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Abstract

The matching forest problem in mixed graphs is a common generalization of the matching
problem in undirected graphs and the branching problem in directed graphs. Giles presented an
O(n2m)-time algorithm for finding a maximum-weight matching forest, where n is the number
of vertices and m is that of edges, and a linear system describing the matching forest polytope.
Later, Schrijver proved total dual integrality of the linear system.

In the present paper, we reveal another nice property of matching forests: the degree se-
quences of the matching forests in any mixed graph form a delta-matroid and the weighted
matching forests induce a valuated delta-matroid. We remark that the delta-matroid is not
necessarily even, and the valuated delta-matroid induced by weighted matching forests slightly
generalizes the well-known notion of Dress and Wenzel’s valuated delta-matroids. By focusing
on the delta-matroid structure and reviewing Giles’ algorithm, we design a simpler O(n2m)-
time algorithm for the weighted matching forest problem. We also present a faster O(n3)-time
algorithm by using Gabow’s method for the weighted matching problem.

1 Introduction

The concept of matching forests in mixed graphs was introduced by Giles [14, 15, 16] as a common
generalization of matchings in undirected graphs and branchings in directed graphs. Let G =
(V,E,A) be a mixed graph with vertex set V , undirected edge set E and directed edge set A.
Let n and m denote |V | and |E ∪ A|, respectively. For a vector x ∈ RE∪A and F ⊆ E ∪ A, let
x(F ) :=

∑
e∈F x(e).

We denote a directed edge a ∈ A from u ∈ V to v ∈ V by uv. A directed edge is often called an
arc. For an arc a = uv, the terminal vertex v is called the head of a and denoted by ∂−a, and the
initial vertex u is called the tail of a and denoted by ∂+a. For a vertex v ∈ V , the set of arcs whose
head (resp., tail) is v is denoted by δ−v (resp., δ+v). For B ⊆ A, let ∂−B =

∪
a∈B ∂−a. A vertex

in ∂−B is said to be covered by B. An arc subset B ⊆ A is a branching if the underlying edge set
of B is a forest and each vertex v ∈ V is the head of at most one arc in B. For a branching B, a
vertex not covered by B is called a root of B, and the set of the roots of B is denoted by R(B),
i.e., R(B) = V \ ∂−B.

An undirected edge e ∈ E connecting u, v ∈ V is denoted by (u, v). We often abbreviate (u, v)
as uv, where it obvious that it is undirected. For e = uv ∈ E, both u and v are called as the head
of e, and the set of heads of e is denoted by ∂e, i.e., ∂e = {u, v}. For a vertex v, the set of edges
incident to v is denoted by δv. For F ⊆ E, let ∂F =

∪
e∈F ∂e. A vertex in ∂F is said to be covered
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by F . An undirected edge subset M ⊆ E is a matching if each vertex v ∈ V is the head of at most
one edge in M . A vertex not covered by M is called a root of M and the set of the roots of M is
denoted by R(M), i.e., R(M) = V \ ∂M .

An edge set F ⊆ E ∪A is a matching forest if the underlying edge set of F is a forest and each
vertex in V is the head of at most one edge in F . Equivalently, an edge set F = B ∪ M , where
B ⊆ A and M ⊆ E, is a matching forest if B is a branching and M is a matching with ∂M ⊆ R(B).
A vertex in ∂−B ∪ ∂M are said to be covered by F , and a vertex is a root of F if it is not covered
by F . The set of the roots of F is denoted by R(F ). Observe that R(F ) = R(B) ∩ R(M) and
V = R(B) ∪R(M).

1.1 Background

Matching forests inherit the tractability of branchings and matchings. Let w ∈ RE∪A be a weight
vector on the edge set of a mixed graph G = (V,E,A). We consider the weighted matching for-
est problem, the objective of which is to find a matching forest F maximizing w(F ). For this
problem, Giles [15] designed a primal-dual algorithm running in O(n2m) time, which provided
a constructive proof for integrality of a linear system describing the matching forest polytope.
Later, Schrijver [21] proved that Giles’ linear system is totally dual integral. These results com-
monly extend the polynomial-time solvability and the total dual integrality results for the weighted
branchings and weighted matchings [4, 7, 9].

Topics related to matching forests include the following. Using the notion of matching forests,
Keijsper [17] gave a common extension of Vizing’s theorem [23, 24] on covering undirected graphs
by matchings and Frank’s theorem [11] on covering directed graphs by branchings. Another aspect
of matching forests is that they can be represented as linear matroid matching (see [22]). From
this viewpoint, however, we do not fully understand the tractability of matching forests, since the
weighted linear matroid matching problem is unsolved while the unweighted problem is solved [18].

In the present paper, we reveal a relation between matching forests and delta-matroids [1, 3, 5]
to offer a new perspective on weighted matching forests which explains their tractability. For a
finite set V and F ⊆ 2V , the pair (V,F) is a delta-matroid if it satisfies the following exchange
property:

(DM) ∀S1, S2 ∈ F , ∀s ∈ S1△S2, ∃t ∈ S1△S2, S1△{s, t} ∈ F .

Here, △ denotes the symmetric difference, i.e., S1△S2 = (S1 \ S2) ∪ (S2 \ S1).
A typical example of a delta-matroid is a matching delta-matroid. For an undirected graph G =

(V,E), let FM = {∂M | M is a matching in G}. Then, (V,FM ) is a delta-matroid [2, 3]. Branch-
ings in a directed graph also induce a delta-matroid, which we call a branching delta-matroid. For
a directed graph G = (V,A), let FB = {R(B) | B is a branching in G}. Then, it is not difficult to
verify that FB is a delta-matroid (see § 2.1).

A delta-matroid (V,F) is called even if |S1| − |S2| is even for any S1, S2 ∈ F . Note that a
matching delta-matroid is an even delta-matroid, whereas a branching delta-matroid is not. Even
delta-matroids are characterized by the following simultaneous exchange property [25]:

(EDM) ∀S1, S2 ∈ F , ∀s ∈ S1△S2, ∃t ∈ (S1△S2) \ {s}, S1△{s, t} ∈ F and S2△{s, t} ∈ F .

The concept of valuated delta-matroids [6, 26] is a quantitative generalization of even delta-
matroids. A function f : 2V → R ∪ {−∞} is a valuated delta-matroid if domf ̸= ∅ and

(V-EDM) ∀S1, S2 ∈ domf , ∀s ∈ S1△S2, ∃t ∈ (S1△S2) \ {s}, f(S1△{s, t}) + f(S2△{s, t}) ≥
f(S1) + f(S2).
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Here, domf := {S | S ⊆ V , f(S) ̸= −∞}. Note that (V, domf) is an even-delta matroid. We
remark here that weighted matchings in a weighted undirected graph induce a valuated delta-
matroid fM with domfM = FM (see § 2.1).

1.2 Contributions

In this paper, we consider delta-matroids commonly extending matching delta-matroids and branch-
ing delta-matroids, and also a valuation on those delta-matroids. For this purpose, we introduce a
new class of delta-matroids which properly includes even delta-matroids. We call (V,F) a simulta-
neous delta-matroid if it satisfies the following weaker simultaneous exchange property:

(SDM) ∀S1, S2 ∈ F , ∀s ∈ S1△S2, ∃t ∈ S1△S2, S1△{s, t} ∈ F and S2△{s, t} ∈ F .

Note that every even delta-matroid is a simultaneous delta-matroid. Also, a branching matroid is
a simultaneous delta-matroid (see § 2.1).

The first main result in this paper is that matching forests also induce a simultaneous delta-
matroid. For a mixed graph G = (V,E,A), let FMF = {R(F ) | F is a matching forest}. We prove
that FMF is a simultaneous delta-matroid.

Theorem 1. For any mixed graph G = (V,E,A), it holds that (V,FMF ) is a simultaneous delta-
matroid.

Furthermore, we generalize the notion of valuated delta-matroids in order to deal with a quan-
titative extension of Theorem 1. That is, we define valuated delta-matroids on simultaneous delta-
matroids, which slightly generalize valuated delta-matroids on even delta-matroids [6]. We call a
function f : 2V → R ∪ {−∞} a valuated delta-matroid if domf ̸= ∅ and

(V-SDM) ∀S1, S2 ∈ domf , ∀s ∈ S1△S2, ∃t ∈ S1△S2, f(S1△{s, t}) + f(S2△{s, t}) ≥ f(S1) +
f(S2).

Note that (V, domf) is a simultaneous delta-matroid.
For a weighted mixed graph (G,w) with G = (V,E,A) and w ∈ RE∪A, define a function fMF :

2V → R ∪ {−∞} by

fMF (S) =

{
max{w(F ) | F is a matching forest with R(F ) = S} (S ∈ FMF ),

−∞ (otherwise).

We prove that fMF satisfies (S-VDM).

Theorem 2. For any weighted mixed graph (G,w), it holds that fMF is a valuated delta-matroid.

Proofs for Theorems 1 and 2 will be given in § 2.2. We remark that the relation between valuated
delta-matroids in the sense of [6] and those in our sense is similar to that between M-concave
functions and M♮-concave functions [20].

The next contribution of this paper is new algorithms for the weighted matching forest problem:
we design a simpler algorithm and a faster algorithm than Giles’ algorithm [15]. In § 3, we present
a simple O(n2m)-time algorithm which focuses on the delta-matroid structure. We also present
an O(n3)-time algorithm in § 4 by using the technique of Gabow [13] for the weighted matching
problem.
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2 Delta-matroids and matching forests

In this section, we prove Theorems 1 and 2. That is, we show relations between delta-matroids and
matching forests, and between valuated delta-matroids and weighted matching forests.

2.1 Matching delta-matroids and branching delta-matroids

In this subsection, we describe basic facts on delta-matroids, including their relations to matchings
and branchings. We begin with exhibiting two operations on delta-matroids. The dual of a delta-
matroid (V,F) is a delta-matroid (V, F̄), defined by F̄ = {V \ S | S ∈ F}. The union of two
delta-matroids (V,F1) and (V,F2) is a pair (V,F1 ∨ F2) defined by F1 ∨ F2 = {S1 ∪ S2 | S1 ∈
F1, S2 ∈ F2, S1 ∩ S2 = ∅}, which is a delta-matroid [2].

The relation between matchings and delta-matroids is well-known. Let (G,w) be a weighted
undirected graph with G = (V,E) and w ∈ RE . As stated in § 1, the pair (V,FM ), where
FM = {∂M | M is a matching in G}, is an even delta-matroid, which we call the matching delta-
matroid of G. Moreover, a function fM : 2V → R ∪ {−∞} defined below is a valuated delta-
matroid [19]:

fM (S) =

{
max{w(M) | M is a matching with ∂M = S} (S ∈ FM ),

−∞ (otherwise).

We now present a relation between branchings and delta-matroids. Let (G,w) be a weighted
directed graph with G = (V,A) and w ∈ RA. Recall that FB = {R(B) | B is a branching in G}. It
is verified that (V,FB) is a delta-matroid as follows. For a directed graph G, a strong component
is called a source component if it has no arc entering from other strong components. The vertex set
and arc set of a strong component K are denoted by V K and AK, respectively. Let K1, . . . ,Kl be
all source components in G. Then, we have that FB = {S | S ⊆ V , |S ∩ V Ki| ≥ 1 for i = 1, . . . , l}.
Thus, it follows that (V,FB) is a generalized matroid [12]. Moreover, it also follows that (V,FB)
satisfies (SDM). We call (V,FB) as the branching delta-matroid of G.

Theorem 3. For any directed graph G, it holds that (V,FB) is a simultaneous delta-matroid.

Furthermore, this fact extends to weighted branchings. Define fB : 2V → R ∪ {−∞} by

fB(S) =

{
max{w(B) | B is a branching with R(B) = S} (S ∈ FB),

−∞ (otherwise).

Then, fB is a valuated delta-matroid, which immediately follows from arguments in Schrijver [21,
Theorem 1].

Theorem 4. For any weighted directed graph (G,w), it holds that fB is a valuated delta-matroid.

2.2 Delta-matroids and matching forests

In this subsection, we prove Theorems 1 and 2. We begin with a simple proof showing that (V,FMF )
is a delta-matroid for a mixed graph (V,E,A). Let FM be the matching delta-matroid of (V,E)
and FB the branching delta-matroid of (V,A). Then, it immediately follows from the definition of
matching forests that FMF is the dual of FM ∨ F̄B, and thus (V,FMF ) is a delta-matroid.

We now prove Theorem 1, which is a stronger statement. First, Schrijver [21] proved the
following exchange property of branchings.
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Lemma 5 (Schrijver [21]). Let G = (V,A) be a directed graph, and B1 and B2 be branchings
partitioning A. Let R1 and R2 be vertex sets with R1 ∪ R2 = R(B1) ∪ R(B2) and R1 ∩ R2 =
R(B1)∩R(B2). Then A can be split into branchings B′

1 and B′
2 with R(B′

i) = Ri for i = 1, 2 if and
only if each source component K in G satisfies that |K ∩Ri| ≥ 1 for i = 1, 2.

By using Lemma 5, Schrijver proved an exchange property of matching forests [21, Theorem 2].
Here, we show another exchange property of matching forests, which relates them to simultane-
ous delta-matroids. The proof below is quite similar to the proof for Theorem 2 in [21]. For
completeness, however, we describe a full proof.

Lemma 6. Let G = (V,E,A) be a mixed graph, F1 and F2 be matching forests partitioning E ∪A,
and s ∈ R(F2) \ R(F1). Then, there exist matching forests F ′

1 and F ′
2 which partition E ∪ A and

satisfy one of the following:

(i) R(F ′
1) = R(F1) ∪ {s} and R(F ′

2) = R(F2) \ {s},

(ii) R(F ′
1) = R(F1) ∪ {s, t} and R(F ′

2) = R(F2) \ {s, t} for some t ∈ R(F2) \ (R(F1) ∪ {s}),

(iii) R(F ′
1) = (R(F1) ∪ {s}) \ {t} and R(F ′

2) = (R(F2) \ {s}) ∪ {t} for some t ∈ R(F1) \R(F2).

Proof. Let Mi := Fi ∩E and Bi := Fi ∩A for i = 1, 2. Denote the family of the source components
in (V,A) by K. If v ∈ R(B1) ∩ R(B2) for v ∈ V , then we have {v} ∈ K. Thus, for a source
component K ∈ K with |K| ≥ 2, K ∩R(B1) and K ∩R(B2) are not empty and disjoint with each
other. For each K ∈ K with |K| ≥ 2, choose a pair eK of vertices, one of which is in K ∩ R(B1)
and the other in K ∩R(B2). Denote N = {eK | K ∈ K}. Note that N is a matching.

Construct an undirected graph H = (V,M1∪M2∪N). We have that H is a disjoint collection of
paths and cycles. For, an endpoint u of an edge eK ∈ N satisfies that either u ∈ ∂−B1 or u ∈ ∂−B2,
and thus u is not covered by both of M1 and M2. Moreover, we have that s is an endpoint of a
path P in H. For, since s ∈ R(F2), we have that s is not covered by M2. If s is covered by M1,
then s ∈ R(B1), and thus s ∈ R(B1) ∩R(B2). This implies that s is not covered by N .

Denote the set of vertices on P by V P , the set of edges in M1 ∪ M2 on P by EP , and let
M ′

1 := M1△EP and M ′
2 := M2△EP . Then, both M ′

1 and M ′
2 are matchings and

R(M ′
1) = (R(M1) \ V P ) ∪ (R(M2) ∩ V P ), R(M ′

2) = (R(M2) \ V P ) ∪ (R(M1) ∩ V P ).

Now, by Lemma 5, there exist disjoint branchings B′
1 and B′

2 such that

R(B′
1) = (R(B1) \ V P ) ∪ (R(B2) ∩ V P ), R(B′

2) = (R(B2) \ V P ) ∪ (R(B1) ∩ V P ).

(Note that |K ∩R(B′
i)| ≥ 1 for i = 1, 2 for every source component K.)

Since R(Bi) ∪R(Mi) = V , we have that F ′
i := B′

i ∪M ′
i is a matching forest for i = 1, 2, and

R(F ′
1) = (R(F1) \ V P ) ∪ (R(F2) ∩ V P ), R(F ′

2) = (R(F2) \ V P ) ∪ (R(F1) ∩ V P ).

If V P = {s}, then Assertion (i) applies. Otherwise, denote the other endpoint of P by t. If
t ∈ V \ (R(F1)△R(F2)), then Assertion (i) applies. If t ∈ R(F2)\R(F1), then Assertion (ii) applies.
If t ∈ R(F1) \R(F2), then Assertion (iii) applies.

Theorem 1 is obvious from Lemma 6. Furthermore, Theorem 2 also follows from Lemma 6.
Proof for Theorem 2. Let S1, S2 ∈ domf and s ∈ S1△S2. For i = 1, 2, let Fi be a matching forest
such that R(Fi) = Si and w(Fi) = fMF (Si). Without loss of generality, assume s ∈ R(F2) \R(F1).
By applying Lemma 6 to the mixed graph consisting of the edges in F1 and F2, we obtain matching
forests F ′

1 and F ′
2 such that w(F ′

1)+w(F ′
2) = w(F1)+w(F2) and satisfying one of Assertions (i)–(iii).

Now the statement follows from w(F ′
1) ≤ fMF (R(F ′

1)) and w(F ′
2) ≤ fMF (R(F ′

2)). □
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3 A simpler algorithm

Let (G,w) be a weighted mixed graph with G = (V,E,A) and w ∈ RE∪A. In this section, we
describe a primal-dual algorithm for finding a matching forest F maximizing w(F ). This algorithm
is a slight modification of Giles’ algorithm [15]. The main difference results from focusing the
delta-matroid structure of branchings (Theorem 3).

3.1 LP formulation for the weighted matching forest problem

For a subpartition L of V , let ∪L denote the union of the sets in L and let

γ(L) := {e | e ∈ E, e is contained in ∪L} ∪ {a | a ∈ A, a is contained in some set in L}.

Let Λ denote the collection of subpartition L of V with |L| odd. The following is a linear program-
ming relaxation of an integer program describing the weighted matching forest problem:

(P) maximize
∑

e∈E∪A
w(e)x(e)

subject to x(δhead(v)) ≤ 1 (v ∈ V ), (1)

x(γ(L)) ≤ ⌊| ∪ L| − |L|/2⌋ (L ∈ Λ), (2)

x(e) ≥ 0 (e ∈ E ∪A). (3)

Here, δhead(v) ⊆ E ∪ A denotes the set of edges which have v as a head, i.e., δhead(v) = δv ∪
δ−v. Note that the above linear system is a common extension of those describing the weighted
matching problem [7] and the weighted branching problem [9]. Giles [15] proved the integrality of
the system (1)–(3).

Theorem 7 ([15]). For any weighted mixed graph (G,w), the linear program (P) has an integer
optimal solution.

Furthermore, Schrijver [21] proved that the system (1)–(3) is totally dual integral [10], which
commonly extends the total dual integrality of those for matchings [4] and for branchings. That
is, Schrijver proved that the following dual problem of (P) has an integer optimal solution if w is
integer:

(D) minimize
∑
v∈V

y(v) +
∑
L∈Λ

z(L)⌊| ∪ L| − |L|/2⌋

subject to y(u) + y(v) +
∑

L : e∈γ(L)

z(L) ≥ w(e) (e = uv ∈ E), (4)

y(v) +
∑

L : a∈γ(L)

z(L) ≥ w(a) (a = uv ∈ A), (5)

y(v) ≥ 0 (v ∈ V ), (6)

z(L) ≥ 0 (L ∈ Λ). (7)

Theorem 8 ([21]). For any weighted mixed graph (G,w) with w integer, the linear program (D)
has an integer optimal solution.
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Define the reduced weight w′ ∈ RE∪A by

w′(e) = y(u) + y(v) +
∑

L : e∈γ(L)

z(L)− w(e) (e = uv ∈ E),

w′(a) = y(v) +
∑

L : a∈γ(L)

z(L)− w(a) (a = uv ∈ A).

Below are the complementary slackness conditions of (P) and (D).

x(e) > 0 =⇒ w′(e) = 0 (e ∈ E ∪A), (8)

x(δheadv) < 1 =⇒ y(v) = 0 (v ∈ V ), (9)

z(L) > 0 =⇒ x(γ(L)) = ⌊| ∪ L| − |L|/2⌋ (L ∈ Λ). (10)

3.2 Algorithm description

3.2.1 Notations

In the algorithm, we keep a matching forest F , which corresponds to an integer feasible solution x
of (P), and a dual feasible solution (y, z). We maintain that x and (y, z) satisfy (8) and (10). The
algorithm terminates when (9) is satisfied.

Similarly to the classical weighted matching and branching algorithms, we execute shrinking of
subgraphs repeatedly. We keep two laminar families ∆ and Υ of subsets of V , the former of which
results from shrinking a strong component in the directed graph and the latter from shrinking an
undirected odd cycle.

We use the following notations to describe the algorithm.

• For a cycle or a path Q in an undirected graph (V,E), let V Q and EQ denote the vertex set
and edge set of Q, respectively. We often abbreviate EQ as Q.

• Ω′ := ∆ ∪ Υ , Ω := Ω′ ∪ {{v} | v ∈ V }.

• For each U ∈ Ω′, let GU = (VU , EU , AU ) denote the mixed graph obtained from the subgraph
induced by U by contracting all maximal proper subsets of U belonging to ∆. Also, let
Ĝ = (V̂ , Ê, Â) denote the mixed graph obtained from G by contracting all maximal sets in
Ω′. We denote a vertex in a shrunk graph by the set of vertices in V which are shrunk into
the vertex. Also, we often identify a vertex U in a shrunk graph and the singleton {U}.

• For G = (V,E,A) and a dual feasible solution (y, z), the equality subgraph G◦ = (V,E◦, A◦)
of G is a subgraph defined by E◦ = {e | e ∈ E, w′(e) = 0} and A◦ = {a | a ∈ A, w′(a) = 0}.
We denote the branching delta-matroid in (V̂ , Â◦) by (V̂ , F̂◦

B), i.e.,

F̂◦
B = {R(B̂) | B̂ ⊆ Â◦ is a branching in Ĝ◦}.

The outline of the algorithm is as follows.

• We maintain a matching forest F̂ = M̂ ∪ B̂ in Ĝ◦, where M̂ ⊆ Ê◦ and B̂ ⊆ Â◦, in order to
maintain (8).

• In contracting a vertex set U ⊆ V , we associate a partition LU of U such that x(γ(LU )) =
⌊| ∪ LU | − |LU |/2⌋. The vector z is restricted to subpartitions associated to the sets in Ω′ in
order to maintain (10).
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Figure 1: Augmentation. (Thick edges are in F̂ and the black vertex is a source vertex.)

• Similarly to Edmonds’ matching algorithm [8], we construct an alternating forest H, which
is a subgraph of (V̂ , Ê◦). The vertex set and edge set of H are denoted by V̂ H and ÊH,
respectively. We often abbreviate ÊH as H. Each component of H is a tree and contains a
unique source vertex. Intuitively, a source vertex is a vertex where (9) is not satisfied (see
§ 3.2.3 for precise definition). For v ∈ V̂ H, let Pv denote the path in H connecting a source
vertex and v. The edges incident to a source vertex does not belong to M̂ , and edges in M̂
and Ê◦ \ M̂ appear alternately on each Pv. We label a vertex v as “even” (resp., “odd”) if
the length of Pv is even (resp., odd). Here, the length of a path is defined by the number
of its edges. The set of vertices labelled as even (resp., odd) is denoted by even(H) (resp.,
odd(H)). Also, let free(H) := V̂ \ (even(H) ∪ odd(H)).

3.2.2 A rough description of augmentation and shrinking

Before presenting a full description of the algorithm, we briefly sketch how to augment the matching
forest, shrink subgraphs and associate a partition with the shrunk vertex set.

To make things easy, let us suppose that no subgraph is shrunk, i.e., ∆ = Υ = ∅ and Ĝ = G.
Denote the current matching forest by F̂ = M̂ ∪ B̂, where M̂ ⊆ Ê◦ is a matching and B̂ ⊆ Â◦ is a
branching.

After labeling a vertex v as even in growing the alternating forest H, we search for an arc a ∈
Â◦ ∩ δ−v. Note that arcs in δ−v do not belong to B̂. If such an arc a is found, our algorithm
proceeds as follows.

• If R(B̂) \ {v} ∈ F̂◦
B, then reset the matching forest F̂ := M ′ ∪ B′, where M ′ := M̂△Pv

and B′ is a branching in (V̂ , Â◦) with R(B′) = R(B̂) \ {v}. This procedure is one kind of
augmentation, in which the number of vertices violating (9) decreases. See Figure 1 for an
illustration.

• If R(B̂) \ {v} ̸∈ F̂◦
B, it follows that v ∈ V̂ K for some source component K of (V̂ , Â◦) and

V̂ K \{v} ⊆ ∂−B̂. If K contains no undirected edge in Ê◦, we add X = V̂ K to ∆ and update
Ĝ by contracting the vertices in X to a single vertex. The newly created vertex is called a
pseudo-vertex, denoted by X ∈ V̂ . We then define a partition LX of X by LX = {X} and
set z(LX) = 0. Note that (10) holds for LX , since x(γ(LX)) = |X| − 1, | ∪ LX | = |X| and
|LX | = 1. See Figure 2 for an illustration. The case where K contains an undirected edge in
Ê◦ will be described in § 3.2.3.

Note that we can determine whether R(B̂) \ {v} ∈ F̂◦
B or not by decomposing (V̂ , Â◦) into strong

components. Also, it is not difficult to find a branching B′ ⊆ Â◦ with R(B′) = R(B) \ {v}.

Remark 9. The above bifurcation is the main difference from Giles’ algorithm [15]. In Giles’
algorithm, we augment the matching forest if B′′ = B̂ ∪ {a} is a branching in Ĝ, which is a
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a
v X

Figure 2: Shrinking of a source component. (Thick edges are in F̂ and the black vertex is a source
vertex. The square in the shrunk graph indicates the pseudo-vertex X ∈ V̂ .)

u

e

v

u

e

v

Figure 3: Augmentation. (Thick edges are in F̂ and the black vertex is a source vertex.)

sufficient condition for R(B̂) \ {v} ∈ F̂◦
B. (Here, we reset the matching forest F̂ := M ′ ∪ B′′.) If

B′′ is not a branching, we have that B′′ contains exactly one directed cycle D, and we contract
X ′ = V D to a single vertex. For instance, in Figure 1 we do not augment F̂ but contract the
directed cycle consisting of u, v, w in Giles’ algorithm.

Also, if we find an undirected edge e ∈ Ê◦ connecting two even vertices u and v, we do similar
procedures as the the classical blossom algorithm [8]. If u and v belong to different components in
H, then we augment the matching forest by resetting F̂ := M ′∪B̂, where M ′ := M△(Pu∪Pv∪{e}).
See Figure 3 for an illustration.

Assume that u and v belong to the same component of H (see Figure 4 for an illustration).
Here, H ∪{e} contains exactly one odd undirected cycle C. We now add U = V̂ C to Υ , and update
Ĝ by contracting the vertices in U to a pseudo-vertex U ∈ V̂ . We then define a partition LU of U
by LU = {{v} | v ∈ U} and set z(LU ) = 0. Note that (10) holds for LU , since x(γ(LU )) = ⌊|U |/2⌋
and | ∪ LU | = |LU | = |U |.

Dealing with a subgraph containing pseudo-vertices is a bit more complicated. Consider shrink-
ing a source component K in Ĝ and let X ⊆ V be the union of vertices in V̂ K. Denote the maximal
proper subsets of X belonging to ∆ and Υ by Y1, . . . , Yk ∈ ∆ and W1, . . . ,Wl ∈ Υ , respectively.
Here, we can assume that arcs in ÂK∩(δ+Wi∪δ−Wi) are incident to an identical vertex vWi ∈ VWi

for every i = 1, . . . , l, since otherwise we can augment the current matching forest (see Figure 5).
Let X ′ = (X \ (W1 ∪ · · · ∪Wl))∪{vW1}∪ · · · ∪ {vWl

}. Note that X ′ forms the vertex set of a strong
component in (V,A◦). We now add X ′ to ∆ and let LX′ = {X ′} be the associated partition with

u

e

v

U

Figure 4: Shrinking of an undirected odd cycle. (Thick edges are in F̂ and the black vertex is a
source vertex. The pentagon in the shrunk graph indicates the pseudo-vertex U ∈ V̂ .)
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f+

f−

f+

f−
GW

f+

f−
GW

a
v W

f+

f−

Figure 5: Augmentation. (Thick edges are in F̂ and the black vertex is a source vertex. The graph
inside the dotted circle indicates GW , which is shrunk into the vertex W in Ĝ◦.)

X ′. See Figure 6 for an illustration.
Finally, consider shrinking an odd undirected cycle C. Let U ⊆ V denote the union of vertices

in V̂ C. Denote the maximal proper subsets of U belonging to ∆ by Y1 . . . , Yk ∈ ∆ and the proper
subsets of U belonging to Υ W1 . . . ,Wl ∈ Υ , respectively. Let CU be an odd cycle in GU which can
be obtained by adding even number of edges from each EWj to C. For i = 1, . . . , k, let f1

i , f
2
i ∈ CU

denote the two edges incident to Yi, and let v1i , v
2
i ∈ Yi denote the vertices to which f1

i and f2
i are

incident, respectively. If, for some Yi, the two vertices v1i and v2i are distinct and z(LY ′
i
) = 0 for

the minimal subset Y ′
i ∈ ∆ of Yi such that {v1i , v2i } ⊆ Y ′

i , we can augment the current matching
forest (see Figure 7 for an illustration).

Suppose otherwise. Without loss of generality, assume that v1i and v2i are identical for i =
1, . . . , j, and distinct for i = j + 1, . . . , k. For i = j + 1, . . . , k, let Y ′

i ∈ ∆ be the minimal
subset of Yi such that {v1i , v2i } ⊆ Y ′

i . Note that z(LY ′
i
) > 0 for i = j + 1, . . . , k. Let U ′ =

(U \(Y1∪· · ·∪Yk))∪{vY1 , . . . , vYj}∪(Y ′
j+1∪· · ·Y ′

k). We now add U ′ to Υ , and define a partition LU ′

of U ′ by the collection of {vY1}, . . . , {vYj}, Y ′
j+1, . . . , Y

′
k and singletons of the other vertices in U ′.

See Figure 8 for an illustration.

3.2.3 A full description of the algorithm

We now present a full description of our algorithm.

Algorithm SIMPLE

Input. A weighted mixed graph (G,w), where G = (V,E,A) and w ∈ RE∪A.

Output. A matching forest F in G maximizing w(F ).

Step 1. Set F := ∅, y(v) := max{{w(e)/2 | e ∈ E}, {w(a) | a ∈ A}} for every v ∈ V , ∆ := ∅ and
Υ := ∅. (Hence Ω = {{v} | v ∈ V }, Ĝ = G, F̂ = ∅ and z is void.)

Step 2. Construct the equality subgraph Ĝ◦ = (V̂ , Ê◦, Â◦). Define the set of source vertices Ŝ =
{U | U ∈ V̂ , y(v) > 0 and x(δhead(v)) = 0 for some v ∈ U}. If Ŝ = ∅, deshrink every sets in

10



Y

W1

W2 vW2

vW1

X ′

Figure 6: The graph on the left is a strong component K in Ĝ, where Y ∈ ∆ and W1,W2 ∈ Υ . The
graph on the right represents a graph obtained by deshrinking Y , W1 and W2. The dotted squares
indicate X ′, which is newly added to ∆.

Figure 7: The two graphs above are Ĝ and those below are G. The dotted box indicates W ∈ Υ and
the nested three dashed boxes indicate Y, Y ′, Y ′′ ∈ ∆, where Y ′′ ⊆ Y ′ ⊆ Y and z(LY ′) = z(LY ) = 0.
In the present step, augmentation and deshrinking of Y and Y ′ are executed.
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Y2

Y1

W

vY1

Y ′
2

Figure 8: The graph on the left is an odd cycle C in Ĝ, where Y1, Y2 ∈ ∆ and W ∈ Υ . The graph
in the right represents G, where the dotted box indicates Y ′

2 with z(LY ′
2
) > 0. The set of vertices

inside the dashed boxes is U ′, where the dashed boxes indicate the partition LU ′ .

a
v e

a
v e

Figure 9: Augmentation in Step 4.2.1. (Thick edges are in F̂ and the black vertex is a source
vertex.)

Ω′ and return F . Otherwise, let H be (Ŝ, ∅), label the vertices in Ŝ as even, and then go to
Step 3.

Step 3. If there exists an arc a ∈ Â◦ \ B̂ with ∂−a ∈ even(H), then go to Step 4. Otherwise, go
to Step 5.

Step 4. Let v := ∂−a. If R(B̂) \ {v} ∈ F̂◦
B, then go to Step 4.1. Otherwise, go to Step 4.2.

Step 4.1: Augmentation. Reset F̂ := M ′ ∪ B′, where M ′ := M̂△Pv and B′ is a branching in
(V̂ , Â◦) with R(B′) = R(B̂) \ {v}. Delete each T ∈ Ω′ with z(LT ) = 0 from Ω′, and then go
to Step 2. See Figure 1 for an illustration.

Step 4.2. Let K be the source component containing v and let X ⊆ V be the union of vertices in
V̂ K.

• If there exists e ∈ Ê◦ \ M̂ such that ∂e ⊆ V̂ K, then go to Step 4.2.1.

• Otherwise, go to Step 4.2.2.

Step 4.2.1: Augmentation. Let BK be a branching inK with R(BK) = ∂e. Reset F̂ := M ′∪B′,
where M ′ := (M̂△Pv) ∪ {e} and B′ := (B̂ \ ÂK) ∪ BK , delete each T ∈ Ω′ with z(LT ) = 0
from Ω′, and then go to Step 2. See Figure 9 for an illustration.

Step 4.2.2. Let W1, . . . ,Wl be the maximal proper subsets of X belonging to Υ . If, for some
i ∈ {1, . . . , l}, ÂK contains a pair of arcs f+ ∈ δ+Wi and f− ∈ δ−Wi such that ∂+f+ and
∂−f− belong to distinct vertices in GWi , then go to Step 4.2.2.1. Otherwise, go to Step 4.2.2.2.

12



Step 4.2.2.1: Augmentation. Let BK be a branching in K such that R(BK) = {Wi} and f+ ∈
BK . Reset F̂ := M ′ ∪ B′, where M ′ := M̂△Pv and B′ := (B̂ \ Â(K)) ∪ BK ∪ {f−}. Then,
delete each T ∈ Ω′ with z(LT ) = 0 from Ω′ and go to Step 2. See Figure 5 for an illustration.

Step 4.2.2.2: Shrinking. For each i = 1, . . . , l, let vWi ∈ VWi denote the unique vertex in GWi

to which arcs in ÂK are incident. Let X ′ = (X \ (W1 ∪ · · · ∪Wl)) ∪ {vWi} ∪ · · · ∪ {vWl
} and

add X ′ to ∆. Let LX′ = {X ′} be the associated partition with X ′, set z(LX′) := 0, and then
go to Step 3. See Figure 6 for an illustration.

Step 5. Choose an edge e ∈ Ê◦ \ ÊH such that one of its head u is even. Denote the other head
of e by v.

• If v ∈ even(H) and e connects different components in H, then go to Step 5.1.

• If v ∈ even(H) and u and v belong to the same component in H, then go to Step 5.2.

• If v ∈ free(H) and v = ∂−a for some a ∈ B̂, then go to Step 5.3.

• If v ∈ free(H) and v ∈ ∂e′ for some e′ ∈ M̂ , then go to Step 5.4.

• If v is a pseudo-vertex labelled as “saturated,” then go to Step 5.5.

If no edge in Ê◦ \ Ê(H) satisfies the above conditions, then go to Step 6.

Step 5.1: Augmentation. Reset F̂ := M ′ ∪ B̂, where M ′ := M̂△(Pu ∪ Pv ∪ {e}), delete each
T ∈ Ω′ with z(LT ) = 0 from Ω′, and then go to Step 2. See Figure 3 for an illustration.

Step 5.2. Let C be the cycle in H ∪{e} and let U ⊆ V be the union of the vertices in V̂ C. Denote
the maximal proper subsets of U belonging to ∆ and Υ by Y1, . . . , Yk ∈ ∆ and W1 . . . ,Wl ∈ Υ .
Let CU be an odd cycle in GU obtained by adding even number of edges from each EWj to
C. For i = 1, . . . , k, let f1

i , f
2
i ∈ CU denote the two edges incident to Yi, and let v1i , v

2
i ∈ Yi

denote the vertices to which f1
i and f2

i are incident, respectively. If, for some Yi, the two
vertices v1i and v2i are distinct and z(LY ′

i
) = 0 for the minimal subset Y ′

i ∈ ∆ of Yi such that

{v1i , v2i } ⊆ Y ′
i , then go to Step 5.2.1. Otherwise, go to Step 5.2.2.

Step 5.2.1: Deshrinking and augmentation. Delete Y ′
i from ∆ and reset

M̂ :=

{
(M̂△PYi)△C (f1

i , f
2
i ∈ E \M),

M̂△P ∗
Yi

(otherwise).

Here, P ∗
Yi

denotes the path in H ∪{e} from Ŝ to Yi consisting of odd number of edges. Delete
each T ∈ Ω′ with z(LT ) = 0 from Ω′, and then go to Step 2. See Figure 7 for an illustration.

Step 5.2.2: Shrinking. Without loss of generality, assume that v1i and v2i are identical for i =
1, . . . , j, and distinct for i = j+1, . . . , k. For i = j+1, . . . , k, let Y ′

i ∈ ∆ be the minimal subset
of Yi such that {v1i , v2i } ⊆ Y ′

i . Let U
′ = (U \ (Y1∪· · ·∪Yk))∪{vY1 , . . . , vYj}∪ (Y ′

j+1∪· · ·∪Y ′
k).

Add U ′ to Υ , and define a partition LU ′ of U ′ by the collection of {vY1}, . . . , {vYj}, Y ′
j+1, . . . , Y

′
k

and singletons of the other vertices in U ′. See Figure 8 for an illustration.

Step 5.3: Augmentation. Reset F̂ := (M̂△Pv) ∪ (B̂ \ {a}), delete each T ∈ Ω′ with z(LT ) = 0
from Ω′, and then go to Step 2. See Figure 10 for an illustration.

Step 5.4: Forest extension. Grow H by adding e and e′. Label v as odd and the other head of
e′ as even. Then, go to Step 3.
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Figure 10: Augmentation in Step 5.3. (Thick edges are in F̂ and the black vertex is a source
vertex.)

Step 5.5: Augmentation. Reset F̂ := M ′ ∪ B̂, where M ′ := M̂△Pv, and unlabel v. Delete each
T ∈ Ω′ with z(LT ) = 0 and then go to Step 2.

Step 6. Apply Dual Update described below, delete each T ∈ Ω′ with z(LT ) = 0 from Ω′, and
then go to Step 3.

Procedure Dual Update. Define families of vertex subsets of V as follows:

∆+ := {maximal set in ∆, contained in some even vertex},
∆− := {maximal set in ∆, contained in some odd vertex},
Υ+ := {maximal set in Υ , contained in some even vertex},
Υ− := {maximal set in Υ , contained in some odd vertex}.

Moreover, let

∆′
+ := {X ⊆ V | X ∈ ∆, maximal proper subset of some element in Υ+},

∆′
− := {X ⊆ V | X ∈ ∆, maximal proper subset of some element in Υ−},

V+ := {v ∈ V | {v} ∈ even(H) or v is contained in some even vertex},
V− := {v ∈ V | {v} ∈ odd(H) or v is contained in some odd vertex}.

Then, update (y, z) by

y(v) :=


y(v)− ϵ (v ∈ V+),

y(v) + ϵ (v ∈ V−),

y(v) (otherwise),

z(LU ) :=



z(LU ) + 2ϵ (U ∈ Υ+ ∪ (∆′
− \∆−)),

z(LU )− 2ϵ (U ∈ Υ− ∪ (∆′
+ \∆+)),

z(LU ) + ϵ (U ∈ (∆+ \∆′
+) ∪ (∆− ∩∆′

−)),

z(LU )− ϵ (U ∈ (∆+ ∩∆′
+) ∪ (∆− \∆′

−)),

z(LU ) (otherwise),

where ϵ ≥ 0 is the maximum value maintaining (4)–(7). That is, ϵ is the minimum of the following:

ϵ1 = min{y(v) | v ∈ V+}; ϵ2 = min{z(LU )/2 | U ∈ Υ− ∪ (∆′
+ \∆+)};

ϵ3 = min{z(LU ) | U ∈ (∆+ ∩∆′
+) ∪ (∆− \∆′

−)}; ϵ4 = min{w′(e)/2 | e ∈ Ê, ∂e ⊆ V+};
ϵ5 = min{w′(e) | e ∈ Ê, one of ∂e belongs to V+, and the other V \ (V+ ∪ V−)};
ϵ6 = min{w′(e) | ∂e ⊆ X for some X ∈ ∆+ ∪∆′

+};
ϵ7 = min{w′(a) | a ∈ A, ∂−a ∈ V+, a ̸∈ γ(LU ) for any U ∈ ∆+ ∪ Υ+}.

Then, apply one of the following.
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U

GW GW

v1

v2

Figure 11: Deshrinking of U and saturation in Case 3.1. (Thick edges are in F̂ and the black vertex
is a source vertex. The graph inside the dashed ellipse indicates GW , and the graph inside the
dotted circle indicates GU . Both GW and GU are shrunk in Ĝ◦ before the present Dual Update.
After the present Dual Update, U is deshrunk whereas W is kept shrunk and labelled as saturated.)

Case 1 (ϵ = ϵ1): Termination. Deshrink every sets in Ω′ and return F .

Case 2 (ϵ = ϵ2): Deshrinking. Apply Case 2.1 or 2.2.

Case 2.1 (ϵ = z(LU)/2 for some U ∈ Υ−): Deshrinking. Delete U with ϵ = z(LU )/2 from
Υ , and then go to Step 3.

Case 2.2 (ϵ = z(LU)/2 for some U ∈ ∆′
+ \∆+): Deshrinking. Denote the maximal set in

Υ containing U by W , and the maximal set in ∆ containing U by X. Add Ũ = W ∪X to Υ ,
define a partition LŨ of Ũ by (LU \ {U}) ∪ {X}, and set z(LŨ ) = 0. Then, delete U from ∆
and go to Step 3.

Case 3 (ϵ = ϵ3). Apply Case 3.1 or 3.2.

Case 3.1 (ϵ = z(LU) for some U ∈ ∆+ ∩∆′
+): Deshrinking and saturation. Denote the set

in Υ+ containing U by W , and the pseudo-vertex containing W by Ŵ . Delete U from ∆,
reset F̂ := (M̂△PŴ )∪ B̂, and label Ŵ as “saturated.” (Note that G◦

W has a matching forest
covering all vertices in G◦

W .) Delete each T ∈ Ω′ with z(LT ) = 0 from Ω′, and then go to
Step 2. See Figure 11 for an illustration.

Case 3.2 (ϵ = z(LU) for some U ∈ ∆− \∆′
−). Let Û be the vertex in V̂ containing U , and

let f1, f2 ∈ H be the two edges incident to Û . If f1 and f2 are incident to distinct vertices in
GU , then apply Case 3.2.1. Otherwise, apply Case 3.2.2.

Case 3.2.1: Deshrinking and augmentation. Reset M̂ := M̂△PÛ . Delete U from ∆ and each
T ∈ Ω′ with z(LT ) = 0 from Ω′, and then go to Step 2. See Figure 12 for an illustration.

Case 3.2.2: Deshrinking. Delete U from ∆ and then go to Step 3. See Figure 13 for an illus-
tration.

15



U

Figure 12: Deshrinking of U and augmentation in Case 3.2.1. (Thick edges are in F̂ and the black
vertex is a source vertex. The graph inside the dotted circle indicates GU .)

U

Figure 13: Deshrinking of U in Case 3.2.2. (Thick edges are in F̂ and the black vertex is a source
vertex. The graph inside the dotted circle indicates GU .)
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e

GX

X

e

GX

Figure 14: Saturation in Case 6. (Thick edges are in F̂ and the black vertex is a source vertex. The
graph inside the dotted circle indicates GX , and the undirected edge e ∈ E satisfies that w′(e) = ϵ.
After the present Dual Update, X is kept shrunk and labelled as “saturated.”)

Case 4 (ϵ = ϵ4). Go to Step 5. (We can execute Step 5.1 or 5.2.)

Case 5 (ϵ = ϵ5). Go to Step 5. (We can execute Step 5.3 or 5.4.)

Case 6 (ϵ = ϵ6): Saturation. Let X ⊆ V be an element in ∆+ ∪∆′
+ such that contains e ∈ E

with ϵ = w′(e), and let X̂ denote the pseudo-vertex in Ĝ containing X. Reset M̂ := M̂△PX̂

and label X̂ as “saturated.” Delete each T ∈ Ω′ with z(LT ) = 0 from Ω′, and then go to
Step 2. See Figures 14 and 15 for an illustration.

Case 7 (ϵ = ϵ7). Apply Case 7.1 or 7.2.

Case 7.1 (ϵ = w′(a) for some a ∈ Â). Go to Step 4.

Case 7.2 (ϵ = w′(a) for some a ∈ AU with U ∈ Υ+): Saturation. Reset M̂ := M̂△PU and
label U as “saturated.” Delete each T ∈ Ω′ with z(LT ) = 0 from Ω′, and then then go to
Step 2. See Figure 16 for an illustration.

3.3 Validity and complexity

In this subsection, we verify Algorithm SIMPLE. Our verification is threefold: check if the feasibility
is maintained; check if (8) and (10) are maintained; and prove that (9) is achieved in polynomial
time.

3.3.1 Feasibility

It is obvious that the initial primal and dual solutions defined in Step 1 are feasible. Feasibility of the
primal solution all through the algorithm is also clear. We check the dual feasibility conditions (4)–
(7) after executing Dual Update.

Condition (6) directly follows from ϵ ≤ ϵ1. Condition (7) also follows from ϵ ≤ ϵ2 and ϵ ≤ ϵ3.
Consider Condition (4). If e ∈ E does not belong to γ(LU ) for any U ∈ Ω′, then w′(e) decreases in
the following two cases.

• ∂e ⊆ V+. In this case, w′(e) decreases by 2ϵ. We have that w′(e) ≥ 0 is maintained since
ϵ ≤ ϵ4.
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X

e

GX

X

e

X̂ X̂

Figure 15: Saturation in Case 6. (Thick edges are in F̂ and the black vertex is a source vertex. The
graph inside the dashed ellipse a subgraph shrunk into the pseudo-vertex X̂, and that inside the
dotted circle indicates GX . The edge e ∈ E satisfies that w′(e) = ϵ. Both GX̂ and GX are shrunk

in Ĝ◦. After the present Dual Update, X̂ and X are kept shrunk and X̂ is labelled as “saturated.”)

U

a

U

a

Figure 16: Saturation in Case 7.2. (Thick edges are in F̂ and the black vertex is a source vertex.
The graph inside the dotted circle indicates GU . After the present Dual Update, U is kept shrunk
and labelled as “saturated.”)
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• |∂e ∩ V+| = 1 and |∂e ∩ V \ (V+ ∪ V−)| = 1. In this case, w′(e) decreases by ϵ and
w′(e) ≥ 0 directly follows from ϵ ≤ ϵ5.

If e ∈ E belongs to γ(LU ) for some U ∈ Ω′, we have the following five cases.

• e ∈ γ(LU) for some U ∈ Υ+. Since y decreases by ϵ at both endpoints of e and z(LU )
increases by 2ϵ, the only possibility for w′(e) to decrease is that e also belongs to γ(LX)
for some X ∈ ∆′

+ contained in U . In such a case, w′(e) decreases by ϵ and w′(e) ≥ 0 is
maintained since ϵ ≤ ϵ6.

• e ∈ γ(LU) for some U ∈ Υ−. In this case, y increases by ϵ at both endpoints of e and
z(LU ) decreases by 2ϵ. Hence, w′(e) does not change if e ̸∈ γ(LX) for any X ∈ ∆′

− contained
in U , and increases by ϵ if e ∈ γ(LX) for some X ∈ ∆′

− contained in U .

• e ∈ γ(LU) for some U ∈ ∆+ \∆′
+. In this case, w′(e) decreases by ϵ since y decreases by

ϵ at both endpoints of e and z(LU ) increases by ϵ. Here, w′(e) ≥ 0 follows from ϵ ≤ ϵ6.

• e ∈ γ(LU) for some U ∈ ∆− \∆′
−. In this case, w′(e) increases by ϵ since y increases at

both endpoints of e and z(LU ) decreases by ϵ.

• e ∈ γ(LU) for some U , not in H. In this case, w′(e) does not change.

Finally, consider Condition (5). If a ∈ A does not belong to γ(LU ) for U ∈ Ω′, w′(a) ≥ 0 follows
from ϵ ≤ ϵ7. If a ∈ A belongs to γ(LU ) of some U ∈ Ω′, We have the following five cases.

• a ∈ γ(LU) for some U ∈ Υ+. In this case, a also belongs to γ(LX) for some X ∈ ∆′
+

contained in U . The dual variables y(∂−a), z(LU ) and z(LX) change by −ϵ, 2ϵ and −ϵ,
respectively, and hence w′(a) does not change.

• a ∈ γ(LU) for some U ∈ Υ−. In this case, a also belongs to γ(LX) for some X ∈ ∆′
−

contained in U . The dual variables y(∂−a), z(LU ) and z(LX) change by ϵ, −2ϵ and ϵ,
respectively, and hence w′(a) does not change.

• a ∈ γ(LU) for some U ∈ ∆+ \ ∆′
+. In this case, w′(a) does not change since y(∂−a)

decreases by ϵ and z(LU ) increases by ϵ.

• a ∈ γ(LU) for some U ∈ ∆− \ ∆′
−. In this case, w′(a) does not change since y(∂−a)

increases by ϵ and z(LU ) decreases by ϵ.

• a ∈ γ(LU) for some U , not in H. In this case, w′(a) does not change.

3.3.2 Complementary slackness conditions

Consider condition (8). Since the edges in F are picked from G◦, it suffices to check that (8) is
maintained in the Dual Update. For each edge e ∈ M̂ not shrunk, w′(e) does not change. Also, it
can be easily verified that w′(e) does not change for each edge e which has belonged to a shrunk
source component or a shrunk odd cycle.

For condition (10). it is not difficult to see that we can deshrink each set U ∈ Ω′ with z(LU ) > 0
so that x(γ(L)) = ⌊| ∪ L| − |L|/2⌋.
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3.3.3 Complexity

First, we show that ϵ > 0 in a Dual Update, the proof of which implies time complexity of Algo-
rithm SIMPLE.

Proposition 10. In the procedure Dual Update, it holds that ϵ > 0.

Proof. (ϵ1 > 0). If ϵ1 = 0, then we have that S = ∅ and Algorithm SIMPLE should have termi-
nated.

(ϵ2, ϵ3 > 0). A vertex set shrunk after the latest augmentation or saturation is contained in an
even vertex in Ĝ. Hence, for each U ∈ ∆− ∪Υ−, we have that U was shrunk before the latest
augmentation or saturation, at which z(LU ) > 0. Also, for U ∈ ∆′

+, we have that z(LU ) > 0
by the bifurcation rule between Steps 5.2.1 and 5.2.2. If z(LU ) hits 0 for such U , then U is
deshrunk.

(ϵ4 > 0). If there exists e ∈ Ê such that w′(e) = 0 and ∂e ⊆ V̂+, then we do not execute
Dual Update but Step 5.1 or 5.2.

(ϵ5 > 0). If w′(e) = 0 for e ∈ Ê such that one of ∂e belongs to V̂+ and the other in V̂ \ (V̂+ ∪ V̂−),
then we do not execute Dual Update but Step 5.3, 5.4 or 5.5.

(ϵ6 > 0). Suppose w′(e) = 0 for e ∈ E such that ∂e ⊆ X for some X ∈ ∆+ ∪ ∆′
+. Denote the

minimal set in ∆ containing ∂e by Xe. When Xe is added to ∆, we have that w′(e) > 0 by
the bifurcation rule between Steps 4.2.1 and 4.2.2. If w′(e) hit zero for such e, then we should
have executed saturation of the pseudo-vertex containing e.

(ϵ7 > 0). If w′(a) = 0 for a ∈ A attaining ϵ7, then we execute Step 4 or saturation of the pseudo-
vertex containing a.

We now discuss the time complexity of Algorithm SIMPLE. The bottleneck part is Dual Update.
It follows from the proof for Proposition 10 that Dual Update is executed O(n) times between
consecutive augmentations or saturations. Since augmentations and saturations collectively happen
at most n times and Dual Update takes O(m) time for determining ϵ, the total complexity is O(n2m).

Theorem 11. Algorithm SIMPLE finds a maximum-weight matching forest in O(n2m) time.

3.4 Remarks

We close this section by noting a property of the matching forests maintained in Algorithm SIMPLE:
a matching forest appearing at any stage of Algorithm SIMPLE has the maximum weight among
all matching forests with the same root-size.

Theorem 12. Let F be a matching forest which we have at any stage of Algorithm SIMPLE.
(Deshrink each element in Ω′, if Ω ̸= ∅.) Then, it holds that w(F ) ≥ w(F ′) for any matching
forest F ′ with |R(F ′)| = |R(F )|.

20



Proof. Let F be a matching forest obtained at an arbitrary stage of Algorithm SIMPLE and let
(y, z) be the dual solution at that stage. For any matching forest F ′, it holds that

w(F ′) ≤ y(V \R(F ′)) +
∑
L∈Λ

z(L)|γ(L) ∩ F | ≤ y(V \R(F ′)) +
∑
L∈Λ

z(L)⌊| ∪ L| − |L/2|⌋.

Especially for the matching forest F , conditions (8) and (10) imply that

w(F ) = y(V \R(F )) +
∑
L∈Λ

z(L)⌊| ∪ L| − |L/2|⌋.

Here, for v ∈ R(F ), we have that y(v) ≤ y(v′) for every v′ ∈ V since the values of y ∈ RV are
identical in Step 1 and y(v) is decreased at each Dual Update for v ∈ R(F ). Thus, y(V \ R(F )) ≥
y(V \R(F ′)) if |R(F )| = |R(F ′)|. Therefore, w(F ) ≥ w(F ′) follows.

4 A faster algorithm

In this section, we present an O(n3) algorithm for the weighted matching forest problem by in-
corporating Gabow’s technique for weighted matching [13] into Giles’ weighted matching forest
algorithm [15]. The difference from the algorithm in § 3 is that we do not maintain the equality
subgraph G◦ explicitly. Instead, we keep the following.

• For each pair Y,Z of disjoint sets in Ω, we keep an edge eY Z ∈ E connecting Y and Z and
minimizing w′. We keep eY Z as lists: for each Y ∈ Ω, we have a list containing the eY Z .
Moreover, for each Y ∈ Ω, we keep an edge eY with eY = eY Z for some Z ∈ Ω contained
in an even (pseudo-)vertex in H and with w′(eY Z) minimal. Similarly, for each pair Y, Z of
disjoint sets in Ω, we keep an arc aY Z ∈ A from Y to Z minimizing w′. We keep aY Z as lists:
for each Z ∈ Ω, we have a list containing the aY Z . Moreover, for each Z ∈ Ω, we keep an
arc aZ with aZ = aY Z for some Y ∈ Ω and with w′(aY Z) minimal.

• For each X ∈ ∆, we keep an edge fX ∈ EX minimizing w′. Also, we associate a graph G′
X ,

which is initially the directed cycle shrunk when X is added to ∆.

• For each U ∈ Υ , we keep an arc bU ∈ AU minimizing w′. We also associate graph G′
U , which

is initially the odd undirected cycle shrunk when U is added to Υ .

The algorithm is described below.

Algorithm FAST

Initialization. Set F := ∅, y(v) := max{max{w(e)/2 | e ∈ E},max{w(a) | a ∈ A}} for every
v ∈ V , ∆ := ∅ and Υ := ∅. (Hence Ω = {{v} | v ∈ V }, F̂ = ∅ and z is void.) Moreover, set
H = ∅. The eY Z , eY , aY Z and aZ and are set easily.

Iteration. Reset (y, z) as described in Procedure Dual Update in Algorithm SIMPLE. After that,
at least one of the following cases applies.

Case 1 (w′(aU) = 0 for some maximal set U ∈ Ω in even(H)). Denote B′ := B̂ ∪ {aU}.
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Case 1.1 (B′ is a branching): Augmentation. Let M ′ := M△PU . Reset M̂ := M ′, B̂ := B′

and H := M ′, and update the eY .

Case 1.2 (B′ contains a directed cycle). Let D be the directed cycle in B′ and X ⊆ V be the
union of the vertices in D. Let W1, . . . ,Wl be the maximal proper subsets of X belonging to
Υ . If, for some i ∈ {1, . . . , l}, ÂD contains a pair of arcs f+ ∈ δ+Wi and f− ∈ δ−Wi such
that ∂+f+ and ∂−f− belong to distinct vertices in G′

Wi
, apply Case 1.2.1. Otherwise, apply

Case 1.2.2.

Case 1.2.1: Augmentation. Reset F̂ := M ′∪B′, where M ′ := M̂△PU and B′ := B̂∪{aU}, and
H := M ′, and update the eY .

Case 1.2.2: Shrinking. For each i = 1, . . . , l let vWi ∈ VWi denote the unique vertex in GWi to
which arcs in ÂD are incident. Let X ′ = (X \ (W1 ∪ · · · ∪Wl))∪ {vWi} ∪ · · · ∪ {vWl

} and add
X ′ to ∆. Let LX′ = {X ′}, set z(LX′) := 0 and determine fX . Then, update the eY Z , eY ,
aY Z and aZ .

Case 2 (w′(eU) = 0 for some maximum set U ∈ Ω in even(H)). Denote the other endpoint
of eU by W , which also belongs to even(H). Apply Case 2.1 or 2.2.

Case 2.1 (PU and PW are disjoint): Augmentation. Reset M̂ := M ′ = M̂△(PU∪{e}∪PW ),
H := M ′, and update the eY .

Case 2.2 (PU and PW intersect). Let C be the cycle in H ∪ {eU} and U ⊆ V be the union
of the vertices in C. Denote the maximal proper subsets of U belonging to ∆ and Υ by
Y1, . . . , Yk ∈ ∆ and W1 . . . ,Wl ∈ Υ . Let CU be an odd cycle in GU obtained by adding even
number of edges from each G′

Wj
to C. For i = 1, . . . , k, let f1

i , f
2
i ∈ CU denote the two

edges incident to Yi, and let v1i , v
2
i ∈ Yi denote the vertices to which f1

i and f2
i are incident,

respectively. If, for some Yi, the two vertices v1i and v2i are distinct and z(LY ′
i
) = 0 for the

minimal subset Y ′
i ∈ ∆ of Yi such that {v1i , v2i } ⊆ Y ′

i , then apply Case 2.2.1. Otherwise, go
to apply Case 2.2.2.

Case 2.2.1: Deshrinking and augmentation. Delete Y ′
i from ∆ and reset

M̂ :=

{
(M̂△PYi)△C (f1

i , f
2
i ∈ E \M),

M̂△P ∗
Yi

(otherwise).

Here, P ∗
Yi

denotes the path in H ∪ {e} from Ŝ to Yi consisting of odd number of edges. Reset
H := M ′, and update the eY Z , eY , aY Z and aZ .

Case 2.2.2: Shrinking. Without loss of generality, assume that v1i and v2i are identical for i =
1, . . . , j, and distinct for i = j + 1, . . . , k. For i = j + 1, . . . , k, let Y ′

i ∈ ∆ be the minimal
subset of Yi such that {v1i , v2i } ⊆ Y ′

i . Let U ′ = (U \ (Y1 ∪ · · · ∪ Yk)) ∪ {vY1 , . . . , vYj} ∪
(Y ′

j+1 ∪ · · ·Y ′
k). We now add U ′ to Υ , and define a partition LU ′ of U ′ by the collection

of {vY1}, . . . , {vYj}, Y ′
j+1, . . . , Y

′
k and singletons of the other vertices in U ′. Set z(LU ′) = 0,

determine bU ′ and update the eY Z , eY , aY Z and aZ .

Case 3 (w′(eU) = 0 for some U ∈ free(H)). Apply Case 3.1 or 3.2.

Case 3.1 (U ∈ ∂−a for some a ∈ B̂ or U saturated): Augmentation. Denote the endpoint
of eU other than U by W . Reset M̂ := M ′ = (M̂△PW ) ∪ {eU}, B̂ := B̂ \ {a}, H := M ′, and
update the eY . If U is a saturated pseudo-vertex, unlabel U .
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Case 3.2 (U ∈ V̂ \ ∂−B̂): Forest extension. Add eU to H and update the eY .

Case 4 (z(LU) = 0 for some U ∈ Υ−): Deshrinking. Delete U from Υ . Let u ∈ V̂ be the
vertex covered by H \ M̂ and v ∈ V̂ be the one covered by M̂ . Let P be the even-length u-v
path in G′

U and N be the matching in G′
U covering all vertices in the odd cycle other than v.

Reset H := H ∪ P ∪N and M̂ := M̂ ∪N , and update the eY Z , eY , aY Z and aZ .

Case 5 (z(LU) = 0 for some U ∈ ∆′
+ ∪ (∆− \∆′

−)): Deshrinking. Apply Case 5.1, 5.2 or
5.3.

Case 5.1 (U ∈ ∆− \∆′
−). Let u ∈ VU be the vertex covered by H \ M̂ and v be the one covered

by M̂ . If u and v are distinct, then apply Case 5.1.1. Otherwise, apply Case 5.1.2.

Case 5.1.1: Deshrinking and augmentation. Delete U from ∆, reset M̂ := M ′ = M̂△PU ,
H := M ′, and update the eY Z , eY , aY Z and aZ .

Case 5.1.2: Deshrinking. Delete U from ∆, and update the eY Z , eY , aY Z and aZ .

Case 5.2 (U ∈ ∆′
+ \∆+): Deshrinking. Denote the set in Υ+ containing U by W , and the

maximal set in ∆ containing U by X. Delete U from ∆, add Ũ = W ∪ X to Υ , define a
partition LŨ of Ũ by (LU \ {U}) ∪ {X}, and set z(LŨ ) = 0. Then, update the eY Z , eY , aY Z

and aZ .

Case 5.3 (U ∈ ∆+ ∩∆′
+): Deshrinking and saturation. Denote the set in Υ+ containing U

by W , and the pseudo-vertex containing W by Ŵ . Delete U from ∆, reset M̂ := M ′ =
(M̂△PŴ ), and label Ŵ as “saturated.” Reset H := M ′ and update the eY Z , eY , aY Z and
aZ .

Case 6 (w′(fX) = 0 for some X ∈ ∆+ ∪∆′
+): Saturation. Let X̂ denote the pseudo-vertex

in Ĝ containing X. Add fX to G′
X . Reset M̂ := M ′ = M̂△PX̂ and label X̂ as “saturated.”

Reset H := M ′ and update the eY .

Case 7 (w′(bU) = 0 for some U ∈ Υ+): Saturation. Let Û denote the pseudo-vertex contain-
ing U . Add bU to G′

U . Reset M̂ := M ′ = M△PÛ and label Û as “saturated.” Reset H := M ′

and update the eY .

The validity of Algorithm FAST can be verified just as we did for Algorithm SIMPLE. Let us
mention here the complexity. In Algorithm FAST, Procedure Dual Update can be executed in O(n)
time, by scanning the eY , aZ , fX and bU , together with the z(LU ), instead of scanning all edges
in E ∪ A. Updating the lists after shrinking, deshrinking or forest extension takes O(n) time and
updating after augmentation and saturation takes O(n2) time. Thus, the total time complexity
O(n3).

Theorem 13. Algorithm FAST finds a maximum-weight matching forest in O(n3) time.

We remark that we do not incorporate the branching delta-matroid F̂ ◦
B, which is used in Algo-

rithm SIMPLE. This is because we need to decompose the equality subgraph (V̂ , Â◦) into strong
components in order to determine whether R(B̂) \ {v} ∈ F̂◦

B, which takes O(m) time.
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