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Abstract

Mixed polynomial matrices are polynomial matrices with two kinds of nonzero coeffi-

cients: fixed constants that account for conservation laws and independent parameters that

represent physical characteristics. The computation of their maximum degrees of minors is

known to be reducible to valuated independent assignment problems, which can be solved

by polynomial numbers of additions, subtractions, and multiplications of rational functions.

However, these arithmetic operations on rational functions are much more expensive than

those on constants.

In this paper, we present a new algorithm of combinatorial relaxation type. The algo-

rithm finds a combinatorial estimate of the maximum degree by solving a weighted bipartite

matching problem, and checks if the estimate is equal to the true value by solving indepen-

dent matching problems. The algorithm mainly relies on fast combinatorial algorithms and

performs numerical computation only when necessary. In addition, it requires no arithmetic

operations on rational functions. As a byproduct, this method yields a new algorithm for

solving a linear valuated independent assignment problem.

1 Introduction

Let A(s) = (Aij(s)) be a rational function matrix with Aij(s) being a rational function in s.

The maximum degree δk(A) of minors of order k is defined by

δk(A) = max{deg detA[I, J ] | |I| = |J | = k},

where deg f denotes the degree of a rational function f(s), and A[I, J ] denotes the submatrix

with row set I and column set J . This δk(A) determines the Smith-McMillan form at infinity of

a rational function matrix [27], which is used in decoupling and disturbance rejection of linear
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time-invariant systems, and the Kronecker canonical form of a matrix pencil [4, 7, 26], which

is used in analysis of linear DAEs with constant coefficients. Thus, the computation of δk(A)

is a fundamental and important procedure in dynamical systems analysis.

The notion of mixed polynomial matrices [15, 22] was introduced as a mathematical tool

for faithful description of dynamical systems such as electric circuits, mechanical systems, and

chemical plants. A mixed polynomial matrix is a polynomial matrix that consists of two kinds

of coefficients as follows.

Accurate Numbers (Fixed Constants) Numbers that account for conservation laws are

precise in values. These numbers should be treated numerically.

Inaccurate Numbers (Independent Parameters) Numbers that represent physical char-

acteristics are not precise in values. These numbers should be treated combinatorially as

nonzero parameters without reference to their nominal values. Since each such nonzero

entry often comes from a single physical device, the parameters are assumed to be inde-

pendent.

For example, physical characteristics in engineering systems are not precise in values because

of measurement noise, while exact numbers do arise in conservation laws such as Kirchhoff’s

conservation laws in electric circuits, or the law of conservation of mass, energy, or momentum

and the principle of action and reaction in mechanical systems. Thus, it is natural to distinguish

inaccurate numbers from accurate numbers in the description of dynamical systems.

In [21], Murota reduces the computation of δk(A) for a mixed polynomial matrix A(s) to

solving a valuated independent assignment problem, for which he presents in [19, 20] algorithms

that perform polynomial numbers of additions, subtractions, and multiplications of rational

functions. However, these arithmetic operations on rational functions are much more expensive

than those on constants.

In this paper, we present an algorithm for computing δk(A), based on the framework of

“combinatorial relaxation.” The outline of the algorithm is as follows.

Phase 1 Construct a relaxed problem by discarding numerical information and extracting

zero/nonzero structure in A(s). The solution is regarded as an estimate of δk(A).

Phase 2 Check whether the obtained estimate is equal to the true value of δk(A), or not. If

it is, return the estimate and halt.

Phase 3 Modify the relaxation so that the invalid solution is eliminated, and find a solution

to the modified relaxed problem. Then go back to Phase 2.

In this algorithm, we solve a weighted bipartite matching problem in Phase 1 and indepen-

dent matching problems in Phase 2. We remark that our algorithm does not need symbolic

operations on rational functions.

This framework of combinatorial relaxation algorithm is somewhat analogous to the idea

of relaxation and cutting plane in integer programming. In contrast to integer programming,

where hard combinatorial problems are relaxed to linear programs, here we relax a linear

algebraic problem to an efficiently solvable combinatorial problem. Then the algorithm checks
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the validity of the obtained solution and modifies the relaxation if necessary just like adding a

cutting plane. This is where the name “combinatorial relaxation” comes from. See [22, §7.1]
for more details.

We now summarize previous works based on the framework of combinatorial relaxation.

The combinatorial relaxation approach was invented by Murota [16] for computing the Newton

polygon of the Puiseux series solutions to determinantal equations. This approach was further

applied to the computation of the degree of detA(s) in [17] and δk(A) in [9, 10, 11, 18] for a

polynomial matrix A(s). In computational efficiency of the algorithms, it is crucial to solve the

relaxed problem efficiently and not to invoke the modification of the relaxation many times. The

result in [11] shows practical efficiency of the combinatorial relaxation through computational

experiments.

Let us have a closer look at the algorithms [9, 10, 11, 18] for δk(A). In [18], Murota

presented a combinatorial relaxation algorithm for general rational function matrices using

biproper equivalence transformations in the modification of the relaxed problem. The primal-

dual version was presented in [11]. These algorithms need to transform a polynomial matrix

by row/column operations, which possibly increase the number of terms in some entries. To

avoid this phenomenon in the case of matrix pencils, Iwata [9] presented another combinatorial

relaxation algorithm, which uses only strict equivalence transformations.

Another approach presented in [10] uses a mixed polynomial matrix as a combinatorial

relaxation. Given a mixed polynomial matrix, one can compute the maximum degree of minors

by solving a valuated independent assignment problem. When specific values are assigned into

the independent parameters, the maximum degree of minors may change. The combinatorial

relaxation algorithm in [10] computes the resulting exact value.

In this paper, we extend the combinatorial relaxation framework to mixed polynomial

matrices. In contrast to the previous work [10], our goal is to compute the maximum degree

of minors in a given mixed polynomial matrix efficiently. Our combinatorial relaxation is the

assignment problem obtained by replacing accurate numbers by independent parameters. Our

algorithm adopts a different way of matrix modification from the previous algorithms [10, 11,

18], which enables us to evaluate the complexity by the number of basic arithmetic operations.

For an m×n mixed polynomial matrix with m ≤ n, the algorithm runs in O(mω+1nd2max) time,

where ω is the matrix multiplication exponent and dmax is the maximum degree of an entry.

We compare this time complexity with that of the previous algorithm of Murota [21] based

on the valuated independent assignment. The bottleneck in that algorithm is to transform an

m× n polynomial matrix into an upper triangular matrix in each iteration. This can be done

in O~(mωndmax) time, where O~ indicates that we ignore log(mdmax) factors, by using Bareiss’

fraction-free Gaussian elimination approach [1, 2, 25] and an O(d log d log log d) time algorithm

in [3] for multiplying polynomials of degree d. Since the number of iterations is k, Murota’s

algorithm runs in O~(kmωndmax) time. Thus the worst-case complexity of our algorithm is

comparable to that of the previous one.

However, our combinatorial relaxation algorithm terminates without invoking the modifi-

cation of the relaxation unless there is an unlucky numerical cancellation. Consequently, in

most cases, it runs in O(mωndmax) time, which is much faster than the previous algorithm.

One application of our combinatorial relaxation algorithm is to compute the Kronecker
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canonical form of a mixed matrix pencil, which is a mixed polynomial matrix with dmax = 1.

For an n× n regular mixed matrix pencil, our algorithm enables us to compute the Kronecker

canonical form in O(nω+2) time. This time complexity is better than the previous algorithm

given in [12], which makes use of another characterization based on expanded matrices.

Another application is to compute the optimal value of a linear valuated independent assign-

ment problem. The optimal value of this problem coincides with the degree of the determinant

of an associated mixed polynomial matrix. Thus we can make use of our combinatorial relax-

ation algorithm. This means that we find the optimal value of a linear valuated independent

assignment problem by solving a sequence of independent matching problems.

Combinatorial relaxation approach exploits the combinatorial structures of polynomial ma-

trices and exhibits a connection between combinatorial optimization and matrix computation.

While recent works of Mucha and Sankowski [13, 14], Sankowski [24], and Harvey [8] utilize

matrix computation to solve matching problems, this paper adopts the opposite direction, that

is, we utilize matching problems for matrix computation.

The organization of this paper is as follows. Section 2 is devoted to preliminaries on rational

function matrices, the independent matching problem, and mixed matrix theory. We present

a combinatorial relaxation algorithm in Section 3, and analyze its complexity in Section 4. In

Section 5, we apply the combinatorial relaxation approach to the linear valuated independent

assignment problem.

2 Preliminaries

We provide preliminaries on rational functions (Section 2.1), independent matching problems

(Section 2.2), and mixed polynomial matrices (Section 2.3). Then we explain how to reduce

the computation of the rank of a layered mixed matrix to an independent matching problem

in Section 2.4.

2.1 Rational Function Matrices

We denote the degree of a polynomial g(s) by deg g, where deg 0 = −∞ by convention. For

a rational function f(s) = g(s)/h(s) with polynomials g(s) and h(s), its degree is defined by

deg f = deg g−deg h. A rational function f(s) is called proper if deg f ≤ 0, and strictly proper

if deg f < 0. We call a rational function matrix (strictly) proper if its entries are (strictly)

proper rational functions. A square proper rational function matrix is called biproper if it

is invertible and its inverse is a proper rational function matrix. A proper rational function

matrix is biproper if and only if its determinant is a nonzero constant. It is known that δk(A)

is invariant under biproper equivalence transformations, i.e.,

δk(A) = δk(Ã) (k = 1, . . . , rankA(s))

if Ã(s) = U(s)A(s)V (s) with biproper matrices U(s) and V (s).

A rational function matrix Z(s) is called a Laurent polynomial matrix if sKZ(s) is a polyno-

mial matrix for some integer K. In our algorithm, we make use of biproper Laurent polynomial

matrices in the phase of matrix modification.
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2.2 Independent Matching Problem

A matroid is a pair M = (V, I) of a finite set V and a collection I of subsets of V such that

(I-1) ∅ ∈ I,

(I-2) I ⊆ J ∈ I ⇒ I ∈ I,

(I-3) I, J ∈ I, |I| < |J | ⇒ I ∪ {v} ∈ I for some v ∈ J \ I.

The set V is called the ground set, I ∈ I is an independent set, and I is the family of independent

sets. The following problem is an extension of the matching problem.

[Independent Matching Problem (IMP)]

Given a bipartite graph G = (V +, V −;E) with vertex sets V +, V − and edge set

E, and a pair of matroids M+ = (V +, I+) and M− = (V −, I−), find a matching

M ⊆ E that maximizes |M | subject to

∂+M ∈ I+, ∂−M ∈ I−, (1)

where ∂+M and ∂−M denote the set of vertices in V + and V − incident to M ,

respectively.

A matching M ⊆ E satisfying (1) is called an independent matching.

2.3 Mixed Matrices and Mixed Polynomial Matrices

A generic matrix is a matrix in which each nonzero entry is an independent parameter. A

matrix A is called a mixed matrix if A is given by A = Q + T with a constant matrix Q and

a generic matrix T . A layered mixed matrix (or an LM-matrix for short) is defined to be a

mixed matrix such that Q and T have disjoint nonzero rows. An LM-matrix A is expressed by

A =
(
Q
T

)
.

A polynomial matrix A(s) is called a mixed polynomial matrix if A(s) is given by A(s) =

Q(s)+T (s) with a pair of polynomial matrices Q(s) =
∑N

k=0 s
kQk and T (s) =

∑N
k=0 s

kTk that

satisfy the following two conditions.

(MP-Q) Qk (k = 0, 1, . . . , N) are constant matrices.

(MP-T) Tk (k = 0, 1, . . . , N) are generic matrices.

A layered mixed polynomial matrix (or an LM-polynomial matrix for short) is defined to be

a mixed polynomial matrix such that Q(s) and T (s) have disjoint nonzero rows. An LM-

polynomial matrix A(s) is expressed by A(s) =
(Q(s)
T (s)

)
.

The matrix A(s) =
(Q(s)
T (s)

)
is called an LM-Laurent polynomial matrix if sKA(s) is an LM-

polynomial matrix for some integer K. We denote the row set and the column set of A(s) by R

and C, and the row sets of Q(s) and T (s) by RQ and RT . We also set mQ = |RQ|, mT = |RT |,
and n = |C| for convenience. The (i, j) entry of Q(s) and T (s) is denoted by Qij(s) and

Tij(s), respectively. We use these notations throughout this paper for LM-Laurent polynomial
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matrices as well as LM-matrices. For an LM-Laurent polynomial matrix A(s) =
(Q(s)
T (s)

)
, let us

define

δLMk (A) = {deg detA[RQ ∪ I, J ] | I ⊆ RT , J ⊆ C, |I| = k, |J | = mQ + k},

where 0 ≤ k ≤ min(mT , n−mQ). Note that δ
LM
k (A) designates the maximum degree of minors

of order mQ + k with row set containing RQ.

We denote an m×m diagonal matrix with the (i, i) entry being ai by diag[a1, . . . , am]. Let

Ã(s) = Q̃(s) + T̃ (s) be an m× n mixed polynomial matrix with row set R and column set C.

We construct a (2m)× (m+ n) LM-polynomial matrix

A(s) =

(
diag[sd1 , . . . , sdm ] Q̃(s)

− diag[t1s
d1 , . . . , tmsdm ] T̃ (s)

)
, (2)

where ti (i = 1, . . . ,m) are independent parameters and di = maxj∈C deg Q̃ij(s) for i ∈ R. A

mixed polynomial matrix Ã(s) and its associated LM-polynomial matrix A(s) have the following

relation, which implies that the value of δk(Ã) is obtained from δLMk (A).

Lemma 2.1 ([22, Lemma 6.2.6]). Let Ã(s) be an m × n mixed polynomial matrix and A(s)

the associated LM-polynomial matrix defined by (2). Then it holds that

δk(Ã) = δLMk (A)−
m∑
i=1

di.

2.4 Rank of LM-matrices

The computation of the rank of an LM-matrix A =
(
Q
T

)
is reduced to solving an independent

matching problem [23] as follows. See [22, §4.2.4] for details.
Let CQ = {jQ | j ∈ C} be a copy of the column set C of A. Consider a bipartite graph

G = (V +, V −;ET ∪ EQ) with V + = RT ∪ CQ, V
− = C,

ET = {(i, j) | i ∈ RT , j ∈ C, Tij ̸= 0} and EQ = {(jQ, j) | j ∈ C}.

Let M+ = (V +, I+) be a matroid defined by

I+ = {I+ ⊆ V + | rankQ[RQ, I
+ ∩ CQ] = |I+ ∩ CQ|},

and M− be a free matroid. Then rankA has the following property.

Theorem 2.2 ([22, Theorem 4.2.18]). Let A be an LM-matrix. Then the rank of A is equal

to the maximum size of an independent matching in the problem defined above, i.e.,

rankA = max{|M | |M : independent matching}.

We describe the algorithm [22] for computing rankA as follows. Let us denote the reori-

entation of a ∈ ET ∪ EQ by a◦. With reference to G and an independent matching M , we
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construct an auxiliary graph GM = (Ṽ , Ẽ) with Ṽ = V + ∪ V − and Ẽ = ET ∪ EQ ∪ E+ ∪M◦,

where

E+ = {(i, j) | i ∈ ∂+M ∩ CQ, j ∈ CQ \ ∂+M,∂+M \ {i} ∪ {j} ∈ I+},
M◦ = {a◦ | a ∈M}.

Let I0 be any subset of C satisfying rankQ[RQ, I0] = rankQ. We determine an initial

independent matching by using I0.

Algorithm for the Rank of an LM-matrix

Step 1 M ← {(jQ, j) | j ∈ I0}. Then we transform Q by row operations so that Q[RQ, ∂
+M ∩

CQ] is in the form of
(
D
O

)
with D being a diagonal matrix.

Step 2 If there exists in GM = (Ṽ , Ẽ) a directed path from S+ = RT \∂+M to S− = C\∂−M ,

then go to Step 3. Otherwise output rankA = |M | and halt.

Step 3 Let P be a shortest path from S+ to S−. M ← (M \ {a ∈M | a◦ ∈ P ∩M◦}) ∪ (P ∩
ET )∪ (P ∩EQ). Then we transform Q by row operations so that Q[RQ, ∂

+M ∩CQ] is in

the form of
(
D
O

)
with D being a diagonal matrix. Go to Step 2.

Let Ã =
(Q̃
T̃

)
be an LM-matrix obtained at the termination of this algorithm. Then we have(

Q̃

T̃

)
=

(
U O

O I

)(
Q

T

)
(3)

for some nonsingular constant matrix U , because Q is transformed into Q̃ by row operations

in Steps 1 and 3.

The structure of an LM-matrix Ã = (Ãij) is represented by a bipartite graph G(Ã) =

(RQ ∪ RT , C;E(Ã)) with E(Ã) = {(i, j) | i ∈ RQ ∪ RT , j ∈ C, Ãij ̸= 0}. The maximum size

of a matching in G(Ã) is called the term-rank of Ã, denoted by term-rank Ã. Now Ã has

the following property, which forms the basis of the algorithm to compute the combinatorial

canonical form (CCF) of an LM-matrix [22, §4.4].

Lemma 2.3. Let Ã be an LM-matrix obtained at the termination of Algorithm for the Rank of

an LM-matrix. Then we have rank Ã = term-rank Ã.

Proof. For Ã =
(Q̃
T̃

)
, we denote the row sets of Q̃ and T̃ by RQ and RT , and the column set of

Ã by C. We may assume that Ã is of full row rank, because the rows consisting only of zeros

can be ignored. Let W be the set of vertices reachable from S+ in GM at the termination of

the algorithm. Since there is no directed path from S+ to S−, it holds that S− ⊆ C \W . Hence

C ∩W ⊆ ∂−M follows from S− = C \ ∂−M .

We put B = {j ∈ C | jQ ∈ ∂+M ∩ CQ}. Then Ã[RQ, B] is expressed as Ã[RQ, B] =(
D1 O

O D2

)
, where D1 and D2 are diagonal matrices with column sets B1 ⊆ C \ W and

B2 ⊆ C ∩W . The row sets of D1 and D2 is denoted by R1 and R2. If Ã[R2, (C \W )\B1] ̸= O,
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RT

S+

RQ

∂+M ∩RT

D1

D2

∂−M

O

O

C ∩W

OO

O

S−

Ã =

C \W

R3

R1

R2

Figure 1: An LM-matrix obtained at the termination of Algorithm for the Rank of an LM-matrix,

where shaded squares represent nonsingular matrices.

there exists an edge (iQ, jQ) in E+ with i ∈ B2 and j ∈ (C \W ) \B1. Then j is reachable from

S+ through i ∈ C ∩W , iQ, and jQ, which contradicts the definition of W . Hence it holds that

Ã[R2, (C \W ) \B1] = O.

Let us define R3 = {i ∈ ∂+M ∩ RT | ∃j ∈ (C \W ) \ B1 such that (i, j) ∈ M}. Then we

have

rank Ã = |M | = |R1|+ |R2|+ |R3|+ |(∂+M ∩RT ) \R3|.

By the definition of W , it holds that Ã[S+, C \W ] = O and Ã[(∂+M ∩RT ) \R3, C \W ] = O.

Thus, Ã is in the form shown in Figure 1. Consider a bipartite G(Ã) = (RQ ∪ RT , C;E(Ã)).

Since (R1 ∪R3, C ∩W ) is a cover in G(Ã), it holds that

term-rank Ã ≤ |R1 ∪R3|+ |C ∩W | = |R1|+ |R3|+ |R2|+ |(∂+M ∩RT ) \R3|,

where the first step is due to König-Egerváry theorem. Thus we obtain

rank Ã ≤ term-rank Ã ≤ rank Ã,

which implies rank Ã = term-rank Ã.

3 Combinatorial Relaxation Algorithm

In this section, we present a combinatorial relaxation algorithm to compute

δLMk (A) = max
I,J
{deg detA[RQ ∪ I, J ] | I ⊆ RT , J ⊆ C, |I| = k, |J | = mQ + k}

for an LM-polynomial matrix A(s) =
(Q(s)
T (s)

)
. We assume that Q(s) is of full row rank. Note

that this assumption is valid for the associated LM-polynomial matrix defined by (2). Since

an LM-polynomial matrix is transformed into an LM-Laurent polynomial matrix in the phase

of matrix modification, we hereafter deal with an LM-Laurent polynomial matrix.

We describe the outline of the proposed algorithm in Section 3.1. Sections 3.2–3.5 are

devoted to the details of each phase in the algorithm.
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3.1 Combinatorial Relaxation

Let us construct a bipartite graph G(A) = (RQ ∪RT , C;E(A)) with E(A) = {(i, j) | i ∈ RQ ∪
RT , j ∈ C,Aij(s) ̸= 0}. The weight c(e) of an edge e = (i, j) is given by c(e) = cij = degAij(s).

We remark that c(e) is integer for any e ∈ E(A) if A(s) is an LM-Laurent polynomial matrix.

The maximum weight of a matching in G(A), denoted by δ̂LMk (A), is an upper bound on δLMk (A).

We adopt δ̂LMk (A) as an estimate of δLMk (A).

Consider the following linear program (PLP(A, k)):

maximize
∑

e∈E(A)

c(e)ξ(e)

subject to
∑
∂e∋i

ξ(e) = 1 (∀i ∈ RQ),∑
∂e∋i

ξ(e) ≤ 1 (∀i ∈ RT ),∑
∂e∋j

ξ(e) ≤ 1 (∀j ∈ C),

∑
e∈E(A)

ξ(e) = mQ + k,

ξ(e) ≥ 0 (∀e ∈ E(A)),

where ∂e denotes the set of vertices incident to e.

The first constraint represents that M must satisfy ∂M ⊇ RQ, where ∂M denotes the

vertices incident to edges in M . By the total unimodularity of the coefficient matrix, PLP(A, k)

has an integral optimal solution with ξ(e) ∈ {0, 1} for any e ∈ E(A). This optimal solution

corresponds to the maximum weight matching M in G(A), and its optimal value c(M) =∑
e∈M c(e) is equal to δ̂LMk (A). The dual program (DLP(A, k)) is expressed as follows:

minimize
∑
i∈R

pi +
∑
j∈C

qj + (mQ + k)t

subject to pi + qj + t ≥ c(e) (∀e = (i, j) ∈ E(A)),

pi ≥ 0 (∀i ∈ RT ),

qj ≥ 0 (∀j ∈ C).

Then DLP(A, k) has an integral optimal solution, because the coefficient matrix is totally

unimodular and c(e) is integer for any e ∈ E(A).

The outline of the combinatorial relaxation algorithm to compute δLMk (A) is summarized

as follows.

Outline of Algorithm for Computing δLMk (A)

Phase 1 Find a maximum weight matchingM such that ∂M ⊇ RQ and |M | = mQ+k inG(A).

Then the maximum weight δ̂LMk (A) is regarded as an estimate of δLMk (A). Construct an

optimal solution (p, q, t) of DLP(A, k) from M .
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Phase 2 Test whether δ̂LMk (A) = δLMk (A) or not by using (p, q, t). If equality holds, return

δ̂LMk (A) and halt.

Phase 3 Modify A(s) to another matrix Ã(s) such that δ̂LMk (Ã) ≤ δ̂LMk (A)− 1 and δLMk (Ã) =

δLMk (A). Construct an optimal solution (p̃, q̃, t̃) of DLP(Ã, k) from (p, q, t), and go back

to Phase 2.

In Phase 1, we find a maximum weight matching M by using an efficient combinatorial

algorithm. An optimal solution (p, q, t) can be obtained by using shortest path distance in an

associated auxiliary graph. In Phase 2, we check whether the upper estimate δ̂LMk (A) coincides

with δLMk (A) by computing the ranks of LM-matrices. If it does not, we transform A(s) into

Ã(s) so that the upper estimate decreases in Phase 3. We repeat this procedure until the upper

estimate coincides with δLMk (A). Since the upper estimate decreases at each step, starting with

δ̂LMk (A) in the initial step, the number of iterations is at most δ̂LMk (A). The procedure in each

phase is explained in detail below.

3.2 Construction of an Initial Dual Optimal Solution

For the LM-polynomial matrix A(s) defined by (2), G(A) = (RQ∪RT , C;E(A)) has a matching

M0 = {(i, i) | i ∈ RQ}, which corresponds to sd1 , . . . , sdm . By applying augmenting path type

algorithms to M0, we find a maximum weight matching M with ∂M ⊇ RQ and |M | = mQ + k

in G(A). Then, we construct an optimal solution (p, q, t) of DLP(A, k) from M as follows.

Consider an auxiliary graph ǦM = (V̌ , Ě) with

V̌ = RQ ∪RT ∪ C ∪ {u+} ∪ {u−} and Ě = Ec ∪M◦ ∪W+ ∪W−,

where u+ and u− are new vertices and

Ec = {(i, j) | (i, j) ∈ E(A)} (copy of E(A)),

M◦ = {a◦ | a ∈M},
W+ = {(u+, i) | i ∈ RT \ ∂M},
W− = {(j, u−) | j ∈ C \ ∂M} ∪ {(u−, j) | j ∈ C}.

We define the arc length γ : Ě → Z by

γ(a) =


−c(a) (a ∈ Ec)

c(a◦) (a ∈M◦)

0 (a ∈W+ ∪W−)

.

Let φ(i) be a shortest distance from u+ to i ∈ V̌ with respect to the arc length γ in ǦM . If

there exists no path from u+ to i, then we put φ(i) =∞. We define

pi = φ(i) (∀i ∈ RQ ∪RT ), qj = φ(u−)− φ(j) (∀j ∈ C), t = −φ(u−). (4)

Then (p, q, t) is an optimal dual solution of DLP(A, k) as follows.
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0

u+ u−

−c(a)

c(a◦)
RQ

0

RT

C

Figure 2: An auxiliary graph Ǧ = (V̌ , Ě), where heavy lines show edges in a matching.

Lemma 3.1. Let M be a maximum weight matching with ∂M ⊇ RQ and |M | = mQ + k in

G(A). We define (p, q, t) by the auxiliary graph ǦM and (4). Then (p, q, t) is an optimal dual

solution of DLP(A, k). Moreover, if a weight function c is integer valued, then (p, q, t) is an

integral solution.

Proof. Let us assume that there exists a shortest path P from u+ to i ∈ RT with negative

distance. Then, the matching M̂ = M\{a ∈M | a◦ ∈ P∩M◦}∪(P∩Ec) satisfies c(M̂) > c(M),

which contradicts the optimality of M . Hence we have φ(i) ≥ 0 for each i ∈ RT . This implies

the second constraint in DLP(A, k). Moreover, it holds that

φ(i) = 0 (∀i ∈ RT \ ∂M), (5)

because there exists an arc (u+, i) for each i ∈ RT \ ∂M .

Since there exists an arc (u−, j) for each j ∈ C, we have φ(j) ≤ φ(u−), which implies the

third constraint in DLP(A, k). Similarly, we obtain φ(j) ≤ φ(i)−c(e) for each e = (i, j) ∈ E(A).

Hence the first constraint in DLP(A, k) holds by (4).

Finally, we check the optimality of (p, q, t). There exist both arcs (i, j) and (j, i) for any

(i, j) satisfying i = u− and j ∈ C \ ∂M and (i, j) ∈M . Hence we have

φ(j) = φ(u−) (∀j ∈ C \ ∂M), (6)

φ(j) = φ(i)− c(e) (∀e = (i, j) ∈M). (7)

It follows from (4)–(6) that∑
i∈R

pi +
∑
j∈C

qj + (mQ + k)t =
∑
i∈R

φ(i) +
∑
j∈C

(φ(u−)− φ(j))− (mQ + k)φ(u−)

=
∑

i∈R∩∂M
φ(i) +

∑
j∈C∩∂M

(φ(u−)− φ(j))− (mQ + k)φ(u−)

=
∑

(i,j)∈M

(φ(i)− φ(j)) + |C ∩ ∂M |φ(u−)− (mQ + k)φ(u−)

= c(M),

where the last step is due to (7) and |C ∩ ∂M | = |M | = mQ + k. Thus we obtain∑
i∈R

pi +
∑
j∈C

qj + (mQ + k)t = c(M),

11



which implies that (p, q, t) is optimal.

If a weight function c is integer valued, (p, q, t) is integral by the construction rule.

3.3 Test for Tightness

We describe a necessary and sufficient condition for δ̂LMk (A) = δLMk (A). For an integral feasible

solution (p, q, t) of DLP(A, k), let us put

I∗ = RQ ∪ {i ∈ RT | pi > 0} and J∗ = {j ∈ C | qj > 0}.

We call I∗ and J∗ active rows and active columns, respectively. The tight coefficient matrix

A∗ = (A∗
ij) is defined by

A∗
ij = (the coefficient of spi+qj+t in Aij(s)).

Note that A∗ is an LM-matrix and A(s) = (Aij(s)) is expressed by

Aij(s) = spi+qj+t(A∗
ij +A∞

ij (s)) (8)

with a strictly proper matrix A∞(s) = (A∞
ij (s)).

The following lemma gives a necessary and sufficient condition for δ̂LMk (A) = δLMk (A), which

is immediately derived from [18, Theorem 7].

Lemma 3.2. Let (p, q, t) be an optimal dual solution, I∗ and J∗ the active rows and columns,

and A∗ the tight coefficient matrix. Then the following three conditions (a)–(c) are equivalent.

(a) δ̂LMk (A) = δLMk (A) holds.

(b) There exists I ⊇ I∗ and J ⊇ J∗ such that rankA∗[I, J ] = |I| = |J | = mQ + k.

(c) The following four conditions are satisfied:

(r1) rankA∗[R,C] ≥ mQ + k,

(r2) rankA∗[I∗, C] = |I∗|,
(r3) rankA∗[R, J∗] = |J∗|,
(r4) rankA∗[I∗, J∗] ≥ |I∗|+ |J∗| − (mQ + k).

Lemma 3.2 implies that we can check δ̂LMk (A) = δLMk (A) efficiently by computing the ranks

of four LM-matrices A∗[R,C], A∗[I∗, C], A∗[R, J∗], and A∗[I∗, J∗]. This can be done by solving

the corresponding independent matching problems described in Section 2.4. The optimality

condition for (p, q, t) is given by the following variant, which is also derived from [18].

Lemma 3.3. Let (p, q, t) be a dual feasible solution, I∗ and J∗ the active rows and columns,

and A∗ the tight coefficient matrix. Then (p, q, t) is optimal if and only if the following four

conditions are satisfied:

(t1) term-rankA∗[R,C] ≥ mQ + k,

(t2) term-rankA∗[I∗, C] = |I∗|,

(t3) term-rankA∗[R, J∗] = |J∗|,

(t4) term-rankA∗[I∗, J∗] ≥ |I∗|+ |J∗| − (mQ + k).
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3.4 Matrix Modification

Let A(s) be an LM-Laurent polynomial matrix such that δLMk (A) < δ̂LMk (A). We describe the

rule of modifying A(s) into another LM-Laurent polynomial matrix Ã(s). Since δLMk (A) <

δ̂LMk (A), it follows from Lemma 3.2 that at least one of conditions (r1)–(r4) is violated. In

the test for tightness in Phase 2, we transform the tight coefficient matrix A∗ =
(
Q∗

T ∗

)
into

another LM-matrix Ã∗ =
(Q̃∗

T̃ ∗

)
by applying Algorithm for the Rank of an LM-matrix described

in Section 2.4. When Algorithm for the Rank of an LM-matrix terminates, it finds a nonsingular

constant matrix U such that (
Q̃∗

T̃ ∗

)
=

(
U O

O I

)(
Q∗

T ∗

)
.

Let (p, q, t) be an optimal solution of DLP(A, k). With the use of U and (p, q, t), we

transform A(s) into another LM-Laurent polynomial matrix Ã(s) defined by

Ã(s) = diag[sp1 , . . . , spm ]

(
U O

O I

)
diag[s−p1 , . . . , s−pm ]A(s). (9)

In order to show that δLMk (A) is invariant under the transformation given in (9), we make use

of the following lemma, which is immediately derived from [18, Lemma 11].

Lemma 3.4. Let A(s) and Ũ(s) be rational function matrices, and Ã(s) = Ũ(s)A(s). Then

δLMk (A) = δLMk (Ã) if Ũ [RQ, RT ] = O, det Ũ [RQ, RQ] is nonzero constant, and Ũ [RT , RT ] is

biproper.

The following lemma asserts δLMk (A) = δLMk (Ã).

Lemma 3.5. Let A(s) be an LM-Laurent polynomial matrix and Ã(s) the LM-Laurent poly-

nomial matrix defined by (9). Then we have δLMk (A) = δLMk (Ã).

Proof. For Ũ(s) = diag[sp1 , . . . , spm ]

(
U O

O I

)
diag[s−p1 , . . . , s−pm ], we denote the row/column

sets by RQ ∪ RT . Then Ũ [RQ, RT ] = O holds and Ũ [RT , RT ] = I is biproper. In addition,

det Ũ [RQ, RQ] = detU is nonzero constant, because U is a nonsingular constant matrix. Hence

we obtain δLMk (A) = δLMk (Ã) by Lemma 3.4.

Let c̃ij denote the degree of the (i, j) entry of Ã(s). We now prove that an optimal solution

(p, q, t) of DLP(A, k) is feasible for DLP(Ã, k) but not optimal.

Lemma 3.6. Let A(s) be an LM-Laurent polynomial matrix with δLMk (A) < δ̂LMk (A), and

Ã(s) the LM-Laurent polynomial matrix defined by (9). Then an optimal solution (p, q, t) of

DLP(A, k) is feasible for DLP(Ã, k) but not optimal.

Proof. We put

F (s) = s−t diag[s−p1 , . . . , s−pm ]Ã(s) diag[s−q1 , . . . , s−qn ].
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The degree of the (i, j) entry of F (s) satisfies degFij(s) = c̃ij − pi − qj − t. By (8) and (9),

F (s) is transformed as

F (s) =s−t

(
U O

O I

)
diag[s−p1 , . . . , s−pm ]A(s) diag[s−q1 , . . . , s−qn ]

=

(
U O

O I

)
(A∗ +A∞(s)),

where A∞(s) denotes a strictly proper matrix. This indicates degFij(s) ≤ 0, because U and

A∗ are constant matrices. Thus we obtain c̃ij − pi − qj − t ≤ 0, which implies that (p, q, t) is

feasible for DLP(Ã, k).

We show that (p, q, t) is not optimal for DLP(Ã, k). Let us set Ã∗
(p,q,t) =

(
U O

O I

)
A∗. Then

Ã∗
(p,q,t) is the tight coefficient matrix of Ã(s) with respect to (p, q, t). By δLMk (A) < δ̂LMk (A) and

Lemma 3.2, at least one of conditions (r1)–(r4) is not fulfilled. Let us assume that A∗ violates

(r2) and Ã∗
(p,q,t) is obtained by applying Algorithm for the Rank of an LM-matrix to A∗[I∗, C].

Then it follows from Lemma 2.3 that rank Ã∗
(p,q,t)[I

∗, C] = term-rank Ã∗
(p,q,t)[I

∗, C]. Hence we

have

term-rank Ã∗
(p,q,t)[I

∗, C] = rank Ã∗
(p,q,t)[I

∗, C] = rankA∗[I∗, C] < |I∗|.

Thus Ã∗
(p,q,t) violates (t2), which implies that (p, q, t) is not optimal for DLP(Ã, k) by Lemma 3.3.

If (r1), (r3), or (r4) is violated, we can prove that (p, q, t) is not optimal for DLP(Ã, k) in a

similar way.

3.5 Dual Updates

Let (p, q, t) be an optimal solution of DLP(A, k). By Lemma 3.6, (p, q, t) is feasible for

DLP(Ã, k). For (p, q, t) and another feasible solution (p′, q′, t′) of DLP(Ã, k), we consider the

amount of change ∆ in the value of the dual objective function defined by

∆ =

∑
i∈R

p′i +
∑
j∈C

q′j + (mQ + k)t′

−
∑

i∈R
pi +

∑
j∈C

qj + (mQ + k)t

 .

With the use of (p, q, t), we construct a feasible solution (p′, q′, t′) which satisfies ∆ < 0. By

repeating this procedure, we find an optimal dual solution of DLP(Ã, k).

Let G∗ = (R,C;E∗) be a bipartite graph with E∗ = {(i, j) ∈ E(Ã) | pi + qj + t = c̃ij}.
Since (p, q, t) is not optimal for DLP(Ã, k) by Lemma 3.6, at least one of conditions (t1)–(t4)

for Ã∗
(p,q,t) is violated. For each case, we construct another feasible solution (p′, q′, t′) with

∆ < 0 as follows.
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Case1: (t1) is violated

Since the maximum size of a matching in G∗ = (R,C;E∗) is strictly less than mQ + k, G∗ has

a cover W with |W | < mQ + k. We now define

p′i =

{
pi + 1 (i ∈ R ∩W )

pi (i ∈ R \W )
, q′j =

{
qj + 1 (j ∈ C ∩W )

qj (j ∈ C \W )
, t′ = t− 1.

Then it holds that

∆ = |R ∩W |+ |C ∩W | − (mQ + k) = |W | − (mQ + k) < 0.

We show that (p′, q′, t′) is feasible for DLP(Ã, k). First, consider an edge (i, j) ∈ E(Ã)

satisfying i ∈ W or j ∈ W . Since we have (p′i + q′j + t′) − (pi + qj + t) ≥ 0, it holds that

p′i+ q′j + t′ ≥ pi+ qj + t ≥ c̃ij by the feasibility of (p, q, t) for DLP(Ã, k). Next, consider an edge

(i, j) ∈ E(Ã) satisfying i /∈ W and j /∈ W . It follows from (i, j) /∈ E∗ that pi + qj + t > c̃ij .

Hence p′i + q′j + t′ = pi + qj + t− 1 > c̃ij − 1 holds. Thus, (p′, q′, t′) is feasible for DLP(Ã, k).

Case2: (t2) is violated

Since the maximum size of a matching in G∗[I∗ ∪ C] = (I∗, C;E∗[I∗ ∪ C]) is strictly less than

|I∗|, G∗[I∗, C] has a cover W ⊆ I∗ ∪ C with |W | < |I∗|. We now define

p′i =

{
pi (i ∈ (I∗ ∩W ) ∪ (R \ I∗))
pi − 1 (i ∈ I∗ \W )

, q′j =

{
qj + 1 (j ∈ C ∩W )

qj (j ∈ C \W )
, t′ = t.

Then it holds that

∆ = −|I∗ \W |+ |C ∩W | = |W | − |I∗| < 0.

We can show that (p′, q′, t′) is feasible for DLP(Ã, k) in a similar way to Case 1.

Case3: (t3) is violated

Since the maximum size of a matching in G∗[R ∪ J∗] = (R, J∗;E∗[R ∪ J∗]) is strictly less than

|J∗|, G∗[R, J∗] has a cover W ⊆ R ∪ J∗ with |W | < |J∗|. We now define

p′i =

{
pi + 1 (i ∈ R ∩W )

pi (i ∈ R \W )
, q′j =

{
qj (j ∈ (J∗ ∩W ) ∪ (C \ J∗))

qj − 1 (j ∈ J∗ \W )
, t′ = t.

Then it holds that

∆ = |R ∩W | − |J∗ \W | = |W | − |J∗| < 0.

We can show that (p′, q′, t′) is feasible for DLP(Ã, k) in a similar way to Case 1.
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Case4: (t4) is violated

Since the maximum size of a matching in G∗[I∗∪J∗] = (I∗, J∗;E∗[I∗∪J∗]) is strictly less than

|I∗|+ |J∗| − (mQ + k), G∗[I∗, J∗] has a cover W ⊆ I∗ ∪ J∗ with |W | < |I∗|+ |J∗| − (mQ + k).

We now define

p′i =

{
pi − 1 (i ∈ I∗ \W )

pi (i ∈ (I∗ ∩W ) ∪ (R \ I∗))
, q′j =

{
qj − 1 (j ∈ J∗ \W )

qj (j ∈ (J∗ ∩W ) ∪ (C \ J∗))
, t′ = t+ 1.

Then it holds that

∆ = −|I∗ \W | − |J∗ \W |+ (mQ + k) = |W | − (|I∗|+ |J∗| − (mQ + k)) < 0.

We can show that (p′, q′, t′) is feasible for DLP(Ã, k) in a similar way to Case 1.

4 Complexity Analysis

This section is devoted to complexity analysis of our combinatorial relaxation algorithm.

4.1 Worst Case Analysis

We analyze the complexity of our combinatorial relaxation algorithm, which is now described

as follows.

Algorithm for Computing δLMk (A)

Step 1 Find a maximum weight matching M in G(A) by using an efficient combinatorial

algorithm.

Step 2 Construct an optimal solution (p, q, t) of DLP(A, k) from M .

Step 3 Apply Algorithm for the Rank of an LM-matrix to A∗[R,C], A∗[I∗, C], A∗[R, J∗], and

A∗[I∗, J∗]. If (r1)–(r4) hold, then return δ̂LMk (A) and halt.

Step 4 Modify A(s) to another matrix Ã(s) defined by (9).

Step 5 Construct an optimal solution (p̃, q̃, t̃) of DLP(Ã, k) by performing the procedure given

in Section 3.5. Go back to Step 3.

This algorithm is dominated by the computation of Ã(s) in Step 4. We discuss its time and

space complexities in the following.

For an integral optimal solution (p, q, t) of DLP(A, k), we denote diag[sp1 , . . . , spm ] and

diag[sq1 , . . . , sqn ] by Vr(s) and Vc(s), respectively. By the definition of the tight coefficient

matrix A∗, the LM-Laurent polynomial matrix A(s) is expressed as

A(s) = stVr(s)

(
A∗ +

1

s
A1 +

1

s2
A2 + · · ·+

1

sl
Al

)
Vc(s)
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for some integer l, where Ai denotes a constant matrix for i = 1, 2, . . . , l. It follows from (9)

that

Ã(s) = stVr(s)

(
U O

O I

)(
A∗ +

1

s
A1 +

1

s2
A2 + · · ·+

1

sl
Al

)
Vc(s). (10)

Thus, it suffices to perform constant matrix multiplications

(
U O

O I

)
A∗,

(
U O

O I

)
A1, . . . ,

(
U O

O I

)
Al.

In (10), each entry of Ã(s) is normalized with the aid of the dual variable (p, q, t). This leads

to the following lemma, which states that we may assume that l is at most δ̂LMk (A).

Lemma 4.1. Let A(s) =
(Q(s)
T (s)

)
be an LM-polynomial matrix such that Q(s) is of full row

rank, and (p, q, t) an optimal dual solution of DLP(A, k). Then δLMk (A) = δLMk (Ā) holds for

Ā(s) = stVr(s)

(
A∗ +

1

s
A1 +

1

s2
A2 + · · ·+

1

sδ̂
LM
k (A)

Aδ̂LM
k (A)

)
Vc(s),

which is obtained by ignoring the terms
1

sd
Ad with d > δ̂LMk (A).

Proof. The initial value of the dual objective function is δ̂LMk (A) and we showed in Section 3.5

that ∆ < 0 holds at each step of updating a dual feasible solution. This implies that a dual

feasible solution is updated at most δ̂LMk (A) times throughout the algorithm. At each update

step, pi + qj + t decreases by at most one by the construction rule given in Section 3.5. Hence,

for any i and j, pi + qj + t decreases by at most δ̂LMk (A) throughout the algorithm. Thus we

may ignore the terms
1

sd
Ad with d > δ̂LMk (A).

Recall the notation mQ = |RQ|. By Lemma 4.1, the time and space complexities of the

algorithm are as follows.

Theorem 4.2. Let A(s) =
(Q(s)
T (s)

)
be an m×n LM-polynomial matrix such that Q(s) is of full

row rank, and dmax the maximum degree of an entry in A(s). Then Algorithm for Computing

δLMk (A) runs in O((mQ+k)2mω−1
Q nd2max) time and O((mQ+k)mndmax) space, where ω < 2.38

is the matrix multiplication exponent.

Proof. Let us set D = δ̂LMk (A). At each matrix modification step, we execute constant matrix

multiplications (D+1) times by Lemma 4.1, which costs O(mω−1
Q nD) time. Since a dual feasible

solution is updated at most D times, the time complexity of the algorithm is O(mω−1
Q nD2).

The space complexity is O(mnD), because we need to store constant matrices A∗, A1,. . . ,

AD. By D = O((mQ + k)dmax), the algorithm requires O((mQ + k)2mω−1
Q nd2max) time and

O((mQ + k)mndmax) space.

Let r denote the rank of the LM-polynomial matrix A(s). In order to obtain the Smith-

McMillan form at infinity or the Kronecker canonical form, we need to compute δLMk (A) for

k = 1, . . . , r − mQ. A straightforward approach requires r applications of the algorithm.

The following lemma, which is derived from [11, Lemma 3.4], bounds the number of possible

modifications when k ranges from 1 to r −mQ.
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Lemma 4.3. Let A(s) =
(Q(s)
T (s)

)
be an LM-polynomial matrix of rank r such that Q(s) is of

full row rank, and dmax the maximum degree of an entry in A(s). Then, the total number of

modifications for k = 1, . . . , r −mQ is bounded by rdmax.

Lemma 4.3 leads to the following theorem.

Theorem 4.4. Let A(s) =
(Q(s)
T (s)

)
be an m × n LM-polynomial matrix such that Q(s) is of

full row rank, r the rank of A(s), and dmax the maximum degree of an entry in A(s). We can

obtain δLMk (A) for all k from 1 to r −mQ in O(r2mω−1
Q nd2max) time.

Proof. Let us set D = δ̂LMr−mQ
(A) = O(rdmax). In a similar way to the proof of Theorem 4.2,

each matrix modification step costs O(mω−1
Q nD) time. Since Lemma 4.3 asserts that the total

number of modifications for k = 1, . . . , r −mQ is bounded by rdmax, we obtain δLMk (A) for all

k in O(r2mω−1
Q nd2max) time.

Let Ã(s) be an m × n mixed polynomial matrix of rank r̃, and A(s) the associated LM-

polynomial matrix of rank r defined by (2). By mQ = O(m) and r = O(m), we can compute

δk(Ã) for the fixed parameter k as well as for all k from 1 to r̃ in O(mω+1nd2max) time.

4.2 Probabilistic Analysis

Let η be a prime. For an LM-polynomial matrix A(s) =
(Q(s)
T (s)

)
, assuming that each nonzero

coefficient of Q(s) is chosen uniformly at random from the nonzero integers between −η + 1

and η − 1, we analyze the probability of the event that the initial estimate δ̂LMk (A) coincides

with the true value of δLMk (A) when η is sufficiently large.

Let (p, q, t) be an optimal dual solution of DLP(A, k), I∗ and J∗ the active rows and

columns, and A∗ the tight coefficient matrix. In the analysis, we use the following lemma.

Lemma 4.5 ([18, Lemma 4]). For I ⊆ R and J ⊆ C such that |I| = |J | = mQ + k, we have

δ̂LMk (A[I, J ]) = δ̂LMk (A) if and only if I ⊇ I∗, J ⊇ J∗, and

term-rankA∗[I, J ] = |I| = |J | = mQ + k. (11)

In the computation of δ̂LMk (A) by using a matching algorithm, we find a pair of I ⊇ I∗ and

J ⊇ J∗ satisfying (11). If term-rankA∗[I, J ] = rankA∗[I, J ] holds, then δ̂LMk (A) = δLMk (A) also

holds by Lemma 3.2. In order to analyze the probability that term-rankA∗[I, J ] = rankA∗[I, J ],

we consider the following problem.

Problem 4.6. Let B be a k×k constant matrix and η a prime. We assume that the positions

of nonzero entries in B are fixed, term-rankB = k, and each nonzero entry is chosen uniformly

at random from the nonzero integers between −η + 1 and η − 1. What is the probability that

rankB = k when η is sufficiently large relative to k?

The row set and column set of B = (Bij) are denoted by R̄ and C̄. Consider a bipartite

graph G(B) = (R̄, C̄; Ē) with Ē = {(i, j) | i ∈ R̄, j ∈ C̄, Bij ̸= 0}. If G(B) has only one perfect

matching, term-rankB = rankB always holds, because there is no numerical cancellation.
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Note that

Pr{rankB ̸= k} = Pr{detB = 0} ≤ Pr {detB ≡ 0 (mod η)} . (12)

Suppose we are given a nonzero integer between −η+1 and η− 1 to each nonzero entry in the

rows except the last one. By the Laplace expansion, we obtain

detB =
∑

1≤j≤k

cjBkj ,

where cj = ±detB[R̄ \ {k}, C̄ \ {j}] is a constant. Consider L = {j | cj ̸≡ 0 (mod η), Bkj ̸= 0}
and denote each entry of L by i1, i2, . . . , il. Moreover, we define the probability Pl by

Pl = Pr

∑
j∈L

cjBkj ≡ 0 (mod η)

∣∣∣∣∣ |L| = l

 .

Then, it follows from (12) that

Pr{rankB ̸= k} ≤ Pr {detB ≡ 0 (mod η)}

= Pr{|L| = 0}+
k∑

l=2

Pr{|L| = l} × Pl

≤ Pr{rankB′ ̸= k − 1}+
k∑

l=2

Pl, (13)

where B′ is a (k − 1)× (k − 1) constant matrix.

In the analysis of Pl, we use the following fundamental fact.

Lemma 4.7. Let η be a prime. Given integers α with α ̸≡ 0 (mod η) and β, there exist at

most two integers z which satisfy −η + 1 ≤ z ≤ η − 1 and αz + β ≡ 0 (mod η).

We assign nonzero integers between −η + 1 and η − 1 to Bkj for j ∈ L \ {il}. Then Bkil

needs to satisfy

−η + 1 ≤ Bkil ≤ η − 1, Bkil ̸= 0, clBkil ≡ −
∑

j∈L\{il}

cjBkj (mod η). (14)

By Lemma 4.7, the probability of choosing Bkil which satisfies (14) is at most 1
η−1 . This implies

that

Pl ≤
1

η − 1
Pr

 ∑
j∈L\{il}

cjBkj ̸≡ 0 (mod η)

 =
1

η − 1
(1− Pl−1) ≤

1

η − 1
.

Hence, it follows from (13) that

Pr{rankB ̸= k} ≤ Pr{rankB′ ̸= k − 1}+ k − 1

η − 1
.
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Since Pr{rankB′′ ̸= 2} ≤ 1
η−1 for a 2× 2 constant matrix B′′, this implies

Pr{rankB ̸= k} ≤ 1

η − 1
+

2

η − 1
+ · · ·+ k − 1

η − 1
=

k(k − 1)

2(η − 1)
.

The upper bound in the right-hand side converges to zero when η grows more rapidly than k2.

Thus we obtain the following proposition.

Proposition 4.8. Let B be a k × k constant matrix and η a sufficiently large prime relative

to k. We assume that the positions of nonzero entries in B are fixed, term-rankB = k, and

each nonzero entry is chosen uniformly at random from the nonzero integers between −η + 1

and η − 1. Then rankB = term-rankB holds with high probability.

By Proposition 4.8, an LM-matrix A∗ satisfies term-rankA∗[I, J ] = rankA∗[I, J ] with high

probability. This means that the combinatorial relaxation algorithm terminates in many cases

by showing that an initial estimate coincides with the true value. If the algorithm finds the true

value at the first iteration, we do not transform the given LM-polynomial matrix into another

one. Thus, it runs in O(n2+ 1
4−ω ) time by using Gabow and Xu’s algorithm [6] when we check

the validity of an estimate.

Otherwise, the number of matrix modifications is at most δ̂LMk (A) − δLMk (A). In the proof

of Theorem 4.2, this value is bounded by O((mQ + k)dmax). In most cases, however, the

difference is so small that it can be regarded as a constant. Thus the algorithm effectively runs

in O((mQ + k)mω−1
Q ndmax) time, which is also much faster than suggested by Theorem 4.2.

5 Application to Linear Valuated Independent Assignment

As a generalization of matroids, Dress and Wenzel [5] introduced valuated matroids. A valuated

matroid M = (V,B, ω) is a triple of a ground set V , a base family B ⊆ 2V , and a function

ω : B → R that satisfy the following axiom (VM).

(VM) For any B,B′ ∈ B and u ∈ B \B′, there exists v ∈ B′ \B such that B \ {u} ∪ {v} ∈ B,
B′ ∪ {u} \ {v} ∈ B, and ω(B) + ω(B′) ≤ ω(B \ {u} ∪ {v}) + ω(B′ ∪ {u} \ {v}).

The function ω is called a valuation.

Murota [19, 20] introduced the valuated independent assignment problem as a generalization

of the independent matching problem.

[Valuated Independent Assignment Problem (VIAP)]

Given a bipartite graph G = (V +, V −;E) with vertex sets V +, V − and edge set E,

a pair of valuated matroids M+ = (V +,B+, ω+) and M− = (V −,B−, ω−), and a

weight function w : E → R, find a matching M ⊆ E that maximizes

Ω(M) := w(M) + ω+(∂+M) + ω−(∂−M)

subject to ∂+M ∈ B+ and ∂−M ∈ B−.
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Let M+ and M− be linear valuated matroids represented by polynomial matrices Q+(s)

and Q−(s), respectively. For a bipartite graph G = (V +, V −;E), let T (s) =
∑N

k=0 s
kTk be a

polynomial matrix which satisfies (MP-T), E = {(i, j) | Tij(s) ̸= 0}, and deg Tij(s) = w(e) for

e = (i, j) ∈ E. Then the optimal value of Ω(M) is equal to the degree of the determinant of

the mixed polynomial matrix

A(s) =

 O Q+(s)
⊤ O

Q−(s) O I

O I T (s)

 .

We obtain deg detA(s) by using our combinatorial relaxation algorithm. This means that we

can find the optimal value of the linear valuated independent assignment problem by solving a

sequence of independent matching problems.
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