = e; + ey (mod 2) by the definition of B and the equality (5), us is a vector
whose entries are integers.

In a similar way, we can show that

(7> (L(a b ’CP — 5C CP “{*yBy+2t(e1+den)y Z C4 ’YB‘Y+2tU5‘Y)
YE(Z/22)N
where 74(L(a,b), ‘ o denotes the value obtained from 74(L(a,b),©) by replacing

(16 with ¢7 . and we put

k ~p*(30—trB)
Cie

o - U (X a) (2 )

b _
G Cs NEZ)2. NEZ)2Z.

—0—

Comparing (6) and (7), we get

(8) 7ap(L(a,b), @)
_ 5( ) is_; _CC C16{fyBy+2(el+5eN) y+30—trB}Y en N Z Ctk3k+fu5k (L(a, b),
= G ke (2/p)N

Since B is symmetric, there exists P € GL(N,Z/pZ) such that *PBP is diagonal.
Thus by putting *PBP = (b)) @ -+ & (bn), Pus ="(c1,...,cn), we see

(9) Z Cthk-i-tu(;k Z C;k,(tPBP)k,-i-t(Pug)k/
e(Z/pZ)N k'e(z/pz)N
c b1...b (ATt A2
_ H S e ( 1 - N) & et o
4=1 j,€Z/pZ
t
_ (det( PBP)) (M (Pus) (PBP) ™ (Pus)) G
— » .

— < > (tusB~ 1u5)VGN

<Q —16{tyBy+2t(el+5eN)y+telB lej+teyB leny+02 }VGN
p

where we put k = Pk’ in the first equality.
Substituting (9) into (8) and using Lemma 4 below, we get

Further, since [KiMe91, Example8.31] says that
n(L(a,b),0) = ¢g"

g \2
1 CP 4 ) (L(a b ‘C
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we obtain the required formula. O
Lemma 3. Let d € (Z/2Z)N be a non-zero vector satisfying Bd =0 (mod 2). Recall
that uy = %(By + e ey), and its entries are integers. Put a sign 6 by

(10) § = (APt ued _ (_1)a'dBdtiurd

Then it holds
p(!vBy+2'u_sy) _
Y =0.

~E(Z/2Z)N

Proof. Since (*dBd + 2'u,d) — ("dBd + 2'u_d) = 2'enyd = 2 (mod 4), we can check

Q;dBdJeru“sd = —1. Thus
Z Cf(thwztu,a—y) _ Z Cf{t(7’+d)B(w’+d)+2tu75(-y’+d)}
Ye(Z/22)N y'e@/2m)N

_ sp(*dBd+2'u_sd) p(*y' By +2'u_sv')
= (4 E Gy
v €(Z/22)N

_ Z Cp(t'yB'er?tufw)
= . ’

~e(Z/2Z)N
where we put v = v — d in the first equality. Thus we obtain the lemma. O
Lemma 4. With the above notation, the following equality holds:
30 —trB ="'e;B e, +'exyB 'ey — 12s(b,a) .
Proof. In the same fashion as [KiMe91, §2.3], we can derive
3{sgn(aga;) + --- +sgn(ay_1an)} —trB ="'e;B'e; + 'exyB texy — 12s(b, a),

where
mi 1

1
ag =1, a; =det 2
1 m;

Since it is known that o = sgn(agai) + - - - + sgn(ay_1ay) (for example, see [Mac46,
Theorem 34.3]), we obtain the lemma. |

3. PrROOF OF COROLLARY 2

In this section we prove the Corollary 2. For a positive integer p, an oriented closed
3-manifold M, a spin structure © of M, and y € Ho(M,Z/27Z), [Rob97, Theorem3.6]
says that

(11) TVip(M, 0,y) = 11y (M, ©)74p(M, © + D(y)),

where D(y) € H'(M,Z/27) is the Poincaré dual of y. Remark that the set of spin
structures is affinely isomorphic to H'(M,Z/2Z), so © + D(y) makes sense. Let
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©, © be the distinct spin structures of the lens space L(a,b). Using this formula and
Theorem 1, we obtain
2

T‘/;lp(L(aa b)v 970) = |7—4P<L(a>b)? @)|2 = m>

and

TV, (L(a,b),0,y) = T4,(L(a,b), ©)14,(L(a, b), ©’)

_ 2 —3p*(u—u’)§—%(6—5’)
’C&ép—Cz;al‘Q 10 P
for y # 0, where ¢ is the “©’-version” of ¢, similarly defined as (10). Now we can
check by definition that ¢’ = (—1)%2§. This completes the proof of the corollary.
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