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Abstract. Let Σ be a nonempty set of prime numbers. In the
present paper, we continue our study of the pro-Σ fundamen-
tal groups of hyperbolic curves and their associated configuration
spaces over algebraically closed fields of characteristic zero. Our
first main result asserts, roughly speaking, that if an F-admissible
automorphism [i.e., an automorphism that preserves the fiber sub-

groups that arise as kernels associated to the various natural pro-
jections of the configuration space under consideration to config-
uration spaces of lower dimension] of a configuration space group
arises from an F-admissible automorphism of a configuration space
group [arising from a configuration space] of strictly higher dimen-

sion, then it is necessarily FC-admissible, i.e., preserves the cus-
pidal inertia subgroups of the various subquotients corresponding
to surface groups. After discussing various abstract profinite com-
binatorial technical tools involving semi-graphs of anabelioids of
PSC-type that are motivated by the well-known classical theory
of topological surfaces, we proceed to develop a theory of profinite

Dehn twists, i.e., an abstract profinite combinatorial analogue of
classical Dehn twists associated to cycles on topological surfaces.
This theory of profinite Dehn twists leads naturally to comparison

results between the abstract combinatorial machinery developed
in the present paper and more classical scheme-theoretic construc-
tions. In particular, we obtain a purely combinatorial description

of the Galois action associated to a [scheme-theoretic!] degenerat-

ing family of hyperbolic curves over a complete equicharacteristic
discrete valuation ring of characteristic zero. Finally, we apply the
theory of profinite Dehn twists to prove a “geometric version of the

Grothendieck Conjecture” for — i.e., put another way, we compute
the centralizer of the geometric monodromy associated to — the
tautological curve over the moduli stack of pointed smooth curves.
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Introduction

Let Σ ⊆ Primes be a nonempty subset of the set of prime numbers
Primes. In the present paper, we continue our study [cf. [SemiAn],
[CmbGC], [CmbCsp], [MT], [HM]] of the anabelian geometry of semi-
graphs of anabelioids of [pro-Σ] PSC-type, i.e., semi-graphs of anabe-
lioids that arise from a pointed stable curve over an algebraically closed
field of characteristic zero. The notion of a semi-graph of anabelioids of
PSC-type may be thought of as a sort of abstract profinite combina-
torial analogue of the notion of a hyperbolic topological surface
of finite type, i.e., the underlying topological surface of a hyperbolic
Riemann surface of finite type. One central object of study in this con-
text is the notion of an outer representation of IPSC-type [cf. [HM],
Definition 2.4, (i)], which may be thought of as an abstract profinite
combinatorial analogue of the scheme-theoretic notion of a degenerating
family of hyperbolic curves over a complete discrete valuation ring. In
[HM], we studied a purely combinatorial generalization of this notion,
namely, the notion of an outer representation of NN-type [cf. [HM],
Definition 2.4, (iii)], which may be thought of as an abstract profinite
combinatorial analogue of the topological notion of a family of hy-
perbolic topological surfaces of finite type over a circle. Here,
we recall that such families are a central object of study in the theory
of hyperbolic threefolds.

Another central object of study in the combinatorial anabelian ge-
ometry of hyperbolic curves [cf. [CmbCsp], [MT], [HM]] is the notion
of a configuration space group [cf. [MT], Definition 2.3, (i)], i.e., the
pro-Σ fundamental group of the configuration space associated to a hy-
perbolic curve over an algebraically closed field of characteristic zero,
where Σ is either equal to Primes or of cardinality one. In [MT], it was
shown [cf. [MT], Corollary 6.3] that, if one excludes the case of hyper-
bolic curves of type (g, r) ∈ {(0, 3), (1, 1)}, then, up to a permutation
of the factors of the configuration space under consideration, any au-
tomorphism of a configuration space group is necessarily F-admissible
[cf. [CmbCsp], Definition 1.1, (ii)], i.e., preserves the fiber subgroups
that arise as kernels associated to the various natural projections of
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the configuration space under consideration to configuration spaces of
lower dimension.

In §1, we prove our first main result [cf. Corollary 1.9], by means
of techniques that extend the techniques of [MT], §4. This result as-
serts, roughly speaking, that if an F-admissible automorphism of a
configuration space group arises from an F-admissible automorphism
of a configuration space group [arising from a configuration space] of
strictly higher dimension, then it is necessarily FC-admissible
[cf. [CmbCsp], Definition 1.1, (ii)], i.e., preserves the cuspidal inertia
subgroups of the various subquotients corresponding to surface groups.

Theorem A (F-admissibility and FC-admissibility). Let Σ be a
set of prime numbers which is either of cardinality one or equal to
the set of all prime numbers; n a positive integer; (g, r) a pair of
nonnegative integers such that 2g− 2 + r > 0; X a hyperbolic curve of
type (g, r) over an algebraically closed field k of characteristic 6∈ Σ; Xn

the n-th configuration space of X; Πn the maximal pro-Σ quotient of
the fundamental group of Xn; “OutFC(−)”, “OutF(−)” ⊆ “Out(−)”
the subgroups of FC- and F-admissible [cf. [CmbCsp], Definition 1.1,
(ii)] outomorphisms [cf. the discussion entitled “Topological groups” in
§0] of “(−)”. Then the following hold:

(i) Let α ∈ OutF(Πn+1). Then α induces the same outomorphism
of Πn relative to the various quotients Πn+1 � Πn by fiber sub-
groups of length 1 [cf. [MT], Definition 2.3, (iii)]. In particular,
we obtain a natural homomorphism

OutF(Πn+1) −→ OutF(Πn) .

(ii) The image of the homomorphism

OutF(Πn+1) −→ OutF(Πn)

of (i) is contained in

OutFC(Πn) ⊆ OutF(Πn) .

In §2 and §3, we develop various technical tools that will play a crucial
role in the subsequent development of the theory of the present paper.
In §2, we study various fundamental operations on semi-graphs of
anabelioids of PSC-type. A more detailed description of these opera-
tions may be found in the discussion at the beginning of §2, as well
as in the various illustrations referred to in this discussion. Roughly
speaking, these operations may be thought of as abstract profinite com-
binatorial analogues of various well-known operations that occur in the
theory of “surgery” on topological surfaces — i.e.,
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• restriction to a subsurface arising from a decomposition, such
as a “pants decomposition”, of the surface or to a [suitably
positioned] cycle;

• partially compactifying the surface by adding “missing points”;

• cutting a surface along a [suitably positioned] cycle;

• gluing together two surfaces along [suitably positioned] cy-
cles.

Most of §2 is devoted to the abstract combinatorial formulation of these
operations, as well as to the verification of various basic properties
involving these operations.

In §3, we develop the local theory of the second cohomology group
with compact supports associated to various sub-semi-graphs and com-
ponents of a semi-graph of anabelioids of PSC-type. Roughly speaking,
this theory may be thought of as a sort of abstract profinite combina-
torial analogue of the local theory of orientations on a topological
surface S, i.e., the theory of the locally defined cohomology modules

(U, x) 7→ H2(U, U \ {x}; Z) (∼= Z)

— where U ⊆ S is an open subset, x ∈ U . In the abstract profinite
combinatorial context of the present paper, the various locally defined
second cohomology groups with compact supports give rise to cyclo-
tomes, i.e., copies of quotients of the once-Tate-twisted Galois module

Ẑ(1). The main result that we obtain in §3 concerns various canoni-
cal synchronizations of cyclotomes [cf. Corollary 3.9], i.e., canoni-
cal isomorphisms between these cyclotomes associated to various local
portions of the given semi-graph of anabelioids of PSC-type which are
compatible with the various fundamental operations studied in §2.

In §4, we apply the technical tools developed in §2, §3 to define and
study the notion of a profinite Dehn [multi-]twist [cf. Definition 4.4;
Theorem 4.8, (iv)]. This notion is, needless to say, a natural abstract
profinite combinatorial analogue of the usual notion of a Dehn twist in
the theory of topological surfaces. On the other hand, it is defined, in
keeping with the spirit of the present paper, in a fashion that is purely
combinatorial, i.e., without resorting to the “crutch” of considering,
for instance, profinite closures of Dehn twists associated to cycles on
topological surfaces. Our main results in §4 [cf. Theorem 4.8, (i), (iv);
Proposition 4.10, (ii)] assert, roughly speaking, that profinite Dehn
twists satisfy a structure theory of the sort that one would expect from
the analogy with the topological case, and that this structure theory is
compatible, in a suitable sense, with the various fundamental operations
studied in §2.

Theorem B (Properties of profinite Dehn multi-twists). Let Σ
be a nonempty set of prime numbers and G a semi-graph of anabelioids
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of pro-Σ PSC-type. Write

Aut|grph|(G) ⊆ Aut(G)

for the group of automorphisms of G which induce the identity auto-
morphism on the underlying semi-graph of G and

Dehn(G)
def
= {α ∈ Aut|grph|(G) |αG|v = idG|v for any v ∈ Vert(G) }

— where we write αG|v for the restriction of α to the semi-graph of
anabelioids G|v of pro-Σ PSC-type determined by v ∈ Vert(G) [cf. Def-
initions 2.1, (iii); 2.14, (ii); Remark 2.5.1, (ii)]; we shall refer to an
element of Dehn(G) as a profinite Dehn multi-twist of G. Then the
following hold:

(i) (Normality) Dehn(G) is normal in Aut(G).

(ii) (Structure of the group of profinite Dehn multi-twists)
Write

ΛG
def
= HombZΣ(H2

c (G, ẐΣ), ẐΣ)

for the cyclotome associated to G [cf. Definitions 3.1, (ii),
(iv); 3.8, (i)]. Then there exists a natural isomorphism

DG : Dehn(G)
∼
−→

⊕

Node(G)

ΛG

that is functorial, in G, with respect to isomorphisms of semi-
graphs of anabelioids of pro-Σ PSC-type. In particular, Dehn(G)

is a finitely generated free ẐΣ-module of rank Node(G)].
We shall refer to a nontrivial profinite Dehn multi-twist whose
image ∈

⊕
Node(G) ΛG lies in a direct summand [i.e., in a single

“ΛG”] as a profinite Dehn twist.

(iii) (Exact sequence relating profinite Dehn multi-twists
and glueable outomorphisms) Write

Glu(G) ⊆
∏

v∈Vert(G)

Aut|grph|(G|v)

for the [closed] subgroup of “glueable” collections of outomor-

phisms of the direct product
∏

v∈Vert(G) Aut|grph|(G|v) consisting

of elements (αv)v∈Vert(G) such that χv(αv) = χw(αw) for any
v, w ∈ Vert(G) — where we write G|v for the semi-graph of
anabelioids of pro-Σ PSC-type determined by v ∈ Vert(G) [cf.

Definition 2.1, (iii)] and χv : Aut(G|v) → (ẐΣ)∗ for the pro-
Σ cyclotomic character of v ∈ Vert(G) [cf. Definition 3.8,
(ii)]. Then the natural homomorphism

Aut|grph|(G) −→
∏

v∈Vert(G) Aut|grph|(G|v)
α 7→ (αG|v)v∈Vert(G)
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factors through Glu(G) ⊆
∏

v∈Vert(G) Aut|grph|(G|v), and, more-

over, the resulting homomorphism ρVert
G : Aut|grph|(G)→ Glu(G)

[cf. (i)] fits into an exact sequence of profinite groups

1 −→ Dehn(G) −→ Aut|grph|(G)
ρVert
G
−→ Glu(G) −→ 1 .

The approach of §2, §3, §4 is purely combinatorial in nature. On the
other hand, in §5, we return briefly to the world of [log] schemes in or-
der to compare the purely combinatorial constructions of §2, §3, §4
to analogous constructions from scheme theory. The main techinical
result [cf. Theorem 5.7] of §5 asserts that the purely combinato-
rial synchronizations of cyclotomes constructed in §3, §4 for the
profinite Dehn twists associated to the various nodes of the semi-graph
of anabelioids of PSC-type under consideration coincide with certain
natural scheme-theoretic synchronizations of cyclotomes. This
technical result is obtained, roughly speaking, by applying the various
fundamental operations of §2 so as to reduce to the case where the
semi-graph of anabelioids of PSC-type under consideration admits a
symmetry that permutes the nodes [cf. Fig. 6]; the desired co-
incidence of synchronizations is then obtained by observing that both
the combinatorial and the scheme-theoretic synchronizations are com-
patible with this symmetry. One way to understand this fundamental
coincidence of synchronizations is as a sort of abstract combinatorial
analogue of the cyclotomic synchronization given in [GalSct], Theorem
4.3; [AbsHyp], Lemma 2.5, (ii) [cf. Remark 5.9.1, (i)]. Another way
to understand this fundamental coincidence of synchronizations is as a
statement to the effect that

the Galois action associated to a [scheme-theoretic!]
degenerating family of hyperbolic curves over a complete
equicharacteristic discrete valuation ring of characteris-
tic zero — i.e., “an outer representation of IPSC-type”
— admits a purely combinatorial description [cf.
Corollary 5.9, (iii)].

That is to say, one central problem in the theory of outer Galois repre-
sentations associated to hyperbolic curves over arithmetic fields is pre-
cisely the problem of giving such a “purely combinatorial description”
of the outer Galois representation. Indeed, this point of view plays a
central role in the theory of the Grothendieck-Teichmüller group. Thus,
although an explicit solution to this problem is well out of reach at the
present time in the case of number fields or mixed-characteristic local
fields, the theory of §5 yields a solution to this problem in the case
of complete equicharacteristic discrete valuation fields of characteristic
zero. One consequence of this solution is the following criterion for an
outer representation to be of IPSC-type [cf. Corollary 5.10].
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Theorem C (Combinatorial/group-theoretic nature of scheme-
theoreticity). Let (g, r) be a pair of nonnegative integers such that
2g − 2 + r > 0; Σ a nonempty set of prime numbers; R a complete
discrete valuation ring whose residue field k is separably closed of char-

acteristic 6∈ Σ; S log the log scheme obtained by equipping S
def
= SpecR

with the log structure determined by the maximal ideal of R; (Mg,r)S

the moduli stack of r-pointed stable curves of genus g over S whose
r marked points are equipped with an ordering; (Mg,r)S ⊆ (Mg,r)S the

open substack of (Mg,r)S parametrizing smooth curves; (M
log

g,r)S the

log stack obtained by equipping (Mg,r)S with the log structure associ-
ated to the divisor with normal crossings (Mg,r)S \ (Mg,r)S ⊆ (Mg,r)S;

x ∈ (Mg,r)S(k) a k-valued point of (Mg,r)S; Ô the completion of the
local ring of (Mg,r)S at the image of x; T log the log scheme obtained by

equipping T
def
= Spec Ô with the log structure induced by the log struc-

ture of (M
log

g,r)S; tlog the log scheme obtained by equipping the closed

point of T with the log structure induced by the log structure of T log;
X log

t the stable log curve over tlog corresponding to the natural strict

(1-)morphism tlog → (M
log

g,r)S; IT log the maximal pro-Σ quotient of the

log fundamental group π1(T
log) of T log; ISlog the maximal pro-Σ quo-

tient of the log fundamental group π1(S
log) of S log; GXlog the semi-graph

of anabelioids of pro-Σ PSC-type determined by the stable log curve
X log

t [cf. [CmbGC], Example 2.5]; ρuniv
Xlog

t

: IT log → Aut(G
Xlog) the nat-

ural outer representation associated to X log
t [cf. Definition 5.5]; I a

profinite group; ρ : I → Aut(GXlog) an outer representation of pro-Σ
PSC-type [cf. [HM], Definition 2.1, (i)]. Then the following conditions
are equivalent:

(i) ρ is of IPSC-type [cf. [HM], Definition 2.4, (i)].

(ii) There exist a morphism of log schemes φlog : S log → T log over
S and an isomorphism of outer representations of pro-
Σ PSC-type ρ

∼
→ ρuniv

Xlog
t

◦ Iφlog [cf. [HM], Definition 2.1, (i)]

— where we write Iφlog : ISlog → IT log for the homomorphism
induced by φlog — i.e., there exist an automorphism β of
GXlog and an isomorphism α : I

∼
→ I log

S such that the diagram

I
ρ

−−−→ Aut(G
Xlog)

α

yo

yo

ISlog

ρ
X

log
t

◦I
φlog

−−−−−−→ Aut(GXlog)

— where the right-hand vertical arrow is the automorphism of
Aut(GXlog) induced by β — commutes.
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(iii) There exist a morphism of log schemes φlog : S log → T log over S

and an isomorphism α : I
∼
→ I log

S such that ρ = ρuniv
Xlog

t

◦ Iφlog ◦α

— where we write Iφlog : ISlog → IT log for the homomorphism
induced by φlog — i.e., the automorphism “β” of (ii) may be
taken to be the identity.

Before proceeding, in this context we observe that one fundamen-
tal intrinsic difference between outer representations of IPSC-type and
more general outer representations of NN-type is that, unlike the case
with outer representations of IPSC-type, the period matrices associ-
ated to outer representations of NN-type may, in general, fail to be
nondegenerate — cf. the discussion of Remark 5.9.2.

Finally, in §6, we apply the theory of profinite Dehn twists developed
in §4 to prove a “geometric version of the Grothendieck Con-
jecture” for — i.e., put another way, we compute the centralizer of
the geometric monodromy associated to — the tautological curve over
the moduli stack of pointed smooth curves [cf. Theorems 6.13; 6.14].

Theorem D (Centralizers of geometric monodromy groups
arising from moduli stacks of pointed curves). Let (g, r) be a
pair of nonnegative integers such that 2g − 2 + r > 0; Σ a nonempty
set of prime numbers; k an algebraically closed field of characteris-
tic zero. Write (Mg,r)k for the moduli stack of r-pointed smooth
curves of genus g over k whose r marked points are equipped with
an ordering; Cg,r → Mg,r for the tautological curve over Mg,r

[cf. the discussion entitled “Curves” in §0]; ΠMg,r

def
= π1((Mg,r)k) for

the étale fundamental group of the moduli stack (Mg,r)k; Πg,r for the
maximal pro-Σ quotient of the kernel Ng,r of the natural surjection
π1((Cg,r)k) � π1((Mg,r)k) = ΠMg,r ; ΠCg,r for the quotient of the étale
fundamental group π1((Cg,r)k) of (Cg,r)k by the kernel of the natural
surjection Ng,r � Πg,r; OutC(Πg,r) for the group of outomorphisms [cf.
the discussion entitled “Topological groups” in §0] of Πg,r which induce
bijections on the set of cuspidal inertia subgroups of Πg,r. Thus, we
have a natural exact sequence of profinite groups

1 −→ Πg,r −→ ΠCg,r −→ ΠMg,r −→ 1 ,

which determines an outer representation

ρg,r : ΠMg,r −→ Out(Πg,r) .

Then the following hold:

(i) Let H ⊆ ΠMg,r be an open subgroup of ΠMg,r . Suppose that one
of the following two conditions is satisfied:

(a) 2g − 2 + r > 1, i.e., (g, r) 6∈ {(0, 3), (1, 1)}.

(b) (g, r) = (1, 1), 2 ∈ Σ, and H = ΠMg,r .
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Then the composite of natural homomorphisms

Aut(Mg,r)k
((Cg,r)k) −→ AutΠMg,r

(ΠCg,r)/Inn(Πg,r)

∼
−→ ZOut(Πg,r)(Im(ρg,r)) ⊆ ZOut(Πg,r)(ρg,r(H))

[cf. the discussion entitled “Topological groups” in §0] deter-
mines an isomorphism

Aut(Mg,r)k
((Cg,r)k)

∼
−→ ZOutC(Πg,r)(ρg,r(H)) .

Here, we recall that the automorphism group Aut(Mg,r)k
((Cg,r)k)

is isomorphic to



Z/2Z× Z/2Z if (g, r) = (0, 4);
Z/2Z if (g, r) ∈ {(1, 1), (1, 2), (2, 0)};
{1} if (g, r) 6∈ {(0, 4), (1, 1), (1, 2), (2, 0)} .

(ii) Let H ⊆ OutC(Πg,r) be a closed subgroup of OutC(Πg,r) that
contains an open subgroup of Im(ρg,r) ⊆ Out(Πg,r). Suppose
that

2g − 2 + r > 1, i.e., (g, r) 6∈ {(0, 3), (1, 1)}.

Then H is almost slim [cf. the discussion entitled “Topological
groups” in §0]. If, moreover,

2g − 2 + r > 2, i.e., (g, r) 6∈ {(0, 3), (0, 4), (1, 1), (1, 2), (2, 0)},

then H is slim [cf. the discussion entitled “Topological groups”
in §0].
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0. Notations and Conventions

Sets: If S is a set, then we shall denote by 2S the power set of S and
by S] the cardinality of S.

Numbers: The notation Primes will be used to denote the set of all
prime numbers. The notation N will be used to denote the set or [ad-
ditive] monoid of nonnegative rational integers. The notation Z will be
used to denote the set, group, or ring of rational integers. The notation
Q will be used to denote the set, group, or field of rational numbers.

The notation Ẑ will be used to denote the profinite completion of Z.
If p ∈ Primes, then the notation Zp (respectively, Qp) will be used to
denote the p-adic completion of Z (respectively, Q). If Σ ⊆ Primes,

then the notation ẐΣ will be used to denote the pro-Σ completion of
Z.

Monoids: We shall write M gp for the groupification of a monoid M .

Topological groups: Let G be a topological group and P a property
of topological groups [e.g., “abelian” or “pro-Σ” for some Σ ⊆ Primes].
Then we shall say that G is almost P if there exists an open subgroup
of G that is P.

Let G be a topological group and H ⊆ G a closed subgroup of G.
Then we shall denote by ZG(H) (respectively, NG(H); CG(H)) the
centralizer (respectively, normalizer; commensurator) of H in G, i.e.,

ZG(H)
def
= { g ∈ G | ghg−1 = h for any h ∈ H } ,

(respectively, NG(H)
def
= { g ∈ G | g ·H · g−1 = H } ;

CG(H)
def
= { g ∈ G | H ∩ g·H·g−1 is of finite index in H and g·H·g−1 } );

we shall refer to Z(G)
def
= ZG(G) as the center of G. It is immediate

from the definitions that

ZG(H) ⊆ NG(H) ⊆ CG(H) ; H ⊆ NG(H) .

We shall say that the closed subgroup H is centrally terminal (respec-
tively, normally terminal; commensurably terminal) in G if H = ZG(H)
(respectively, H = NG(H); H = CG(H)). We shall say that G is slim
if ZG(U) = {1} for any open subgroup U of G.

LetG be a topological group. Then we shall writeGab for the abelian-
ization of G, i.e., the quotient of G by the closure of the commutator
subgroup of G.

Let G be a topological group. Then we shall write Aut(G) for the
group of [continuous] automorphisms of G, Inn(G) ⊆ Aut(G) for the

group of inner automorphisms of G, and Out(G)
def
= Aut(G)/Inn(G).

We shall refer to an element of Out(G) as an outomorphism of G. Now
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suppose that G is center-free [i.e., Z(G) = {1}]. Then we have an exact
sequence of groups

1 −→ G (
∼
→ Inn(G)) −→ Aut(G) −→ Out(G) −→ 1 .

If J is a group and ρ : J → Out(G) is a homomorphism, then we shall
denote by

G
out
o J

the group obtained by pulling back the above exact sequence of profi-
nite groups via ρ. Thus, we have a natural exact sequence of groups

1 −→ G −→ G
out
o J −→ J −→ 1 .

Suppose further that G is profinite and topologically finitely generated.
Then one verifies easily that the topology of G admits a basis of char-
acteristic open subgroups, which thus induces a profinite topology on
the groups Aut(G) and Out(G) with respect to which the above exact
sequence relating Aut(G) and Out(G) determines an exact sequence
of profinite groups. In particular, one verifies easily that if, moreover,
J is profinite and ρ : J → Out(G) is continuous, then the above exact

sequence involving G
out
o J determines an exact sequence of profinite

groups.
Let G, J be profinite groups. Suppose that G is center-free and

topologically finitely generated. Let ρ : J → Out(G) be a continuous

homomorphism. Write AutJ(G
out
o J) for the group of [continuous]

automorphisms of G
out
o J that preserve and induce the identity auto-

morphism on the quotient J . Then one verifies easily that the operation
of restricting to G determines an isomorphism of profinite groups

AutJ(G
out
o J)/Inn(G)

∼
−→ ZOut(G)(Im(ρ)) .

Let G and H be topological groups. Then we shall refer to a homo-
morphism of topological groups φ : G→ H as a split injection (respec-
tively, split surjection) if there exists a homomorphism of topological
groups ψ : H → G such that ψ ◦ φ (respectively, φ ◦ ψ) is the identity
automorphism of G (respectively, H).

Log schemes: When a scheme appears in a diagram of log schemes,
the scheme is to be understood as the log scheme obtained by equipping
the scheme with the trivial log structure. If X log is a log scheme, then
we shall refer to the largest open subscheme of the underlying scheme
of X log over which the log structure is trivial as the interior of X log.
Fiber products of fs log schemes are to be understood as fiber products
taken in the category of fs log schemes.
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Curves: We shall use the terms “hyperbolic curve”, “cusp”, “stable
log curve”, “smooth log curve”, and “tripod” as they are defined in
[CmbGC], §0; [Hsh], §0. If (g, r) is a pair of positive integers such
that 2g − 2 + r > 0, then we shall denote by Mg,r the moduli stack
of r-pointed stable curves of genus g over Z whose r marked points
are equipped with an ordering, by Mg,r ⊆ Mg,r the open substack of

Mg,r parametrizing smooth curves, by M
log

g,r the log stack obtained by

equipping Mg,r with the log structure associated to the divisor with
normal crossingsMg,r \Mg,r ⊆Mg,r, by Cg,r →Mg,r the tautological
curve over Mg,r, and by Dg,r ⊆ Cg,r the corresponding tautological
divisor of marked points of Cg,r →Mg,r. Then the divisor given by the
union of Dg,r with the inverse image in Cg,r of the divisorMg,r\Mg,r ⊆
Mg,r determines a log structure on Cg,r; denote the resulting log stack

by C
log

g,r . Thus, we obtain a (1-)morphism of log stacks C
log

g,r → M
log

g,r .

We shall denote by Cg,r ⊆ Cg,r the interior of C
log

g,r. Thus, we obtain a
(1-)morphism of stacks Cg,r →Mg,r. Let S be a scheme. Then we shall

write (Mg,r)S
def
= Mg,r×Spec Z S, (Mg,r)S

def
= Mg,r×Spec Z S, (M

log

g,r)S
def
=

M
log

g,r ×Spec Z S, (Cg,r)S
def
= Cg,r ×Spec Z S, (Cg,r)S

def
= Cg,r ×Spec Z S, and

(C
log

g,r)S
def
= C

log

g,r ×Spec Z S.

Let n be a positive integer and X log a stable log curve of type (g, r)
over a log scheme S log. Then we shall refer to the log scheme obtained

by pulling back the (1-)morphismM
log

g,r+n →M
log

g,r given by forgetting

the last n points via the classifying (1-)morphism S log →M
log

g,r of X log

as the n-th log configuration space of X log.
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1. F-admissibility and FC-admissibility

In the present §, we consider the FC-admissibility [cf. [CmbCsp],
Definition 1.1, (ii)] of F-admissible automorphisms [cf. [CmbCsp], Def-
inition 1.1, (ii)] of configuration space groups [cf. [MT], Definition
2.3, (i)]. Roughly speaking, we prove that if an F-admissible automor-
phism of a configuration space group arises from an F-admissible auto-
morphism of a configuration space group [arising from a configuration
space] of strictly higher dimension, then it is necessarily FC-admissible,
i.e., preserves the cuspidal inertia subgroups of the various subquotients
corresponding to surface groups [cf. Theorem 1.8, Corollary 1.9 below].

Lemma 1.1 (Representations arising from certain families of
hyperbolic curves). Let (g, r) be a pair of nonnegative integers such
that 2g − 2 + r > 0; l a prime number; k an algebraically closed field
of characteristic 6= l; B and C hyperbolic curves over k of type (g, r);
n a positive integer. Suppose that (r, n) 6= (0, 1). For i = 1, · · · , n,

let fi : B
∼
→ C be an isomorphism over k; si the section of B ×k C

pr1→
B determined by the isomorphism fi. Suppose that, for any i 6= j,
Im(si) ∩ Im(sj) = ∅. Write

Z
def
= B ×k C \

⋃

i=1,··· ,n

Im(si) ⊆ B ×k C

for the complement of the images of the si’s, where i ranges over the

integers such that 1 ≤ i ≤ n; pr for the composite Z ↪→ B ×k C
pr1→ B

[thus, pr : Z → B is a family of hyperbolic curves of type (g, r+n)];
ΠB (respectively, ΠC ; ΠZ) the maximal pro-l quotient of the étale fun-
damental group π1(B) (respectively, π1(C); π1(Z)) of B (respectively,
C; Z); pr : ΠZ � ΠB for the surjection induced by pr; ΠZ/B for the
kernel of pr; ρZ/B : ΠB → Out(ΠZ/B) for the outer representation of
ΠB on ΠZ/B determined by the exact sequence

1 −→ ΠZ/B −→ ΠZ

pr
−→ ΠB −→ 1 .

Let b be a geometric point of B and Zb the geometric fiber of pr : Z → B
at b. For i = 1, · · · , n, fix an inertia subgroup [among its various
conjugates] of the étale fundamental group π1(Zb) of Zb associated to
the cusp of Zb determined by the section si and denote by

Isi
⊆ ΠZ/B

the image in ΠZ/B of this inertia subgroup of π1(Zb). Then the following
hold:
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(i) (Fundamental groups of fibers) The quotient ΠZ/B of the
étale fundamental group π1(Zb) of the geometric fiber Zb coin-
cides with the maximal pro-l quotient of π1(Zb).

(ii) (Abelianizations of the fundamental groups of fibers)
For i = 1, · · · , n, write Jsi

⊆ Πab
Z/B for the image of Isi

⊆ ΠZ/B

in Πab
Z/B. Then the composite Isi

↪→ ΠZ/B � Πab
Z/B determines

an isomorphism Isi

∼
→ Jsi

; moreover, the inclusions Jsi
↪→

Πab
Z/B determine an exact sequence

1 −→ (

n⊕

i=1

Jsi
)/Jr −→ Πab

Z/B −→ Πab
C −→ 1

— where

Jr ⊆
n⊕

i=1

Jsi

is a Zl-submodule such that

Jr '

{
Zl if r = 0,
0 if r 6= 0,

and, moreover, if r = 0 and i = 1, · · · , n, then the composite

Jr ↪→
n⊕

i=1

Jsi

prsi

� Jsi

is an isomorphism.

(iii) (Unipotency of a certain natural representation) The
action of ΠB on Πab

Z/B determined by ρZ/B preserves the exact
sequence

1 −→ (
n⊕

i=1

Jsi
)/Jr −→ Πab

Z/B −→ Πab
C −→ 1

[cf. (ii)] and induces the identity automorphisms on the
subquotients (

⊕n
i=1 Jsi

)/Jr and Πab
C ; in particular, the natural

homomorphism ΠB → AutZl
(Πab

Z/B) factors through a uniquely
determined homomorphism

ΠB −→ HomZl

(
Πab

C , (

n⊕

i=1

Jsi
)/Jr

)
.

Proof. Assertion (i) follows immediately from the [easily verified] fact
that the natural action of π1(B) on π1(Zb)

ab ⊗bZ Zl is unipotent —
cf., e.g., [Hsh], Proposition 1.4, (i), for more details. [Note that al-
though [Hsh], Proposition 1.4, (i), is only stated in the case where
the hyperbolic curves corresponding to B and C are proper, the same
proof may be applied to the case where these hyperbolic curves are
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affine.] Assertion (ii) follows immediately, in light of our assumption
that (r, n) 6= (0, 1), from assertion (i), together with the well-known
structure of the maximal pro-l quotient of the fundamental group of a
smooth curve over an algebraically closed field of characteristic 6= l. Fi-
nally, we verify assertion (iii). The fact that the action of ΠB on ΠZ/B

preserves the exact sequence appearing in the statement of assertion
(iii) follows immediately from the fact that the surjection Πab

Z/B � Πab
C

is induced by the open immersion Z ↪→ B×kC over B. The fact that the
action in question induces the identity automorphism on (

⊕n
i=1 Jsi

)/Jr

(respectively, Πab
C ) follows immediately from the fact that the fi’s are

isomorphisms (respectively, the fact that the surjection Πab
Z/B � Πab

C is

induced by the open immersion Z ↪→ B ×k C over B). �

Lemma 1.2 (Maximal cuspidally central quotients of certain
fundamental groups). In the notation of Lemma 1.1, for i = 1, · · · , n,
write

ΠZ/B � Π(Z/B)[i] (� ΠC)

for the quotient of ΠZ/B by the normal closed subgroup topologically
normally generated by the Isj

’s, where j ranges over the integers such
that 1 ≤ j ≤ n and j 6= i;

Π(Z/B)[i] � E(Z/B)[i]

for the maximal cuspidally central quotient [cf. [AbsCsp], Defi-
nition 1.1, (i)] relative to the surjection Π(Z/B)[i] � ΠC determined by
the natural open immersion Z ↪→ B ×k C;

IE
si
⊆ E(Z/B)[i]

for the kernel of the natural surjection E(Z/B)[i] � ΠC ; and

EZ/B
def
= E(Z/B)[1] ×ΠC

· · · ×ΠC
E(Z/B)[n] .

Then the following hold:

(i) (Cuspidal inertia subgroups) Let 1 ≤ i, j ≤ n be integers.
Then the homomorphism Isi

→ IE
sj

determined by the compos-

ite Isi
↪→ ΠZ/B � E(Z/B)[j] is an isomorphism (respectively,

trivial) if i = j (respectively, i 6= j).

(ii) (Surjectivity) The homomorphism ΠZ/B → EZ/B determined
by the natural surjections ΠZ/B � E(Z/B)[i] — where i ranges
over the integers such that 1 ≤ i ≤ n — is surjective.

(iii) (Maximal cuspidally central quotients and abelianiza-
tions) The quotient ΠZ/B � EZ/B of ΠZ/B [cf. (ii)] coin-
cides with the maximal cuspidally central quotient [cf.
[AbsCsp], Definition 1.1, (i)] relative to the surjection ΠZ/B �

ΠC determined by the natural open immersion Z ↪→ B ×k C.
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In particular, the natural surjection ΠZ/B � Πab
Z/B factors

through the surjection ΠZ/B � EZ/B, and the resulting sur-
jection EZ/B � Πab

Z/B fits into a commutative diagram

1 −−−→
⊕n

i=1 I
E
si

−−−→ EZ/B −−−→ ΠC −−−→ 1y
y

y
1 −−−→ (

⊕n
i=1 Jsi

)/Jr −−−→ Πab
Z/B −−−→ Πab

C −−−→ 1

— where the horizontal sequences are exact, and the vertical
arrows are surjective. Moreover, the left-hand vertical arrow
coincides with the surjection induced by the natural isomor-
phisms Isi

∼
→ Jsi

[cf. Lemma 1.1, (ii)] and Isi

∼
→ IE

si
[cf. (i)].

Finally, if r 6= 0, then the right-hand square is cartesian.

Proof. Assertion (i) follows immediately from the definition of the quo-
tient E(Z/B)[j] of ΠZ/B , together with the well-known structure of the
maximal pro-l quotient of the fundamental group of a smooth curve
over an algebraically closed field of characteristic 6= l [cf., e.g., [MT],
Lemma 4.2, (iv), (v)]. Assertion (ii) follows immediately from asser-
tion (i). Assertion (iii) follows immediately from assertions (i), (ii) [cf.
[AbsCsp], Proposition 1.6, (iii)]. �

Lemma 1.3 (The kernels of representations arising from cer-
tain families of hyperbolic curves). In the notation of Lemmas
1.1, 1.2, suppose that r 6= 0. Then the following hold:

(i) (Unipotency of a certain natural outer representation)
Consider the action of ΠB on EZ/B determined by the natural
isomorphism

EZ/B
∼
−→ Πab

Z/B ×Πab
C

ΠC

[cf. Lemma 1.2, (iii)], together with the natural action of ΠB

on Πab
Z/B induced by ρZ/B and the trivial action of ΠB on ΠC .

Then the outer action of ΠB on EZ/B induced by this action
coincides with the natural outer action of ΠB on EZ/B in-
duced by ρZ/B. In particular, relative to the natural identifica-

tion Isi

∼
→ IE

si
[cf. Lemma 1.2, (i)], the above action of ΠB on

EZ/B factors through the homomorphism

ΠB −→ HomZl

(
ΠC ,

n⊕

i=1

Isi

)
∼
−→ HomZl

(
Πab

C ,

n⊕

i=1

Isi

)

obtained in Lemma 1.1, (iii).
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(ii) (Homomorphisms arising from a certain extension) For
i = 1, · · · , n, write φi for the composite

ΠB −→ HomZl

(
Πab

C ,

n⊕

j=1

Isj

)
−→ HomZl

(
Πab

C , Isi

)

— where the first arrow is the homomorphism of (i), and the
second arrow is the homomorphism determined by the projection
pri :

⊕n
j=1 Isj

� Isi
. Then the homomorphism φi coincides

with the image of the element of H2(ΠB × ΠC , Isi
) determined

by the extension

1 −→ Isi
−→ ΠE

Z[i] −→ ΠB × ΠC −→ 1

— where we write ΠE
Z[i]

def
= ΠZ/Ker(ΠZ/B � EZ/B[i]) — of ΠB×

ΠC by Isi

∼
→ IE

si
[cf. Lemma 1.2, (i)] via the composite

H2(ΠB×ΠC , Isi
)

∼
→ H1(ΠB, H

1(ΠC , Isi
))

∼
→ Hom

(
ΠB,Hom(ΠC , Isi

)
)

— where the first arrow is the isomorphism determined by the
Hochschild-Serre spectral sequence relative to the surjection ΠB×

ΠC

pr1
� ΠB.

(iii) (Factorization) Write B (respectively, C) for the compactifi-
cation of C (respectively, B) and ΠB (respectively, ΠC) for the
maximal pro-l quotient of the étale fundamental group π1(B)
(respectively, π1(C)) of B (respectively, C). Then the homo-
morphism φi of (ii) factors as the composite

ΠB � Πab
B

∼
→ Πab

C

∼
→ HomZl

(
Πab

C
, Isi

)
↪→ HomZl

(
Πab

C , Isi

)

— where the first (respectively, second; fourth) arrow is the ho-

momorphism induced by B ↪→ B (respectively, fi : B
∼
→ C;

C ↪→ C), and the third arrow is the isomorphism determined
by the Poincaré duality isomorphism in étale cohomology, rela-
tive to the natural isomorphism Isi

∼
→ Zl(1). [Here, the “(1)”

denotes a “Tate twist”.]

(iv) (Kernel of a certain natural representation) The kernel
of the homomorphism ΠB → AutZl

(Πab
Z/B) determined by ρZ/B

coincides with the kernel of the natural surjection ΠB � Πab
B

.

Proof. Assertions (i), (ii) follow immediately from the various defini-
tions involved. Next, we verify assertion (iii). It follows from assertion
(ii), together with [MT], Lemma 4.2, (ii), (v) [cf. also the discussion
surrounding [MT], Lemma 4.2], that, relative to the natural isomor-

phism Isi

∼
→ Zl(1), the image of φi ∈ Hom(ΠB,HomZl

(Πab
C , Isi

)) via
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the isomorphisms

Hom(ΠB,HomZl
(Πab

C , Isi
))

∼
→ Hom(ΠB,HomZl

(Πab
C ,Zl(1)))

∼
← H2(ΠB × ΠC ,Zl(1))

∼
→ H2(B ×k C,Zl(1))

— where the first (respectively, second) isomorphism is the isomor-

phism induced by the above isomorphism Isi

∼
→ Zl(1) (respectively,

the Hochschild-Serre spectral sequence relative to the surjection ΠB ×

ΠC

pr1
� ΠB) — is the first Chern class of the invertible sheaf associated

to the divisor determined by the scheme-theoretic image of si : Bi ↪→
B ×k C. Thus, since the section si extends uniquely to a section
si : B ↪→ B ×k C, whose scheme-theoretic image we denote by Im(si),
it follows that the homomorphism φi ∈ Hom(ΠB,HomZl

(Πab
C , Isi

)) co-
incides with the image of the first Chern class of the invertible sheaf
on B ×k C associated to the divisor Im(si) via the composite

H2(B ×k C,Zl(1))
∼
← H2(B ×k C, Isi

)→ H2(B ×k C, Isi
)

∼
← H2(ΠB × ΠC , Isi

)
∼
→ Hom

(
ΠB,HomZl

(ΠC , Isi
)
)

— where the first arrow is the isomorphism induced by the above iso-
morphism Isi

∼
→ Zl(1), and the second arrow is the homomorphism in-

duced by the natural open immersion B×kC ↪→ B×kC. In particular,
assertion (iii) follows immediately from [Mln], Chapter VI, Lemma 12.2
[cf. also the argument used in the proof of [MT], Lemma 4.4]. Finally,
we verify assertion (iv). To this end, we recall that by Lemma 1.1, (iii),
the homomorphism ΠB → AutZl

(Πab
Z/B) factors through the homomor-

phism ΠB → HomZl

(
Πab

C ,
⊕n

i=1 Jsi

)
of assertion (i). Thus, assertion

(iv) follows immediately from assertion (iii). This completes the proof
of assertion (iv). �

Definition 1.4. For� ∈ {◦, •}, let Σ� be a set of prime numbers which
is either of cardinality one or equal to the set of all prime numbers;
(g�, r�) a pair of nonnegative integers such that 2g�− 2+ r� > 0; X�

a hyperbolic curve of type (g�, r�) over an algebraically closed field of
characteristic 6∈ Σ�; d� a positive integer; X�

d�
the d�-th configuration

space ofX� [cf. [MT], Definition 2.1, (i)]; Π�
d�

the pro-Σ� configuration
space group [cf. [MT], Definition 2.3, (i)] obtained by forming the
maximal pro-Σ� quotient of the étale fundamental group π1(X

�

d�
) of

X�
d�

.

(i) We shall say that an isomorphism of profinite groups α : Π◦
d◦

∼
→

Π•
d• is PF-admissible [i.e., “permutation-fiber-admissible”] if α

induces a bijection between the set of fiber subgroups [cf. [MT],
Definition 2.3, (iii)] of Π◦

d◦ and the set of fiber subgroups of
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Π•
d• . We shall say that an outer isomorphism Π◦

d◦
∼
→ Π•

d• is PF-
admissible if it is determined by a PF-admissible isomorphism.

(ii) We shall say that an isomorphism of profinite groups α : Π◦
d◦

∼
→

Π•
d• is PC-admissible [i.e., “permutation-cusp-admissible”] if the

following condition is satisfied: Let

{1} = Kd◦ ⊆ Kd◦−1 ⊆ · · · ⊆ Km ⊆ · · · ⊆ K2 ⊆ K1 ⊆ K0 = Π◦
d◦

be the standard fiber filtration of Π◦
d◦ [cf. [CmbCsp], Definition

1.1, (i)]; then for any integer 1 ≤ a ≤ d◦, the image α(Ka) ⊆ Π•
d•

is a fiber subgroup of Π•
d• of length d◦ − a [cf. [MT], Defini-

tion 2.3, (iii)], and, moreover, the isomorphism Ka−1/Ka
∼
→

α(Ka−1)/α(Ka) determined by α induces a bijection between
the set of cuspidal inertia subgroups of Ka−1/Ka and the set
of cuspidal inertia subgroups of α(Ka−1)/α(Ka). [Note that it
follows immediately from the various definitions involved that
the profinite group Ka−1/Ka (respectively, α(Ka−1)/α(Ka)) is
equipped with a natural structure of pro-Σ◦ (respectively, pro-
Σ•) surface group [cf. [MT], Definition 1.2].] We shall say that

an outer isomorphism Π◦
d◦

∼
→ Π•

d• is PC-admissible if it is de-
termined by a PC-admissible isomorphism.

(iii) We shall say that an isomorphism of profinite groups α : Π◦
d◦

∼
→

Π•
d• is PFC-admissible [i.e., “permutation-fiber-cusp-admissible”]

if α is PF-admissible and PC-admissible. We shall say that an
outer isomorphism Π◦

d◦
∼
→ Π•

d• is PFC-admissible if it is deter-
mined by a PFC-admissible isomorphism.

(iv) We shall say that an isomorphism of profinite groups α : Π◦
d◦

∼
→

Π•
d• is PF-cuspidalizable if there exists a commutative diagram

Π◦
d◦+1

∼
−−−→ Π•

d•+1y
y

Π◦
d◦

∼
−−−→

α
Π•

d•

— where the upper horizontal arrow is a PF-admissible iso-
morphism, and the left-hand (respectively, right-hand) vertical
arrow is the surjection obtained by forming the quotient by a
fiber subgroup of length 1 [cf. [MT], Definition 2.3, (iii)] of
Π◦

d◦+1 (respectively, Π•
d•+1). We shall say that an outer isomor-

phism Π◦
d◦

∼
→ Π•

d• is PF-cuspidalizable if it is determined by a
PF-cuspidalizable isomorphism.

Remark 1.4.1. It follows immediately from the various definitions in-
volved that, in the notation of Definition 1.4, an automorphism α of
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Π◦
d◦ is PF-admissible (respectively, PC-admissible; PFC-admissible) if

and only if there exists an automorphism σ of Π◦
d◦ that lifts the outo-

morphism [cf. the discussion entitled “Topological groups” in §0] of Π◦
d◦

naturally determined by a permutation of the d◦ factors of the config-
uration space involved such that the composite α ◦ σ is F-admissible
(respectively, C-admissible; FC-admissible) [cf. [CmbCsp], Definition
1.1, (ii)]. In particular, a(n) F-admissible (respectively, C-admissible;
FC-admissible) automorphism of Π◦

d◦ is PF-admissible (respectively,
PC-admissible; PFC-admissible):

F-admissible ⇐= FC-admissible =⇒ C-admissible

⇓ ⇓ ⇓

PF-admissible ⇐= PFC-admissible =⇒ PC-admissible .

Proposition 1.5 (Properties of PF-admissible isomorphisms).

In the notation of Definition 1.4, let α : Π◦
d◦

∼
→ Π•

d• be an isomorphism.
Then the following hold:

(i) Σ◦ = Σ•.

(ii) Suppose that the isomorphism α is PF-admissible. Let 1 ≤
n ≤ d◦ be an integer and H ⊆ Π◦

d◦ a fiber subgroup of length
n of Π◦

d◦ . Then the subgroup α(H) ⊆ Π•
d• is a fiber subgroup of

length n of Π•
d•. In particular, it holds that d◦ = d•.

(iii) Write Ξ◦ ⊆ Π◦
d◦ (respectively, Ξ• ⊆ Π•

d•) for the normal closed
subgroup of Π◦

d◦ (respectively, Π•
d•) obtained by taking the inter-

section of the various fiber subgroups of length d◦ − 1 (respec-
tively, d• − 1). Then the isomorphism α is PF-admissible if

and only if α induces an isomorphism Ξ◦ ∼
→ Ξ•.

Proof. Assertion (i) follows immediately from the [easily verified] fact
that Σ� may be characterized as the smallest set of primes Σ∗ for which
Π�

d�
is pro-Σ∗. Assertion (ii) follows immediately from the various

definitions involved. Finally, we verify assertion (iii). The necessity of
the condition follows immediately from assertion (ii). The sufficiency
of the condition follows immediately from a similar argument to the
argument used in the proof of [CmbCsp], Proposition 1.2, (i). This
completes the proof of assertion (iii). �

Lemma 1.6 (C-admissibility of certain isomorphisms). In the
notation of Definition 1.4, let α2 : Π◦

2
∼
→ Π•

2, α
1
1 : Π◦

1
∼
→ Π•

1, α
2
1 : Π◦

1
∼
→

Π•
1 be isomorphisms of profinite groups which, for i = 1, 2, fit into a
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commutative diagram

Π◦
2

α2−−−→ Π•
2

pr◦
{i}

y
ypr•

{i}

Π◦
1

αi
1−−−→ Π•

1

— where the vertical arrow “pr�{i}” is the surjection induced by the

projection “X�2 → X�1 ” obtained by projecting to the i-th factor. Then
the isomorphism α1

1 is C-admissible. In particular, (g◦, r◦) = (g•, r•).

Proof. Write Σ
def
= Σ◦ = Σ• [cf. Proposition 1.5, (i)]. Now it follows

from the well-known structure of the maximal pro-Σ quotient of the
fundamental group of a smooth curve over an algebraically closed field
of characteristic 6∈ Σ that Π�1 is a free pro-Σ group if and only if r� 6=
0 [cf. [CmbGC], Remark 1.1.3]. Thus, if r◦ = r• = 0, then it is
immediate that α1

1 is C-admissible; moreover, it follows, by considering
the rank of the abelianization of Π�1 [cf. [CmbGC], Remark 1.1.3], that
g◦ = g•. In particular, to verify Lemma 1.6, we may assume without
loss of generality that r◦, r• 6= 0. Then it follows from [CmbGC],
Theorem 1.6, (i), that, to verify Lemma 1.6, it suffices to show that α1

1

is numerically cuspidal [cf. [CmbGC], Definition 1.4, (ii)], i.e., to show
that the following assertion holds:

Let Π◦
Y ⊆ Π◦

1 be an open subgroup of Π◦
1. Write Π•

Y
def
=

α1
1(Π

◦
Y ) ⊆ Π•

1, Y
◦ → X◦ (respectively, Y • → X•) for the

connected finite étale covering of X◦ (respectively, X•)
corresponding to the open subgroup Π◦

Y ⊆ Π◦
1 (respec-

tively, Π•
Y ⊆ Π•

1), and (g◦Y , r
◦
Y ) (respectively, (g•Y , r

•
Y ))

for the type of Y ◦ (respectively, Y •). Then it holds that
r◦Y = r•Y .

On the other hand, in the notation of the above assertion, one verifies
easily that for any l ∈ Σ and � ∈ {◦, •}, if Π�Y ′ ⊆ Π�1 is an open
subgroup of Π�1 contained in Π�Y , then the natural inclusion Π�Y ′ ↪→ Π�Y
induces a surjection

Ker((Π�Y ′)ab
� (Π�

Y
′)ab)⊗bZΣ Ql � Ker((Π�Y )ab

� (Π�
Y
)ab)⊗bZΣ Ql

— where we write (Π�
Y
), (Π�

Y
′) for the maximal pro-Σ quotients of

the étale fundamental groups of the compactifications Y , Y
′
of Y , Y ′,

respectively. Thus, since any open subgroup of Π◦
1 contains a character-

istic open subgroup of Π◦
1, it follows immediately from the well-known

fact that for � ∈ {◦, •}, (Π�Y )ab (respectively, (Π�
Y
)ab) is a free ẐΣ-

module of rank 2g�Y + r�Y − 1 (respectively, 2g�Y ) [cf., e.g., [CmbGC],
Remark 1.1.3] that to verify the above assertion, it suffices to ver-
ify that if Π◦

Y ⊆ Π◦
1 in the above assertion is characteristic, then the

isomorphism Π◦
Y

∼
→ Π•

Y determined by α1
1 induces an isomorphism of
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Ker((Π◦
Y )ab

� (Π◦
Y
)ab)⊗bZΣ Ql with Ker((Π•

Y )ab
� (Π•

Y
)ab)⊗bZΣ Ql for

some l ∈ Σ.
To this end, for � ∈ {◦, •}, write Π�Z ⊆ Π�2 for the normal open sub-

group of Π�2 obtained by forming the inverse image via the surjection

(pr�{1}, pr�{2}) : Π�2 � Π�1 × Π�1

of the image of the natural inclusion Π�Y ×Π�Y ↪→ Π�1 ×Π�1 ; Z� → X�2
for the connected finite étale covering corresponding to this normal
open subgroup Π�Z ⊆ Π�2 ; Π�Z/Y for the kernel of the natural surjection

Π�Z � Π�Y induced by the composite Z� → X�2 ↪→ X� ×k X
� pr1→ X�.

Then the natural surjection Π�Z � Π�Y determines a representation

Π�Y −→ Aut((Π�Z/Y )ab) ;

moreover, the isomorphisms α2, α
1
1, and α2

1 determine a commutative
diagram

Π◦
Y −−−→ Aut((Π◦

Z/Y )ab)y
y

Π•
Y −−−→ Aut((Π•

Z/Y )ab)

— where the vertical arrows are isomorphisms. [Here, we note that
since Π•

Y is a characteristic subgroup of Π•
1, and the composite α2

1 ◦
(α1

1)
−1 is an automorphism of Π•

1, it follows that Π•
Y = α2

1(Π
◦
Y ), hence

that α2 induces an isomorphism Π◦
Z

∼
→ Π•

Z .] On the other hand, it
follows from the definition of Z� that Z� is isomorphic to the open
subscheme of Y � ×k Y

� obtained by forming the complement of the
graphs of the various elements of Aut(Y �/X�). Thus, it follows from
Lemma 1.3, (iv) — by replacing the various profinite groups involved by
their maximal pro-l quotients for some l ∈ Σ — that the isomorphism
Π◦

Y
∼
→ Π•

Y determined by α1
1 induces an isomorphism of Ker((Π◦

Y )ab
�

(Π◦
Y
)ab) ⊗bZΣ Ql with Ker((Π•

Y )ab
� (Π•

Y
)ab) ⊗bZΣ Ql for some l ∈ Σ.

This completes the proof of Lemma 1.6. �

Lemma 1.7 (PFC-admissibility of certain PF-admissible iso-
morphisms). In the notation of Definition 1.4, let α : Π◦

d◦
∼
→ Π•

d• be
a PF-admissible isomorphism. Then the following condition implies
that the isomorphism α is PFC-admissible:

Let H◦ ⊆ Π◦
d◦ be a fiber subgroup of length 1 [cf.

[MT], Definition 2.3, (iii)]. Write H• def
= α(H◦) ⊆ Π•

d•

for the fiber subgroup of length 1 obtained as the im-
age of H◦ via α [cf. Proposition 1.5, (ii)]. [Thus,
it follows immediately from the various definitions in-
volved that H◦ (respectively, H•) is equipped with a nat-
ural structure of pro-Σ◦ (respectively, pro-Σ•) surface



COMBINATORIAL ANABELIAN TOPICS I 23

group.] Then the isomorphism H◦ ∼
→ H• induced by α

is C-admissible.

Proof. Let � ∈ {◦, •}. Then one may verify easily that the following
fact holds:

Let 1 ≤ a ≤ d� be an integer and F ′ ⊆ F ⊆ Π�
d�

fiber

subgroups of Π�
d�

such that F is of length a, and F ′ is
of length a− 1. Then there exists a fiber subgroup H ⊆
F ⊆ Π�

d�
of Π�

d�
of length 1 such that the composite

H ↪→ F � F/F ′

arises from a natural open immersion of a hyperbolic
curve of type (g�, r� + d� − 1) into a hyperbolic curve
of type (g�, r� + d� − a). [Note that it follows immedi-
ately from the various definitions involved that H (re-
spectively, F/F ′) is equipped with a natural structure
of pro-Σ� surface group.] In particular, the compos-
ite is a surjection whose kernel is topologically normally
generated by suitable cuspidal inertia subgroups of H;
moreover, any cuspidal inertia subgroup of F/F ′ may
be obtained as the image of a cuspidal inertia subgroup
of H.

On the other hand, one may verify easily that Lemma 1.7 follows im-
mediately from the above fact. This completes the proof of Lemma 1.7.

�

Theorem 1.8 (PFC-admissibility of certain isomorphisms). For
� ∈ {◦, •}, let Σ� be a set of prime numbers which is either of cardi-
nality one or equal to the set of all prime numbers; (g�, r�) a
pair of nonnegative integers such that 2g�−2+r� > 0; X� a hyperbolic
curve of type (g�, r�) over an algebraically closed field of characteristic
6∈ Σ�; d� a positive integer; Π�

d�
the pro-Σ� configuration space group

[cf. [MT], Definition 2.3, (i)] obtained by forming the maximal pro-Σ�

quotient of the étale fundamental group of the d�-th configuration space
of X�;

α : Π◦
d◦

∼
−→ Π•

d•

an isomorphism of [abstract] groups. If

{(g◦, r◦), (g•, r•)} ∩ {(0, 3), (1, 1)} 6= ∅ ,

then we suppose further that the isomorphism α is PF-admissible [cf.
Definition 1.4, (i)]. Then the following hold:

(i) Σ◦ = Σ•.

(ii) The isomorphism α is an isomorphism of profinite groups.
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(iii) The isomorphism α is PF-admissible. In particular, d◦ = d•.

(iv) If α is PF-cuspidalizable [cf. Definition 1.4, (iv)], then α
is PFC-admissible [cf. Definition 1.4, (iii)]. In particular,
(g◦, r◦) = (g•, r•).

Proof. Assertion (ii) follows from [NS], Theorem 1.1. In light of asser-
tion (ii), assertion (i) follows from Proposition 1.5, (i). Assertion (iii)
follows from Proposition 1.5, (ii); [MT], Corollary 6.3, together with
the assumption appearing in the statement of Theorem 1.8. Assertion
(iv) follows immediately from Lemmas 1.6, 1.7. �

Corollary 1.9 (F-admissibility and FC-admissibility). Let Σ be
a set of prime numbers which is either of cardinality one or equal
to the set of all prime numbers; n a positive integer; (g, r) a pair
of nonnegative integers such that 2g − 2 + r > 0; X a hyperbolic curve
of type (g, r) over an algebraically closed field k of characteristic 6∈ Σ;
Xn the n-th configuration space of X; Πn the maximal pro-Σ quotient
of the fundamental group of Xn; “OutFC(−)”, “OutF(−)” ⊆ “Out(−)”
the subgroups of FC- and F-admissible [cf. [CmbCsp], Definition 1.1,
(ii)] outomorphisms [cf. the discussion entitled “Topological groups” in
§0] of “(−)”. Then the following hold:

(i) Let α ∈ OutF(Πn+1). Then α induces the same outomorphism
of Πn relative to the various quotients Πn+1 � Πn by fiber sub-
groups of length 1 [cf. [MT], Definition 2.3, (iii)]. In particular,
we obtain a natural homomorphism

OutF(Πn+1) −→ OutF(Πn) .

(ii) The image of the homomorphism

OutF(Πn+1) −→ OutF(Πn)

of (i) is contained in

OutFC(Πn) ⊆ OutF(Πn) .

Proof. First, we verify assertion (i). Let H1, H2 ⊆ Πn+1 be two distinct
fiber subgroups of Πn+1 of length 1. Observe that the normal closed
subgroup H ⊆ Πn+1 of Πn+1 topologically generated by H1 and H2 is
a fiber subgroup of Πn+1 of length 2 [cf. [MT], Proposition 2.4, (iv)],
hence is equipped with a natural structure of pro-Σ configuration space
group, with respect to which H i ⊆ H may be regarded as a fiber sub-
group of length 1 [cf. [MT], Proposition 2.4, (ii)]. Moreover, it follows
immediately from the scheme-theoretic definition of the various config-
uration space groups involved that one has natural outer isomorphisms
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Πn+1/H
i ∼
→ Πn and H/H1 ∼

→ H/H2. Thus, since for i ∈ {1, 2}, we
have natural outer isomorphisms

Πn
∼
← Πn+1/H

i ∼
→ (H/H i)

out
o Πn+1/H

[cf. the discussion entitled “Topological groups” in §0] which are com-
patible with the various natural outer isomorphisms discussed above,
one verifies easily [cf. the argument given in the first paragraph of the
proof of [CmbCsp], Theorem 4.1] that to complete the proof of asser-
tion (i), by replacing Πn+1 by H, it suffices to verify assertion (i) in the
case where n = 1. The rest of the proof of assertion (i) is devoted to
verifying assertion (i) in the case where n = 1.

Let α̃ ∈ AutF(Π2) be an F-admissible automorphism of Π2; α̃
1,

α̃2 ∈ Aut(Π1) the automorphisms of Π1 induced by α̃ relative to the

quotients Π2 � Π2/H
1 ∼
→ Π1, Π2 � Π2/H

2 ∼
→ Π1, respectively. Now

it is immediate that to complete the proof of assertion (i), it suffices
to verify that the difference α̃1 ◦ (α̃2)−1 ∈ Aut(Π1) is Π1-inner. There-
fore, it follows immediately from [JR], Theorem B, that to complete
the proof of assertion (i), it suffices to verify that

(∗1): for any normal open subgroup N ⊆ Π1 of Π1, it
holds that α̃1(N) = α̃2(N).

To this end, let N ⊆ Π1 be a normal open subgroup of Π1. Write

ΠN
def
= Π2 ×Π1 N for the fiber product of Π2 � Π2/H

1 ∼
→ Π1 and

N ↪→ Π1 and FN for the kernel of the composite ΠN = Π2 ×Π1 N
pr1
↪→

Π2 � Π2/H
2 ∼
→ Π1. Then the surjection ΠN � N ×Π1 determined by

the natural surjection ΠN � ΠN/FN
∼
→ Π1 and the second projection

ΠN = Π2 ×Π1 N
pr2
� N fits into a commutative diagram of profinite

groups

1 −−−→ FN −−−→ ΠN −−−→ Π1 −−−→ 1y
y

∥∥∥
1 −−−→ N −−−→ N × Π1

pr2−−−→ Π1 −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are
surjective. Write ρN : Π1 → Aut(F ab

N ) for the natural action determined
by the upper horizontal sequence and VN ⊆ F ab

N for the kernel of the
natural surjection F ab

N � Nab induced by the left-hand vertical arrow.
Now we claim that

(∗2): the action ρN of Π1 on F ab
N preserves VN ⊆ F ab

N ,
and, moreover, the resulting action ρV

N : Π1 → Aut(VN)
factors as the composite

Π1 � Π1/N ↪→ Aut(VN)

— where the second arrow is injective.
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Indeed, the fact that the action ρN of Π1 on F ab
N preserves VN ⊆ F ab

N

follows immediately from the definition of ρN [cf. also the above com-
mutative diagram]. Next, let us observe that it follows immediately
from the various definitions involved that if we write f : Y → X for the
connected finite étale Galois covering of X corresponding to N ⊆ Π1,
then the right-hand square of the above diagram arises from a commu-
tative diagram of schemes

(Y ×k X) \ Γf
pr2−−−→ Xy

∥∥∥
Y ×k X

pr2−−−→ X

— where we write Γf ⊆ Y ×k X for the graph of f , and the left-hand
vertical arrow is the natural open immersion. Thus, it follows imme-
diately from a similar argument to the argument used in the proof
of Lemma 1.1, (i) [cf. also [Hsh], Proposition 1.4, (i)], that FN , N
are naturally isomorphic to the maximal pro-Σ quotients of the étale
fundamental groups of geometric fibers of the families of hyperbolic

curves Y ×k X \ Γf , Y ×k X
pr2→ X over X, respectively. There-

fore, by the well-known structure of the maximal pro-Σ quotient of
the fundamental group of a smooth curve over an algebraically closed
field of characteristic 6∈ Σ, we conclude — by considering the natu-
ral action of Π1 on the set of cusps of the family of hyperbolic curves

Y ×k X \Γf
pr2→ X — that the resulting action ρV

N : Π1 → Aut(VN) fac-
tors as the composite Π1 � Π1/N → Aut(VN), and that if X is affine
(respectively, proper), then for any l ∈ Σ, the resulting representation
Π1/N → Aut(VN ⊗bZΣ Ql) is isomorphic to

the regular representation of Π1/N over Ql (respectively,
the quotient of the regular representation of Π1/N over
Ql by the trivial subrepresentation [of dimension 1]).

In particular, as is well-known, the homomorphism Π1/N → Aut(VN⊗bZΣ

Ql), hence also the homomorphism Π1/N → Aut(VN), is injective. This
completes the proof of the claim (∗2).

Next, let us observe that since α̃ is F-admissible, it follows immedi-
ately from the definition of “ρV

N” that the automorphism α̃ induces a
commutative diagram

Π1

ρV
N−−−→ Aut(VN)

eα2

yo

yo

Π1

ρV
eα1(N)
−−−−→ Aut(Veα1(N))

— where the vertical arrows are isomorphisms that are induced by α̃.
Thus, by considering the kernels of ρV

N , ρV
eα1(N), one concludes from the
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claim (∗2) that α̃1(N) = α̃2(N). This completes the proof of (∗1),
hence also of assertion (i).

Assertion (ii) follows immediately from Theorem 1.8, (iv) [cf. also
Remark 1.4.1]. This completes the proof of Corollary 1.9. �

Remark 1.9.1. The discrete versions of Theorem 1.8, Corollary 1.9
will be discussed in a sequel to the present paper.
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2. Various operations on semi-graphs of anabelioids of

PSC-type

In the present §, we study various operations on semi-graphs of an-
abelioids of PSC-type. These operations include the following:

(Op1) the operation of restriction to a sub-semi-graph [satisfying cer-
tain conditions] of the underlying semi-graph [cf. Definition 2.2,
(ii); Fig. 2 below],

(Op2) the operation of partial compactification [cf. Definition 2.4, (ii);
Fig. 3 below],

(Op3) the operation of resolution of a given set [satisfying certain con-
ditions] of nodes [cf. Definition 2.5, (ii); Fig. 4 below], and

(Op4) the operation of generization [cf. Definition 2.8; Fig. 5 below].

A basic reference for the theory of semi-graphs of anabelioids of PSC-
type is [CmbGC]. We shall use the terms “semi-graph of anabelioids of
PSC-type”, “PSC-fundamental group of a semi-graph of anabelioids of
PSC-type”, “finite étale covering of semi-graphs of anabelioids of PSC-
type”, “vertex”, “edge”, “cusp”, “node”, “verticial subgroup”, “edge-like
subgroup”, “nodal subgroup”, “cuspidal subgroup”, and “sturdy” as they
are defined in [CmbGC], Definition 1.1. Also, we shall apply the var-
ious notational conventions established in [HM], Definition 1.1, and
refer to the “PSC-fundamental group of a semi-graph of anabelioids of
PSC-type” simply as the “fundamental group” [of the semi-graph of
anabelioids of PSC-type]. That is to say, we shall refer to the maximal
pro-Σ quotient of the fundamental group of a semi-graph of anabelioids
of pro-Σ PSC-type [as a semi-graph of anabelioids!] as the “fundamen-
tal group of the semi-graph of anabelioids of PSC-type”.

Let Σ be a nonempty set of prime numbers and G a semi-graph
of anabelioids of pro-Σ PSC-type. Write G for the underlying semi-

graph of G, ΠG for the [pro-Σ] fundamental group of G, and G̃ →
G for the universal covering of G corresponding to ΠG. Then since
the fundamental group ΠG of G is topologically finitely generated, the
profinite topology of ΠG induces [profinite] topologies on Aut(ΠG) and
Out(ΠG) [cf. the discussion entitled “Topological groups” in §0]. If,
moreover, we write

Aut(G)

for the automorphism group of G, then by the discussion preceding
[CmbGC], Lemma 2.1, the natural homomorphism

Aut(G) −→ Out(ΠG)

is an injection with closed image. [Here, we recall that an automor-
phism of a semi-graph of anabelioids consists of an automorphism of
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the underlying semi-graph, together with a compatible system of iso-
morphisms between the various anabelioids at each of the vertices and
edges of the underlying semi-graph which are compatible with the var-
ious morphisms of anabelioids associated to the branches of the under-
lying semi-graph — cf. [SemiAn], Definition 2.1; [SemiAn], Remark
2.4.2.] Thus, by equipping Aut(G) with the topology induced via this
homomorphism by the topology of Out(ΠG), we may regard Aut(G) as
being equipped with the structure of a profinite group.

Definition 2.1.

(i) For z ∈ VCN(G) such that z ∈ Vert(G) (respectively, z ∈
Edge(G)), we shall say that a closed subgroup of ΠG is a VCN-
subgroup of ΠG associated to z ∈ VCN(G) if the closed subgroup
is a verticial (respectively, an edge-like) subgroup of ΠG associ-

ated to z ∈ VCN(G). For z̃ ∈ VCN(G̃) such that z̃ ∈ Vert(G̃)

(respectively, z̃ ∈ Edge(G̃)), we shall say that a closed subgroup

of ΠG is the VCN-subgroup of ΠG associated to z̃ ∈ VCN(G̃) if
the closed subgroup is the verticial (respectively, edge-like) sub-

group of ΠG associated to z̃ ∈ VCN(G̃) [cf. [HM], Definition 1.1,
(vi)].

(ii) For z ∈ VCN(G), we shall write

Gz

for the anabelioid corresponding to z ∈ VCN(G).

(iii) For v ∈ Vert(G), we shall write

G|v

for the semi-graph of anabelioids of pro-Σ PSC-type defined as
follows [cf. Fig. 1 below]: We take Vert(G|v) to consist of the
single element “v”, Cusp(G|v) to be the set of branches of G
which abut to v, and Node(G|v) to be the empty set. We take
the anabelioid of G|v corresponding to the unique vertex “v” to
be Gv [cf. (ii)]. For each edge e ∈ E(v) of G and each branch
b of e that abuts to the vertex v, we take the anabelioid of G|v
corresponding to the branch b to be a copy of the anabelioid Ge

[cf. (ii)]. For each edge e ∈ E(v) of G and each branch b of e
that abuts, relative to G, to the vertex v, we take the morphism
of anabelioids (G|v)eb

→ (G|v)v of G|v — where we write eb for
the cusp of G|v corresponding to b — to be the morphism of
anabelioids Ge → Gv associated, relative to G, to the branch b.
Thus, one has a natural morphism

G|v −→ G

of semi-graphs of anabelioids.
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Figure 1: G|v

G

v
⇒•

◦

• G|v

•

◦

◦

◦

◦

Remark 2.1.1. Let v ∈ Vert(G) be a vertex of G and Πv ⊆ ΠG a
verticial subgroup of ΠG associated to v ∈ Vert(G). Then it follows
immediately from the various definitions involved that the fundamental
group of G|v is naturally isomorphic to Πv, and that we have a natural
identification

Aut(Gv) ' Out(Πv)

and a natural injection

Aut(G|v) ↪→ Aut(Gv) .

Definition 2.2 (cf. the operation (Op1) discussed at the beginning
the present §2).

(i) Let K be a [not necessarily finite] semi-graph and H a sub-semi-
graph of K [cf. [SemiAn], the discussion following the figure
entitled “A Typical Semi-graph”]. Then we shall say that H is
of PSC-type if the following three conditions are satisfied:

(1) H is finite [i.e., the set consisting of vertices and edges of
H is finite] and connected.

(2) H has at least one vertex.

(3) If v is a vertex of H, and e is an edge of K that abuts to v,
then e is an edge of H. [Thus, if e abuts both to a vertex
lying in H and to a vertex not lying in H, then the resulting
edge of H is a “cusp”, i.e., an open edge.]

Thus, a sub-semi-graph of PSC-type H is completely determined
by the set of vertices that lie in H.

(ii) Let H be a sub-semi-graph of PSC-type [cf. (i)] of G. Then one
may verify easily that the semi-graph of anabelioids obtained
by restricting G to H [cf. the discussion preceding [SemiAn],
Definition 2.2] is of pro-Σ PSC-type. Here, we recall that the
semi-graph of anabelioids obtained by restricting G to H is the
semi-graph of anabelioids such that the underlying semi-graph
is H; for each vertex v (respectively, edge e) of H, the anabelioid
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corresponding to v (respectively, e) is Gv (respectively, Ge) [cf.
Definition 2.1, (ii)]; for each branch b of an edge e of H that
abuts to a vertex v of H, the morphism associated to b is the
morphism Ge → Gv associated to the branch of G corresponding
to b. We shall write

G|H

for this semi-graph of anabelioids of pro-Σ PSC-type and refer
to G|H as the semi-graph of anabelioids of pro-Σ PSC-type ob-
tained by restricting G to H [cf. Fig. 2 below]. Thus, one has a
natural morphism

G|H −→ G

of semi-graphs of anabelioids.

Figure 2: Restriction

H: the sub-semi-graph of PSC-type whose set of vertices = {v}

G

v

⇓

G|H

×

×

×

×

Definition 2.3. Let (g, r) be a pair of nonnegative integers such that
2g − 2 + r > 0.

(i) We shall say that G is of type (g, r) if G arises from a stable log
curve of type (g, r) over an algebraically closed field of charac-
teristic 6∈ Σ, i.e., Cusp(G) is of cardinality r, and, moreover,

rankbZΣ(Πab
G ) = 2g + Cusp(G)] − cG
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— where

cG
def
=

{
0 if Cusp(G) = ∅,
1 if Cusp(G) 6= ∅.

[Here, we recall that it follows from the discussion of [CmbGC],

Remark 1.1.3, that Πab
G is a free ẐΣ-module of finite rank.]

(ii) Let H be a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)].
Then we shall say that H is of type (g, r) if the semi-graph of
anabelioids G|H, which is of pro-Σ PSC-type [cf. Definition 2.2,
(ii)], is of type (g, r) [cf. (i)].

(iii) Let v ∈ Vert(G) be a vertex. Then we shall say that v is of type
(g, r) if the semi-graph of anabelioids G|v, which is of pro-Σ
PSC-type [cf. Definition 2.1, (iii)], is of type (g, r) [cf. (i)].

(iv) We shall say that G is totally degenerate if each vertex of G is
of type (0, 3) [cf. (iii)].

(v) One may verify easily that there exists a unique, up to isomor-
phism, semi-graph of anabelioids of pro-Σ PSC-type that is of
type (g, r) [cf. (i)] and has no node. We shall write

Gmodel
g,r

for this semi-graph of anabelioids of pro-Σ PSC-type.

Remark 2.3.1. It follows immediately from the various definitions
involved that there exists a unique pair (g, r) of nonnegative integers
such that G is of type (g, r) [cf. Definition 2.3, (i)].

Definition 2.4 (cf. the operation (Op2) discussed at the beginning
the present §2).

(i) We shall say that a subset S ⊆ Cusp(G) of Cusp(G) is omit-
table if the following condition is satisfied: For each vertex
v ∈ Vert(G) of G, if v is of type (g, r) [cf. Definition 2.3, (iii);
Remark 2.3.1], then it holds that 2g − 2 + r − (E(v) ∩ S)] > 0.

(ii) Let S ⊆ Cusp(G) be a subset of Cusp(G) which is omittable [cf.
(i)]. Then by eliminating the cusps [i.e., the open edges] con-
tained in S, and, for each vertex v of G, replacing the anabelioid
Gv corresponding to v by the anabelioid of finite étale coverings
of Gv that restrict to a trivial covering over the cusps contained
in S that abut to v, we obtain a semi-graph of anabelioids

G•S

of pro-Σ PSC-type. We shall refer to G•S as the partial compact-
ification of G with respect to S [cf. Fig. 3 below]. Thus, for each
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v ∈ Vert(G) = Vert(G•S), the pro-Σ fundamental group of the
anabelioid (G•S)v corresponding to v ∈ Vert(G) = Vert(G•S)
may be naturally identified, up to inner automorphism, with
the quotient of a verticial subgroup Πv ⊆ ΠG of ΠG associated
to v ∈ Vert(G) = Vert(G•S) by the subgroup of Πv topolog-
ically normally generated by the Πe ⊆ Πv for e ∈ E(v) ∩ S.
If, moreover, we write ΠG•S

for the [pro-Σ] fundamental group
of G•S and NS ⊆ ΠG for the normal closed subgroup of ΠG

topologically normally generated by the cuspidal subgroups of
ΠG associated to elements of S, then we have a natural outer
isomorphism

ΠG/NS
∼
−→ ΠG•S

.

Figure 3: Partial compactification

G

× × ×
c1 c2

⇓

G•{c1,c2}

×

Remark 2.4.1.

(i) Let S1 ⊆ S2 ⊆ Cusp(G) be subsets of Cusp(G). Then it fol-
lows immediately from the various definitions involved that the
omittability of S2 [cf. Definition 2.4, (i)] implies the omittability
of S1.

(ii) If G is sturdy, then it follows from the various definitions in-
volved that Cusp(G), hence also any subset of Cusp(G) [cf. (i)],
is omittable. Moreover, the partial compactification of G with
respect to Cusp(G) coincides with the compactification of G [cf.
[CmbGC], Remark 1.1.6; [HM], Definition 1.11].
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Definition 2.5 (cf. the operation (Op3) discussed at the beginning
the present §2). Let S ⊆ Node(G) be a subset of Node(G).

(i) We shall say that S is of separating type if the semi-graph
obtained by removing the closed edges corresponding to the
elements of S from G is disconnected. Moreover, for each
node e ∈ Node(G), we shall say that e is of separating type
if {e} ⊆ Node(G) is of separating type.

(ii) Suppose that S is not of separating type [cf. (i)]. Then one may
define a semi-graph of anabelioids of pro-Σ PSC-type as follows:
We take the underlying semi-graph G�S to be the semi-graph
obtained by replacing each node e of G contained in S such
that V(e) = {v1, v2} ⊆ Vert(G) — where v1, v2 are not neces-
sarily distinct — by two cusps that abut to v1, v2 ∈ Vert(G),
respectively. We take the anabelioid corresponding to a vertex
v (respectively, node e) of G�S to be Gv (respectively, Ge). [Note
that the set of vertices (respectively, nodes) of G�S may be nat-
urally identified with Vert(G) (respectively, Node(G) \ S).] We
take the anabelioid corresponding to a cusp of G�S arising from
a cusp e of G to be Ge. We take the anabelioid corresponding
to a cusp of G�S arising from a node e of G to be Ge. For each
branch b of G�S that abuts to a vertex v of a node e (respec-
tively, of a cusp e that does not arise from a node of G), we
take the morphism associated to b to be the morphism Ge → Gv

associated to the branch of G corresponding to b. For each
branch b of G�S that abuts to a vertex v of a cusp of G�S that
arises from a node e of G, we take the morphism associated to
b to be the morphism Ge → Gv associated to the branch of G

corresponding to b. We shall denote the resulting semi-graph
of anabelioids of pro-Σ PSC-type by

G�S

and refer to G�S as the semi-graph of anabelioids of pro-Σ PSC-
type obtained from G by resolving S [cf. Fig. 4 below]. Thus,
one has a natural morphism

G�S −→ G

of semi-graphs of anabelioids.

Remark 2.5.1.

(i) Let S1 ⊆ S2 ⊆ Node(G) be subsets of Node(G). Then it follows
immediately from the various definitions involved that if S2 is
not of separating type [cf. Definition 2.5, (i)], then S1 is not of
separating type.
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Figure 4: Resolution

G e

×

×

×

×

⇓

G�{e}

×
×

(ii) Let v ∈ Vert(G) be a vertex of G. Then one may verify easily
that there exists a unique sub-semi-graph of PSC-type [cf. Defi-
nition 2.2, (i)] Gv of G such that the set of vertices of Gv is equal
to {v}. Moreover, one may also verify easily that Node(G|Gv)
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[cf. Definition 2.2, (ii)] is not of separating type [cf. Defini-
tion 2.5, (i)], relative to G|Gv , and that the semi-graph of an-
abelioids of pro-Σ PSC-type

(G|Gv)�Node(G|Gv )

[cf. Definition 2.5, (ii)] is naturally isomorphic to G|v [cf. Defi-
nition 2.1, (iii)].

Definition 2.6.

(i) Let S ⊆ VCN(G) be a subset of VCN(G). Then we shall denote
by

AutS(G) ⊆ Aut(G)

the [closed] subgroup of Aut(G) consisting of automorphisms α
of G such that the automorphism of the underlying semi-graph
G of G induced by α preserves S and by

Aut|S|(G) ⊆ AutS(G)

the [closed] subgroup of Aut(G) consisting of automorphisms
α of G such that the automorphism of the underlying semi-
graph G of G induced by α preserves and induces the identity
automorphism of S. Moreover, we shall write

Aut|grph|(G)
def
= Aut|VCN(G)|(G) .

(ii) Let H ⊆ ΠG be a closed subgroup of ΠG. Then we shall denote
by

OutH(ΠG) ⊆ Out(ΠG)

the [closed] subgroup of Out(ΠG) consisting of outomorphisms
[cf. the discussion entitled “Topological groups” in §0] of ΠG

which preserve the ΠG-conjugacy class of H ⊆ ΠG. Moreover,
we shall denote by

AutH(G)
def
= Aut(G) ∩ OutH(ΠG) .

(iii) Let H be a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)]
of G. Then VCN(G|H) [cf. Definition 2.2, (ii)] may be regarded
as a subset of VCN(G). We shall write

Aut|H|(G)
def
= Aut|VCN(G|H)|(G) ⊆ AutH(G)

def
= AutVCN(G|H)(G) = AutVert(G|H)(G) .
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Proposition 2.7 (Subgroups determined by sets of compo-
nents). Let S ⊆ VCN(G) be a nonempty subset of VCN(G). Then:

(i) It holds that

Aut|S|(G) =
⋂

z∈S

AutΠz(G)

— where we use the notation Πz to denote a VCN-subgroup [cf.
Definition 2.1, (i)] of ΠG associated to z ∈ VCN(G).

(ii) It holds that

Aut|grph|(G) =
⋂

z∈VCN(G)

OutΠz(ΠG)

— where we use the notation Πz to denote a VCN-subgroup of
ΠG associated to z ∈ VCN(G).

(iii) The closed subgroups Aut|S|(G), AutS(G) ⊆ Aut(G) are open

in Aut(G). Moreover, the closed subgroup Aut|S|(G) ⊆ AutS(G)
is normal in AutS(G). In particular, Aut|grph|(G) ⊆ Aut(G) is
normal in Aut(G).

Proof. Assertion (i) follows immediately from [CmbGC], Proposition
1.2, (i). Next, we verify assertion (ii). It follows immediately from
[CmbGC], Proposition 1.5, (ii), that the right-hand side of the equality
in the statement of assertion (ii) is contained in Aut(G). Thus, asser-
tion (ii) follows immediately from assertion (i). Assertion (iii) follows
immediately from the finiteness of the semi-graph G, together with the
various definitions involved. �

Definition 2.8 (cf. the operation (Op4) discussed at the beginning
the present §2). Let S ⊆ Node(G) be a subset of Node(G). Then we
define the semi-graph of anabelioids of pro-Σ PSC-type

G S

as follows:

(i) We take Cusp(G S)
def
= Cusp(G).

(ii) We take Node(G S)
def
= Node(G) \ S.

(iii) We take Vert(G S) to be the set of connected components of
the semi-graph obtained from G by omitting the edges e ∈
Edge(G) \ S. Alternatively, one may take Vert(G S) to be
the set of equivalence classes of elements of Vert(G) with re-
spect to the equivalence relation “∼” defined as follows: for v,
w ∈ Vert(G), v ∼ w if either v = w or there exist n elements
e1, · · · , en ∈ S of S and n + 1 vertices v0, v1, · · · , vn ∈ Vert(G)
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of G such that v0
def
= v, vn

def
= w, and, for 1 ≤ i ≤ n, it holds

that V(ei) = {vi−1, vi}.

(iv) For each branch b of an edge e ∈ Edge(G S) (= Edge(G) \ S
— cf. (i), (ii)) and each vertex v ∈ Vert(G S) of G S, b abuts,
relative to G S, to v if b abuts, relative to G, to an element of
the equivalence class v [cf. (iii)].

(v) For each edge e ∈ Edge(G S) (= Edge(G) \ S — cf. (i), (ii))
of G S, we take the anabelioid of G S corresponding to e ∈
Edge(G S) to be Ge [cf. Definition 2.1, (ii)].

(vi) Let v ∈ Vert(G S) be a vertex of G S. Then one verifies eas-
ily that there exists a unique sub-semi-graph of PSC-type [cf.
Definition 2.2, (i)] Hv of G such that the set of vertices of Hv

consists of the elements of the equivalence class v [cf. (iii)].
Write

Tv
def
= Node(G|Hv) \ (S ∩ Node(G|Hv))

[cf. Definition 2.2, (ii)]. Then we take the anabelioid of G S cor-
responding to v ∈ Vert(G S) to be the anabelioid determined
by the finite étale coverings of

(G|Hv)�Tv

[cf. Definition 2.5, (ii)] of degree a product of primes ∈ Σ.

(vii) Let b be a branch of an edge e ∈ Edge(G S) (= Edge(G) \ S
— cf. (i), (ii)) that abuts to a vertex v ∈ Vert(G S). Then
since b abuts to v, one verifies easily that there exists a unique
vertex w of G which belongs to the equivalent class v [cf. (iii)]
such that b abuts to w relative to G. We take the morphism of
anabelioids associated to b, relative to G S, to be the morphism
naturally determined by the morphism of anabelioids

Ge → Gw

corresponding to the branch b relative to G and the morphism
of semi-graphs of anabelioids of pro-Σ PSC-type

G|w → (G|Hv)�Tv

[cf. (vi); Definition 2.1, (iii)]. Here, we recall that the anabelioid
obtained by considering the connected finite étale coverings of
G|w may be naturally identified with Gw [cf. Remark 2.1.1].

We shall refer to this semi-graph of anabelioids of pro-Σ PSC-type G S

as the generization of G with respect to S [cf. Fig. 5 below].
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Figure 5: Generization

G

e

⇓

×

×

×

×

G {e}

Remark 2.8.1. It follows immediately from the various definitions
involved that if G is of type (g, r) [cf. Definition 2.3, (i)], then the
generization G Node(G) of G with respect to Node(G) is isomorphic to
Gmodel

g,r [cf. Definition 2.3, (v)].

Proposition 2.9 (Specialization outer isomorphisms). Let S ⊆
Node(G) be a subset of Node(G). Write ΠG S

for the [pro-Σ] fun-
damental group of the generization G S of G with respect to S [cf.
Definition 2.8]. Then the following hold:

(i) There exists a natural outer isomorphism of profinite groups

ΦG S
: ΠG S

∼
−→ ΠG

which satisfies the following three conditions:

(1) ΦG S
induces a bijection between the set of cuspidal sub-

groups of ΠG S
and the set of cuspidal subgroups of ΠG.

(2) ΦG S
induces a bijection between the set of nodal subgroups

of ΠG S
and the set of nodal subgroups of ΠG associated to

the elements of Node(G) \ S.

(3) Let v ∈ Vert(G S) be a vertex of G S; Hv, Tv as in Def-
inition 2.8, (vi). Then ΦG S

induces a bijection between
the set of ΠG S

-conjugacy classes of any verticial subgroup
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Πv ⊆ ΠG S
of ΠG S

associated to v ∈ Vert(G S) and the
ΠG-conjugacy class of subgroups determined by the image
of the outer homomorphism

Π(G|Hv )�Tv
−→ ΠG

induced by the natural morphism (G|Hv)�Tv → G [cf. Defi-
nitions 2.2, (ii); 2.5, (ii)] of semi-graphs of anabelioids of
pro-Σ PSC-type.

Moreover, any two outer isomorphisms ΠG S

∼
→ ΠG that satisfy

the above three conditions differ by composition with a graphic
[cf. [CmbGC], Definition 1.4, (i)] outomorphism [cf. the dis-
cussion entitled “Topological groups” in §0] of ΠG S

.

(ii) The isomorphism

Out(ΠG)
∼
−→ Out(ΠG S

)

induced by the natural outer isomorphism of (i) determines an
injection

AutS(G) ↪→ Aut(G S)

[cf. Definition 2.6, (i)].

Proof. First, we verify assertion (i). An outer isomorphism that satis-
fies the three conditions of assertion (i) may be obtained by observing
that, after sorting through the various definitions involved, a finite étale
covering of G S amounts to the same data as a finite étale covering of
G. The final portion of assertion (i) follows immediately, in light of
the three conditions in the statement of assertion (i), from [CmbGC],
Proposition 1.5, (ii). This completes the proof of assertion (i). As-
sertion (ii) follows immediately from [CmbGC], Proposition 1.5, (ii),
together with the three conditions in the statement of assertion (i).
This completes the proof of Proposition 2.9. �

Definition 2.10. Let S ⊆ Node(G) be a subset of Node(G). Write
ΠG S

for the [pro-Σ] fundamental group of the generization G S of G
with respect to S [cf. Definition 2.8]. Then we shall refer to the natural
outer isomorphism

ΦG S
: ΠG S

∼
−→ ΠG

obtained in Proposition 2.9, (i), as the specialization outer isomorphism
with respect to S.

Proposition 2.11 (Commensurable terminality of closed sub-
groups determined by certain semi-graphs). Let H be a sub-semi-
graph of PSC-type [cf. Definition 2.2, (i)] of G and S ⊆ Node(G|H)



COMBINATORIAL ANABELIAN TOPICS I 41

[cf. Definition 2.2, (ii)] a subset of Node(G|H) that is not of sep-
arating type [cf. Definition 2.5, (i)]. Then the natural morphism
(G|H)�S → G [cf. Definitions 2.2, (ii); 2.5, (ii)] of semi-graphs of an-
abelioids of pro-Σ PSC-type determines an outer injection of profinite
groups

Π(G|H)�S
↪→ ΠG .

Moreover, the image of this outer injection is commensurably ter-
minal in ΠG [cf. the discussion entitled “Topological groups” in §0].

Proof. Write H
def
= (G|H)�S and T

def
= Node(G|H) \ S. Note that it

follows from the definition of G|H that T may be regarded as the subset
of Node(G) determined by Node(H); for simplicity, we shall identify
T with Node(H). Now it follows immediately from the definition of
“G T ” that the composite

ΠH
ΦH,S
−→ ΠG

Φ−1
G T
∼
−→ ΠG T

factors through a verticial subgroup Πv ⊆ ΠG T
of ΠG T

associated to
a vertex v ∈ Vert(G T ), and that the composite

ΠH −→ Π(G T )|v

of the resulting outer homomorphism ΠH → Πv [which is well-defined in
light of the commensurable terminality of Πv in ΠG S

— cf. [CmbGC],
Proposition 1.2, (ii)] and the natural outer isomorphism Πv ' Π(G T )|v

[cf. Remark 2.1.1] may be identified with “Φ−1
H T

” [cf. Definition 2.10].
Thus, Proposition 2.11 follows immediately from the fact that ΦH T

is an outer isomorphism, together with the fact that Πv ⊆ ΠG S
is

commensurably terminal in ΠG S
[cf. [CmbGC], Proposition 1.2, (ii)].

This completes the proof of Proposition 2.11. �

Lemma 2.12 (Restrictions of outomorphisms). Let H ⊆ ΠG be
a closed subgroup of ΠG which is normally terminal [cf. the dis-
cussion entitled “Topological groups” in §0] and α ∈ OutH(ΠG) [cf.
Definition 2.6, (ii)]. Then the following hold:

(i) There exists a lifting α̃ ∈ Aut(ΠG) of α such that α̃ preserves
the closed subgroup H ⊆ ΠG. Moreover, such a lifting α̃ is
uniquely determined up to composition with an H-inner au-
tomorphism of ΠG.

(ii) Write αH for the outomorphism [cf. the discussion entitled
“Topological groups” in §0] of H determined by the restriction
of a lifting α̃ as obtained in (i) to the closed subgroup H ⊆ ΠG.
Then the map

OutH(ΠG) −→ Out(H)
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given by assigning α 7→ αH is a homomorphism.

(iii) The homomorphism

OutH(ΠG) −→ Out(H)

obtained in (ii) depends only on the conjugacy class of the

closed subgroup H ⊆ ΠG, i.e., if we write Hγ def
= γ ·H · γ−1 for

γ ∈ ΠG, then the diagram

OutH(ΠG) −−−→ Out(H)∥∥∥
y

OutHγ

(ΠG) −−−→ Out(Hγ)

— where the upper (respectively, lower) horizontal arrow is the
homomorphism given by mapping α 7→ αH (respectively, α 7→
αHγ ), and the right-hand vertical arrow is the isomorphism ob-
tained by mapping φ ∈ Out(H) to

Hγ
Inn(γ−1)

∼
−→ H

φ
∼
−→ H

Inn(γ)
∼
−→ Hγ

— commutes.

Proof. Assertion (i) follows immediately from the normal terminality of
H in ΠG. Assertion (ii) follows immediately from assertion (i). Asser-
tion (iii) follows immediately from the various definitions involved. �

Definition 2.13. Let H ⊆ ΠG be a [closed] subgroup of ΠG which is
normally terminal [cf. the discussion entitled “Topological groups” in
§0]. Then we shall write

Out|H|(ΠG) ⊆ OutH(ΠG)

for the closed subgroup of OutH(ΠG) consisting of outomorphisms [cf.
the discussion entitled “Topological groups” in §0] α of ΠG such that the
image αH of α via the homomorphism OutH(G) → Out(H) obtained
in Lemma 2.12, (ii), is trivial. Also, we shall write

Aut|H|(G)
def
= Out|H|(ΠG) ∩ Aut(G) .

Definition 2.14.

(i) Let T ⊆ Cusp(G) be an omittable [cf. Definition 2.4, (i)] sub-
set of Cusp(G). Write ΠG•T

for the [pro-Σ] fundamental group
of G•T [cf. Definition 2.4, (ii)] and NT ⊆ ΠG for the nor-
mal closed subgroup of ΠG topologically normally generated
by the cuspidal subgroups of ΠG associated to elements of T .
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Then one verifies easily that the natural outer isomorphism
ΠG/NT

∼
→ ΠG•T

[cf. Definition 2.4, (ii)] induces a homomor-
phism OutNT (ΠG) → Out(ΠG•T

) that fits into a commutative
diagram

AutT (G) −−−→ Aut(G•T )y
y

OutNT (ΠG) −−−→ Out(ΠG•T
)

— where the vertical arrows are injective. For α ∈ OutNT (ΠG),
we shall write

αG•T
∈ Out(ΠG•T

)

for the image of α via the lower horizontal arrow in the above
commutative diagram. If, moreover, α ∈ AutT (G), then, in
light of the injectivity of the right-hand vertical arrow in the
above diagram, we shall write [by abuse of notation]

αG•T
∈ Aut(G•T )

for the image of α via the upper horizontal arrow in the above
commutative diagram.

(ii) Let H be a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)]
of G and S ⊆ Node(G|H) [cf. Definition 2.2, (ii)] a subset of
Node(G|H) that is not of separating type [cf. Definition 2.5, (i)].
Write Π(G|H)�S

for the [pro-Σ] fundamental group of (G|H)�S

[cf. Definition 2.5, (ii)]. Then the natural outer homomor-
phism Π(G|H)�S

→ ΠG is an outer injection whose image is
commensurably terminal [cf. Proposition 2.11]. Thus, it fol-
lows from Lemma 2.12, (iii), that we have a homomorphism

OutΠ(G|H)�S (ΠG) → Out(Π(G|H)�S
) that fits into a commutative

diagram

AutH�S(G)
def
= AutH(G) ∩ AutS(G) −−−→ Aut((G|H)�S)y

y
OutΠ(G|H)�S (ΠG) −−−→ Out(Π(G|H)�S

)

— where the vertical arrows are injective. For α ∈ OutΠ(G|H)�S (ΠG),
we shall write

α(G|H)�S
∈ Out(Π(G|H)�S

)

for the image of α via the lower horizontal arrow in the above
commutative diagram. If, moreover, α ∈ AutH�S(G), then, in
light of the injectivity of the right-hand vertical arrow in the
above diagram, we shall write [by abuse of notation]

α(G|H)�S
∈ Aut((G|H)�S)
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for the image of α via the upper horizontal arrow in the above
commutative diagram. Finally, if T ⊆ Cusp((G|H)�S) is an
omittable subset of Cusp((G|H)�S), then we shall write

AutH�S•T (G) ⊆ AutH�S(G)

for the inverse image of the closed subgroup AutT ((G|H)�S) ⊆
Aut((G|H)�S) of Aut((G|H)�S) in AutH�S(G) via the upper hor-
izontal arrow AutH�S(G) → Aut((G|H)�S) of the above com-
mutative diagram; thus, we have a natural homomorphism [cf.
(i)]

AutH�S•T (G) −→ Aut(((G|H)�S)•T )
α 7→ α((G|H)�S)•T

.

(iii) Let z ∈ VCN(G) be an element of VCN(G) and Πz ⊆ ΠG

a VCN-subgroup of ΠG associated to z ∈ VCN(G). Then it
follows from [CmbGC], Proposition 1.2, (ii), that the closed
subgroup Πz ⊆ ΠG is commensurably terminal. Thus, it fol-
lows from Lemma 2.12, (iii), that we obtain a homomorphism
OutΠz(ΠG)→ Out(Πz) that fits into a commutative diagram

Aut{z}(G) −−−→ Aut(Gz)y
yo

OutΠz(ΠG) −−−→ Out(Πz)

— where the left-hand vertical arrow is injective, and the right-
hand vertical arrow is an isomorphism. For α ∈ OutΠz(ΠG), we
shall write

αz ∈ Out(Πz)

for the image of α via the lower horizontal arrow in the above
commutative diagram.



COMBINATORIAL ANABELIAN TOPICS I 45

3. Synchronization of cyclotomes

In the present §, we introduce and study the notion of the second
cohomology group with compact supports of a semi-graph of anabelioids
of PSC-type [cf. Definition 3.1, (ii), (iii) below]. In particular, we show
that such cohomology groups are compatible with graph-theoretic lo-
calization [cf. Definition 3.4, Lemma 3.5 below]. This leads naturally
to a discussion of the phenomenon of synchronization among the vari-
ous cyclotomes [cf. Definition 3.8 below] arising from a semi-graph of
anabelioids of PSC-type [cf. Corollary 3.9 below].

Let Σ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-Σ PSC-type. Write G for the underlying semi-graph

of G, ΠG for the [pro-Σ] fundamental group of G, and G̃ → G for the
universal covering of G corresponding to ΠG.

Definition 3.1. Let M be a finitely generated ẐΣ-module and v ∈
Vert(G) a vertex of G.

(i) We shall write

H2(G,M)
def
= H2(ΠG,M)

— where we regard M as being equipped with the trivial action
of ΠG — and refer to H2(G,M) as the second cohomology group
of G.

(ii) Let s be a section of the natural surjection Cusp(G̃)� Cusp(G).
Given a central extension of profinite groups

1 −→M −→ E −→ ΠG −→ 1 ,

and a cusp e ∈ Cusp(G), we shall refer to a section of this exten-
sion over the edge-like subgroup Πs(e) ⊆ ΠG of ΠG determined

by s(e) ∈ Cusp(G̃) as a trivialization of this extension at the
cusp e. We shall write

H2
c (G,M)

for the set of equivalence classes

[E, (ιe : Πs(e) → E)e∈Cusp(G)]

of collections of data (E, (ιe : Πs(e) → E)e∈Cusp(G)) as follows:
(a) E is a central extension of profinite groups

1 −→M −→ E −→ ΠG −→ 1 ;

(b) for each e ∈ Cusp(G), ιe is a trivialization of this extension
at the cusp e. The equivalence relation “∼” is then defined as
follows: for two collections of data (E, (ιe)) and (E ′, (ι′e)), we
shall write (E, (ιe)) ∼ (E ′, (ι′e)) if there exists an isomorphism
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of profinite groups α : E
∼
→ E ′ over ΠG which induces the iden-

tity automorphism of M , and, moreover, for each e ∈ Cusp(G),
maps ιe to ι′e. We shall refer to H2

c (G,M) as the second coho-
mology group with compact supports of G.

(iii) We shall write

H2
c (v,M)

def
= H2

c (G|v,M)

[cf. (ii); Definition 2.1, (iii)] and refer to H2
c (v,M) as the second

cohomology group with compact supports of v.

(iv) The set H2
c (G,M) is equipped with a natural structure of ẐΣ-

module defined as follows:

• Let [E, (ιe)], [E ′, (ι′e)] ∈ H
2
c (G,M) be elements ofH2

c (G,M).
Then the fiber product E×ΠG

E ′ of the surjections E � ΠG,
E ′
� ΠG is an extension of ΠG by M ×M . Thus, the quo-

tient S of E ×ΠG
E ′ by the image of the composite

M ↪→ M ×M ↪→ E ×ΠG
E ′

m 7→ (m,−m)

is an extension of ΠG by M . On the other hand, it follows
from the definition of S that for each e ∈ Cusp(G), the
sections ιe and ι′e naturally determine a section ιSe : Πs(e) →
S over Πs(e). Thus, we define

[E, (ιe)] + [E ′, (ι′e)]
def
= [S, (ιSe )] .

Here, one may verify easily that the equivalence class [S, (ιSe )]
depends only on the equivalence classes [E, (ιe)], [E ′, (ι′e)],
and that this definition of “+” determines a module struc-
ture on H2

c (G,M).

• Let [E, (ιe)] ∈ H2
c (G,M) be an element of H2

c (G,M) and

a ∈ ẐΣ. Now the composite E×M
pr1
� E � ΠG determines

an extension of ΠG by M ×M . Thus, the quotient P of
E ×M by the image of the composite

M ↪→ M ×M ↪→ E ×M
m 7→ (m,−am)

is an extension of ΠG by M . On the other hand, it follows
from the definition of P that for each e ∈ Cusp(G), the
section ιe and the zero homomorphism Πs(e) → M natu-
rally determine a section ιPe : Πs(e) → P over Πs(e). Thus,
we define

a · [E, (ιe)]
def
= [P, (ιPe )] .

Here, one may verify easily that the equivalence class [P, (ιPe )]

depends only on the equivalence class [E, (ιe)] and a ∈ ẐΣ,
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and that this definition of “·” determines a ẐΣ-module
structure on H2

c (G,M).
Finally, we note that it follows from Lemma 3.2 below that

the ẐΣ-module “H2
c (G,M)” does not depend on the choice of

the section s. More precisely, the ẐΣ-module “H2
c (G,M)” is

uniquely determined by G and M up to the natural isomorphism
obtained in Lemma 3.2.

Lemma 3.2 (Independence of the choice of section). Let M be a

finitely generated ẐΣ-module and s, s′ sections of the natural surjection

Cusp(G̃) � Cusp(G). Write H2
c (G,M, s), H2

c (G,M, s′) for the ẐΣ-
modules “H2

c (G,M)” defined in Definition 3.1 by means of the sections

s, s′, respectively. Then there exists a natural isomorphism of ẐΣ-
modules

H2
c (G,M, s)

∼
−→ H2

c (G,M, s′) .

Proof. Let [E, (ιe)] ∈ H2
c (G,M, s) be an element of H2

c (G,M, s). Now it
follows from the various definitions involved that, for each e ∈ Cusp(G),
there exists an element γe ∈ ΠG such that Πs′(e) = γe · Πs(e) · γ

−1
e .

For each e ∈ Cusp(G), fix a lifting γ̃e ∈ E of γe ∈ ΠG and write
ι′e : Πs′(e) → E for the section given by

Πs′(e) = γe ·Πs(e) · γ
−1
e −→ E

γeaγ
−1
e 7→ γ̃eιe(a)γ̃

−1
e .

Then it follows immediately from the fact that M ⊆ E is contained in
the center Z(E) of E that this section ι′e does not depend on the choice
of the lifting γ̃e ∈ E of γe ∈ ΠG. Moreover, it follows immediately
from the various definitions involved that the assignment “[E, (ιe)] 7→

[E, (ι′e)]” determines an isomorphism of ẐΣ-modules

H2
c (G,M, s)

∼
−→ H2

c (G,M, s′) .

This completes the proof of Lemma 3.2. �

Lemma 3.3 (Exactness of certain sequences). Let M be a finitely

generated ẐΣ-module. Suppose that Cusp(G) 6= ∅. Then the natural
inclusions Πe ↪→ ΠG — where e ranges over the cusps of G, and, for
each cusp e ∈ Cusp(G), we use the notation Πe to denote an edge-like
subgroup of ΠG associated to the cusp e — determine an exact sequence

of ẐΣ-modules

HombZΣ(Πab
G ,M) −→

⊕

e∈Cusp(G)

HombZΣ(Πe,M) −→ H2
c (G,M) −→ 0 .
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Proof. Let s be a section of the natural surjection Cusp(G̃)� Cusp(G).
Then given an element

(φe : Πe →M)e∈Node(G) ∈
⊕

e∈Cusp(G)

HombZΣ(Πe,M) ,

one may construct an element

[M × ΠG (
pr2
� ΠG), (ιe : Πs(e) →M × ΠG)e∈Node(G)]

— where we write ιe : Πs(e) → M × ΠG for the section determined by
φe : Πs(e) → M and the natural inclusion Πs(e) ↪→ ΠG — of H2

c (G,M).
In particular, we obtain a map

⊕
e∈Cusp(G) HombZΣ(Πe,M)→ H2

c (G,M),

which, as is easily verified, is a homomorphism of ẐΣ-modules. Now
the exactness of the sequence in question follows immediately from the
fact that ΠG is free pro-Σ [cf. [CmbGC], Remark 1.1.3]. This completes
the proof of Lemma 3.3. �

Definition 3.4. Let M be a finitely generated ẐΣ-module.

(i) Let E be a semi-graph of anabelioids. Denote by VCN(E) the
set of components of E [i.e., the set of vertices and edges of E ]
and, for each z ∈ VCN(E), by ΠEz the fundamental group of
the anabelioid Ez of E corresponding to z ∈ VCN(E). Then we
define a central extension of G by M to be a collection of data

(E , α = (αz : M ↪→ ΠEz)z∈VCN(E), β : E/α
∼
→ G)

as follows:

(a) For each z ∈ VCN(E), αz : M ↪→ ΠEz is an injective ho-
momorphism of profinite groups whose image is contained
in the center Z(ΠEz) of ΠEz . [Thus, the image of αz is a
normal closed subgroup of ΠEz .]

(b) For each branch b of an edge e that abuts to a vertex v of E ,
we assume that the outer homomorphism ΠEe → ΠEv asso-
ciated to b is injective and fits into a commutative diagram
of [outer] homomorphisms of profinite groups

M M

αe

y
yαv

ΠEe −−−→ ΠEv

— i.e., where the lower horizontal arrow is the outer injec-
tion associated to b.

(c) Write E/α for the semi-graph of anabelioids defined as fol-
lows: We take the underlying semi-graph of E/α to be the
underlying semi-graph of E ; for each z ∈ VCN(E), we take
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the anabelioid (E/α)z of E/α corresponding to z ∈ VCN(E)
to be the anabelioid determined by the profinite group
ΠEz/Im(αz) [cf. condition (a)]; for each branch b of an
edge e that abuts to a vertex v of E , we take the associ-
ated morphism of anabelioids (E/α)e → (E/α)v to be the
morphism of anabelioids naturally determined by the mor-
phism Ee → Ev associated, relative to E , to b [cf. condition
(b)].

(d) β : E/α
∼
→ G is an isomorphism of semi-graphs of anabe-

lioids.

There is an evident notion of isomorphisms of central extensions
of G by M . Also, given a central extension of G by M , and a

section s of the natural surjection Cusp(G̃)� Cusp(G), there is
an evident notion of trivialization of the given central extension
of G by M at a cusp of G [cf. the discussion of Definition 3.1,
(ii), (iv)].

(ii) Let

1 −→M −→ E −→ ΠG −→ 1

be a central extension of ΠG by M . Then we shall define a
semi-graph of anabelioids

GE

— which we shall refer to as the semi-graph of anabelioids as-
sociated to the central extension E — as follows: We take the
underlying semi-graph of GE to be the underlying semi-graph of
G. We take the anabelioid of GE corresponding to z ∈ VCN(G)
to be the anabelioid determined by the fiber product E×ΠG

Πz

of the surjection E → ΠG and a natural inclusion Πz ↪→ ΠG —
where we use the notation Πz ⊆ ΠG to denote a VCN-subgroup
[cf. Definition 2.1, (i)] of ΠG associated to z ∈ VCN(G); for
each branch b of an edge e that abuts to a vertex v of G, if
we write (GE)v, (GE)e for the anabelioids of GE corresponding
to v, e, respectively, then we take the morphism of anabelioids
(GE)e → (GE)v associated to the branch b to be the morphism
naturally determined by the morphism of anabelioids Ge → Gv

associated, relative to G, to b.

(iii) In the notation of (ii), one may verify easily that the semi-
graph of anabelioids GE associated to the central extension E
is equipped with a natural structure of central extension of G
by M . More precisely, for each z ∈ VCN(G), if we denote
by αz : M ↪→ Π(GE)z = E ×ΠG

Πz the homomorphism deter-
mined by the natural inclusion M ↪→ E and the trivial homo-
morphism M → Πz, then there exists a natural isomorphism



50 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

β : GE/(αz)z∈VCN(G)
∼
→ G such that the collection of data

(GE, (αz)z∈VCN(G), β)

forms a central extension of G by M , which we shall refer to
as the central extension of G by M associated to the central
extension E.

Lemma 3.5 (Graph-theoretic localizability of central exten-

sions of fundamental groups). Let M be a finitely generated ẐΣ-
module. Then the following hold:

(i) (Exactness and centrality) Let

(E , α = (αz : M ↪→ ΠEz)z∈VCN(E), β : E/α
∼
→ G) (‡1)

be a central extension of G by M [cf. Definition 3.4, (i)].
Write ΠE for the pro-Σ fundamental group of E , i.e., the max-
imal pro-Σ quotient of the fundamental group of E [cf. the dis-
cussion preceding [SemiAn], Definition 2.2]. Then the compos-

ite E → E/α
β
∼
→ G determines an exact sequence of profinite

groups

1 −→M −→ ΠE −→ ΠG −→ 1 (‡2)

which is central.

(ii) (Natural isomorphism I) In the notation of (i), the central
extension of G by M associated to the central extension (‡2) [cf.
Definition 3.4, (iii)] is naturally isomorphic, as a central
extension of G by M , to (‡1).

(iii) (Natural isomorphism II) Let

1 −→M −→ E −→ ΠG −→ 1

be a central extension of ΠG by M . Then the pro-Σ fun-
damental group of the semi-graph of anabelioids GE associated
to the central extension E [cf. Definition 3.4, (ii)] — i.e., the
maximal pro-Σ quotient of the fundamental group of GE — is
naturally isomorphic, over ΠG, to E.

(iv) (Equivalence of categories) The correspondences of (i), (ii),
(iii) determine a natural equivalence of categories between
the category of central extensions of G by M and the category of
central extensions of ΠG by M . [Here, we take the morphisms
in both categories to be the isomorphisms of central extensions
of the sort under consideration.] Moreover, this equivalence ex-
tends to a similar natural equivalence of categories between
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categories of central extensions equipped with trivializations
at the cusps of G [cf. Definitions 3.1, (ii); 3.4, (i)].

Proof. First, we verify assertion (i). If Node(G) = ∅, then assertion
(i) is immediate; thus, suppose that Node(G) 6= ∅. For each connected
finite étale covering E ′ → E of E , denote by ΠE ′ the pro-Σ fundamental
group of E ′, by VCN(E ′) the set of components of E ′ [i.e., the set of
vertices and edges of E ′], and by Vert(E ′) the set of vertices of E ′; for
each z ∈ VCN(E ′), denote by E ′z the anabelioid of E ′ corresponding to
z ∈ VCN(E ′) and by ΠE ′

z
the fundamental group of E ′z. Now we claim

that

(∗1): the composite in question E → E/α
∼
→ G induces

an isomorphism between the underlying semi-graphs, as
well as an outer surjection ΠE � ΠG.

Indeed, the fact that the composite in question determines an iso-
morphism between the underlying semi-graphs follows from conditions
(c), (d) of Definition 3.4, (i). In particular, we obtain a bijection

VCN(E)
∼
→ VCN(G). Now for each z ∈ VCN(E)

∼
→ VCN(G), again by

conditions (c), (d) of Definition 3.4, (i), the composite E → E/α
∼
→ G

induces an outer surjection ΠEz � Πz, where we use the notation
Πz ⊆ ΠG to denote a VCN-subgroup [cf. Definition 2.1, (i)] of ΠG

associated to z ∈ VCN(G). Therefore, in light of the isomorphism ver-
ified above between the semi-graphs of E and G, one may verify easily
that the natural outer homomorphism ΠE → ΠG is surjective. This
completes the proof of the claim (∗1).

For each vertex v ∈ Vert(E)
∼
→ Vert(G) [cf. claim (∗1)], it follows

from the assumption that Node(G) 6= ∅ that any verticial subgroup
Πv ⊆ ΠG of ΠG associated to a vertex v ∈ Vert(G) is a free pro-Σ
group [cf. [CmbGC], Remark 1.1.3]; thus, there exists a section of the
natural surjection ΠEv � Πv. Now for each vertex v ∈ Vert(G), let
us fix such a section of the natural surjection ΠEv � Πv, hence also
— since the extension ΠEv of Πv by M is central [cf. condition (a) of

Definition 3.4, (i)] — an isomorphism tv : M × Πv
∼
→ ΠEv . Let G1 → G

be a connected finite étale Galois covering of G and write E1
def
= E×G G1.

Then it follows from the claim (∗1) that E1 is connected; moreover, one
may verify easily that the structure of central extension of G by M
on E naturally determines a structure of central extension of G1 by
M on E1, and that for each vertex v ∈ Vert(E)

∼
→ Vert(G) and each

vertex w ∈ Vert(E1)
∼
→ Vert(G1) that lies over v, the normal closed

subgroup Π(E1)w ⊆ ΠEv corresponds to M × Πw ⊆ M × Πv relative to

the isomorphism tv : M × Πv
∼
→ ΠEv fixed above, i.e., we obtain an

isomorphism tw : M × Πw
∼
→ Π(E1)w .

Now for a finite quotient M � Q of M and a connected finite étale
Galois covering G1 → G of G, we shall say that a connected finite étale



52 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

covering E2 → E of E satisfies the condition (†Q,G1
) if the following two

conditions are satisfied:

(†1Q,G1
) E2 → E factors through E1

def
= E ×G G1 → E , the resulting cov-

ering E2 → E1 is Galois, and for each vertex v ∈ VCN(E1), the
composite

M ↪→ Π(E1)v → ΠE1 � ΠE1/ΠE2

is surjective, with kernel equal to the kernel of M � Q.

(†2Q,G1
) E2 → E is Galois.

Then we claim that

(∗2): for any finite quotient M � Q of M and any
connected finite étale Galois covering G1 → G, there
exists — after possibly replacing G1 → G by a connected
finite étale Galois covering of G that factors through
G1 → G — a connected finite étale covering of E which
satisfies the condition (†Q,G1

).

Indeed, let M � Q be a finite quotient of M , G1 → G a connected

finite étale Galois covering of G, and E1
def
= E ×G G1. For each vertex

v ∈ Vert(E1)
∼
→ Vert(G1) [cf. the above discussion], denote by Π(E1)v �

Qv the quotient of Π(E1)v obtained by forming the composite

Π(E1)v

tv
∼
←M × Πv

pr1
� M � Q .

Thus, we have a natural isomorphism Q
∼
→ Qv. Next, let e be a

node of E1; b, b′ the two distinct branches of e; v, v′ the [not nec-
essarily distinct] vertices of E1 to which b, b′ abut. Then since the
quotient Q [' Qv ' Qv′ ] is finite, one may verify easily that — af-
ter possibly replacing G1 → G by a connected finite étale Galois cov-
ering of G that factors through G1 → G — the kernels of the two
composites Π(E1)e ↪→ Π(E1)v � Qv, Π(E1)e ↪→ Π(E1)v′

� Qv′ — where
Π(E1)e ↪→ Π(E1)v , Π(E1)e ↪→ Π(E1)v′

are the natural outer injections cor-
responding to b, b′, respectively — coincide. Moreover, if we write
Ne ⊆ Π(E1)e for this kernel, then it follows immediately from condi-
tion (b) of Definition 3.4, (i), that the actions of Q induced by the

natural isomorphisms Q
∼
→ Qv

∼
← Π(E1)e/Ne, Q

∼
→ Qv′

∼
← Π(E1)e/Ne

on the connected finite étale Galois covering of (E1)e corresponding to
Ne ⊆ Π(E1)e coincide. Therefore, since the underlying semi-graph of E1

is finite, by applying this argument to the various nodes of E1 and then
gluing the connected finite étale Galois coverings of the various (E1)v’s
corresponding to the quotients Π(E1)v � Qv to one another by means of
Q-equivariant isomorphisms, we obtain a connected finite étale Galois
covering E2 → E1 which satisfies the condition (†1Q,G1

).
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Write E0
2 → E for the Galois closure of the connected finite étale

covering E2 → E ; thus, since E1 is Galois over E , we have connected
finite étale Galois coverings E0

2 → E2 → E1 of E1. Now it follows im-
mediately from the condition (†1Q,G1

) that E2 → E1 induces an isomor-
phism between the underlying semi-graphs. In particular, it follows
from Lemma 3.6 below, in light of the claim (∗1), that the natural
outer homomorphisms ΠE2 ↪→ ΠE1 � ΠG1 induce outer isomorphisms
ΠE2/Π

vert
E2

∼
→ ΠE1/Π

vert
E1

∼
→ ΠG1/Π

vert
G1
' πtop

1 (G1)
Σ, where we write

“Πvert
(−) ⊆ Π(−)” for the normal closed subgroup of “Π(−)” topologically

normally generated by the verticial subgroups and πtop
1 (G1)

Σ for the
pro-Σ completion of the [discrete] topological fundamental group of the
underlying semi-graph G1 of G1. On the other hand, since for each ver-
tex v ∈ Vert(E)

∼
→ Vert(G) and each vertex w ∈ Vert(E1)

∼
→ Vert(G1)

that lies over v, the isomorphism tw : M ×Πw
∼
→ Π(E1)w arises from the

isomorphism tv : M × Πv
∼
→ ΠEv , one may verify easily that the closed

subgroup Π(E2)w ⊆ ΠEv is normal. [Here, we regard w ∈ Vert(E1) as

an element of Vert(E2) by the bijection Vert(E2)
∼
→ Vert(E1) induced

by E2 → E1.] In particular, it follows immediately that the connected
finite étale Galois covering E0

2 → E2 arises from a normal open sub-
group of the quotient ΠE2 � ΠE2/Π

vert
E2

∼
→ π1(G1)

Σ. Therefore, there
exists a connected finite étale Galois covering G ′

1 → G that factors
through G1 → G [and arises from a normal open subgroup of the quo-
tient ΠG1 � πtop

1 (G1)
Σ] such that the connected finite étale covering

E2×G1 G
′
1 of E is Galois. Now it follows immediately from the fact that

E2 → E satisfies the condition (†1Q,G1
) that E2×G1 G

′
1 → E satisfies both

conditions (†1Q,G′
1
) and (†2Q,G′

1
), as desired. This completes the proof of

the claim (∗2).
Next, we claim that

(∗3): the composite E → E/α
∼
→ G, together with the

composites

M ↪→ ΠEv → ΠE

for v ∈ Vert(E), determine an exact sequence of profinite
groups

1 −→M −→ ΠE −→ ΠG −→ 1 .

Indeed, it follows immediately from the claim (∗2) — by arguing as
in the final portion of the proof of (∗2) — that any connected finite
étale Galois covering of E is a subcovering of a covering of E which
satisfies the condition (†Q,G1

) for some finite quotient M � Q of M
and some connected finite étale Galois covering G1 of G. Therefore,
the exactness of the sequence in question follows immediately from
the various definitions involved, together with the claim (∗1). This
completes the proof of the claim (∗3).

Finally, we claim that
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(∗4): the exact sequence of profinite groups

1 −→M −→ ΠE −→ ΠG −→ 1

of (∗3) is central, i.e., if we write ρ : ΠG → Aut(M)
for the representation of ΠG on M determined by this
extension ΠE , then ρ is trivial.

Indeed, it follows immediately from condition (a) of Definition 3.4, (i),
that Πvert

G ⊆ Ker(ρ), where we write Πvert
G ⊆ ΠG for the normal closed

subgroup of ΠG topologically normally generated by the verticial sub-
groups of ΠG. On the other hand, it follows immediately from con-
dition (b) of Definition 3.4, (i), by “parallel transporting” along loops
on G, that the restriction to πtop

1 (G) ⊆ πtop
1 (G)Σ of the representa-

tion [ΠG � ΠG/Π
vert
G

∼
→] πtop

1 (G)Σ → Aut(M) [cf. Lemma 3.6 below]

induced by ρ — where we write πtop
1 (G) for the [discrete] topological

fundamental group of the semi-graph G and πtop
1 (G)Σ for the pro-Σ

completion of πtop
1 (G) — is trivial. In particular, since the subgroup

πtop
1 (G) ⊆ πtop

1 (G)Σ is dense, the representation ρ is trivial, as desired.
This completes the proof of the claim (∗4), hence also the proof of
assertion (i).

Assertion (ii) follows immediately from the various definitions in-
volved. Next, we verify assertion (iii). It follows immediately from
assertion (i), together with Definition 3.4, (iii), that if we write ΠGE

for the pro-Σ fundamental group of GE, then we have a natural exact
sequence of profinite groups

1 −→M −→ ΠGE
−→ ΠG −→ 1 .

On the other hand, it follows immediately from the definition of GE

that one may construct a tautological profinite covering of GE [i.e., a
pro-object of the category B(GE) that appears in the discussion fol-
lowing [SemiAn], Definition 2.1] equipped with a tautological action by
E. In particular, one obtains an outer surjection ΠGE

� E that is
compatible with the respective outer surjections to ΠG. Thus, one con-
cludes from the “Five Lemma” that this outer surjection ΠGE

� E is
an outer isomorphism, as desired. This completes the proof of assertion
(iii). Assertion (iv) follows immediately, in light of assertions (i), (ii),
(iii), from the various definitions involved. This completes the proof of
Lemma 3.5. �

Lemma 3.6 (Quotients by verticial subgroups). Let H be a semi-
graph of anabelioids. Write ΠH for the pro-Σ fundamental group of H
[i.e., the pro-Σ quotient of the fundamental group of H] and Πvert

H ⊆ ΠH

for the normal closed subgroup of ΠH topologically normally generated
by the verticial subgroups of ΠH. Then the natural injection Πvert

H ↪→
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ΠH determines an exact sequence of profinite groups

1 −→ Πvert
H −→ ΠH −→ πtop

1 (H)Σ −→ 1

— where we write πtop
1 (H)Σ for the pro-Σ completion of the [discrete]

topological fundamental group πtop
1 (H) of the underlying semi-graph H

of H.

Proof. This follows immediately from the various definitions involved.
�

Theorem 3.7 (Properties of the second cohomology group with
compact supports). Let Σ be a nonempty set of prime numbers,
G a semi-graph of anabelioids of pro-Σ PSC-type, and M a finitely

generated ẐΣ-module. Then the following hold:

(i) (Change of coefficients) There exists a natural isomor-

phism of ẐΣ-modules

H2
c (G,M)

∼
−→ H2

c (G, ẐΣ)⊗bZΣ M

that is functorial with respect to isomorphisms of the pair
(G,M). If, moreover, Cusp(G) = ∅, then there exists a nat-

ural isomorphism of ẐΣ-modules

H2
c (G,M)

∼
−→ H2(G,M)

that is functorial with respect to isomorphisms of the pair
(G,M).

(ii) (Structure as an abstract profinite group) The second co-
homology group with compact supports H2

c (G,M) of G is [non-
canonically] isomorphic to M .

(iii) (Synchronization with respect to generization) Let S ⊆
Node(G) be a subset of Node(G). Then the specialization

outer isomorphism ΦG S
: ΠG S

∼
→ ΠG with respect to S [cf.

Definition 2.10] determines a natural isomorphism

H2
c (G,M)

∼
−→ H2

c (G S,M)

that is functorial with respect to isomorphisms of the triple
(G, S,M).

(iv) (Synchronization with respect to “surgery”) Let H be
a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)] of G,
S ⊆ Node(G|H) [cf. Definition 2.2, (ii)] a subset of Node(G|H)
that is not of separating type [cf. Definition 2.5, (i)], and
T ⊆ Cusp((G|H)�S) [cf. Definition 2.5, (ii)] an omittable [cf.
Definition 2.4, (i)] subset of Cusp((G|H)�S). Then there exists
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a natural isomorphism — given by “extension by zero”
—

H2
c (((G|H)�S)•T ,M)

∼
−→ H2

c (G,M)

[cf. Definition 2.4, (ii)] that is functorial with respect to iso-
morphisms of the quintuple (G,H, S, T,M). In particular, for
each vertex v ∈ Vert(G) of G, there exists a natural isomor-

phism of ẐΣ-modules

H2
c (v,M)

∼
−→ H2

c (G,M)

[cf. Remark 2.5.1, (ii)] that is functorial with respect to iso-
morphisms of the triple (G, v,M).

(v) (Homomorphisms induced by finite étale coverings) Let
H → G be a connected finite étale covering of G. Then the
image of the natural homomorphism

H2
c (G,M) −→ H2

c (H,M)

is given by
[ΠG : ΠH] ·H2

c (H,M) .

Proof. Assertion (iii) follows immediately from condition (1) of Propo-
sition 2.9, (i).

Next, we verify assertions (i), (ii) in the case where Cusp(G) 6= ∅.

The existence of a natural isomorphism H2
c (G,M)

∼
→ H2

c (G, Ẑ
Σ)⊗bZΣM

follows immediately from Lemma 3.3. On the other hand, the fact
that H2

c (G,M) is [noncanonically] isomorphic to M follows immedi-
ately from Lemma 3.3, together with the following well-known facts
[cf. [CmbGC], Remark 1.1.3]:

(A) ΠG is a free pro-Σ group.

(B) For any cusp e0 ∈ Cusp(G) of G, the natural homomorphism of

ẐΣ-modules ⊕

e∈Cusp(G)\{e0}

Πe −→ Πab
G

is a split injection of free ẐΣ-modules [cf. the discussion entitled
“Topological groups” in §0], and its image contains the image of
Πe0 in Πab

G .

This completes the proof of assertions (i), (ii) in the case where Cusp(G) 6=
∅.

Next, we verify assertions (i), (ii) in the case where Cusp(G) = ∅.
The existence of a natural isomorphism H2

c (G,M)
∼
→ H2(G,M) is well-

known [cf., e.g., [NSW], Theorem 2.7.7]. Now it follows from assertion
(iii) that to verify assertions (i), (ii) in the case where Cusp(G) = ∅, we
may assume without loss of generality — by replacing G by G Node(G)
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— that Node(G) = ∅. Then the existence of a natural isomorphism

H2
c (G,M)

∼
→ H2

c (G, Ẑ
Σ) ⊗bZΣ M and the fact that H2

c (G,M) is [non-
canonically] isomorphic to M follow immediately from the existence

of a natural isomorphism H2
c (G,M)

∼
→ H2(G,M) and the fact that

any compact Riemann surface of genus 6= 0 is a “K(π, 1)” space [i.e.,
its universal covering is contractible], together with the well-known
structure of the second cohomology group of a compact Riemann sur-
face. This completes the proof of assertions (i), (ii) in the case where
Cusp(G) = ∅.

Next, we verify assertion (iv) in the case where H = G and S = ∅,
i.e., ((G|H)�S)•T = G•T . Thus, suppose that H = G and S = ∅. Now

define a homomorphism of ẐΣ-modules

H2
c (G•T ,M) −→ H2

c (G,M)

as follows: Let G̃•T → G•T be a universal covering of G•T which is

compatible [in the evident sense] with the universal covering G̃ → G

of G, s• a section of the natural surjection Cusp(G̃•T ) � Cusp(G•T ),
and [E•, (ι•e : Πs•(e) → E•)e∈Cusp(G•T )] ∈ H2

c (G•T ,M) an element of
H2

c (G•T ,M). Write E for the fiber product of the surjection E•
� ΠG•T

and the natural surjection ΠG � ΠG•T
[arising from the compatibility

of the respective universal coverings]. Next, we introduce notation as
follows:

• for e ∈ Cusp(G•T ) (= Cusp(G) \ T ⊆ Cusp(G)), denote by
ιe : Πe → E — where we use the notation Πe ⊆ ΠG to denote
an edge-like subgroup of ΠG associated to e such that the com-
posite Πe ↪→ ΠG � ΠG•T

determines an isomorphism of Πe with
Πs•(e) ⊆ ΠG•T

— the section over Πe naturally determined by
the composite

Πe
∼
−→ Πs•(e)

ι•e−→ E• ,

and

• for e ∈ Cusp(G) \ Cusp(G•T ) (= T ⊆ Cusp(G)), denote by
ιe : Πe → E — where we use the notation Πe ⊆ ΠG to denote an
edge-like subgroup of ΠG associated to e — the section over Πe

naturally determined by the trivial homomorphism Πe → E•.

Then it follows immediately from the various definitions involved that
the assignment “[E•, (ι•e)e∈Cusp(G•T )] 7→ (E, (ιe)e∈Cusp(G))” determines a

homomorphism of ẐΣ-modules

H2
c (G•T ,M) −→ H2

c (G,M) ,

as desired.
Next, we verify that this homomorphism H2

c (G•T ,M) → H2
c (G,M)

is an isomorphism. First, let us observe that it follows from assertion
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(ii) that, to verify that the homomorphism in question is an isomor-
phism, it suffices to verify that it is surjective. The rest of the proof of
assertion (iv) in the case where H = G and S = ∅ is devoted to veri-
fying this surjectivity. To verify the desired surjectivity, by induction
on the cardinality T ] of the finite set T , we may assume without loss
of generality that T ] = 1, i.e., T = {e0} for some e0 ∈ Cusp(G).

To verify the desired surjectivity, let [E, (ιe)e∈Cusp(G)] ∈ H2
c (G,M)

be an element of H2
c (G,M). Then since ΠG is a free pro-Σ group,

there exists a continuous section ΠG → E of the surjection E � ΠG,
hence also — since the extension E of ΠG is central — an isomorphism
M × ΠG

∼
→ E. Write ΠG � Π for the maximal cuspidally central

quotient [cf. [AbsCsp], Definition 1.1, (i)] relative to the surjection
ΠG � ΠG•T

, EΠ for the quotient of E by the normal closed subgroup of

E corresponding to {1}×Ker(ΠG � Π) ⊆M×ΠG [thus, EΠ
∼
←M×Π],

and N ⊆ EΠ for the image of the composite

Πs(e0)

ιe0
↪→ E � EΠ .

Now we claim that N ⊆ EΠ is contained in the center Z(EΠ) of EΠ,
hence also normal in EΠ. Indeed, since the composite

Πs(e0) ↪→ ΠG � Π

is injective, and its image coincides with the kernel of the natural sur-
jection Π� ΠG•T

, it holds that the image of the composite

Πs(e0)

ιe0
↪→ E � EΠ

∼
←M × Π

is contained in M ×Ker(Π→ ΠG•T
). On the other hand, since the ex-

tension E of ΠG is central, it follows from the definition of the quotient
Π of ΠG that the image of M×Ker(Π� ΠG•T

) in EΠ via M×Π
∼
→ EΠ

is contained in the center Z(EΠ) of EΠ. This completes the proof of
the above claim.

Now it follows from the definition of N ⊆ EΠ, together with the
above claim, that we obtain a commutative diagram of profinite groups

1 −−−→ M −−−→ E −−−→ ΠG −−−→ 1∥∥∥
y

y
1 −−−→ M −−−→ EΠ/N −−−→ ΠG•T

−−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are
surjective. In particular, we obtain an extension EΠ/N of ΠG•T

by M ,
which is central since the extension E is central. For e ∈ Cusp(G•T ) =
Cusp(G) \ {e0}, write Π•

e ⊆ ΠG•T
for the edge-like subgroup of ΠG•T

[associated to e ∈ Cusp(G•T )] determined by the image of Πs(e) ⊆ ΠG

and ι•e for the section Π•
e → EΠ/N over Π•

e determined by ιe : Πs(e) →
E. Then it follows immediately from the various definitions involved
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that the image of

[EΠ/N, (ι
•
e)e′∈Cusp(G•T )] ∈ H

2
c (G•T ,M)

in H2
c (G,M) is [E, (ιe)e∈Cusp(G)] ∈ H

2
c (G,M). This completes the proof

of the desired surjectivity and hence of assertion (iv) in the case where
H = G and S = ∅.

Next, to complete the proof of assertion (iv) in the general case,
one verifies immediately that it suffices to verify assertion (iv) in the
case where T = ∅, i.e., ((G|H)�S)•T = (G|H)�S. Thus, suppose that

T = ∅. Write H
def
= (G|H)�S. To define a natural homomorphism of ẐΣ-

modules H2
c (H,M) → H2

c (G,M), let H̃ → H be a universal covering
of H which is compatible [in the evident sense] with the universal cov-

ering G̃ → G of G, sH a section of the natural surjection Cusp(H̃) �
Cusp(H), and [EH, (ιHe : ΠsH(e) → EH)e∈Cusp(H)] ∈ H2

c (H,M) an ele-
ment of H2

c (H,M). Since the extension EH of ΠH by M is central, the
section ιHe : ΠsH(e) → EH naturally determines an isomorphism

M × ΠsH(e)
∼
−→ EH ×ΠH

ΠsH(e)

of the direct product M ×ΠsH(e) with the fiber product EH×ΠH
ΠsH(e)

of the surjection EH
� ΠH and the natural inclusion ΠsH(e) ↪→ ΠH.

Write GEH for the semi-graph of anabelioids associated to the central
extension EH [cf. Definition 3.4, (ii)]. Then one may define a central
extension of G by M

(E , α, β : E/α
∼
→ G)

[cf. Definition 3.4, (i)] whose restriction to H, relative to the isomor-

phism β : E/α
∼
→ G, is isomorphic to the semi-graph of anabelioids

GEH as follows: We take the underlying semi-graph of E to be the
underlying semi-graph of G; for each vertex v ∈ Vert(G|H), we take
the anabelioid Ev of E corresponding to the vertex v ∈ Vert(G|H) to
be the anabelioid (GEH)v of GEH corresponding to the vertex v; for
each vertex v ∈ Vert(G) \ Vert(G|H), we take the anabelioid Ev of E
corresponding to v ∈ Vert(G) \ Vert(G|H) to be the anabelioid asso-
ciated to the profinite group M × Πv. Then the above isomorphisms
M ×ΠsH(e)

∼
→ EH×ΠH

ΠsH(e) induced by the various ιHe ’s naturally de-
termine the remaining data [i.e., consisting of anabelioids associated to
edges and morphisms of anabelioids associated to branches] necessary
to define a semi-graph of anabelioids E which is naturally equipped with
a structure of central extension of G by M whose restriction to H is
naturally isomorphic to the semi-graph of anabelioids GEH, as desired.

Now it follows from Lemma 3.5, (i), that if we denote by ΠE the pro-
Σ fundamental group of E — i.e., the maximal pro-Σ quotient of the
fundamental group of E — then ΠE is a central extension of ΠG by M .
Thus, it follows from the equivalences of categories of Lemma 3.5, (iv),
that the sections ιHe — where e ranges over the cusps of G that abut to a
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vertex of G|H — and the tautological sections Πe′ ↪→M ×Πe′ = ΠEe′
—

where e′ ranges over the cusps of G that do not abut to a vertex of G|H —
naturally determine an equivalence class [ΠE , (ιe)e∈Cusp(G)] ∈ H

2
c (G,M).

In particular, we obtain a map

H2
c (H,M) −→ H2

c (G,M)

by assigning [EH, (ιHe )e∈Cusp(H)] 7→ [ΠE , (ιe)e∈Cusp(G)]. Moreover, it fol-
lows immediately from the various definitions involved that this map

is a homomorphism of ẐΣ-modules, as desired.
Next, we verify that this homomorphism H2

c (H,M) → H2
c (G,M)

is an isomorphism. Since, for any vertex v ∈ Vert(G|H), the natural
morphism G|v → G factors through (G|H)�S = H → G, by replacing H
by G|v [cf. Remark 2.5.1, (ii)], we may assume without loss of generality
that H = G|v. Moreover, if Node(G) = ∅, then assertion (iv) in the
case where T = ∅ is immediate; thus, we may assume without loss
of generality that Node(G) 6= ∅. On the other hand, it follows from
assertion (ii) that to verify that the homomorphism in question is an
isomorphism, it suffices to verify that it is surjective. The rest of the
proof of assertion (iv) in the case where T = ∅ is devoted to verifying
the surjectivity of the homomorphism H2

c (v,M)→ H2
c (G,M).

Let J be a semi-graph of anabelioids of pro-Σ PSC-type such that
there exist a vertex w ∈ Vert(J ) and an “omittable” cusp e ∈ C(w)
[i.e., a cusp that abuts to w such that {e} is omittable] such that J•{e}

is isomorphic to G, and, moreover, the isomorphism J•{e}
∼
→ G induces

an isomorphism of (J |w)•{e}
∼
→ G|v. [Note that one may verify easily

that such a semi-graph of anabelioids of pro-Σ PSC type always exists.]
Then it follows immediately from assertion (iv) in the case where H =
G and S = ∅, together with the various definitions involved, that we
have a commutative diagram

H2
c (v,M)

∼
−−−→ H2

c ((J |w)•{e},M)
∼
−−−→ H2

c (w,M)y
y

H2
c (G,M)

∼
−−−→ H2

c (J•{e},M)
∼
−−−→ H2

c (J ,M)

— where the left-hand horizontal arrows are isomorphisms induced by
the isomorphisms (J |w)•{e}

∼
→ G|v, J•{e}

∼
→ G, respectively, and the

right-hand horizontal arrows are isomorphisms obtained by applying
assertion (iv) in the case where H = G and S = ∅. In particular,
to verify the desired surjectivity of the homomorphism H2

c (v,M) →
H2

c (G,M), by replacing G (respectively, v) by J (respectively, w), we
may assume without loss of generality that C(v) 6= ∅.

To verify the desired surjectivity of the homomorphism H2
c (v,M)→

H2
c (G,M) in the case where C(v) 6= ∅, let [E, (ιe)e∈Cusp(G)] ∈ H

2
c (G,M)

be an element of H2
c (G,M). Now it follows from Lemma 3.3, together

with the assumption that C(v) 6= ∅, that we have two exact sequences
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of ẐΣ-modules

HombZΣ(Πab
G ,M) −→

⊕

e∈Cusp(G)

HombZΣ(Πe,M) −→ H2
c (G,M) −→ 0 ;

HombZΣ(Πab
G|v ,M) −→

⊕

e∈Cusp(G|v)

HombZΣ(Πe,M) −→ H2
c (v,M) −→ 0 .

Let e0 ∈ C(v) be a cusp of G that abuts to v. Here, note that it fol-
lows immediately from the definition of G|v that e0 may be regarded
as a cusp of G|v. Then it follows immediately from the facts (A), (B)
used in the proof of assertions (i), (ii) in the case where Cusp(G) 6= ∅
that there exists a lifting (φe)e∈Cusp(G) ∈

⊕
e∈Cusp(G) HombZΣ(Πe,M)

of [E, (ιe)e∈Cusp(G)] ∈ H2
c (G,M) [with respect to the first exact se-

quence of the above display] such that if e 6= e0, then φe = 0. Write
(ψe)e∈Cusp(G|v) ∈

⊕
e∈Cusp(G|v) HombZΣ(Πe,M) for the element such that

ψe0 = φe0 , ψe = 0 for e 6= e0. Then it follows immediately from
the definitions of the above exact sequences and the homomorphism
H2

c (v,M) → H2
c (G,M) in question that the image of (ψe)e∈Cusp(G|v) ∈⊕

e∈Cusp(G|v) HombZΣ(Πe,M) inH2
c (v,M) is mapped to [E, (ιe)e∈Cusp(G)] ∈

H2
c (G,M) via the homomorphism H2

c (v,M) → H2
c (G,M) in question.

This completes the proof of assertion (iv) in the case where T = ∅,
hence also of assertion (iv) in the general case.

Finally, we verify assertion (v). If Cusp(G) = ∅, then it follows im-
mediately from a similar argument to the argument used in the proof
of assertions (i), (ii) in the case where Cusp(G) = ∅, together with
the well-known structure of the second cohomology group of a com-
pact Riemann surface, that assertion (v) holds. Next, suppose that
Cusp(G) 6= ∅. Write G} for the double of G [cf. [CmbGC], Proposition
2.2, (i)] — i.e., the analogue in the theory of semi-graphs of anabelioids
of pro-Σ PSC-type to the well-known “double” of a Riemann surface
with boundary. Write H} for the double of H. Then it follows from
the various definitions involved that the connected finite étale covering
H → G determines a connected finite étale coveringH} → G} of degree
[ΠG : ΠH]. Next, let us observe G (respectively, H) may be naturally
identified with the restriction [cf. Definition 2.2, (ii)] of G} (respec-
tively, H}) to a suitable sub-semi-graph of PSC-type of the underlying
semi-graph of G} (respectively, H}). Thus, it follows from assertion

(iv) that we have a commutative diagram of ẐΣ-modules

H2
c (G,M)

∼
−−−→ H2

c (G},M)y
y

H2
c (H,M)

∼
−−−→ H2

c (H},M)



62 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

— where the horizontal arrows are the isomorphisms of assertion (iv),
and the vertical arrows are the homomorphisms induced by the con-
nected finite étale coverings H → G, H} → G}, respectively — and
hence that assertion (v) in the case where Cusp(G) 6= ∅ follows immedi-
ately from assertion (v) in the case where Cusp(G) = ∅. This completes
the proof of assertion (v). �

Definition 3.8.

(i) We shall write

ΛG
def
= HombZΣ(H2

c (G, ẐΣ), ẐΣ)

and refer to ΛG as the cyclotome associated to G. For a vertex
v ∈ Vert(G) of G, we shall write

Λv
def
= HombZΣ(H2

c (v, ẐΣ), ẐΣ)

and refer to Λv as the cyclotome associated to v ∈ Vert(G).
Note that it follows from Theorem 3.7, (ii), that the cyclotomes

ΛG and Λv are free ẐΣ-modules of rank 1.

(ii) We shall write

χG : Aut(G) −→ Aut(ΛG) ' (ẐΣ)∗

for the natural homomorphism induced by the natural action of

Aut(G) on H2
c (G, ẐΣ) and refer to χG as the pro-Σ cyclotomic

character of G. For a vertex v ∈ Vert(G) of G, we shall write

χv
def
= χG|v : Aut(G|v) −→ Aut(Λv) ' (ẐΣ)∗

and refer to χv as the pro-Σ cyclotomic character of v.

Remark 3.8.1. One verifies easily that if l ∈ Σ, then the composite

Aut(G)
χG
→ (ẐΣ)∗ � Z∗

l

coincides with the pro-l cyclotomic character of Aut(G) defined in the
statement of [CmbGC], Lemma 2.1.

Corollary 3.9 (Synchronization of cyclotomes). Let Σ be a nonempty
set of prime numbers and G a semi-graph of anabelioids of pro-Σ PSC-
type. Then the following hold:
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(i) (Synchronization with respect to generization) Let S ⊆
Node(G) be a subset of Node(G). Then the specialization outer

isomorphism ΦG S
: ΠG S

∼
→ ΠG with respect to S [cf. Defini-

tion 2.10] determines a natural isomorphism

ΛG S

∼
−→ ΛG

that is functorial with respect to isomorphisms of the pair
(G, S).

(ii) (Synchronization with respect to “surgery”) Let H be
a sub-semi-graph of PSC-type [cf. Definition 2.2, (i)] of G,
S ⊆ Node(G|H) [cf. Definition 2.2, (ii)] a subset of Node(G|H)
that is not of separating type [cf. Definition 2.5, (i)], and
T ⊆ Cusp((G|H)�S) [cf. Definition 2.5, (ii)] an omittable [cf.
Definition 2.4, (i)] subset of Cusp((G|H)�S). Then there exists
a natural isomorphism — given by “extension by zero”
—

ΛG
∼
−→ Λ((G|H)�S)•T

[cf. Definition 2.4, (ii)] that is functorial with respect to iso-
morphisms of the quadruple (G,H, S, T ). In particular, [by tak-
ing the inverse of this isomorphism] we obtain, for each vertex

v ∈ Vert(G) of G, a natural isomorphism of ẐΣ-modules

syn v : Λv
∼
−→ ΛG

that is functorial with respect to isomorphisms of the pair
(G, v).

(iii) (Synchronization with respect to finite étale coverings)
Let H → G be a connected finite étale covering of G. Then there
exists a natural isomorphism

ΛH
∼
−→ ΛG

that is functorial with respect to isomorphisms of the pair
(G,H).

(iv) (Synchronization of cyclotomic characters) Let v ∈ Vert(G)
be a vertex of G and α ∈ Aut{v}(G) [cf. Definition 2.6, (i)].
Then it holds that

χG(α) = χv(αG|v)

[cf. Definitions 2.14, (ii); 3.8, (ii); Remark 2.5.1, (ii)].

(v) (Synchronization associated to branches) Let e ∈ Edge(G)
be an edge of G, b a branch of e that abuts to a vertex v ∈ V(e),
and Πe ⊆ ΠG an edge-like subgroup of ΠG associated to e ∈
Edge(G). Then there exists a natural isomorphism

syn b : Πe
∼
−→ Λv
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that is functorial with respect to isomorphisms of the quadruple
(G, b, e, v).

(vi) (Difference between two synchronizations associated to
the two branches of a node) Let e ∈ Node(G) be a node of
G with branches b1 6= b2 that abut to vertices v1, v2 ∈ Vert(G),
respectively. Then the two composites

Πe

syn b1
∼
−→ Λv1

syn v1
∼
−→ ΛG ; Πe

syn b2
∼
−→ Λv2

syn v2
∼
−→ ΛG

differ by the automorphism of ΛG given by multiplication by

−1 ∈ ẐΣ.

Proof. Assertion (i) (respectively, (ii)) follows immediately from The-
orem 3.7, (iii) (respectively, Theorem 3.7, (iv)). Assertion (iv) follows
immediately from assertion (ii).

Next, we verify assertion (iii). It follows immediately from Theo-

rem 3.7, (v), that the homomorphism of ẐΣ-modules ΛH → ΛG ob-

tained by applying the functor “HombZΣ(−, ẐΣ)” to the induced homo-

morphismH2
c (G, ẐΣ)→ H2

c (H, Ẑ
Σ) and dividing by the index [ΠG : ΠH]

is an isomorphism. This completes the proof of assertion (iii).
Next, we verify assertion (v). First, we observe that to verify as-

sertion (v), by replacing G by G|v and e ∈ Edge(G) by the cusp of
G|v corresponding to b, we may assume without loss of generality that

e ∈ Cusp(G). Then we have homomorphisms of ẐΣ-modules

HombZΣ(Πe,Πe) ↪→
⊕

e′∈Cusp(G)

HombZΣ(Πe′ ,Πe)� H2
c (G,Πe)

∼
→ HombZΣ(ΛG,Πe)

— where the first arrow is the natural inclusion into the component
indexed by e, and the second arrow is the surjection appearing in the
exact sequence of Lemma 3.3 in the case where M = Πe. Here, we note
that it follows immediately from the facts (A), (B) used in the proof
of Theorem 3.7, (i), (ii), that the composite of these homomorphisms
is an isomorphism. Therefore, we obtain a natural isomorphism

syn b : Πe
∼
−→ ΛG

by forming the inverse of the image of the identity automorphism of
Πe via the composite of the homomorphisms of the above display. This
completes the proof of assertion (v).

Finally, we verify assertion (vi). First, we observe that one may
verify easily that there exist

• a semi-graph of anabelioids of pro-Σ PSC-type H†,

• a sub-semi-graph of PSC-type K† of the underlying semi-graph
of H†,



COMBINATORIAL ANABELIAN TOPICS I 65

• an omittable subset S† ⊆ Cusp((H†)|K†), and

• an isomorphism

((H†)|K†)•S†
∼
−→ G

such that the node eH† ∈ Node(H†) of H† corresponding, relative to

the isomorphism ((H†)|K†)•S†
∼
→ G, to the node e ∈ Node(G) is not of

separating type. [Note that it follows immediately from the various def-

initions involved that Node(G)
∼
← Node(((H†)|K†)•S†) may be regarded

as a subset of Node(H†).] Thus, it follows immediately from assertions
(i), (ii) — by replacing G (respectively, e) by (H†) Node(H†)\{e

H†} (re-

spectively, eH†) — that to verify assertion (vi), we may assume without
loss of generality that Node(G) = {e}, and that e is not of separating
type.

Next, we observe that one may verify easily that there exists a semi-
graph of anabelioids of pro-Σ PSC-type H‡ such that

• Node(H‡) consists of precisely two elements eH‡, e′H‡;

• V(eH‡) consists of precisely one element vH‡ of type (0, 3) [cf.
Definition 2.3, (iii)].

• e′H‡ is of separating type;

• (H‡) {e′
H‡}

is isomorphic to G.

Thus, if we write K‡ for the unique sub-semi-graph of PSC-type of the
underlying semi-graph of H‡ whose set of vertices = {vH‡}, then it
follows immediately from assertions (i), (ii) — by replacing G (respec-
tively, e) by H‡|K‡ (respectively, eH‡) — that to verify assertion (vi),
we may assume without loss of generality that Node(G) = {e}, that e
is not of separating type [so Vert(G) consists of precisely one element],
and that G is of type (1, 1).

Write v ∈ Vert(G) for the unique vertex of G. Note that it follows im-
mediately from the various assumptions on G that G|v is of type (0, 3).
Write e1, e2 ∈ Cusp(G|v) for the cusps of G|v corresponding, respec-
tively, to the two branches b1, b2 of the node e; write e3 ∈ Cusp(G|v)
for the unique element of Cusp(G|v) \ {e1, e2}. Then since G|v is of type
(0, 3), there exists a graphic isomorphism of G|v with the semi-graph
of anabelioids of pro-Σ PSC-type [without nodes] determined by the
tripod [cf. the discussion entitled “Curves” in §0] P1

k \ {0, 1,∞} over
an algebraically closed field k of characteristic 6∈ Σ such that the cusps
e1, e2 of G|v correspond to the cusps 0, ∞ of P1

k \ {0, 1,∞}, respec-
tively, relative to the graphic isomorphism. Thus, by considering the
automorphism of P1

k \ {0, 1,∞} over k given by “t 7→ 1/t”, we obtain
an automorphism τv ∈ Aut(G|v) of G|v that maps e1 7→ e2, e2 7→ e1.
Moreover, since this automorphism of P1

k \ {0, 1,∞} induces an auto-
morphism of the stable log curve of type (1, 1) obtained by identifying
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the cusps 0 and ∞ of P1
k \ {0, 1,∞}, we also obtain an automorphism

τG ∈ Aut(G) of G. Note that it follows immediately from the definition
of τv, together with the well-known structure of the étale fundamental
group of the tripod P1

k \ {0, 1,∞}, that the automorphism τv induces
the identity automorphism of the anabeloid (G|v)e3 corresponding to
e3.

Next, let us observe that it follows immediately from the definition
of G|v, together with the proof of assertion (v), that for i = 1, 2, there

exists a natural isomorphism Πe
∼
→ Πei

— where we use the notations
Πe, Πei

to denote edge-like subgroups of ΠG, ΠG|v associated to e, ei,
respectively — such that the composite

Πe
∼
−→ Πei

syn b′
i

∼
−→ Λv [= ΛG|v ]

syn v
∼
−→ ΛG

— where we write b′i for the [unique] branch of ei — coincides with the
composite in question

Πe

syn bi
∼
−→ Λv

syn v
∼
−→ ΛG .

Next, let us observe that it follows immediately from the functori-
ality portion of assertion (v) that the automorphisms τv, τG induce a

commutative diagram of ẐΣ-modules

Πe
∼
−−−→ Πe1

syn b′
i−−−→ Λv [= ΛG|v ]

syn v
−−−→ ΛG

o

y o

y
yo

yo

Πe
∼
−−−→ Πe2

syn b′
2−−−→ Λv [= ΛG|v ]

syn v
−−−→ ΛG

— where the vertical arrows are the isomorphisms induced by the au-
tomorphisms τv, τG. Now by considering the well-known local structure
of a stable log curve in a neighborhood of a node, one may verify easily
that the left-hand vertical arrow in the above diagram is the automor-

phism of Πe given by multiplication by −1 ∈ ẐΣ. Thus, to complete
the verification of assertion (vi), it suffices, in light of the commuta-
tivity of the above diagram, to verify that τv ∈ Aut(G|v) induces the
identity automorphism of ΛG|v = Λv. On the other hand, this follows
immediately from assertion (v), applied to the cusp e3, together with
the fact that the automorphism τv induces the identity automorphism
of (G|v)e3. This completes the proof of assertion (vi). �
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4. Profinite Dehn multi-twists

In the present §, we introduce and discuss the notion of a profinite
Dehn multi-twist. Although our definition of this notion [cf. Defini-
tion 4.4 below] is entirely group-theoretic in nature, our main result
concerning this notion [cf. Theorem 4.8 below] asserts, in effect, that
this group-theoretic notion coincides with the usual geometric notion
of a “Dehn multi-twist”.

Let Σ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-Σ PSC-type. Write G for the underlying semi-graph
of G, ΠG for the [pro-Σ] fundamental group of G, and G̃ → G for the
universal covering of G corresponding to ΠG.

Definition 4.1. We shall say that G is cyclically primitive (respec-
tively, noncyclically primitive) if Node(G)] = 1, and the unique node
of G is not of separating type (respectively, is of separating type) [cf.
Definition 2.5, (i)].

Remark 4.1.1. If G is cyclically primitive (respectively, noncyclically
primitive), then Vert(G)] = 1 (respectively, 2), and the [discrete] topo-
logical fundamental group πtop

1 (G) of the underlying semi-graph G of
G is noncanonically isomorphic to Z (respectively, is trivial).

Lemma 4.2 (Structure of the fundamental group of a non-
cyclically primitive semi-graph of anabelioids of PSC-type).
Suppose that G is noncyclically primitive [cf. Definition 4.1]. Let
v, w ∈ Vert(G) be the two distinct vertices of G [cf. Remark 4.1.1];

ẽ, ṽ, w̃ ∈ VCN(G̃) elements of VCN(G̃) such that ṽ(G) = v, w̃(G) = w,
and, moreover, ẽ ∈ N (ṽ)∩N (w̃). Then the natural inclusions Πee, Πev,
Π ew ↪→ ΠG determine an isomorphism of pro-Σ groups

lim−→(Πev ←↩ Πee ↪→ Π ew)
∼
−→ ΠG

— where the inductive limit is taken in the category of pro-Σ groups.

Proof. This may be thought of as a consequence of the “van Kampen
Theorem” in elementary algebraic topology. At a more combinatorial
level, one may reason as follows: It follows immediately from the sim-
ple structure of the underlying semi-graph G that there is a natural
equivalence of categories between

• the category of finite sets with continuous ΠG-action [and ΠG-
equivariant morphisms] and
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• the category of finite sets with continuous actions of Πev, Π ew
which restrict to the same action on Πee [and Πev-, Π ew-equivariant
morphisms].

The isomorphism between ΠG and the inductive limit appearing in the
statement of Lemma 4.2 now follows formally from this equivalence of
categories. �

Lemma 4.3 (Infinite cyclic tempered covering of a cyclically
primitive semi-graph of anabelioids of PSC-type). Suppose that
G is cyclically primitive [cf. Definition 4.1]. Denote by πtemp

1 (G)
the tempered fundamental group of G [cf. the discussion preceding
[SemiAn], Proposition 3.6], by πtop

1 (G) [' Z — cf. Remark 4.1.1] the
[discrete] topological fundamental group of the underlying semi-graph
G of G, and by G∞ → G the connected tempered covering of G corre-
sponding to the natural surjection πtemp

1 (G)� πtop
1 (G) [where we refer

to [SemiAn], §3, concerning tempered coverings of a semi-graph of an-
abelioids]. Then the following hold:

(i) (Exact sequence) The natural morphism G∞ → G induces an
exact sequence

1 −→ πtemp
1 (G∞) −→ πtemp

1 (G) −→ πtop
1 (G) −→ 1 .

Moreover, the normal subgroup πtemp
1 (G∞) ⊆ πtemp

1 (G) of πtemp
1 (G)

is characteristic.

(ii) (Automorphism groups) There exist natural injective ho-
momorphisms

Aut|grph|(G) ↪→ Aut|grph|(G∞) , πtop
1 (G) ↪→ Aut(G∞)

— where we write Aut|grph|(G∞) for the group of automorphisms
of G∞ that induce the identity automorphism of the underlying
semi-graph of G∞. Moreover, the centralizer ZAut|grph|(G∞)(π

top
1 (G))

of πtop
1 (G) in Aut|grph|(G∞) satisfies the equality

ZAut|grph|(G∞)(π
top
1 (G)) = Aut|grph|(G) .

(iii) (Action of the fundamental group of the underlying
semi-graph) Let γ∞ ∈ πtop

1 (G) ⊆ Aut(G∞) [cf. (ii)] be a
generator of πtop

1 (G) ' Z. Write Vert(G∞), Node(G∞), and
Cusp(G∞) for the sets of vertices, nodes [i.e., closed edges], and
cusps [i.e., open edges] of G∞, respectively. Then there exist
bijections

V : Z
∼
−→ Vert(G∞) , N : Z

∼
−→ Node(G∞) ,

C : Z× Cusp(G)
∼
−→ Cusp(G∞)

such that, for each a ∈ Z,
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• the set of edges that abut to the vertex V (a) is equal to
the disjoint union of {N(a), N(a + 1)} and {C(a, z) | z ∈
Cusp(G)};

• the automorphism of Vert(G∞) (respectively, Node(G∞);
Cusp(G∞)) induced by γ∞ ∈ Aut(G∞) maps V (a) (respec-
tively, N(a); C(a, z)) to V (a + 1) (respectively, N(a + 1);
C(a+ 1, z)).

(iv) (Restriction to a finite sub-semi-graph) Let a ≤ b ∈ Z

be integers. Denote by G[a,b] the [uniquely determined] sub-
semi-graph of PSC-type [cf. Definition 2.2, (i)] of the under-
lying semi-graph of G∞ such that the set of vertices of G[a,b] is
equal to {V (a), V (a + 1), · · · , V (b)} [cf. (iii)]; denote by G[a,b]

the semi-graph of anabelioids obtained by restricting G∞ to G[a,b]

[cf. the discussion preceding [SemiAn], Definition 2.2]. Then
G[a,b] is a semi-graph of anabelioids of pro-Σ PSC-type.
Moreover, G[a,a+1] is noncyclically primitive.

(v) (Restriction to a sub-semi-graph having precisely one
vertex) Let a ≤ c ≤ b ∈ Z be integers. Then the natural mor-
phism of semi-graphs of anabelioids G[c,c] → G[a,b] [cf. (iv)] de-

termines an isomorphism G[c,c]
∼
→ G[a,b]|V (c) — where we regard

V (c) ∈ Vert(G∞) as a vertex of G[a,b]. Moreover, if we write
v ∈ Vert(G) for the unique vertex of G [cf. Remark 4.1.1],
then the composite of natural morphisms of semi-graphs of an-
abelioids G[c,c] → G∞ → G determines an isomorphism of G[c,c]

with G|v.

(vi) (Natural isomorphisms between restrictions to finite
sub-semi-graphs) Let a ≤ b ∈ Z be integers and γ∞ ∈ π

top
1 (G) ⊆

Aut(G∞) the automorphism of G∞ appearing in (iii). Then γ∞
determines an isomorphism G[a,b]

∼
→ G[a+1,b+1].

Proof. First, we verify assertion (i). To show that the natural morphism
G∞ → G induces an exact sequence

1 −→ πtemp
1 (G∞) −→ πtemp

1 (G) −→ πtop
1 (G) −→ 1 ,

it suffices to verify that every tempered covering of G∞ determines, via
the morphism G∞ → G, a tempered covering of G. But this follows
immediately, in light of the definition of a tempered covering, from the
finiteness of the underlying semi-graph G and the topologically finitely
generated nature of the verticial subgroups of the tempered fundamen-
tal group πtemp

1 (G∞) of G∞. On the other hand, the fact that the sub-
group πtemp

1 (G∞) ⊆ πtemp
1 (G) is characteristic follows immediately from

the observation that the quotient πtemp
1 (G)� πtemp

1 (G)/πtemp
1 (G∞) may

be characterized as the maximal discrete free quotient of πtemp
1 (G) [cf.
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the argument of [André], Lemma 6.1.1]. This completes the proof of
assertion (i).

Next, we verify assertion (ii). The existence of a natural injection
πtop

1 (G) ↪→ Aut(G∞) follows immediately from the definition of the
connected tempered covering G∞ → G, together with the fact that
πtop

1 (G) is abelian. On the other hand, it follows immediately from
assertion (i), together with the various definitions involved, that any

element of Aut|grph|(G) determines — up to composition with an ele-
ment of πtop

1 (G) ⊆ Aut(G∞) — an automorphism of G∞. Therefore,
by composing with a suitable element of πtop

1 (G) ⊆ Aut(G∞), one
obtains a uniquely determined element of Aut|grph|(G∞), hence also a

natural injective homomorphism Aut|grph|(G) ↪→ Aut|grph|(G∞). Next,

to verify the equality ZAut|grph|(G∞)(π
top
1 (G)) = Aut|grph|(G), observe

that πtemp
1 (G∞) is center-free [cf. [SemiAn], Example 2.10; [SemiAn],

Proposition 3.6, (iv)]; this implies that we have a natural isomorphism

πtemp
1 (G) ' πtemp

1 (G∞)
out
o πtop

1 (G) [cf. the discussion entitled “Topo-
logical groups” in §0]. Thus, in light of the [easily verified] inclusion

Aut|grph|(G) ⊆ ZAut|grph|(G∞)(π
top
1 (G)), the desired equality follows im-

mediately from [CmbGC], Proposition 1.5, (ii). This completes the
proof of assertion (ii).

Assertions (iii), (iv), (v), and (vi) follow immediately from the defi-
nition of the connected tempered covering G∞ → G. �

Definition 4.4. We shall write

Dehn(G)
def
= {α ∈ Aut|grph|(G) |αG|v = idG|v for any v ∈ Vert(G) }

— where we refer to Definitions 2.1, (iii); 2.14, (ii); Remark 2.5.1,
(ii), concerning “αG|v”. We shall refer to an element of Dehn(G) as a
profinite Dehn multi-twist of G.

Proposition 4.5 (Equalities concerning the group of profinite
Dehn multi-twists). It holds that

Dehn(G) =
⋂

v∈Vert(G) Aut|Πv |(G) =
⋂

z∈VCN(G) Aut|Πz|(G)

=
⋂

z∈VCN(G) Out|Πz|(ΠG) ⊆ Aut|grph|(G)

[cf. Definitions 2.13; 2.6, (i); [CmbGC], Proposition 1.2, (ii)] — where
we use the notation “Π(−)” to denote a VCN-subgroup [cf. Defini-
tion 2.1, (i)] of ΠG associated to “(−)” ∈ VCN(G).

Proof. The first equality follows immediately from the various defini-
tions involved [cf. also [CmbGC], Proposition 1.2, (i)]. The second
equality follows immediately from the fact that any edge-like subgroup
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is contained in a verticial subgroup. The third equality follows imme-
diately from Proposition 2.7, (ii). This completes the proof of Propo-
sition 4.5. �

Lemma 4.6 (Construction of certain homomorphisms). Let ẽ ∈

Node(G̃), e
def
= ẽ(G) ∈ Node(G). Then the following hold:

(i) Let α ∈ Dehn(G) be a profinite Dehn multi-twist of G and ṽ ∈

V(ẽ) ⊆ Vert(G̃). Write w̃ for the unique element of the com-
plement V(ẽ) \ {ṽ} [cf. [HM], Remark 1.2.1, (iii)]. Then there
exists a unique lifting α[ṽ] ∈ Aut(ΠG) of α which preserves the

verticial subgroup Πev ⊆ ΠG of ΠG associated to ṽ ∈ Vert(G̃) and
induces the identity automorphism of Πev. Moreover, this
lifting α[ṽ] preserves the verticial subgroup Π ew ⊆ ΠG of ΠG

associated to w̃ ∈ Vert(G̃), and there exists a unique element
δee,ev ∈ Πee of the edge-like subgroup Πee ⊆ ΠG of ΠG associated to

ẽ ∈ Node(G̃) such that the restriction of α[ṽ] to Π ew is the inner
automorphism determined by δee,ev ∈ Πee (⊆ Π ew).

(ii) For ṽ ∈ V(ẽ), denote by Dee,ev : Dehn(G) → ΛG the composite of
the map

Dehn(G) −→ Πee
given by assigning α 7→ δee,ev ∈ Πee [cf. (i)] and the isomorphism

Πe

syn b
∼
−→ Λv

syn v
∼
−→ ΛG

[cf. Corollary 3.9, (ii), (v)] — where we write v
def
= ṽ(G) and b

for the branch of e determined by the unique branch of ẽ which
abuts to ṽ. Then the map Dee,ev : Dehn(G) → ΛG is a homo-
morphism of profinite groups which does not depend on the
choice of the element ṽ ∈ V(ẽ), i.e., if w̃ ∈ V(ẽ) \ {ṽ}, then
Dee,ev = Dee, ew. Moreover, the homomorphism Dee,ev (= Dee, ew) de-
pends only on e ∈ Node(G), i.e., it does not depend on the

choice of the element ẽ ∈ Node(G̃) such that ẽ(G) = e.

Proof. First, we verify assertion (i). The fact that there exists a unique
lifting α[ṽ] ∈ Aut(ΠG) of α which preserves Πev and induces the identity
automorphism of Πev follows immediately, in light of the slimness of
Πev [cf. [CmbGC], Remark 1.1.3] and the commensurable terminality
of Πev in ΠG [cf. [CmbGC], Proposition 1.2, (ii)], from the fact that

α ∈ Out|Πev |(ΠG) [cf. Proposition 4.5]. The fact that α[ṽ] preserves
Π ew follows immediately, in light of the graphicity of α[ṽ], from the
fact that Π ew is the unique verticial subgroup H of ΠG such that H 6=
Πev and Πee ⊆ H [cf. [HM], Remark 1.2.1, (iii); [HM], Lemma 1.7],
together with the fact that α[ṽ] preserves Πev, Πee ⊆ ΠG. The fact that
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there exists a unique element δee,ev ∈ Πee of Πee such that the restriction
of α[ṽ] to Π ew is the inner automorphism determined by δee,ev follows
immediately, in light of the slimness of Π ew [cf. [CmbGC], Remark 1.1.3]
and the commensurable terminality of Πee [cf. [CmbGC], Proposition

1.2, (ii)], from the fact that α ∈ Out|Π ew|(ΠG) [cf. Proposition 4.5].
This completes the proof of assertion (i). Next, we verify assertion (ii).
The fact that the map Dee,ev is a homomorphism follows immediately
from the various uniqueness properties discussed in assertion (i). The
fact that the map Dee,ev does not depend on the choice of the element
ṽ ∈ V(ẽ) follows immediately from Corollary 3.9, (vi). The fact that
the homomorphism Dee,ev does not depend on the choice of the element

ẽ ∈ Node(G̃) such that ẽ(G) = e follows immediately from the definition
of the map Dee,ev. This completes the proof of assertion (ii). �

Definition 4.7. For each node e ∈ Node(G) of G, we shall write

De
def
= Dee,ev : Dehn(G) −→ ΛG

for the homomorphism obtained in Lemma 4.6, (ii). [Note that it
follows from Lemma 4.6, (ii), that this homomorphism depends only
on e ∈ Node(G).] We shall write

DG
def
=

⊕

e∈Node(G)

De : Dehn(G) −→
⊕

Node(G)

ΛG .

Theorem 4.8 (Properties of profinite Dehn multi-twists). Let Σ
be a nonempty set of prime numbers and G a semi-graph of anabelioids
of pro-Σ PSC-type. Then the following hold:

(i) (Normality) Dehn(G) is normal in Aut(G).

(ii) (Compatibility with generization) Let S ⊆ Node(G). Then
— relative to the inclusion AutS(G) ⊆ Aut(G S) [cf. Defini-
tion 2.8] induced by the specialization outer isomorphism ΠG

∼
→

ΠG S
with respect to S [cf. Proposition 2.9, (ii)] — we have a

diagram of inclusions

Dehn(G) ←↩ Dehn(G S)

∩ ppp ∩ ppp

AutS(G) ↪→ Aut(G S) .
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Moreover, if we regard Node(G S) as a subset of Node(G), then
the above inclusion Dehn(G S) ↪→ Dehn(G) fits into a commu-
tative diagram of profinite groups

Dehn(G S) −−−→ Dehn(G)

DG S

y
yDG

⊕
Node(G S) ΛG −−−→

⊕
Node(G) ΛG

— where the lower horizontal arrow is the natural inclusion
determined by the inclusion Node(G S) ↪→ Node(G) and the
natural isomorphism ΛG S

∼
→ ΛG [cf. Corollary 3.9, (i)].

(iii) (Compatibility with “surgery”) Let H be a sub-semi-graph
of PSC-type [cf. Definition 2.2, (i)] of G, S ⊆ Node(G|H) [cf.
Definition 2.2, (ii)] a subset of Node(G|H) that is not of sep-
arating type [cf. Definition 2.5, (i)], and T ⊆ Cusp((G|H)�S)
[cf. Definition 2.5, (ii)] an omittable [cf. Definition 2.4, (i)]
subset of Cusp((G|H)�S). Then the natural homomorphism

AutH�S•T (G) −→ Aut(((G|H)�S)•T )
α 7→ α((G|H)�S)•T

[cf. Definitions 2.4, (ii); 2.14, (ii)] induces a homomorphism

Dehn(G) −→ Dehn(((G|H)�S)•T ) .

Moreover, if we regard Node(((G|H)�S)•T ) as a subset of Node(G),
then the above homomorphism Dehn(G) → Dehn(((G|H)�S)•T )
fits into a commutative diagram of profinite groups

Dehn(G) −−−→ Dehn(((G|H)�S)•T )

DG

y
yD((G|H)�S)•T

⊕
Node(G) ΛG −−−→

⊕
Node(((G|H)�S)•T ) ΛG

— where the lower horizontal arrow is the natural projection,
and we apply the natural isomorphism ΛG

∼
→ Λ((G|H)�S)•T

[cf.
Corollary 3.9, (ii)].

(iv) (Structure of the group of profinite Dehn multi-twists)
The homomorphism defined in Definition 4.7

DG : Dehn(G) −→
⊕

Node(G)

ΛG

is an isomorphism of profinite groups that is functorial, in
G, with respect to isomorphisms of semi-graphs of anabelioids
of pro-Σ PSC-type. In particular, Dehn(G) is a finitely gen-

erated free ẐΣ-module of rank Node(G)]. We shall re-
fer to a nontrivial profinite Dehn multi-twist whose image ∈
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⊕
Node(G) ΛG lies in a direct summand [i.e., in a single “ΛG”] as

a profinite Dehn twist.

(v) (Conjugation action on the group of profinite Dehn
multi-twists) The action of Aut(G) on

⊕
Node(G) ΛG

Aut(G) −→ Aut(Dehn(G))
∼
−→ Aut(

⊕

Node(G)

ΛG)

determined by conjugation by elements of Aut(G) [cf. (i)] and
the isomorphism of (iv) coincides with the action of Aut(G) on⊕

Node(G) ΛG determined by the action χG of Aut(G) on ΛG and

the natural action of Aut(G) on the finite set Node(G).

Proof. Assertions (i), (ii), and (iii) follow immediately from the various
definitions involved. Next, we verify assertion (iv). The functoriality of
the homomorphism DG follows immediately from the various definitions
involved. The rest of the proof of assertion (iv) is devoted to verifying
that the homomorphism DG is an isomorphism. First, we claim that

(∗1): if G is noncyclically primitive [cf. Definition 4.1],
then the homomorphism DG is injective.

Indeed, this follows immediately from Lemma 4.2, together with the
definition of the homomorphism DG. This completes the proof of the
above claim (∗1).

Next, we claim that

(∗2): if G is cyclically primitive [cf. Definition 4.1], then
the homomorphism DG is injective.

Indeed, let α ∈ Ker(DG) ⊆ Out(ΠG) be an element of Ker(DG). Since
we are in the situation of Lemma 4.3, we shall apply the notational
conventions established in Lemma 4.3. Denote by α∞ ∈ Aut|grph|(G∞)
the automorphism of G∞ determined by α [cf. Lemma 4.3, (ii)]; for

integers a ≤ b ∈ Z, denote by α[a,b] ∈ Aut|grph|(G[a,b]) the automor-

phism of G[a,b] obtained by restricting α∞ ∈ Aut|grph|(G∞). Then since
α is a profinite Dehn multi-twist, one may verify easily that α[a,b] is
a profinite Dehn multi-twist of G[a,b]. Thus, since G[a,a+1] is noncycli-
cally primitive [cf. Lemma 4.3, (iv)], it follows immediately from the
fact that α ∈ Ker(DG), together with the claim (∗1), that α[a,a+1] is
trivial. Moreover, for any a < b ∈ Z, it follows — by applying induc-
tion on b − a and considering, in light of the claim (∗1), the various
generizations [cf. assertion (ii)] of G[a,b] with respect to sets of the form
“Node(G[a.b]) \ {e}” — that the profinite Dehn multi-twist α[a,b], hence
also the automorphism α∞, is trivial. In particular, it holds that α is
trivial [cf. Lemma 4.3, (ii)], as desired. This completes the proof of the
above claim (∗2).

Next, we claim that
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(∗3): for arbitrary G, the homomorphism DG is injective.

We verify this claim (∗3) by induction on Node(G)]. If Node(G)] ≤ 1,
then the claim (∗3) follows formally from the claims (∗1) and (∗2).
Now suppose that Node(G)] > 1, and that the induction hypothesis is
in force. Let e ∈ Node(G) be a node of G. Write H for the unique
sub-semi-graph of PSC-type of G whose set of vertices is V(e). Then

one may verify easily that S
def
= Node(G|H) \ {e} is not of separat-

ing type as a subset of Node(G|H). Thus, since (G|H)�S has precisely
one node, it follows immediately from assertion (iii), together with the
claims (∗1) and (∗2), that the profinite Dehn multi-twist α(G|H)�S

of
(G|H)�S determined by α ∈ Dehn(G) is trivial. In particular, it follows
immediately from the definition of a generization [cf., especially, the
definition of the anabelioids corresponding to the vertices of a gener-
ization given in Definition 2.8, (vi)], together with the definition of a
profinite Dehn multi-twist, that the automorphism αG {e}

of the gener-

ization G {e} determined by α [cf. Proposition 2.9, (ii)] is a profinite
Dehn multi-twist. Therefore, since Node(G {e})

] < Node(G)], it follows
immediately from assertion (ii), together with the induction hypothe-
sis, that αG {e}

∈ Ker(DG {e}
), hence also α ∈ Ker(DG), is trivial. This

completes the proof of the claim (∗3).
Next, we claim that

(∗4): if G is noncyclically primitive [cf. Definition 4.1],
then the homomorphism DG is surjective.

Indeed, this follows immediately from Lemma 4.2, together with the
various definitions involved. This completes the proof of the claim (∗4).

Next, we claim that

(∗5): if G is cyclically primitive [cf. Definition 4.1], then
the homomorphism DG is surjective.

Indeed, let λ ∈ ΛG be an element of ΛG. Since we are in the situation
of Lemma 4.3, we shall apply the notational conventions established
in Lemma 4.3. Then it follows immediately from Corollary 3.9, (ii),
together with Lemma 4.3, (v), that for any integers a ≤ 0 < b ∈ Z,
the natural morphisms G[0,0] → G[a,b] and G[0,0] → G∞ → G induce

isomorphisms ΛG[a,b]

∼
← ΛG[0,0]

∼
→ ΛG. By abuse of notation, write λ ∈

ΛG[a,b]
for the element of ΛG[a,b]

corresponding to λ ∈ ΛG. Now since

G[0,1] is noncyclically primitive [cf. Lemma 4.3, (iv)], it follows from
the claims (∗1), (∗4) that there exists a unique profinite Dehn multi-
twist λ[0,1] ∈ Dehn(G[0,1]) such that DG[0,1]

(λ[0,1]) = λ.
Next, we claim that

(†) : for any a ≤ 0 < b ∈ Z, there exists a [necessar-
ily unique — cf. claim (∗3)] profinite Dehn multi-twist
λ[a,b] ∈ Dehn(G[a,b]) such that De(λ[a,b]) = λ for every
node e ∈ Node(G[a,b]).
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We verify this claim (†) by induction on b− a. If b− a = 1, or equiva-
lently, [a, b] = [0, 1], then we have already shown the existence of a profi-
nite Dehn multi-twist λ[0,1] ∈ Dehn(G[0,1]) of the desired type. Now sup-
pose that 1 < b−a, and that for I ∈ {[a, b−1], [a+1, b]}, there exists a
profinite Dehn multi-twist λI ∈ Dehn(GI) such that De(λI) = λ for ev-
ery node e ∈ Node(GI). Then one may verify easily that Node(GI) may

be regarded as a subset of Node(G[a,b]), that H[a,b]
def
= (G[a,b]) Node(GI ) is

noncyclically primitive, and that, if one allows v to range over the [two]
vertices of H[a,b], then the resulting semi-graphs of anabelioids (H[a,b])|v

are naturally isomorphic to HI
def
= (GI) Node(GI ) and G[cI ,cI ], where we

write cI for b (respectively, a) if I = [a, b−1] (respectively, I = [a+1, b]).
Let ΠeI

⊆ ΠHI
be a cuspidal subgroup of ΠHI

corresponding to the
cusp eI determined by the unique node of H[a,b]; Πe[cI ,cI ]

⊆ ΠG[cI ,cI ]
a

cuspidal subgroup of ΠG[cI ,cI ]
corresponding to the cusp e[cI ,cI ] deter-

mined by the unique node of H[a,b]; λ̃I ∈ Aut(ΠHI
) a lifting of the

outomorphism of ΠHI
determined by λI ∈ Dehn(GI) ↪→ Aut(HI) [cf.

Proposition 2.9, (ii)] which preserves ΠeI
and induces the identity au-

tomorphism of ΠeI
. [Note that since λI ∈ Dehn(GI), one may verify

easily that such a lifting λ̃I ∈ Aut(ΠHI
) exists.] Then for any element

δ ∈ Πe[cI ,cI ]
of Πe[cI ,cI ]

, it follows immediately from Lemma 4.2 that by

gluing — by means of the natural isomorphism ΠeI

∼
→ Πe[cI ,cI ]

— the

automorphism λ̃I ∈ Aut(ΠHI
) to the inner automorphism of ΠG[cI ,cI ]

by δ ∈ Πe[cI ,cI ]
, we obtain an outomorphism λ[a,b][δ] of ΠH[a,b]

, which —

in light of [CmbGC], Proposition 1.5, (ii), together with the fact that
λI ∈ Dehn(GI) — is contained in

Dehn(G[a,b]) ⊆ Aut|grph|(G[a,b]) ↪→ Aut|grph|(H[a,b]) ⊆ Out(ΠH[a,b]
)

[cf. Proposition 2.9, (ii)]. Now it follows immediately from the defini-
tion of the homomorphism “De” that the assignment δ 7→ DeG[a,b]

(λa,b[δ])

— where we write eG[a,b]
for the node of G[a,b] corresponding to the

unique node of H[a,b] — determines a bijection Πe[cI ,cI ]

∼
→ ΛG. Thus,

since De(λI) = λ for every node e ∈ Node(GI), we conclude that there
exists a unique element δ ∈ Πe[cI ,cI ]

of Πe[cI ,cI ]
such that De(λ[a,b][δ]) = λ

for every node e ∈ Node(G[a,b]). This completes the proof of the claim
(†).

Write λ∞ ∈ Aut|grph|(G∞) for the automorphism of G∞ determined by
the λ[a,b]’s of the claim (†). Now since De(λ[a,b]) = λ for arbitrary a <
b ∈ Z and e ∈ Node(G[a,b]), one may verify easily, by applying the claim
(∗3), that the automorphism λ∞ commutes with the natural action
of πtop

1 (G) ' Z on G∞. Thus, the automorphism λ∞ determines an
automorphism λG ∈ Aut|grph|(G) of G [cf. Lemma 4.3, (ii)]. Moreover,
it follows immediately from the definition of λG, together with the fact
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that De(λ[a,b]) = λ for arbitrary a < b ∈ Z and e ∈ Node(G[a,b]), that
λG is a profinite Dehn multi-twist such that DG(λG) = λ ∈ ΛG. This
completes the proof of the claim (∗5).

Finally, we claim that

(∗6): for arbitrary G, the homomorphism DG is surjec-
tive.

For each node e ∈ Node(G) of G, it follows from assertion (ii) that we
have a commutative diagram of profinite groups

Dehn(G Node(G)\{e}) −−−→ Dehn(G)

DG Node(G)\{e}

y
yDG

ΛG −−−→
⊕

e′∈Node(G) ΛG

— where the lower horizontal arrow is the natural inclusion into the
component indexed by e. Now since Node(G Node(G)\{e})

] = 1, it follows
from the claims (∗4), (∗5) that the left-hand vertical arrow DG Node(G)\{e}

in the above commutative diagram is surjective. Therefore, by allowing
“e” to vary among the elements of Node(G), we conclude that DG is
surjective. This completes the proof of the claim (∗6) — hence also, in
light of the claim (∗3) — of assertion (iv).

Finally, assertion (v) follows immediately from the various definitions
involved, together with assertion (iv). This completes the proof of
Theorem 4.8. �

Remark 4.8.1. In the notation of Theorem 4.8, denote by πtemp
1 (G)

the tempered fundamental group of G [cf. the discussion preceding
[SemiAn], Proposition 3.6], by πtop

1 (G) the [discrete] topological fun-
damental group of the underlying semi-graph G of G, by G∞ → G the
connected tempered covering of G corresponding to the natural surjec-
tion πtemp

1 (G) � πtop
1 (G) [where we refer to [SemiAn], §3, concerning

tempered coverings of a semi-graph of anabelioids], by Aut|grph|(G∞) the
group of automorphisms of G∞ that induce the identity automorphism
of the underlying semi-graph of G∞, and by Dehn(G∞) ⊆ Aut|grph|(G∞)
the group of “profinite Dehn multi-twists” of G∞ — i.e., automorphisms
of G∞ which induce the identity automorphism on the underlying semi-
graph of G∞, as well as on the anabelioids of G∞ corresponding to the
vertices of G∞. Then the following hold:

(i) The natural morphism G∞ → G induces an exact sequence

1 −→ πtemp
1 (G∞) −→ πtemp

1 (G) −→ πtop
1 (G) −→ 1 .

Moreover, the normal subgroup πtemp
1 (G∞) ⊆ πtemp

1 (G) of πtemp
1 (G)

is characteristic.
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(ii) There exist natural injections

Aut|grph|(G) ↪→ Aut|grph|(G∞) , Dehn(G) ↪→ Dehn(G∞) ,

πtop
1 (G) ↪→ Aut(G∞)

— where the third injection is determined up to composition
with a πtop

1 (G)-inner automorphism — which satisfy the equal-
ities

ZAut|grph|(G∞)(π
top
1 (G)) = Aut|grph|(G) ;

Dehn(G) = Aut|grph|(G) ∩Dehn(G∞) .

(iii) There exists a natural isomorphism

Dehn(G∞)
∼
→

∏

Node(G∞)

ΛG .

Indeed, assertion (i) (respectively, (ii)) follows immediately from a sim-
ilar argument to the argument used in the proof of Lemma 4.3, (i)
(respectively, Lemma 4.3, (ii)), together with the various definitions
involved. On the other hand, the existence of the natural isomorphism
asserted in assertion (iii) follows immediately from the fact that the
various homomorphisms D(G∞)|H — where H ranges over the sub-semi-
graphs of PSC-type [cf. Definition 2.2, (i)] of the underlying semi-graph
of G∞, and we write (G∞)|H for the semi-graph of anabelioids obtained
by restricting G∞ to H [cf. the discussion preceding [SemiAn], Def-
inition 2.2], which [as is easily verified] is of pro-Σ PSC-type — are
isomorphisms. [Note that since (G∞)|H is of pro-Σ PSC-type, the fact
that D(G∞)|H is an isomorphism is a consequence of Theorem 4.8, (iv).
However, since H is a tree, it follows from the simple structure of H

that one may verify that D(G∞)|H is an isomorphism in a fairly direct
fashion, by arguing as in the proofs of the claims (∗1), (∗4) that appear
in the proof of Theorem 4.8, (iv).]

In particular, it follows immediately from assertions (ii), (iii) that
one may recover the natural isomorphism

Dehn(G)
∼
→ ZQ

Node(G∞) ΛG
(πtop

1 (G))
∼
→

∏

Node(G)

ΛG

of Theorem 4.8, (iv).

Definition 4.9. We shall write

Glu(G) ⊆
∏

v∈Vert(G)

Aut|grph|(G|v)

for the [closed] subgroup of “glueable” collections of outomorphisms

of the direct product
∏

v∈Vert(G) Aut|grph|(G|v) consisting of elements
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(αv)v∈Vert(G) such that χv(αv) = χw(αw) [cf. Definition 3.8, (ii)] for
any v, w ∈ Vert(G).

Proposition 4.10 (Properties of automorphisms that fix the
underlying semi-graph).

(i) (Factorization) The natural homomorphism

Aut|grph|(G) −→
∏

v∈Vert(G) Aut|grph|(G|v)
α 7→ (αG|v)v∈Vert(G)

[cf. Definition 2.14, (ii); Remark 2.5.1, (ii)] factors through
the closed subgroup Glu(G) ⊆

∏
v∈Vert(G) Aut|grph|(G|v).

(ii) (Exact sequence relating profinite Dehn multi-twists
and glueable outomorphisms) The resulting homomorphism
ρVert
G : Aut|grph|(G) → Glu(G) [cf. (i)] fits into an exact se-

quence of profinite groups

1 −→ Dehn(G) −→ Aut|grph|(G)
ρVert
G
−→ Glu(G) −→ 1 .

(iii) (Surjectivity of cyclotomic characters) The restriction of
the pro-Σ cyclotomic character χG of G [cf. Definition 3.8, (ii)]
to Aut|grph|(G) ⊆ Aut(G)

χG|Aut|grph|(G) : Aut|grph|(G) −→ (ẐΣ)∗

— hence also χG — is surjective.

(iv) (Liftability of automorphisms) Let H be a sub-semi-graph
of PSC-type [cf. Definition 2.2, (i)] of G and S ⊆ Node(G|H)
[cf. Definition 2.2, (ii)] a subset of Node(G|H) that is not of
separating type [cf. Definition 2.5, (i)]. Then the homomor-
phism

Aut|grph|(G) −→ Aut|grph|((G|H)�S)
α 7→ α(G|H)�S

[cf. Definitions 2.5, (ii); 2.14, (ii)] is surjective.

Proof. Assertion (i) follows immediately from Corollary 3.9, (iv). Next,
we verify assertion (ii). It follows immediately from the various defi-

nitions involved that Ker(ρVert
G ) = Dehn(G) ⊆ Aut|grph|(G). Thus, to

complete the proof of assertion (ii), it suffices to verify that the homo-
morphism ρVert

G is surjective.
Now we claim that

(∗1): if G is noncyclically primitive [cf. Definition 4.1],
then the homomorphism ρVert

G is surjective.
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Indeed, this follows immediately from Corollary 3.9, (v); Lemma 4.2,
together with the various definitions involved. This completes the proof
of the claim (∗1).

Next, we claim that

(∗2): if G is cyclically primitive [cf. Definition 4.1], then
the homomorphism ρVert

G is surjective.

Indeed, since we are in the situation of Lemma 4.3, we shall apply
the notational conventions established in Lemma 4.3. Then it fol-
lows immediately from the fact that Vert(G)] = 1 [cf. Remark 4.1.1],
together with Lemma 4.3, (v), that the composite of natural mor-
phisms G[0,0] → G∞ → G determines a natural identification Glu(G)

∼
→

Aut|grph|(G[0,0]). Let α = α[0,0] ∈ Glu(G)
∼
→ Aut|grph|(G[0,0]) be an

element of Glu(G)
∼
→ Aut|grph|(G[0,0]). For each a ∈ Z, denote by

α[a,a] ∈ Aut(G[a,a]) the automorphism of G[a,a] determined by conjugat-

ing the automorphism α of G[0,0] by the isomorphism γa
∞ : G[0,0]

∼
→ G[a,a]

[cf. Lemma 4.3, (iii), (vi)]. Then for any c < b ∈ Z, it follows from the
various definitions involved that the various α[a,a]’s satisfy the gluing
condition necessary to apply the claim (∗1), hence that we may glue
them together [cf. the proof of the claim (∗3) below for more details
concerning this sort of gluing argument] to obtain a(n) [not necessarily

unique] element of Aut|grph|(G[c,b]). Thus, by allowing c < b ∈ Z to vary,

we obtain a(n) [not necessarily unique] element α∞ ∈ Aut|grph|(G∞) of
Aut|grph|(G∞). Now it follows immediately from the definition of α∞

that for any γ ∈ πtop
1 (G), the automorphism [α∞, γ]

def
= α∞ ·γ ·α

−1
∞ ·γ

−1

of G∞ is a “profinite Dehn multi-twist” of G∞, i.e., [α∞, γ] ∈ Dehn(G∞)
[cf. Remark 4.8.1]. Moreover, one may verify easily that the assign-
ment γ 7→ [α∞, γ] determines a 1-cocycle πtop

1 (G)→ Dehn(G∞). Thus,
by Remark 4.8.1, (iii), together with the [easily verified] fact that

H1(Z,
∏

Z

ẐΣ) = {0}

— where we take the action of Z on
∏

Z ẐΣ to be the action determined

by the trivial action of Z on ẐΣ and the action of Z on the index set
Z given by addition — we conclude that there exists an element β ∈
Dehn(G∞) such that the automorphism β ◦α∞ commutes with the nat-
ural action of πtop

1 (G) on G∞. In particular, it follows from Lemma 4.3,

(ii), that β◦α∞ determines an element αG ∈ Aut|grph|(G) of Aut|grph|(G).
Now since β ∈ Dehn(G∞), it follows immediately from the various def-

initions involved that ρVert
G (αG) = α ∈ Glu(G)

∼
→ Aut|grph|(G[0,0]). This

completes the proof of the claim (∗2).
Finally, we claim that

(∗3): for arbitrary G, the homomorphism Aut|grph|(G)→
Glu(G) is surjective.
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We verify this claim (∗3) by induction on Node(G)]. If Node(G)] ≤ 1,
then this follows immediately from the claims (∗1), (∗2). Now sup-
pose that Node(G)] > 1, and that the induction hypothesis is in force.
Let e ∈ Node(G) be a node of G. Write H for the unique sub-semi-
graph of PSC-type of G whose set of vertices is V(e). Then one may

verify easily that S
def
= Node(G|H) \ {e} is not of separating type as

a subset of Node(G|H). Thus, since (G|H)�S has precisely one node,
and (αv)v∈V(e) may be regarded as an element of Glu((G|H)�S), it fol-
lows from the claims (∗1), (∗2) that there exists an automorphism
β ∈ Aut|grph|((G|H)�S) of (G|H)�S such that ρVert

(G|H)�S
(β) = (αv)v∈V(e) ∈

Glu((G|H)�S). Write β {e} ∈ Aut|grph|(((G|H)�S) {e}) for the auto-

morphism of ((G|H)�S) {e} determined by β ∈ Aut|grph|((G|H)�S) [cf.
Proposition 2.9, (ii)]. Then it follows immediately from Corollary 3.9,
(i), together with the definition of a generization [cf., especially, the
definition of the anabelioids corresponding to the vertices of a gener-
ization given in Definition 2.8, (vi)], that the element

γ
def
= (β {e}, (αv)v 6∈V(e)) ∈ Aut|grph|(((G|H)�S) {e})×

∏

v 6∈V(e)

Aut|grph|(G|v)

may be regarded as an element of Glu(G {e}). Now since Node(G {e})
]

< Node(G)], it follows from the induction hypothesis that there ex-

ists an automorphism α {e} ∈ Aut|grph|(G {e}) of G {e} such that
ρVert
G {e}

(α {e}) = γ ∈ Glu(G {e}). On the other hand, since β {e}

arises from an element β of Aut|grph|((G|H)�S), it follows immediately

from [CmbGC], Proposition 1.5, (ii), that α {e} ∈ Aut|grph|(G {e}) is

contained in the image of Aut|grph|(G) ↪→ Aut|grph|(G {e}) [cf. Proposi-
tion 2.9, (ii)]. Moreover, since ρVert

(G|H)�S
(β) = (αv)v∈V(e) ∈ Glu((G|H)�S),

it follows immediately from our original characterization of α {e} that
ρVert
G (α {e}) = (αv)v∈Vert(G) ∈ Glu(G). Thus, we conclude that ρVert

G is
surjective, as desired. This completes the proof of the claim (∗3), hence
also of assertion (ii).

Next, we verify assertion (iii). First, let us observe that one may
verify easily that there exist a semi-graph of anabelioids of pro-Σ PSC-
type H that is totally degenerate [cf. Definition 2.3, (iv)], a subset
S ⊆ Node(H), and an isomorphism of semi-graphs of anabelioids
H S

∼
→ G. Now since we have a natural injection Aut|grph|(H) ↪→

Aut|grph|(H S)
∼
→ Aut|grph|(G) [cf. Proposition 2.9, (ii)], it follows

immediately from Corollary 3.9, (i), that to verify assertion (iii), by
replacing G by H, we may assume without loss of generality that G
is totally degenerate. On the other hand, it follows immediately from
assertion (ii), together with Corollary 3.9, (ii), that to verify assertion
(iii), it suffices to verify the surjectivity of χG|v for each v ∈ Vert(G).
Thus, to verify assertion (iii), by replacing G by G|v, we may assume
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without loss of generality that G is of type (0, 3) [cf. Definition 2.3, (i)].
But assertion (iii) in the case where G is of type (0, 3) follows imme-
diately by considering the natural outer action of the absolute Galois
group Gal(Q/Q) of the field of rational numbers Q — where we use the
notation Q to denote an algebraic closure of Q — on the semi-graph of
anabelioids of pro-Σ PSC-type associated to the tripod P1

Q
\ {0, 1,∞}

over Q. This completes the proof of assertion (iii).

Finally, we verify assertion (iv). WriteH
def
= (G|H)�S. Then it follows

immediately from assertion (ii), together with Theorem 4.8, (iii), that

the homomorphism Aut|grph|(G) → Aut|grph|(H) in question fits into a
commutative diagram of profinite groups

1 −−−→ Dehn(G) −−−→ Aut|grph|(G)
ρVert
G
−−−→ Glu(G) −−−→ 1y

y
y

1 −−−→ Dehn(H) −−−→ Aut|grph|(H)
ρVert
H−−−→ Glu(H) −−−→ 1

— where the horizontal sequences are exact. Now since the left-hand
vertical arrow is surjective [cf. Theorem 4.8, (iii), (iv)], to verify as-
sertion (iv), it suffices to verify the surjectivity of the right-hand ver-
tical arrow. But this follows immediately from assertion (iii), together
with the definition of “Glu(−)”. This completes the proof of assertion
(iv). �
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5. Comparison with scheme theory

In the present §, we discuss [cf. Proposition 5.6; Theorem 5.7;
Corollaries 5.9, 5.10 below] the relationship between intrinsic, group-
theoretic properties of profinite Dehn multi-twists [such as length, non-
degeneracy, and positive definiteness — cf. Definitions 5.1; 5.8, (ii),
(iii) below] and scheme-theoretic characterizations of properties of outer
representations of pro-Σ PSC-type [such as length, strict nodal nonde-
generacy, and IPSC-ness — cf. Definition 5.3, (ii) below; [HM], Defini-
tion 2.4, (i), (iii)]. The resulting theory leads naturally to a proof of the
graphicity of C-admissible outomorphisms contained in the commen-
surator of the group of profinite Dehn multi-twists [cf. Theorem 5.14
below].

Let Σ be a nonempty set of prime numbers and G a semi-graph of
anabelioids of pro-Σ PSC-type. Write G for the underlying semi-graph

of G, ΠG for the [pro-Σ] fundamental group of G, and G̃ → G for the
universal covering of G corresponding to ΠG.

Definition 5.1. Let ρ : I → Aut(G) (⊆ Out(ΠG)) be an outer repre-
sentation of pro-Σ PSC-type [cf. [HM], Definition 2.1, (i)] which is of

NN-type [cf. [HM], Definition 2.4, (iii)] and ẽ ∈ Node(G̃) an element of

Node(G̃). Write ΠI
def
= ΠG

out
o I [cf. the discussion entitled “Topological

groups” in §0]; ṽ, w̃ ∈ Vert(G) for the two distinct elements of Vert(G̃)
such that V(ẽ) = {ṽ, w̃} [cf. [HM], Remark 1.2.1, (iii)]; Iee, Iev, I ew ⊆ ΠI

for the inertia subgroups of ΠI associated to ẽ, ṽ, w̃, respectively, i.e.,
the centralizers of Πee, Πev, Π ew ⊆ ΠI in ΠI , respectively [cf. [HM],
Definition 2.2]. Then it follows from condition (3) of [HM], Definition
2.4, that the natural homomorphism Iev × I ew → Iee is an open injection.
Write

lngΣ
G (ẽ, ρ)

def
= [Iee : Iev × I ew]

for the index of Iev×I ew in Iee; we shall refer to lngΣ
G (ẽ, ρ) as the Σ-length

of ẽ with respect to ρ. Note that it follows immediately from the various
definitions involved that the Σ-length of ẽ with respect to ρ depends

only on e
def
= ẽ(G) ∈ Node(G) and ρ. Write

lngΣ
G (e, ρ)

def
= lngΣ

G (ẽ, ρ) ;

we shall refer to lngΣ
G (e, ρ) as the Σ-length of e ∈ Node(G) with respect

to ρ.

Lemma 5.2 (Outer representations of SVA-type and profinite
Dehn multi-twists). Let ρ : I → Aut(G) (⊆ Out(ΠG)) be an outer
representation of pro-Σ PSC-type which is of SVA-type [cf. [HM],

Definition 2.4, (ii)] and ẽ ∈ Node(G̃) an element of Node(G̃). Write
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ΠI
def
= ΠG

out
o I [cf. the discussion entitled “Topological groups” in

§0]; ṽ, w̃ ∈ Vert(G̃) for the two distinct elements of Vert(G̃) such that
V(ẽ) = {ṽ, w̃} [cf. [HM], Remark 1.2.1, (iii)]; Iee, Iev, I ew ⊆ ΠI for the

inertia subgroups of ΠI associated to ẽ, ṽ, w̃, respectively; e
def
= ẽ(G);

v
def
= ṽ(G). Then the following hold:

(i) (Outer representations of SVA-type and profinite Dehn
multi-twists) The outer representation ρ factors through the
closed subgroup Dehn(G) ⊆ Aut(G). By abuse of notation, write
ρ for the resulting homomorphism I → Dehn(G).

(ii) (Outer representations of SVA-type and homomorphisms
of Dehn coordinates) The natural inclusions Iev, I ew ↪→ Iee and
the composite Iee ↪→ ΠI � I determine a diagram of profinite
groups

Iev × I ewy
1 −−−→ Πee −−−→ Iee −−−→ I −−−→ 1

— where the lower horizontal sequence is exact, and the closed
subgroups Iev, I ew ⊆ Iee determine sections of the surjection Iee �
I, respectively — hence also homomorphisms

I
∼
← Iev → Iee/I ew

∼
← Πee = Πe

syn b
ev

∼
→ Λv

syn v
∼
→ ΛG

— where the first “
∼
←” denotes the isomorphism given by the

composite Iev ↪→ ΠI � I, and bev denotes the branch of e deter-
mined by the [unique] branch of ẽ that abuts to ṽ. Moreover,
the composite of these homomorphisms

I → ΛG

coincides with the composite

I
ρ
−→ Dehn(G)

De−→ ΛG

[cf. (i); Definition 4.7]. In particular, if ρ is of SNN-type [cf.
[HM], Definition 2.4, (iii)], then the image of the composite

I
ρ
→ Dehn(G)

De→ ΛG coincides with lngΣ
G (e, ρ) · ΛG ⊆ ΛG.

(iii) (Centralizers and cyclotomic characters) Suppose that ρ is
of SNN-type [cf. [HM], Definition 2.4, (iii)]. Let e ∈ Node(G)
be a node of G. Then χG(α) = 1 [cf. Definition 3.8, (ii)] for

any α ∈ ZAut{e}(G)(Im(ρ)) ⊆ Aut{e}(G) [cf. Definition 2.6, (i)].

Proof. Assertion (i) follows immediately from condition (2′) of [HM],
Definition 2.4. Next, we verify assertion (ii). The fact that the natural
inclusions Iev, I ew ↪→ Iee and the composite Iee ↪→ ΠI � I give rise to the
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diagram and homomorphisms of the first and second displays in the
statement of assertion (ii) follows immediately from [HM], Lemma 2.5,
(iv); condition (2′) of [HM], Definition 2.4. On the other hand, it follows
immediately from the various definitions involved that the image of
each β ∈ I via the composite of I

∼
← Iev with the action Iev → Aut(ΠG)

given by conjugation coincides with the “α[ṽ]” of Lemma 4.6, (i), in
the case where one takes “α” to be ρ(β). Thus, it follows immediately

from the definition of I ew that the image of β ∈ I via the composite I
∼
←

Iev → Iee/I ew
∼
→ Πee coincides with the “δee,ev” of Lemma 4.6, (i), in the

case where one takes “α” to be ρ(β). Therefore, it follows immediately
from the definition of De that the homomorphisms of the final two
displays of assertion (ii) coincide. Thus, the final portion of assertion
(ii) concerning ρ of SNN-type follows immediately from the definition of
Σ-length. This completes the proof of assertion (ii). To verify assertion
(iii), let us first observe that, by Theorem 4.8, (v), the conjugation

action of α ∈ Aut{e}(G) on the ΛG ⊆
⊕

Node(G) ΛG
∼
← Dehn(G) indexed

by e ∈ Node(G) is given by multiplication by χG(α). On the other hand,
since N 3 lngΣ

G (e, ρ) 6= 0, it follows from the final portion of assertion
(ii) that the projection of Im(ρ) to the coordinate indexed by e is open.
Thus, the fact that α lies in the centralizer ZAut{e}(G)(Im(ρ)) implies

that χG(α) = 1, as desired. This completes the proof of assertion
(iii). �

Definition 5.3. Let R be a complete discrete valuation ring whose
residue field is separably closed of characteristic 6∈ Σ; π ∈ R a prime
element of R; vR the discrete valuation of R such that vR(π) = 1;

S log the log scheme obtained by equipping S
def
= SpecR with the log

structure defined by the maximal ideal (π) ⊆ R of R; slog the log
scheme obtained by equipping the spectrum s of the residue field of
R with the log structure induced by the log structure of S log via the
natural closed immersion s ↪→ S; X log a stable log curve over S log;
GXlog the semi-graph of anabelioids of pro-Σ PSC-type determined by

the special fiber X log
s

def
= X log ×Slog slogof the stable log curve X log [cf.

[CmbGC], Example 2.5]; ISlog (' ẐΣ) the maximal pro-Σ completion
of the log fundamental group π1(S

log) of S log.

(i) One may verify easily that the natural outer representation
ISlog → Aut(GXlog) associated to the stable log curve X log over
S log factors through Dehn(GXlog) ⊆ Aut(GXlog). We shall write

ρXlog
s

: ISlog −→ Dehn(GXlog)

for the resulting homomorphism.
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(ii) It follows from the well-known local structure of a stable log
curve in a neighborhood of a node that for each node e of the
special fiber of X log, there exists a nonzero element ae 6= 0 of

the maximal ideal (π) ⊆ R such that the completion ÔX,e of
the local ring OX,e at e is isomorphic to R[[s1, s2]]/(s1s2 − ae)
— where s1, s2 denote indeterminates. Write

lngXlog(e)
def
= vR(ae); lngΣ

Xlog(e)
def
= [ẐΣ : lngXlog(e) · ẐΣ].

We shall refer to lngXlog(e) as the length of e and to lngΣ
Xlog(e) as

the Σ-length of e. One verifies easily that lngXlog(e), hence also
lngΣ

Xlog(e), depends only on e, i.e., is independent of the choice

of the isomorphism ÔX,e ' R[[s1, s2]]/(s1s2 − ae).

Lemma 5.4 (Local geometric universal outer representations).
In the notation of Definition 5.3, suppose that GXlog is of type (g, r)

[cf. Definition 2.3, (i); Remark 2.3.1]. Write N
def
= Node(GXlog)

] and

σlog : S log → (M
log

g,r)S [cf. the discussion entitled “Curves” in §0] for

the classifying morphism of the stable log curve X log over S log. Then
the following hold:

(i) (Local structure of the moduli stack of pointed sta-

ble curves) Write Ô for the completion of the local ring of
(Mg,r)S at the image of the closed point of S via the underlying
(1-)morphism of stacks σ of σlog and T log for the [fs] log scheme

obtained by equipping T
def
= Spec Ô with the log structure induced

by the log structure of (M
log

g,r)S. [Thus, we have a tautologi-

cal strict [cf. [Illu], 1.2] (1-)morphism T log → (M
log

g,r)S.] Then

there exists an isomorphism of R-algebras R[[t1, · · · , t3g−3+r]]
∼
→

Ô such that the following hold:

• The log structure of the log scheme T log is given by the
following chart:

⊕
e∈Node(G

Xlog ) Ne −→ R[[t1, · · · , t3g−3+r]]
∼
→ Ô

(ne1, · · · , neN
) 7→ t

ne1
1 · · · t

neN
N

— where we write Ne for the copy of N indexed by e ∈
Node(GXlog).

• For 1 ≤ i ≤ N , the homomorphism of R-algebras Ô → R
induced by the morphism σ maps ti to aei

[cf. Defini-
tion 5.3, (ii)].
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(ii) (Log-scheme-theoretic description of log fundamental
groups) Write IT log for the maximal pro-Σ quotient of the log
fundamental group π1(T

log) of T log. Then we have natural iso-
morphisms

ISlog
∼
→ Hom

(
Ngp, ẐΣ(1)

)
;

IT log
∼
→ Hom

( ⊕
e∈Node(G

Xlog ) Ngp
e , Ẑ

Σ(1)
)

∼
→

⊕
e∈Node(G

Xlog ) Hom
(
Ngp

e , Ẑ
Σ(1)

)
,

and the homomorphism ISlog → IT log induced by the classify-
ing morphism σlog is the homomorphism obtained by applying

the functor “HombZΣ((−)gp, ẐΣ(1))” to the homomorphism of
monoids ⊕

e∈Node(G
Xlog ) Ne −→ N

(ne1, · · · , neN
) 7→

∑N
i=1 nei

lngXlog(ei)
.

(iii) (Local geometric universal outer representations) The
natural outer representation IT log → Aut(GXlog) associated to
the stable log curve over T log determined by the tautological

strict morphism T log → (M
log

g,r)S factors through Dehn(G
Xlog) ⊆

Aut(GXlog); thus, we have a homomorphism IT log → Dehn(GXlog).
Moreover, the homomorphism ρXlog

s
: ISlog → Dehn(GXlog) fac-

tors as the composite of the homomorphism ISlog → IT log in-
duced by σlog and this homomorphism IT log → Dehn(G

Xlog).

Proof. Assertion (i) follows immediately from the well-known local struc-

ture of the log stack (M
log

g,r)S [cf. [Knud], Theorem 2.7]. Assertion (ii)
follows immediately from assertion (i), together with the well-known
structure of the log fundamental groups of S log and T log. Assertion (iii)
follows immediately from the various definitions involved. �

Definition 5.5. In the notation of Definition 5.3, Lemma 5.4, we shall
write tlog for the log scheme obtained by equipping the closed point t
of T with the log structure naturally induced by the log structure of
T log; X log

t for the stable log curve over tlog corresponding to the natural

strict morphism tlog (↪→ T log)→ (M
log

g,r)S;

ρuniv
Xlog

t
: IT log −→ Dehn(GXlog)

for the homomorphism obtained in Lemma 5.4, (iii).
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Proposition 5.6 (Outer representations arising from stable log
curves). In the notation of Definition 5.3, Lemma 5.4, the following
hold:

(i) (Compatibility of Σ-lengths) For each node e ∈ Node(GXlog)
of GXlog , it holds that

lngΣ
G

Xlog
(e, ρXlog

s
) = lngΣ

Xlog(e)

[cf. Definitions 5.1; 5.3, (ii)].

(ii) (Isomorphicity of local geometric universal outer rep-
resentations) The homomorphism

ρuniv
Xlog

t
: IT log −→ Dehn(GXlog)

[cf. Definition 5.5] is an isomorphism of profinite groups.

(iii) (Compatibility with generization) Let Q ⊆ Node(GXlog) be
a subset of Node(GXlog). Then there exist a stable log curve
Y log over S log and an isomorphism of semi-graphs of anabe-
lioids (G

Xlog) Q
∼
→ G

Y log that fit into a commutative diagram of
profinite groups

IT log
Y

ρuniv

Y
log
t−−−→ Dehn(GY log)y

y

IT log
X

ρuniv

X
log
t−−−→ Dehn(G

Xlog)

— where we write IT log
X

, IT log
Y

for the “IT log” associated to X log,

Y log, respectively; the right-hand vertical arrow is the natural
inclusion induced, via the isomorphism (GXlog) Q

∼
→ GY log , by

the natural inclusion of Theorem 4.8, (ii); the left-hand vertical
arrow is the injection induced, via the [relevant] isomorphism
of Lemma 5.4, (ii), by the natural projection of monoids

⊕

e∈Node(G
Xlog )

Ne �

⊕

e∈Node(G
Y log )

Ne .

[Note that it follows immediately from the various definitions

involved that Node(GY log)
∼
← Node((GXlog) Q) may be regarded

as a subset of Node(G
Xlog).]

(iv) (Compatibility with specialization) Let H be a semi-graph

of anabelioids of pro-Σ PSC-type, Q ⊆ Node(H), and H Q
∼
→

GXlog an isomorphism of semi-graphs of anabelioids. Then there
exist a stable log curve Y log over S log and an isomorphism of
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semi-graphs of anabelioids H
∼
→ G

Y log that fit into a commuta-
tive diagram of profinite groups

IT log
X

ρuniv

X
log
t−−−→ Dehn(GXlog)y

y

IT log
Y

ρuniv

Y
log
t−−−→ Dehn(GY log)

— where we write IT log
X

, IT log
Y

for the “IT log” associated to X log,

Y log, respectively; the right-hand vertical arrow is the natural
inclusion induced, via the isomorphisms H Q

∼
→ GXlog and

H
∼
→ GY log , by the natural inclusion of Theorem 4.8, (ii); the

left-hand vertical arrow is the injection induced, via the [rele-
vant] isomorphism of Lemma 5.4, (ii), by the natural projection
of monoids

⊕

e∈Node(G
Y log )

Ne �

⊕

e∈Node(G
Xlog )

Ne .

[Note that it follows immediately from the various definitions

involved that Node(GXlog)
∼
← Node(H Q) may be regarded as a

subset of Node(G
Y log)

∼
← Node(H).]

(v) (Input compatibility with “surgery”) Let H be a sub-semi-
graph of PSC-type [cf. Definition 2.2, (i)] of the underlying
semi-graph of G

Xlog , Q ⊆ Node((G
Xlog)|H) [cf. Definition 2.2,

(ii)] a subset of Node((GXlog)|H) that is not of separating
type [cf. Definition 2.5, (i)], and U ⊆ Cusp(((GXlog)|H)�Q) [cf.
Definition 2.5, (ii)] an omittable [cf. Definition 2.4, (i)] sub-
set of Cusp(((G

Xlog)|H)�Q). Then there exist a stable log curve

Y log over S log and an isomorphism (((GXlog)|H)�Q)•U
∼
→ GY log

[cf. Definition 2.4, (ii)] that fit into a commutative diagram of
profinite groups

ISlog −−−→ IT log
X

ρuniv

X
log
t−−−→ Dehn(GXlog)∥∥∥

y
y

ISlog −−−→ IT log
Y

ρuniv

Y
log
t−−−→ Dehn(GY log)

— where we write IT log
X

, IT log
Y

for the “IT log” associated to X log,

Y log, respectively; the left-hand horizontal arrows are the homo-
morphisms induced by the classifying morphisms associated to
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X log, Y log, respectively; the right-hand vertical arrow is the nat-
ural surjection induced, via the isomorphism (((GXlog)|H)�Q)•U

∼
→

G
Y log , by the natural surjection of Theorem 4.8, (iii); the mid-

dle vertical arrow is the surjection induced, via the [relevant]
isomorphism of Lemma 5.4, (ii), by the natural inclusion of
monoids

⊕

e∈Node(G
Y log )

Ne ↪→
⊕

e∈Node(G
Xlog )

Ne .

[Note that it follows immediately from the various definitions
involved that Node(G

Y log)
∼
← Node((((G

Xlog)|H)�Q)•U) may be
regarded as a subset of Node(GXlog).]

(vi) (Output compatibility with “surgery”) Let H be a semi-
graph of anabelioids of pro-Σ PSC-type, K a sub-semi-graph
of PSC-type [cf. Definition 2.2, (i)] of the underlying semi-
graph of H, Q ⊆ Node(H|K) [cf. Definition 2.2, (ii)] a subset
of Node(H|K) that is not of separating type [cf. Defini-
tion 2.5, (i)], U ⊆ Cusp((H|K)�Q) [cf. Definition 2.5, (ii)] an
omittable [cf. Definition 2.4, (i)] subset of Cusp((H|K)�Q),

and ((H|K)�Q)•U
∼
→ G

Xlog [cf. Definition 2.4, (ii)] an isomor-
phism of semi-graphs of anabelioids. Then there exist a stable
log curve Y log over S log and an isomorphism of semi-graphs of
anabelioids H

∼
→ GY log that fit into a commutative diagram of

profinite groups

ISlog −−−→ IT log
Y

ρuniv

Y
log
t−−−→ Dehn(G

Y log)∥∥∥
y

y

ISlog −−−→ IT log
X

ρuniv

X
log
t−−−→ Dehn(GXlog)

— where we write IT log
X

, IT log
Y

for the “IT log” associated to X log,

Y log, respectively; the left-hand horizontal arrows are the homo-
morphisms induced by the classifying morphisms associated to
Y log, X log, respectively; the right-hand vertical arrow is the nat-
ural surjection induced, via the isomorphisms ((H|K)�Q)•U

∼
→

G
Xlog and H

∼
→ G

Y log , by the natural surjection of Theorem 4.8,
(iii); the middle vertical arrow is the surjection induced, via
the [relevant] isomorphism of Lemma 5.4, (ii), by the natural
inclusion of monoids

⊕

e∈Node(G
Xlog )

Ne ↪→
⊕

e∈Node(G
Y log )

Ne .
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[Note that it follows immediately from the various definitions in-
volved that Node(G

Xlog)
∼
← Node(((H|K)�Q)•U) may be regarded

as a subset of Node(GY log)
∼
← Node(H).]

Proof. Assertion (i) follows immediately from the well-known local struc-
ture of a stable log curve in a neighborhood of a node. Next, we verify
assertion (ii). By allowing “ρXlog

s
” to vary among the natural outer rep-

resentations ISlog → Dehn(GXlog) associated to stable log curves “X log”
over S log whose classifying morphisms “σ” coincide with the given σ
on the closed point s of S, one concludes that the surjectivity of ρuniv

Xlog
t

follows immediately from the final portion of Lemma 5.2, (ii), concern-
ing ρ of SNN-type [cf. also assertion (i); Theorem 4.8, (iv)]. [Here, we
recall that ρXlog

s
is of IPSC-type [cf. [HM], Definition 2.4, (i)], hence

also of SNN-type [cf. [HM], Remark 2.4.2].] On the other hand, since

both Dehn(GXlog) and IT log are free ẐΣ-modules of rank Node(GXlog)
] [cf.

Theorem 4.8, (iv); Lemma 5.4, (ii)], assertion (ii) follows immediately
from this surjectivity of ρuniv

Xlog
t

. This completes the proof of assertion

(ii).
Assertion (iii) (respectively, (iv)) follows immediately, in light of the

well-known structure of (M
log

g,r)S [cf. also the discussion entitled “The

Étale Fundamental Group of a Log Scheme” in [CmbCsp], §0, concern-
ing the specialization isomorphism on fundamental groups, as well as
Remark 5.6.1 below], by considering a lifting to S log of a stable log
curve over slog obtained by deforming the nodes of the special fiber

X log
s

def
= X log ×Slog slog corresponding to the nodes contained in Q (re-

spectively, degenerating the moduli of X log
s so as to obtain nodes cor-

responding to the nodes contained in Q) [cf. also Proposition 4.10,
(iii)].

Next, we verify assertion (v). First, we observe that one may verify
easily that if H is the underlying semi-graph of GXlog , and Q = ∅, then
the stable log curve Y log over S log obtained by omitting the cusps of
X log contained in U and the resulting natural isomorphism (GXlog)•U

∼
→

GY log satisfy the conditions given in the statement of assertion (v).
Thus, one verifies immediately that to verify assertion (v), we may
assume without loss of generality that U = ∅.

Write H
def
= ((G

Xlog)|H)�Q and V
def
= Vert(G

Xlog) \ Vert((G
Xlog)|H) ⊆

Vert(GXlog). Denote by (gH, rH) the type of H, and, for each v ∈ V , by
(gv, rv) the type of v [cf. Definition 2.3, (i), (iii); Remark 2.3.1]. Then
it follows immediately from the general theory of stable log curves that
there exists a “clutching (1-)morphism” corresponding to the operations
“(−)|H” and “(−)�Q” [i.e., obtained by forming appropriate composites
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of the clutching morphisms discussed in [Knud], Definition 3.6]

N
def
= (MgH,rH)s ×s

( ∏

v∈V

(Mgv,rv)s

)
−→ (Mg,r)s

— where the fiber product “
∏

v∈V ” is taken over s — that satisfies the

following condition: write N log for the log stack obtained by equip-
ping the stack N with the log structure induced by the log structure

of (M
log

g,r)s via the above clutching morphism; then there exists an

slog-valued point σlog
N ∈ N log(slog) of N log such that the image of σlog

N

via the natural strict (1-)morphism N log → (M
log

g,r)s coincides with

the slog-valued point of (M
log

g,r)s obtained by restricting the classifying

morphism σlog ∈ (M
log

g,r)S(S log) of X log to slog. If, moreover, we write

Y log
s for the stable log curve over slog corresponding to the image of

σlog
N ∈ N

log(slog) via the composite of (1-)morphisms

N log −→ N log def
= (M

log

gH,rH
)s ×s

( ∏

v∈V

(Mgv ,rv)s

)
prlog1−→ (M

log

gH,rH
)s

— where the first arrow is the (1-)morphism of log stacks obtained
by “forgetting” the portion of the log structure of N log that arises

from [the portion of the log structure of (M
log

g,r)s determined by] the

irreducible components of the divisor (Mg,r)s \ (Mg,r)s which contain
the image of N → (Mg,r)s — then one verifies immediately that, for
any stable log curve Y log over S log that lifts Y log

s , there exists a natural
identification isomorphism H = ((GXlog)|H)�Q

∼
→ GY log .

Next, let us observe that by applying the various definitions involved,

together with the fact that the (1-)morphism N log → (M
log

g,r)S is strict,
one may verify easily that the restrictions of the natural (1-)morphisms
of log stacks

(M
log

gH,rH
)s

prlog1←− N log ←− N log −→ (M
log

g,r)s

to a suitable étale neighborhood of the underlying morphism of stacks
of σlog

N ∈ N
log(slog) induce the following morphisms between the charts

of (M
log

gH,rH
)s, N log, N log, and (M

log

g,r)s determined by the chart of

“(M
log

g•,r•)s” given in Lemma 5.4, (i):
⊕

e∈Node(H)

Ne
∼
→

( ⊕

e∈Node(H)

Ne

)
⊕ {0} ↪→

⊕

e∈Node(G
Xlog )

Ne
∼
←

⊕

e∈Node(G
Xlog )

Ne

— where we use the notation Ne to denote a copy of the monoid N

indexed by e, and the “↪→” is the natural inclusion determined by the
natural inclusion Node(H) ↪→ Node(G). Thus, by applying the func-

tor “HombZΣ((−)gp, ẐΣ(1))” to the homomorphism
⊕

e∈Node(H) Ne ↪→
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⊕
e∈Node(G

Xlog ) Ne obtained by composing the morphisms of the above

display and considering the [relevant] isomorphism of Lemma 5.4, (ii),
we obtain a homomorphism IT log

X
→ IT log

Y
, which makes the left-hand

square of the diagram in the statement of assertion (v) commute.
On the other hand, to verify the commutativity of the right-hand

square of the diagram in the statement of assertion (v), let us observe
that by Theorem 4.8, (iv), it suffices to verify that for any node e ∈
Node(GY log) of GY log , the two composites

IT log
X

ρuniv

X
log
t−→ Dehn(GXlog)

DeX−→ ΛG
Xlog

∼
−→ ΛG

Y log
;

IT log
X
−→ IT log

Y

ρuniv

Y
log
t−→ Dehn(GY log)

De−→ ΛG
Y log

— where we write eX for the node of GXlog corresponding to the node
e ∈ Node(G

Y log) via the natural inclusion Node(G
Y log) ↪→ Node(G

Xlog)
— coincide. But this follows immediately by comparing the natural
action of IT log

X
on the portion of GXlog corresponding to {eX} ∪ V(eX)

with the natural action of IT log
Y

on the portion of GY log corresponding

to {e} ∪ V(e). This completes the proof of assertion (v).
Finally, we verify assertion (vi). First, we observe that one may verify

easily that if K is the underlying semi-graph of H, and Q = ∅, then the
stable log curve Y log over S log obtained by equipping X log with suitable
cusps satisfies, for a suitable choice of isomorphism H

∼
→ GY log , the

conditions given in the statement of assertion (vi). Thus, one verifies
immediately that to verify assertion (vi), we may assume without loss
of generality that U = ∅.

Write V
def
= Vert(H) \Vert(H|K) ⊆ Vert(H). Denote by (gH, rH) the

type of H, and, for each v ∈ V , by (gv, rv) the type of v. Then it
follows immediately from the general theory of stable log curves that
there exists a clutching “(1-)morphism” corresponding to the operations
“(−)|K” and “(−)�Q” [i.e., obtained by forming appropriate composites
of the clutching morphisms discussed in [Knud], Definition 3.6]

N
def
= (Mg,r)s ×s

( ∏

v∈V

(Mgv,rv)s

)
−→ (MgH,rH)s

— where the fiber product “
∏

v∈V ” is taken over s — that satisfies the

following condition: write N log for the log stack obtained by equipping
the stack N with the log structure induced by the log structure of

(M
log

gH,rH
)s via the above clutching morphism; then there exists an slog-

valued point σlog
N ∈ N log(slog) of N log such that the image of σlog

N ∈
N log(slog) via the composite of (1-)morphisms

N log −→ N log def
= (M

log

g,r)s ×s

( ∏

v∈V

(Mgv ,rv)s

)
prlog1−→ (M

log

g,r)s
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— where the first arrow is the (1-)morphism of log stacks obtained
by “forgetting” the portion of the log structure of N log that arises

from [the portion of the log structure of (M
log

gH,rH
)s determined by]

the irreducible components of the divisor (MgH,rH)s \ (MgH,rH)s which
contain the image of N → (MgH,rH)s — coincides with the slog-valued

point of (M
log

g,r)s obtained by restricting the classifying morphism σlog ∈

(M
log

g,r)S(S log) of X log to slog. If, moreover, we write Y log
s for the stable

log curve over slog corresponding to the image of σlog
N ∈ N

log(slog) via

the natural strict (1-)morphism N log → (M
log

gH,rH
)s, then one verifies

immediately that, for any stable log curve Y log over S log that lifts Y log
s ,

there exist a sub-semi-graph of PSC-type K′ of the underlying semi-
graph of GY log , a subset Q′ ⊆ Node((GY log)|K′), and an isomorphism of

semi-graphs of anabelioids H
∼
→ GY log that satisfy the following condi-

tions:

(a) ((GY log)|K′)�Q′ may be naturally identified with GXlog .

(b) The isomorphism H
∼
→ GY log induces an isomorphism K

∼
→ K′

and a bijection Q
∼
→ Q′, hence also an isomorphism (H|K)�Q

∼
→

((G
Y log)|K′)�Q′.

(c) The automorphism of GXlog determined by the composite

GXlog

∼
←− (H|K)�Q

∼
−→ ((GY log)|K′)�Q′

∼
−→ GXlog

— where the first arrow is the isomorphism given in the state-
ment of assertion (vi); the second arrow is the isomorphism of
(b); the third arrow is the natural isomorphism arising from the

natural identification of (a) — is contained in Aut|grph|(GXlog),
and, moreover, the automorphism of ΛG

Xlog
induced by this au-

tomorphism of GXlog is the identity automorphism [cf. Proposi-
tion 4.10, (iii)].

Thus, by applying a similar argument to the argument used in the
proof of assertion (v), one verifies easily that the stable log curve Y log

and the isomorphism H
∼
→ GY log satisfy the conditions given in the

statement of assertion (vi). This completes the proof of assertion (vi).
�

Remark 5.6.1. Here, we take the opportunity to correct a minor mis-
print in the discussion entitled “The Étale Fundamental Group of a Log
Scheme” in [CmbCsp], §0. In the third paragraph of this discussion,
the field K should be defined as a maximal algebraic extension of K◦

among those extensions which are unramified over US◦ [i.e., but not
necessarily over R◦].
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Theorem 5.7 (Compatibility of scheme-theoretic and abstract
combinatorial cyclotomic synchronizations). Let (g, r) be a pair
of nonnegative integers such that 2g − 2 + r > 0; Σ a nonempty set
of prime numbers; R a complete discrete valuation ring whose residue
field is separably closed of characteristic 6∈ Σ; S log the log scheme ob-

tained by equipping S
def
= SpecR with the log structure defined by its

closed point; X log a stable log curve of type (g, r) over S log; GXlog the
semi-graph of anabelioids of pro-Σ PSC-type determined by the spe-

cial fiber of the stable log curve X log [cf. [CmbGC], Example 2.5]; Ô
the completion of the local ring of (Mg,r)S [cf. the discussion entitled
“Curves” in §0] at the image of the closed point of S via the underlying
(1-)morphism of stacks σ : S → (Mg,r)S of the classifying morphism

of X log; T log for the log scheme obtained by equipping T
def
= Spec Ô

with the log structure induced by the log structure of (M
log

g,r)S [cf. the
discussion entitled “Curves” in §0]; IT log the maximal pro-Σ quotient
of the log fundamental group π1(T

log) of T log. Then there exists an
isomorphism

synXlog : ΛΣ def
= Hom(Ngp, ẐΣ(1))

∼
−→ ΛG

Xlog

[cf. Definition 3.8, (i)] such that the composite

IT log
∼
→

⊕

e∈Node(G
Xlog )

ΛΣ[e]

L
syn

Xlog
∼
→

⊕

e∈Node(G
Xlog )

ΛG
Xlog

DG
Xlog
∼
← Dehn(GXlog)

[cf. Definitions 4.4; 4.7] — where we use the notation ΛΣ[e] to denote
a copy of ΛΣ indexed by e ∈ Node(GXlog), and the first arrow is the
[relevant] isomorphism of Lemma 5.4, (ii) — coincides with the outer
representation ρuniv

Xlog
t

: IT log → Dehn(GXlog) [cf. Definition 5.5] associ-

ated to the stable log curve over T log corresponding to the tautological

strict (1-)morphism T log → (M
log

g,r)S.

Proof. In light of Theorem 4.8, (ii), (iv); Proposition 5.6, (ii), by ap-
plying Proposition 5.6, (iii), to the various generizations of the form
“(G

Xlog) Node(G
Xlog )\{e}”, it follows immediately that for each node e ∈

Node(G
Xlog), there exists a(n) [necessarily unique] isomorphism

synXlog [e] : ΛΣ[e]
∼
−→ ΛG

Xlog

— where ΛΣ[e] is a copy of ΛΣ indexed by e ∈ Node(G
Xlog) — such

that the composite

IT log
∼
→

⊕

e∈Node(G
Xlog )

ΛΣ[e]

L
e syn

Xlog [e]
∼
→

⊕

e∈Node(G
Xlog )

ΛG
Xlog

DG
Xlog
∼
← Dehn(GXlog)
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— where the first “
∼
→” is the [relevant] isomorphism of Lemma 5.4, (ii)

— coincides with ρuniv
Xlog

t

.

Thus, to complete the proof of Theorem 5.7, it suffices to verify that
this isomorphism synXlog [e] is independent of the choice of e. Now if
Node(GXlog)

] ≤ 1, then this independence is immediate. Thus, suppose
that Node(GXlog)

] > 1 and fix two distinct nodes e1, e2 ∈ Node(GXlog)
of GXlog . The rest of the proof of Theorem 5.7 is devoted to verifying
that

(‡): the two isomorphisms

ΛΣ[e1]

syn
Xlog [e1]
∼
−→ ΛG

Xlog
, ΛΣ[e2]

syn
Xlog [e2]
∼
−→ ΛG

Xlog

coincide.

Next, let us observe that one may verify easily that there exist

• a semi-graph of anabelioids of pro-Σ PSC-type H∗,

• a sub-semi-graph of PSC-type K∗ of the underlying semi-graph
of H∗,

• an omittable subset Q∗ ⊆ Cusp((H∗)|K∗), and

• an isomorphism

((H∗)|K∗)•Q∗
∼
−→ GXlog

such that the subset U ∗ ⊆ Node(H∗) corresponding, relative to the iso-

morphism ((H∗)|K∗)•Q∗
∼
→ G

Xlog , to the subset {e1, e2} ⊆ Node(G
Xlog)

is not of separating type. Thus, it follows immediately from Propo-
sition 5.6, (vi) — i.e., by replacing X log (respectively, e1, e2) by the
stable log curve “Y log” obtained by applying Proposition 5.6, (vi), to

the isomorphism ((H∗)|K∗)•Q∗
∼
→ GXlog (respectively, by the two nodes

∈ Node(GY log) corresponding to the two nodes ∈ U ∗) — that to verify
the above (‡), we may assume without loss of generality that the subset
{e1, e2} ⊆ Node(GXlog) is not of separating type.

Thus, it follows immediately from Proposition 5.6, (iii) — i.e., by
replacing X log (respectively, e1, e2) by the stable log curve “Y log” ob-
tained by applying Proposition 5.6, (iii), to (G

Xlog) Node(G
Xlog )\{e1 ,e2}

(respectively, by the two nodes ∈ Node(GY log) corresponding to e1, e2)
— that to verify the above (‡), we may assume without loss of gener-
ality that Node(GXlog) = {e1, e2}, and that Node(GXlog) = {e1, e2} is
not of separating type. One verifies easily that these hypotheses imply
that Vert(GXlog)

] = 1.
Next, let us observe that one may verify easily that there exist [cf.

Fig. 6 below]

• a semi-graph of anabelioids of pro-Σ PSC-type H†,
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• two distinct cusps c†1, c
†
2 ∈ Cusp(H†) of H†,

• three distinct nodes f †
1 , f

†
2 , f

†
3 ∈ Node(H†) of H†, and

• an isomorphism

(H†

 {f†
1 ,f†

2 ,f†
3}

)•{c†1,c†2}

∼
−→ GXlog

such that

• Vert(H†) = {v†1, v
†
2, v

†
3, v

†
4};

• for i ∈ {1, 2}, if we write e†i ∈ Node(H†) for the node corre-

sponding, relative to the isomorphism (H†

 {f†
1 ,f†

2 ,f†
3}

)•{c†1,c†2}

∼
→

GXlog , to ei ∈ Node(GXlog), then it holds that V(e†i ) = {v†i };

• V(f †
1 ) = {v†1, v

†
3}, V(f †

2 ) = {v†2, v
†
3}, V(f †

3) = {v†3, v
†
4};

• V(c†1) = V(c†2) = {v†4};

• for i ∈ {1, 2, 3}, v†i is of type (0, 3) [cf. Definition 2.3, (iii)].

Figure 6: The underlying semi-graph of H†

v†1 v†2

v†3

v†4

e†1 e†2
f †1 f †2

f †3

•

•

• •

◦◦ · · ·· · ·· · ·

One verifies easily that these hypotheses imply that (N (v†1)∩N (v†3))
] =

(N (v†2) ∩ N (v†3))
] = 1. Thus, it follows immediately from Proposi-

tion 5.6, (iv), (vi) — i.e., by replacing X log (respectively, e1, e2) by
the stable log curve “Y log” obtained by applying Proposition 5.6, (iv),

(vi), to the isomorphism (H†

 {f†
1 ,f†

2 ,f†
3}

)•{c†1,c†2}

∼
→ GXlog (respectively, by

the two nodes ∈ Node(GY log) corresponding to the two nodes e†1, e
†
2) —

that to verify the above (‡), we may assume without loss of generality
that there exist vertices v1, v2, v3 of GXlog such that

• for i ∈ {1, 2}, V(ei) = {vi};

• for i ∈ {1, 2, 3}, vi is of type (0, 3);
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• (N (v1) ∩ N (v3))
] = (N (v2) ∩N (v3))

] = 1.

Write H for the sub-semi-graph of PSC-type of the underlying semi-
graph of G

Xlog whose set of vertices = {v1, v2, v3}. Then one verifies eas-
ily that these hypotheses imply that Node((GXlog)|H) = {e1, e2, f1, f2},
where we write {f1} = N (v1) ∩ N (v3), {f2} = N (v2) ∩ N (v3).

Thus, it follows immediately from Proposition 5.6, (v) — i.e., by
replacing X log (respectively, e1, e2) by the stable log curve “Y log” ob-
tained by applying Proposition 5.6, (v), to (GXlog)|H (respectively, by
the two nodes ∈ Node(GY log) corresponding to e1, e2) — that to verify
the above (‡), we may assume without loss of generality that there
exist three distinct vertices v1, v2, v3 of G

Xlog such that

• for i ∈ {1, 2}, V(ei) = {vi};

• for i ∈ {1, 2, 3}, vi is of type (0, 3);

• Node(GXlog) = {e1, e2, f1, f2}, where we write {f1} = (N (v1) ∩
N (v3)), {f2} = (N (v2) ∩ N (v3)).

One verifies easily that these hypotheses imply that there exists a cusp
c of GXlog such that Cusp(GXlog) = {c} = C(v3).

Then it follows immediately from the explicit structure of G
Xlog that

there exists an automorphism τ of X log
t [cf. Definition 5.5] such that the

automorphism of Node(GXlog) = {e1, e2, f1, f2} (respectively, IT log
∼
→

HombZΣ((Ne1⊕Ne2⊕Nf1⊕Nf2)
gp, ẐΣ(1)) [cf. Lemma 5.4, (ii)]) induced

by τ is given by mapping e1 7→ e2, e2 7→ e1, f1 7→ f2, f2 7→ f1, (respec-
tively, by the corresponding permutation of factors of Ne1⊕Ne2⊕Nf1⊕
Nf2), and, moreover, τ preserves the cusp corresponding to c. Now it
follows immediately from Corollary 3.9, (v), together with the fact that
the automorphism of the anabelioid (G

Xlog)c corresponding to the cusp
c induced by τ is the identity automorphism [cf. the argument used
in the final portion of the proof of Corollary 3.9, (vi)], that the auto-
morphism of ΛG

Xlog
induced by τ is the identity automorphism. Thus,

by applying the evident functoriality of the homomorphism ρuniv
Xlog

t

with

respect to the automorphism of GXlog induced by τ , one concludes im-
mediately from the above description of τ , together with Theorem 4.8,
(v), that the assertion (‡) holds. This completes the proof of Theo-
rem 5.7. �

Definition 5.8. Let α ∈ Dehn(G) be a profinite Dehn multi-twist of
G and u ∈ ΛG a topological generator of ΛG.

(i) Let e ∈ Node(G) be a node of G. Then since ΛG is a free ẐΣ-
module of rank 1 [cf. Definition 3.8, (i)], there exists a unique

element ae ∈ ẐΣ of ẐΣ such that De(α) = aeu. We shall refer to
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ae ∈ ẐΣ as the Dehn coordinate of α indexed by e with respect
to u.

(ii) We shall say that a profinite Dehn multi-twist α ∈ Dehn(G) is
nondegenerate if, for each node e ∈ Node(G) of G, the Dehn
coordinate of α indexed by e with respect to u [cf. (i)] topo-

logically generates an open subgroup of ẐΣ. Note that it is
immediate that if α is nondegenerate, then the Dehn coordi-

nate (∈ ẐΣ ∼
→

∏
l∈Σ Zl ⊆

∏
l∈Σ Ql) of α indexed by e with

respect to u is contained in
∏

l∈Σ Q∗
l .

(iii) We shall say that a profinite Dehn multi-twist α ∈ Dehn(G) is
positive definite if α is nondegenerate [cf. (ii)], and, moreover,
the following condition is satisfied: For each node e ∈ Node(G)

of G, denote by ae ∈ ẐΣ the Dehn coordinate of α indexed by
e with respect to u [cf. (i)]. [Thus, ae ∈

∏
l∈Σ Q∗

l — cf. (ii).]
Then for any e, e′ ∈ Node(G), ae/ae′ is contained in the image

of the diagonal map Q>0
def
= { a ∈ Q | a > 0 } ↪→

∏
l∈Σ Q∗

l .

Remark 5.8.1. One may verify easily that the notions defined in Def-
inition 5.8, (ii), (iii), are independent of the choice of the topological
generator u of ΛG.

Corollary 5.9 (Properties of outer representations of PSC-type
and profinite Dehn multi-twists). Let Σ be a nonempty set of prime
numbers and ρ : I → Aut(G) an outer representation of pro-Σ PSC-
type [cf. [HM], Definition 2.1, (i)]. Suppose that I is isomorphic to

ẐΣ. Then the following hold:

(i) (Outer representations of SVA-type and profinite Dehn
multi-twists) The following three conditions are equivalent:

(i-1) ρ is of SVA-type [cf. [HM], Definition 2.4, (ii)].

(i-2) The image of any topological generator of I is a profinite
Dehn multi-twist [cf. Definition 4.4].

(i-3) There exists a topological generator of I whose image via
ρ is a profinite Dehn multi-twist.

(ii) (Outer representations of SNN-type and nondegener-
ate profinite Dehn multi-twists) The following three condi-
tions are equivalent [cf. the related discussion of [HM], Remark
2.14.1]:

(ii-1) ρ is of SNN-type [cf. [HM], Definition 2.4, (iii)].
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(ii-2) The image of any topological generator of I is a nonde-
generate [cf. Definition 5.8, (ii)] profinite Dehn multi-
twist.

(ii-3) There exists a topological generator of I whose image via
ρ is a nondegenerate profinite Dehn multi-twist.

(iii) (Outer representations of IPSC-type and positive defi-
nite profinite Dehn multi-twists) The following three con-
ditions are equivalent [cf. Remark 5.10.1 below; the related dis-
cussion of [HM], Remark 2.14.1]:

(iii-1) ρ is of IPSC-type [cf. [HM], Definition 2.4, (i)].

(iii-2) The image of any topological generator of I is a positive
definite [cf. Definition 5.8, (iii)] profinite Dehn multi-
twist.

(iii-3) There exists a topological generator of I whose image via
ρ is a positive definite profinite Dehn multi-twist.

(iv) (Synchronization associated to outer representations of
IPSC-type) Suppose that ρ is of IPSC-type. Write

(ẐΣ)+ ⊆ (ẐΣ)∗

for the intersection of the images of the diagonal map Q>0
def
=

{ a ∈ Q | a > 0 } ↪→
∏

l∈Σ Ql and the composite of natural

morphisms (ẐΣ)∗ ↪→ ẐΣ ∼
→

∏
l∈Σ Zl ⊆

∏
l∈Σ Ql. [Thus, when

Σ = Primes, it holds that (ẐΣ)+ = {1}.] Then there exists a

natural (ẐΣ)+-orbit of isomorphisms of ẐΣ-modules

syn ρ : I
∼
−→ ΛG

that is functorial, in ρ, with respect to isomorphisms of outer
representations of PSC-type [cf. [HM], Definition 2.1, (ii)].

(v) (Compatibility of synchronizations with finite étale cov-

erings) In the situation of (iv), let Π ⊆ ΠI
def
= ΠG

out
o I [cf. the

discussion entitled “Topological groups” in §0] be an open sub-
group of ΠI such that if we write H → G for the connected finite
étale covering of G corresponding to Π ∩ ΠG [so ΠH = Π∩ΠG ],

then the outer representation ρΠ : J
def
= Π/ΠH → Out(ΠH) is of

IPSC-type. Then the diagram of ẐΣ-modules

J
syn ρΠ−−−→ ΛHy

yo

I
syn ρ
−−−→ ΛG
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— where the left-hand vertical arrow is the natural inclusion;
the right-hand vertical arrow is the isomorphism of Corollary 3.9,
(iii) — commutes up to multiplication by an element ∈
Q>0.

Proof. Assertion (i) follows immediately from condition (2′) of [HM],
Definition 2.4. Next, we verify assertions (ii) and (iii). The implication

(ii-1) =⇒ (ii-2) , (respectively, (iii-1) =⇒ (iii-2))

follows immediately from the final portion of Lemma 5.2, (ii), concern-
ing ρ of SNN-type (respectively, Lemma 5.4, (ii); Theorem 5.7). The
implications

(ii-2) =⇒ (ii-3) , (iii-2) =⇒ (iii-3)

are immediate.
Next, we verify the implication

(ii-3) =⇒ (ii-1) .

It follows from the implication (i-3) ⇒ (i-1) that ρ is of SVA-type.
Thus, to show the implication in question, it suffices to verify that ρ

satisfies condition (3) of [HM], Definition 2.4. Let ẽ ∈ Node(G̃) be

an element of Node(G̃); ΠI
def
= ΠG

out
o I [cf. the discussion entitled

“Topological groups” in §0]; ṽ, w̃ ∈ Vert(G̃) the two distinct elements

of Vert(G̃) such that V(ẽ) = {ṽ, w̃} [cf. [HM], Remark 1.2.1, (iii)];
Iee, Iev, I ew ⊆ ΠI the inertia subgroups of ΠI associated to ẽ, ṽ, w̃,
respectively. Then since the homomorphisms of the final two displays

of Lemma 5.2, (ii), coincide, and ΛG
Xlog

and Iev are free ẐΣ-modules

of rank 1 [cf. Definition 3.8, (i); [HM], Lemma 2.5, (i)], it follows
immediately from the definition of nondegeneracy that the composite
of the second display of Lemma 5.2, (ii), is an open injection. Thus, it
follows immediately that the natural homomorphism Iev × I ew → Iee has
open image, and that Iev ∩ I ew = {1}, i.e., that Iev × I ew → Iee is injective.
That is to say, ρ satisfies condition (3) of [HM], Definition 2.4. This
completes the proof of the implication in question.

Next, we verify the implication

(iii-3) =⇒ (iii-1) .

Let u ∈ ΛG be a topological generator of ΛG. Then it follows immedi-
ately from Lemma 5.4, (i), (ii), and Theorem 5.7 — by considering the
stable log curve over S log corresponding to a suitable homomorphism

of R-algebras Ô ' R[[t1, · · · , t3g−g+r]]→ R [cf. Lemma 5.4, (i)] — that
to complete the proof of the implication in question, it suffices to verify
that there exists a topological generator α ∈ I of I which satisfies the
following condition (∗):
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(∗): The Dehn coordinates of ρ(α) with respect to u [cf.

Definition 5.8, (i)] ∈ N 6=0
def
= N \ {0}.

To this end, let α ∈ I be a topological generator of I such that ρ(α)
is a positive definite profinite Dehn multi-twist of G [cf. condition

(iii-3)]. For each node e ∈ Node(G) of G, denote by ae ∈ ẐΣ the
Dehn coordinate of ρ(α) indexed by e with respect to u. Now since
ρ(α) is nondegenerate, it follows immediately from the definition of
nondegeneracy that for each node e ∈ Node(G) of G, it holds that

ae ∈ N 6=0 ·(ẐΣ)∗. Thus, it follows immediately that for a given node f ∈
Node(G) of G, by replacing α by a suitable topological generator of I,
we may assume without loss of generality that af ∈ N 6=0. In particular,
it follows immediately from the definition of positive definiteness that
there exists an element a ∈ N 6=0 such that for each node e ∈ Node(G)
of G, it holds that a · ae ∈ N 6=0. Moreover, again by replacing α by a
suitable topological generator of I, we may assume that every prime
number dividing a belongs to Σ. But then it follows from the fact

that ae ∈ ẐΣ ∩ ( 1
a
· N 6=0) that ae is a positive rational number that is

integral at every element of Primes, i.e., that ae ∈ N 6=0, as desired.
In particular, the topological generator α ∈ I of I satisfies the above
condition (∗). This completes the proof of the implication in question,
hence also of assertions (ii) and (iii).

Next, we verify assertion (iv). It follows immediately from the fi-
nal portion of Lemma 5.2, (ii), concerning ρ of SNN-type that for
each e ∈ Node(G), the homomorphism syn ρ : I → ΛG obtained by

dividing the composite I
ρ
→ Dehn(G)

De→ ΛG by lngΣ
G (e, ρ) is an iso-

morphism. Moreover, by “translating into group theory” the scheme-
theoretic content of Lemma 5.4, (ii), by means of the correspondence
between group-theoretic and scheme-theoretic notions given in Propo-
sition 5.6, (i); Theorem 5.7, one concludes that syn ρ is independent —

up to multiplication by an element of (ẐΣ)+ — of the choice of the
node e ∈ Node(G). Now the functoriality of syn ρ follows immediately
from the functoriality of the homomorphism De [cf. Theorem 4.8, (iv)],
together with the group-theoreticity of lngΣ

G (e, ρ). This completes the
proof of assertion (iv).

Finally, assertion (v) follows immediately, in light of the group-
theoretic construction of “syn ρ” given in the proof of assertion (iv),
from the various definitions involved. �

Remark 5.9.1.

(i) Corollary 5.9, (iv), may be regarded as a sort of abstract com-
binatorial analogue of the cyclotomic synchronization given in
[GalSct], Theorem 4.3 [cf. also [AbsHyp], Lemma 2.5, (ii)].



COMBINATORIAL ANABELIAN TOPICS I 103

(ii) It follows from Theorem 5.7 that one may think of the isomor-
phisms of Corollary 5.9, (iv), as a sort of abstract combinato-
rial construction of the various identification isomorphisms be-

tween the various copies of “ẐΣ(1)” that appear in Lemma 5.4,
(ii). Such identification isomorphisms are typically “taken for
granted” in conventional discussions of scheme theory.

Remark 5.9.2.

(i) Consider the exact sequence of free ẐΣ-modules

0 −→Mvert
G −→MG

def
= Πab

G −→M comb
G

def
= MG/M

vert
G −→ 0

— where we write Mvert
G ⊆ MG for the ẐΣ-submodule of MG

topologically generated by the images of the verticial subgroups
of ΠG [cf. [CmbGC], Remark 1.1.4]. Then one verifies easily
that any profinite Dehn multi-twist α ∈ Dehn(G) preserves and
induces the identity automorphism on Mvert

G , M comb
G . In par-

ticular, the homomorphism MG →MG obtained by considering
the difference of the automorphism of MG induced by α and
the identity automorphism on MG naturally determines [and is
determined by!] a homomorphism

αcomb,vert : M comb
G −→Mvert

G .

Write M edge
G ⊆ Mvert

G for the ẐΣ-submodule topologically gen-
erated by the image of the edge-like subgroups of ΠG. Then the
following two facts are well-known:

• If Cusp(G) = ∅, then Poincaré dualityMG
∼
→ HombZΣ(MG ,ΛG)

determines an isomorphism M edge
G

∼
→ HombZΣ(M comb

G ,ΛG)
[cf. [CmbGC], Proposition 1.3].

• The natural homomorphism

Dehn(G) −→ HombZΣ(M comb
G ,Mvert

G )

given by mapping α 7→ αcomb,vert factors through the sub-
module HombZΣ(M comb

G ,M edge
G ) ⊆ HombZΣ(M comb

G ,Mvert
G ). [In-

deed, this may be verified, for instance, by applying a
similar argument to the argument used in the proof of
[CmbGC], Proposition 1.3, involving weights.]

Thus, if Cusp(G) = ∅, then we obtain a homomorphism

ΩG : Dehn(G) −→M edge
G ⊗bZΣ M

edge
G ⊗bZΣ HombZΣ(ΛG, Ẑ

Σ)

that is manifestly functorial, in G, with respect to isomorphisms
of semi-graphs of anabelioids of pro-Σ PSC-type. The matrices
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that appear in the image of this homomorphism ΩG are often
referred to as period matrices.

(ii) Now let us recall that [CmbGC], Proposition 2.6, plays a key
role in the proof of the combinatorial version of the Grothendieck
conjecture given in [CmbGC], Corollary 2.7, (iii). Moreover, the
proof of [CmbGC], Proposition 2.6, is essentially a formal con-
sequence of the nondegeneracy of the period matrix associated
to a positive definite profinite Dehn multi-twist — i.e., of the
injectivity of the homomorphism

αcomb,vert : M comb
G −→Mvert

G

of (i) in the case where α ∈ Dehn(G) is positive definite [cf.
Corollary 5.9, (iii)].

(iii) In general, the period matrix associated to a profinite Dehn
multi-twist may fail to be nondegenerate even if the profinite
Dehn multi-twist is nondegenerate. Indeed, suppose that Σ] =
1, that G is the double [cf. [CmbGC], Proposition 2.2, (i)] of a
semi-graph of anabelioids of pro-Σ PSC-type H such that

(Vert(H)],Node(H)],Cusp(H)]) = (1, 0, 2) .

Suppose, moreover, thatH admits an automorphism which per-
mutes the two cusps of H and extends to an automorphism φ
of G. [One verifies easily that such data exist.] Then one may
verify easily that Node(G)] = 2, that Cusp(G)] = 0, and that

the free ẐΣ-module M comb
G , hence also M edge

G ⊗bZΣ M edge
G ⊗bZΣ

HombZΣ(ΛG, Ẑ
Σ) [cf. (i)], is of rank 1. Now let us recall that the

period matrix associated to a positive definite profinite Dehn
multi-twist is necessarily nondegenerate [cf. Corollary 5.9, (iii);
the proof of [CmbGC], Proposition 2.6]. Thus, since Σ] = 1,
it follows immediately from the functoriality of ΩG [cf. (i)] and
DG [cf. Theorem 4.8, (iv)] with respect to φ that the kernel of
the composite of natural homomorphisms

⊕

Node(G)

ΛG

DG
∼
←− Dehn(G)

ΩG
−→M edge

G ⊗bZΣM
edge
G ⊗bZΣHombZΣ(ΛG, Ẑ

Σ)

is a free ẐΣ-submodule of
⊕

Node(G) ΛG of rank 1 that is stabilized
by φ. On the other hand, since profinite Dehn multi-twists of
the form (u, u) ∈

⊕
Node(G) ΛG, where u ∈ ΛG, are [manifestly!]

positive definite, we thus conclude that the kernel in question is
equal to

{ (u,−u) ∈
⊕

Node(G)

ΛG | u ∈ ΛG } .
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In particular, any nonzero element of this kernel yields an ex-
ample of a nondegenerate profinite Dehn multi-twist whose as-
sociated period matrix fails to be nondegenerate.

Corollary 5.10 (Combinatorial/group-theoretic nature of sche-
me-theoreticity). Let (g, r) be a pair of nonnegative integers such that
2g− 2 + r > 0; Σ a nonempty set of prime numbers; R a complete dis-
crete valuation ring whose residue field k is separably closed of charac-

teristic 6∈ Σ; S log the log scheme obtained by equipping S
def
= SpecR with

the log structure determined by the maximal ideal of R; x ∈ (Mg,r)S(k)
a k-valued point of the moduli stack of curves (Mg,r)S of type (g, r)

over S [cf. the discussion entitled “Curves” in §0]; Ô the completion of
the local ring of (Mg,r)S at the image of x; T log the log scheme obtained

by equipping T
def
= Spec Ô with the log structure induced by the log struc-

ture of (M
log

g,r)S [cf. the discussion entitled “Curves” in §0]; tlog the log
scheme obtained by equipping the closed point of T with the log struc-
ture induced by the log structure of T log; X log

t the stable log curve over

tlog corresponding to the natural strict (1-)morphism tlog → (M
log

g,r)S;

IT log the maximal pro-Σ quotient of the log fundamental group π1(T
log)

of T log; ISlog the maximal pro-Σ quotient of the log fundamental group
π1(S

log) of S log; G
Xlog the semi-graph of anabelioids of pro-Σ PSC-type

determined by the stable log curve X log
t [cf. [CmbGC], Example 2.5];

ρuniv

Xlog
t

: IT log → Aut(GXlog) the natural outer representation associated

to X log
t [cf. Definition 5.5]; I a profinite group; ρ : I → Aut(GXlog) an

outer representation of pro-Σ PSC-type [cf. [HM], Definition 2.1, (i)].
Then the following conditions are equivalent:

(i) ρ is of IPSC-type.

(ii) There exist a morphism of log schemes φlog : S log → T log over
S and an isomorphism of outer representations of pro-
Σ PSC-type ρ

∼
→ ρuniv

Xlog
t

◦ Iφlog [cf. [HM], Definition 2.1, (i)]

— where we write Iφlog : ISlog → IT log for the homomorphism
induced by φlog — i.e., there exist an automorphism β of
G

Xlog and an isomorphism α : I
∼
→ I log

S such that the diagram

I
ρ

−−−→ Aut(GXlog)

α

yo

yo

ISlog

ρ
X

log
t

◦I
φlog

−−−−−−→ Aut(G
Xlog)

— where the right-hand vertical arrow is the automorphism of
Aut(GXlog) induced by β — commutes.
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(iii) There exist a morphism of log schemes φlog : S log → T log over S

and an isomorphism α : I
∼
→ I log

S such that ρ = ρuniv
Xlog

t

◦ Iφlog ◦α

— where we write Iφlog : ISlog → IT log for the homomorphism
induced by φlog — i.e., the automorphism “β” of (ii) may be
taken to be the identity.

Proof. The equivalence (i)⇔ (ii) follows from the definition of the term
“IPSC-type” [cf. [HM], Definition 2.4, (i)]. The implication (iii)⇒ (ii)
is immediate. The implication (ii)⇒ (iii) follows immediately, in light
of the functoriality asserted in Theorem 4.8, (iv), from Lemma 5.4, (i),
(ii), and Theorem 5.7. �

Remark 5.10.1.

(i) The equivalence of Corollary 5.10 essentially amounts to the
equivalence

“IPSC-type ⇐⇒ positive definite”

which was discussed in [HM], Remark 2.14.1, without proof.

(ii) One way to understand the equivalence of Corollary 5.10 is as
the statement that the property that an outer representation
of PSC-type be of scheme-theoretic origin may be formulated
purely in terms of combinatorics/group theory.

In the final portion of the present §5, we apply the theory devel-
oped so far [i.e., in particular, the equivalences of Corollary 5.9, (ii),
(iii)] to derive results [cf. Theorem 5.14] concerning normalizers and
commensurators of groups of profinite Dehn multi-twists.

Definition 5.11. Let M ⊆ H ⊆ Out(ΠG) be closed subgroups of
Out(ΠG). Suppose further that M is an abelian pro-Σ group [such as
Dehn(G) — cf. Theorem 4.8, (iv)].

(i) We shall write

N scal
H (M) ⊆ NH(M) ⊆ H

for the [closed] subgroup of H consisting of α ∈ H satisfying
the following condition: α ∈ NH(M), and, moreover, the action
of α on M by conjugation coincides with the automorphism of

M given by multiplication by an element of (ẐΣ)∗. We shall
refer to N scal

H (M) as the scalar-normalizer of M in H.
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(ii) We shall write

Cscal
H (M) ⊆ CH(M) ⊆ H

for the subgroup of H consisting of α ∈ H satisfying the follow-

ing condition: there exists an open ẐΣ-submodule M ′
α ⊆ M of

M [possibly depending on α] such that the action of α on H by
conjugation determines an automorphism of M ′

α given by mul-

tiplication by an element of (ẐΣ)∗. We shall refer to Cscal
H (M)

as the scalar-commensurator of M in H.

Lemma 5.12 (Scalar-normalizers and scalar-commensurators).
Let M ⊆ H ⊆ Out(ΠG) be closed subgroups of Out(ΠG). Suppose
further that M is an abelian pro-Σ group. Then:

(i) It holds that

M ⊆ ZH(M) ⊆ N scal
H (M) ⊆ Cscal

H (M) .

(ii) If M ′ ⊆M is a ẐΣ-submodule of M , then

N scal
H (M) ⊆ N scal

H (M ′) ; Cscal
H (M) ⊆ Cscal

H (M ′) .

If, moreover, M ′ ⊆M is open in M , then

Cscal
H (M) = Cscal

H (M ′) .

Proof. These assertions follow immediately from the various definitions
involved. �

Definition 5.13. Let H ⊆ Out(ΠG) be a closed subgroup of Out(ΠG).
Then we shall say that H is IPSC-ample (respectively, NN-ample) if
H contains a positive definite (respectively, nondegenerate) [cf. Defi-
nition 5.8] profinite Dehn multi-twist ∈ Dehn(G).

Remark 5.13.1. It follows immediately from Theorem 4.8, (iv), that
any open subgroup of Dehn(G) is IPSC-ample, hence also NN-ample
[cf. Definition 5.13].

Theorem 5.14 (Normalizers and commensurators of groups of
profinite Dehn multi-twists). Let Σ be a nonempty set of prime
numbers, G a semi-graph of anabelioids of pro-Σ PSC-type, OutC(ΠG)
the group of group-theoretically cuspidal [cf. [CmbGC], Definition
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1.4, (iv)] outomorphisms of ΠG , and M ⊆ OutC(ΠG) a closed subgroup
of OutC(ΠG) which is abelian pro-Σ. Then the following hold:

(i) Suppose that one of the following two conditions is satisfied:

(1) M is IPSC-ample [cf. Definition 5.13].

(2) M is NN-ample [cf. Definition 5.13], and Cusp(G) 6= ∅.

Then it holds that

N scal
OutC(ΠG)(M) ⊆ Cscal

OutC(ΠG)(M) ⊆ Aut(G)

[cf. Definition 5.11]. If, moreover, M ⊆ Dehn(G) [cf. Defini-
tion 4.4], then

Aut|Node(G)|(G) ⊆ N scal
OutC(ΠG)(M) ⊆ Cscal

OutC(ΠG)(M) ⊆ Aut(G)

[cf. Definition 2.6, (i)]. In particular,

N scal
OutC(ΠG)

(M) , Cscal
OutC(ΠG)

(M) ⊆ Aut(G)

are open subgroups of Aut(G).

(ii) If M is an open subgroup of Dehn(G), then it holds that

Aut(G) = COutC(ΠG)(M) .

If, moreover, Node(G) 6= ∅, then

Aut|Node(G)|(G) ∩ Ker(χG) = ZOutC(ΠG)(M)

[cf. Definition 3.8, (ii)].

(iii) It holds that

Aut(G) = NOutC(ΠG)(Dehn(G)) = COutC(ΠG)(Dehn(G)) .

Proof. First, we verify the inclusion Cscal
OutC(ΠG)

(M) ⊆ Aut(G) asserted

in assertion (i). Suppose that condition (1) (respectively, (2)) is satis-
fied. Let α ∈ Cscal

OutC(ΠG)
(M). Then since α ∈ Cscal

OutC(ΠG)
(M), and M is

IPSC-ample (respectively, NN-ample), it follows immediately that there
exists an element β ∈M ofM such that both β and αβα−1 = βλ, where

λ ∈ (ẐΣ)∗, are positive definite (respectively, nondegenerate) profinite
Dehn multi-twists. Thus, the graphicity of α follows immediately from
[HM], Remark 4.2.1, together with Corollary 5.9, (iii) (respectively,
from [HM], Theorem A, together with Corollary 5.9, (ii)). This com-
pletes the proof of the inclusion Cscal

OutC(ΠG)
(M) ⊆ Aut(G), hence also, by

Lemma 5.12, (i), of the two inclusions in the first display of assertion
(i).

If, moreover, M ⊆ Dehn(G), then the inclusion Aut|Node(G)|(G) ⊆
N scal

OutC(ΠG)
(M) follows immediately from Theorem 4.8, (v). Thus, since
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Aut|Node(G)|(G) is an open subgroup of Aut(G) [cf. Proposition 2.7, (iii)],
it follows immediately that N scal

OutC(ΠG)
(M), hence also Cscal

OutC(ΠG)
(M), is

an open subgroup of Aut(G). This completes the proof of assertion (i).
Next, we verify the equality Aut(G) = COutC(ΠG)(M) in the first

display of assertion (ii). It follows immediately from Theorem 4.8, (i),
that Aut(G) ⊆ NOutC(ΠG)(Dehn(G)) ⊆ COutC(ΠG)(M). Thus, to verify
the equality Aut(G) = COutC(ΠG)(M), it suffices to verify the inclusion
COutC(ΠG)(M) ⊆ Aut(G). To this end, let α ∈ COutC(ΠG)(M). Then it
follows from Lemma 5.12, (ii), that

Cscal
OutC(ΠG)(M) = Cscal

OutC(ΠG)(α ·M · α
−1) = α · Cscal

OutC(ΠG)(M) · α−1 ,

i.e., α ∈ NOutC(ΠG)(C
scal
OutC(ΠG)

(M)). Thus, since Cscal
OutC(ΠG)

(M) is an open

subgroup of Aut(G) [cf. assertion (i); Remark 5.13.1], we conclude that
α ∈ COutC(ΠG)(Aut(G)). Thus, the fact that α ∈ Aut(G) follows from

the commensurable terminality of Aut(G) in Out(ΠG), i.e., the equality
Aut(G) = COut(ΠG)(Aut(G)) [cf. [CmbGC], Corollary 2.7, (iv)]. This
completes the proof of the equality Aut(G) = COutC(ΠG)(M).

Next, we verify the equality Aut|Node(G)|(G) ∩ Ker(χG) = ZOutC(ΠG)(M)
in the second display of assertion (ii). Now it follows immediately

from Theorem 4.8, (v), that Aut|Node(G)|(G)∩Ker(χG) ⊆ ZOutC(ΠG)(M).
Thus, to show the equality in question, it suffices to verify the inclu-
sion ZOutC(ΠG)(M) ⊆ Aut|Node(G)|(G) ∩ Ker(χG). To this end, let us
observe that since Aut(G) = COutC(ΠG)(M) [cf. the preceding para-

graph], it holds that ZOutC(ΠG)(M) ⊆ Aut(G). Thus, since the action
of ZOutC(ΠG)(M) on M by conjugation preserves and induces the iden-
tity automorphism on the intersection of M with each direct summand

of
⊕

e∈Node(G) ΛG

DG
∼
← Dehn(G) [i.e., each “ΛG”], it follows immediately

from Theorem 4.8, (v), in light of our assumption that Node(G) 6= ∅,
that ZOutC(ΠG)(M) ⊆ Aut|Node(G)|(G) ∩ Ker(χG). This completes the
proof of assertion (ii).

Assertion (iii) follows immediately from assertion (ii), together with
Theorem 4.8, (i). This completes the proof of Theorem 5.14. �

Remark 5.14.1. In the notation of Theorem 5.14, (i) (respectively,
Theorem 5.14, (ii)), in general, the inclusion

Cscal
OutC(ΠG)

(M) ⊆ Aut(G)

[hence, a fortiori, by the inclusions of the first display of Theorem 5.14,
(i), the inclusion N scal

OutC(ΠG)
(M) ⊆ Aut(G)] (respectively, in general, the

inclusion

NOutC(ΠG)(M) ⊆ Aut(G) )
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is strict. Indeed, suppose that there exist a node e ∈ Node(G) and an
automorphism α ∈ Aut(G) of G such that α does not stabilize e, and
χG(α) = 1. [For example, in the notation of the final paragraph of the
proof of Theorem 5.7, the node e1 and the automorphism induced by τ
of GXlog satisfy these conditions.] Now fix a prime number l ∈ Σ; write

M
def
= l · (ΛG)e ⊕

( ⊕

f 6=e

ΛG

)
⊆

⊕

f∈Node(G)

ΛG

DG
∼
← Dehn(G)

— where we use the notation (ΛG)e to denote a copy of ΛG indexed
by e ∈ Node(G). Then M is an open subgroup of Dehn(G), hence also
IPSC-ample [cf. Remark 5.13.1], but it follows immediately from Theo-
rem 4.8, (v), that α 6∈ Cscal

OutC(ΠG)
(M) (respectively, α 6∈ NOutC(ΠG)(M)).
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6. Centralizers of geometric monodromy

In the present §, we study the centralizer of the image of certain
geometric monodromy groups. As an application, we prove a “geometric
version of the Grothendieck conjecture” for the universal curve over the
moduli stack of pointed smooth curves [cf. Theorem 6.13 below].

Definition 6.1. Let Σ be a nonempty set of prime numbers and Π a
pro-Σ surface group [cf. [MT], Definition 1.2]. Then we shall write

OutC(Π) = OutFC(Π) = OutPFC(Π)

for the group of outomorphisms of Π which induce bijections on the
set of cuspidal inertia subgroups of Π. We shall refer to an element of
OutC(Π) = OutFC(Π) = OutPFC(Π) as a C-, FC-, or PFC-admissible
outomorphism of Π.

Remark 6.1.1. In the notation of Definition 6.1, suppose that ei-
ther Σ] = 1 or Σ = Primes. Then it follows from the various defi-
nitions involved that Π is equipped with a natural structure of pro-Σ
configuration space group [cf. [MT], Definition 2.3, (i)]. Thus, the
terms “C-/FC-/PFC-admissible outomorphism of Π” and the notation
“OutC(Π) = OutFC(Π)” have already been defined in [CmbCsp], Def-
inition 1.1, (ii), and Definition 1.4, (iii), of the present paper. In this
case, however, one may verify easily that these definitions coincide.

Lemma 6.2 (Extensions arising from log configuration spaces).
Let (g, r) be a pair of nonnegative integers such that 2g − 2 + r > 0;
0 < m < n positive integers; ΣF ⊆ ΣB nonempty sets of prime numbers;
k an algebraically closed field of characteristic zero; (Spec k)log the log
scheme obtained by equipping Spec k with the log structure given by the
fs chart N → k that maps 1 7→ 0; X log = X log

1 a stable log curve of
type (g, r) over (Spec k)log. Suppose that ΣF ⊆ ΣB satisfy one of the
following two conditions:

(1) ΣF and ΣB determine PT-formations [i.e., are either of car-
dinality 1 or equal to Primes — cf. [MT], Definition 1.1,
(ii)].

(2) n−m = 1 and ΣB = Primes.

Write

X log
n , X log

m

for the n-th, m-th log configuration spaces of the stable log curve
X log [cf. the discussion entitled “Curves” in §0], respectively; Πn,
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ΠB
def
= Πm for the respective maximal pro-ΣB quotients of the ker-

nels of the natural surjections π1(X
log
n ) � π1((Spec k)log), π1(X

log
m ) �

π1((Spec k)log); Πn/m ⊆ Πn for the kernel of the surjection Πn � ΠB =
Πm induced by the projectionX log

n → X log
m obtained by forgetting the last

(n−m) factors; ΠF for the maximal pro-ΣF quotient of Πn/m; ΠT for
the quotient of Πn by the kernel of the natural surjection Πn/m � ΠF.
Thus, we have a natural exact sequence of profinite groups

1 −→ ΠF −→ ΠT −→ ΠB −→ 1 ,

which determines an outer representation

ρn/m : ΠB −→ Out(ΠF) .

Then the following hold:

(i) The isomorphism class of the exact sequence of profinite groups

1 −→ ΠF −→ ΠT −→ ΠB −→ 1

depends only on (g, r) and the pair (ΣF,ΣB), i.e., if 1 →
Π•

F → Π•
T → Π•

B → 1 is the exact sequence “1 → ΠF → ΠT →
ΠB → 1” associated, with respect to the same (ΣF,ΣB), to an-
other stable log curve of type (g, r) over (Spec k)log, then there
exists a commutative diagram of profinite groups

1 −−−→ ΠF −−−→ ΠT −−−→ ΠB −−−→ 1

o

y o

y o

y
1 −−−→ Π•

F −−−→ Π•
T −−−→ Π•

B −−−→ 1

— where the vertical arrows are isomorphisms.

(ii) The profinite group ΠB is equipped with a natural structure of
pro-ΣB configuration space group [cf. [MT], Definition 2.3,
(i)]. If, moreover, ΣF ⊆ ΣB satisfies condition (1) (respectively,
(2)), then the profinite group ΠF is equipped with a natural
structure of pro-ΣF configuration space group (respectively,
surface group [cf. [MT], Definition 1.2]).

(iii) The outer representation ρn/m : ΠB → Out(ΠF) factors through

the closed subgroup OutC(ΠF) ⊆ Out(ΠF) [cf. Definition 6.1;
[CmbCsp], Definition 1.1, (ii)].

Proof. Assertion (i) follows immediately by considering a suitable spe-
cialization isomorphism [cf. the discussion preceding [CmbCsp], Defi-
nition 2.1, as well as Remark 5.6.1 of the present paper]. Assertion (ii)
follows immediately from assertion (i), together with the various def-
initions involved. Assertion (iii) follows immediately from the various
definitions involved. This completes the proof of Lemma 6.2. �
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Definition 6.3. In the notation of Lemma 6.2 in the case where

(m,n,ΣB) = (1, 2,Primes),

let x ∈ X(k) be a k-valued point of the underlying scheme X of X log.

(i) We shall denote by

G

the semi-graph of anabelioids of pro-Primes PSC-type deter-
mined by the stable log curve X log; by

Gx

the semi-graph of anabelioids of pro-ΣF PSC-type determined

by the geometric fiber of X log
2 → X log over xlog def

= x ×X X log;
by ΠG, ΠGx the [pro-Primes, pro-ΣF] fundamental groups of G,
Gx, respectively. Thus, we have a natural outer isomorphism

ΠB
∼
−→ ΠG

and a natural Im(ρ2/1) (⊆ Out(ΠF))-torsor of outer isomor-
phisms

ΠF
∼
−→ ΠGx .

Let us fix isomorphisms ΠB
∼
→ ΠG, ΠF

∼
→ ΠGx that belong to

these collections of isomorphisms.

(ii) Denote by

cFdiag,x ∈ Cusp(Gx)

the cusp of Gx [i.e., the cusp of the geometric fiber of X log
2 →

X log over xlog] determined by the diagonal divisor of X log
2 . For

v ∈ Vert(G) (respectively, c ∈ Cusp(G)) [i.e., which corresponds
to an irreducible component (respectively, a cusp) of X log], de-
note by

vF
x ∈ Vert(Gx) (respectively, cFx ∈ Cusp(Gx))

the vertex (respectively, cusp) of Gx that corresponds naturally
to v ∈ Vert(G) (respectively, c ∈ Cusp(G)).

(iii) Let e ∈ Edge(G), v ∈ Vert(G), S ⊆ VCN(G), and z ∈ VCN(G).
Then we shall say that x lies on e if the image of x is the cusp
or node corresponding to e ∈ Edge(G). We shall say that x lies
on v if x does not lie on any edge of G, and, moreover, the image
of x is contained in the irreducible component corresponding to
v ∈ Vert(G). We shall write x y S if x lies on some s ∈ S. We
shall write x y z if x y {z}.
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Lemma 6.4 (Cusps and vertices of fibers). In the notation of
Definition 6.3, let x, x′ ∈ X(k) be k-valued points of X. Then the
following hold:

(i) The isomorphism ΠGx

∼
→ ΠGx′

obtained by forming the compos-

ite of the isomorphisms ΠGx

∼
← ΠF

∼
→ ΠGx′

[cf. Definition 6.3,
(i)] is group-theoretically cuspidal [cf. [CmbGC], Defini-
tion 1.4, (iv)].

(ii) The injection Cusp(G) ↪→ Cusp(Gx) given by mapping c 7→ cFx
determines a bijection

Cusp(G)
∼
−→ Cusp(Gx) \ {c

F
diag,x}

[cf. Definition 6.3, (ii)]. Moreover, if we regard Cusp(G) as a
subset of each of the sets Cusp(Gx), Cusp(Gx′) by means of the

above injections, then the bijection Cusp(Gx)
∼
→ Cusp(Gx′) de-

termined by the group-theoretically cuspidal isomorphism
ΠGx

∼
→ ΠGx′

of (i) maps cFdiag,x 7→ cFdiag,x′ and induces the iden-
tity automorphism on Cusp(G). Thus, in the remainder of
the present §, we shall omit the subscript “x” from the notation
“cFx” and “cFdiag,x”.

(iii) The injection Vert(G) ↪→ Vert(Gx) given by mapping v 7→ vF
x

[cf. Definition 6.3, (ii)] is bijective if and only if x y Vert(G)
[cf. Definition 6.3, (iii)]. If x y Edge(G), then the complement
of the image of Vert(G) in Vert(Gx) is of cardinality one; in this
case, we shall write

vF
new,x ∈ Vert(Gx) \Vert(G)

for the unique element of Vert(Gx) \ Vert(G).

(iv) Suppose that x y Cusp(G) (respectively, Node(G)). Then it
holds that cFdiag ∈ C(v

F
new,x) [cf. (iii)], and, moreover, (C(vF

new,x)
],

N (vF
new,x)

]) = (2, 1) (respectively, = (1, 2)). Moreover, for any

element eF ∈ N (vF
new,x), it holds that V(eF)] = 2.

Proof. These assertions follow immediately from the various definitions
involved. �

Definition 6.5. In the notation of Definition 6.3:

(i) Write

CuspF(G)
def
= Cusp(G) t {cFdiag}

[cf. Definition 6.3, (ii); Lemma 6.4, (ii)].
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(ii) Let α ∈ OutC(ΠF) be an C-admissible outomorphism of ΠF [cf.
Definition 6.1; Lemma 6.2, (ii)]. Then it follows immediately
from Lemma 6.4, (ii), that for any k-valued point x ∈ X(k) of
X, the automorphism of CuspF(G) [cf. (i)] obtained by con-
jugating the natural action of α on Cusp(Gx) by the natural

bijection CuspF(G)
∼
→ Cusp(Gx) implicit in Lemma 6.4, (ii),

does not depend on the choice of x. We shall refer to this
automorphism of CuspF(G) as the automorphism of CuspF(G)
determined by α. Thus, we have a natural homomorphism
OutC(ΠF)→ Aut(CuspF(G)).

(iii) For c ∈ CuspF(G) [cf. (i)], we shall refer to a closed subgroup

of ΠF obtained as the image — via the isomorphism ΠGx

∼
←

ΠF [cf. Definition 6.3, (i)] for some k-valued point x ∈ X(k)
— of a cuspidal subgroup of ΠGx associated to the cusp of Gx

corresponding to c ∈ CuspF(G) as a cuspidal subgroup of ΠF

associated to c ∈ CuspF(G). Note that it follows immediately
from Lemma 6.4, (ii), that the ΠF-conjugacy class of a cuspidal
subgroup of ΠF associated to c ∈ CuspF(G) depends only on
c ∈ CuspF(G), i.e., does not depend on the choice of x or on the
choices of isomorphisms made in Definition 6.3, (i).

Lemma 6.6 (Images of VCN-subgroups of fibers). In the nota-
tion of Definition 6.3, let ΠcFdiag

⊆ ΠF be a cuspidal subgroup of ΠF

associated to cFdiag ∈ CuspF(G) [cf. Definition 6.5, (i), (iii)], x ∈ X(k)

a k-valued point of X, zF ∈ VCN(Gx)\{cFdiag}, and ΠzF ⊆ ΠGx a VCN-

subgroup of ΠGx associated to zF. Write Ndiag ⊆ ΠF for the normal
closed subgroup of ΠF topologically normally generated by ΠcFdiag

. [Note

that it follows immediately from Lemma 6.4, (i), that Ndiag is normal
in ΠT.] Then the following hold:

(i) Write GΣF for the semi-graph of anabelioids of pro-ΣF PSC-
type obtained by forming the pro-ΣF completion of G [cf.
[SemiAn], Definition 2.9, (ii)]. Then there exists a natural

outer isomorphism ΠF/Ndiag
∼
→ ΠGΣF that satisfies the fol-

lowing conditions:

• Suppose that x y Vert(G) [cf. Definition 6.3, (iii)]. Then
the ΠGΣF -conjugacy class of the image of the composite

ΠzF ↪→ ΠGx

∼
← ΠF � ΠF/Ndiag

∼
→ ΠGΣF

coincides with the ΠGΣF -conjugacy class of any VCN-sub-
group of ΠGΣF associated to the element of VCN(GΣF) =
VCN(G) naturally determined by zF.
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• Suppose that x y e ∈ Edge(G), and that zF 6∈ {vF
new,x} ∪

E(vF
new,x) (respectively, zF ∈ {vF

new,x} ∪ E(v
F
new,x)) [cf. Lemma

6.4, (iii)]. Then the ΠGΣF -conjugacy class of the image of
the composite

ΠzF ↪→ ΠGx

∼
← ΠF � ΠF/Ndiag

∼
→ ΠGΣF

coincides with the ΠGΣF -conjugacy class of any VCN-sub-
group of ΠGΣF associated to the element of VCN(GΣF) =
VCN(G) natural determined by zF (respectively, associated
to e ∈ Edge(GΣF) = Edge(G)).

(ii) The image of the composite

ΠzF ↪→ ΠGx

∼
← ΠF � ΠF/Ndiag

is commensurably terminal.

(iii) Suppose that either

• zF ∈ Edge(Gx),

or

• zF = vF
x for v ∈ Vert(G) such that x does not lie on v.

Then the composite

ΠzF ↪→ ΠGx

∼
← ΠF � ΠF/Ndiag

is injective.

(iv) Let Π(z′)F ⊆ ΠGx be a VCN-subgroup of ΠGx associated to an

element (z′)F ∈ VCN(Gx) \ {cFdiag}. Suppose that either

• x y Vert(G),

or

• x y Edge(G), and zF, (z′)F 6∈ {vF
new,x} ∪ E(v

F
new,x).

Then if the ΠF/Ndiag-conjugacy classes of the images of ΠzF,
Π(z′)F ⊆ ΠGx via the composite

ΠGx

∼
← ΠF � ΠF/Ndiag

coincide, then zF = (z′)F.

Proof. Assertion (i) follows immediately from the various definitions in-
volved. Assertion (ii) follows immediately from [CmbGC], Proposition
1.2, (ii), and assertion (i), together with the various definitions in-
volved. Assertion (iii) follows immediately from assertion (i), together
with the various definitions involved. Assertion (iv) follows immedi-
ately from [CmbGC], Proposition 1.2, (i), and assertion (i), together
with the various definitions involved. �
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Lemma 6.7 (Outomorphisms preserving the diagonal). In the
notation of Definition 6.3, let H ⊆ ΠB be an open subgroup of ΠB,

α̃ an automorphism of ΠT|H
def
= ΠT ×ΠB

H over H, αF ∈ Out(ΠF)
the outomorphism of ΠF determined by the restriction α̃|ΠF

of α̃ to
ΠF ⊆ ΠT|H , and ΠcFdiag

⊆ ΠF a cuspidal subgroup of ΠF associated to

cFdiag ∈ CuspF(G) [cf. Definition 6.5, (i), (iii)]. Then the following
hold:

(i) Suppose that α̃ preserves ΠcFdiag
⊆ ΠF. Then the automorphism

of ΠF/Ndiag [where we refer to the statement of Lemma 6.6 con-
cerning Ndiag] induced by α̃ is the identity automorphism. If,
moreover, αF is C-admissible [cf. Definition 6.1; Lemma 6.2,
(ii)], then the automorphism of CuspF(G) induced by αF [cf.
Definition 6.5, (ii)] is the identity automorphism.

(ii) Let e ∈ Edge(G), x ∈ X(k) be such that x y e. Suppose
that αF is C-admissible, and that Edge(G) = {e} ∪ Cusp(G).
Then it holds that αF ∈ Aut(Gx) (⊆ Out(ΠGx)

∼
← Out(ΠF)).

If, moreover, α̃ preserves ΠcFdiag
⊆ ΠF, then αF ∈ Aut|grph| (Gx)

(⊆ Aut(Gx)).

Proof. First, we verify assertion (i). Now let us observe that it follows
immediately from a similar argument to the argument used in the proof
of [CmbCsp], Proposition 1.2, (iii) — i.e., by considering the action of
α̃ on the decomposition subgroup D ⊆ ΠT|H of ΠT|H associated to the

diagonal divisor of X log
2 such that ΠcFdiag

⊆ D, and applying the fact

thatD = NΠT|H(ΠcFdiag
) ⊆ ΠT|H — that α̃ induces the identity automor-

phism on some normal open subgroup J ⊆ ΠF/Ndiag of ΠF/Ndiag. Thus,
it follows immediately from the slimness [cf. [CmbGC], Remark 1.1.3]

of ΠGΣF

∼
← ΠF/Ndiag ↪→ Aut(J) that α̃ induces the identity automor-

phism on ΠF/Ndiag. This completes the proof of the fact that α̃ induces
the identity automorphism of ΠF/Ndiag. On the other hand, if, more-
over, αF is C-admissible, then since α̃ induces the identity automor-
phism of ΠF/Ndiag, it follows immediately from [CmbGC], Proposition

1.2, (i), applied to the cuspidal inertia subgroups of ΠF/Ndiag
∼
→ ΠGΣF

[cf. Lemma 6.6, (i)] that the automorphism of CuspF(G) induced by
αF is the identity automorphism. This completes the proof of assertion
(i).

Next, we verify assertion (ii). Let Πe ⊆ ΠG
∼
← ΠB be an edge-

like subgroup associated to the edge e ∈ Edge(G). By abuse of no-
tation, we shall write H ∩ Πe ⊆ ΠB for the intersection of H with
the image of Πe in ΠB. Now since αF is C-admissible, and α̃ is an
automorphism of ΠT|H over H, it holds that αF ∈ ZOutC(ΠF)(ρ2/1(H))

[cf. the discussion entitled “Topological groups” in §0], hence also that
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αF ∈ ZOutC(ΠF)(ρ2/1(H ∩ Πe)). On the other hand, in light of the

well-known structure of X log in a neighborhood of the cusp or node
corresponding to e, one verifies easily — by applying [HM], Proposi-
tion 2.14, together with our assumption that Edge(G) = {e}∪Cusp(G)
— that the image of the composite

Πe ↪→ ΠG
∼
← ΠB

ρ2/1
→ Out(ΠF)

∼
→ Out(ΠGx) ,

hence also the image ρ2/1(H∩Πe) ⊆ Out(ΠF)
∼
→ Out(ΠGx), is NN-

ample [cf. Definition 5.13; Theorem 5.9, (ii)]. Thus, since cFdiag ∈
Cusp(Gx) 6= ∅, it follows immediately from Theorem 5.14, (i), that
αF ∈ Aut(Gx). This completes the proof of the fact that αF ∈ Aut(Gx).
Now suppose, moreover, that α̃ preserves ΠcFdiag

⊆ ΠF. Then it follows

from assertion (i) that αF fixes the cusps of Gx, hence that it fixes
vF
new,x. On the other hand, since α̃ induces the identity automorphism

of ΠF/Ndiag [cf. assertion (i)], it follows from Lemma 6.6, (iii), (iv), that
αF fixes the vertices of Gx that are 6= vF

new,x, as well as [cf. [CmbGC],
Proposition 1.2, (i)] the branches of nodes of Gx that abut to such

vertices. Thus, αF ∈ Aut|grph|(Gx), as desired. This completes the
proof of assertion (ii). �

Lemma 6.8 (Triviality of certain outomorphisms). In the nota-
tion of Definition 6.3, let ΠcFdiag

⊆ ΠF be a cuspidal subgroup of ΠF as-

sociated to cFdiag ∈ CuspF(G) [cf. Definition 6.5, (i), (iii)], H ⊆ ΠB an
open subgroup of ΠB, and α ∈ ZOutC(ΠF)(ρ2/1(H)) [cf. Definition 6.1;
Lemma 6.2, (ii)]. Suppose that α preserves the ΠF-conjugacy class of
ΠcFdiag

⊆ ΠF. Then α is the identity outomorphism.

Proof. The following argument is essentially the same as the argu-
ment applied in [CmbCsp], [HM] to prove [CmbCsp], Corollary 2.3,
(ii); [HM], Corollary 5.3.

Let ΠT|H
def
= ΠT ×ΠB

H and α̃ ∈ AutH(ΠT|H) a lifting of α ∈
ZOutC(ΠF)(ρ2/1(H)) ⊆ ZOut(ΠF)(ρ2/1(H))

∼
← AutH(ΠT|H)/Inn(ΠF) [cf.

the discussion entitled “Topological groups” in §0]. Since we have
assumed that α preserves the ΠF-conjugacy class of ΠcFdiag

⊆ ΠF, it

follows from Lemma 6.7, (i), (ii), that by replacing α̃ by a suitable
ΠF-conjugate of α̃, we may assume without loss of generality that α̃
preserves ΠcFdiag

⊆ ΠF, and, moreover, that

(a) the automorphism of ΠF/Ndiag induced by α̃ is the identity au-
tomorphism;

(b) for e ∈ Edge(G), x ∈ X(k) such that x y e, if Edge(G) = {e}
∪ Cusp(G), then α ∈ Aut|grph|(Gx) (⊆ Out(ΠGx)

∼
← Out(ΠF)).
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Next, we claim that

(∗1): if (g, r) = (0, 3), then α is the identity outomor-
phism.

Indeed, write c1, c2, c3 ∈ Cusp(G) for the three distinct cusps of G;
v ∈ Vert(G) for the unique vertex of G. For i ∈ {1, 2, 3}, let xi ∈ X(k)
be such that xi y ci. Next, let us observe that since our assumption
that (g, r) = (0, 3) implies that Node(G) = ∅, it follows immediately
from (b) that for i ∈ {1, 2, 3}, the outomorphism α of ΠGxi

∼
← ΠF is

∈ Aut|grph|(Gxi
) (⊆ Out(ΠGxi

)
∼
← Out(ΠF)). Next, let us fix a ver-

ticial subgroup ΠvF
x2
⊆ ΠGx2

∼
← ΠF associated to vF

x2
∈ Vert(Gx2)

[cf. Definition 6.3, (ii)]. Then since α ∈ Aut|grph|(Gx2), it follows
immediately from the commensurable terminality of the image of the
composite ΠvF

x2
↪→ ΠGx2

∼
← ΠF � ΠF/Ndiag [cf. Lemma 6.6, (ii)],

together with (a), that there exists an Ndiag-conjugate β̃ of α̃ such

that β̃(ΠvF
x2

) = ΠvF
x2

. Thus, since the composite ΠvF
x2

↪→ ΠGx2

∼
←

ΠF � ΠF/Ndiag is injective [cf. Lemma 6.6, (iii)], it follows immedi-

ately from (a) that β̃ induces the identity automorphism on ΠvF
x2
⊆

ΠGx2

∼
← ΠF. Next, let ΠcF1

⊆ ΠF be a cuspidal subgroup of ΠF asso-

ciated to c1 ∈ CuspF(G) [cf. Definition 6.5, (iii)] which is contained

in ΠvF
x2
⊆ ΠGx2

∼
← ΠF; ΠvF

x3
⊆ ΠGx3

∼
← ΠF a verticial subgroup as-

sociated to vF
x3
∈ Vert(Gx3) that contains ΠcF1

⊆ ΠF. Then since β̃

induces the identity automorphism on ΠvF
x2
⊆ ΠGx2

∼
← ΠF, it follows

from the inclusion ΠcF1
⊆ ΠvF

x2
that β̃(ΠcF1

) = ΠcF1
. Thus, since the

verticial subgroup ΠvF
x3
⊆ ΠGx3

∼
← ΠF is the unique verticial subgroup

of ΠGx3

∼
← ΠF associated to vF

x3
∈ Vert(Gx3) which contains ΠcF1

[cf.

[CmbGC], Proposition 1.5, (i)], it follows immediately from the fact

that α ∈ Aut|grph|(Gx3) that β̃(ΠvF
x3

) = ΠvF
x3

. In particular, since the

composite ΠvF
x3
↪→ ΠF � ΠF/Ndiag is injective [cf. Lemma 6.6, (iii)], it

follows immediately from (a) that β̃ induces the identity automorphism

on ΠvF
x3
⊆ ΠGx3

∼
← ΠF. On the other hand, since ΠF is topologically

generated by ΠvF
x2
⊆ ΠGx2

∼
← ΠF and ΠvF

x3
⊆ ΠGx3

∼
← ΠF [cf. [CmbCsp],

Lemma 1.13], this implies that β̃ induces the identity automorphism on
ΠF. This completes the proof of the claim (∗1).

Next, we claim that

(∗2): for arbitrary (g, r), α is the identity outomorphism.

Indeed, we verify the claim (∗2) by induction on 3g−3+r. If 3g−3+r =
0, i.e., (g, r) = (0, 3), then the claim (∗2) amounts to the claim (∗1).
Now suppose that 3g−3+r > 1, and that the induction hypothesis is in
force. Since 3g− 3+ r > 1, one verifies easily that there exists a stable
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log curve Y log of type (g, r) over (Spec k)log such that Y log has precisely
one node. Thus, it follows immediately from Lemma 6.2, (i), that to
verify the claim (∗2), by replacing X log by Y log, we may assume without
loss of generality that Node(G)] = 1. Let e be the unique node of G and
x ∈ X(k) such that x y e. Now let us observe that since Node(G)] =
1, and e ∈ Node(G), it follows from (b) that α ∈ Aut|grph|(Gx) (⊆
Out(ΠGx)

∼
← Out(ΠF)). Write {eF

1 , e
F
2 } = N (vF

new,x) [cf. Lemma 6.4,
(iv)]. Also, for i ∈ {1, 2}, denote by vi ∈ Vert(G) the vertex of G
such that (vi)

F
x ∈ Vert(Gx) is the unique element of V(eF

i ) \ {vF
new,x}

[cf. Lemma 6.4, (iv)]; by Hi the sub-semi-graph of PSC-type of the
underlying semi-graph Gx of Gx whose set of vertices = {vF

new,x, (vi)
F
x};

and by Si
def
= Node((Gx)|Hi

) \ {eF
i } ⊆ Node((Gx)|Hi

) the complement
of {eF

i }. [Thus, if G is noncyclically primitive (respectively, cyclically
primitive) [cf. Definition 4.1], then Hi 6= Gx and Si = ∅ (respectively,
Hi = Gx and Si = {eF

3−i}). In particular, Si ⊆ Node((Gx)|Hi
) is not of

separating type.]
Next, let us observe that to complete the proof of the above claim

(∗2), it suffices to verify that

(†): α ∈ Dehn(Gx), and, moreover, for i ∈ {1, 2}, α is
contained in the kernel of the natural surjection Dehn(Gx)�
Dehn(((Gx)|Hi

)�Si
) [cf. Theorem 4.8, (iii), (iv)].

Indeed, since [as is easily verified] Node(Gx) = N (vF
new,x) = {eF

1 , e
F
2 }, it

follows immediately from Theorem 4.8, (iii), (iv), that

2⋂

i=1

Ker
(
Dehn(Gx)� Dehn(((Gx)|Hi

)�Si
)
)

= {1} .

In particular, the implication (†) ⇒ (∗2) holds. The remainder of the
proof of the claim (∗2) is devoted to verifying the above (†).

For i ∈ {1, 2}, let Π(vi)Fx
⊆ ΠGx

∼
← ΠF be a verticial subgroup of

ΠGx

∼
← ΠF associated to the vertex (vi)

F
x ∈ V(eFi )\{vF

new,x}. Then since

α ∈ Aut|grph|(Gx), it follows that α̃ preserves the ΠF-conjugacy class of

Π(vi)Fx
⊆ ΠGx

∼
← ΠF. Thus, since the image of the composite Π(vi)Fx

↪→
ΠF � ΠF/Ndiag is commensurably terminal [cf. Lemma 6.6, (ii)], it

follows immediately from (a) that there exists an Ndiag-conjugate β̃i

[which may depend on i ∈ {1, 2}!] of α̃ such that β̃i(Π(vi)Fx
) = Π(vi)Fx

.
Therefore, since the composite Π(vi)Fx

↪→ ΠF � ΠF/Ndiag is injective

[cf. Lemma 6.6, (iii)], it follows from (a) that β̃i induces the identity
automorphism of Π(vi)Fx

.

Next, let ΠeF
i
⊆ Π(vi)Fx

be a nodal subgroup of ΠGx

∼
← ΠF associated

to eFi ∈ Node(Gx) that is contained in Π(vi)Fx
; ΠvF

new,x;i ⊆ ΠGx

∼
← ΠF

a verticial subgroup [which may depend on i ∈ {1, 2}!] associated to
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vF
new,x ∈ Vert(Gx) which contains ΠeF

i
:

ΠvF
new,x;i ⊇ ΠeF

i
⊆ Π(vi)Fx

⊆ ΠGe

∼
← ΠF .

Then since β̃i preserves and induces the identity automorphism on

Π(vi)Fx
, it follows from the inclusion ΠeF

i
⊆ Π(vi)Fx

that β̃i(ΠeF
i
) = ΠeF

i
.

Moreover, since ΠvF
new,x;i is the unique verticial subgroup of ΠGx

∼
← ΠF

associated to vF
new,x which contains ΠeF

i
[cf. [CmbGC], Proposition

1.5, (i)], it follows immediately from the fact that α ∈ Aut|grph|(Gx)

that β̃i(ΠvF
new,x;i) = ΠvF

new,x;i. Thus, β̃i preserves the closed subgroup
ΠFi
⊆ ΠF of ΠF obtained by forming the image of the natural homo-

morphism

lim−→

(
ΠvF

new,x;i ←↩ ΠeF
i
↪→ Π(vi)Fx

)
−→ ΠF

— where the inductive limit is taken in the category of pro-ΣF groups.
Now one may verify easily that the ΠF-conjugacy class of ΠFi

⊆ ΠF

coincides with the ΠF-conjugacy class of the image of the natural outer
injection Π((Gx)|Hi

)�Si
↪→ ΠGx

∼
← ΠF discussed in Proposition 2.11; in

particular, ΠFi
is commensurably terminal in ΠF [cf. Proposition 2.11].

Moreover, by applying a similar argument to the argument used in
[CmbCsp], Definition 2.1, (iii), (vi), or [HM], Definition 5.1, (ix), (x)

[i.e., by considering the portion of the underlying scheme X2 of X log
2

corresponding to the underlying scheme (Xvi
)2 of the 2-nd log config-

uration space (Xvi
)log
2 of the stable log curve X log

vi
determined by G|vi

],

one concludes that there exists a verticial subgroup Πvi
⊆ ΠG

∼
← ΠB

associated to vi ∈ Vert(G) such that the outer representation of Πvi

on ΠF determined by the composite Πvi
↪→ ΠB

ρ2/1
→ Out(ΠF) preserves

the ΠF-conjugacy class of ΠFi
⊆ ΠF [so we obtain a natural outer rep-

resentation Πvi
→ Out(ΠFi

) — cf. Lemma 2.12, (iii)], and, moreover,

that if we write ΠTi

def
= ΠFi

out
o Πvi

(⊆ ΠT) [cf. the discussion entitled
“Topological groups” in §0], then ΠTi

is naturally isomorphic to the
“ΠT” obtained by taking “G” to be G|vi

.

Now since β̃i(ΠFi
) = ΠFi

, and α ∈ ZOutC(ΠF)(ρ2/1(H)), one may

verify easily that the outomorphism of ΠFi
determined by β̃i|ΠFi

[cf.

Lemma 2.12, (iii)] is ∈ ZOutC(ΠFi
)(ρ2/1(H ∩ Πvi

)) — where, by abuse

of notation, we write H ∩ Πvi
⊆ ΠB for the intersection of H with

the image of Πvi
in ΠB. Therefore, since the quantity “3g − 3 + r”

associated to G|vi
is < 3g − 3 + r, by considering a similar diagram to

the diagram in [CmbCsp], Definition 2.1, (vi), or [HM], Definition 5.1,

(x), and applying the induction hypothesis, we conclude that β̃i|ΠFi
is

a ΠFi
-inner automorphism. In particular, it follows immediately [by

allowing i ∈ {1, 2} to vary] that the outomorphism α is ∈ Dehn(Gx),
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and, moreover — by considering the natural identification outer iso-
morphism ΠFi

∼
→ Π((Gx)|Hi

))�Si
— that α is contained in the kernel

of the natural surjection Dehn(Gx) � Dehn(((Gx)|Hi
))�Si

), as desired.
This completes the proof of (†), hence also of Lemma 6.8. �

Definition 6.9. In the notation of Definition 6.3:

(i) Suppose that 2g − 2 + r > 1, i.e., (g, r) 6∈ {(0, 3), (1, 1)}. Then
we shall write

Ag,r
def
= {1} ⊆ Aut(CuspF(G))

[cf. Definition 6.5, (i)].

(ii) Suppose that (g, r) = (1, 1). Then we shall write

(Z/2Z ') Ag,r
def
= Aut(CuspF(G)) .

(iii) Suppose that (g, r) = (0, 3). Then we shall write

(Z/2Z× Z/2Z ') Ag,r ⊆ Aut(CuspF(G))

for the subgroup of Aut(CuspF(G)) obtained as the image of
the subgroup of the symmetric group on 4 letters

{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊆ S4

via the isomorphism S4
∼
→ Aut(CuspF(G)) arising from a bi-

jection {1, 2, 3, 4}
∼
→ CuspF(G). [Note that since the above

subgroup of S4 is normal, the subgroup Ag,r ⊆ Aut(CuspF(G))

does not depend on the choice of the bijection {1, 2, 3, 4}
∼
→

CuspF(G).]

Lemma 6.10 (Permutations of cusps arising from certain C-ad-
missible outomorphisms). In the notation of Definition 6.3, let
H ⊆ ΠB be an open subgroup of ΠB. Then the following hold:

(i) The composite

ZOutC(ΠF)(ρ2/1(H)) ↪→ OutC(ΠF)→ Aut(CuspF(G))

[cf. Definition 6.5, (ii)] factors through Ag,r ⊆ Aut(CuspF(G))
[cf. Definition 6.9], hence determines a homomorphism

ZOutC(ΠF)(Im(ρ2/1)) −→ Ag,r .
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(ii) The composite

AutXlog(X log
2 ) −→ ZOutC(ΠF)(Im(ρ2/1)) −→ Ag,r

of the natural homomorphism

AutXlog(X log
2 ) −→ ZOutC(ΠF)(Im(ρ2/1))

with the homomorphism of (i) is an isomorphism. In par-
ticular, the homomorphism ZOutC(ΠF)(Im(ρ2/1)) → Ag,r of (i)
is a split surjection [cf. the discussion entitled “Topological
groups” in §0].

Proof. First, we verify assertion (i). If (g, r) = (1, 1), then since Ag,r =
Aut(CuspF(G)), assertion (i) is immediate. On the other hand, if r = 0,
then since CuspF(G)] = 1, assertion (i) is immediate. Thus, in the
remainder of the proof of assertion (i), we suppose that (g, r) 6= (1, 1),
r ≥ 1.

Now we verify assertion (i) in the case where r = 1. Let us ob-
serve that it follows immediately from Lemma 6.2, (i), that by replac-
ing X log by a suitable stable log curve of type (g, r) over (Spec k)log,
we may assume without loss of generality [cf. our assumption that
r = 1, which implies that (g, r) 6= (0, 3)] that G is cyclically primi-
tive [cf. Definition 4.1]. Let c ∈ Cusp(G) be the unique cusp of G,
e ∈ Node(G) the unique node of G, x ∈ X(k) such that x y e, and
α ∈ ZOutC(ΠF)(ρ2/1(H)). Then let us observe that it follows immediately
from our assumption that G is cyclically primitive of type (g, r) 6= (1, 1)
(respectively, the various definitions involved) that the vertex of Gx to
which cF (respectively, cFdiag) abuts is not of type (0, 3) (respectively, is
of type (0, 3)). Moreover, it follows immediately from Lemma 6.7, (ii),

that the outomorphism α of ΠGx

∼
← ΠF is ∈ Aut(Gx). Thus, we con-

clude that the automorphism of CuspF(G) induced by α is the identity
automorphism. This completes the proof of assertion (i) in the case
where r = 1.

Next, we verify assertion (i) in the case where r > 1. Let us observe
that it follows immediately from Lemma 6.2, (i), that by replacing X log

by a suitable stable log curve of type (g, r) over (Spec k)log, we may
assume without loss of generality that Node(G) = ∅. Let v ∈ Vert(G)
be the unique vertex of G [cf. our assumption that Node(G) = ∅]
and α ∈ ZOutC(ΠF)(ρ2/1(H)). Now let us observe that for any c ∈
Cusp(G), x ∈ X(k) such that x y c, it follows immediately from the
various definitions involved that Vert(Gx) = {vF

x , v
F
new,x}; C(v

F
new,x) =

{cF, cFdiag}; C(v
F
x ) = Cusp(Gx) \ {cF, cFdiag}; v

F
x is of type (g, r); vF

new,x

is of type (0, 3). Moreover, it follows immediately from Lemma 6.7,

(ii), that the outomorphism α of ΠGx

∼
← ΠF is ∈ Aut(Gx). Thus, if

(g, r) 6= (0, 3), then since vF
x is of type (g, r), and vF

new,x is of type
(0, 3), it follows immediately that α induces the identity automorphism
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on Vert(Gx), hence that α preserves the subset {c, cFdiag} ⊆ CuspF(G)

corresponding to C(vF
new,x) = {cF, cFdiag}. In particular, if (g, r) 6= (0, 3),

(respectively, (g, r) = (0, 3)), then — by allowing “c” to vary among the
elements of Cusp(G) — one may verify easily that the automorphism
of CuspF(G) induced by α is the identity automorphism (respectively,
satisfies the condition that

for any subset S ∈ CuspF(G) of cardinality 2, the au-
tomorphism of CuspF(G) induced by α determines an

automorphism of the set {S,CuspF(G) \ S} ⊆ 2CuspF(G),

hence, by Lemma 6.11 below, is contained in Ag,r ⊆ Aut(CuspF(G))).
This completes the proof of assertion (i) in the case where r > 1, hence
also of assertion (i).

Next, we verify assertion (ii). One verifies easily that the composite
of natural homomorphisms

AutXlog(X log
2 )→ AutΠB

(ΠT)/Inn(ΠF)
∼
→ ZOut(ΠF)(Im(ρ2/1))

[cf. the discussion entitled “Topological groups” in §0] factors through
ZOutC(ΠF)(Im(ρ2/1)) ⊆ ZOut(ΠF)(Im(ρ2/1)). In particular, we obtain a

natural homomorphism AutXlog(X log
2 )→ ZOutC(ΠF)(Im(ρ2/1)). Now the

fact that the composite

AutXlog(X log
2 )→ ZOutC(ΠF)(Im(ρ2/1)) ↪→ OutC(ΠF)→ Aut(CuspF(G))

determines a surjection AutXlog(X log
2 )� Ag,r is well-known and easily

verified. To verify that this surjection is injective, observe that an el-
ement of the kernel of this surjection determines an automorphism of
the trivial family X log ×(Spec k)log X

log → X log over X log that preserves
the image of the diagonal. On the other hand, since the relative tan-
gent bundle of this trivial family has no nonzero global sections, one
concludes immediately that such an automorphism is constant, i.e.,
arises from a single automorphism of the fiber X log over (Spec k)log

that is compatible with the diagonal, hence [as is easily verified] equal
to the identity automorphism, as desired. This completes the proof of
assertion (ii). �

Lemma 6.11 (A subgroup of the symmetric group on 4 letters).
Write G ⊆ S4 for the subgroup of the symmetric group on 4 letters S4

consisting of g ∈ S4 such that

(∗): for any subset S ⊆ {1, 2, 3, 4} of cardinality 2,
the automorphism g of {1, 2, 3, 4} determines an auto-
morphism of the set {S, {1, 2, 3, 4} \ S} ⊆ 2{1,2,3,4}.

Then

G = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} .
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Proof. First, let us observe that one may verify easily that

{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊆ G .

Thus, to verify Lemma 6.11, it suffices to verify that G] = 4. Next, let
us observe that it follows immediately from the condition (∗) that for
any element g ∈ G, it holds that g4 = id; in particular, by the Sylow
Theorem, together with the fact that S

]
4 = 23 ·3, we conclude that G is

a 2-group. Thus, to verify Lemma 6.11, it suffices to verify that G] 6= 8.
Next, let us observe that it follows immediately from the condition (∗)
that G ⊆ S4 is normal. Thus, if G] = 8, then since S

]
4 = 23 · 3, and

(1 2) ∈ S4 is of order 2, again by the Sylow Theorem, we conclude that
(1 2) ∈ G, in contradiction to the fact that (1 2) does not satisfy the
condition (∗). This completes the proof of Lemma 6.11. �

Theorem 6.12 (Centralizers of geometric monodromy groups
arising from configuration spaces). Let (g, r) be a pair of nonneg-
ative integers such that 2g − 2 + r > 0; 0 < m < n positive integers;
ΣF ⊆ ΣB nonempty sets of prime numbers; k an algebraically closed
field of characteristic zero; (Spec k)log the log scheme obtained by equip-
ping Spec k with the log structure given by the fs chart N→ k that maps
1 7→ 0; X log = X log

1 a stable log curve of type (g, r) over (Spec k)log.
Suppose that ΣF ⊆ ΣB satisfy one of the following two conditions:

(1) ΣF and ΣB determine PT-formations [i.e., are either of car-
dinality 1 or equal to Primes — cf. [MT], Definition 1.1,
(ii)].

(2) n−m = 1 and ΣB = Primes.

Write
X log

n , X log
m

for the n-th, m-th log configuration spaces of the stable log curve
X log [cf. the discussion entitled “Curves” in §0], respectively; Πn,

ΠB
def
= Πm for the respective maximal pro-ΣB quotients of the ker-

nels of the natural surjections π1(X
log
n ) � π1((Spec k)log), π1(X

log
m ) �

π1((Spec k)log); Πn/m ⊆ Πn for the kernel of the surjection Πn � ΠB =
Πm induced by the projectionX log

n → X log
m obtained by forgetting the last

(n−m) factors; ΠF for the maximal pro-ΣF quotient of Πn/m; ΠT for
the quotient of Πn by the kernel of the natural surjection Πn/m � ΠF.
Thus, we have a natural exact sequence of profinite groups

1 −→ ΠF −→ ΠT −→ ΠB −→ 1 ,

which determines an outer representation

ρn/m : ΠB −→ Out(ΠF) .

Then the following hold:
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(i) Let H ⊆ ΠB be an open subgroup of ΠB. Recall that X log
n → X log

m

may be regarded as the (n−m)-th log configuration space of the

family of stable log curves X log
m+1 → X log

m over X log
m . Then the

composite of natural homomorphisms

AutXlog
m

(X log
m+1) −→ AutXlog

m
(X log

n ) −→ AutΠB
(ΠT)/Inn(ΠF)

∼
−→ ZOut(ΠF)(Im(ρn/m)) ⊆ ZOut(ΠF)(ρn/m(H))

— where the first arrow is the homomorphism arising from the
functoriality of the construction of the log configuration space;
the third arrow is the isomorphism appearing in the discussion
entitled “Topological groups” in §0 — determines an isomor-
phism

AutXlog
m

(X log
m+1)

∼
−→ ZOutFC(ΠF)(ρn/m(H))

— where we write OutFC(ΠF) for the group of FC-admissible
[cf. Definition 6.1; [CmbCsp], Definition 1.1, (ii)] outomor-
phisms of ΠF [cf. Lemma 6.2, (ii)]. Here, we recall that the

automorphism group AutXlog
m

(X log
m+1) is isomorphic to





Z/2Z× Z/2Z if (g, r,m) = (0, 3, 1);
Z/2Z if (g, r,m) = (1, 1, 1);
{1} if (g, r,m) 6∈ {(0, 3, 1), (1, 1, 1)}.

(ii) The isomorphism of (i) and the natural inclusion Sn−m ↪→
ZOutPFC(ΠF)(ρn/m(H)) — where we write OutPFC(ΠF) for the
group of PFC-admissible [cf. Definitions 1.4, (iii); 6.1] out-
omorphisms of ΠF [cf. Lemma 6.2, (ii)] — determine an iso-
morphism

AutXlog
m

(X log
m+1)×Sn−m

∼
−→ ZOutPFC(ΠF)(ρn/m(H)) .

(iii) Let H be a closed subgroup of OutPFC(ΠF) that contains an
open subgroup of Im(ρn/m) ⊆ Out(ΠF). Then H is almost
slim [cf. the discussion entitled “Topological groups” in §0]. If,
moreover, H ⊆ OutFC(ΠF), and (g, r,m) 6∈ {(0, 3, 1), (1, 1, 1)},
then H is slim [cf. the discussion entitled “Topological groups”
in §0].

Proof. First, we verify assertion (i). We begin by observing that the

description of the automorphism group AutXlog
m

(X log
m+1) given in the

statement of assertion (i) follows immediately from Lemma 6.10, (ii).
Next, let us observe that

(∗1): to verify assertion (i), it suffices to verify assertion
(i) in the case where ΣB = Primes.
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Indeed, this follows immediately from the various definitions involved.
Thus, in the remainder of the proof of assertion (i), we suppose that
ΣB = Primes.

Next, we claim that

(∗2): the composite homomorphism of assertion (i) de-
termines an injection

AutXlog
m

(X log
m+1) ↪→ ZOutFC(ΠF)(ρn/m(H)) .

Indeed, one verifies easily that the composite as in assertion (i) factors
through ZOutFC(ΠF)(ρn/m(H)). On the other hand, by considering the

action of AutXlog
m

(X log
m+1) on the set of conjugacy classes of cuspidal

inertia subgroups of suitable subquotients [arising from fiber subgroups]
of ΠF, it follows immediately that the composite as in assertion (i) is
injective [cf. Lemma 6.10, (ii)]. This completes the proof of the claim
(∗2).

Next, we claim that

(∗3): the injection of (∗2) is an isomorphism.

Indeed, it follows immediately from the various definitions involved that
if NB ⊆ ΠB is a fiber subgroup of ΠB of length 1 [cf. Lemma 6.2, (ii);
[MT], Definition 2.3, (iii)], then the natural surjection ΠT×ΠB

NB � NB

may be regarded as the “ΠT � ΠB” obtained by taking “(g, r,m, n)”
to be (g, r + m − 1, 1, n − m + 1). Thus, by applying the inclusion
ZOutFC(ΠF)(ρn/m(H)) ⊆ ZOutFC(ΠF)(ρn/m(H ∩NB)) and replacing ΠT �

ΠB by ΠT ×ΠB
NB � NB, we may assume without loss of generality

that m = 1. On the other hand, it follows immediately from the various
definitions involved that if NF ⊆ ΠF is a fiber subgroup of ΠF of length
n − 2, then the natural surjection ΠT/NF � ΠB may be regarded
as the “ΠT � ΠB” obtained by taking “(g, r,m, n)” to be (g, r, 1, 2).
Thus, since the natural homomorphism OutFC(ΠF) → OutFC(ΠF/NF)
is injective [cf. [HM], Theorem B], by replacing ΠT � ΠB by ΠT/NF �

ΠB, we may assume without loss of generality that (m,n) = (1, 2). In
particular — in light of our assumption that ΣB = Primes [cf. (∗1)] —
we are in the situation of Definition 6.3.

Let α ∈ ZOutFC(ΠF)(ρn/m(H)). Then it follows immediately from

Lemma 6.10, (ii), that there exists an element β of the image of the
injection of (∗2) such that α ◦ β ∈ ZOutFC(ΠF)(ρn/m(H)) induces the

identity automorphism of CuspF(G) [cf. Definition 6.5, (i), (ii)]. In par-
ticular, α ◦ β preserves the ΠF-conjugacy class of a cuspidal subgroup
ΠcFdiag

⊆ ΠF of ΠF associated to cFdiag ∈ CuspF(G) [cf. Definition 6.5,

(iii)]. Thus, it follows from Lemma 6.8 that α ◦ β is the identity outo-
morphism of ΠF. In particular, we conclude that the injection of (∗2)
is surjective. This completes the proof of the claim (∗3), hence also of
assertion (i).
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Next, we verify assertion (ii). First, let us observe that by considering
the action of ZOutPFC(ΠF)(ρn/m(H)) on the set of fiber subgroups of ΠF

of length 1, we obtain an exact sequence of profinite groups

1 −→ ZOutFC(ΠF)(ρn/m(H)) −→ ZOutPFC(ΠF)(ρn/m(H)) −→ Sn−m .

Now by considering the action of Sn−m on X log
n over X log

m obtained
by permuting the first n − m factors of X log

n , we obtain a section
Sn−m ↪→ ZOutPFC(ΠF)(ρn/m(H)) of the third arrow in the above ex-
act sequence; in particular, the third arrow is surjective. On the other
hand, it follows from [HM], Theorem B, that the image of the section
Sn−m ↪→ ZOutPFC(ΠF)(ρn/m(H)) commutes with ZOutFC(ΠF)(ρn/m(H)).

Thus, the composite of natural homomorphisms AutXlog
m

(X log
m+1)

∼
→

ZOutFC(ΠF)(ρn/m(H)) ↪→ ZOutFPC(ΠF)(ρn/m(H)) [cf. assertion (i)] and
the section Sn−m ↪→ ZOutPFC(ΠF)(ρn/m(H)) determine an isomorphism
as in the statement of assertion (ii). This completes the proof of asser-
tion (ii). Assertion (iii) follows immediately from assertions, (i), (ii).
This completes the proof of Theorem 6.12. �

Remark 6.12.1. By considering a suitable specialization isomorphism,
one may replace the expression “k an algebraically closed field of char-
acteristic zero” in the statement of Theorem 6.12 by the expression “k
an algebraically closed field of characteristic 6∈ ΣB”.

Theorem 6.13 (Centralizers of geometric monodromy groups
arising from moduli stacks of pointed curves). Let (g, r) be a
pair of nonnegative integers such that 2g−2+r > 0; Σ a nonempty set
of prime numbers; k an algebraically closed field of characteristic zero.

Write ΠMg,r

def
= π1((Mg,r)k) for the étale fundamental group of the

moduli stack (Mg,r)k [cf. the discussion entitled “Curves” in §0]; Πg,r

for the maximal pro-Σ quotient of the kernel Ng,r of the natural sur-
jection π1((Cg,r)k) � π1((Mg,r)k) = ΠMg,r [cf. the discussion entitled
“Curves” in §0]; ΠCg,r for the quotient of the étale fundamental group
π1((Cg,r)k) of (Cg,r)k by the kernel of the natural surjection Ng,r � Πg,r.
Thus, we have a natural exact sequence of profinite groups

1 −→ Πg,r −→ ΠCg,r −→ ΠMg,r −→ 1 ,

which determines an outer representation

ρg,r : ΠMg,r −→ Out(Πg,r) .

Then the following hold:

(i) The profinite group Πg,r is equipped with a natural structure of
pro-Σ surface group [cf. [MT], Definition 1.2].
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(ii) Let H ⊆ ΠMg,r be an open subgroup of ΠMg,r . Suppose that

2g − 2 + r > 1, i.e., (g, r) 6∈ {(0, 3), (1, 1)}.

Then the composite of natural homomorphisms

Aut(Mg,r)k
((Cg,r)k) −→ AutΠMg,r

(ΠCg,r)/Inn(Πg,r)

∼
−→ ZOut(Πg,r)(Im(ρg,r)) ⊆ ZOut(Πg,r)(ρg,r(H))

[cf. the discussion entitled “Topological groups” in §0] deter-
mines an isomorphism

Aut(Mg,r)k
((Cg,r)k)

∼
−→ ZOutC(Πg,r)(ρg,r(H))

[cf. (i); Definition 6.1]. Here, we recall that the automorphism
group Aut(Mg,r)k

((Cg,r)k) is isomorphic to




Z/2Z× Z/2Z if (g, r) = (0, 4);
Z/2Z if (g, r) ∈ {(1, 2), (2, 0)};
{1} if (g, r) 6∈ {(0, 4), (1, 2), (2, 0)} .

(iii) Let H ⊆ OutC(Πg,r) be a closed subgroup of OutC(Πg,r) that
contains an open subgroup of Im(ρg,r) ⊆ Out(Πg,r). Suppose
that

2g − 2 + r > 1, i.e., (g, r) 6∈ {(0, 3), (1, 1)}.

Then H is almost slim [cf. the discussion entitled “Topological
groups” in §0]. If, moreover,

2g − 2 + r > 2, i.e., (g, r) 6∈ {(0, 3), (0, 4), (1, 1), (1, 2), (2, 0)},

then H is slim [cf. the discussion entitled “Topological groups”
in §0].

Proof. Assertion (i) follows immediately from the various definitions
involved. Next, we verify assertion (ii). First, we recall that the de-
scription of the automorphism group Aut(Mg,r)k

((Cg,r)k) given in the
statement of assertion (ii) is well-known [cf., e.g., [CorHyp], Theorem
B, if 2g − 2 + r > 2, i.e., (g, r) 6∈ {(0, 4), (1, 2), (2, 0)}]. Next, we claim
that

(∗1): the composite homomorphism of assertion (ii) de-
termines an injection

Aut(Mg,r)k
((Cg,r)k) ↪→ ZOutC(Πg,r)(ρg,r(H)) .

Indeed, one verifies easily that the composite as in assertion (ii) factors
through ZOutC(Πg,r)(ρg,r(H)). Thus, the claim (∗1) follows immediately
from the well-known fact that any nontrivial automorphism of a hy-
perbolic curve over an algebraically closed field of characteristic 6∈ Σ
induces a nontrivial outomorphism of the maximal pro-Σ quotient of
the étale fundamental group of the hyperbolic curve [cf., e.g., [LocAn],
the proof of Theorem 14.1]. This completes the proof of the claim (∗1).

Next, we claim that
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(∗2): if r > 0, then the injection of (∗1) is an isomor-
phism.

Indeed, write N ⊆ ΠMg,r for the kernel of the surjection ΠMg,r �

π1((Mg,r−1)k) determined by the (1-)morphism (Mg,r)k → (Mg,r−1)k

obtained by forgetting the last section. Then it follows immediately
from the various definitions involved that there exists a commutative
diagram of profinite groups

1 −−−→ Πg,r −−−→ E −−−→ N −−−→ 1

o

y o

y o

y
1 −−−→ ΠF −−−→ ΠT −−−→ ΠB −−−→ 1

— where the upper sequence is the exact sequence obtained by pulling
back the exact sequence 1 → Πg,r → ΠCg,r → ΠMg,r → 1 by the
natural inclusion N ↪→ ΠMg,r ; the lower sequence is the exact sequence
“1→ ΠF → ΠT → ΠB → 1” obtained by applying the procedure given
in the statement of Theorem 6.12 in the case where (m,n,ΣF,ΣB) =
(1, 2,Σ,Primes) to a stable log curve of type (g, r−1) over (Spec k)log;
the vertical arrows are isomorphisms. Thus, it follows immediately
from Theorem 6.12, (i), that ZOutC(Πg,r)(ρg,r(H ∩ N)) is isomorphic to

the automorphism group AutXlog(X log
2 ) for the stable log curve X log

over (Spec k)log of type (g, r − 1). In particular, by the claim (∗1), we
obtain that

Aut(Mg,r)k
((Cg,r)k) ↪→ ZOutC(Πg,r)(ρg,r(H))

⊆ ZOutC(Πg,r)(ρg,r(H ∩N))
∼
← AutXlog(X log

2 ) .

Thus, by comparing (Aut(Mg,r)k
((Cg,r)k))

] with AutXlog(X log
2 )] [cf. The-

orem 6.12, (i)], we conclude that the injection of the claim (∗1) is an
isomorphism. This completes the proof of the claim (∗2). Moreover, it
follows immediately from the proof of the claim (∗2) that

(∗3): if α ∈ ZOutC(Π0,4)(ρ0,4(H)) induces the identity au-
tomorphism on the set of conjugacy classes of cuspidal
inertia subgroups of Π0,4, then α is the identity outo-
morphism of Π0,4.

In light of the claim (∗2), in the remainder of the proof of assertion
(ii), we assume that

r = 0, hence also that g ≥ 2.

For x ∈ (Mg,0)k(k), write

Gx

for the semi-graph of anabelioids of pro-Σ PSC-type associated to the

geometric fiber of (C
log

g,0)k → (M
log

g,0)k over xlog def
= x ×(Mg,0)k

(M
log

g,0)k;

thus, we have a natural Im(ρg,0) (⊆ Out(Πg,0))-torsor of outer isomor-

phisms Πg,0
∼
→ ΠGx. Let us fix an isomorphism Πg,0

∼
→ ΠGx that belongs
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to this collection of isomorphisms. Moreover, for x ∈ (Mg,0)k(k), we
shall say that x satisfies the condition (†) if

(†1) Vert(Gx) = {v1, v2}; Node(Gx) = {e1, e2, · · · , eg+1};

(†2) N (v1) = N (v2) = Node(Gx);

(†3) v1 and v2 are of type (0, g + 1);

we shall say that x satisfies the condition (‡) if

(‡1) Vert(Gx) = {v∗1, v
∗
2, w

∗}; Node(Gx) = {e∗1, e
∗
2, · · · , e

∗
g+1, f

∗};

(‡2) N (v∗1) = {e∗1, e
∗
2, · · · , e

∗
g+1}; N (v∗2) = {e∗1, e

∗
2, · · · , e

∗
g−1, f

∗};
N (w∗) = {e∗g, e

∗
g+1, f

∗};

(‡3) v
∗
1 is of type (0, g + 1), v∗2 is of type (0, g), and w∗ is of type

(0, 3).

Let us observe that one may verify easily that there exists a k-valued
point x ∈ (Mg,0)k(k) that satisfies (†); if, moreover, g > 2, then there

exists a k-valued point x ∈ (Mg,0)k(k) that satisfies (‡).
Let x ∈ (Mg,0)k(k) be a k-valued point. Then we claim that

(∗4): if x satisfies (†), and, relative to the isomorphism

Πg,0
∼
→ ΠGx fixed above, α ∈ ZOutC(Πg,0)

(ρg,0(H)) de-

termines an element of Aut|grph|(Gx) (⊆ Out(ΠGx)
∼
←

Out(Πg,0)), then for any e ∈ Node(Gx), the image αe of α

via the natural inclusion Aut|grph|(Gx) ↪→ Aut|grph|((Gx) {e})
[cf. Proposition 2.9, (ii)] satisfies

αe ∈ Dehn((Gx) {e}) .

Indeed, let e ∈ Node(Gx) and y ∈ (Mg,0)k(k) a k-valued point such that
Gy corresponds to (Gx) {e} [cf. the special fibers of the stable log curves
over “S log” that appear in Proposition 5.6, (iii)]. Write v ∈ Vert(Gy)
for the unique vertex of Gy. [Note that it follows from the definition
of the condition (†) that Vert(Gy)

] = 1.] Then it follows immediately
from the general theory of stable log curves that there exist a “clutching
(1-)morphism” corresponding to the operation of resolving the nodes
of Gy [i.e., obtained by forming appropriate composites of the clutching
morphisms discussed in [Knud], Definition 3.6]

(M0,2g)k −→ (Mg,0)k

and a k-valued point ỹ ∈ (M0,2g)k(k) such that the image of ỹ via
the above clutching morphism coincides with y, and, moreover, Gey
is naturally isomorphic to (Gy)|v. Write (Mlog

0,2g)k for the log stack
obtained by equipping (M0,2g)k with the log structure induced by the

log structure of (M
log

g,0)k via the above clutching morphism. Then one
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verifies easily that the composite

ΠM0,2g

def
= π1((M

log
0,2g)k) −→ π1((M

log

g,0)k)
∼
←− ΠMg,0

ρg,0
−→ Out(Πg,0)

— where the first arrow is the outer homomorphism induced by the
above clutching morphism, and the second arrow is the outer isomor-
phism obtained by applying the “log purity theorem” to the natural

(1-)morphism (Mg,0)k ↪→ (M
log

g,0)k [cf. [ExtFam], Theorem B] — fac-

tors through Aut|grph|(Gy) ⊆ Out(ΠGy)
∼
← Out(Πg,0). Moreover, the

resulting homomorphism ΠM0,2g
→ Aut|grph|(Gy) fits into a commuta-

tive diagram of profinite groups

ΠM0,2g
−−−→ ΠM0,2gy

y

Aut|grph|(Gy)
ρVert
Gy
−−−→ Glu(Gy) = Aut|grph|((Gy)|v)

[cf. Definition 4.9; Proposition 4.10, (ii)] — where the upper horizon-
tal arrow is the outer homomorphism induced by the (1-)morphism

(Mlog
0,2g)k → (M0,2g)k obtained by forgetting the log structure. More-

over, one verifies easily that there exists a natural outer isomorphism
Π(Gy)|v

∼
→ Π0,2g such that the homomorphism ΠM0,2g → Out(Π0,2g)

obtained by conjugating the outer action implicit in the right-hand
vertical arrow of the above diagram ΠM0,2g → Aut|grph|((Gy)|v) ⊆

Out(Π(Gy)|v) by the outer isomorphism Π(Gy)|v
∼
→ Π0,2g coincides with

ρ0,2g. Thus, by considering the image in ΠM0,2g of the inverse image of
H ⊆ ΠMg,0 in ΠM0,2g

[cf. the diagrams of the above displays], it follows

immediately from the claims (∗2) [in the case where “(g, r)”= (0, 2g)]
and (∗3) [in the case where g = 2], together with the various defini-
tions involved, that if α ∈ ZOutC(Πg,0)(ρg,0(H)) determines an element

of Aut|grph|(Gx) (⊆ Out(ΠGx)
∼
← Out(Πg,0)), then the image of α via

Aut|grph|(Gx) ↪→ Aut|grph|((Gx) {e})
∼
→ Aut|grph|(Gy)

ρVert
Gy

� Glu(Gy) = Aut|grph|((Gy)|v)

[cf. Proposition 2.9, (ii)] is trivial. In particular, it follows from

Proposition 4.10, (ii), that the image αe of α via Aut|grph|(Gx) ↪→
Aut|grph|((Gx) {e}) satisfies αe ∈ Dehn((Gx) {e}). This completes the
proof of the claim (∗4).

Next, we claim that

(∗5): if x satisfies (†), and α ∈ ZOutC(Πg,0)(ρg,0(H)) de-

termines an element of Aut|grph|(Gx) (⊆ Out(ΠGx)
∼
←

Out(Πg,0)), then α is the identity outomorphism of Πg,0.
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Indeed, it follows from the claim (∗4) that

α ∈
⋂

e∈Node(Gx)

Im
(
Dehn((Gx) {e})→ Dehn(Gx)

)

[cf. Theorem 4.8, (ii)]. On the other hand, it follows immediately from
Theorem 4.8, (ii), (iv), that the right-hand intersection is = {1}. This
completes the proof of the claim (∗5).

Next, we claim that

(∗6): we have

ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|Node(Gx)|(Gx) (⊆ Out(ΠGx)
∼
← Out(Πg,0)) ;

if, moreover, x satisfies (‡), then

ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|grph|(Gx) .

Indeed, it follows immediately from Proposition 5.6, (ii), together with

the definition of xlog = x×(Mg,0)k
(M

log

g,0)k, that the composite

π1(x
log) −→ π1((M

log

g,0)k)
∼
←− ΠMg,0

ρg,0
−→ Out(Πg,0)

— where the second arrow is the outer isomorphism obtained by apply-
ing the “log purity theorem” to the natural (1-)morphism (Mg,0)k ↪→

(M
log

g,0)k [cf. [ExtFam], Theorem B] — determines a surjection π1(x
log)

� Dehn(Gx) (⊆ Out(ΠGx)
∼
← Out(Πg,0)) [i.e., which induces an iso-

morphism between the respective maximal pro-Σ quotients]. Thus, it
follows immediately from the various definitions involved that there ex-
ists an open subgroup M ⊆ Dehn(Gx) such that ZOutC(Πg,0)(ρg,0(H)) ⊆

ZOutC(ΠGx)(M) relative to the identification OutC(Πg,0)
∼
→ OutC(ΠGx)

arising from our choice of an isomorphism Πg,0
∼
→ ΠGx. Therefore, the

inclusion ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|Node(Gx)|(Gx) follows immediately

from Theorem 5.14, (ii). This completes the proof of the inclusion

ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|Node(Gx)|(Gx). On the other hand, if, more-

over, x satisfies (‡), then it follows immediately from the definition of
the condition (‡) that Aut|grph|(Gx) = Aut|Node(Gx)|(Gx). In particular,

we obtain that ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|grph|(Gx). This completes the

proof of the claim (∗6).
Next, we claim that

(∗7): if x satisfies (†), then for any α ∈ ZOutC(Πg,0)(ρg,0(H)),
there exists an element β of the image of the injection
of (∗1) such that the outomorphism α ◦β of Πg,0

∼
→ ΠGx

is ∈ Aut|grph|(Gx) (⊆ Out(ΠGx)
∼
← Out(Πg,0)).

Indeed, suppose that g > 2. Then by the definitions of (†), (‡), one
may verify easily that there exist y ∈ (Mg,0)k(k) and f ∈ Node(Gy)
such that y satisfies (‡), and, moreover, Gx corresponds to (Gy) {f} [cf.
Proposition 5.6, (iv)]. Thus, it follows immediately from the claim (∗6)
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that ZOutC(Πg,0)(ρg,0(H)) ⊆ Aut|grph|(Gy) ↪→ Aut|grph|(Gx) [cf. Proposi-

tion 2.9, (ii)], i.e., so we may take β to be the identity outomorphism.
This completes the proof of the claim (∗7) in the case where g > 2.

Next, suppose that g = 2. Write Gx for the underlying semi-graph
of Gx and Aut|Node|(Gx) for the group of automorphisms of Gx which
induce the identity automorphism of the set of nodes of Gx. Then
one may verify easily from the explicit structure of Gx [cf. the defi-

nition of the condition (†)] that Aut|Node|(Gx) is isomorphic to Z/2Z.
Thus, since the automorphism group Aut(M2,0)k

((C2,0)k) is isomorphic
to Z/2Z, it follows immediately from the claim (∗6), together with the
various definitions involved, that — to complete the proof of the claim
(∗7) in the case where g = 2 — it suffices to verify that the composite
of natural homomorphisms

Aut(M2,0)k
((C2,0)k) −→ Aut(Gx) −→ Aut(Gx)

factors through Aut|Node|(Gx) ⊆ Aut(Gx) and is injective. Now the

fact that the composite in question factors through Aut|Node|(Gx) ⊆
Aut(Gx) follows immediately from the claim (∗6), applied to elements
of the image of the injection of (∗1). On the other hand, the injectivity
of the composite in question follows immediately from the injectivity
of the natural homomorphism Aut(M2,0)k

((C2,0)k) → Aut(Gx) [cf. the
proof of the claim (∗1)] and the claim (∗5). This completes the proof
of the claim (∗7) in the case where g = 2, hence also — in light of the
above proof of the claim (∗7) in the case where g > 2 — of the claim
(∗7). Thus, the surjectivity of the injection of (∗1) follows immediately
from the claims (∗5) and (∗7). This completes the proof of assertion (ii).
Assertion (iii) follows immediately from assertion (ii). This completes
the proof of Theorem 6.13. �

Remark 6.13.1. In the notation of Theorem 6.13, since ΠM0,3 = {1},
it is immediate that a similar result to the results stated in Theo-
rem 6.13, (ii), (iii), does not hold in the case where (g, r) = (0, 3). On
the other hand, it is not clear to the authors at the time of writing
whether or not a similar result to the results stated in Theorem 6.13,
(ii), (iii), holds in the case where (g, r) = (1, 1). Nevertheless, we are
able to obtain a conditional result concerning the centralizer of the
geometric monodromy group in the case where (g, r) = (1, 1) [cf. The-
orem 6.14, (iii), (iv) below].

Theorem 6.14 (Centralizers of geometric monodromy groups
arising from moduli stacks of punctured semi-ellptic curves).
In the notation of Theorem 6.13, write (C±1,1)k for the stack-theoretic
quotient of (C1,1)k by the natural action of Aut(M1,1)k

((C1,1)k) over the
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moduli stack (M1,1)k; Π±
1,1 for the maximal pro-Σ quotient of the kernel

N±
1,1

def
= Ker(π1((C

±
1,1)k) � π1((M1,1)k) = ΠM1,1) of the natural surjec-

tion π1((C
±
1,1)k) � π1((M1,1)k) = ΠM1,1 ; ΠC±

1,1
for the quotient of the

étale fundamental group π1((C
±
1,1)k) of the stack (C±1,1)k by the kernel

of the natural surjection N±
1,1 � Π±

1,1. Thus, we have a natural exact
sequence of profinite groups

1 −→ Π±
1,1 −→ ΠC±

1,1
−→ ΠM1,1 −→ 1 ,

which determines an outer representation

ρ±1,1 : ΠM1,1 −→ Out(Π±
1,1) .

Write OutC(Π±
1,1) for the group of outomorphisms of Π±

1,1 which induce

bijections on the set of cuspidal inertia subgroups of Π±
1,1. Suppose that

2 ∈ Σ.

Then the following hold:

(i) The profinite group Π±
1,1 is slim [cf. the discussion entitled

“Topological groups” in §0].

(ii) Let H ⊆ ΠM1,1 be an open subgroup of ΠM1,1 . Then the com-
posite of natural homomorphisms

Aut(M1,1)k
((C±1,1)k) −→ AutΠM1,1

(ΠC±
1,1

)/Inn(Π±
1,1)

∼
−→ ZOut(Π±

1,1)(Im(ρ±1,1)) ⊆ ZOut(Π±
1,1)(ρ

±
1,1(H))

[cf. (i); the discussion entitled “Topological groups” in §0] de-
termines an isomorphism

Aut(M1,1)k
((C±1,1)k)

∼
−→ ZOutC(Π±

1,1)(ρ
±
1,1(H)) .

Here, we recall that Aut(M1,1)k
((C±1,1)k) = {1}.

(iii) Let H ⊆ ΠM1,1 be an open subgroup of ΠM1,1 . Then the com-
posite of natural homomorphisms

Aut(M1,1)k
((C1,1)k) −→ AutΠM1,1

(ΠC1,1)/Inn(Π1,1)

∼
−→ ZOut(Π1,1)(Im(ρ1,1)) ⊆ ZOut(Π1,1)(ρ1,1(H))

[cf. Theorem 6.13, (i); the discussion entitled “Topological groups”
in §0] determines an injection

Aut(M1,1)k
((C1,1)k) ↪→ ZOutC(Π1,1)(ρ1,1(H)) .

Moreover, the image of this injection is centrally terminal
in ZOutC(Π1,1)(ρ1,1(H)) [cf. the discussion entitled “Topological

groups” in §0]. Here, we recall that Aut(M1,1)k
((C1,1)k) ' Z/2Z.
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(iv) The composite of natural homomorphisms

Aut(M1,1)k
((C1,1)k) −→ AutΠM1,1

(ΠC1,1)/Inn(Π1,1)
∼
−→ ZOut(Π1,1)(Im(ρ1,1))

[cf. Theorem 6.13, (i); the discussion entitled “Topological groups”
in §0] determines an isomorphism

Aut(M1,1)k
((C1,1)k)

∼
−→ ZOutC(Π1,1)(Im(ρ1,1)) .

Proof. Assertion (i) follows immediately from a similar argument to the
argument used in the proof of [MT], Proposition 1.4. This completes
the proof of assertion (i).

Next, we verify assertion (ii). First, let us recall that the description
of the automorphism group Aut(M1,1)k

((C±1,1)k) given in the statement
of assertion (ii) is well-known and easily verified. Write E → (M1,1)k

for the family of elliptic curves determined by the family of hyperbolic
curves (C1,1)k → (M1,1)k of type (1, 1); U → (C1,1)k for the restriction
of the finite étale covering E → E over (M1,1)k given by multiplica-
tion by 2 to (C1,1)k ⊆ E . Then one verifies easily that the action of
Aut(M1,1)k

((C1,1)k) on (C1,1)k lifts naturally to an action [i.e., given by
“multiplication by ±1”] on U over (M1,1)k. Write P for the stack-
theoretic quotient of U by the action of Aut(M1,1)k

((C1,1)k) on U ; ΠP/M

for the maximal pro-Σ quotient of the kernel of the natural surjection
π1(P)� π1((M1,1)k);

ρP/M : ΠM1,1 −→ Out(ΠP/M)

for the natural pro-Σ outer representation arising from the family of
hyperbolic curves P → (M1,1)k. Thus, since 2 ∈ Σ, one verifies easily
that ΠP/M may be regarded as a normal open subgroup of Π±

1,1. Now
let us observe that one verifies easily that

(∗1): P → (M1,1)k is a family of hyperbolic curves of
type (0, 4). If, moreover, we denote by T → (M1,1)k

the connected finite étale covering that trivializes the
finite étale covering determined by the four cusps of
P → (M1,1)k, then the classifying (1-)morphism T →
(M0,4)k of P ×(M1,1)k

T → T [which is well-defined up
to the natural action of S4 on (M0,4)k] is dominant.

Now we claim that

(∗2): every element of OutC(Π±
1,1) preserves the normal

open subgroup ΠP/M ⊆ Π±
1,1.

Indeed, let us observe that one verifies easily that the natural surjec-
tions Π±

1,1 � Π±
1,1/Π1,1, Π±

1,1/ΠP/M determine an isomorphism

(Π±
1,1)

ab ⊗bZΣ Z/2Z
∼
−→ (Π±

1,1/Π1,1)× (Π±
1,1/ΠP/M) .
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Moreover, it follows immediately from the various definitions involved
that the natural action of (Π±

1,1)
ab ⊗bZΣ Z/2Z on the set of conju-

gacy classes of cuspidal inertia subgroups of the kernel of the natural
surjection Π±

1,1 � (Π±
1,1)

ab ⊗bZΣ Z/2Z [which is equipped with a nat-
ural structure of pro-Σ surface group of type (1, 4)] factors through

(Π±
1,1)

ab ⊗bZΣ Z/2Z
∼
→ (Π±

1,1/Π1,1) × (Π±
1,1/ΠP/M)

pr2
� (Π±

1,1/ΠP/M), and

that the resulting action of (Π±
1,1/ΠP/M) is faithful. Thus, we conclude

that every element of OutC(Π±
1,1) preserves the normal open subgroup

ΠP/M ⊆ Π±
1,1. This completes the proof of the claim (∗2).

To verify assertion (ii), take an element α± ∈ ZOutC(Π±
1,1)(ρ

±
1,1(H)).

Then it follows from the claim (∗2) that α± naturally determines an ele-
ment αP ∈ Aut(ΠP/M)/Inn(Π±

1,1). Let us fix a lifting β ∈ OutC(ΠP/M)

of αP . Next, let us observe that since Π±
1,1/ΠP/M is finite, to ver-

ify assertion (ii), by replacing H by an open subgroup of ΠM1,1 con-
tained in H, we may assume without loss of generality that β com-
mutes with ρP/M(H) ⊆ Out(ΠP/M), i.e., β ∈ ZOutC(ΠP/M)(ρP/M(H)).

Then it follows immediately from Theorem 6.13, (ii), in the case where
(g, r) = (0, 4), together with (∗1), that β is contained in the image of
the natural injection Π±

1,1/ΠP/M ↪→ Out(ΠP/M) obtained by conjuga-
tion. Thus, αP , hence also — by the manifest injectivity [cf. assertion
(i)] of the homomorphism OutC(Π±

1,1)→ Aut(ΠP/M)/Inn(Π±
1,1) implicit

in the content of the claim (∗2) — α±, is trivial. This completes the
proof of assertion (ii).

Next, we verify assertion (iii). First, recall that the description of
Aut(M1,1)k

((C1,1)k) given in the statement of assertion (iii) is well-known
and easily verified. Next, let us observe that the fact that the composite
in the statement of assertion (iii) determines an injection

Aut(M1,1)k
((C1,1)k) ↪→ ZOutC(Π1,1)(ρ1,1(H))

follows immediately from a similar argument to the argument used in
the proof of the claim (∗1) in the proof of Theorem 6.13, (ii), together
with the various definitions involved. Next, let us observe that by ap-

plying the natural outer isomorphism Π±
1,1

∼
→ Π1,1

out
o Aut(M1,1)k

((C1,1)k),
we obtain an exact sequence of profinite groups

1 −→ Aut(M1,1)k
((C1,1)k) −→ ZOut(Π1,1)(Aut(M1,1)k

((C1,1)k)) −→ Out(Π±
1,1)

— where we regard Aut(M1,1)k
((C1,1)k) as a closed subgroup of Out(Π1,1)

by means of the injection “↪→” of the above display. Thus, the central
terminality asserted in the statement of assertion (iii) follows immedi-
ately, in light of the above exact sequence, from assertion (ii). This
completes the proof of assertion (iii).

Finally, we verify assertion (iv). It follows immediately from asser-
tion (iii) that the image of the homomorphism Aut(M1,1)k

((C1,1)k) ↪→
ZOutC(Π1,1)(Im(ρ1,1)) determined by the composite in the statement of
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assertion (iv) is centrally terminal. On the other hand, as is well-known,
this image of Aut(M1,1)k

((C1,1)k) in Out(Π1,1) is contained in Im(ρ1,1) ⊆
Out(Π1,1). [Indeed, recall that there exists a natural outer isomor-

phism SL2(Z)∧
∼
→ ΠM1,1 , where we write SL2(Z)∧ for the profinite

completion of SL2(Z), such that the image of

(
−1 0
0 −1

)
∈ SL2(Z)∧

in Out(Π1,1) coincides with the image of the unique nontrivial element
of Aut(M1,1)k

((C1,1)k) ' Z/2Z in Out(Π1,1).] Now assertion (iv) follows
immediately. This completes the proof of assertion (iv). �

Remark 6.14.1. The authors hope to be able to address the issue of
whether or not a similar result to the results stated in Theorem 6.13,
(ii), (iii), holds for other families of pointed curves [e.g., the univer-
sal curves over moduli stacks of hyperelliptic curves or more general
Hurwitz stacks] in a sequel to the present paper.
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