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Introduction Basic problems related to lifting and reduction of etale covers of curves
had been treated in the fundamental work of Grothendieck [4], which established unique
liftability, as well as good reduction property for Galois covers with degrees not divisible
by the residue characteristic p. This applies also to tame covers, say, of P1 \ {0, 1,∞},
in which case Raynaud [16] proved a partial but yet unsurpassed result for Galois covers
of degree divisible by p but not by p2. Historically, there is another line of investigations
started mainly by Shimura and Igusa. In [5], Igusa made a basic contribution to the
case of P1 \ {0, 1,∞} by geometric method, proving that the modular tower of levels
not divisible by p (the Galois degrees can be divisible by p) has good reduction. The
theory of Shimura curves [19, 20] provided extremely rich arithmetic systems of curves
and source of further studies. In connection with fundamental groups, we just recall here
the following; each tower obtained by reduction of modular or Shimura curves can be
characterized, inside the tower of curves with prescribed tame ramifications, only by the
complete splitting of “special Fq2-rational points” [6, 8, 9, 10]. As for developments after
1980’s related to the study of the algebraic fundamental groups of curves, we shall leave
their descriptions to other articles of this Volume.

Now, here, we take up the following question. Let p > 2, let F̄p be an algebraic closure
of Fp, and R0 = W[[F̄p]] be the ring of Witt vectors. Note that R0 does not contain the
group µp of p-th roots of unity. Let k0 be the quotient field of R0, and Gk0 be the absolute
Galois group Gk0 = Gal(k̄0/k0). Let X be a proper smooth R0-scheme whose fibers
Xη = X ⊗ k0 and Xs = X⊗ F̄p are geometrically irreducible curves. Pick an R0-section
x = (xη, xs) ∈ X(R0). Then Gk0 acts on the fundamental group π1(Xη ⊗ k̄0, xη), and the
(surjective) specialization homomorphism

π1(Xη ⊗ k̄0, xη)→ π1(Xs, xs)

factors through the Gk0-coinvariant of the group on the left, inducing

ψ : π1(Xη ⊗ k̄0, xη)Gk0
→ π1(Xs, xs).

Our questions and partial results are related to its kernel, Ker(ψ). After some vain trials
to find a non-trivial element in the kernel (first for the case of X = P1 \ {0, 1,∞}), I
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turned direction, inclining to think that the kernel may reduce to {1}, and decided to
pose this question in this article (instead of giving the content of my talk which is more
or less direct consequences of my previous results [6, 10]). Whether Ker(ψ) = {1}, to
be called question (Q1’), is equivalent to the following (Q1): is it true that a finite etale
cover fη : Yη → Xη has good reduction if one k0-rational point xη of Xη splits completely
in Yη(k) ? It is almost obvious that these questions make sense only for a fixed base ring
as “small” as R0 (§1.1,§4.1). These are questions on 2-dimensional absolute “surfaces”,
and not on relative curves.

We add here a few remarks to avoid misunderstandings. We have just referred to
complete splitting of one point, but it should be noted that (i) splitting is equivalent to
p-adic unramifiedness in the fiber (because non-trivial finite extensions of k0 are totally
ramified), and (ii) the complete splitting of one point means that of all points sufficiently
nearby. As for (i), it may be more impressive to use the term like “p-adically unramified”,
but this can also be confusing. As for (ii), it is sometimes more reasonable to look at the
effect of complete splitting of one whole “disk”. This is in fact so in the case of bigger
base rings (§4.1), but for the case of small base rings, splitting of one point seems to be an
appropriate starting point, in connection with the Galois action on fundamental groups
with a given base point, and for rigidifying related covers.

The main purpose of this article it to draw attention to the above (equivalent) ques-
tions; however, we shall also present partial results. We first prove that Ker(ψ) does not
have non-trivial pro-solvable quotients (Corollary 1-1 §1.4). Let f : Y → X denote the
integral closure of X in the function field of Yη, so that Y is a normal R0-scheme with
fη : Yη → Xη etale. We shall then prove that (Q1) is valid when the cover f is “locally
realizable in a relatively 1-parameter space” (Theorem 2 §1.5.). This has some application
to non-splitting of points in the “level p” covers of Shimura curves.

In §1, we pose the basic questions and present Theorems 1,2 with their Corollaries.
They will be proved in §2,3. In §4, we discuss some related subjects, for example, the case
of more general base rings, and the case of P1 \ {0, 1,∞}. Examples will also be given
to indicate that (i) if the question has general affirmative answer, it cannot be proved
only by local methods (Example 1 §3.4), and that (ii) for a bigger base ring, even the
complete splitting of one whole disk does not imply good reduction of covers (Example
2 §4.2). The local tools we use (for Theorem 2) consist of (a) a simple upper bound of
the different exponent in the mixed characteristic case (Lemma A §3), and (b) a lower
bound for elementwise relative discriminants, under the existence of a “splitting section”
in some 2-dimensional local R0-algebras. The global tools we use (for Theorem 1, etc.)
are the abelian group schemes, as in Raynaud [16], and also the “associated differential”.
In §5, as an Appendix, we shall give a general definition of the associated differential ω,
which is a differential of multiple degree on the special fiber canonically associated to each
non-etale cover f : Y → X. The special case of ω related to Shimura curves was studied
in e.g.,[7], and now some other cases became relevant.
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The author wishes to express his hearty gratitude to A. Tamagawa for discussions
and careful reading of the first draft. Despite (or rather, because of) some difference in
viewpoints, discussions with him were very stimulating, and his remarks very helpful for
revision of this article.

1 Questions and main results

1.1 – Let R be a complete discrete valuation ring of mixed characteristics (0, p) with
quotient field k whose residue field is κ = F̄p (an algebraic closure of Fp). It is either
R0 = W[[F̄p]] itself, or a finite totally ramified extension of R0. We denote by π a prime
element of R, and by ord = ordπ the corresponding normalized additive valuation. As
usual, write Spec(R) = {η, s} (η the generic point, s the closed point). Note that Spec(R)
has no non-trivial connected finite etale covers. For any R-scheme Z, Zη = Z ⊗ k (resp.
Zs = Z ⊗ κ) denotes its general (resp. special) fiber, and Z(R) (resp. Zη(k)) denotes
the set of sections Spec(R) → Z (resp. k-rational points of Zη). We shall consider only
proper flat R-schemes Z; hence Zη, Zs are non-empty. The local ring and the maximal
ideal at z ∈ Z will be denoted by Oz,Z , mz,Z respectively. When Z is an integral scheme,
its function field will be denoted by k(Z) (= k(Zη) when Z/R is flat).

Let X be a proper smooth R-scheme whose fibers Xη, Xs are geometrically irreducible
curves. We denote its function field by K = k(X) = k(Xη). Each xη ∈ Xη(k) uniquely
determines its specialization xs ∈ Xs(κ) and the section x =(xη, xs)∈ X(R). Given xs,
such xη and x will be called a lifting of xs. The collection of all k-rational points of Xη

that lift a given point xs will be called the disk above xs(denoted by Dsk(η/xs)), or simply
a disk. It carries p-adic topology. Let L be a finite extension of K, and let f : Y → X
be the integral closure of X in L. We shall exclusively study the case where the general
fiber fη : Yη → Xη of f is etale but f itself may not be so.

1.2 – Assume temporarily that f is also etale. Then fη : Yη → Xη is not only finite,
etale and connected, but also satisfies an extra strong property; namely, all points xη of
Xη(k) split completely in Yη(k). In fact, if x ∈ X(R) denotes the closure of xη in X,
then f−1(x) is finite and etale over Spec(R); hence it must be a disjoint union of copies
of Spec(R); in particular, f−1

η (xη) is a disjoint union of copies of Spec(k).
Conversely, start with X as in §1.1 and a connected finite etale cover fη : Yη → Xη, and

suppose that there exists a non-empty subset SY/X(k) ⊆ Xη(k) such that all points xη of
SY/X(k) split completely in Yη(k). In which cases can we conclude that f : Y → X itself is
etale? The first thing to be noted is: we can conclude so when either Yη/Xη has potential
good reduction (§2.1), or if SY/X(k) is large in some sense (Proposition 2 (§4.1), Cor. 2-4
(§1.5)). But for the general base ring R (outside the case of potential good reduction),
the splitting assumption for a finite non-empty set SY/X(k) cannot imply the etaleness of
f . This is simply because if we take any ramified and not potentially unramified cover
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f , take any finite subset S of Xη(k), and replace k by k′ = k(f−1(xη);xη ∈ S), then f
remains ramified and the splitting condition for SY/X(k) = S will be trivially satisfied.
Such an example is made at the cost of expanding the base ring. But when we fix the
base ring as, say, R0 = W[[F̄p]] (the ring of Witt vectors) with p > 2, or a little more
generally, impose the condition ord p < p − 1, then I found no counterexamples to the
following question, and am inclined to think that the answer may be affirmative.

Question (Q1) Assume that ord p < p−1, and let f : Y → X be as in §1.1. Suppose
that at least one point xη of Xη(k) splits completely in Yη(k). Then is f necessarily etale?

When we assert that (Q1) has an affirmative answer for some specified class of f , we
shall say that the assertion (Q1Sp) holds (specifying the class each time).

Note that the formulation fits well with forming towers and with taking the Galois
closure; the answer to (Q1) is positive if and only if (Q1Sp) holds for those L/K having
no proper intermediate subfields, and if and only if (Q1Sp) holds for Galois extensions
L/K. By the purity of branch locus, f is etale if and only if the discrete valuation of K
defined by the generic point of the special fiber Xs of X is unramified in L. Note also
that if there exists a point xs ∈ X(κ) such that f is etale at all points of f−1(xs), then
f is etale on Y . For x =(xη, xs) ∈ X(R), the splitting of xη in Yη(k) implies that f−1(x)
consists of distinct irreducible components each isomorphic to Spec(R). But f−1(x) may
possibly be connected; two distinct irreducible components may specialize to the same
point of f−1(xs). The goal is to show, for some specified classes of f , that f−1(x) must
be totally disconnected, which implies the etaleness of f .

But before giving these, we shall reformulate (Q1) in terms of fundamental groups.

1.3 – Let k̄ be an algebraic closure of the quotient field k of R, write Xk̄ = X ⊗ k̄, and
let π1 := π1(Xk̄, xη) be the algebraic (profinite) fundamental group of Xk̄ with a given
k-rational base point xη ∈ Xη(k). The absolute Galois group Gk = Gal(k̄/k) acts on π1

in the usual manner. Let (π1)Gk
denote the Gk-coinvariant, i.e., the largest quotient on

which Gk acts trivially. The fundamental group of the geometric special fiber π1(Xs, xs)
with base point xs (the specialization of xη) is also a canonical quotient of π1 which factors
through (π1)Gk

, inducing a surjective homomorphism

(1.3.1) ψ : π1(Xk̄, xη)Gk
→ π1(Xs, xs).

One sees easily (cf. §2.1) that (Q1) is equivalent to

Question (Q1’) Assume that ord p < p− 1. Then, is ψ an isomorphism ?

If not, what is the meaning of the difference ?.
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1.4 – Theorem 1 Notations being as in §1.1, let G denote the Galois group of the
Galois closure of L/K. The assertion (Q1Sp) holds for the following classes of G; either
G is solvable, or more generally the order of each composition factor of G is either equal
to p or not divisible by p.

This will be proved in two ways; (i) by using a global abelian R-group scheme argument
as in Raynaud [16] (§2.3), (ii) by a more elementary treatment of normal relative curves
which makes it clear why a local counterexample cannot extend to a global one (§4.1).

Corollary 1-1 Let ord p < p − 1. Then Ker(ψ) has no non-trivial prosolvable
quotient, or more strongly, if a finite simple group G appears as its quotient, then G must
be non-cyclic and with order divisible by p.

1.5 – We shall give another type of results on (Q1Sp). Let f : Y → X be as in §1.1, so
that f is etale on the general fiber. Let ys ∈ Ys(κ) be any point on the special fiber. Let
us call f a cover in a 1-parameter space at ys, if the vertical component in the tangent
space at ys is at most 1-dimensional;

(1.5.1) dim Ker(Tys(Ys)→ Txs(Xs)) ≤ 1

(xs = f(ys)), or equivalently, putting (O′,m′) = (Oys,Ys ,mys,Ys) and (O,m) = (Oxs,Xs ,mxs,Xs),
if

(1.5.2) dimκ(m′/(mO′ + m′2)) ≤ 1.

This is also equivalent to that the κ-algebra O′/mO′ is generated by one element, or (by
Krull-Azumaya’s lemma) to that the O∧-algebra O′∧ is generated by a single element (∧
the completion).

Consider the case where ys extends to a section y = (yη, ys) ∈ Y (R). Then, the local
ring Oys,Y is regular if and only if the prime ideal corresponding to y is principal (say, (t′),
which gives mys,Y = (t′, π)), and when this is also satisfied, f is a cover in a 1-parameter
space at ys, because π ∈ mxs,X \m2

ys,Y .

Theorem 2 Notations being as in §1.1 and (Q1), denote by xs and x = (xη, xs) the
specialization of xη and the corresponding section in X(R), respectively. The assertion
(Q1Sp) holds for the following classes of f ; either each section y = (yη, ys) ∈ Y (R) above
x is locally defined by a single equation, or more generally, f is a cover in a 1-parameter
space at each point ys above xs.

This is obtained by combining an estimate from below of the p-adic order of elemen-
twise discriminants using this splitting of f−1(xη), with an estimate from above of the
order of the discriminant itself. The geometric assumption confirms that the discriminant
is equal to the greatest common divisor of elementwise discriminants (§3).

Corollary 2-1 (Q1Sp) holds when Y is a regular scheme.
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Corollary 2-2 Let W → X be a proper smooth relatively 1-dimensional X-scheme,
and suppose that f : Y → X can be obtained from a closed integral flat X-subscheme
T ⊂ W by a “small modification”, i.e., by the normalization µ : Y → T which is assumed
to be unramified (“net”) at each point of Y . Then (Q1Sp) has an affirmative answer for
such Y/X.

The special case where W = X×RZ with some proper smooth relatively 1-dimensional
R-scheme Z and where T ⊂ X ×R Z is the “graph” of an algebraic correspondence, will
be applied in the following.

We have also tried to find a counterexample for (Q1). For this aim, we have especially
looked at Shimura curve analogues of the modular curve of level p usually called X0(p)
which has bad reduction. Let F be a totally real number field and B a quaternion algebra
over F in which all but one archimedean primes are ramified. Shimura [19] constructed
and studied a canonical tower of curves over abelian extensions of F , the Shimura curves
associated to B of all levels. If p is any non-archimedean prime divisor of F not dividing
the discriminant of B, we obtain from (the levels coprime with p-part of) his system
a p-canonical system of triples of relative curves (cf. [8, 9] and [10](the author’s notes
2008)):

(1.5.3) {X f←− X0(p)
f ′
−→ X ′}

over o
(2)
p . Here, op is the p-adic completion of the ring of integers of F , o

(2)
p is its unique

quadratic unramified extension, X,X ′ are proper smooth relative curves over o
(2)
p that are

mutually conjugate over op, and X0(p) is the normalization of the Hecke correspondence
T (p) ⊂ X ×

o
(2)
p
X ′ (which is formal locally a closed immersion; cf [8]). Moreover, (1.5.3)

is a CR-system, i.e., the special fiber T (p)s consists of two irreducible components Π, Π′

meeting transversely above each Fq2-rational point of Xs (q = N(p)), and the component
Π (resp. Π′) is the graph of the q-th power morphism Xs → X ′

s (resp. X ′
s → Xs).

As for ramifications, unless B w M2(Q) and unless the level of X is too small, fη, f
′
η

are etale, because the corresponding discrete subgroups of PSL2(R) are cocompact and
torsion-free. On the special fiber, fs, f

′
s involve inseparable morphisms and hence f, f ′

cannot be etale. Although a basic property of these CR-systems is that the fundamental
groups of the special fiber and the general fiber are strictly isomorphic, here, we shall
forget this aspect and lift the base scheme to the completion R of the maximal unramified
extension of op. The Galois group of the Galois closure of L/K in this case is either
PGL2(Fq) or PSL2(Fq), and L/K corresponds to the Borel subgroup (index q + 1).

As a direct consequence of Corollary 2-2 we obtain

Corollary 2-3 When ord p < p− 1, no point of Xη(k) splits completely in X0(p)η(k);
in other words, (Q1Sp) holds for the cover f : X0(p)→ X.

Theorems 1,2 tell us that in order to find a counterexample, we need to look at
coverings with non-solvable Galois groups of the Galois closure which are not defined
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locally by a single equation in two variables (at the crucial points).

The following weaker form of (Q1) is a direct consequence of Theorem 2.

Corollary 2-4 Let the ring R and f : Y → X be as in §1.1, and assume ord p <
p− 1. Suppose f is not etale. Then there exists a finite subset Σs of Xs(κ) satisfying the
following: Let Ση denote the set of all liftings of Σs to points of Xη(k). Then no point of
Xη(k) \ Ση splits completetly in Yη(k).

(A weaker form for the general case of the base ring R will be given in §4.1)

Proof The two dimensional normal scheme Y is regular outside a finite set Σ′
s of

points of Ys(κ). (Indeed, by localization one can make each prime ideal of height 1 in
the algebra of sections of O(Y ) principal. The rest is obvious.) Let Σs be the projection
of Σ′

s to Xs(κ), and let xs ∈ Xs(κ) \ Σs. Then each point ys ∈ f−1(xs) is regular on
Y . If xη (with the specialization xs) were splitting completely in Yη(k), then as we have
seen above, f must be a cover in a 1-parameter space at ys; hence by our assumption
ord p < p− 1 and by Theorem 2, f must be etale, contrary to our assumption. 2

2 Proof of Theorem 1 and other basic statements.

2.1 – Notations being as in §1.1, the finite etale cover fη : Yη → Xη corresponding to
the function field extension L/K is said to have potential good reduction, if there exists
a finite extension k′/k such that the cover f ′ : Y ′ → X ′ obtained by taking the integral
closures of X in the field extension Lk′/Kk′ is etale. Recall that this is equivalent to the
unramifiedness in Lk′/Kk′ of the discrete valutaion v′ of Kk′ defined by the generic point
of X ′

s, and that in this case, extension of v′ in Lk′ is unique. First we shall prove

Proposition 1 The assertion (Q1Sp) holds when fη : Yη → Xη has potential good
reduction.

Proof We may assume that L/K is Galois. Let v be the discrete valuation of K
defined by the generic point of Xs. By assumption there exists a finite extension k′/k,
which we may also assume Galois, such that the extension v′ of v to Kk′ is unramified
in Lk′/Kk′. By applying the purity of branch locus and Zariski’s connectedness theorem
to the integral closures Y ′/X ′ of X in Lk′/Kk′, we see that the extension of v′ to Lk′

is unique; hence the extension of v to Lk′ is also unique. But Lk′/K being Galois, this
implies that Lk′/K is linearly disjoint with the v-adic completion of K. Hence can take
the maximal unramified subfield L∗/K in Lk′/K. It is clear that L∗k′ = Lk′. Every
xη ∈ Xη(k) splits completely in Y ∗

η (k), Y ∗ being the integral closure of X in L∗; hence
if xη splits completely also in Yη(k) and if L∗ ̸= L, then it must split in a non-trivial
subextension of k′/k, a contradiction. Therefore, L∗ = L; hence f : Y → X must be
etale. 2
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2.2 – We shall show that (Q1) and (Q1’) are equivalent. Each k-rational point xη ∈
Xη(k) defines a splitting s : Gk → π1(Xη, xη) of the exact sequence

(2.2.1) 1→ π1(Xk̄, xη)→ π1(Xη, xη)→ Gk → 1.

This splitting defines a subtower of connected finite etale covers of Xη having one pro-
jective system of k-rational points above xη. If N denotes the kernel of the projection
π1(Xk̄, x) → π1(Xk̄, x)Gk

, then the semi-direct product s(Gk) · N is the smallest normal
subgroup of π1(Xη, xη) containing s(Gk). This corresponds to the tower of all connected
finite etale covers of Xη in which xη splits completely. 2

2.3 – Proof of Theorem 1 Let L/K be the function fields of Yη/Xη. We may
assume L/K to be Galois with degree n, with either n ̸≡ 0(mod p) or n = p. The first
case reduces to Proposition 1 by Abhyankar’s lemma. When n = p, let J be the (proper
smooth) abelian scheme over R obtained as the Jacobian of X, and ϕ : X → J be the
canonical morphism which maps x to the origin 0J of J . Since the covering fη is abelian,
there exists a k-isogeny Fη : Aη → Jη of abelian varieties over k such that Yη = Xη×Jη Aη

(cf.[17]; the descent argument to k is easy). Being isogenous to an abelian variety having
good reduction, Aη also has good reduction, i.e., extends to a proper smooth abelian
scheme A over R, and Fη extends to an R-morphism F : A → J of abelian schemes.
Put Y ∗ = X ×J A, and let f∗ : Y ∗ → X be the projection. If x = (xη, xs) ∈ X(R)
denotes the unique extension of xη, then (f ∗)−1(x), as R-scheme, is isomorphic to F−1(0J)
which is a finite commutative group scheme of order p on R. But (f ∗)−1(x) has [L : K]
distinct sections, and hence F−1(0J) has as many distinct R-sections. Therefore, by the
classification of finite commutative group schemes of order p over R [14, 15], this must
be etale over R when ord p < p − 1. Therefore, (f∗)−1(x) is etale over R, which means
f ∗ : Y ∗ → X etale above xs; hence etale everywhere, and this must be the integral closure
Y of X in L. 2

3 Proof of Theorem 2 and its corollaries

3.1 – We start with a lemma which is basic and elementary but does not seem to be
well-known.

Lemma A Let (K, v) be a complete discrete valuation field of mixed characteristics
(0, p), and (L, V ) be any finite extension. Let D(V/v) be the different ideal. Then

(3.1.1) ordV D(V/v) ≤ e− 1 + ordV (n∗).

Here, ordV is the normalized additive form of V , e is the ramification index, n = [L : K],
and n∗ = n/fs, fs being the degree of the separable part of the residue field extension.
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Remark When the residue field extension is separable, this can be found in a classical
literature, e.g.[2]. Deeper results for separable residue extension case (resp. more general
case) are exposed in [18](resp.[1]). But even the fact that a simple upper bound exists in
the mixed characteristic case does not seem to be singled out explicitly in the literatures
that the author has met.

Corollary A Let (K, v) be a discrete valuation field of mixed characteristics (0, p),
and L be any finite extension. Let A be the valuation ring of (K, v), B be its integral
closure in L, and D(B/A) be the discriminant of B/A which is an integral ideal of A.
Then

(3.1.2) ordvD(B/A) ≤
∑
V/v

nV

(
ordvn

∗
V + 1− 1

eV

)
,

where V runs over all distinct extensions of v to L and nV , n
∗
V , eV are as in Lemma A for

the completion LV /Kv.

Proof of Lemma A (i) (Reduction to n = p cases) Let P denote the valuation
ideal for (L, V ), and put

(3.1.3) D′(V/v) = n∗Pe−1.

The lemma is equivalent to that D(V/v) divides D′(V/v). A point is that (not only D

but also) D′ satisfies the transitivity condition for towers;

(3.1.4) D′(V2/V1)D
′(V1/v) = D′(V2/v)

for any extensions V2/V1/v. This is obvious from the definition of D′(V/v). So, when
L/K is a tower of subextensions, it suffices to prove the inequality for each step of the
tower. Since it is obviously satisfied for tamely ramified extensions, and since L/K always
possesses the maximal tamely ramified subextension (including the case where inseparable
residue field extensions are allowed; cf. e.g. [2]), it suffices to prove it in the wildly totally
ramified case. Moreover, since the equality D = D′ holds in the tame cases, we see that
if L/K is wildly totally ramified and K ′/K is tamely ramified, the inequality for LK ′/K ′

will imply that for L/K.
Now let M be the Galois closure of L/K and Ktr be the maximal tamely ramified

subextension in M . As we have seen above, it suffices to prove the inequality for the
extension L.Ktr/Ktr. But M/Ktr is a Galois extension whose Galois group is a p-group
P , and being a p-group, for each subgroup P0 of P , there exists an increasing sequence of
subgroups, starting with P0 ending with P , with index = p for each adjacent subgroups.
Hence the extension L.Ktr/Ktr has a filtration by extensions of degree p. Thus the proof
is reduced to the case of n = p.

(iia) (The case n = e = p) Let Ov ⊂ OV be the valuation rings and Π be a prime
element of V . Then OV = Ov[Π]. Therefore, if f(X) = Irr(Π, K,X) denotes the monic
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irreducible polynomial giving the equation for Π over K, then D(V/v) = (f ′(Π)). Write
f(X) =

∑
0≤i≤p aiX

p−i (ai ∈ Ov, a0 = 1). Then f ′(Π) is the sum of (p− i)aiΠ
p−i−1 over

0 ≤ i ≤ p− 1. Since the additive order ordV of these terms are mutually distinct mod p,

ordV D(V/v) = Min0≤i≤p−1

(
ordV ((p− i)aiΠ

p−i−1)
)

(3.1.5)

≤ ordV (pΠp−1) = ordV n
∗ + p− 1,(3.1.6)

as desired.
(iib)(The case n = p and e = 1) Here we shall use the symbols L̄, ω̄, etc, for the residue

field of L, the residue class of ω ∈ OV , etc. In this case, L̄/K̄ is a purely inseparable
extension with prime degree p; hence L̄ = K̄(ω̄) with some ω̄ such that ω̄p ∈ K̄, ̸∈ K̄p.
Let ω ∈ OV be a lifting of ω̄, so that OV = Ov[ω]; hence D(V/v) = (f ′(ω)) where
f(X) = Irr(ω,K,X) =

∑
0≤i≤p aiX

p−i. Note that āi = 0 (1 ≤ i ≤ p− 1). Put

(3.1.7) ν = Min(ordvp, ordv((p− i)ai), (1 ≤ i ≤ p− 1)),

so that 0 < ν ≤ ordvp. Let π ∈ K be a prime element of v and express f ′(ω) as

(3.1.8) f ′(ω) = πν(b0ω
p−1 + ...+ bp−1),

with bi ∈ Ov, (b0, ..., bp−1) ̸= (0, ..., 0). Then since ω̄p−1, .., ω̄, 1 are linearly independent
over K̄, we have

(3.1.9) ordV (f ′(ω)) = ν ≤ ordvp = ordV p = ordV n
∗ + e− 1,

as desired. 2

3.2 – We shall also need the following

Lemma B Let R be a complete discrete valuation ring of mixed characteristics (0, p)
with prime element π such that κ = R/π is algebraically closed. Let (A,m) be a 2-
dimensional regular local domain dominating (R, π), and let K be the quotient field of A.
Let L/K be a finite field extension of degree n, and B be the integral closure of A, so that
B is a semi-local ring with maximal ideals denoted by m1, ...,mr. Suppose that there exists
an R-homomorphism ϕ : A→ R that extends to n distinct R-homomorphisms

(3.2.1) ϕ
(i)
j : B → R (1 ≤ j ≤ r, 1 ≤ i ≤ dj)

where the index j indicates that the maximal ideal of B defined as the kernel of the com-

posite
¯
ϕ

(i)
j = ϕ

(i)
j (modπ) is mj. For each b ∈ B, let DL/K(b) ∈ A denote its discriminant.

Then

(3.2.2) ordπ(ϕ(DL/K(b))) ≥
r∑

j=1

dj(dj − 1) for any b ∈ B.
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Proof of Lemma B Let M/K be the Galois closure of L/K, G be the Galois group,
and C be the integral closure of B in M . Then ϕ extends to an R-homomorphism C → R,
because by assumption and by the definition ofM it extends at least to a k-homomorphism
C ⊗ k → k, but the image of C is integral over R; hence it is R itself. Pick one such
extension ϕC,1 : C → R, and denote by ϕ̄C,1 the composite with the reduction map R→ κ.
Let mC,1 be the maximal ideal of C corresponding to the kernel of ϕ̄C,1. The Galois group
G acts on C and acts simply transitively ϕC → ϕC ◦ g (g ∈ G) on all extensions ϕC of ϕ
to C. 1 The distinct extensions of ϕ to B thus correspond, via ϕC,1 ◦ g|B ←→ gH with
the right coset space G/H, where H = Gal(M/L). Let I denote the stabilizer of mC,1 in
G. (Note that elements of I act trivially also on C/mC,1 = κ.) Note that ϕC,1 ◦ g|B and
ϕC,1 ◦ g′|B belong to the same maximal ideal of B if and only if suitable H-conjugates
of ϕC,1 ◦ g and ϕC,1 ◦ g′ belong to the same maximal ideal of C, and hence if and only if
IgH = Ig′H. Thus, {mj}1≤j≤r correspond bijectively with I \G/H, and dj is the number
of elements of G/H contained in this double coset. Note that n = (G : H) =

∑r
j=1 dj.

Now, by definition,

(3.2.3) DL/K(b) = ±
∏

σH,τH∈G/H
σH ̸=τH

(σb− τb) ∈ A;

hence

ϕ(DL/K(b)) = ϕC,1(DL/K(b)) = ±
∏

σH,τH∈G/H
σH ̸=τH

ϕC,1(σb− τb)(3.2.4)

≡ 0(mod
∏

σH,τH∈G/H
σH ̸=τH, IσH=IτH

ϕC,1(σb− τb)),(3.2.5)

where mod refers to divisibility in R. But when IσH = IτH, σb−τb = (σb)−i(σb) ∈ mC,1

with some i ∈ I; hence ϕC,1(σb−τb) ∈ πR for any such σ, τ . Therefore, the product inside
the mod sign is divisible by

π
∑r

j=1 dj(dj−1).

This proves lemma B.

3.3 – By combining Lemmas A and B, we obtain the following theorem, of which
Theorem 2 (§1.5) is a direct consequence (apply Theorem C to A = O∧

xs,X ,B = O∧
ys,Y ).

1Recall that for any Galois extension R′/R of a normal ring R and a prime ideal p of R, the Galois
group acts transitively on the set of all prime ideals of R′ lying over p; cf. e.g. [13].
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Theorem C Let (R, π) be as in Lemma B, and let A = R[[t]] be the ring of formal
power series in one variable over R. Let B be the integral closure of A in a finite extension
 L of the quotient field K of A, and put n = [ L : K]. Assume:

(i) for any prime ideal q of A with height 1 other than (π), the discrete valuation of K

defined by the localization at q is unramified in  L;
(ii) the R-homomorphism ϕ0 : A → R defined by t 7→ 0 extends to n distinct homo-

morphisms B → R;
(iii) ord p < p− 1;
(iv) the A -algebra B is generated by a single element.

Then B = A.

Proof Note first that B is a complete normal local domain. By assumption (ii) we
have, by Lemma B (for A complete; hence r = 1, d1 = n),

(3.3.1) ordπϕ0(D L/K
(b)) ≥ n(n− 1) for any b ∈ B.

By assumption (iv), B = A[b0] with some b0 ∈ B; hence D(B/A) is a principal A-ideal
generated by D L/K

(b0). By abuse of notations, we use the symbol D(B/A) ∼ D L/K
(b0)

also for any generator, determined up to A×-multiples (denoted by ∼). Therefore,
ordπϕ0(D(B/A)) ≥ n(n− 1), i.e.,

(3.3.2) D(B/A) ∈ (t, πn(n−1)).

On the other hand, A is a unique factorization domain and by assumption (i), D(B/A)
cannot be divisible by any prime of A other than that ∼ π; hence

(3.3.3) D(B/A) ∼ πδ,

with

(3.3.4) δ ≥ n(n− 1).

Now, on the other hand, if A(π) denotes the discrete valuation ring obtained by local-
ization at (π), and if we put B(π) = B ⊗A A

(π) which is nothing but the integral closure
of A(π) in  L, then

(3.3.5) δ = ordπD(B(π)/A(π));

hence by Corollary A of Lemma A, we have (noting that n∗
p is a factor of np)

(3.3.6) δ ≤
∑
p/(π)

np

(
ordπnp + 1− 1

ep

)
,
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where p runs over all extensions of (π) to B(π), np is the local degree and ep is the
ramification index; hence by (3.3.4),

(3.3.7) n(n− 1) ≤
∑
p/(π)

np

(
ordπnp + 1− 1

ep

)
.

But since n is the sum of local degrees n =
∑
p/(π) np, we have

(3.3.8)
∑
p/(π)

np(np − 1) ≤ n(n− 1);

hence by (3.3.7)

(3.3.9)
∑
p/(π)

np(np − 1) ≤
∑
p/(π)

np

(
ordπnp + 1− 1

ep

)
;

or equivalently,

(3.3.10)
∑
p/(π)
np>1

np(np − 1) ≤
∑
p/(π)
np>1

np

(
ordπnp + 1− 1

ep

)
.

We now appeal to the following small sublemma:

(Sublemma) Let p be a prime number > 2, and a,m be integers satisfying 1 ≤ a ≤ p−2
and 2 ≤ m. Then

(3.3.11) a.ordpm+ 1 ≤ m− 1.

To verify this, first note that the inequality holds for ordpm = 0 because m ≥ 2, and
also for ordpm = 1 because then a + 1 ≤ p − 1 ≤ m − 1. So let b := ordpm ≥ 2. Then
m ≥ pb; hence

(3.3.12) m− 1 ≥ pb − 1 ≥ (p− 1)b + b(p− 1) > 1 + b(p− 1) > 1 + ab.

Now returning to the proof of Theorem C, by applying this (3.3.11) to m = np, a =
ordπp, we obtain (for np > 1)

(3.3.13) ordπnp + 1 ≤ np − 1;

hence by (3.3.10) and (3.3.13),

(3.3.14)
∑
p/(π)
np>1

np (ordπnp + 1) ≤
∑
p/(π)
np>1

np(np − 1) ≤
∑
p/(π)
np>1

np

(
ordπnp + 1− 1

ep

)
.
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This can be satisfied only when the sum is empty, i.e., when there is no p/(π) with np > 1.
Therefore, np = 1 holds for all p/(π); in particular, p/(π) must be unramified. Together
with the assumption (i), this means that all primes of A of height 1 are unramified in B.
Since A is regular and B is normal, this implies that B/A is etale (purity of branch loci;
cf. e.g. [13]). Since κ is algebraically closed and the local ring A is complete, this means
that B = A. 2

Remark The readers may (reasonably) wonder, on looking at the above inequality
(3.3.14), why ”the ep = 1” case should look more contradictory than the case where ep
is close to ∞; especially whether even an unramified extension should lead, absurdly,
to a contradiction. But this is not the case. In Theorem C, we consider an integral
extension of completed local rings where the degree does not contain any contributions
from unramified extensions.

3.4 – We note that if Theorem C holds without the assumption (iv), then it will give
(Q1) an affirmative answer, together with a local proof. Indeed, (iv) corresponds to the
assumption in Theorem 2 that f be a cover in a 1-parameter space (at the specializations
of splitting sections). But the fact is that the assumption (iv) cannot be dropped. In
this subsection, we shall first show this by an example. It is cyclic of degree p. Recall
that there is no counterexample to (Q1) for such extensions (Theorem 1), so this local
counterexample should not extend to a global extension. We shall proceed to give an
explanation of this situation, and give an alternative proof of Theorem 1 which does not
(at least directly) rely on classification of finite commutative group schemes of order p.

For simplicity, let ord p = 1, i.e., R = W[[F̄p]] (p > 2). Put R′ = R[µp]. As is
well-known, R′ (in fact, Zp[µp]) contains a prime element π′ defined by π′p−1 = −p (up
to µp−1-multiples), which is useful because it is an eigenvector of the ∆ = Gal(k(µp)/k)
action corresponding to the Teichmüller lifting. As in Theorem C, let A = R[[t]], and K

be its quotient field. Put A′ = A[π′] = R′[[t]]. An element of A′ congruent to 1 (modπ′)
is a p-th power if and only if it is 1 (modπ′p). Let exp∗ denote the truncated exponential
series up to degree p− 1.

Example 1 Let K′ = K(π′). The Kummer extension  L′ = K′(exp∗(π′t)1/p) over K′ of
degree p descends (uniquely) to a cyclic extension  L/K of degree p. The integral closure
B of A in  L satisfies the assumptions (i)(ii)(iii) but not the conclusion of Theorem C,
because B ̸= A. In fact, the discrete valuation of K defined by the prime ideal (p) of A is
ramified in  L, with ramification index p. Accordingly, B does not satisfy (iv).

In general, for each a = a(t) ∈ A, let ga = exp∗(aπ′) ∈ A′. This is not a p-th power

if and only if a ̸≡ 0(mod p). This being assumed, the Kummer extension  L′
a = K′(g

1/p
a )

descends uniquely to a cyclic extension  La/K of degree p, and every cyclic extension  L/K of
degree p is obtained this way. The point is that the class of ga in the multiplicative group
A′×/(A′×)p is again a ∆ w Gal(K′/K)-eigenvector with the correct eigenvalue, i.e., δ ∈ ∆
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which maps ζ to ζr (ζ ∈ µp) raises this class also to its r-th power. The discrete valuation

of K defined by (p) is ramified in  La. (In fact, the equation for g
1/p
a −1 over K′ is Eisenstein;

hence the ramification index is p for  L′
a/K

′ and hence also for  La/K.) It is potentially
unramified if and only if a ≡ a(0)(mod p). All primes of A of height 1 other than (p) are
unramified in  La (because the residue class of ga is non-zero). Finally, the prime (t) splits
completely in the integral closure Ba of A in  La if and only if a(0) ≡ 0(mod p), hence in
particular if a = t.

Now let f : Y → X be as in §1.1 for R = W[[F̄p]] (p > 2). Suppose that the function
field extension L/K is cyclic with degree p. We shall give a direct proof for potential
unramifiedness of f , which is the main content of Theorem 1.

Let v be the discrete valuation of K defined by the generic point of the special fiber
Xs. Let V be an extension of v to L, and suppose that V/v is ramified. Note that the
extension V/v is then unique. We shall denote by ∗̄ the residue class of ∗ (elements, fields,
etc.), and by ∗′ the adjunction of µp to ∗; for example, K ′ = K(µp), K̄ ′ = K̄, X ′

s w Xs

(canonically).
(Claims) (i) There exists g ∈ K ′ such that L′ = K ′(g1/p) and ḡ = 1;

(ii) a := (g − 1)/π′ ∈ K̄ ′ = K̄ is independent of the choice of such g as in (i);
(iii) a is holomorphic everywhere on Xs and hence is a constant ∈ κ;
(iv) V is potentially unramified in L/K.

(Proof of the Claims) (i) By Kummer theory, there exists g ∈ K ′ with L′ = K ′(g1/p)
and we may replace g by a multiple of any element of (K ′×)p. Since L′ = LK ′ with L/K
abelian, the class of g in the multiplicative group K ′×/(K ′×)p must be a ∆-eigenvector
with the correct eigenvalues; i.e., if δ ∈ ∆ raises each primitive p-th root of unity to its
r-th power, then it also raises the class of g to its r-th power. The point in the following
is that there exists δ with which r ̸≡ 1(mod p). Since ∆ leaves the valuation V ′ invariant
and acts trivially on the residue field K̄ ′, this first shows that the V ′-adic order of g must
be divisible by p and hence we may assume it is 0; and then that the residue class ḡ must
be a p-th power in K̄ ′× and hence we may assume it is 1.

(ii) If we replace g by g′ = ghp with h̄ = 1, i.e., h = 1 +π′h0 with ordv′(h0) ≥ 0, then
hp ≡ 1(modπ′p). Hence g′ ≡ g(modπ′p), whence (ii).

(iii) Since Yη/Xη, and hence also Y ′
η/X

′
η is etale, the divisor of g must be a p-th power;

(g) = Dp on the curve X ′
η. (Note that the k′-rationality of Dp implies that of D.) Since

ḡ = 1, the specialization Ds = D̄ on Xs is trivial; Ds = (1). (The poles and the zeros
cancel with each other after specialization.) For any divisor D′ on X ′

η, we denote (as
usual) by L(D′) the k′-linear space of rational functions F on K ′ satisfying (F ) ·D′ ≥ 1,
and by ℓ(D′) its dimension. We use the suffix s to denote the specialization, and use
similar notations for divisors on Xs. If Ov′ denotes the valuation ring of v′, then there is
a reduction map from L(D′) ∩Ov′ (which is a free R′-module of rank ℓ(D′)) into L(D′

s).
It is not generally surjective, but it is so when ℓ(D′) = ℓ(D′

s).
Now, we shall show that a, as a rational function on Xs, is holomorphic at any given
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point (which we write like a divisor here as) Ps. For this purpose, pick any point Q of
X ′

η(k′) such that Qs ̸= Ps. Let gX > 0 denote the common genus of Xη and Xs, and take
any n > 2gX −2, so that (by Riemann-Roch, noting that deg(D) = 0 and that Ds = (1)):

ℓ(QnD) = ℓ(Qn
sDs) = ℓ(Qn

s ) = n− gX + 1 > 0;

Hence L(QnD) ∩ Ov′ maps surjectively to L(Qn
s ) which contains the constant 1; hence

there exists h ∈ L(QnD) such that h̄ = 1. Replace g by g′ = ghp, so that (g′) = (D(h))p ≥
Q−np; hence the only pole of g′ on X ′

η is at Q. Therefore, (g′ − 1)/π′ is finite at every
generalization of Ps on X ′; hence it must be finite at Ps; in other words, a must be finite
at Ps. Since Ps was an arbitrary point of Xs(κ), a must be a constant. This settles (iii).

(iv) Now pick any xs ∈ Xs(κ), let t be a local parameter at xs, and identify the
complete local ring O∧

xs,X with A = R[[t]]. Then as shown above, the extension  L of
the fraction field K of A corresponding to L must be of the form  L =  La, with some
a = a(t) ∈ A. But since ga = exp∗(π′a), we obtain

(3.4.1) a = (ga − 1)/π′ = a(t)(mod p).

Therefore, by claim (iii), we obtain a(t) ≡ a(0)(mod p); hence the discrete valuation (p)
is potentially unramified in  L, and hence also in L. 2

4 Other related subjects

4.1 – Over general base rings Let R and f : Y → X be as in §1.1. So far,
we discussed the question whether the complete splitting of one point of Xη(k) in Yη(k)
implies etaleness of f , under the assumption ord p < p − 1. This question stands on a
narrow unstable spot, and so we are trying to find natural generalizations. One direction
for consideration is, to remove the assumption on R and see how the situation changes;
this we shall discuss in the present and the following subsection. Another direction is
related to the consideration of X/p or X/4 instead of Xs = X/π, of relevant infinitesimal
automorphisms, and questions related to the regularity of Y . These are mutually related,
and certainly also related to whether R had been chosen to be the minimal base ring for
X. This direction requires further studies and will not be discussed here.

The situation changes drastically if we change R so as to contain µp. To see this,
it suffices to look at any isogeny λ : E ′ → E of (proper smooth models over R of)
elliptic curves having ordinary reduction, with λs inseparable of degree (say) p. This
cover can possess a complete splitting k-rational point only if each point of Ker(λ) is
k-rational, and this imposes µp ⊂ R. This also makes the cover Galois. Now this being
assumed, we see that each disk on Eη(k) contains both splitting (completely in E ′

η(k))
points and non-splitting points. Indeed the k-rational torsion points (and points in their
small neighborhood) give splitting points, but on the other hand, the induced isogeny
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of formal groups R → R cannot be surjective; hence non-splitting points certainly exist
inside the same disk.

What we can show, in the case of general base ring R, is the following:

Proposition 2 Let R and f : Y → X be as in §1.1. Suppose f is not etale. Then
there exists a finite subset Σs of Xs(κ) such that every disk Dsk(η/xs) with xs ̸∈ Σs

contains a point which does not split completely in Yη(k). If Y is regular, then this holds
with Σs = ϕ.

For isogenies λ : E ′ → E of elliptic curves, we can take Σs = ϕ, because E ′ is regular.
An example of higher genus case, where we need a non-empty exceptional set Σs, will be
given in §4.2.

Proof As in the proof of Corollary 2-4, we remove from Xs(κ) the (finite) set Σs

consisting of projections of all points of Ys(κ) that are not regular on Y . Let xs ̸∈ Σs

and ys ∈ f−1(xs), so that ys is regular on Y . As noted earlier, f not being etale, there
exists ys ∈ f−1(xs) at which f is not etale. Choose such a point ys. If ys does not
extend to any section in Y (R), then it implies that no k-rational point xη in the disk
corresponding to xs can split completely in Yη(k). So, suppose that ys extends to a
section y = (yη, ys) ∈ Y (R), and put f(y) = x = (xη, xs) ∈ X(R). In the same disk we
shall find a non-splitting point. Since the local rings B = Oys,Y , A = Oxs,X are regular,
each section y (resp. x) is defined by a single equation T = 0 (resp. t = 0). Since the
maximal ideal of R is generated by (π), the maximal ideals of B,A have the generators
mB = (T, π), mA = (t, π), respectively. Hence B/π is also regular; hence ys is smooth on
Ys, lying on just one irreducible component Π of Ys of multiplicity one. Since f is not
etale at ys and hence also on the generic point of Π, fs : Π → Xs must be inseparable.
Therefore, by completion we obtain B∧ = R[[T ]] ⊃ A∧ = R[[t]] which is a finite integral
extension, where

(4.1.1) t = F (T ) =
∑
n≥0

anT
n,

with a0 = 0 (because the section T = 0 lies above t = 0), an ≡ 0(modπ) for all n with
(n, p) = 1 (because of the inseparability mentioned above); but not all the coefficients are
divisible by π. Let m be the smallest positive integer such that am ̸≡ 0(modπ). Now take,
say, t0 = π, and decompose the power series F (T )− t0 into the product of an Eisenstein
polynomial E(T ) of degree m and a unit of B×. Then since E(T ) is irreducible over k, the
R-section of X defined by t = t0 cannot extend to an R-section of Y through ys. Hence
it cannot split completely in Yη(k). 2

4.2 – Kummer covers of degree p and their global invariants

Let us study in more detail the following case; µp ⊂ R, fη is cyclic with degree p,
and fs is purely inseparable. Then Ys is irreducible, reduced, and has some cuspidal
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singularities. In this case, the “safety” exceptional set Σs in Proposition 2 will not be
chosen in connection with irregular points as in its proof, but from a different reason. By
using the “associated invariant differential”, we can give an upper bound of the cardinality
of Σs for this case:

(4.2.1) |Σs| ≤ 2(gX − 1)/p.

To show this, let µ : Y ∗
s → Ys be the normalization. Then the p-th power (Fp-)isomorphism

Φp maps Xs onto Y ∗
s ;

Y ∗
s

µ−→ Ys
fs−→ Xs,(4.2.2)

Xs

Φpw Y ∗
s .(4.2.3)

Let (Q∗
s, Qs, Ps) be a triple of corresponding points of (Y ∗

s , Ys, Xs). Their completed
local rings and inclusion relations can be expressed as

(4.2.4) κ[[T ]] ⊃ B = O∧
Qs,Ys

⊃ κ[[T p]].

As in [17](IV-1), call n = nQs the conductor exponent, i.e., the smallest non-negative
integer satisfying B ⊃ T nκ[[T ]], and put δ = δQs = dim(κ[[T ]]/B). Call M = MQs the
collection of all such m′ ∈ N that B contains a power series starting with Tm′

, which
forms a submonoid of N. Note that δ = |N \M | and n − 1 is the largest element of
N\M . Clearly, M contains p, and some other element ̸≡ 0(mod p), of which let m = mQs

be the smallest. Since M contains the monoid ⟨p,m⟩ generated by p and m, we have

(4.2.5) (p− 1)(mQs − 1) ≥ 2δQs ,

where the equality holds if and only if M = ⟨p,m⟩. We are going to show that

(4.2.6) nQs = 2δQs = (p− 1)(mQs − 1),

(4.2.7) 2(gX − 1) =
∑
Qs

(mQs − 1).

Let L/K be the corresponding function field extension. By our assumption µp ⊂ R,
L/K is a Kummer extension, L = K(g1/p) with some g ∈ K× determined up to (K×)p-
multiples. In our case where an inseparable residue extension arises, we can choose g such
that ḡ = gXs ̸= 0,∞. There are two cases;

(Case 1) ḡ1/p generates L̄;
(Case 2) One can choose such g that satisfies g ≡ 1(modπdp), with some d <

(ordπp)/(p− 1) (choose d to be as large as possible).

18



Let us mainly consider Case 1. Then the differential ω1 = dḡ/ḡ is independent of the
choice of g. By the etaleness of fη, the order of ḡ at each point of Xs must be divisible
by p; hence dḡ/ḡ cannot have any poles on Xs; i.e., ω1 is a differential of the first kind on
Xs (invariant by the Cartier operator, being of d log-type).

Now, given (Q∗
s, Qs, Ps), by an argument similar to that in §3.4, we may change g

and assume that g ∈ OPs,X with g ≡ 1(mod mPs,X); hence g1/p ∈ OQs,Y ; hence ḡ1/p ∈ B,
where we use T = t̄1/p. Let m′ = m′

Qs
be the smallest positive integer not divisible by p

such that the term Tm′
appears in the series of ḡ1/p in B ⊂ κ[[T ]], or equivalently, such

that t̄m
′

appears in the series of ḡ in κ[[t̄]] = O∧
Ps,Xs

. This means that the order of dḡ;
hence that of ω1 at Ps is equal to m′

Qs
− 1;

ordQs(ω1) = m′
Qs
− 1,(4.2.8)

2(gX − 1) = deg(ω1) =
∑
Qs

(m′
Qs
− 1).(4.2.9)

By their definitions, we also have

(4.2.10) m′
Qs
≥ mQs .

Now, since fη : Yη → Xη is etale with deg fη = p, the invariance of the arithmetic genus
for the two fibers of Y gives p(gX − 1) + 1 = gX +

∑
Qs
δQs , i.e.,

(4.2.11) (p− 1)(gX − 1) =
∑
Qs

δQs .

From (4.2.9)(4.2.10), we obtain

(4.2.12) 2(p− 1)(gX − 1) =
∑
Qs

(p− 1)(m′
Qs
− 1) ≥

∑
Qs

(p− 1)(mQs − 1);

and by (4.2.5) and (4.2.11),

(4.2.13)
∑
Qs

(p− 1)(mQs − 1) ≥ 2
∑
Qs

δQs = 2(p− 1)(gX − 1).

Therefore, all “≥” involved must be equalities, and we have

m′
Qs

= mQs , 2δQs = (p− 1)(mQs − 1),(4.2.14)

MQs = ⟨p, mQs⟩, nQs = 2δQs .(4.2.15)

We have also proved the equalities (4.2.6)(4.2.7).
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Now let us show that if m′
Qs
< p, then the disk (⊂ Xη(k)) above Ps contains a non-

splitting point. By the definition of m′ = m′
Qs

, g = g(t) ∈ O∧
Ps,X = R[[t]] can be expressed

as g(t) ≡ 1 + cG(t)(mod tm
′+1), with some c ∈ R× and a monic polynomial G(t) of degree

m′ whose lower degree coefficients are all divisible by π. It is easy to see that there exists
t0 ∈ πR such that ordπ G(t0) = m′. (Indeed, for each fixed zero τ of G(t) in a finite
extension of R, the inequality ord(t0− τ) > 1 for t0 ∈ πR can hold on at most one residue
class mod π2.) For such t0, we have g(t0) − 1 ̸∈ πm′+1R; hence g(t0) − 1 ̸∈ πpR, which
implies that g(t0) cannot be a p-th power element of R×. Hence the point of Xη(k) defined
by t = t0 cannot split completely in Yη(k). Now if H denotes the number of points Qs

satisfying m′
Qs
≥ p+ 1, then (4.2.7) gives H ≤ 2(gX − 1)/p, as desired.

In Case 2, the invariant differential on Xs is ω1 = da, where a = ((g − 1)/πdp). and
a1/p is a generator of L̄. In this case, ω1 is killed by the Cartier operator, being an exact
differential.

Example 2 (p = gX = 3) Let κ = F̄3, R = W[[κ]][µ3], and k be the quotient field of
R. Choose i ∈ R with i2 = −1. Let X ⊂ P2 = {(x : y : z)} be the smooth plane quartic

(4.2.16) x3y − xy3 + (4xy − 3y2)z2 + z4 = 0

over R. Then P ′ = (i : i : 1) and P” = (−i : −i : 1) are points of inflexion on
Xη = X ⊗ k, with the tangent lines ℓ′ : z + ix = 0, ℓ” : z − ix = 0, respectively.
Moreover, Xη ∩ ℓ′ \ {P ′} = Xη ∩ ℓ” \ {P”} = {P},P = (0 : 1 : 0). Thus, the function
g = (z + ix)/(z − ix) ∈ K = k(X) has divisor

(g) = (P ′/P”)3.

The cover f : Y → X corresponding to L = K(g1/3) is cyclic of order 3, with fη etale and
fs purely inseparable. The differential ω1 = dḡ/ḡ on the reduced curve Xs over κ has the
divisor

(ω1) = P 4
s .

Hence Ys has a unique cuspidal singularity Qs above Ps, with mQs = 5 and δQs = 4. It is
easy to see that all points on the disk Dsk(Ps) ⊂ Xη(k) split completely in Yη(k). Thus,
the exceptional set Σs in Proposition 2 is really necessary.

Incidentally, the curve Xs has p-rank = 3 = gX , all points are points of inflexion, i.e., meet the
tangent line with the order of contact ≥ 3, which is equal to 4 (the Weierstrass point) if and only if the
point lies on z = 0 (Ps being one of such). In connection with the abelian argument in §2.3, we note the
following. The canonical map ϕ : X → J into the Jacobian with ϕ(P ) = 0J induces a mapping from the
disk Dsk(Ps) into the disk neighborhood Dsk(0J) of 0J , but in the present example, this local image
cannot generate Dsk(0J) (intuitively, the image of the curve disk has the highest possible contact with
the hyperplane corresponding to ω1; it is too much like a straight line to be able to generate the whole
disk Dsk(0J).
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4.3 – P1 − {0,1,∞}. The questions and results discussed so far should naturally
be generalized to the case of tame covers. Here, we shall only formulate the case of
X = P1 − {0, 1,∞}, the projective t-line X̃ = P1 over R, minus 3 sections defined
by t = 0, 1,∞ (as usual, to be called cusps). Actually, the question arose from the
consideration of this case. Let the base ring R be as in §1.1, K = k(t) be the function
field of X, L/K be a finite extension, and f̃ : Ỹ → X̃ (resp. f : Y → X) be the integral
closures in L of X̃ (resp. X). Assume that fη is etale, and that the ramification indices
of f̃η above each cusp are not divisible by p.

Question (Q2) Assume ord p < p − 1. Let x = (xη, xs) ∈ X̃(R) be such that x is
either a cuspidal section, i.e., xη = 0, 1, or ∞, or is disjoint from them, i.e., xs ̸= 0, 1,∞.
Suppose that the following conditions are satisfied for each closed point yη ∈ Ỹη above xη;
(i) yη is k-rational; (ii) when x is cuspidal, each yη moreover has a local parameter τ such
that ordπ(τ e/tx)|yη = 0, where e = e(yη/xη) is the ramification index and tx is a “good”
local parameter at xη, i.e., its reduction serves also as a local parameter at xs.

Then, is f necessarily etale?

Let b be either a tangential base point, e.g.,
→
01, or a k-rational point xη ∈ Xη(k) such

that xs ̸= 0, 1,∞. Consider the quotient πτ
1 (Xk̄, b) of the fundamental group π1(Xk̄, b)

defined by the condition that the ramification indices above cusps are not divisible by p.
The absolute Galois group Gk = Gal(k̄/k) acts on this group, and we obtain a canonical
surjective homomorphism

(4.3.1) ψX,b : πτ
1 (Xk̄, b)Gk

→ πtame
1 (Xs, bs),

from the Gk-coinvariant of πτ
1 (Xk̄, b) onto the tame fundamental group of Xs = P1

κ −
{0, 1,∞}. When b =

→
01, πτ

1 (Xk̄, b)Gk
can be identified naturally with the Galois group

Gal(M/K), whereM is the maximal Galois extension contained in k{{t}} = ∪N≥1k((t1/N))
(the field of Puiseux series over k) which is unramified outside cusps and such that the
ramification indices above cusps are not divisible by p. It is easy to see that (Q2) is
equivalent to:

Question (Q2’) Assume ord p < p− 1. Then, is ψX,b an isomorphism?

For each positive integer N ̸≡ 0(mod p), we have the Fermat cover fN : YN → X of
level N defined by the function field extension k(t1/N , (1 − t)1/N) of K. The cover fN is
abelian, with Galois group (Z/N)2, the ramification index above each cusp is exactly N ,
and is etale on YN . By using the Fermat covers fN for all N ̸≡ 0(mod p), it is easy to
deduce the following:

(i) If the equivalent questions (Q1)(Q1’) have affirmative answers, then so do (Q2)(Q2’).
(ii) Theorem 1 is valid also in this case.
(iii) Theorem 2 remains valid if the given splitting point xη ∈ Xη(k) is such that

xs ̸= 0, 1,∞. When xη ∈ {0, 1,∞}, say xη = 0, it remains valid under the following
modification:
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Replace f : Y → X by the integral closures f ′ : Y′ → X′ in L(t1/N)/K(t1/N) (so that
X′ = P1−{0, µN ,∞}), N being the least common multiple of ramification indices above
t = 0 in L/K. Assume that f ′ is a cover in a 1-parameter space at each point of Y′

s above
0. Then, under the assumptions ord p < p − 1 and k(f ′

η
−1(0)) = k, it follows that f is

etale.

5 Appendix: The associated differential.

5.1 – Let R, π, k be as in §1.1. When the special fiber fs of the cover f : Y → X
contains (potential) inseparability of degree, say q which is a power of p, we can canonically
construct a certain rational differential of degree q − 1 on a finite separable cover of Xs.
The idea goes back to [7]. (The author has not heard that something similar has appeared
in a different language since then.) Although delicate phenomena are of codimension 2,
the definition itself is 1-dimensional, local.

Thus, take any complete discrete valuation field K containing k and extending the
valuation of k, such that

(i) K/k is absolutely unramified, i.e., π serves also as a prime element of K;
(ii) the residue field K̄ is a finitely generated 1-dimensional extension of κ.
Since κ is perfect, K̄ is separably generated over κ, and since K̄ is 1-dimensional, the

only purely inseparable extensions of K̄ are K̄1/pn
, and [K̄1/pn

: K̄] = pn (n = 1, 2, ...). Let
O denote the valuation ring of K, and Ω = ΩO, the module of continuous differentials,
which is a principal O-module. The reduction Ω̄ = Ω⊗O K̄ can be identified with ΩK̄, the
module of differentials of K̄.

Let L/K be a finite extension, with the valuation ring O′, the module of continuous
differentials Ω′, and let i : Ω → Ω′ be the O-module homomorphism induced from the
inclusion O ⊂ O′. Let D be the “different”, i.e., the O′-ideal defined by O′i(Ω) = DΩ′.
First let us consider the case where the ramification index e = 1 and L̄/K̄ is purely
inseparable, L̄ = K̄1/q. Then D = πνO′ with some positive integer ν, and the associated
differential ω, which is a non-zero element of Ω

⊗(q−1)

K̄ , is defined as follows.

Pick any ξ ∈ Ω such that Ω = Oξ. Note that π−νi(ξ) ∈ Ω′, ̸∈ πΩ′. Hence π−νi(ξ)
defines a non-zero element of Ω̄′ = ΩL̄. The q-th power map L̄→ K̄ induces an equivariant
morphism Φ : ΩL̄ → ΩK̄, which is an Fp-module isomorphism; hence ζ̄ := Φ(π−νi(ξ)) is a
non-zero element of ΩK̄. Now define

(5.1.1) ω = ξ̄⊗q/ζ̄ ∈ Ω
⊗(q−1)

K̄ .

The point is that this ω is independent of the choice of ξ. This is because if ξ is replaced by
gξ (g ∈ O, ḡ ̸= 0), then the numerator and the denominator in (5.1.1) are both multiplied
by ḡq. The differential ω depends only on the choice of the initial prime element π of R.
Thus in the absolutely canonical sense, it is determined up to κ×-multiples.
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If the ramification index e in L/K is not equal to 1, then for a suitable constant field
extension k′/k, Lk′/Kk′ will have the ramification index equal to 1. This is due to Epp
[3]. (The assumption in [3] is that L̄p∞ , which in this case is κ, be separably algebraic
over κ.) If e = 1 but L̄/K̄ is not purely inseparable, then by replacing K by the maximal
unramified subextension K∗ in L we can define the differential ω which will be a differential
of degree q∗ − 1 on K̄∗, where q∗ = [L̄ : K̄∗].

Finally, if e = 1 with L̄/K̄ purely inseparable, and if we make further constant field
extension k′/k, then (e = 1 holds also for Lk′/Kk′ trivially, and) Lk′/Kk′ is again purely
inseparable with the same degree, and the differential ω for Lk′/Kk′ is the same as that for
L̄/K̄. Here, note that the different D for Lk′/L and Kk′/K have the common generators
as that of k′/k, and hence D for Lk′/Kk′ and L/K also have common generators. Thus,

Any ramified and not potentially unramified extension L of K gives rise canonically to
an associated differential of degree q−1 (q some power of p) on a finite separable extension
K̄∗ of K̄.

(Transitivity) When we have a tower K ⊂ L ⊂ M of finite extensions each with
ramification index 1, we have the following transitivity relation, which follows directly
from the definitions:

(5.1.2) ωM/K∗∗ = Φ(ωM/(LK∗∗)) ⊗ i(ωL/K∗)⊗q′ ∈ Ω
⊗(qq′−1)

K∗∗ .

Here, K∗, K∗∗ are the maximal unramified subextensions of K in L, M, respectively, so
that LK∗∗ is the maximal unramified subextension of L in M. Thus, L̄/K∗ and LK∗∗/K∗∗

are purely inseparable with the same degree (denote by q), and so is M̄/LK∗∗ (the degree
denoted by q′). Each suffix in ω indicates the relavant extension;

(5.1.3) Φ : (ΩLK∗∗)⊗(q′−1) → (ΩK∗∗)⊗(q′−1)

is induced from the q-th power morphism of the base fields, and i : ΩK∗ → ΩK∗∗ is induced
from the base field inclusion.

This can be applied, for example, to a Galois extension M/K for various intermediate
fields L.

(An explicit description) Let [L : K] = [L̄ : K̄] = q, with L̄/K̄ purely inseparable.
Take x ∈ K such that x̄ ̸∈ K̄p, which implies L̄ = K̄(x̄1/q). Take y ∈ L such that ȳ = x̄1/q,
which implies O′ = O[y]; hence D = (f ′(y)), where

(5.1.4) f(y) =

q∑
i=0

aiy
q−i = 0 (ai ∈ O, a0 = 1, āi = 0(1 ≤ i < q), āq = −x̄)

is the monic irreducible equation for y over K. Write

(5.1.5) f ′(y) = πν

q−1∑
i=0

biy
q−i−1 (bi ∈ O, (b̄0, · · · , b̄q−1) ̸= (0, · · · , 0)).
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Then by

(5.1.6) πν

q−1∑
i=0

biy
q−i−1dy + (

q∑
i=0

(dai/dx)yq−i)dx = 0,

and by the above formulas for āi we obtain

(5.1.7) ζ̄ = Φ(

q−1∑
i=0

b̄iȳ
q−i−1dȳ) =

q−1∑
i=0

b̄qi x̄
q−i−1dx̄;

hence

(5.1.8) ω =
(dx̄)⊗(q−1)∑q−1
i=0 b̄

q
i x̄

q−i−1
.

In the two extreme cases where (b̄0, · · · b̄q−1) = (∗, 0, · · · , 0) (resp. (0, · · · 0, ∗)), we have

ω = ω
⊗(q−1)
1 , with ω1 = dx̄/x̄ (resp. ω1 = dx̄). The examples corresponding to Case 1

(resp. Case 2) in §4.2 are of this sort.

(The case of CR systems of Shimura curves) Let

(5.1.9) {X f←− X0(p)
f ′
−→ X ′}

be the system of relative curves as in §1.5, and K ⊂ L ⊃ K ′ be the corresponding function
fields. The special fiber of X0(p) has two components Π, Π′, with the properties that the
projections Π → Xs, Π′ → X ′

s are isomorphisms and Π′ → Xs, Π → X ′
s are purely

inseparable with degree q. The generic points of Xs, Π, Π′, X ′
s define discrete valuations

of K,L, L,K ′, respectively. The completions with respect to these valuations yield

(5.1.10) KXs ⊂ LΠ′ w K ′
X′

s
, KXs w LΠ ⊃ K ′

X′
s
,

where the non-isomorphic inclusions are of degree q with purely inseparable residue ex-
tensions. We thus obtain a pair (ω, ω′) of differentials of degree q − 1 on (Xs, X

′
s). They

are holomorphic and the divisors are

(5.1.11) (ω) = (S1 · · ·SH)2, (ω′) = (S ′
1 · · ·S ′

H)2; (H = (q − 1)(gX − 1))

where S1, · · ·SH (resp. S ′
1, · · ·S ′

H) are the projections of Π ∩ Π′ ⊂ X0(p)s on Xs (resp.
X ′

s). Moreover, the two extensions have the common different exponent ν, and the local
equation for X0(p) at each intersection is of the form uv = πν with this ν. Therefore,
X0(p) is regular if and only if ν = 1. In particular, it is regular when q = p and ord p = 1
(cf. [7]). This pair of differential is closely related to the first infinitesimal lifting of the
special fiber of the triple (5.1.9) [11, 12].

24



I mention this old work, because the lifting of inseparable covers to etale covers does
not seem to have been studied so much, and believe that the associated differential is
at least closely related to this subject. I might also add that when the covering system
has a non-compact automorphism group, as in the case of Shimura curves, the associated
differential is the invariant of the whole system. There is also a system of curves over κ
having non-compact automorphism group and an invariant differential for which we do
not know yet anything about its liftability to characteristic 0.
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