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Abstract

We introduce a concept of dual consistency of systems of linear inequalities with
full generality. We show that a cardinality constrained polytope is represented by a
certain system of linear inequalities if and only if the systems of linear inequalities
associated with the cardinalities are dual consistent. Typical dual consistent systems
of inequalities are those which describe polymatroids, generalized polymatroids, and
dual greedy polyhedra with certain choice functions. We show that the systems of
inequalities for cardinality-constrained ordinary bipartite matching polytopes are not
dual consistent in general, and give additional inequalities to make them dual con-
sistent. Moreover, we show that ordinary systems of inequalities for the cardinality-
constrained (poly)matroid intersection are not dual consistent, which disproves a
conjecture of Maurras, Spiegelberg, and Stephan about a linear representation of the
cardinality-constrained polymatroid intersection.

1. Introduction
Cardinality constrained polyhedra and their linear representations were first investigated
by Maurras [7] and Camion and Maurras [1], and later rediscovered by Grötschel [5]
for what is called a cardinality homogeneous set system (also see related recent work by
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Kaibel and Stephan [6], Stephan [10], Maurras and Stephan [9], and Maurras, Spiegel-
berg, and Stephan [8]).

Given a finite nonempty set S, a combinatorial optimization problem Π on S, and
an increasing sequence c = (c1, . . . , cm) of nonnegative integers ci (i = 1, . . . ,m), the
cardinality constrained version Πc of Π has the set of feasible solutions consisting of all
feasible solutions of the original problem with the property that the cardinality (i.e. the
number of elements) of every solution is equal to ci for some i ∈ {1, . . . ,m}. In [7, 1, 5]
they introduced forbidden cardinality inequalities of the form

(cp+1 − cp)x(U) − (|U | − cp)x(S) ≤ cp(cp+1 − |U |)
for all U ⊆ S with cp < |U | < cp+1 for some p ∈ {1, . . . ,m}, (1)

where x(U) =
∑

u∈U x(u) for U ⊆ S, and showed that the inequalities hold for Πc.
Usually these inequalities are not facet-defining for the polyhedron associated with Πc.

Recently Maurras and Stephan [9] derived strong valid inequalities that give a com-
plete linear description for cardinality constrained matroids. This result has been general-
ized by Maurras, Spiegelberg, and Stephan [8, 11] to cardinality constrained polymatroids
as follows. Given a polymatroid rank function f : 2S → R and an increasing sequence
(c1, . . . , cm) of nonnegative integers ci (i = 1, . . . ,m), they aim for the convex hull of all
vectors x of the polymatroid associated with f of cardinality ci for some i ∈ {1, . . . ,m},
i.e. x(S) = ci. The cardinality constrained polymatroid is shown to be determined by the
following system of inequalities:

x(U) ≤ f(U) (U ⊆ S),

(cp+1 − cp)x(U) − (f(U) − cp)x(S) ≤ cp(cp+1 − f(U))

(U ⊆ S with cp < f(U) < cp+1 for some p ∈ {1, . . . ,m − 1}), (2)
c1 ≤ x(S) ≤ cm, x ≥ 0.

In the present paper we introduce the concept of dual consistent systems of linear in-
equalities and formulate the cardinality constrained problem in a more general setting. In
Section 2 we give a characterization of certain complete systems of linear inequalities ex-
pressing cardinality constrained polytopes with two cardinalities, where an essential role
is played by the concept of dual consistency of systems of linear inequalities that we intro-
duce in the present paper. Section 3 is concerned with multiple cardinality constraints. In
Section 4 we show how the inequalities given in [9, 8, 11] are derived from our result. We
also show that the systems of inequalities for the cardinality-constrained ordinary bipartite
matching polytopes and for the cardinality-constrained (poly)matroid intersection are not
dual consistent in general. The latter implies that a conjecture of Maurras, Spiegelberg,
and Stephan [8, 11] about a linear representation of the cardinality-constrained intersec-
tion of polymatroids does not hold in general.
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2. Cardinality Constrained Polytopes
In this section we consider the case where we have two cardinalities c1 < c2 (i.e., m = 2).
The multiple cardinality case (i.e. m > 2) will be discussed in Section 3.

2.1. Dual Consistent Systems of Inequalities
Let S be a finite nonempty set and Z be a finite nonempty set of non-zero vectors in RS .
Choose and fix a vector z0 ∈ Z . Then, consider two functions fi : Z → R (i = 1, 2)
with c1 := f1(z0) < f2(z0) =: c2. Note that for the cardinality constrained polymatroid,
Z is the set of characteristic vectors χX of all nonempty subsets X of S and z0 is given
by χS , the all-one vector in RS . (For each U ⊆ S the characteristic vector χU ∈ RS is
defined by χU(u) = 1 for u ∈ U and χU(u) = 0 for u ∈ S \ U .)

For each i = 1, 2 define the polyhedron

P ci
fi

= {x ∈ RS | ∀z ∈ Z : 〈z, x〉 ≤ fi(z), 〈z0, x〉 = ci}, (3)

where 〈·, ·〉 denotes the canonical inner product defined by 〈z, x〉 =
∑

u∈S z(u)x(u). We
assume that the P ci

fi
(i = 1, 2) are nonempty and bounded. P ci

fi
can be regarded as a

polyhedron restricted to vectors of cardinality ci where the cardinality of a vector x is
given by 〈z0, x〉 (we may have z0 = χS (the all-one vector) in the ordinary case).

We are interested in obtaining a complete system of linear inequalities for the convex
hull of P c1

f1
∪ P c2

f2
. To this end we introduce a concept of dual consistent systems of

inequalities. We will show that if, and only if, the systems of linear inequalities appearing
in (3) for i = 1, 2 are dual consistent, the convex hull is represented by the inequalities

(c2 − c1)〈z, x〉 − (f2(z) − f1(z))〈z0, x〉 ≤ c2f1(z) − c1f2(z) (z ∈ Z), (4)
c1 ≤ 〈z0, x〉 ≤ c2 (5)

(see Theorem 1 to be shown below).

Remark 1: It should be noted that for each i = 1, 2, if we add the constraint 〈z0, x〉 = ci

to (4), the system of inequalities (4) together with the added constraint is equivalent to

〈z, x〉 ≤ fi(z) (z ∈ Z), 〈z0, x〉 = ci. (6)

This is exactly the system of inequalities defining P ci
fi

in (3). 2

Now, for any w ∈ RS and i = 1, 2 consider the following problem

(Pw
i ) Maximize 〈w, x〉

subject to x ∈ P ci
fi

. (7)
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Let x̂i be an optimal solution of Problem (Pw
i ) for i = 1, 2 and define

Zi(x̂i) = {z ∈ Z | 〈z, x̂i〉 = fi(z)} (i = 1, 2), (8)

which represents the set of active (or tight) constraints of (6) at x̂i for i = 1, 2. For each
i = 1, 2 a set B ⊆ Z is called a dual optimal base for Problem (Pw

i ) if there exists an
optimal solution x̂i of Problem (Pw

i ) such that

B ⊆ Zi(x̂i), (9)
rank B = |S|, (10)

where rank B is the rank of the matrix formed by the vectors in B.
By definition x̂i is an extreme point of P ci

fi
. It follows from (9) and (10) that x̂i is a

unique solution of the system of equations

〈z, x〉 = fi(z) (z ∈ B). (11)

We assume that for every dual optimal base B appearing in the following arguments we
have z0 ∈ B. The systems of linear inequalities (6) for i = 1, 2 are called dual consistent
if for every w ∈ RS there exists a common dual optimal base B for (Pw

1 ) and (Pw
2 ). If

there is no possibility of confusion, we also simply call the pair (f1, f2) dual consistent in
the sequel. Recall that the dual consistency depends on the choice of ci (i = 1, 2) and z0

besides fi (i = 1, 2).

Examples: If f1 and f2 are submodular functions on 2S with f1(S) = c1 < c2 = f2(S)
and f1(∅) = f2(∅) = 0, the pair (f1, f2) is dual consistent due to the greedy algorithm
([2] and also see, e.g., [4]). More generally, dual greedy polyhedra with a common choice
function give us a dual consistent pair. This follows directly by their definitions (see [3]).

2

Remark 2: We have assumed that P ci
fi

(i = 1, 2) are nonempty and bounded. We can
extend the concept of dual consistency to systems of linear inequalities such that P ci

fi

(i = 1, 2) are pointed and have a common characteristic cone, by considering only weight
vectors w that give finite optimal values for Problem (Pw

i ). (We may also call (f1, f2)
totally dual consistent with respect to z0 if (f1, f2) is dual consistent for z0 and every
choice of ci (i = 1, 2) such that P ci

fi
6= ∅ (i = 1, 2). Polymatroids give typical examples

of totally dual consistent systems with respect to the all-one vector as z0.) 2

2.2. The Convex-hull Polyhedron
Define the polyhedron (polytope) P̂ by

(c2 − c1)〈z, x〉 − (f2(z) − f1(z))〈z0, x〉 ≤ c2f1(z) − c1f2(z) (z ∈ Z), (12)
c1 ≤ 〈z0, x〉 ≤ c2. (13)

4



(Recall Remark 1 given in Section 2.1.)
Let P c1,c2

f1,f2
denote the convex hull of P c1

f1
∪P c2

f2
. We will show that P c1,c2

f1,f2
= P̂ (defined

by (12) and (13)) if and only if the pair (f1, f2) is dual consistent. Before we show this,
we analyze another (infinite) system of linear inequalities.

Denoting the optimal objective function value of (7) by ζw
i , we introduce the condition

that every x ∈ P̂ satisfies

(c2 − c1)〈w, x〉 − (ζw
2 − ζw

1 )〈z0, x〉 ≤ c2ζ
w
1 − c1ζ

w
2 (∀w ∈ RS). (14)

Lemma 1: If for all w ∈ RS and all x ∈ P̂ inequality (14) holds, then the pair (f1, f2) is
dual consistent.
(Proof) If we consider ζw

i for each i = 1, 2 as a function in w ∈ RS , it is what is called
the support function of polytope P ci

fi
. Hence, the inequalities of (14) together with c1 ≤

〈z0, x〉 ≤ c2 determine the convex hull P c1,c2
f1,f2

of P c1
f1

∪P c2
f2

. (Note that inequalities of (14)
are exactly those which support both P ci

fi
(i = 1, 2).) It follows from the assumption that

P̂ ⊆ P c1,c2
f1,f2

. We can easily see that the converse inclusion relation also holds true, due to
Remark 1. Consequently,

P̂ = P c1,c2
f1,f2

. (15)

Since it suffices to consider an arbitrary generic w ∈ RS to show the dual consistency, it
follows from (15) that for a generic w ∈ RS the unique optimal solutions x̂i for problem
Pw

i (i = 1, 2) are adjacent vertices of P̂ (= P c1,c2
f1,f2

), which implies that there exists a dual
optimal base for problem Pw

i (i = 1, 2) for all w. 2

Remark 3: Here we do not need that f1 and f2 have a common domain Z . For different
domains of f1 and f2 the above proof is valid to show that constraint (14) implies the dual
consistency of (f1, f2). 2

Remark 4: As noted in the above proof, the inequalities of (14) together with inequalities
c1 ≤ 〈z0, x〉 ≤ c2 determine the convex hull P c1,c2

f1,f2
of P c1

f1
∪ P c2

f2
. Since P c1,c2

f1,f2
is a

polytope, we need only a finite number of inequalities from (14) besides (13) to obtain
a representation of P c1,c2

f1,f2
by linear inequalities, but the number of required inequalities

could be much larger than |Z|. Note that every inequality of (14) gives a hyperplane that
supports both P c1

f1
and P c2

f2
, and vice versa. 2

Next we show the following lemma.

Lemma 2: For any dual consistent pair (f1, f2) with f1(z0) = c1 < c2 = f2(z0) the
convex hull P c1,c2

f1,f2
of P c1

f1
∪ P c2

f2
is expressed by (12) and (13).

(Proof) Recall that P̂ is the polytope defined by (12) and (13) and that P c1,c2
f1,f2

⊆ P̂ .
Suppose that P c1,c2

f1,f2
6= P̂ . Then there exists an edge L of P̂ connecting a vertex x1 and
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a vertex x2 of P̂ such that one of the two is a vertex of P c1
f1

or of P c2
f2

and that the other
belongs to P̂ \ P c1,c2

f1,f2
. We assume without loss of generality that x1 is a vertex of P c1

f1
and

x2 ∈ P̂ \ P c1,c2
f1,f2

.
Let 〈w, x〉 = b be a supporting hyperplane of P̂ that defines the edge L. Then x1 is the

unique optimal solution of Problem (Pw
1 ). Let y2 be an optimal solution of Problem (Pw

2 ).
We can assume that w is (generically) chosen so that y2 is a unique optimal solution as
well. Because of the dual consistency there exists a base B such that B is a dual optimal
base for both problems (Pw

i ) (i = 1, 2). It follows from Remark 1 that x1 and y2 lie on
the line L′ determined by the system of equations given by (12) for all z ∈ B \ {z0}, each
of (12) for such z holding with equality. It follows that x2 must coincide with y2, which
contradicts the assumption on x2. 2

Lemma 3: If P c1,c2
f1,f2

= P̂ , then inequalities (14) hold for all x ∈ P̂ .

(Proof) Since P c1,c2
f1,f2

is determined by (14) and inequalities c1 ≤ 〈z0, x〉 ≤ c2, the present
theorem follows. 2

Now it follows from Lemmas 1, 2, and 3 that

Theorem 1: The following three statements are equivalent:

(a) We have P c1,c2
f1,f2

= P̂ .

(b) Inequalities (14) hold for all x ∈ P̂ .

(c) The pair (f1, f2) is dual consistent. 2

Remark 5: When the domains of f1 and f2 are different and given by Z1 and Z2, we can
always obtain a common domain Z1 ∪ Z2 by adding redundant constraints. 2

Remark 6: For any two polytopes P1 and P2 lying on two distinct parallel hyperplanes,
let z0 be a common normal vector of the hyperplanes, and let Z be a finite set of normal
vectors of hyperplanes (linear inequalities) that define the convex hull P of P1 ∪ P2,
connecting the two polytopes. Then we get two functions fi : V → R (i = 1, 2) such that
Pi = P ci

fi
with fi(z0) = ci (i = 1, 2) and the pair (f1, f2) is dual consistent.

This means that the systems of inequalities for any such two polytopes can be made
dual consistent by adding some redundant inequalities. (Also see Remark 4.) 2
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3. Multiple Cardinality Constrained Polytopes
In Section 2 we have considered cardinality constrained polytopes with only two cardi-
nalities c1 and c2. In the multiple cardinality case where m > 2 there are a finite sequence
of cardinalities (c1, . . . , cm) with c1 < c2 < · · · < cm and functions f1, . . . , fm : Z → R
with fi(z0) = ci (i = 1, . . . ,m), where S, Z , and z0 are the same as those in Section 2.
We assume that each pair of fi and fi+1 is dual consistent for i = 1, . . . ,m−1. It should
be noted that the relation of dual consistency on such pairs is not an equivalence relation,
and it is not transitive, in particular.

Again we consider nonempty polytopes P ci
fi

(i = 1, . . . ,m) defined as in (3) and aim
for a linear inequality representation of the convex hull P c1,...,cm

f1,...,fm
of P c1

f1
∪P c2

f2
∪· · ·∪P cm

fm
.

In the most general case it will be hard to derive inequalities for the convex hull if the
inequalities 〈z, x〉 ≤ fi(z) of (3) (1 ≤ i ≤ m and z ∈ Z) are not valid for all points
x ∈ P c1,...,cm

f1,...,fm
with 〈z0, x〉 = ci for every i = 1, . . . ,m. Hence we assume

P c1,...,cm

f1,...,fm
∩ {x ∈ RS| 〈z0, x〉 = ci} = P ci

fi
(i = 1, . . . ,m). (16)

We also assume

(T) each inequality in (3) (i = 1, . . . ,m) defines a face (or supports the polytope with
equality).

Here (T) is the tightness condition for each fi and ci. It should be noted that the tightness
condition (T) is not required when m = 2.

Remark 7: Let P∗ ⊂ RS be a polyhedron, z0 ∈ RS \ {0}, c1 < · · · < cm a sequence
of cardinalities, and P ci

∗ = P∗ ∩ {x ∈ RS| 〈z0, x〉 = ci} (nonempty and bounded). Then
there is a finite set Z ⊂ RS \ {0} and functions fi : Z → R (1 ≤ i ≤ m) such that
P ci
∗ = P ci

fi
for all i = 1, . . . ,m. Due to the convexity of the polyhedron P∗ equations (16)

hold true. 2

Under assumption (16) we immediately get

P c1,...,cm

f1,...,fm
=

∪
1≤i≤m−1

Conv
(
P ci

fi
∪ P

ci+1

fi+1

)
, (17)

where Conv(·) is the convex hull operator in RS .
We can easily generalize Theorem 1 to the multiple cardinality case as follows. Define

a polyhedron (polytope) P̂ c1,...,cm

f1,...,fm
by

(ci+1 − ci)〈z, x〉 − (fi+1(z) − fi(z))〈z0, x〉 ≤ ci+1fi(z) − cifi+1(z)

(z ∈ Z, i = 1, . . . ,m−1), (18)
c1 ≤ 〈z0, x〉 ≤ cm. (19)
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For each i = 1, . . . ,m−1 and z ∈ Z \ {z0} denote the inequality in (18) by Hz
i . We see

from the tightness condition (T) and Theorem 1 that inequality Hz
i supports the following

three polytopes:
P ci

fi
, P

ci+1

fi+1
, Conv

(
P ci

fi
∪ P

ci+1

fi+1

)
.

It follows from assumption (16) and the convexity of P c1,...,cm

f1,...,fm
that inequality Hz

i is also
valid for other polytopes P

cj

fj
(j ∈ {1, . . . ,m}\{i, i+1}). It should be noted that (convex)

polytopes Conv(P ci
fi
∪ P

ci+1

fi+1
) (i = 1, . . . ,m−1) and P c1,...,cm

f1,...,fm
have the same dimension.

Because of this argument and Theorem 1 we then get

Theorem 2: Under assumption (16) and the tightness condition (T) the following state-
ments are equivalent:

(i) We have P c1,...,cm

f1,...,fm
= P̂ c1,...,cm

f1,...,fm
. That is, the system of inequalities in (18) and (19)

represents the cardinality constrained polytope P c1,...,cm

f1,...,fm
.

(ii) Functions fi and fi+1 are dual consistent for all i = 1, . . . ,m−1. 2

4. Examples and Counterexamples

4.1. Polymatroids
For each U ⊆ S we identify U with the characteristic vector χU ∈ RS .

We now show how the forbidden cardinality inequalities of [9] and [11] can be derived
from (12). To this end let f : 2S → R≥0 be a polymatroid rank function and let Z =
2S \ {∅} and z0 = S. Also let 0 ≤ c1 < · · · < cm ≤ f(S). Now define functions
fi : Z ∪ {∅} → R (i = 1, . . . ,m) by fi(U) = min{ci, f(U)} for U ∈ Z ∪ {∅}. Consider
polytopes P ci

fi
defined by (3) for all i = 1, . . . ,m.

Note that for each i = 1, . . . ,m fi is the rank function of the truncation, by ci,
of the underlying polymatroid with rank function f . Due to the submodularity of fi

(i = 1, . . . ,m), the functions fi and fi+1 are dual consistent for all i = 1, . . . ,m−1.
Moreover, the tightness condition (T) holds for all fi and ci and (16) also holds.

Hence by Theorem 2 the system of inequalities in (18) and (19) defines the convex
hull of P c1

f1
∪ · · · ∪ P cm

fm
. Note that Remark 7 applies to the current polymatroid case.

Inequalities (18) can be written as

(ci+1 − ci)x(U) − (fi+1(U) − fi(U))x(S) ≤ ci+1fi(U) − cifi+1(U)

(U ⊆ S, i = 1, . . . ,m−1). (20)

For any i ∈ {1, . . . ,m−1} consider any subset U ⊆ S such that ci ≤ f(U) ≤ ci+1. Then
by definition of fi and fi+1 we get fi(U) = ci and fi+1(U) = f(U). Hence inequality
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(20) reduces to

(ci+1 − ci)x(U) − (f(U) − ci)x(S) ≤ ci(ci+1 − f(U)) (21)

for such U . These are exactly the f -induced forbidden cardinality inequalities shown in
[8, 9, 11] (see (2)). It should be noted that if ci+1 < f(U), (20) becomes x(U) ≤ f(U)
and if f(U) < ci, then 0 ≤ x(S \ U), both being valid inequalities for the original
polymatroid polytope. More precisely, (20) together with c1 ≤ x(S) ≤ cm implies (2).

4.2. Bipartite Matchings
Let G = (V +, V −; E) be a bipartite graph with a vertex bipartition (V +, V −) and a set E
of edges between V + and V −. For any vertex v ∈ V + ∪V − denote by δv the set of edges
incident to v.

Let w be a weight vector generically chosen from RE and ci (i = 1, 2) be positive
integers with c1 < c2 such that there exists at least one matching M in G of size |M | = c2.
Then for each i = 1, 2 consider a maximum-weight matching problem with a cardinality
constraint, relaxed in RE as follows.

(Pw
i ) Maximize

∑
e∈E

w(e)x(e)

subject to
∑

e∈δv+

x(e) ≤ 1 (v+ ∈ V +),∑
e∈δv−

x(e) ≤ 1 (v− ∈ V −),

0 ≤ x(e) ≤ 1 (e ∈ E),∑
e∈E

x(e) = ci. (22)

Here, we have z0 = χE ∈ RE , and Z is the set of the coefficient vectors of the inequalities
and the equation appearing in (22), where 0 ≤ x(e) should be regarded as an inequality
−x(e) ≤ 0 for all e ∈ E. Also, for each i = 1, 2 function fi : Z → R is defined so as to
take the values specified by the right-hand sides of (22).

For each i = 1, 2 let x̂i be the unique optimal solution of Problem (Pw
i ), where the

uniqueness is due to the choice of generic w. Then, due to the integrality of (22), for each
i = 1, 2 there is a matching Mi ⊆ E in G such that x̂i = χMi

.
Consider the symmetric difference M1∆M2 ≡ (M1\M2)∪(M2\M1). Then M1∆M2

can be decomposed into vertex-disjoint paths and possible cycles. Note that such paths
and cycles are formed by alternating edges of M1 and M2. Because of the uniqueness of
the optimal solutions there does not exist any such alternating cycle or path of even length
(even number of edges). Suppose that the vertex-disjoint paths are then given by Q(k)
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(k = 1, . . . , `), each of which satisfies one of the following two. We denote by E(Q(k))
the edge set of Q(k).

|M2 ∩ E(Q(k))| = |M1 ∩ E(Q(k))| + 1, (23)
|M2 ∩ E(Q(k))| = |M1 ∩ E(Q(k))| − 1. (24)

Let n+ and n−, respectively, be the number of paths Q(k) of type (23) and that of type
(24). Then we see that ` = n+ + n− and n+ − n− = c2 − c1 ≥ 1. Suppose that n− ≥ 1,
and then consider a pair of a path of type (23) and a path of type (24). The pair contains
the same number of arcs from M1 and from M2 in total, which contradicts the uniqueness
of the optimal solutions. It follows that we have n− = 0, i.e., n+ = c2 − c1 = `.

For each path Q(k) denote by Ṽ (Q(k)) the set of intermediate (inner) vertices of Q(k),
its initial and terminal vertices being discarded.

The tight inequalities (equations) in (22) common for i = 1, 2 are given as follows.

(i) For all e ∈ M1 ∩ M2 we have x(e) = 1.

(ii) For all e ∈ E \ (M1 ∪ M2) we have x(e) = 0.

(iii) For each k = 1, . . . , c2 − c1, associated with (23), we have∑
e∈δv+

x(e) = 1 (v+ ∈ Ṽ (Q(k)) ∩ V +), (25)∑
e∈δv−

x(e) = 1 (v− ∈ Ṽ (Q(k)) ∩ V −). (26)

For each k = 1, . . . , c2 − c1 the total number of equations appearing in (25) and (26) is
equal to |Ṽ (Q(k))| = |E(Q(k))| − 1.

Since equations of type (i) x(e) = 0 and type (ii) x(e) = 1 can always be taken into a
dual base, we delete the arcs of (M1 ∩ M2) ∪ (E \ (M1 ∪ M2)) from G, and assume that
M1 ∩ M2 = ∅ and E = M1 ∪ M2 in the sequel.

If c2 − c1 = 1, then the symmetric difference M1∆M2 must form a single path. We
can see that the system of exactly |E| equations of (i), (ii), and (iii) (with c2 − c1 = 1)
together with the cardinality constraint uniquely determines the optimal solution x̂i for
each i = 1, 2. Hence (Pw

i ) (i = 1, 2) have a common optimal dual base. It follows that
the systems of inequalities for (Pw

i ) (i = 1, 2) is dual consistent. In the present case
the cardinality constrained polytope is represented by (22) with the last equation being
replaced by

c1 ≤
∑
e∈E

x(e) ≤ c2 (= c1 + 1). (27)

The present fact is closely related to the primal-dual, augmenting path algorithm for the
maximum-weight matching problem, and is well known.
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On the other hand, if c2−c1 ≥ 2, there are c2−c1 (at least two) paths of (23), so that the
number of tight equations common for i = 1, 2 is at most |E| − 2. Hence (Pw

i ) (i = 1, 2)
cannot have any common dual optimal base even if we take the cardinality constraint into
account. That is, the systems of inequalities for (Pw

i ) (i = 1, 2) are not dual consistent.
This implies that we need some additional redundant inequalities for (Pw

i ) (i = 1, 2) to
express the cardinality constrained polytope P c1,c2

f1,f2
= Conv(P c1

f1
∪ P c2

f2
). Such additional

inequalities can be given in a form of (14). A set of additional inequalities is, for example,
given as follows.

For each k = 1, . . . , c2 − c1 let e(k) be an edge of M2 in path Q(k). For any F ⊆ E
let σ(F ) be the maximum size of a matching in G contained in F . Put M := M1 ∪ M2.
By construction we have σ(M) = |M2| = c2. For each k = 1, . . . , c2 − c1 consider set
M \ {e(k)}. We see that M2 \ {e(k)} is a matching in M \ {e(k)} and there cannot be a
larger one within M \ {e(k)}. Hence we have σ(M \ {e(k)}) = c2 − 1.

It follows that each inequality ∑
e∈M\{e(k)}

x(e) ≤ c1 (28)

is valid for (Pw
1 ) and is tight for x = χM1 , while each inequality∑

e∈M\{e(k)}

x(e) ≤ c2 − 1 (29)

is valid for (Pw
2 ) and is tight for x = χM2 . Note that inequalities (28) (or (29)) together

with the other tight inequalities (25) and (26) are linearly independent since c2 − c1 ≥ 2.
(One of these inequalities can be deleted, if we take into account the cardinality constraint
x(E) = ci for i = 1 or 2.) Adding inequalities (28) to (Pw

1 ) and (29) to (Pw
2 ), we have a

common dual optimal base formed by these inequalities.
Any generic weight w determines a pair of optimal matchings M1 for (Pw

1 ) and M2

for (Pw
2 ). Let us call such a pair (M1,M2) an admissible pair. Then, adding inequalities

(28) to (Pw
1 ) and (29) to (Pw

2 ) for all admissible pairs (M1,M2) makes the systems of
inequalities for (Pw

i ) (i = 1, 2) dual consistent, i.e., it makes them have a common dual
base for any w. It should be noted that for a non-generic w, even if optimal matchings M1

and M2 are not unique, we can always find optimal matchings M ′
1 and M ′

2 with |M ′
1| = c1

and |M ′
2| = c2 such that (M ′

1,M
′
2) is admissible.

4.3. Matroid intersection
Suppose we are given two matroids M(1) and M(2) on a ground set S with rank functions
r1 and r2, respectively. Define the function f : 2S → R by

f(U) = min{r1(T ) + r2(U \ T ) | T ⊆ U} (∀U ⊆ S). (30)

11



Note that f(U) is equal to the maximum size of a common independent set of M(1) and
M(2) restricted on U ⊆ S. Consider the matroid intersection polytope represented by

x(U) ≤ f(U) (U ⊆ S), (31)
x ≥ 0. (32)

Taking into account the nonnegativity constraint, define

Z = Za ∪ Zb, (33)
Za = {χU | U ⊆ S, U 6= ∅}, Zb = {−χe | e ∈ S}. (34)

Let c1 and c2 with c1 < c2 ≤ f(S) be two given positive integers (the cardinalities) and
define fi : Z → R for each i = 1, 2 by

fi(z) =

{
min{f(U), ci} (z = χU , ∅ 6= U ⊆ S)
0 (z = −χe, e ∈ S)

(∀z ∈ Z). (35)

The cardinality-constrained polytopes P c1
f1

and P c2
f2

are given by (3).
Let us examine whether the pair (f1, f2) is dual consistent in general, i.e. whether the

convex hull of P c1
f1

∪ P c2
f2

is described by (4) and (5):

(c2 − c1)〈z, x〉 − (f2(z) − f1(z))〈z0, x〉 ≤ c2f1(z) − c1f2(z) (z ∈ Z),

c1 ≤ 〈z0, x〉 ≤ c2,

where z0 is given by χS , the all-one vector in RS . Actually we will show that the pair
(f1, f2) for matroid intersection is not dual consistent in general.

Remark 8: In Section 4.2 we have seen that ordinary systems of linear inequalities for
cardinality-constrained bipartite matchings are not dual consistent. However, this does not
imply that the linear representations of the cardinality-constrained matroid intersection
are not dual consistent in general, though the bipartite matching problem is a special case
of the matroid intersection problem. Note that Z ⊇ 2S \ {∅} for matroid intersection and
that this is not the case for ordinary bipartite matching polytopes. (We identify a subset
of S with its characteristic vector as before.) 2

Now let M(1) and M(2) be the graphic matroids on the ground set S = {1, 2, 3, 4, 5}
represented by the graphs G1 and G2 given in Figure 1.

Suppose c1 = 1 and c2 = 4. For an appropriately given weight vector w we have

Ic1 = {5}, Ic2 = {1, 2, 3, 4} (36)

as the unique maximum-weight common independent sets of size c1(= 1) and c2(= 4), re-
spectively, which give the unique optimal solutions x̂1 = χIc1

and x̂2 = χIc2
of Problems

12
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Figure 1: The graphs G1 and G2 representing the graphic matroids M(1) and M(2).

(Pw
1 ) and (Pw

2 ), respectively, due to the integrality of the matroid intersection polytope
with a single cardinality constraint. For such a weight vector w we can easily see that a
common dual optimal base is given by the following five:

S(= {1, 2, 3, 4, 5}), S \ {e} (e ∈ {1, 2, 3, 4}). (37)

Next, copy each of M(1) and M(2) on the ground set S ′ = {1′, 2′, 3′, 4′, 5′}. For
i = 1, 2 consider the direct sum of M(i) and its copy and denote it by M(i) again, so that
M(1) and M(2) are defined on the ground set S ∪ S ′ = {1, 2, 3, 4, 5, 1′, 2′, 3′, 4′, 5′}. Put
S ← S ∪ S ′ and let c1 = 2 and c2 = 8. For an appropriate weight vector w we get
Ic1 = {5, 5′} as the unique maximum-weight common independent set of size c1(= 2)
and Ic2 = {1, 2, 3, 4, 1′, 2′, 3′, 4′} as the unique maximum-weight common independent
set of size c2(= 8).

We can see that a maximum rank of common tight sets of x̂1 = χIc1
and x̂2 = χIc2

for
the inequalities and equation in (6) for i = 1, 2 is attained by the following nine sets:

S (= {1, 2, 3, 4, 5, 1′, 2′, 3′, 4′, 5′}), (38)
S \ {e} e ∈ {1, 2, 3, 4, 1′, 2′, 3′, 4′}. (39)

Since there are ten variables, we do not have a common dual optimal base, i.e. the pair
(f1, f2) is not dual consistent. An additional valid inequality that yields a common dual
base with respect to the present w is given, for example, by

6x({5}) + x({1, 2, 3, 4, 5, 1′, 2′, 3′, 4′, 5′}) ≤ 8. (40)

13



It is left open to give a finite set of additional inequalities in a systematic way that makes
the systems for cardinality-constrained (poly)matroid intersection dual consistent.

It is conjectured in [8, 11] that the convex hull of P c1
f1

∪ P c2
f2

is determined by

x(U) ≤ f(U) (U ⊆ S),

(c2 − c1)x(U) − (f(U) − c1)x(S) ≤ c1(c2 − f(U)) (41)
(U ⊆ S with c1 < f(U) < c2),

c1 ≤ x(S) ≤ c2, x ≥ 0.

Similarly as discussed in Section 4.1 we can see that inequalities (41) are implied by
inequalities (4) and (5), so that the polytope P̂ determined by (4) and (5) is included in
the polytope P ′ determined by (41). Since in our example the pair (f1, f2) is not dual
consistent, it follows from Theorem 1 that the convex hull P c1,c2

f1,f2
of P c1

f1
∪ P c2

f2
is strictly

included in P̂ . Hence P c1,c2
f1,f2

6= P ′ and our example given above disproves a conjecture
of Maurras, Spiegelberg, and Stephan [8, 11] for the cardinality-constrained polymatroid
intersection.

5. Concluding Remarks
We have introduced a new concept of dual consistency of systems of inequalities and have
revealed that the concept of dual consistency plays a crucial role in the linear representa-
tion of cardinality constrained polytopes. We have also shown that the ordinary systems
of inequalities for the cardinality-constrained bipartite matching polytopes are not dual
consistent in general and have given a set of additional inequalities to make the system of
inequalities dual consistent.

Moreover, we have shown that ordinary systems of inequalities for the cardinality-
constrained (poly)matroid intersection are not dual consistent in general, which disproves
a conjecture of Maurras, Spiegelberg, and Stephan [8, 11] about a linear representation of
the cardinality-constrained polymatroid intersection.

References
[1] P. Camion and J. Maurras: Polytopes à sommets dans l’ensemble {0, 1}n. Cahiers
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