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Abstract

We first show that the WKB-theoretic canonical form of an M2P1T (merging two poles
and one turning point) Schrödinger equation is given by the algebraic Mathieu equation.
We further show that, in analyzing the structure of WKB solutions of a Mathieu equation
near fixed singular points relevant to simple poles of the equation, we can focus our
attention on the pole part of the equation so that we may reduce it to the Legendre
equation. The Borel transformation of WKB-theoretic transformations thus obtained
gives rise to microdifferential relations, which lead to the microlocal analysis of the Borel
transformed WKB solutions of an M2P1T equation near their fixed singular points. The
fully detailed account of the results will be given in [9].

0 Introduction

The purpose of this article is to announce the main results of [9] em-

phasizing the atypical points in its reasoning which cannot be found in

earlier papers dealing with seemingly related problems, such as [3] and

[8]. As the logical structure of the argument in [9] is intricate, we try

to explain the ideas that underlie its formulation of the problem. The

target of [9] is the exact WKB analysis of a Schrödinger equation

(0.1)
( d2

dx2
− η2Q(x, a)

)
ψ = 0,

where η is a large parameter and the potential Q contains a triplet of

two simple poles and one simple turning point that merge as the pa-

rameter a tends to 0. Here “exact WKB analysis” means WKB analysis

based on the Borel transformation with respect to the large parameter

η; thus our principal aim is to analyze the singularity structure of the

Borel transformed WKB solution ψB(x, a, y), which solves the Borel

transformed Schrödinger equation

(0.2)
( ∂2

∂x2
−Q(x, a)

∂2

∂y2

)
ψB(x, a, y) = 0.

Hence the exact WKB analysis belongs to the most favorite field of

the late Professor Ehrenpreis, Fourier analysis in the complex domain.
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(Cf. [6]) Our interest in the class of Schrödinger equations with a

merging triplet of poles and a turning point originates from our desire

to understand the semi-global structure of a Schrödinger equation with

two simple poles in its potential. As is now well-known (cf. [12], [13]),

a simple pole gives an effect to the Borel transformed WKB solutions

that is similar to the effect which a turning point gives. Thus the

analysis of the class of Schrödinger equations with two simple poles

in their potentials is a natural counterpart of the classes of equations

studied in [3] (Schrödinger equations with a merging pair of simple

turning points) and in [8] (Schrödinger equations with a merging pair

of a simple pole and a simple turning point). One can then easily guess

that a WKB-theoretic canonical form of such a Schrödinger equation

is the Legendre equation with a large parameter, that is,

(0.3)
( d2

dx2
− η2Q Leg(x, a)

)
ψ = 0,

where

(0.4) Q Leg =
λ

x2 − a2
+ η−2

( γ+

(x− a)2
+

γ−
(x + a)2

)
with γ± being complex numbers and with λ being an infinite series

in η−1 with constant coefficients that satisfies an appropriate growth

order condition to be discussed later. To emphasize the fact that λ is

not a genuine constant but an infinite series we sometimes call such an

equation the ∞-Legendre equation. Parenthetically we note that, in

what follows, we basically concentrate our attention to the core part of

the potential, that is, λ/(x2 − a2) by mainly considering the situation

where γ+ and γ− are 0; this limitation is helpful in clarifying the logical

structure of our reasoning by avoiding technical complexities. By the

way, in the exact WKB analysis, an important subject is the analytic

structure of the Borel transformed WKB solutions near their fixed

singularities (cf. [11, p.112–p.113]. See also [4], [5] and [17]) , that is,
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singularities located at

(0.5)

y = −
∫ x

α

√
Q(x, a) dx + 2l

∫ α̃

α

√
Q(x, a) dx (l = ±1,±2, · · · ),

where α and α̃ are turning points (with a simple pole being regarded

as a turning point) of the equation. An important point in [3] and [8]

is that the period integral

(0.6) 2

∫ α̃

α

√
Q(x, a) dx

tends to 0 when we let a tend to 0; hence by showing that the domain

of definition of the transformation operator to the canonical form can

be chosen to be independent of a, we can analyze the analytic structure

of the Borel transformed WKB solution near a fixed singularity with

|l| � 1. But this time we find

(0.7)

∫ a

−a

dx√
x2 − a2

= πi

does not change even when a tends to 0. Thus the strategy in [3] and

[8] is not effective in this case. To circumvent the problem we dismantle

the potential of its homogeneity and seek for the class of Schrödinger

equations which can be transformed to

(0.8)
( d2

dx2
− η2 aA + xB

x2 − a2

)
ψ = 0

with A and B being infinite series in η−1 that are independent of x,

that is, the algebraic ∞-Mathieu equation (if we follow the usage of

the terminology of [7, p.98]), which we call the ∞-Mathieu equation

for short. In view of the explicit form of the potential in (0.8), we

imagine that the class which we now try to analyze would consist of

Schrödinger equations with two simple poles and one simple turning
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point. Fortunately this guess turns out to be correct, as is explained

in Section 1 below. Thus widening the target class gives a clean result,

but the problem is the fact that the Mathieu equation is a notoriously

difficult object to analyze. Hence we next contrive to deduce the an-

alytic properties of Borel transformed WKB solutions near the fixed

singularities relevant to the pair of simple poles, which was our original

target, by “driving off” the simple turning point. This contrivance will

be explained in Section 3, but here we note the following geometric

fact that explains why we introduce an auxiliary parameter ρ into our

formulation (cf. Definition 1.1 below).

To describe the geometric situation, let A0 (resp., B0) denote the

degree 0 (in η) part of A (resp., B). Then we can confirm

(0.9) A0

∣∣
a=0

6= 0 (cf. (1.39) and (1.4))

and

(0.10) B0

∣∣
a=0

= Z0ρ with Z0 = ±1 (cf. (1.40)).

Now, keeping a/ρ =: κ( 6= 0) fixed sufficiently small, we let ρ tend to

0. Then, since the turning point t0 of (0.8) is given by

(0.11) −aA0

B0
= − κA0(0)

Z0 + κβ
+O(ρ)

with some constant β, it stays away from 0. On the other hand, the

simple poles t = ±a tend to 0. Thus one may expect that the sin-

gularity structure of Borel transformed WKB solutions near the fixed

singularities relevant to the simple poles can be deduced from that of

Borel transformed WKB solutions of the Schrödinger equation whose

potential contains two simple poles only, i.e., without a turning point.

And this expectation is realized in Section 3. In ending Introduction

we note that in deducing the results in the final section (Section 4)

from those in Section 1 and Section 3, we make full use of microdiffer-
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ential relations among objects on the Borel plane which are discussed

in Section 2.

1 Definition of an M2P1T equation and its reduction to

the Mathieu equation

In what follows, U (resp., V and O) denotes a sufficiently small open

neighborhood of the origin {t ∈ C; t = 0} (resp., {a ∈ C; a = 0} and

{ρ ∈ C; ρ = 0}) and let f (t, a, ρ) denote a holomorphic function that

has the following form (1.1) on U × V ×O :

(1.1) f (t, a, ρ) = tρg(t, ρ) +
∑
j≥1

ajf (j)(t, ρ)

with

(1.2) g(t, ρ) and f (j)(t, ρ) being holomorphic on U ×O,

(1.3) g(0, ρ) = 1,

(1.4) f (1)(0, 0) 6= 0,

(1.5) ρ2 6=
(
f (1)(0, ρ)

)2
for ρ in O.

In what follows we use symbols f (0)(t, ρ) and f̃ (0)(t, ρ) respectively to

denote tρg(t, ρ) and ρg(t, ρ).

Definition 1.1. Let f(t, a, ρ) be as above, let g±(t) be holomorphic

functions on U and let Q denote the following potential:

(1.6)
f (t, a, ρ)

t2 − a2
+η−2

( g+(t)

(t− a)2
+

g−(t)

(t + a)2

)
(η : a large parameter).

Then the Schrödinger operator

(1.7)
d2

dt2
− η2Q(t, a, ρ, η)
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is called an M2P1T, merging two poles and one turning point,

operator.

Remark 1.1. For the sake of simplicity we assume the following condi-

tion (1.8) in Section 1:

(1.8) g+ = g− = 0.

Remark 1.2. It immediately follows from (1.3) that (1.7) for ρ 6= 0 has

a simple turning point when V is chosen sufficiently small.

Remark 1.3. It follows from the trivial relation

(1.9)
tf̃ (0) + af (1)

t2 − a2
=
f̃ (0) + f (1)

2(t− a)
+
f̃ (0) − f (1)

2(t + a)

that we obtain a sum of simple poles at a = 0, not a double pole.

Parenthetically we note that the assumption (1.5) guarantees that their

residues are different from 0.

Remark 1.4. The reader might wonder why the assumption about the

structure of f̃ (0)(t, ρ) is so restrictive. But, since we want to uniformly

deal with the problem for an arbitrarily small parameter ρ( 6= 0), some

strict restriction on the structure of f̃ (0)(t, ρ) is inevitable. Actually

one will be able to find that the function x
(0)
0 (t, ρ) given by (1.27) below

cannot be holomorphic on a fixed neighborhood of the origin {t = 0}
if we choose, for example,

(1.10) f̃ (0)(t, ρ) = t + ρ,

although it satisfies

(1.11) f̃ (0)(0, ρ) = ρ,

the condition we frequently use in our computation.

The purpose of this section is to show that an M2P1T equation is

WKB-theoretically transformed to an ∞-Mathieu equation. We refer
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the reader to [11, Section 2] for the basic properties of “WKB-theoretic

transformations”, but we note their heuristic explanation as follows: in

an intuitive description its core is a formal coordinate transformation

from t to x = x(t, a, ρ, η) defined by an infinite series

(1.12) x(t, a, ρ, η) =
∑
k≥0

x2k(t, a, ρ)η
−2k

which satisfies

(1.13) Q(t, a, ρ, η) =
(∂x
∂t

)2(aA + xB

x2 − a2

)
− 1

2
η−2{x; t},

for some infinite series

(1.14) A =
∑
k≥0

A2k(a, ρ)η
−2k

and

(1.15) B =
∑
k≥0

B2k(a, ρ)η
−2k,

where {x; t} stands for the Schwarzian derivative

(1.16) −2
(∂x
∂t

)1/2 ∂2

∂t2

(∂x
∂t

)−1/2

.

In what follows we call the Schrödinger operator

(1.17)
( d2

dx2
− η2aA + xB

x2 − a2

)
an ∞-Mathieu operator. Using appropriate growth order conditions

that x2k(t, a, ρ), A2k(a, ρ) and B2k(a, ρ) satisfy we can construct mi-

crodifferential operators X and Y so that they “intertwine” the Borel

transformed M2P1T operator and the Borel transformed ∞-Mathieu

operator; we have (Theorem 2.1)

(1.18) NX = YM∞,
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where M∞ denotes the Borel transformed ∞-Mathieu operator and

N denotes the Borel transformed M2P1T operator written in (x, y)-

variable with the effect of the coordinate change appropriately taken

into account (cf. (2.4) for the concrete form of N). See Section 2 for

the explicit description of X in terms of the infinite series x.

In constructing the infinite series x,A and B, we further expand

x2k(t, a, ρ) etc. in powers of a; that is, we will seek for x,A and B in

the form of double series as follows:

(1.19) x =
∑
j,k≥0

x
(j)
2k (t, ρ)ajη−2k,

(1.20) A =
∑
j,k≥0

A
(j)
2k (ρ)ajη−2k,

(1.21) B =
∑
j,k≥0

B
(j)
2k (ρ)ajη−2k.

Substituting these series into (1.13) and comparing the coefficient of

η0 we find

(1.22)
f(t, a, ρ)

t2 − a2
=
(∂x0

∂t

)2 aA0 + x0B0

x2
0 − a2

,

where

(1.23) x0(t, a, ρ) =
∑
j≥0

x
(j)
0 (t, ρ)aj,

(1.24) A0(a, ρ) =
∑
j≥0

A
(j)
0 (ρ)aj,

(1.25) B0(a, ρ) =
∑
j≥0

B
(j)
0 (ρ)aj.
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After multiplying (1.22) by (t2−a2)(x2
0−a2) we compare the coefficient

of ap to find

− f (p−2) +
∑

j+k+l=p

x
(j)
0 x

(k)
0 f (l)

(1.26.p)

= t2
( ∑
j+k+l=p

∂x
(j)
0

∂t

∂x
(k)
0

∂t
A

(l−1)
0 +

∑
j+k+l+m=p

∂x
(j)
0

∂t

∂x
(k)
0

∂t
x

(l)
0 B

(m)
0

)

−
( ∑
j+k+l=p−2

∂x
(j)
0

∂t

∂x
(k)
0

∂t
A

(l−1)
0 +

∑
j+k+l+m=p−2

∂x
(j)
0

∂t

∂x
(k)
0

∂t
x

(l)
0 B

(m)
0

)
.

In (1.26.p) terms whose indices do not meet the requirements should

be ignored, as usual. With this convention (1.26.p) with p = 0 or 1 is

of a peculiar form. For example, we find

(1.26.0) tx
(0)2
0 f̃ (0) = t2x

(0)′2
0 x

(0)
0 B

(0)
0 .

Here, and in what follows, x′ stands for ∂x/∂t. Hence we find

(1.27) x
(0)
0 (t, ρ) =

1

4B
(0)
0

(∫ t

0

√
f̃ (0)(t, ρ)

t
dt

)2

,

where B
(0)
0 is a non-zero constant to be fixed later. Then it follows

from the assumptions (1.2) and (1.3) that there exists a holomorphic

function x̃
(0)
0 (t, ρ) that satisfies

(1.28) x
(0)
0 (t, ρ) = tx̃

(0)
0 (t, ρ)

with

(1.29) x̃
(0)
0 (0, ρ) =

ρ

B
(0)
0

.
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Next we consider the case p = 1. Then, by using (1.28) we find

2tx̃
(0)
0 x

(1)
0 tf̃ (0) + t2x̃

(0)2
0 f (1)

(1.26.1)

= t2
(
x

(0)′2
0 A

(0)
0 + 2x

(0)′
0 x

(1)′
0 x

(0)
0 B

(0)
0 + x

(0)′2
0 x

(1)
0 B

(0)
0 + x

(0)′2
0 x

(0)
0 B

(1)
0

)
.

Hence it suffices to solve

2x
(0)′
0 x

(1)′
0 x

(0)
0 B

(0)
0 + x

(0)′2
0 x

(1)
0 B

(0)
0 − 2x̃

(0)
0 x

(1)
0 f̃ (0)(1.30)

= −x(0)′2
0 A

(0)
0 − x

(0)′2
0 x

(0)
0 B

(1)
0 + x̃

(0)2
0 f (1).

Here, and in what follows, we use a new variable s given by

(1.31) s = x
(0)
0 (t, ρ).

Using the symbol ẋ to denote dx/ds, we then find the following equa-

tion (1.32) with the help of (1.27).

B
(0)
0

(
2s
d

ds
− 1
)
x

(1)
0 (s, ρ)(1.32)

= −A(0)
0 − sB

(1)
0 +

[(
x

(0)′
0

)−2
x̃

(0)2
0 f (1)

](
t(s, ρ), ρ

)
,

where t(s, ρ) denotes the inverse function of s = x
(0)
0 (t, ρ). It is clear

that (1.32) admits a solution x
(1)
0 (s, ρ) that is holomorphic near s =

0 for arbitrary constants A
(0)
0 and B

(1)
0 , which are to be fixed later.

Furthermore we can immediately see

(1.33) x
(1)
0 (0, ρ) =

1

B
(0)
0

(
A

(0)
0 − f (1)(0, ρ)

)
,

(1.34)

ẋ
(1)
0 (0, ρ) =

1

B
(0)
0

(
−B

(1)
0 + Z−1

0

(
z′(0, ρ)f (1)(0, ρ) + f (1)′(0, ρ)

))
,
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where

(1.35) Z0 = x
(0)′
0 (0, ρ)

and

(1.36) z(t, ρ) =
(
x

(0)′
0 (t, ρ)

)−2
x̃

(0)
0 (t, ρ)2.

For p ≥ 2 (1.26.p) assumes the following form:

(1.37.p) C
(p)
0 (ρ) +D

(p)
0 (ρ)t + t2E (p)

0 = 0,

where C
(p)
0 and D

(p)
0 are free from t and E (p)

0 contains in it at least

(1.38)
∑

j+k+l=p

x
(j)′
0 x

(k)′
0 A

(l−1)
0 +

∑
j+k+l+m=p

x
(j)′
0 x

(k)′
0 x

(l)
0 B

(m)
0 .

One can readily find that C
(2)
0 is absent in (1.37.2) and that D

(2)
0 = 0

gives a quadratic constraint on
(
A

(0)
0 , B

(0)
0

)
(cf. [9, (1.1.1.17)]). Hence,

by assuming D
(2)
0 = 0, we can solve the equation E (2)

0 = 0 to find

x
(2)
0 (t, ρ) that is holomorphic near t = 0. As one of the most excit-

ing points in our computation becomes visible at the next stage, we

hasten to study the situation where p = 3; we will come back to the

explicit computation of x
(2)
0 (t, ρ) after the study of the case. For this

purpose we assume C
(3)
0 = 0. Then a straightforward computation

shows that this gives another quadratic constraint on
(
A

(0)
0 , B

(0)
0

)
(cf.

[9, (1.1.1.19)]). The equations D
(2)
0 = C

(3)
0 = 0 lead to

(1.39) A
(0)
0 = f (1)(0, ρ)

and

(1.40) B
(0)2
0 = ρ2.

Thus it follows from (1.29) and (1.35) that

(1.41) Z2
0 = 1.
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And, by (1.33) we find the following amazing result:

(1.42) x
(1)
0 (0, ρ) = 0!

The relation (1.42) together with (1.41) plays a crucially important

role at several points in the reasoning of [9]. As a typical example

of such points we show here how (1.41) and (1.42) effect the com-

putation of x
(2)
0 (0, ρ). To begin with, we rewrite (1.26.2) explicitly in

s
(

= x
(0)
0 (t, ρ)

)
-variable:

B
(0)
0

(
2s
d

ds
− 1
)
x

(2)
0 (s, ρ) = −A(1)

0 −B
(2)
0 s

(1.26′.2)

− 2ẋ
(1)
0 (s, ρ)A

(0)
0 − 2ẋ

(1)
0 (s, ρ)x

(1)
0 (s, ρ)B

(0)
0 − 2ẋ

(1)
0 (s, ρ)sB

(1)
0

− x
(1)
0 (s, ρ)B

(1)
0 − ẋ

(1)
0 (s, ρ)2sB

(0)
0 +

(
z(t, ρ)f (2)(t, ρ)

−
[
t−1
(
x

(0)′
0 (t, ρ)

)−2(B(1)(t, ρ) − B(1)(0, ρ)
)])∣∣

t=t(s,ρ)
,

where z(t, ρ) is the function given by (1.36) and

(1.43) B(1)(t, ρ) = f̃ (0) − x
(1)2
0 f̃ (0) − 2x̃

(0)
0 x

(1)
0 f (1) − x

(0)′2
0 x̃

(0)
0 B

(0)
0 .

By way of parenthesis we note that the condition D
(2)
0 = 0 is given

by B(1)(0, ρ) = 0. To evaluate the term in the brackets in (1.26′.2) at

s = 0 we compute ∂B(1)/∂t|t=0 to find

(1.44)

ρg′(0, ρ) − 2Z0f
(1)(0, ρ)x

(1)′
0 (0, ρ) − 2B

(0)
0 x

(0)′′
0 (0, ρ) −B

(0)
0 x̃

(0)′
0 (0, ρ).

In this computation we have repeatedly used (1.41) and (1.42); for

example, we have used (1.42) to claim

(1.45)
(
x

(1)2
0 f̃ (0)

)′∣∣
t=0

= x
(1)
0

(
x̃

(0)
0 f (1)

)′∣∣
t=0

= 0.

Using (1.41), we further notice a remarkable cancellation of terms in the

right-hand side of (1.26′.2) when they are evaluated at s = 0; it follows
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from (1.39) that −2ẋ
(1)
0 (0, ρ)A

(0)
0 is cancelled by −

(
x

(0)′
0 (0, ρ)

)−2( −
2Z0f

(1)(0, ρ)x
(1)′
0 (0, ρ)

)
in (1.44), i.e.,

(1.46) −2ẋ
(1)
0 (0, ρ)A

(0)
0 + 2Z−2

0

(
Z2

0A
(0)
0 ẋ

(1)
0 (0, ρ)

)
= 0.

An important implication of (1.46) is that the cancelling terms origi-

nally depended on B
(1)
0 through ẋ

(1)
0 (0, ρ) (cf. (1.34) ). Furthermore

other B
(1)
0 -dependent terms in the right-hand side of (1.26′.2), i.e.,

− 2ẋ
(1)
0 (s, ρ)x

(1)
0 (s, ρ)B

(0)
0 − 2ẋ

(1)
0 (s, ρ)sB

(1)
0(1.47)

− x
(1)
0 (s, ρ)B

(1)
0 − ẋ

(1)
0 (s, ρ)2sB

(0)
0

also vanish when evaluated at s = 0, thanks to (1.42). It then follows

from (1.26′.2) that

(1.48) B
(0)
0 x

(2)
0 (0, ρ) = A

(1)
0 − f (2)(0, ρ) + χ

(0)
0 B

(0)
0 ,

where χ
(0)
0 is a constant fixed by g(t, ρ) (and Z0 = ±1). Thus x

(2)
0 (0, ρ)

is free from B
(1)
0 , and this fact, together with the explicit form of

ẋ
(1)
0 (0, ρ) given by (1.34), enables us to explicitly describe D

(3)
0 and

C
(4)
0 . An important point is that these “cancellations and vanishings”

occur for every p ≥ 2 and that they make the concrete expression of

the core parts of D
(p+1)
0 and C

(p+2)
0 to be “uniform”, as is shown below:

(1.49) C
(p+2)
0 − 2

(
A

(p−1)
0 − A

(0)
0

B
(0)
0

B
(p−1)
0

)
depends only on(

A
(q)
0 , B

(q)
0

)
(q ≤ p − 2) and given data such as f (q)(0, ρ)

(q ≤ p− 1),

and

(1.50) D
(p+1)
0 − 2Z0

(A(0)
0

B
(0)
0

A
(p−1)
0 − B

(p−1)
0

)
depends only on(

A
(q)
0 , B

(q)
0

)
(q ≤ p− 2) and given data.
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As is clear from (1.49) and (1.50) we can determine
(
A

(p−1)
0 , B

(p−1)
0

)
(p ≥ 2) recursively by solving linear equations. (The solvability of

the equations is guaranteed by the assumption (1.5) together with the

explicit computations (1.39) and (1.40) of A
(0)
0 and B

(0)
0 . ) Here we em-

phasize the importance of the point that the main parts “2
(
A

(p−1)
0 −

A
(0)
0 B

(p−1)
0 /B

(0)
0

)
” and “2Z0

(
A

(0)
0 A

(p−1)
0 /B

(0)
0 − B

(p−1)
0

)
” are of the

same form for every p. Parenthetically we note that C
(p+2)
0 (resp.,

D
(p+1)
0 ) read off from (1.26.p+ 2) (resp., (1.26.p+ 1)) at first contains

x
(p)
0 (0, ρ) and x

(p−1)′
0 (0, ρ); their “principal parts”, the parts which may

be dependent on A
(p−1)
0 and B

(p−1)
0 , are at first respectively given as

follows (cf. [9, Lemma 1.1.2.1]):

(1.51)
[
(x

(0)′
0 )2A

(p−1)
0 + 2x

(0)′
0 x

(p−1)′
0 A

(0)
0 + x

(0)′2
0 x

(p)
0 B

(0)
0

]∣∣
t=0
,[

2x̃
(0)
0 x

(0)′
0 x

(p−1)′
0 B

(0)
0 + x̃

(0)
0 x

(0)′2
0 B

(p−1)
0(1.52)

+ 2x̃
(0)
0 f (1)x

(p)
0 +

(
x

(0)′
0

)2
x

(p−1)′
0 B

(0)
0

]∣∣
t=0
.

Thus the clean and uniform results (1.49) and (1.50) are almost mirac-

ulous, and at the same time we believe that, without such uniform

expressions, it should be impossible to find conditions that would guar-

antee the recursive solvability of equations C
(p+2)
0 = D

(p+1)
0 = 0.

Thus a naive way of inductively determining (x
(p)
0 , A

(p)
0 , B

(p)
0 ) (p ≥

1) is as follows:

In order to find a holomorphic (in t) solution x
(p)
0 (t, ρ) of (1.26.p)

one first requires C
(p)
0 = D

(p)
0 = 0; then by rewriting (1.26.p) in s(=

x
(0)
0 (t, ρ))-variable we find

(1.26′.p) B
(0)
0

(
2s
d

ds
−1
)
x

(p)
0 (s, ρ) = −A(p−1)

0 −B(p)
0 s+B

(0)
0 R

(p)
0 (s, ρ),
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where

B
(0)
0 R

(p)
0 (s, ρ) = −

∑
i+j+k=p−1

k≤p−2

ẋ
(i)
0 ẋ

(j)
0 A

(k)
0 −

∑
i+j+k+l=p
i,j,k,l≤p−1

ẋ
(i)
0 ẋ

(j)
0 x

(k)
0 B

(l)
0

(1.53.p)

+
[(
x

(0)′
0 (t, ρ)

)−2
t−2

×
( ∑
i+j+k=p−3

x
(i)′
0 x

(j)′
0 A

(k)
0 +

∑
i+j+k+l=p−2

x
(i)′
0 x

(j)′
0 x

(k)
0 B

(l)
0

+
∑

i+j+k=p
k≥1

x
(i)
0 x

(j)
0 f (k) +

∑
i+j=p
i,j≥1

x
(i)
0 x

(j)
0 f (0) − f (p−2)

)]∣∣∣
t=t(s,ρ)

.

It is then clear that (1.26′.p) admits a holomorphic solution x
(p)
0 (s, ρ)

for any complex numbers A
(p−1)
0 and B

(p)
0 , as we have assumed C

(p)
0 =

D
(p)
0 = 0. On the other hand, if we admit (1.49) and (1.50), the equa-

tion C
(p)
0 = 0 combined with D

(p−1)
0 = 0, a relation required in the

preceding stage, will fix A
(p−3)
0 and B

(p−3)
0 (for p ≥ 4), which have

not yet been completely fixed so far. At the same time, the condi-

tion D
(p)
0 = 0 will be used at the next stage to fix A

(p−2)
0 and B

(p−2)
0 .

Thus the reader might find the reasoning to be somewhat clumsy, par-

ticularly because of the unevenness of the indices in question. Hence

we present here the core of the more refined induction procedure with

some comments on its background. We note that the induction scheme

we present below is also suited for the growth order estimation of the

functions constructed. See [9, Section 1.1.3 and Section 1.2] for the

details.

Let us first prepare some notations. We denote a triplet {x(r)
0 (s, ρ),

A
(r)
0 , B

(r)
0 } by T

(r)
0 and use the symbol A0(p) to mean the assertion

that T
(r)
0 is given for 0 ≤ r ≤ p so that each of them satisfies the
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following conditions (1.54.r) ∼ (1.58.r):

(1.54.r) x
(r)
0 (s, ρ) is a holomorphic solution of (1.26′.r) near s = 0,

(1.55.r) x
(r)
0 (s, ρ) depends on

(−→
A 0[r − 1],

−→
B 0[r]

)
=
def

(
A

(0)
0 , A

(1)
0 , · · · ,

A
(r−1)
0 , B

(0)
0 , B

(1)
0 , · · · , B(r)

0

)
,

(1.56.r) C
(r+3)
0 and D

(r+2)
0 depend on

(−→
A 0[r],

−→
B 0[r]

)
, and

(−→
A 0[r],−→

B 0[r]
)

annihilates them,

(1.57.r) C
(r+3)
0 − 2

(
A

(r)
0 − A

(0)
0

B
(0)
0

B
(r)
0

)
is independent of

(
A

(r)
0 , B

(r)
0

)
,

(1.58.r) D
(r+2)
0 −2Z0

(A(0)
0

B
(0)
0

A
(r)
0 −B(r)

0

)
is independent of

(
A

(r)
0 , B

(r)
0

)
.

Then we obtain

Proposition 1.1. The assertion A(p) is valid for every p ≥ 1.

The proof of this proposition is done in an inductive manner (cf.

[9, Section 1.1.3]). But we imagine that the first reactions to this

proposition of the reader might be the following:

[A] Is the claim logically self-contained? For example, the concrete

expression (1.51) (resp., (1.52)) of C
(p+2)
0 (resp., D

(p+1)
0 ) indicates

that we need x
(p0+1)
0 (0, ρ) for the description ofC

(p0+3)
0 andD

(p0+2)
0 ,

but A0(p0) refers to T
(r)
0 (r ≤ p0) only.

[B] Well, this may not be a logical question but a rather psychological

one. Still, I wonder why (1.56.p0) is valid despite the presence of

x
(p0+1)
0 in C

(p0+3)
0 ; in view of (1.55.p0 +1) I think

−→
B 0[r] in (1.56.r)

might be
−→
B 0[r + 1].

So let us first dispel potential sources of such uneasiness. Actually

both [A] and [B] are reasonable concerns and the core of the proof of
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Proposition 1.1 is closely related to them. The answer to [A] is rather

easy: although x
(p0+1)
0 (s, ρ) is not referred to in A0(p0), the assertion

A0(p0) trivially entails the vanishing of C
(p0+1)
0 and D

(p0+1)
0 and hence

the existence of a holomorphic solution x
(p0+1)
0 (s, ρ) of (1.26′.p0 + 1)

is guaranteed. Then it follows from (1.26′.p0 + 1) that x
(p0+1)
0 (0, ρ) is

given by

(1.59) x
(p0+1)
0 (0, ρ) =

(
B

(0)
0

)−1
A

(p0)
0 −R

(p0+1)
0 (0, ρ).

Thus x
(p0+1)
0 (0, ρ) is described by T

(r)
0 (r ≤ p0). Note that R

(p0+1)
0 (s, ρ)

is determined by T
(r)
0 (r ≤ p0). (Cf. (1.53.p)) This concrete expression

of x
(p0+1)
0 (0, ρ) will also alleviate the anxiety [B]. Still, the reader might

wonder:

[B′] How can we proceed with a seemingly rather vague expression like

(1.59)? For example, how can we find (1.57.p0+1) and (1.58.p0+1),

which are needed to proceed one step further, that is, to confirm

A0(p0 + 1) using the data in A0(p0)?

Well, then, we present the core of the proof of Proposition 1.1, which

will clarify all these.

Remark 1.5. Here we have tried to follow the late Professor Ehrenpreis

in his style of lecturing —– how do you find it, Professor Ehrenpreis?

To perform the induction procedure, let us suppose that A0(p0) is

validated. Then, as we noted to see (1.59), we have

(1.60) C
(p0+1)
0 = D

(p0+1)
0 = 0,

and hence we can find a holomorphic solution x
(p0+1)
0 (s, ρ) of (1.26′.p0+

1) for any complex numberB
(p0+1)
0 ,which meets the requirement (1.54.p0

+1) and (1.55.p0+1). Now, the intriguing part of the proof begins here.

Since A0(p0) entails

(1.61) C
(p0+2)
0 = D

(p0+2)
0 = 0,
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we can further find a holomorphic solution x
(p0+2)
0 (s, ρ) of (1.26′.p0+2)

for any complex numbers A
(p0+1)
0 and B

(p0+2)
0 . To confirm A0(p0 + 1)

we do not make full use of x
(p0+2)
0 (s, ρ) but use only x

(p0+2)
0 (0, ρ) for the

computation of C
(p0+4)
0 and D

(p0+3)
0 . Since it follows from (1.26′.p0 +2)

that

(1.62) B
(0)
0 x

(p0+2)
0 (0, ρ) = A

(p0+1)
0 −B

(0)
0 R

(p0+2)
0 (0, ρ),

the following Lemma 1.1 is the key to the proof.

Lemma 1.1. Let us suppose A0(p0) is validated. Then we find

(1.63) B
(0)
0 R

(p0+2)
0 (0, ρ) is free from B

(p0+1)
0 .

Before giving the proof of this lemma, we note the following three

facts: first, once the lemma is proved, the confirmation of A0(p0 + 1)

is an easy task as we will note later. Second, although this is a rather

obvious comment, the complex number B
(p0+2)
0 introduced to define

x
(p0+2)
0 (s, ρ) is actually irrelevant to x

(p0+2)
0 (0, ρ) and has no relevance

to the later argument; in validating A0(p0+2) we may use another com-

plex number B̃
(p0+2)
0 to construct x̃

(p0+2)
0 (s, ρ) needed there, which may

be different from x
(p0+2)
0 (s, ρ) constructed above for the auxiliary pur-

pose of finding the constant x
(p0+2)
0 (0, ρ), which is irrelevant to B

(p0+2)
0 .

Third, the cancellation among several terms to be observed in the proof

of Lemma 1.1 also plays crucially important roles in the estimation of

growth orders of T
(p)
0 etc. (See [C1] and [C2] after Remark 1.7).

Now we give

Proof of Lemma 1.1. In view of (1.55.r) (r ≤ p0) we find that the

terms in B
(0)
0 R

(p0+2)
0 (0, ρ) which may contain B

(p0+1)
0 are those which

contain x
(p0+1)
0 , ẋ

(p0+1)
0 and B

(p0+1)
0 itself. Furthermore we note that

x
(p0+1)
0 (0, ρ) is seen to be free from B

(p0+1)
0 by (1.59) together with the

fact that R
(p0+1)
0 (s, ρ) is determined by T

(r)
0 (r ≤ p0). Thus we do
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not worry about −
( ∑
i+j+k=1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)B

(k)
0

)
x

(p0+1)
0 (0, ρ) in our

computation. Hence it is enough to examine the contribution from the

following terms:

(1.64) −
( ∑
i+j+k=1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)x

(k)
0 (0, ρ)

)
B

(p0+1)
0 ,

−
( ∑

i+j=p0+2
i,j≤p0+1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)
x

(0)
0 (0, ρ)B

(0)
0(1.65)

−
( ∑
i+j=p0+1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)( ∑
k+l=1

x
(k)
0 (0, ρ)B

(l)
0

)
,

(1.66) −2ẋ
(0)
0 (0, ρ)ẋ

(p0+1)
0 (0, ρ)A

(0)
0

and

(1.67) terms that appear in the coefficients of the Tay-

lor expansion in s of
[(
x

(0)′
0

)−2
t−2
(
2x

(0)
0 x

(p0+1)
0 f (1) +

2x
(1)
0 x

(p0+1)
0 f (0)

)]∣∣
t=t(s,ρ)

.

Here we observe the following two facts:

(1.68) any term that may contain B
(p0+1)
0 in (1.64) and (1.65) van-

ishes because of the vanishing of x
(i)
0 (0, ρ) (i = 0, 1),

and

(1.69)

−2ẋ
(0)
0 (0, ρ)ẋ

(p0+1)
0 (0, ρ)A

(0)
0 + 2

(
x

(0)′
0

)−2
x̃

(0)
0 x

(p0+1)′
0 f (1)

∣∣
t=t(0,ρ)

= 0,

where the second term in (1.69) is the unique relevant term in (1.67).

(Cf. Remark 1.6 below.) It is then evident that (1.68) (resp., (1.69))

is a counterpart of (1.45) (resp., (1.46)), which we encountered in the
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computation of x
(2)
0 (0, ρ). In any event, (1.68) and (1.69) clearly prove

the lemma.

Q.E.D.

Remark 1.6. Since x
(p0+1)
0 (0, ρ) is free from B

(p0+1)
0 as noted above,

B
(p0+1)
0 is not contained in

(1.70) 2
(
x

(0)′
0 (0, ρ)

)−2
x̃

(1)
0 (0, ρ)f̃ (0)(0, ρ)x

(p0+1)
0 (0, ρ),

despite the fact that (1.70) is resembling to the second term in (1.69)

in the sense that (1.70) originates from

(1.71)
[(
x

(0)′
0

)−2
t−2
(
2x

(1)
0 x

(p0+1)
0 f (0)

)]∣∣
t=t(s,ρ)

,

which forms the pair to

(1.72)
[(
x

(0)′
0

)−2
t−2
(
2x

(0)
0 x

(p0+1)
0 f (1)

)]∣∣
t=t(s,ρ)

in (1.67), the term which generates the second term in (1.69).

Now Lemma 1.1 and (1.62) imply

(1.73) x
(p0+2)
0 − A

(p0+1)
0 /B

(0)
0 depends on only

(−→
A 0[p0],

−→
B 0[p0]

)
.

On the other hand (1.26′.p0 + 1) entails

(1.74) B
(0)
0 ẋ

(p0+1)
0 (0, ρ) +B

(p0+1)
0 = B

(0)
0 Ṙ

(p0+1)
0 (0, ρ),

which also depends on only
(−→
A 0[p0],

−→
B 0[p0]

)
.

Substituting those into (1.51) and (1.52) with p = p0 + 2, we can

validate (1.57.p0 + 1) and (1.58.p0 + 1). Then we can readily choose(
A

(p0+1)
0 , B

(p0+1)
0

)
so that they satisfy

(1.75) C
(p0+4)
0 = D

(p0+3)
0 = 0.

Thus the induction proceeds. This completes the proof of Proposi-

tion 1.1.
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Remark 1.7. As (1.73) and (1.74) show, expressions like (1.59) nicely

fit in with our induction scheme. This is the answer to the query [B′],

and the important point in the answer is Lemma 1.1.

Thus we have formally constructed T
(p)
0 = {x(p)

0 , A
(p)
0 , B

(p)
0 } for every

p ≥ 0.We can further confirm (cf. [9, Lemma 1.2.3]) that they actually

define a function

(1.76) x0(t, a, ρ) =
∑
p≥0

x
(p)
0 (t, ρ)ap,

which is holomorphic on

(1.77) {(t, a, ρ) ∈ C3; |t| < r0, ρ 6= 0, |a|, |ρ| < M0, |a/ρ| < N0}

and constants

(1.78) A0(a, ρ) =
∑
p≥0

A
(p)
0 (ρ)ap

and

(1.79) B0(a, ρ) =
∑
p≥0

B
(p)
0 (ρ)ap,

which are convergent on

(1.80) {(a, ρ) ∈ C2; ρ 6= 0, |a|, |ρ| < M0, |a/ρ| < N0}

for some positive constants r0,M0 and N0. Although we do not give

the details of the proof here, we note the following core facts [C1] and

[C2]. Here we use the symbol (σ.j) (j = i, ii and iii) to denote the

following sums in R
(p0+1)
0 (s, ρ) (cf. (1.53.p) with p = p0 + 1):

(σ.i) =
def

−
∑
i+j=p0

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)A

(0)
0 /B

(0)
0 ,(1.81)

(cf. the first sum in (1.53.p0 + 1)),
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(σ.ii) =
def

(1.82)

[(
x

(0)′
0 (t, ρ)

)−2
t−2
( ∑
i+j=p0

x
(i)
0 (s, ρ)x

(j)
0 (s, ρ)f (1)(t, ρ)/B

(0)
0

)]∣∣∣
t=t(s,ρ)

(cf. the fifth sum in (1.53.p0 + 1)),

(σ.iii) =
def

(1.83)

[(
x

(0)′
0 (t, ρ)

)−2
t−1f̃ (0)(t)

( ∑
i+j=p0+1

i,j≥1

x
(i)
0 (s, ρ)x

(j)
0 (s, ρ)/B

(0)
0

)]∣∣∣
t=t(s,ρ)

(cf. the sixth sum in (1.53.p0 + 1)).

Now in inductively showing the domination of {x(p)
0 , A

(p)
0 , B

(p)
0 } which

guarantees the domains of convergence (1.77) and (1.80) we at first

find that each of these three terms might block the induction reasoning

from proceeding. But, fortunately we observe

[C1] What we encounter in the induction process is the estimation of

the integral of the form, say,

(1.84) I(iii) =
1

2πi

∮
(σ.iii)

s
ds;

then by the Taylor expansion of

(1.85)
∑

i+j=p0+1
i,j≥1

x
(i)
0 (s, ρ)x

(j)
0 (s, ρ),

we find the following from the relation f̃ (0) = ρg:

|I(iii)| =
∣∣∣ 1

2πi

∮ (dt
ds

)2(s
t

)
Z0 g(t, ρ)

{ ∑
i+j=p0+1

i,j≥1

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)

(1.86)
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+ 2s
( ∑

i+j=p0+1
i,j≥1

x
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)
+O(s2)

}ds
s2

∣∣∣.
Then in order to make the induction reasoning run smoothly we

use (1.42); the second sum in the integrand of the right-hand side

gives the contribution of the form

(1.87)
1

2πi

∮
2
( ∑

i+j=p0+1
i≥2, j≥1

x
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)ds
s
.

See [9] for the details which show how this gain in the margin of

indices is important in the induction procedures.

[C2] The integral

(1.88) I(i) =
1

2πi

∮
(σ.i)

s
ds

is, notably enough, cancelled by the contribution

(1.89)

I0 =
1

2πi

1

B
(0)
0

∮
s2

t2

(dt
ds

)2( ∑
i+j=p0

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)
f (1)(t, ρ)

ds

s
,

which originates from

(1.90) I(ii) =
1

2πi

∮
(σ.ii)

s
ds,

and, furthermore I(ii)−I0 is amenable to the induction procedure,

as is shown in [9].

We readily find [C1] and [C2] are reasonable counterparts of (1.68)

and (1.69) respectively.

Thus we have succeeded in constructing {x0(t, a, ρ), A0(a.ρ), B0(a, ρ)}
which satisfies the highest degree (i.e., degree 0) part in η of the re-

quired relation (1.13); hence the reasonable approach to the proof of
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(1.13) is to try to construct the perturbation series
{
x =

∑
k≥0

x2kη
−2k,

A =
∑
k≥0

A2kη
−2k, B =

∑
k≥0

B2kη
−2k
}

so that they satisfy (1.13). As

we mentioned earlier we further expand {x2k, A2k, B2k} into the power

series of a (cf. (1.19), (1.20) and (1.21)), and by comparing the coeffi-

cients of ap in the coefficients of η−2n (n ≥ 1) of (1.13) multiplied by

(t2 − a2)(x2 − a2) we obtain∑
q+r+u=p

i+j=n

x
(q)
2i x

(r)
2j f

(u)(1.91)

= t2
[ ∑

q+r+u=p−1
i+j+k=n

x
(q)′
2i x

(r)′
2j A

(u)
2k +

∑
q+r+u+v=p
i+j+k+l=n

x
(q)′
2i x

(r)′
2j x

(u)
2k B

(v)
2l

− 1

2

∑
q+r+u=p

i+j+k=n−1

x
(q)
2i x

(r)
2j {x; t}(u)

2k +
1

2
{x; t}(p−2)

2(n−1)

]
−
[ ∑

q+r+u=p−3
i+j+k=n

x
(q)′
2i x

(r)′
2j A

(u)
2k +

∑
q+r+u+v=p−2

i+j+k+l=n

x
(q)′
2i x

(r)′
2j x

(u)
2k B

(v)
2l

− 1

2

∑
q+r+u=p−2
i+j+k=n−1

x
(q)
2i x

(r)
2j {x; t}(u)

2k +
1

2
{x; t}(p−4)

2(n−1)

]
,

where {x; t}(q)
2k designates the coefficient of aqη−2k of {x; t}, that is,

(1.92) {x; t} =
∑
q,k≥0

{x; t}(q)
2k a

qη−2k.

In view of the resemblance between (1.26.p) and (1.91), one expects

that the construction and domination of the triplet T
(r)
2n = {x(r)

2n (s, ρ),

A
(r)
2n (ρ), B

(r)
2n (ρ)} (n ≥ 1) may be performed in parallel with the con-

struction and domination of T
(r)
0 . And, actually this is really the case.
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We only note the following facts:

(1.93) in the recursive construction of x
(p)
2n (s, ρ) (p = 0, 1, 2, · · · )

the relation x
(0)
2n (0, ρ) = 0 plays an important role,

(1.94) assertions similar to [C1] and [C2] (with the appropriate shift

of indices) also play important roles,

and

(1.95) in dominating the growth order of T
(p)
2n we first dominate

{x; t}(p)
2(n−1) using the induction hypothesis and then employ

the similar argument used in dominating T
(p)
0 .

We refer the reader to [9, Section 1.2] for the details. Here we content

ourselves by quoting the final result which will be used later.

Theorem 1.1. Let Q(t, a, ρ, η) be a potential of an M2P1T opera-

tor given by (1.6). Then there exist positive constants r0,M0, N0, R0

and holomorphic functions A2n(a, ρ),B2n(a, ρ) and x2n(t, a, ρ) (n ≥
0) on

(1.96) {(t, a, ρ) ∈ C3; |t| < r0, ρ 6= 0, |a|, |ρ| < M0, |a/ρ| < N0}

for which the following conditions are satisfied there;

(1.97) A(a, ρ, η), B(a, ρ, η) and x(t, a, ρ, η) satisfy (1.13),

(1.98)
1

2
|f (1)(0, 0)| ≤ |A0(a, ρ)| ≤ 2|f (1)(0, 0)|,

(1.99) |B0(a, ρ)| ≤ 2|ρ|,

(1.100)
∂x0

∂t
(t, a, ρ) 6= 0,

(1.101) x2
0(±a, a, ρ) = a2,
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(1.102) if t = t0(a, ρ) satisfies f (t0, a, ρ) = 0 then aA0(a, ρ) +

x0(t0, a, ρ)B0(a, ρ) = 0 holds,

the following estimates hold for n ≥ 1;

|A2n(a, ρ)| ≤ |ρ|(2n)!Rn
0 |ρ|−n,(1.103)

|B2n(a, ρ)| ≤ |ρ|(2n)!Rn
0 |ρ|−n,(1.104)

|x2n(t, a, ρ)| ≤ |ρ|(2n)!Rn
0 |ρ|−n,(1.105) ∣∣∣∣dx2n

dt
(t, a, ρ)

∣∣∣∣ ≤ |ρ|(2n)!Rn
0 |ρ|−n.(1.106)

Remark 1.8. Although we have presented the results assuming (1.8),

the construction and the domination of
{
x, A, B

}
can be done without

the assumption. In this case the potential of the canonical form of an

M2P1T equation is

(1.107)
aA + xB

x2 − a2
+ η−2

( g+(a)

(x− a)2
+
g−(−a)
(x + a)2

)
.

2 Intertwining the Borel transformed Schrödinger oper-

ators

As was first observed in [2], the analytic meaning of the formal coor-

dinate transformation becomes most transparent with the help of the

Borel transformation. To describe the situation concretely, let us first

introduce the inverse function h(x, a, ρ) of x = x0(t, a, ρ), that is,

(2.1) x = x0

(
h(x, a, ρ), a, ρ

)
, t = h

(
x0(t, a, ρ), a, ρ

)
.

Since we formally find

(2.2)

ψ(x0+η
−2x2+η

−4x4+· · · , η) =
∑
n≥0

1

n!

(∑
k≥1

x2kη
−2k
)n ∂n
∂xn

ψ(x, η)
∣∣
x=x0

,
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its Borel transform has the form(∑
n≥0

1

n!

(∑
k≥1

x2k

(
h(x, a, ρ), a, ρ

)( ∂
∂y

)−2k)n ∂n
∂xn

)
ψB(x, y)(2.3)

=: exp
((∑

k≥1

x2k

(
h(x, a, ρ), a, ρ

)
η−2k

)
ξ
)

: ψB(x, y).

In the right-hand side of (2.3), and also in what follows, we denote by

ξ the symbol of ∂/∂x and use the ideograms in the symbol calculus of

microdifferential operators; in particular the ideogram : σ : designates

the normal ordered product determined by a symbol σ. We note that

: σ : makes sense as a microdifferential operator when the formal series

σ satisfies some growth order conditions like those we discussed in

Theorem 1.1. (Cf. Theorem 2.1 below.) See [1] for the details of

the symbol calculus. The relation (2.3) indicates that the structure of

Schrödinger equations should be most clearly understood when they

are Borel transformed. Actually we find Theorem 2.1 below by making

use of the formal series constructed in Section 1.

To state the theorem let us prepare some notations.

Let N denote the Borel transform of an M2P1T operator written in

(x, y)-coordinate, that is,

(2.4)

N =
(∂h
∂x

)−2 ∂2

∂x2
− ∂2h

∂x2

(∂h
∂x

)−3 ∂

∂x
−Q

(
h(x, a, ρ), a, ρ,

∂

∂y

)
∂2

∂y2
.

We also denote the Borel transform of the ∞-Mathieu equation by

M∞. Using {x2n}n≥0 and the function h in (2.1), we define

(2.5) r2k = x2k

(
h(x, a, ρ), a, ρ

)
(2.6) r =

∑
k≥1

r2kη
−2k,
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(2.7) s = x + r,

(2.8) X =:
(∂h
∂x

)1/2(∂s
∂x

)−1/2

exp(rξ) :,

(2.9) Y =:
(∂h
∂x

)−3/2(∂s
∂x

)3/2

exp(rξ) : .

To describe the geometric situation we introduce the following set W

where C0, δ0 and δ1 are some positive constants:

(2.10) W =
{
(a, ρ) ∈ C2; |a| ≤ C0|ρ|, 0 < |ρ| < δ0, |a| < δ1

}
.

With these notations we can deduce Theorem 2.1 below from the results

in Section 1 by using the same reasoning as in the proof of Theorem 2.6

of [8].

Theorem 2.1. Let U be a sufficiently small open neighborhood of

the closed interval [−a, a]. Then, for sufficiently small constants

C0, δ0 and δ1, microdifferential operators X and Y intertwine N

and M∞ on U ×W0 with the exception of (x2 − a2)η = 0, that is,

we have

(2.11) NX = YM∞

with X and Y being invertible there.

Although the ∞-Mathieu equation contains infinite series A and

B, they satisfy the growth order conditions stated in Theorem 1.1.

The growth order conditions enable us to relate, by microdifferential

operators, the Borel transformed ∞-Mathieu operator and the Borel

transformed Mathieu operator M = M
(
A,B, c+, c−

)
, that is,

(2.12) M
(
A,B, c+, c−

)
=

∂2

∂x2
−aA + xB

x2 − a2

∂2

∂y2
− c+

(x− a)2
− c−

(x + a)2

withA,B and c± being genuine constants, as the following Theorem 2.2

shows.
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Theorem 2.2. There exist microdifferential operators A and B
for which the following relation holds:

(2.13) ABM = M∞AB.
The proof is essentially the same as the proof of Theorem 4.1 of [10];

it suffices to define

(2.14) A =: exp
(∑
k≥1

A2kη
−2k
)
aα0 :

and

(2.15) B =: exp
(∑
d≥1

B2kη
−2k
)
β0 : ,

where α0 (resp., β0) stands for the symbol of ∂/∂(aA0) (resp., ∂/∂B0).

These theorems assert that the microlocal structure of Borel trans-

formed WKB solutions of an M2P1T equation coincides with that of a

Mathieu equation. By appropriately representing the action of the mi-

crodifferential operator in question as an integro-differential operator

acting on multi-valued analytic functions, we can deduce informations

on the alien derivatives of WKB solutions of an M2P1T equation from

those of its canonical equation. To attain this goal, we first show the

following

Theorem 2.3. The action of the microdifferential operator X
(given by (2.8)) upon the Borel-transformed WKB solution ψ+,B

of the ∞-Mathieu equation is expressed as an integro-differential

operator of the form

(2.16) Xψ+,B =

∫ y

−y+
K(x, a, ρ, y − y′, ∂/∂x)ψ+,B(x, a, ρ, y′)dy′,

where

y+(x, a, ρ) =

∫ x

a

√
aA0(a, ρ) + xB0(a, ρ)

x2 − a2
dx(2.17)
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and K(x, a, ρ, y, ∂/∂x) is a differential operator of infinite order

(in the sense of [15]) which is defined on
{
(x, a, ρ, y) ∈ C4; (x, a, ρ) ∈

U ×W, |y| < C|ρ|1/2
}

for some positive constant C. Similar ex-

pressions are also available for the action of A and B on the Borel

transformed WKB solutions of a Mathieu equation.

3 Can we focus our attention on the simple poles of the

Mathieu equation?

As we emphasized in Introduction, our original problem was to analyze

the singularity structure of Borel transformed WKB solutions near

fixed singularities determined by a pair of simple poles contained in the

potential. But the canonical equation of an M2P1T equation, i.e., the

Mathieu equation contains a simple turning point besides two simple

poles. Unfortunately no effective WKB-theoretic results are known for

the Mathieu equation, but T. Koike has succeeded in computing the

Voros coefficient for the Legendre equation. (Private communication.

See also [14].) Hence, if we can somehow focus our attention on the

simple poles of the Mathieu equation, we will be able to make use of the

results of Koike. And, actually this expectation is realized in Section 4.

The problem is what we mean by saying “focus our attention on the

pole part”. The answer is given by Theorem 3.1 below. In what follows,

QL(z, C, γ+, γ−) denotes

(3.1)
aC

z2 − a2
+ η−2

( γ+

(z − a)2
+

γ−
(z + a)2

)
,

and QM(x,A,B, c+, c−) denotes

(3.2)
aA + xB

x2 − a2
+ η−2

( c+
(x− a)2

+
c−

(x + a)2

)
.
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Theorem 3.1. Let r1(> 1) and r2 be positive constants with r2
sufficiently small and denote by Ωr1,r2 the following set:

(3.3)
{
(x, a, A,B) ∈ C4; |x| < r1|a|, a 6= 0, A 6= 0, |B| < r2|A|

}
.

Then we can construct infinite series

(3.4) z(x, a, A,B, η) =
∑
k≥0

z2k(x, a, A,B)η−2k

and

(3.5) C(a,A,B, η) =
∑
k≥0

C2k(a,A,B)η−2k

so that they satisfy the following conditions (3.6) ∼ (3.10).

(3.6) z2k and C2k are holomorphic on Ωr1,r2,

(3.7) for each fixed constants a,A and B the function

z0(x, a, A,B) of x is injective on {x ∈ C; |x| < r1|a|},

(3.8) (z0(±a, a, A,B))2 = a2,

(3.9)
∂z0

∂x
(x, a, A,B) 6= 0 on Ωr1,r2,

QM(x,A,B, c+, c−)(3.10)

=
(∂z
∂x

)2

QL(z(x, a, A,B, η), C, c+, c−) − 1

2
η−2{z;x}.

Further the constructed series z and C satisfy the following esti-

mates:

(3.11) for any ε > 0 we can find sufficiently small r2 for which

(3.11.i) |z2k(x, a, A,B)| ≤ (2k)!εk|aA|−k
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and

(3.11.ii) |C2k(a,A,B)| ≤ (2k)!εk|aA|−k

hold on Ωr1,r2 for every k ≥ 1.

In parallel with the reasoning in Section 2 the relation (3.10) to-

gether with the estimates (3.11.i) and (3.11.ii) entails that the Borel

transformed Mathieu operator and the Borel transformed Legendre

operator are intertwined on Ωr1,r2 by microdifferential operators and

that the microdifferential operators enjoy the integral representation

similar to (2.16). The point is that the simple turning point of the

Mathieu equation, i.e., −aA/B, is necessitated to be outside Ωr1,r2

for sufficiently small r2. We refer the reader to [9] for the proof of

Theorem 3.1; the formal construction of the series z and C is rather

straightforward, but their estimation is quite intricate.

As Koike has explicitly written down the Voros coefficient for the

Legendre-type equation with a large parameter that has the form

(3.12)(
d2

dz2
− η2

( aΛ2

z2 − a2
+ η−1

√
aΛ

z2 − a2
+ η−2 azν + a2(µ2 − 1)

(z2 − a2)2

))
φ = 0,

we prepare Lemma 3.1 below so that we may make use of Koike’s

results in Section 4.

Lemma 3.1. We can rewrite

(3.13)
( d2

dz2
− η2QL(z, C, c+, c−)

)
ψ = 0

in the form (3.12) if we choose µ, ν and

(3.14) Λ(a, C, η) =
∑
k≥0

Λk(a, C)η−k,

by

(3.15) µ2 = 1 + 2(c+ + c−),
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(3.16) ν = 2(c+ − c−),

(3.17) Λ =

√
C −

(√
aη
)−2
(
c+ + c− − 1

4

)
−
(√

aη
)−1

2
.

The proof is straightforward.

4 Singularity structure of the Borel transformed WKB

solutions of an M2P1T equation

As stated in Section 3, we can focus our attention on the pole part of

the Mathieu equation so that the part may be analyzed with the help

of the results for the Legendre equation. Hence by the same reasoning

as in [8, Section 5] (cf. [4] and [16] for the basic properties of the alien

derivative) we obtain the following

Theorem 4.1. Let ψ̃+(t, a, ρ, η) be a WKB solution of a generic

(i.e., a 6= 0, ρ 6= 0) M2P1T equation that is normalized at a simple

pole {t = a}. Then for every positive integer l we can find posi-

tive constants δ1 and δ2 so that the following relation (4.1) holds,

where ∆y=−y+(t,a,ρ)+l$ designates the alien derivative at the fixed

singularity −y+(t, a, ρ) + l$ and the suffix B indicates the Borel

transform in the parentheses:(
∆y=−y+(t,a,ρ)+l$ψ̃+

)
B
(t, a, ρ, y)(4.1)

=
(−1)l

l

{
1 + (−1)l − cosh

(
2πil

√
µ2 +

√
µ4 − ν2

2

)

− cosh

(
2πil

√
µ2 −

√
µ4 − ν2

2

)}
×
(

exp
(
− l

∮
γ

S̃odd dt
)
ψ̃+

)
B
(t, a, ρ, y),

34



where S̃odd denotes the odd part of the solution S̃ of the Riccati

equation associated with the M2P1T equation and γ is a closed

curve that encircles two simple poles counterclockwise, and

(4.2) µ2 = 1 + 2
(
g+(a) + g−(−a)

)
,

(4.3) ν = 2
(
g+(a) − g−(−a)

)
,

(4.4) y+(t, a, ρ) =

∫ t

a

√
f (t, a, ρ)

t2 − a2
dt,

(4.5) $(a, ρ) =

∮
γ

√
f (t, a, ρ)

t2 − a2
dt.

Remark 4.1. The highest degree part in η of

∮
γ

S̃odd dt is η$(a, ρ).
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