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OPPOSITE POWER SERIES

KYOJI SAITO

Dedicated to Professor Antonio Machi
on the occasion of his T0th birthday

ABSTRACT. In order to analyze the singularities of a power series
P(t) on the boundary of its convergent disc, we introduced the
space Q(P) of opposite power series in the opposite variable s=1/t,
where P(t) was, mainly, the growth function (Poincaré series) for
a finitely generated group or a monoid [S1]. In the present paper,
forgetting about that geometric or combinatorial background, we
study the space Q(P) abstractly for any suitably tame power series
P(t) € C{t}. For the case when Q(P) is a finite set and P(t) is
meromorphic in a neighbourhood of the closure of its convergent
disc, we show a duality between the set Q(P) and the set of the
highest order poles of P(t) on the boundary of its convergent disc.
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2 KYOJI SAITO

1. INTRODUCTION

There seems a remarkable “resonance” between oscillation behavior!
of a sequence {v,}nez., of complex numbers satisfying a tame con-
dition (see §2(2.1.2)) and the singularities of its generating function
P(t)=> ", 7at" on the boundary of the disc of convergence in C. The
idea was inspired and strongly used in the study of growth functions
(Poincaré series) for finitely generated groups and monoids [S1, §11].

Let us explain this phenomena by a typical example due to Machi
[M] (for details, see Examples in §3.3 and §5.4 of the present paper.
Other simple examples are given in §3.4 (see [C, S2, S3]) and §3.5). By
choosing generators of order 2 and 3 in PSL(2,7Z), Machi has shown
that the number =, of elements of PSL(2,7Z) which are expressed in
words of length less or equal than n€Zx, w.r.t. the generators is given
by yor, =7 -28—6 and o541 =10 -28—6 for k € Z>o. On one hand, this
means that the sequence of ratios % 1/ (n=1,2,---) accumulates to
two distinct “oscillation” values {2, 5} accordmg as n is even or odd.
On the other hand, the generating function (or, so called, the growth
function) can be expressed as a rational function P(¢)= (IHQ?Q(H%) and
it has two poles at {+-1 s} on the boundary of its eonvergent C{ISC of
radius —2 We see that there is a resonance between the set {2,5} of

“oscillations” of the sequence {Vn}nez., and the set {j:f} of “poles”
of the function P(t), in the way we shall explain in the present paper.

In order to analyze these phenomena, in [S1, §11], we introduced a
space Q(P) of opposite power series in the opposite variable s =1/t,
as a compact subset of C|[s]], where each opposite series is defined by
using “oscillations” of the sequence {v,}nez., so that Q(P) carries a
comprehensive information of oscillations (see §2.2 Definition (2.2.2)).
On the other hand, the space Q(P) has duality with the singularities of
the function P(t) (§5 Theorem). Thus, Q(P) becomes a bridge between
the two subject: oscillations of {v,}nez., and singularities of P(t).
Since the method is independent of the group theoretic background
and is extendable to a wider class of series, which we call tame, we
separate the results and proofs in a self-contained way in the present
paper. We study in details the case when 2(P) is finite, where we have
good understanding of the resonance phenomena by a use of rational
set explained below, and Machi’s example is explained in that frame.

One key concept introduced in the present paper is a rational subset
U (§3), which is a subset of the positive integers Zs( such that the sum
Y ney t" is a rational function in t. The concept is used twice in the

Here, by an oscillation behavior, we mean that the sequence of the growth rate
Vn—tk/Yn (n=1,2,3,---) of period k € Z~¢ has several different accumulation values.
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present paper. Firstly in §3, where we show that, if the space of op-
posite series {2(P) is finite, then there is a finite partition Zs¢ = I;U;
of Z>y into rational sets so that there is no longer oscillation inside in
each {7, : n € U;}. We call such phenomena “finite rational accumu-
lation” (§3.2 Theorem) (such phenomena already appeared when we
were studying the F-limit functions for monoids [S1, §11.5 Lemmal).
Secondly in §5, where we introduce a rational operator 7Ty acting on a
power series P(t) € C[[t]] by letting Ty P(t) := >, .y ¥nt". The ratio-
nal operators gives a machinery to “separate” singularities of the power
series P(t). In this way, the concept of a rational set combines the os-
cillation of a sequence {v, }nez., and the singularities of the generating
function P(t):=> 0%  7,t" for the case when Q(P) is finite.

Contents of the present paper are as follows.

In §2, we introduce the space 2(P) of opposite series as the accu-
mulating subset in C[[s]] of the sequence X,(P):=3> ;_, 5" (n=
0,1,2,---) with respect to the coefficientwise convergence topology,
where kth coefficient describes an oscillation of period k. Dividing by
1-period oscillation, we construct a shift action 7 on the set Q(P),
which shifts k-period oscillations to & — 1-oscillations.

In 3.1, we introduce the concept of a rational subset of Z~, and as an
application, the key concept of finite rational accumulation. We show
that if Q(P) is a finite set, then Q(P) is automatically a finite rational
accumulation set and the tq-action becomes invertible and transitive.

After §4, we assume always finite rational accumulation for Q(P). In
84, we analyze in details of the opposite series in 2(P), showing that

they become rational functions with the common denominator A%(s)
in 4.1, and that the rank of CQ(P) is equal to deg(A°(s)) in 4.3.

In §5, we assume that the series P(t) defines a meromorphic function
in a neighbourhood of the closed convergent disc. Then we show that
A°P(s) is opposite to the polynomial A™P(t) of the highest order part
of poles of P(t) (duality theorem in 5.3), and, in particular, the rank of
the space CQ(P) is equal to the number of poles of the highest order of
P(t) on the boundary of the convergent disc. We get an identification
of some transition matrices obtained in s-side and in ¢-side, which plays
a crucial role in the trace formula in limit F-function [S1, 11.5.6].

Problems. The space Q(P) for a study of the singularities of a series
P(t) is new. There seems some directions of its further study.

1. Generalize the space 2(P) in order to capture lower order poles of
P(t) on the boundary of its convergent disc (c.f. [S1, §12, 2.]).

2. Generalize the duality for the case when Q(P) is infinite. Some
probabilistic approach may be desirable (c.f. [S1, §12, 1.]).
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2. THE SPACE OF OPPOSITE SERIES.

In this section, we introduce the space Q(P) of opposite series for a
tame power series P € C[[t]], and equip it with a Tg-action.

2.1. Tame power series.
Let us call a complex coefficient power series in ¢

(2.1.1) P(t) = T2t
to be tame, if there are positive real numbers u,v € Ry such that
(2'1'2) u < h/nfl/ﬁ)/n’ < v

for sufficiently large integers n. This implies that there exists a positive
constant ¢ so that

(2.1.3) ™ < |y <cu™
for sufficiently large integer n € Z>(. Let us consider two limit values:

(2.1.4) w < rp:=1/Tim |y,|Y" < Rp:=1/lim |y,|'" < v.
n—oo

n—oo

Cauchy-Hadamard Theorem says that P is convergent of radius rp.

Example. Let I" be a group or a monoid with a finite generator
system G. Then the length [(g) of an element g € I' is the shortest
length of words expressing ¢ in the letter G. Put I',, := {g € T' |
l(9) < n} and 7, := #(I',). Then the growth function (Poincaré
series) for I" with respect to G is defined by Pr(t) :== > ", at™. The
sequence {v, }nez., is increasing and semi-multiplicative Y 4n <Y Yn-
Therefore, by choosing u=1/7; and v=1, the growth series is tame.

2.2. The space €)(P) of opposite series.

Let P be a tame power series. An opposite polynomial of degree n
for sufficiently large integer n is defined as
(2.2.1) Xo(P) = Do, =k sk,

Tn

We regard the sequence {X,(P)},s1 to be embedded in the space
C[[s]] of formal power series, where C[[s]] is equipped with the classical
topology, i.e. the product topology of coefficient-wise convergence in
classical topology. Then, we define the space of opposite series by

(2.2.2)  Q(P) := the set of accumulation points of the sequence (2.2.1).
The first statement on Q(P) is the following.

Assertion 1. Let P be a tame series. Then the space Q(P) of its
opposite series is a non-empty compact closed subset of C|[s]].



OPPOSITE POWER SERIES 5

Proof. For each k € Zs, the kth coefficient %j/—;’“ of the polynomial

X,,(P) for sufficiently (with respect to P and k) large n € Zs( has the

approximation uf < |7:;’“| =[] |VZ’ZL\ < vk ie. it lies in

the compact annuli
D(0,u*,v") := {a€C | u" <|a| <v*}.

Thus, for each fixed m € Z>, the image of the sequence (2.2.1) under
the projection map 7, : C[[s]] — C™* 37 ars® — (ag, -, am)
accumulates to an non-empty compact set, say €2,,. Then, we have:

Q(P) =nee ((ﬂ'm)_lQm NI, D(0, uk, Uk)),

m=0

where RHS is an intersection of decreasing sequence of compact sets,
so that their intersection is a non-empty compact set. U

Any element a(s) = X2° jaxs® € Q(P) is called an opposite series,
whose coefficients {ay,}2°, satisfy a, € D(0,u*, v*). By the definition,
the constant term ag is equal to 1. The coefficient a; of the linear term
of a is called the initial of the opposite series a, and denoted by ¢(a).

For later use, let us introduce the space of the initials:

(2.2.3)  Q1(P) := the accumulation set of the sequence {%71} ,
Tn /n>0

which is a compact subset in D(0,u,v). The projection map Q(P) —
Q1(P), a i(a) is surjective but may not be injective (see §3.5 Ex.).

2.3. The rg-action on (P).
We introduce a continuous map 1o of (P) to itself.

Assertion 2. a. Let {n, tmez., be a subsequence of Zsq tending to oo.
If the sequence { X, (P)}mez-, converges to an opposite series a, then
the sequence { Xy, _1(P)}mez-, also converges to an opposite series,
whose limit depends only on a and is denoted by To(a). Then, we have

(2.3.1) 1ola) = (a—1)/u(a)s.

b. Consider a map
(2.3.2) 7:Q(P) — CQ(P), a +— a)mgla)=(a—1)/s
where CQU(P) is a closed C-linear subspace of C[[s]] generated by Q(P).

Then, the map T naturally extends to an endomorphism of CQ(P).

(2.3.3) T € Ende(CQ(P))
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Proof. a. By definition, for any k € Z>(, the sequence Vgﬂ converges

to a constant a, € D(u* v*). Then, 7(”";1)1(1]“_1) = Jpmct /2= con-
verges to ai/a;. That is, the sequence {Xnmm,l(P)}m€Z>:conV&ges to
an opposite series, whose (k—1)th coefficient is equal to ay/a;.

b. Let Y., c;a(s) =0 be a linear relation among opposite se-
quences a'”)(s) (i€ I) with #1 < 0o. Then we also have a linear relation
>ier cit(a) 7o (a®(s)) =0, since, using expression (2.3.1), this follows
from the original relation ).~ ¢;a;(s)=0 and another one .~ ¢;=0,
which is obtained by substituting s =0 in the first relation. This implies
that 7q is extended to a linear map: CQ(P) — CQ(P). O

2.4. Stability of Q(P).

In the present subsection, we are (mainly) concerned with following
type of questions: for a given tame series P, under which assumptions
on another power series @, is P+ ) again tame and Q(P)=Q(P+Q)?
Or, if Q(P + @) changes from Q(P), how does it change? These sort
of questions, we shall call stability questions of Q(P).

We discuss some miscellaneous results related to stability questions,
but we do not pursue full generalities. The results, except for the
Assertion 3, are not used in the present article. Therefore, hurrying
readers are suggested to skip this subsection after reading Assertion 3.

Assertion 3. Let Q=) q,t" converge in the disc of radius rg such
that rq > Rp. Then P+ Q is tame and Q(P) = Q(P + Q).

Proof. Let ¢ be a real number satisfying rg > ¢ > Rp. Then, one
has lim ¢,¢" =0 and ¢* > 1/|y,]| for sufficiently large n. This implies

lim 2249 —1 4 lim 9 =1. The required properties follows. [

Assertion 4. Let r be a positive real number with r < Rp. If Q1(P) N
{z€C: |z|=r}=0. Then there exists a power series Q(t) of radius rg
of convergence equal to r such that P+Q) is tame and Q(P+Q) ¢ Q(P).

Proof. We define the coefficients of Q(t) = > 7, gat" by the following
conditions: |g,| = =" and arg(q,) = arg(v,). Then, for tameness of
P+ @, we have to show some positive bounds 0<U <A, <V for A, =
—7";71113:‘1 . Since |[Yn+qn| = |Yn|+77", we have A, = '”“*;QZ’;'(T;{‘(JZ;”T")
Then, evaluating term-wisely in the numerator, one gets A, <v+r=:
V. On the other hand, according as 1 > 1/(|v,|r") or not, we have
A, >u/2or A, >1r/2. So, we may put U:=min{u/2,7/2}.

Let us find a particular element d € Q(P + @) such that d € Q(P).
For a small positive real number ¢ satisfying the inequality (1—¢)/r>
1/Rp, there exists an increasing infinite sequence of integers n, (m e

n
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Z>p) such that ((1—g)/r)"™ > |y, | for m € Z>y. Choosing suitably a
sub-sequence (denoted by the same n,,), we may assume that X, (P+
@) converges to an element, say d, in Q(P+ Q). Its kth coefficient dy, is
equal to the limit of the sequence (Y, —+Gn,. &)/ (Yn,,+n,, ) for n, — oc.
For each fixed n,,, dividing the numerator and the denominator by
(n,,, We get an expression (X+r*Y)/(Z+1) where | X| = [Yn,.—k/Vn,| -
Y, 7| < 0P - (1—g)™ (for n >> k), Y € S, and |Z] = |y,,,r"| <
(1—¢)™m. Thus, taking the limit n,, — oo, we have X — 0, Y — ¢
for some 6, € R and Z — 0 so that d, =r"¢®. On the other hand, we
see that dZQ(P), since 1(d) =re?t &Q;(P) by assumption. O

We do not use following Assertion in the present paper, since we know
more precise information for the cases #(P) < co. However, it may
have a significance when we study the general case with #Q(P)= 0.

Assertion 5. An opposite series converges with radius 1/ sup{|a| : a €
0 (P)} <1/Rp.
Proof. Let a(s) = lim X,, (P) for an increasing sequence {1, }mez.,

be an opposite series. By the Cauchy-Hadmard theorem, the radius of

convergence of a is given by
ro =1/ Tim |ag['/* = 1/ Tm | lim ., 4/, [V,
k—o00 k—o0 m—00

where RHS is bounded from below by 1/sup{|a| : a € Q1(P)} from below.
O

Question. When can we replace sup{|a| : a € Q;(P)} by Rp?
Finally, we state a result, which is not related to the stability.
Assertion 6. For any positive integer m, we have the equality

(2.4.1) QP) = Q(LE)

dt’!n

which s equivariant with the action of Tq

Proof. 1t is sufficient to show the case m = 1. We show slightly a
stronger statement: the subsequence {Xy,,(P)}mez., converges to a
series a(s) if and only if {X,,, (9F) }mezo, also converges to a(s).

For an increasing sequence {7, }mez., and for any fixed k € Z>, the
convergence of the sequence 7’;:“—*’“ to ¢ is equivalent to the convergence

of the sequence Zm—Fnm=t _ (1—k/ny) ==~ to the same c. O

NmYnm

3. FINITE RATIONAL ACCUMULATION
We show that, if Q2(P) is a finite set, then it has a strong structure,

which we call the finite rational accumulation (§3.2 Lemma and its
Corollary). The whole sequel of the present paper focuses on its study.
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3.1. Finite rational accumulation.
We start with a preliminary concept of rational subsets of Z, and
then introduce the concept of finite rational accumulation.

Definition. 1. A subset U of Zx is called a rational subset if the sum
U(t):=>_,cpt" is the Taylor expansion at 0 of a rational function in .
2. A finite rational partition of Zq is a finite collection {U,}.cq of
rational subsets U, C Z>( indexed by a finite set €2 such that there is a
finite subset D of Z>( so that one has the disjoint decomposition

Zso \ D =1ue(U, \ D).

Assertion 7. For any rational subset U of Z>, there exist a positive
integer h, a subset w C Z/hZ and a finite subset D C Z>o such that
U\D=Uec,U¥\D, where [e] € Z/hZ is the class of e€Z and

(3.1.1) Ul:={neZsy | n=e mod h}.
We call U[e]@U{e] the standard expression of U.

Proof. The fact that U(t) is rational implies that the characteristic
function xy of U is recursive, i.e. there exist N € Z>; and numbers
aq, -+ ,ay such that one has the recursive relation xy(n) + xu(n —
Doy + -+ -+ xu(n — N)ay = 0 for sufficiently large n > 0. Since the
range of xy is finite (i.e. {0,1}), there are only finite possible patterns
of values of y on an interval [n — N, n] for n > 0. Therefore, there
exists two large numbers n > m > 0 such that xy(n —1i) = xu(m — 1)
for i =0,---, N. Due to the recursive relation, this means that yy is
h := (n — m)-periodic after m. O

Corollary. Any finite rational partition of Zso has a subdivision of
the form U, = {U[e]}[e]ez/hz for some h € Z~g, called a period of the
partition. The smallest period h is called the period of the partition,
and Uy, is called the standard subdivision of the partition.

In the present paper, the concept of a finite rational partition of
Z>y is used twice: once, in the following definition of a finite rational
accumulation, and once in the definition of a rational operator in §5.

Definition. A sequence {X,, }nez., in a Hausdorff space is finite ratio-
nally accumulating if the sequence accumulates to a finite set, say €2,
such that for a system of open neighborhoods V, for a € Q with VWV, =0
if a # b, the system {U,}qcq for U, :={n € Zso | X,, € V,} is a finite
rational partition of Z>q. The (resp. a) period of the partition is called
the (resp. a) period of the finite rationally accumulation set Q.
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3.2. To-periodic point in Q(P).

Generally speaking, finiteness of the accumulation set €2 of a sequence
does not imply that it is finite rationally accumulating (see §3.5 Exam-
ple a). Therefore, the following theorem says a distinguished property
of the accumulation set Q(P). This justifies the introduction of the
concept of “finite rational accumulation”.

Theorem. Let P(t) be a tame power series in t. If the Tq-action
on Q(P) has an isolated periodic point, then Q(P) is a finite rational
accumulation set, whose period hp is equal to #Q(P). We have a
natural bijection:

Z/hpZ =~ Q(P)
(3.2.1) emod hp — ald:= lim Xesnpn(P),
where the standard subdivision Uy, of the partition of Zq is the exact
partition for the space Q(P) of the opposite series of P. The shift
action [e] — [e — 1] in LHS is equivariant with the 1o action in RHS.

Proof. Assumption means that i) there exists an element a € Q(P)
and a positive integer h € Zsq such that (m)"a = a # ()" a for
0 < W < h and ii) there exists an open neighbourhood V, of a such
that Q(P)NV, = {a}. Since Q(P) is a compact Hausdorff space, it is a
regular space. So, we may assume further that Q(P)NV, = {a}. Then,
by putting U, :={n € Zsq | X,(P) € V,}, the sequence {X,,(P)}nev,
converges to the unique limit element a. By the definition of 7o in
§2, the relation (7o)"a = a implies that the sequence {X, _(P)}.ev,
converges to a. That is, there exists a positive number N such that for
any n€U, with n> N, X,,,(P) € V,, and hence n—h belongs to U,.

Consider the set A:={[e] €Z/hZ | there are infinitely many elements
of U, which are congruent to [¢] modulo h }. Actually, if [e] € A, then
U, contains Ul N Zxy (Proof. For any m € Zsy with m mod h = [e],
there exists an integer m’ € U, such that m’ > m and m’ mod h = [¢]
by the definition of the set A. Then, by the definition of N, m'—h € U,.
Obviously, either m" — h = m or m’ — h > m occurs. If m’ —h > m
then we repeat the argument so that m’ — 2h € U,. Repeating, similar
steps, after finite k-steps, we show that m’ — kh =m € U,).

Thus, U, is, up to a finite number of elements, equal to the rational
set UgealU (], This implies A £ (). Consider the rational set Ulrg)ia =
{n—i|nelU}fori=01,---,h—1 Due to §2.3 Assertion 2,
{Xn(P>}nEU(TQ)ia converges to (7q)’'a. By the definition, Uy)i, is, up

to a finite number of elements, equal to the rational set UjeaU [e=1],
By assumption a # 74a for 0 < i < h, there should not be an infinite
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intersection between two rational sets U i, (0<i < h) so that we have
#A=1, say A= {[eo]} and U, = Ul®~ up to a finite number of
elements. On the other hand, since the union U?:_()l Ulro)ia already covers
Z > up to finite elements and since each {Xn(P)}"TEU(TQ)ia converges only
to (1q)'a, the opposite sequence (2.2.1) can have no other accumulating
point than the set {a,mqa,---,(mq)" ta}. That is, Q(P) is a finite
rational accumulation set with the hp-periodic action of 7. 0

Corollary. If Q(P) is a finite set, then it is automatically a finite
rational accumulation set with the presentation (3.2.1).

Proof. If Q(P) is finite, then any point is isolated and the action 7q
should have a periodic point. O

3.3. Example by Machi [M].

Let I := Z/27Z % Z/3Z ~ PSL(2,Z) with the generator system G :=
{a,b*'} where a,b are the generators of Z/2Z and Z/37Z, respectively.
Then, the number #I,, of elements of I' expressed by the words in the
letters G of length less or equal than n for n € Z is given by

H#Top, =7-2"—6 and #Ioy1 =10-2F -6 for k € Zso.
Therefore, we get the following expression of the growth function:
. oo 1+t) (142t
Pro(t) = Y #Tutt = e
Then, we see that Q(Pr ) and, hence, Q(Pr ) are finite rationally
accumulating of period 2. Explicitly, they are given as follows.

() ={al = lim Bt =3 ol = fim AT — 1]

Q@hg:{am ), ali(s) }
5
7

where

YT RN SR
(17§) 2 1—% 2 1+% )
7 o0
alll(s ke | L —k 2k
ZQ 5o 22"
k=0
+Z 71
_ (1+ms> _ 1 i S W v
- 2 - S s _ -
(1-%) 2 1- 7 2 1+ﬁ

In §5.4, these coefficients of fractional expansion are recovered due to

§5.3 Theorem ii). We calculate also TP R2 = al}a[ll} = 57’1_70 — %
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3.4. Simply accumulating Examples.

A tame power series P(t) is called simply accumulating if #Q(P)=1
(e.g. growth functions Pr(t) for surface groups [C]). Growth func-
tions for Artin monoids are simply accumulating, which enables to
determine the F-function of the Cayley graph (I', G) [S2, S3, S4].

3.5. Miscellaneous Examples.

Before going further, using a simple model of oscillating sequence
{Vntnez~,, We give some examples of the power series P(t) such that

a) Q,(P) is finite but is not finite rationally accumulating,

b) €, (P) is finite rationally accumulating but #Q, (P) <#Q(P),

c) Q(P) # QP + Q) for a power series Q(t) for any Rp > rg > rp.
We do not use these results in sequel. Hurrying readers may skip
present paragraph.

With a triple 4 := (U, a,b), where U C Z>; is any subset such that
#U =00 and #(U°:=Z>1\U) =00 and a,b € C\ {0}, we associate a
sequence {7V, tnez., defined by an induction on n: vy := 1 and ~, :=
Ypo1-aifnel and v, - bif ngU. Put Py(t) :== > 2% vnt". Then:

Fact i) The Py(t) is tame and Q1(Py) = {a™',b71}.
ii) The Py(t) is finite rational accumulating if and only if U is rational.
Proof. 1) The inequalities: min{|a|, |b|} < |Vn/Yn-1] < max{]|al,|b|}
imply the tameness of Py. The latter half is trivial since the proportion
Yn/Vn—1 takes only the values a or b.

ii) This follows from: Py is rational < The sets {n€Z>1 | Y/ Yn-1=
a}=U and {n€Z>1 | Yn/n-1=0}=U¢ are rational< U is rational. [J

a) By choosing a non-rational set U, we obtain an example a).

b) Even U (and, hence, U° also) is a rational set, if {U, U} is not the
standard partition of Zx of period 2, then the period of the partition
{U, U} = #Q(Py) > 2 = #0Q1(Py). This gives an example b).

c¢) To get an example c), we need a bit more consideration. Define

(UNZ1<.<n) #(UNZ1<.<n)
n

py = lim and qy := lim . If U is a rational

subset, then py; = qu is a rational number. In general, the pair (py, qu)
can be any of {(p,q) € [0,1]* | p>¢}. SUPPOSQ |a| > 1]

#UNZ1<.<n) Z1<.<n)

Urp = T " oo,
Nz ) )
1/Rp := lim IG|A !b\l T = |a|[b]*~w.

n—oo

Thus, rp and Rp can take any values, satisfying: |a|'<rp < Rp<|b|7L.
If there is a gap rp < Rp, then for any r € Ry such that rp <r < Rp,
Q) :=>"07 € (t/r)™ for O, = #(U N Zi<.<n) argla)+ (n—#(U N Zy<.<,)) arg(h)
gives example ¢) (since Qi (Py)n{z€C: |z|=r}=0 and §2.4 Assertion4).
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4. RATIONAL EXPRESSION OF OPPOSITE SERIES

From this section, we restrict our attention only to a tame power
series having the finite rational accumulation set Q(P).

4.1. Rational expression.

We show that the opposite series become a rational function of a
special form, whose analysis is the theme of the present section.

We start with a characterization of a finite rational accumulation.

Assertion 8. Let P(t) be a tame power series in t. The set Q(P) is
a finite rationally accumulation set of period hp € Z>1 if and only if
Q(P) is so. We say P is finite rationally accumulating of period hp.

Proof. 1f Q(P) is finite rationally accumulating, then, in particular, the
sequence % is finite rationally accumulating. To show the converse
and to show the coincidence of the periods, assume that {v,—1/7 }nez-,
accumulate finite rationally of period h;. Consider the standard sub-
division Uy, = {U M}[e]ez/hlz (recall §3.1 Corollary), and let the sub-
sequence {Vn—1/%n }neyte converge to a € C for [¢] € Z/MZ.

For any k € Z>o and sufficiently large (depending on k) n, one has

Yn—k o Yn—1 Yn—2 . Yn—k

Yn Yo Vn-1  VYn-kil
For n € Ul with [e] € Z/h,Z, we see that RHS converges to a[f}a[f_l] o a[le_kﬂ},
Then, for [e] €Z/MZ and k € Z>¢, by putting
(4.1.1) aldl = gt glemkHll
the sequence {Xn(P)}nEU[e] converges to ald ::Zzo:() a;[f]sk with a[le} _

1(al) so that Q(P) is finite rational accumulating. Its period hp is a
divisor of Ay, but it cannot be strictly smaller than hq, since otherwise
the sequence {7, -1/ }nezs, gets a period shorter than h;. O

Remark. That the period of the rational accumulation of 2, (P) is equal
to h does not imply #£4(P)=h. That is, the map a € Q(P) — w(a) €
Q4 (P) is surjective but may not be injective (see §4.2 Example b).

Assertion 9. Let P be finite rationally accumulating of period hp €

Zs1. Then the opposite series al¥l = Y722 agf]sk in Q(P) associated
with the rational subset U'¥l converges to a rational function

Alel
(4.1.2) al(s) = ()

1-— ApShP ’
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where the numerator Al¥l(s) is a polynomial in s of degree hp—1:

(4.1.3) All(s) = Yheo 1( age—””) 5
and ,

i 1
(4.1.4) Ap =1 e = ap) = = a7,

We have a relation
(4.1.5) (rp)* = (Rp)" = |Ap|,

where rp is the radius of convergence of P(t) and Rp is given by (2.1.4).

Proof. Due to the hp-periodicity of the sequence a[ l (e € Z), formula
(4.1.1) implies the “semi-periodicity” with respect to the factor (4.1.4):

aghPJrk:(Ap)maLe] for meZsy, k=0, -+, hp—1.

This implies a factorization al = All.3">°_ (Aps"?)™ and hence (4.1.2).

To show (4.1.5), it is sufficient to show the existence of positive real

constants ¢; and ¢ such that for any k € Zs( there exists n(k) € Zx

and for any integer n > n(k), one has c;r* < |7’7‘—"“| < cort.

Proof. Choose ¢, le] € Z/hZ,i €
Z.N1[0,h—1] le] € Z/hZ,icZ N[0, h—1]}. O
This completes a proof of Assertion 9. O

Corollary. Let Q(P) be finite. For any power series Q(t) of radius ¢
of convergence larger than rp, P+Q is tame and Q(P)=Q(P+Q).

4.2. Linear dependence relations among opposite series.

Though the opposite series all(s) for [¢] € Z/hpZ are mutually dis-
tinct, they may be linearly dependent. This phenomenon occurs when
the matrix

(4.2.1) My, = (T, ) s noy

of the coefficients of (4.1.3) degenerates, i.e. det(M;) = 0. Regarding
[0] qlh—1l

aj’,--+,ay  asvariables, Dh(a[lo], e [h 1]) = det(M,) € Z[a[l I ,ay

is an 1rredu01ble homogeneous polynomlal of degree h(h — 1)/2 with
sign changes Djoo = (—1)"1D, under the cyclic permutation o =
(1,--- ,h—1) of the variables.

In the present paragraph, we show a formula (4.2.4) on the rank of
the matrix M), where we may take an arbitrary coefficient field K. In
particular, for the case of K = R, we give a stratification of the positive
real parameter space (R-()" of the parameter (a[lo], » a[lh 1}), where
each stratum is labeled by the cyclotomic polynomial i.e. an integral
factor of 1—s" which contains also the factor 1—s (see Assertion 10.iv).

[h—ll]
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Assertion 10. Fiz h € Z~. Using expressions (4.1.3) and (4.1.4),
define polynomials Al(s) indexed by [e] €Z/hZ and a constant A€ K*

associated with any h-tuple a=(a\”, - -, al" 1) € (K",
i) In K[s|, we have the equality of the greatest common divisors:
ged(Af(s),1-Ash) =..- = ged(AP~U(s), 1—As")
= ged(AV(s), AM(s)) =--- = ged(APT(s), AM(s))

after normalizing their constant terms to be equal to 1.
Let us denote by 65(s) the common divisor, and we put

(4.2.2) AP (s) := (1 — As")/6a(s).
ii) For [e]€Z/hZ, put
(4.2.3) bel(s) := Al(s)/64(s).

The polynomials blél(s) for [e] € Z/hZ span the space K[s]caeg(aory of
polynomials of degree less than deg(A7’). Hence, one has the equality:

(4.2.4) rank (M) = deg(AZ).

iii) For p(s) € K|s], ©(s) | AZ if and only if p(s) | 1— As" and
ged(p(s), All(s)) = 1. In particular, if a € (Rs)", then A is always
divisible by 1V As.

iv) Let h€Z~o. There exists a stratification R’;OzﬂAopCAop, where
the index set is equal to

(4.2.5) {APER[s] : 1—5 | A%(s) | 1—s" & AP(0)=1},

and Caop is a smooth semi-algebraic set of R-dimension deg(A)—1,
such that AP (s)=AP(X/As) forVaec Cnop and Caor DCpypr & ATP|AY

Proof. 1) By Definitions (4.1.3), (4.1.4) and (4.1.1), we have relations:
(4.2.6) ds Al () 4 (1= As?) = Alt(s)

for [¢] € Z/hZ. This implies ged(All(s),1 — As?) | ged(Altl(s),1 -

Ash) for [e] € Z/hZ so that one concludes that all the elements ged (Al (s), 1—
Ash) = ged(AlFl(s), Aletl(s)) for [e] € Z/hZ are the same up to a con-

stant factor. It is obvious that a factor of 1 — As" contains a nontrivial
constant term.

ii) Let V be the subspace of K[s|/(AZ’) spanned by the images of
blel(s) := All(s)/64(s) for [e] € Z/hZ. Relation (4.2.6) implies that V/
is closed under the multiplication of s. On the other hand, bl¥l(s) and
AZ are relatively prime so that they generate 1 as a K[s]-module. That
is, V contains the class [1] of 1. Hence, V' = K|[s] - [1] = K[s]/(AZ).
Since deg(bl!(s)) = h—1—deg(da(s)) = deg(AZ)—1, V N K[s]AZ = 0.
This means that the polynomials bl (s) for [e] € Z/hZ span the space
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of polynomials of degree less than deg(AZ’). In particular, one has
rank(M;,) =rankgV =deg(A7).

iii) The first half is the reformulation of the definition of d; and
(4.2.2). Then we see that if 1 —rs JAZ) then 1—rs | Al¥l(s) (4.2.3) so
that Al°/(1/r)=0. This is impossible, since all coefficients of Al and
1/r are positive reals.

iv) Let A’ be a polynomial as given in (4.2.5) and put d = deg(A).
Consider the set Cao = {c(s) = 1+c15+---+cg157 € R[s] | Ir €
R s.t. all coefficients of A := c(s)(1—r"s")/A°P(rs) are positive}.
Then Caor is an open semi-algebraic set in RY, which is a non-empty
since A(rs)/(1—rs) belongs to Caer. In particular, it is pure di-
mensional of dimension dimg Cpaor = d — 1. To any ¢ € Caor, One
can associate a unique @ €(Rsg)" such that the associated polynomial
Al (4.1.3) is equal to AP We identify Caer with the semi-algebraic
subset {a € (Rsg)" | a < c€Caw} of pure dimension d — 1 embed-
ded in (Rso)". Similarly, for any factor A’ of A% (over R) divisible
by 1 — s, we consider the semi-algebraic subsets Cas in R", of pure
dimension deg(A’). Then, the multiplication of A°?/A’ induces the
inclusion C'ar C Caopr. Then we define the semi-algebraic set Caop in-
ductively by UAOP\UA/CA/, where the index A’ runs over all factors
of A which are not equal to A°? and are divisible by 1—rs. By the
induction hypothesis, d—1 > dimg(Ca) so that the difference Caop is
non-empty open semi-algebraic set with pure dimg Caor = d — 1.

This completes the proof of Assertion 10. O

Suppose char(K) A h, and let K be the splitting field of AZ with
the decomposition AZ =[], (1—z;s) in K for d := deg(AZ). Then,
one has the partial fraction decomposition:

(4.2.7) A g~d

1—Ash i=1 1—x;s

for e] € Z/hZ, where /L;[Z] is a constant in K given by the residue:

Alel (s)(1—z;s)

(4.2.8) psl = 4700 = ;A€

s=(z;)~1
Corollary. The matriz ((Mg)[e]ez/hz,xflev(Atjp)) is of mazimal rank d.

Proof. LHS of (4.2.7) for [e] € Z/hZ span a vector space of rank d:=
deg(A7). So, the coefficient matrix in RHS has rank equal to d. O

Remark. 1. One has the equivariance a(ugi.]) = ,u‘[fgxi) with respect to

the action o € Gal(f(, K) of the Galois group of the splitting field.
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2. The index z; in (4.2.8) may run over all roots = of the equation
2" — A=0. However, if 2! & V(AZP) (i.e. AZ(2~1)£0), then pl =0.

4.3. Module CQ(P).

We return to a tame power series P(t) (2.1.1). Suppose P(t) is finite
rationally accumulating of a period hp. Let a[f] be the initial of the
opposite series al? € Q(P) for [e] € Z/hpZ. Since AZ(s) (4.2.2) for
a:= (a[lo], e ,a[lh_l]) depends only on P but not on the choice of a
period hp, we shall denote it by A% (s). Then, §4.2 Assertion 10.ii)

says that we have the C-isomorphism:

CQ(P) =~ C[s]/(A%(s)),

(4.3.1) ad b= A% . gl mod A%,

Let us rewrite equality (4.2.3) and introduce the key number:
(4.3.2) dp := ranke (CQ(P)) = deg(AR).

Define an endomorphism ¢ on CQ(P) by letting

(433) O-(CL[E]) = 7—61(@[6]) — a[e%kl] a/[e-i-l} )

1

Assertion 11. The actions of o on LHS and the multiplication of
s on RHS of (4.3.1) are equivariant. Hence, the linear dependence
relations among the generators al (le] € Z/hZ) are obtained by the
linear dependence relations A% (o)al® for [e] €Z/hZ.

Proof. The first part of Assertion 11 is a matter of calculation.
Z[e]eZ/hZ c[e]b[e} = 0 mod A%"(g)b[e] =0 for [e] €Z/MZ. 0

Note that the o-action on CQ(P) is not s|co(p) in the ring C[[s]].

5. DUALITY THEOREM

In this section, we restrict the class of function P(t) to that of ana-
lytically continuable to a meromorphic function in a neighbourhood of
the closed disc of convergence.? Under this setting, we show a duality
between 2(P) and poles of P(t) on the boundary of the disc.

2This assumption is necessary, since the finite rational accumulation of P(t) does
not imply that P(t) is meromorphic on the boundary of its convergent disc.

Ezample. Consider the function P(t) := /1t = 377 %t” which

is tame. We see that the sequence of the proportion ~,,_1/7, of its coefficients
accumulates to the unique values 1, i.e. Q;(P) = {1} and Q(P) = {1/(1 — s)}. On
the other hand, we watch that the function P(t) has two singular points on the
boundary of the unit disc D(0,1) which are not meromorphic but algebraic. Such
algebraic branching cases shall be treated in a forthcoming paper.
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5.1. Functions of class C{t},.
For r € Ry, we introduce a class

(5.1.1) (C{t}T::{P(t)E(C[[tH

ii) P(t) is analytically continuable to a meromorphic

i) P(t) converges on the open disc D(0,r).
function on an open neighbourhood of D(0,r).

For an element P(t) of C{t},, let us introduce a monic polynomial
Ap(t), called the polar part polynomial of P(t), characterized by

i) Ap(t)P(t) is holomorphic in a neighbourhood of the circle [t| = r,

ii) Ap(t) has lowest degree among all polynomials satisfying i).

Next, we decompose

(5.1.2) Ap(t) =TT, (8 — zi)*

where x; (i=1---,N, N €Z>() are mutually distinct complex numbers
with |z;|=r and d; €Z~o (i=1,---,N).

Definition. The top polar part polynomial A'P(t) of P(t) is defined by
(5.1.3) ALP(1) =1La—q,(t — i) where d,:=max{d;}Y,.

Note that Ap(t) may be equal to 1, and then AP(t) = 1. The
converse: if Ap(t) # 1, then A'P(t) # 1, is also true.

5.2. The rational operator Ty .

We introduce an linear operator Ty on C{t}, associated with a ra-
tional subset U of Zs(, which we call a rational operator or a rational
action of U.

Definition. The action Ty on C[[t]] of a rational subset U of Zs is
(521) TU . P = ZWGZZO Vntn — TUP = ZnEU ’Yntn

One may regard Ty P as a product of P with the rational function U (t)
(§3.1 Definition) in the sense of Hadamard [?]. Clearly, the radius of
convergence of Ty P is not less than that of P.

Assertion 12. The action of Ty preserves the space C{t}, for any
r € Rog. The highest order of the poles on |t| =1 of Ty f does not
exceed that of f € C{t},.

Proof. For P € C{t},, let us consider its partial fractional expansion:

(5.2.2) P(t) = Zf\il Z?izl (tf—;zy + Q(t),

where z; is a place of a pole of order d; > 0 with |z;| = r for i =
1,...,N, ¢;; are constants € C with ¢;4, # 0 for ¢ = 1,..., N, and
Q(t) is a holomorphic function on a disc of radius >r. Then, Ty P =
Z@ i Tyﬁ + Ty Q@ where Ty (@ is a holomorphic function on a disc
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of radius > r. It is sufficient to show the result for each term T; U(t—w)J
when U is a standard rational set Ul :={n € Z>q | n=[e] mod h} of

period h€Z~q and [e] €Z/hZ (recall (3.1.1)). Let us show

Assertion 13. For h € Z>q and [e] € Z/hZ, let us define the rational
operator T := Ty, Then, we have

d d
). 2 — 2. pletl]
(5.2.3) T 2 T
B ;(t)
[6]7 VAT

where B; j(t) is a homogeneous polynomial int and z; of degree (h—1)7.

Proof. As for (5.2.3): for any monomial t™ (m € Zsq), both hand sides
returns the same m¢™ 5[61 (m—1] =mt™" 6[e+1 1,[m]-
As for (5.2.4): using (5.2.3), we calculate

_ (=Dt dyi—1 1
TU[e )7 :r) = TU g] 1)! (dt)] t—x; -
1)7 —-1)7- fa
((J )1) (dt)] 1TU‘/’“ g 1:1:1- - ((j—)l)! (di) ltt—:h

where f =etj—1-h[(etj—1)/h] and g:=h—f-1=h—e—jt+h[(etj—1)/h]. O

Expression (5.2.3) implies Assertion 12. In particular, the latter half
of the statement follows from the fact that the equation t" — z = 0
does not have a multiple root (in characteristic 0).

This completes the proof of Assertion 12. 0J

5.3. Duality theorem.
The following is the goal of the present paper.

Theorem. (Duality) Let P(t) be a tame power series belonging to
C{t}, for r=rp (= the radius of convergence of P). Suppose that P(t)
is finite rationally accumulating of period hp. Then

i) The denominator AP (s) (4.2.2) of opposite sequences and the top
part ASP(t) (5.1.3) of P(t) are opposite to each other. That is,

(5.3.1) deg,(AF"(t)) = dp = deg,(AP(s)),

and

(5.3.2) t" ALY = ABP(1), equivalently s ARP(sTH) = A% (s).

ii) We have an equality of transition matrices:

(5.3.3)

( P(t) ) _ (A[e]} 4) .
TP lt=2: ) (ez/hp2, 2:eV (AP (1)) 55" ) ez hp, w7 eV (AP (s)

P(t)

Tt)}t wl) et eV (A0 is of mazimal rank dp.

In particular, (



OPPOSITE POWER SERIES 19

Proof. We start with the following obvious remark.

Assertion 14. Let ¢ € C* be any non-zero complex constant. Change
the variable t to t := t/c and the opposite variable s to 5 := cs, and,
for any tame series P, define a new tame series P := P|,_-

Then we have,

AP) = QP)ls=ge = {a(3/c) |a(t) € AP},
Ql(P) = Ql(P)/C = {al/c | ay € Ql(P)}

Proof. The equalities follows immediately by direct calculations. 0

According to this Assertion, we prove the theorem by changing the
variable t to t = t/c for ¢ = "/Ap (recall (4.1.4)) so that new tame
series has the constant Az equal to 1. Therefore, from now on, in the
present proof, we shall assume that P is a finite rationally accumulating
tame series with Ap=1. In particular, this implies that the radius rp of
convergence of P is equal to 1 (recall (4.1.5)). Hence, we have |z;| =1
for all the places of poles in expression (5.2.2).

We first prove the theorem for a special but the key case when
#QU(P)=
Assertion 15. If P(t) is simply accumulating then AP =t—1.

Proof. We apply stability: Corollary to §4.1 Assertion to the partial
fractional expansion (5.2.2), so that we obtain Q(P)=Q(P—Q). That
is, the principal part Py := P—Q) gives arise a simply accumulating power

, . N S icicay Cgmy " H(n=k;5)/(G-1)!
series. That is, X, (Py) = Zk 0 Zl 1IZ<1J<<;<¢ Z”x T G sk (n=

0,1,2,---) converges to 7= =" s®. Then, under this assumption,
we’ll show that if ¢; 4, 7é0 then x;=1.

For each fixed k € Z>(, the numerator and the denominator of the
coefficient of s* in X,,(Py) are polynomials in n of degree < d,,,. Let
U 1= Zgl Cia, ;""" be the coefficients of the top term n¢" /(d,,, —1)! in
the denominator. Since the range of v, is bounded (i.e. [v,| < >, |cia,.|
due to the assumption |x;| = 1), the sequence for n=0,1,2,--- accu-
mulates to a non-empty compact set in C.

First, consider the case when the sequence {v,}nez,,, has a unique
accumulating value vy. Let us show that vy is non—zero and the result

of Assertion is true. (Proof. The mean sequence: {(322" v,) /M } Moo

777,7

Zn:O L
also converges to vy = nh_}r& v,. This means that Zpl G me’
n]\/iolx_—n 1 1— (B —M
. 7 J—
converges to vg. If x; # 1, the mean sum Vi = GO tends
to 0 as M — oo. That is, vy = ¢14,,, where we assume z; =1 (even

if, possibly c¢14, = 0). That is, the sequence v), := v, — ¢14, =
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S, Cia, ;" h converges to 0. For a fixed ng € Zsg, consider the
relations: v, , = SN (Ciay ;") F Y for k=1,--- N —1. Regard-
ing ¢;q,x; " (i =2,--+,N) as the unknown, we can solve the linear
equation for them, since Vandermonde determinant for the matrix
(x; k+1)'p2,..., Nje=1,..N—1 does not vanish. So, we obtain a linear approx-
imation: |cig,| = |cia,z;"™] < ¢ max{[v), [}y (i =2,--,N) for
a constant ¢ > 0 which depends only on zis and N but not on ng.
The RHS tend to zero as ng— oo, whereas LHS are unchanged. This
implies |¢;q,| =0, i.e. d; <d,, for i =2,---,N. As we have already
remarked Ap(t) # 1 implies A'SP(t) := [I;—q,(t—2i)#1, and hence
c1.4,, cannot be 0. So ABP(t) =t — 1.

Next, consider the case when the sequence v, has more than two
accumulating values. Then, one of them is non-zero. Suppose the
subsequence {v,,, }mez., converges to a non-zero value, say c. Recall
the assumption that the sequence ~,_1/7, converges to 1. So, the
subsequence W;:”; = ”Z:T;itxfrt:g:s should also converges to 1 as
m — oo. In the denominator, the first term tends to ¢ # 0 and the
second term (= (a polynomial in n of degree d,,—1)/n%") tends to zero.
Similarly, in the numerator, the second term tends to zero. This implies
that the first term in the numerator also converges to ¢ # 0. Repeating
the same argument, we see that for any k € Zs(, the subsequence

{Vn,—k tmez~, converges to the same c. Then, for each fixed M €
Z~o, the average sequence {(224261 Vnp—k) /M } ez, converges to c,

—nym 1T

i ez YHM
is close to c; 4, for sufficiently large M and n,, >> M. This implies
¢ = 14, Thus, the sequences {v, _, = ZZ]\LQ ci,dmx?m_k}mez»o for
any k > 0 converge to 0. Then, an argument similar to that of the
previous case implies |¢; 4, |=0, i.e. d; < d,, (i=2,---,N). Hence we
have AYP(t) =t — 1.

The proof of Assertion 15 is complete. OJ

whereas the values is given by > ., ¢4, % + ¢1,4,, Which

m

We return to the proof of the general case, when P is finite rational
accumulating of period h, but may no longer be simply accumulating.
The rational operators T1¢ := Ty for [e] €Z/hZ give a partition of

unity:
Z[e]EZ/hZ ™ = 1.
Since h is a period of P, the series TVIP = t/3°%°_ v ™ for
any 0 < f < h, considered as a series in 7 =t" where t/ is regarded as
a constant factor, is simple accumulating such that Q,(TVIP) = {1}

(since limy,— oo Y4 (m-1)a/Vf+mh = 1). Then Assertion 15 implies that
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the highest order poles of TV P (in the variable 7) are only at solutions
x of the equation 7—1=0, i.e. #"—1=0, where the equation is common
for all [f] € Z/hZ. In view of the fact that the highest order of poles
of TP cannot exceed that of P (recall Assertion 12) and the fact
P:Z[e] ez/hz Tl P where poles at t" — 1 do not cancel each other out

since each term has distinct factor ¢/ such that 0< f <h=deg(t"—1),
the highest order poles of P are also only at solutions z of the equation
th—1=0. That is; A%P(t) is a factor of t" — 1.

For 0 <e, f <h, the value of the proportion %(t) at a root z of the
equation t"—1 is defined by cancelling the poles. The value is the limit
of the proportion of the values of functions at the sequence of points
in the variable ¢ (resp. 7) converging to x (resp. 2 =1) from inside the

convergence disc |t| <1 (resp. |7| <1). Thus, we obtain:
T p oo T
*) -0 _ xf—e lingézo’yf—i_ T
T[e] P t=x Tl Zm:O’YE'i'thm

where the second factor of RHS may be considered as the evaluation
of the power series in 7 at 7=1. In order to calculate this value, we
prepare an elementary Fact.

Fact. Let A(T)=>""_ a,m, B(1)=>_>_ by € C{7}1 such that

m=0 m=0
their highest order poles of the same order d exist only at T = 1. Then,
ko ) A7) = lim %=,
B(r) =1 e

Proof. Replacing t and ¢;; in (5.2.2) with 7 and a;; or b;;, respectively,

RHS of #x) is written as lim S gttt " ED/GD!
Mmoo D1 >i<d bi,jﬂﬁ;mil(m%j)/(j_l)!

merator and denominator are polynomials in m of degree d so that the

limit is the proportion a; 4/b; 4 of the coefficients of (7 — 1)7¢ in the

fractional expansions of A and B, which is equal to LHS of xx) O

Applying this Fact, RHS of ) is equal to 2/ ~¢ lim 24mt

m—oo let+mh

. Then, apply-
ing to this expression a similar argument for (4.1.1), we obtain:
:cf_e/a[lﬂa[lffl] . 'a[erl] ife<f
= 1 ife=f
= :L“f_ea[le}a[lefl] e a[lerl] ife> f.

Tl p

(5.3.4) W t

Since RHS are non-zero, this implies that the order of the poles of
Tl P(t) at a solution x of the equation t* — 1 is independent of [e] €
Z/hZ. Summing up BHS of (5.3.4) for 0< f <h, we obtain

(5.3.5) = Az,
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(recall the All(s) (4.1.3)). Let z be a solution of t" —r" = 0 but
AZ(z7Y) #0. Then §,(z7') =0 (see (4.2.2)) and AlFl(z7!) =0 for
all [e] € Z/hZ (see Assertion 10. 1i)). That is, T[;]P(t) has a pole
at t = z. This implies that P(t) cannot have a pole of order d,, at
t =2 (otherwise, due to Assertion 12, the pole at t =z of TP is at
most of order d,,, which is cancelled in T[e P(t) by dividing by P. A

contradiction!). That is, we get one divismn relation.
Assertion 16. A%P(t) |t A% (t1) and deg(A)) < dp.

Finally, let us show the opposite division relation.

Assertion 17. Let P(t) be a tame power series belonging to C{t},,
which s finite rational accumulating of period h. Then

i) There exists a constant c€ R~ such that |y,| > cr="n® forn>>0.

i) AR () | ARP(L) -

Proof. 1) Consider the Taylor expansion of the partial fractional
—n—1 .
=y
+Hterms coming from poles of order <d,,)+(terms coming from Q(t)),
where v, = Y. ¢;q, (x;/r) """ depends only on n mod h since z; is the
root of the equation " — " = 0. They cannot all be zero (otherwise,
by solving the equations v, =0 (0 <n < h), we get ¢; 4, =0 for all i,
which contradicts to the vanishing of d,,). Let us show that none of
the v, is zero. Suppose the contrary and v. = 0 # vy for some inte-
gers 0 <e, f <h. Then, one observes easily that lim ;’i—’"z = 0. This

contradicts to formula (5.3.4) and the non-vanishing of a!) ([¢] € Z/hZ).

ii) By definition, the fractional expansion of A%P(t )P( ) has poles of
order at most d,,—1. Put A (t) =t'+a,t' "'+ - +;. Then, this means
that the sequence {vyx} (Taylor coefficients of P) satisfies

(5.2.2)). Using notation v, in Assertion 15, we have v,, = —v,

k% k) YN+ v T~ o NTmp)

as N — oo. Let >, axs” € Q(P) be an opposite series given by a
sequence { X, (P)}mezso0 (2.2.1). For each fixed k €Zs,, substitute N
by n, —k-+10 in % % %) and divide it by ~,, . Then, taking the limit
m — oo using the part i), RHS converges to 0, so that we get

g1 + Qp_j410q—1 + - +a, = 0.
Thus s'A’ (s )a(s) is a polynomial of degree < and the denominator
A% (s) of a(s) divides s'!A%P(s71). So, dp <1 and ii) is proved.
This completes a proof of Assertion 17. U

The proof of the theorem: (5.3.1) and (5.3.2) are already shown by
Assertions 16 and 17, and (5.3.3) is shown by (4.2.8) and (5.3.5). O
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5.4. Example by Machi (continued).

Recall §3.3 Machi’s example, where we learned that the growth func-
tion Pr(t) =Y ooy #L'nt™ for the modular group I' = PSL(2, Z) with
respect to a generator system G is equal to % and that it is
finite rational accumulating of period h = 2.

Using this data, we calculate further the rational actions on it.

00 2

T[O}PF,G(t) = Zk:o #F%t% = (1721;5)55142)’
00 2t(24-t2

TWPr6(t) = 02 # st = 5 2y

The denominator polynomial for the opposite series al ([e] € Z/27Z)
and the top polar part polynomial of Pr(t) are given as follows.

1L, t 2 1
A?DI;’G(S) =1- 58 & Algf’e(t) =t — 5
Then the transformation matrix is given by
Pra(t) _ (1+t)2(1+2t Prg(t) _ (1+t)2(1+2t 5 71
T&%@f_( 11&2 )hzig Tﬁﬁxﬂ_} méiﬁ))h=§§ - V2 1450
Pr.a(t) _ (1+H)2(1+2t) Pr.a(t) _ (1+)2(1+2t) -
TOP(H) . 145662 h:% THPR) . 2t(2+2) h:% 1-2v2 1-1 5

Actually, this matriz coincides with the matriz 2- (,u;[f]) ez 2 aiefevi )
(4.2.8), which was already calculated in §3.3 Example as the coefficient
of fractional expansion of opposite series al”? and @Y. In particular,

its determinant, equal to }3/—55, is non-zero. The matrix is an essential

ingredient of the trace formula for limit F-functions [S1, (11.5.6)]
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