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Abstract
This paper presents constructive a posteriori estimates of inverse operators for bound-

ary value problems in linear elliptic partial differential equations (PDEs) on a bounded
domain. This type of estimates plays an important role in the numerical verification of
the solutions for boundary value problems in nonlinear elliptic PDEs. In general, it is not
easy to obtain the a priori estimates of the operator norm for inverse elliptic operators.
Even if we can obtain these estimates, they are often over estimated. Our proposed a pos-
teriori estimates are based on finite-dimensional spectral norm estimates for the Galerkin
approximation and expected to converge to the exact operator norm of inverse elliptic op-
erators. This provides more accurate estimates, and more efficient verification results for
the solutions of nonlinear problems.

1 Introduction
The main aim of this paper is to provide the positive constant CL2,H1

0
satisfying the operator

norm: ∥∥∥(−∆+b ·∇+ c)−1
∥∥∥

L (L2(Ω),H1
0 (Ω))

≤CL2,H1
0
. (1)

Here, Ω ⊂ Rd (d = 1,2,3) is a bounded polygonal or polyhedral domain, b ∈ L∞(Ω)d , c ∈
L∞(Ω). H1

0 (Ω) :=
{

u ∈ H1(Ω) ; u = 0 on ∂Ω
}

is a Hilbert space with respect to the inner

product is (u,v)H1
0 (Ω) := (∇u,∇v)L2(Ω)d and the norm is ‖u‖H1

0 (Ω) := (u,u)
1
2
H1

0 (Ω)
. The constant

CL2,H1
0

plays an essential role in the verification of the solutions for the boundary value prob-
lems in nonlinear elliptic partial differential equations (PDEs) [8, 9] and must be numerically
determined.

By defining L :=−∆+b ·∇+c, the problem of obtaining the estimates of (1) is equivalent
to the norm estimation of the solution u for the following boundary value problems in linear
elliptic PDEs such that {

L u = f , in Ω, (2a)
u = 0, on ∂Ω, (2b)
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for arbitrary f ∈ L2(Ω). Here, the weak solution u ∈ H1
0 (Ω) of (2a) and (2b) is defined by the

following variational equation:

L(u,v) = ( f ,v)L2(Ω) , ∀v ∈ H1
0 (Ω), (3)

for a bilinear form L : H1
0 (Ω)×H1

0 (Ω) → R defined by

L(u,v) := (∇u,∇v)L2(Ω)d +((b ·∇)u,v)L2(Ω) +(cu,v)L2(Ω) .

If we assume the coercivity of L, then by the Lax-Milgram theorem, there exists a unique
solution for (3), indicating the existence of the inverse of L . Nakao-Hashimoto-Watanabe [6]
proposed the validated computational technique that demonstrates the existence of L −1 even
if the coercivity of L is not assumed. They also derived a technique for obtaining the estimates
of (1). In section 3, we introduce these results and discuss them in more detail.

However, the estimates of L −1 in [6] have an unavoidable lower bound. In this study, we
propose a novel technique to obtain a posteriori estimates of (1) using L −1

h that is defined by
the Galerkin approximate integral operator for L −1. Our new approach has no restricted lower
bound; therefore, it is expected that we can obtain CL2,H1

0
smaller than that of [6]. Moreover,

we introduce a posteriori error estimates for L −1 and L −1
h .

The contents of this paper are as follows: In section 2, we introduce the necessary function
spaces and calculate the a priori error estimates for their Galerkin approximations. In section
3, we present previously reported methods of error estimation. In section 4, we propose a
posteriori estimates of (1). In section 5, we propose a posteriori error estimates for L −1

and L −1
h . Note that in this study, the term “a posteriori error estimates” is defined as the

operator norm for integral operators. This suggests that these error estimates can be calculated
whenever the Galerkin approximate spaces are given. Therefore, they do not depend on f . In
section 6, we compare the constants given by [6] and propose a new value of CL2,H1

0
for the test

problems.

2 Function spaces and Galerkin approximation
In this section, we introduce the function spaces and constructive error estimates of projections
to finite dimensional subspaces. Let X(Ω) :=

{
u ∈ L2(Ω) ; ∆u ∈ L2(Ω)

}
be a Banach space

with respect to the norm ‖u‖X(Ω) := ‖u‖L2(Ω) +‖∆u‖L2(Ω). We again define the linear elliptic
partial differential operator L : H1

0 (Ω)∩X(Ω) → L2(Ω) by L := −∆+b ·∇+ c. The norms
of Banach space L∞(Ω)d and L∞(Ω) are defined by

‖b‖L∞(Ω)d := ess sup
x∈Ω

√
b1(x)2 + · · ·+bd(x)2, ‖c‖L∞(Ω) := ess sup

x∈Ω
|c(x)| .

The following Theorem 2.1 is the Sobolev inequality.

Theorem 2.1 (Sobolev inequality) Let the constant p satisfy 1 ≤ p ≤ 2∗, where 2∗ is the
Sobolev conjugate index defined by 2∗ := 2d

d−2 . Then, there exists a positive constant Cs,p > 0
such that

‖u‖Lp(Ω) ≤Cs,p ‖u‖H1
0 (Ω) , ∀u ∈ H1

0 (Ω). (4)
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Let Sh(Ω) be an approximate finite dimensional subspace of H1
0 (Ω) dependent on the

parameter h. For example, Sh(Ω) is considered to be a finite element subspace with the
mesh size h or a set of the finite polynomial expansion with polynomial degree. Let n be
a degree of freedom for Sh(Ω) and φi be the basis function of Sh(Ω). This indicates that
Sh(Ω) := span 1≤i≤n{φi}.

We denote the symmetric positive definite matrices Dφ and Lφ in Rn,n by

Dφ ,i, j :=
(
∇φ j,∇φi

)
L2(Ω)d , 1 ≤ i, j ≤ n, (5)

Lφ ,i, j :=
(
φ j,φi

)
L2(Ω) , 1 ≤ i, j ≤ n. (6)

Let D1/2
φ and L1/2

φ be the Cholesky factors of Dφ and Lφ , respectively, i.e.,

Dφ = D1/2
φ DT/2

φ , and Lφ = L1/2
φ LT/2

φ .

We define the H1
0 projection P1

h : H1
0 (Ω) → Sh(Ω) by(

u−P1
h u,vh

)
H1

0 (Ω) = 0, ∀vh ∈ Sh(Ω). (7)

Therefore, the problems of the solvability of the variational equation (7) and the nonsingularity
of Dφ become equivalent. Because the matrix Dφ is positive definite, the projection P1

h is well
defined. Similarly, we define the L2 projection P0

h : L2(Ω) → Sh(Ω) by(
u−P0

h u,vh
)

L2(Ω) = 0, ∀vh ∈ Sh(Ω). (8)

Now, we assume that the following estimates of P1
h hold.

Assumption 2.2 There exist a positive constant C(h) > 0 satisfying∥∥u−P1
h u

∥∥
H1

0 (Ω) ≤C(h)‖∆u‖L2(Ω) , ∀u ∈ H1
0 (Ω)∩X(Ω), (9)∥∥u−P1

h u
∥∥

L2(Ω) ≤C(h)
∥∥u−P1

h u
∥∥

H1
0 (Ω) , ∀u ∈ H1

0 (Ω). (10)

Assumption 2.2 is the most basic error estimates in the Galerkin method. For example, in the
case of a finite element space used piecewise bilinear polynomial approximation of H1

0 (Ω),
the value C(h) is known by C(h) = h

π . Alternatively, in the case of piecewise biquadratic poly-
nomial approximation, Assumption 2.2 is satisfied by C(h) = h

2π . Moreover, these approxima-
tions give the optimal constants (e.g., [5]). In the case of N degree polynomial approximation
is used, Assumption 2.2 is satisfied by C(h) = O( h

N ). However, in these cases, the optimal
constants are unknown (e.g., [3]).

For arbitrary f ∈ L2(Ω), we define the Galerkin approximate solution uh ∈ Sh(Ω) of (3)
such that

(∇uh,∇vh)L2(Ω)d +((b ·∇)uh,vh)L2(Ω) +(cuh,vh)L2(Ω) = ( f ,vh)L2(Ω) , ∀vh ∈ Sh(Ω). (11)
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Let Gφ be a matrix in Rn,n, where each element is defined by

Gφ ,i, j := L(φ j,φi) =
(
∇φ j,∇φi

)
L2 +

(
(b ·∇)φ j,φi

)
L2 +

(
cφ j,φi

)
L2 , 1 ≤ i, j ≤ n. (12)

Then, the nonsingularity of Gφ and the unique existence of the solution uh in (11) become
equivalent. Therefore, we assume the nonsingularity of Gφ . However, when applying the
proposed a posteriori estimates, it is necessary to confirm the nonsingularity of Gφ by validated
computations.

Next, we define the L projection PL
h : H1

0 (Ω) → Sh(Ω) by

L(u−PL
h u,vh) = 0, ∀vh ∈ Sh(Ω). (13)

From the nonsingularity of Gφ , PL
h is well defined. If for an arbitrary f ∈ L2(Ω) there exists

u that is a unique solution for (3), then we denote the operator L −1 : L2(Ω) → H1
0 (Ω) by

u = L −1 f . By defining the operator L −1
h : L2(Ω) → Sh(Ω), we obtain uh, the solution of

(11). Thus, we obtain L −1
h = PL

h L −1 from the definition of PL
h .

3 Known results
In this section, we introduce the result for the invertibility condition of the operator L and its
previously determined estimates. We define the following constants:

C1 := ‖b‖L∞(Ω)d +Cs,2 ‖c‖L∞(Ω) , K1(h) := C(h)
(

Cs,2 ‖divb‖L∞(Ω) +C1

)
,

C2 := ‖b‖L∞(Ω)d +C(h)‖c‖L∞(Ω) , K2(h) :=
√

dCs,2 ‖b‖L∞(Ω)d +C(h)Cs,2 ‖c‖L∞(Ω) ,

M11
φ (h) :=

∥∥∥DT/2
φ G−1

φ D1/2
φ

∥∥∥
2
,

where ‖·‖2 is the matrix two-norm i.e., the maximum singular value.

Theorem 3.1 ([6, Theorem 2.1 & Corollary 1]) Let K(h) > 0 be defined by

K(h) :=
{

K1(h), if b ∈W 1,∞(Ω)d ,
K2(h), if b ∈ L∞(Ω)d .

Let κφ > 0 satisfy

κφ := C(h)
(
C1M11

φ (h)K(h)+C2) < 1. (15)

Then, under Assumption 2.2, the operator L is invertible.

We denote the symmetric positive definite matrix R in R2,2 by

R :=
1

(1−κφ )2

 M11
φ (h)2

(
C2

1C(h)2 +
(
1−C2C(h)

)2
)

symmetry

M11
φ (h)

(
C1C(h)+

(
1−C2C(h)

)
M11

φ (h)K(h)
)

1+M11
φ (h)2K(h)2

 .

We can obtain the estimates of L −1 used R.
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Theorem 3.2 ([6, Theorem 2.3]) By using the same assumptions as those in Theorem 3.1, we
obtain the following estimates,∥∥L −1∥∥

L
(

L2(Ω),H1
0 (Ω)

) ≤Cs,2 ‖R‖
1
2
2 . (16)

Even if b has sufficient regularity, the estimates (16) is expected to converge to Cs,2 max{M11
φ ,1}

as h → 0. As a result, this a posteriori method over estimates the operator norm and fails to
converge to its exact operator norm. Further discussion of the error in the previously reported
a posteriori estimates for L −1 and L −1

h are discussed in [7]. Next, we will improve this esti-
mation method (16), and propose the new a posteriori estimates of L −1 that converges to the
exact operator norm.

Theorem 3.3 ([7, Theorem 6]) By using the same assumptions as those in Theorem 3.1, we
obtain the following error estimates:∥∥L −1 −L −1

h

∥∥
L

(
L2(Ω),H1

0 (Ω)
) ≤C(h)

1+Cs,2M11
φ (h)C1

1−κφ

√
1+

(
M11

φ (h)K(h)
)2

, (17)

∥∥L −1 −L −1
h

∥∥
L

(
L2(Ω),L2(Ω)

) ≤C(h)
1+Cs,2M11

φ (h)C1

1−κφ

(
C(h)+Cs,2M11

φ (h)K(h)
)

. (18)

The proof of Theorem 3.3 can be obtained by using the proof of Theorem 3.2. Therefore, if
the estimates of (16) can be improved, then the error estimates of Theorem 3.3 can also be
improved. In Section 6, we use numerical examples to describe the results of improving these
error estimates.

Remark 3.4 (Aubin-Nitsche trick) In the case of b ∈ W 1,∞(Ω)d , the convergence order of
(18) is O(h2). Because we can apply the L2 error estimates by applying the Aubin-Nitsche trick,
the convergence order of K(h)

(
= K1(h)

)
is O(h). On the other hand, in the case of b∈ L∞(Ω)d

and b 6∈ W 1,∞(Ω)d , the convergence order of (18) is O(h). Because the solution for the dual
problem of (2a) and (2b) does not have sufficient regularity, we cannot apply the Aubin-Nitsche
trick. Therefore, K(h)

(
= K2(h)

)
does not have the order of h. Thus, when the dual problem

becomes singular, it is difficult to obtain the L2 error estimates whose convergence order is
O(h2). To address this difficulty, we have previously proposed a technique for obtaining L2

error estimates by using validated computations in [4]. When this technique is used, it is
expected that K2(h) will have the order h.

4 A posteriori estimates for inverse linear elliptic operators
In this section, we improve the previously reported estimates of (16) by proposing the new
a posteriori estimates of L −1, which converges to the exact operator norm. To this end, let
M00

φ (h), M10
φ (h), and M01

φ (h) be the positive constants defined by

M00
φ (h) :=

∥∥∥LT/2
φ G−1

φ L1/2
φ

∥∥∥
2
, M10

φ (h) :=
∥∥∥DT/2

φ G−1
φ L1/2

φ

∥∥∥
2
, M01

φ (h) :=
∥∥∥LT/2

φ G−1
φ D1/2

φ

∥∥∥
2
,

respectively. The following lemma consists of the constants M00
φ and M10

φ .
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Lemma 4.1 The operator norm of L −1
h satisfies the following equalities∥∥L −1

h

∥∥
L

(
L2(Ω),L2(Ω)

) = M00
φ (h), (19)∥∥L −1

h

∥∥
L

(
L2(Ω),H1

0 (Ω)
) = M10

φ (h). (20)

Proof. —— Note that we only discuss the proof of (20). The proof of (19) is omitted because
it is almost the same. For arbitrary f ∈ L2(Ω), let uh := L −1

h f ∈ Sh(Ω). The values from uh
to P0

h f are the elements of Sh(Ω), and can be expressed by the linear combination of the basis
of Sh(Ω). This indicates that α := (α1, · · · ,αn)T and β := (β1, · · · ,βn)T ∈ Rn exists such that

uh(x) =
n

∑
i=1

αiφi(x), P0
h f (x) =

n

∑
i=1

βiφi(x).

The equation (11) is rewritten using α and β to give

Gφ α = Lφ β , (21)

where the matrices Gφ and Lφ are defined by (12) and (6), respectively. Because Lφ and Dφ are
symmetric positive definite matrices, they can be factorized by the Cholesky decomposition.
From (21), we have

‖uh‖2
H1

0 (Ω) = αT Dφ α =
(

DT/2
φ α

)T (
DT/2

φ α
)

‖uh‖H1
0 (Ω) =

∥∥∥DT/2
φ α

∥∥∥
2

=
∥∥∥(

DT/2
φ G−1

φ L1/2
φ

)(
LT/2

φ β
)∥∥∥

2

≤
∥∥∥DT/2

φ G−1
φ L1/2

φ

∥∥∥
2

∥∥∥LT/2
φ β

∥∥∥
2

(22)

=
∥∥∥DT/2

φ G−1
φ L1/2

φ

∥∥∥
2

∥∥P0
h f

∥∥
L2(Ω)

≤
∥∥∥DT/2

φ G−1
φ L1/2

φ

∥∥∥
2
‖ f‖L2(Ω) . (23)

Therefore, we obtain

∥∥L −1
h

∥∥
L

(
L2(Ω),H1

0 (Ω)
) = sup

L2(Ω)3 f 6=0

∥∥L −1
h f

∥∥
H1

0 (Ω)

‖ f‖L2(Ω)
≤

∥∥∥DT/2
φ G−1

φ L1/2
φ

∥∥∥
2
. (24)

Next, we consider the existence of f0 ∈ L2(Ω) that satisfies the equalities of (22) and (23).
Let Bφ := DT/2

φ G−1
φ L1/2

φ , λ > 0 be a maximum eigenvalue of BT
φ Bφ , andγ 6= 0 be an eigenvector

associated to λ . Note that λ satisfies
√

λ =
∥∥∥DT/2

φ G−1
φ L1/2

φ

∥∥∥
2
. Because LT/2

φ is nonsingular,

we denote β0 :=
(
LT/2

φ
)−1γ . Let f0 ∈ Sh(Ω) be defined by f0 := ∑n

i=1 β0,iφi. Then, f0 satisfies
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the equalities (22) and (23). Practically, we obtain the equality of (22) by∥∥∥Bφ LT/2
φ β0

∥∥∥2

2
= γT BT

φ Bφ γ

= λ ‖γ‖2
2∥∥∥Bφ LT/2

φ β0

∥∥∥
2
=

∥∥∥DT/2
φ G−1

φ L1/2
φ

∥∥∥
2
‖γ‖2 .

Furthermore, P0
h f0 = f0 is clear from f0 ∈ Sh(Ω). Therefore, we have the equality of (23). As

a result, (24) satisfies the equality. �
From Lemma 4.1, we can expect that accurate estimates of L −1 can be obtained using

M10
φ (h). Practically, we have the following theorem.

Theorem 4.2 Let κ̂φ > 0 satisfy

κ̂φ := C(h)C2
(
1+M10

φ (h)C1
)

< 1. (25)

Then under the same assumptions in as those in Theorem 3.1, we have the following estimates

∥∥L −1∥∥
L

(
L2(Ω),H1

0 (Ω)
) ≤

√
M10

φ (h)2 +C(h)2
(
1+M10

φ (h)C1
)2

1− κ̂φ
. (26)

Proof. —— By assuming (15), we find that the bounded linear operator L −1 : L2(Ω) →
H1

0 (Ω)∩X(Ω) exists. For arbitrary f ∈ L2(Ω), let u := L −1 f ∈ H1
0 (Ω)∩X(Ω). By using the

definition of u, u satisfies the following integral equation

u = (−∆)−1(−(b ·∇)u− cu+ f
)
,

where (−∆)−1 : L2(Ω)→ H1
0 (Ω)∩X(Ω) denotes the solution operator of the Poisson equation

with homogeneous Dirichlet boundary conditions. We can decompose the finite and infinite
dimensional parts using the projection P1

h such that{
P1

h u = Ph(−∆)−1(−(b ·∇)u− cu+ f
)
, (27a)

(I −P1
h )u = (I −P1

h )(−∆)−1(−(b ·∇)u− cu+ f
)
. (27b)

In short, we denote u⊥ := u−P1
h u. From (27a), for arbitrary vh ∈ Sh(Ω), we obtain(

∇P1
h u,∇vh

)
L2(Ω)d =

(
∇P1

h (−∆)−1(−(b ·∇)u− cu+ f
)
,∇vh

)
L2(Ω)d

= (−(b ·∇)u− cu+ f ,vh)L2(Ω)

L(P1
h u,vh) = (−(b ·∇)u⊥− cu⊥ + f ,vh)L2(Ω)

=
(
P0

h
(
−(b ·∇)u⊥− cu⊥ + f

)
,vh

)
L2(Ω) . (28)
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Because P1
h u and P0

h

(
−(b ·∇)u⊥− cu⊥ + f

)
are the elements of Sh(Ω), they are expressible

by the linear combination of the basis of Sh(Ω). This indicates that α := (α1, · · · ,αn)T and
β := (β1, · · · ,βn)T ∈ Rn exists such that

P1
h u =

n

∑
i=1

αiφi, P0
h
(
−(b ·∇)u⊥− cu⊥ + f

)
=

n

∑
i=1

βiφi.

(28) is rewritten using α and β to give

Gφ α = Lφ β . (29)

From (29), we have∥∥P1
h u

∥∥2
H1

0 (Ω) = αT Dφ α

=
(

DT/2
φ α

)T (
DT/2

φ G−1
φ L1/2

φ

)(
LT/2

φ β
)

≤
∥∥P1

h u
∥∥

H1
0 (Ω)

∥∥∥DT/2
φ G−1

φ L1/2
φ

∥∥∥
2

∥∥P0
h
(
−(b ·∇)u⊥− cu⊥ + f

)∥∥
L2(Ω) .

By using Assumption 2.2 and the fact that P0
h is L2 projection, we have∥∥P1

h u
∥∥

H1
0 (Ω) ≤ M10

φ (h)‖−(b ·∇)u⊥− cu⊥ + f‖L2(Ω)

≤ M10
φ (h)

(
‖b‖L∞(Ω)d ‖∇u⊥‖L2(Ω)d +‖c‖L∞(Ω) ‖u⊥‖L2(Ω) +‖ f‖L2(Ω)

)
≤ M10

φ (h)C2 ‖∇u⊥‖L2(Ω)d +M10
φ (h)‖ f‖L2(Ω) . (30)

Next, by calculating the H1
0 norm of (27b) from Assumption 2.2, we obtain

‖u⊥‖H1
0 (Ω) ≤C(h)‖−(b ·∇)u− cu+ f‖L2(Ω)

≤C(h)
(
‖b‖L∞(Ω)d ‖∇u‖L2(Ω)d +‖c‖L∞(Ω) ‖u‖L2(Ω) +‖ f‖L2(Ω)

)
≤C(h)

(
‖b‖L∞

(∥∥∇P1
h u

∥∥
L2 +‖∇u⊥‖L2

)
+‖c‖L∞

(∥∥P1
h u

∥∥
L2 +‖u⊥‖L2

)
+‖ f‖L2

)
≤C(h)C1

∥∥∇P1
h u

∥∥
L2(Ω)d +C(h)C2 ‖∇u⊥‖L2(Ω)d +C(h)‖ f‖L2(Ω) . (31)

From (31) and (30), we obtain

‖u⊥‖H1
0
≤C(h)C1

(
M10

φ (h)C2 ‖u⊥‖H1
0
+M10

φ (h)‖ f‖L2

)
+C(h)C2 ‖u⊥‖H1

0
+C(h)‖ f‖L2 .

By using Assumption (25), we obtain

‖u⊥‖H1
0 (Ω) ≤C(h)

1+M10
φ (h)C1

1− κ̂φ
‖ f‖L2(Ω) . (32)

From (30) and (32), we have

∥∥P1
h u

∥∥
H1

0 (Ω) ≤
M10

φ (h)

1− κ̂φ
‖ f‖L2(Ω) . (33)
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Finally, from (33), (32), and the fact that P1
h is H1

0 projection, we have

‖u‖2
H1

0 (Ω) =
∥∥P1

h u
∥∥2

H1
0 (Ω) +‖u⊥‖2

H1
0 (Ω)

≤
M10

φ (h)2

(1− κ̂φ )2 ‖ f‖2
L2(Ω) +C(h)2

(
1+M10

φ (h)C1
)2

(1− κ̂φ )2 ‖ f‖2
L2(Ω)

=
M10

φ (h)2 +C(h)2(1+M10
φ (h)C1

)2

(1− κ̂φ )2 ‖ f‖2
L2(Ω)

∥∥L −1 f
∥∥

H1
0 (Ω) ≤

√
M10

φ (h)2 +C(h)2
(
1+M10

φ (h)C1
)2

1− κ̂φ
‖ f‖L2(Ω) ,

Therefore, this proof is completed. �
The L2 estimates are obtained by providing a proof similar to that of Theorem 4.2.

Theorem 4.3 By using the same assumptions as those in Theorem 4.2, we obtain the following
estimates ∥∥L −1∥∥

L
(

L2(Ω),L2(Ω)
) ≤

M00
φ (h)+C(h)2(1+M10

φ (h)C1
)

1− κ̂φ
. (34)

Proof. —— For arbitrary f ∈ L2(Ω), let u := L −1 f ∈ H1
0 (Ω)∩X(Ω). From (29), we obtain∥∥P1

h u
∥∥2

L2(Ω) =
(

LT/2
φ α

)T (
LT/2

φ G−1
φ L1/2

φ

)(
LT/2

φ β
)

≤
∥∥P1

h u
∥∥

L2(Ω)

∥∥∥LT/2
φ G−1

φ L1/2
φ

∥∥∥
2

∥∥P0
h
(
−(b ·∇)u⊥− cu⊥ + f

)∥∥
L2(Ω) .

By using Assumption 2.2 and (32), we obtain∥∥P1
h u

∥∥
L2(Ω) ≤ M00

φ (h)C2 ‖∇u⊥‖L2(Ω)d +M00
φ (h)‖ f‖L2(Ω)

≤ M00
φ (h)C2C(h)

1+M10
φ (h)C1

1− κ̂φ
‖ f‖L2(Ω) +M00

φ (h)‖ f‖L2(Ω)

=
M00

φ (h)

1− κ̂φ
‖ f‖L2(Ω) . (35)

Similarly, for the estimates of ‖u⊥‖L2(Ω), by using Assumption 2.2 and (32), we obtain

‖u⊥‖L2(Ω) ≤C(h)‖u⊥‖H1
0 (Ω) ≤C(h)2

1+M10
φ (h)C1

1− κ̂φ
‖ f‖L2(Ω) . (36)

From (35) and (36), we obtain

‖u‖L2(Ω) ≤
∥∥P1

h u
∥∥

L2(Ω) +‖u⊥‖L2(Ω)

≤
M00

φ (h)

1− κ̂φ
‖ f‖L2(Ω) +C(h)2

1+M10
φ (h)C1

1− κ̂φ
‖ f‖L2(Ω) ,
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Therefore, this proof is completed. �
To obtain the Lp estimates, the following theorem is necessary.

Theorem 4.4 (Gagliardo-Nirenberg) Let the constants p and q satisfy 1≤ p≤ q∗≤∞. Then,
for arbitrary 0 ≤ θ ≤ 1, there exists the positive constant Cg,r,p,q > 0 such that

‖u‖Lr(Ω) ≤Cg,r,p,q ‖u‖θ
Lp(Ω) ‖u‖1−θ

W 1,q(Ω) , ∀u ∈W 1,q(Ω), (37)

where 1
r = θ

p + 1−θ
q∗ .

It is known that the optimal constants of Cg,r,p,q in Theorem 4.4 become the minimum eigen-
value of the certain nonlinear elliptic boundary value problems (e.g., [1]). Moreover, we can
obtain the upper bounds of Cg,r,p,q by Sobolev constants. For example, if we can calculate the
Sobolev constants for Cs,2∗ > 0 in (4), then for arbitrary 2 ≤ p ≤ 2∗, we obtain

‖u‖Lp(Ω) ≤ ‖u‖
1−d

(
1
2−

1
p

)
L2(Ω) ‖u‖

d
(

1
2−

1
p

)
L2∗(Ω)

≤C
d
(

1
2−

1
p

)
s,2∗ ‖u‖

1−d
(

1
2−

1
p

)
L2(Ω) ‖u‖

d
(

1
2−

1
p

)
H1

0 (Ω)
.

Therefore, we obtain Cg,p,2,2 ≤C
d
(

1
2−

1
p

)
s,2∗ .

Finally, in this section, we present the Lp estimates.

Corollary 4.5 Assume that the following two inequalities are provided:∥∥L −1∥∥
L

(
L2(Ω),L2(Ω)

) ≤CL2,L2∥∥L −1∥∥
L

(
L2(Ω),H1

0 (Ω)
) ≤CL2,H1

0

then, for arbitrary 2 ≤ p ≤ 2∗, we obtain

∥∥L −1∥∥
L

(
L2(Ω),Lp(Ω)

) ≤Cg,p,2,2C
1−d

(
1
2−

1
p

)
L2,L2 C

d
(

1
2−

1
p

)
L2,H1

0
. (38)

Proof. —— For arbitrary f ∈ L2(Ω), let u := L −1 f ∈ H1
0 (Ω)∩ X(Ω). From Gagliardo-

Nirenberg inequality and assumptions, we have

‖u‖Lp(Ω) ≤Cg,p,2,2 ‖u‖
1−d

(
1
2−

1
p

)
L2(Ω) ‖u‖

d
(

1
2−

1
p

)
H1

0 (Ω)

≤Cg,p,2,2C
1−d

(
1
2−

1
p

)
L2,L2 ‖ f‖

1−d
(

1
2−

1
p

)
L2(Ω) C

d
(

1
2−

1
p

)
L2,H1

0
‖ f‖

d
(

1
2−

1
p

)
L2(Ω) .

Therefore, this proof is completed. �
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5 A posteriori error estimates for inverse linear elliptic op-
erators

In this section, we consider the error estimates for L −1 and L −1
h . We obtain the following

estimates corresponding to P1
h and PL

h .

Lemma 5.1 We obtain the following error estimates:∥∥P1
h u−PL

h u
∥∥

L2(Ω) ≤ M01
φ (h)

∥∥P1
h ∆−1(b ·∇+ c)(u−P1

h u)
∥∥

H1
0 (Ω) , ∀u ∈ H1

0 (Ω), (39)∥∥P1
h u−PL

h u
∥∥

H1
0 (Ω) ≤ M11

φ (h)
∥∥P1

h ∆−1(b ·∇+ c)(u−P1
h u)

∥∥
H1

0 (Ω) , ∀u ∈ H1
0 (Ω). (40)

Proof. —— For arbitrary u∈H1
0 (Ω), let u⊥ := u−P1

h u and g := ∆−1(b ·∇+c)u⊥. For arbitrary
vh ∈ Sh(Ω), we have

L
(
P1

h u−PL
h u,vh

)
= −((b ·∇+ c)u⊥,vh)L2(Ω)

=
(
∇∆−1(b ·∇+ c)u⊥,∇vh

)
L2(Ω)d

=
(
∇P1

h g,∇vh
)

L2(Ω)d . (41)

Because P1
h u−PL

h u and P1
h g are the elements of Sh(Ω), they can be expressed by the linear com-

bination of the basis of Sh(Ω). This indicates that α := (α1, · · · ,αn)T and β := (β1, · · · ,βn)T ∈
Rn exists such that

P1
h u−PL

h u =
n

∑
i=1

αiφi, P1
h g =

n

∑
i=1

βiφi.

(41) is written using α and β to give

Gφ α = Dφ β .

Therefore, we have the following L2 error estimates∥∥P1
h u−PL

h u
∥∥2

L2(Ω) = αT Lφ α

=
(

LT/2
φ α

)T (
LT/2

φ G−1
φ D1/2

φ

)(
DT/2

φ β
)

≤
∥∥P1

h u−PL
h u

∥∥
L2(Ω)

∥∥∥LT/2
φ G−1

φ D1/2
φ

∥∥∥
2

∥∥P1
h g

∥∥
H1

0 (Ω) .

Similarly, we have the following H1
0 error estimates∥∥P1

h u−PL
h u

∥∥2
H1

0 (Ω) = αT Dφ α

=
(

DT/2
φ α

)T (
DT/2

φ G−1
φ D1/2

φ

)(
DT/2

φ β
)

≤
∥∥P1

h u−PL
h u

∥∥
H1

0 (Ω)

∥∥∥DT/2
φ G−1

φ D1/2
φ

∥∥∥
2

∥∥P1
h g

∥∥
H1

0 (Ω) .

Therefore, this proof is completed. �
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Theorem 5.2 By using the same assumptions as those in Theorem 4.2, we obtain the following
error estimates:

∥∥L −1 −L −1
h

∥∥
L

(
L2(Ω),H1

0 (Ω)
) ≤C(h)

1+M10
φ (h)C1

1− κ̂φ

√
1+

(
M11

φ (h)K(h)
)2

, (42)

∥∥L −1 −L −1
h

∥∥
L

(
L2(Ω),L2(Ω)

) ≤C(h)
1+M10

φ (h)C1

1− κ̂φ

(
C(h)+M01

φ (h)K(h)
)
. (43)

Proof. —— For arbitrary f ∈ L2(Ω), let u := L −1 f ∈ H1
0 (Ω)∩X(Ω) and uh := L −1

h f ∈
Sh(Ω). By the definition of u and uh, we have uh = PL

h u. Let u⊥ := u−P1
h u.

First, we derive (42). By using the definition of H1
0 projection and (40), we have

‖u−uh‖2
H1

0 (Ω) =
∥∥u−P1

h u
∥∥2

H1
0 (Ω) +

∥∥P1
h u−PL

h u
∥∥2

H1
0 (Ω)

≤
∥∥u−P1

h u
∥∥2

H1
0 (Ω) +M11

φ (h)2 ∥∥P1
h ∆−1(b ·∇+ c)u⊥

∥∥2
H1

0 (Ω) .

Then, from [4, Theorem 3.3.], we obtain the following estimates:∥∥P1
h ∆−1(b ·∇+ c)(u−P1

h u)
∥∥

H1
0 (Ω) ≤ K(h)

∥∥u−P1
h u

∥∥
H1

0 (Ω) . (44)

Furthermore, from (32), we obtain

‖u−uh‖2
H1

0 (Ω) ≤
(

1+
(
M11

φ (h)K(h)
)2

)
‖∇u⊥‖2

L2(Ω)d

‖u−uh‖H1
0 (Ω) ≤

√
1+

(
M11

φ (h)K(h)
)2C(h)

1+M10
φ (h)C1

1− κ̂φ
‖ f‖L2(Ω) .

Therefore, we obtain (42).
Next, we derive (43). By using Assumption 2.2 and (39), we obtain

‖u−uh‖L2(Ω) ≤
∥∥u−P1

h u
∥∥

L2(Ω) +
∥∥P1

h u−PL
h u

∥∥
L2(Ω)

≤C(h)
∥∥u−P1

h u
∥∥

H1
0 (Ω) +M01

φ (h)
∥∥P1

h ∆−1(b ·∇+ c)(u−Phu)
∥∥

H1
0 (Ω) .

From (44) and (32), we have

‖u−uh‖L2(Ω) ≤
(
C(h)+M01

φ (h)K(h)
)∥∥u−P1

h u
∥∥

H1
0 (Ω)

≤
(
C(h)+M01

φ (h)K(h)
)
C(h)

1+M10
φ (h)C1

1− κ̂φ
‖ f‖L2(Ω) ,

Therefore, we obtain (43). �
Finally in this section, we present the Lp error estimates.
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Corollary 5.3 Assume that the following two inequalities are provided:∥∥L −1 −L −1
h

∥∥
L

(
L2(Ω),L2(Ω)

) ≤ EL2,L2∥∥L −1 −L −1
h

∥∥
L

(
L2(Ω),H1

0 (Ω)
) ≤ EL2,H1

0

For arbitrary 2 ≤ p ≤ 2∗, we have

∥∥L −1 −L −1
h

∥∥
L

(
L2(Ω),Lp(Ω)

) ≤Cg,p,2,2E
1−d

(
1
2−

1
p

)
L2,L2 E

d
(

1
2−

1
p

)
L2,H1

0
. (45)

The proof is similar to Corollary 4.5.

Remark 5.4 From the results of Lemma 4.1 and Theorem 5.2, M00
φ (h) and M10

φ (h) converge
to

∥∥L −1
∥∥

L
(

L2(Ω),L2(Ω)
) and

∥∥L −1
∥∥

L
(

L2(Ω),H1
0 (Ω)

) as h → 0, respectively.

6 Numerical example
In this section, we apply the described method to numerical experiments on test problems.
First, we compared (26) with (16). For simplicity, in this section, the domain Ω is fixed as the
unit square (0,1)× (0,1) ⊂ R2. We assume that the finite element partition of Ω is a uniform
triangular mesh and the basis of Sh(Ω) is a set of piecewise linear polynomials (P1 element).
Therefore, Assumption 2.2 is realized by C(h) = 0.49293h (e.g., [2]).

6.1 Steady-state convection diffusion equation
We show a computational result in the case of the steady-state convection diffusion equation
L = −∆+b ·∇+ c. In particular, we consider b(x1,x2) = 5

(
−x2 + 1

2 ,x1 − 1
2

)T ∈W 1,∞(Ω)2.

Table 1: Convection diffusion equation for c = 0.
1/h M00

φ (h) M01
φ (h) M10

φ (h) M11
φ (h) (16) (26)

10 0.04943 0.22232 0.22232 1.00002 2.12100 0.34720
20 0.05034 0.22435 0.22435 1.00001 1.73512 0.27102
30 0.05051 0.22473 0.22473 1.00001 1.63742 0.25304
40 0.05057 0.22487 0.22487 1.00001 1.59292 0.24512
50 0.05060 0.22493 0.22493 1.00001 1.56748 0.24068

order -0.01035 -0.00516 -0.00516 0.00000 0.15014 0.17978

First, we consider the case of c = 0. Table 1 shows its verification results. The column
for 1/h lists the reciprocal number of the mesh size. These values denote the number of
partitions for the domain Ω. From b 6= 0, the matrix Gφ is nonsymmetric and has complex
eigenvalues. However, M01

φ (h) and M10
φ (h) are always equal. Our proposed new estimates in

(26) are smaller than previous estimates (16) for any mesh size.
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Table 2: Convection diffusion equation for c = −10.
1/h M00

φ (h) M01
φ (h) M10

φ (h) M11
φ (h) (16) (26)

10 0.09772 0.43953 0.43953 1.97692 fail fail
20 0.10133 0.45167 0.45167 2.01302 6.81287 0.95000
30 0.10203 0.45400 0.45400 2.01996 5.09800 0.69895
40 0.10228 0.45482 0.45482 2.02241 4.53489 0.61676
50 0.10239 0.45520 0.45520 2.02355 4.25499 0.57604

order -0.02066 -0.01550 -0.01550 -0.01033 0.46917 0.49927

Next, we consider the case of c = −10; Table 2 shows its verification results. In this table,
“fail” denotes that the invertibility condition failed in Theorem 3.1. The same tendency as
Table 1 is seen for this problem.

6.2 Linearized semilinear equation
We show a computational result in the case of linearized equation of the following semilinear
PDEs: {

−∆u = λ (1+u+u2 −au3) in Ω, (46a)
u = 0, on ∂Ω, (46b)

where λ > 0 and 0 ≤ a ≤ 1 are constants. For the constant parameters λ and a, it is known
that (46a) and (46b) has at least two positive solutions; we denote them as the upper and lower
solutions, respectively. Let uh be the finite element solutions for (46a) and (46b). This indicates
that uh ∈ Sh(Ω) satisfies the following variational equation:

(∇uh,∇vh)L2(Ω)2 = λ
(
1+uh +u2

h −au3
h,vh

)
L2(Ω) , ∀vh ∈ Sh(Ω).

The finite element solutions uh were obtained by the Newton-Raphson method using usual
floating point arithmetic. Then, the linearized operator at uh is defined by L = −∆ + λ

(
1 +

2uh − 3au2
h

)
. We introduce the operator norm estimates for the inverse linearized operator

L −1.
Table 3 shows the verification results of the linearized inverse operator at the upper approx-

imate solution uh for λ = 4 and a = 0.001. The effectiveness of the method and the validity of
our new estimates for this problem were shown.

Table 4 shows the verification results of the linearized inverse operator at the lower approx-
imate solution uh for λ = 4 and a = 0.001.

Remark 6.1 (Computer environment) All computations were carried out on a Intel Xeon
E5520 2.27GHz (OS: Red Hat Enterprise Linux Server release 5.5) by using INTLAB version
6.0, a toolbox in MATLAB R2010a developed by Rump [10] for self-validating algorithms.
Therefore, all numerical values in these tables are verified data in the sense of strictly rounding
error control.
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Table 3: Linearized semilinear equation at the upper approximate solution.
1/h M00

φ (h) M01
φ (h) M10

φ (h) M11
φ (h) (16) (26)

10 0.07082 0.32622 0.32622 2.19839 10.34011 0.83100
20 0.07297 0.33356 0.33356 2.22458 2.89776 0.40142
30 0.07338 0.33498 0.33498 2.22970 2.50199 0.36286
40 0.07353 0.33547 0.33547 2.23150 2.38044 0.35076
50 0.07360 0.33571 0.33571 2.23234 2.32652 0.34538

order -0.01708 -0.01272 -0.01272 -0.00681 0.61830 0.37149

Table 4: Linearized semilinear equation at the lower approximate solution.
1/h M00

φ (h) M01
φ (h) M10

φ (h) M11
φ (h) (16) (26)

10 0.07255 0.32630 0.32630 1.46826 1.51285 0.34420
20 0.07489 0.33379 0.33379 1.48834 1.49944 0.33828
30 0.07534 0.33523 0.33523 1.49223 1.49716 0.33722
40 0.07550 0.33574 0.33574 1.49360 1.49638 0.33686
50 0.07558 0.33597 0.33597 1.49424 1.49602 0.33669

order -0.01817 -0.01293 -0.01293 -0.00779 0.00487 0.00969

7 Conclusion
We propose a method for constructive a posteriori estimates of inverse operators for boundary
value problems. It is particularly notable that as in (26) and (34), our proposed estimates are
expected to converge to the exact operator norm according to Theorem 5.2. By comparing the
a posteriori estimates (16), which given by [6] and (26) for some test problem, we show that
this holds. Our proposed new estimates (26) are smaller than the previous estimates (16) in the
test problems, and more closely reflect the true error.
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