
RIMS-1735

Exact WKB analysis of a Schrödinger equation

with a merging triplet of two simple poles and

one simple turning point

— its relevance to the Mathieu equation and

the Legendre equation

Dedicated to Professor K. Kataoka on the occasion of his sixtieth birthday

By

Shingo KAMIMOTO, Takahiro KAWAI and Yoshitsugu TAKEI

December 2011

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

KYOTO UNIVERSITY, Kyoto, Japan



Exact WKB analysis of a Schrödinger equation

with a merging triplet of two simple poles and

one simple turning point

—– its relevance to the Mathieu equation and

the Legendre equation

Dedicated to Professor K. Kataoka on the occasion of his sixtieth birthday

Shingo Kamimoto

Graduate School of Mathematical Sciences

University of Tokyo

Tokyo, 153-8914 JAPAN

Takahiro Kawai

Research Institute for Mathematical Sciences

Kyoto University

Kyoto, 606-8502 JAPAN

and

Yoshitsugu Takei

Research Institute for Mathematical Sciences

Kyoto University

Kyoto, 606-8502 JAPAN

The research of the authors has been supported in part by JSPS grants-in-aid No.22-6971, No.20340028 and
No.21340029.



Abstract

We develop the exact WKB analysis of an M2P1T (merging two simple

poles and one simple turning point) Schrödinger equation. Our em-

phasis is put on the analysis of the singularity structure of its Borel

transformed WKB solutions near fixed singular points relevant to the

two simple poles contained in the potential of the equation. We first

show that the WKB-theoretic canonical form of an M2P1T equation

is given by an algebraic Mathieu equation, and then we calculate the

alien derivative of its Borel transformed WKB solutions at each fixed

singular point relevant to the simple poles through the analysis of

Borel transformed WKB solutions of the Legendre equations. In the

course of the calculation of the alien derivative we make full use of mi-

crodifferential operators whose symbols are given by the infinite series

that appear in the coefficients of the algebraic Mathieu equation and

the Legendre equation.

0 Introduction

The primary aim of this paper is to study the analytic structure of the

Borel transform of a WKB solution ψ of the Schrödinger equation

(0.1)

(
d2

dx2
− η2Q

)
ψ = 0 (η : a large parameter)

when the potential Q contains two simple poles. As a simple pole

and a simple turning point give similar effects on the analytic struc-

ture of Borel transformed WKB solutions ([Ko1] and [Ko2]), the above

problem is, in its setting, a natural counterpart of the problems dis-

cussed in [AKT2] and [KKKoT], where Q contains two simple turning

points (in [AKT2]) and one simple pole and one simple turning point

(in [KKKoT]). But we need much deeper insight into the structure of
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the Schödinger equation in question this time. The difficulty becomes

clearly visible if we consider Qa below as the simplest example of such

a potential;

(0.2) Qa =
1

a2 − x2
(a : a parameter).

For this potential Qa we find the following relation

(0.3)

∫ a

−a

√
Qadx = π,

and this indicates that the distance between two singular points of the

Borel transformed WKB solutions whose relative location is indepen-

dent of x (the so-called “fixed singularities” (cf. [DP], [KT, p.112],

[V])) does not diminish when two simple poles in the potential (i.e.,

x = ±a) coalesce into the origin. In the situation studied in [AKT2]

and [KKKoT], integrals corresponding to (0.3) tend to 0 as the relevant

turning points (with a simple pole being regarded as a turning point)

coalesce, and this fact played a key role in the semi-global study of

the problem in [AKT2] and [KKKoT]. To overcome this difficulty we

first generalize our target class of Schödinger operators so that each

operator in the class contains in its potential Q two simple poles and

one simple turning point which merge as a parameter a contained in

Q tends to 0. The addition of a simple turning point abates the geo-

metric rigidity which we observed above when two and only two simple

poles are relevant. For the sake of brevity and clarity we call such an

operator an M2PlT operator, an operator with merging two poles and

one turning point. We note that an MTP operator (resp., an MPPT

operator) in [AKT2] (resp., [KKKoT]) may be called an M2T opera-

tor (resp., an M1P1T operator) if we follow this form of wording. By

way of parenthesis we recall that “P” in MTP is the abbreviation of

“point” and that “PP” in MPPT is that of “pair of a pole and”; that

is, “MTP” means “merging turning points”, whereas “MPPT” means
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“merging pair of a simple pole and a simple turning point”. Now, as

we will show in Section 1 that a WKB-theoretic canonical form (in the

sense of [KT, Chap.2]) of an M2P1T equation is an algebraic Mathieu

equation (in the sense of [Er, vol.III, p.98]) with a large parameter η:

(0.4)(
d2

dx2
− η2

(aA(a, η) + xB(a, η)

x2 − a2
+η−2

( γ+(a)

(x− a)2
+

γ−(a)

(x + a)2

)))
ψ=0,

where

(0.5) A(a, η) =
∑

j,k

A
(j)
k a

jη−k and B(a, η) =
∑

j,k

B
(j)
k ajη−k with

A
(j)
k and B

(j)
k satisfying appropriate growth order conditions

(cf. Proposition 1.2.1),

(0.6) A
(0)2
0 6= B

(0)2
0 , A

(0)
0 B

(0)
0 6= 0,

and

(0.7) γ±(a) are holomorphic near a = 0.

In what follows, we simply call (0.4) a Mathieu equation. The appear-

ance of infinite series A and B connotes the necessity of employing

microdifferential operators whose symbols (in the sense of microlocal

analysis (e.g. [K3])) are A(a, η) and B(a, η) in our analysis (Section 5),

and the growth order conditions on A
(j)
k and B

(j)
k are intended to guar-

antee the existence of such microdifferential operators. When we want

to emphasize the infinite series character of the constants contained in

the Mathieu equation, we call it the ∞-Mathieu equation. This WKB-

theoretic reduction of an M2P1T operator to the ∞-Mathieu operator

is interesting in its own right, as this is the first example where three

turning points (with a simple pole being counted as a turning point)

are simultaneously analyzed. But the Mathieu equation is notoriously
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hard to analyze. Hence to attain our original purpose, that is, to study

the analytic structure of Borel transformed WKB solutions near their

fixed singularities relevant to the simple poles at x = ±a, we further

try to separate out the simple turning point of the Mathieu equation

from the simple poles so that we may make use of the results of Koike

([Ko3]) for the Legendre equation. In order to put this idea into prac-

tice we further introduce another parameter ρ into an M2P1T operator

so that the geometric situation required in Section 2 may be realized.

In a word, the role of the parameter ρ in Definition 1.1 is designed to

visualize the situation where two simple poles coalesce into the origin

with a simple turning point being kept away from the origin; such a

situation is realized by letting ρ tend to 0 with keeping ρ/a being a

non-zero constant.

The main results in this article were announced in [KKT].

Acknowledgment.

We sincerely thank Professor T. Koike for providing us with his draft

concerning the Voros coefficients of the Legendre equation.

1 Reduction of an M2P1T equation to the Mathieu equa-

tion

The purpose of this section is to construct a WKB-theoretic trans-

formation that brings an M2P1T equation to its canonical form, i.e.,

the ∞-Mathieu equation with a large parameter η. As our reason-

ing is highly intricate, we divide it into several steps to facilitate the

understanding of the reader. To begin with let us present the precise

definition of an M2P1T operator, i.e., a Schrödinger operator that con-

tains a triplet of two simple poles and one simple turning point which

merge as the parameter a tends to 0: Let U (resp., V and O) be a suf-
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ficiently small open neighborhood of the origin {t = 0} (resp., {a = 0}
and {ρ = 0}) and let f(t, a, ρ) be a holomorphic function that has the

following form on U × V ×O:

(1.1) f(t, a, ρ) = tρg(t, ρ) +
∑

j≥1

ajf (j)(t, ρ)

with

(1.2) g(t, ρ) and f (j)(t, ρ) being holomorphic on U ×O,

(1.3) g(0, ρ) = 1,

(1.4) f (1)(0, 0) 6= 0,

(1.5) ρ2 6= f (1)(0, ρ)2 for ρ in O.

In what follows we use symbols f (0)(t, ρ) and f̃ (0)(t, ρ) respectively to

denote tρg(t, ρ) and ρg(t, ρ).

Definition 1.1. Let f(t, a, ρ) be as above, let g±(t) be holomorphic

functions on U and let Q denote the following potential

(1.6)
f(t, a, ρ)

t2 − a2
+η−2

( g+(t)

(t− a)2
+

g−(t)

(t + a)2

)
(η : a large parameter).

Then the Schödinger operator

(1.7)
d2

dt2
− η2Q(t, a, ρ)

is called an M2P1T operator.

Remark 1.1. It follows from (1.3) and the implicit function theorem

that the Schödinger operator (1.7) has a simple turning point for a 6= 0

in V if V is sufficiently small, on the condition that ρ is different from

0.
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Remark 1.2. To see how and why the numerator f in the potential Q

abates the rigidity of the potential Qa in (0.2) we note the following

obvious relation:

(1.8)
tf̃ (0) + af (1)

t2 − a2
=
f̃ (0) + f (1)

2(t− a)
+
f̃ (0) − f (1)

2(t + a)
.

Then the condition (1.5) implies in this situation that the numerators

in the right-hand side of (1.8) are different from 0 when evaluated at

t = 0. Thus two simple poles cross in an additive manner as a passes

through 0.

1.1 Formal construction of the transformation that brings an M2P1T

equation to the Mathieu equation

Supposing

(1.1.1) ρ 6= 0

and

(1.1.2) ρ2 6= f (1)(0, ρ)2,

we first construct the formal series

(1.1.3) x = x(t, a, ρ; η) =
∑

j,k≥0

x
(j)
2k (t, ρ)ajη−2k,

(1.1.4) A = A(a, ρ; η) =
∑

j,k≥0

A
(j)
2k (ρ)ajη−2k

and

(1.1.5) B = B(a, ρ; η) =
∑

j,k≥0

B
(j)
2k (ρ)ajη−2k

so that they satisfy

Q(t, a, ρ; η)(1.1.6)
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=
(∂x
∂t

)2
(
aA + xB

x2 − a2
+ η−2

( g+(a)

(x− a)2
+
g−(−a)
(x + a)2

))

− 1

2
η−2{x; t},

where {x; t} designates the Schwarzian derivative, i.e.,

(1.1.7) {x; t} =
∂3x/∂t3

∂x/∂t
− 3

2

(
∂2x/∂t2

∂x/∂t

)2

.

It is known (e.g. [KT, Chap.2]) that appropriate growth order con-

ditions on {x(j)
2k , A

(j)
2k , B

(j)
2k } enables these series to relate Borel trans-

formed WKB solutions of an M2P1T equation and those of its canonical

form, i.e., the ∞-Mathieu equation. The growth order conditions will

be studied later in Section 1.2.

1.1.1 Construction of {A(j)
0 , B

(j)
0 , x

(j)
0 } — the first few terms

Comparing the coefficients of η0 in (1.1.6) we find

(1.1.1.1)
f(t, a, ρ)

t2 − a2
=
(∂x0

∂t

)2 aA0 + x0B0

x2
0 − a2

,

where

(1.1.1.2) x0(t, a, ρ) =
∑

j≥0

x
(j)
0 (t, ρ)aj,

(1.1.1.3) A0(a, ρ) =
∑

j≥0

A
(j)
0 (ρ)aj,

(1.1.1.4) B0(a, ρ) =
∑

j≥0

B
(j)
0 (ρ)aj.
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By multiplying (1.1.1.1) by (t2−a2)(x2
0−a2), we are to find (A0, B0, x0)

so that they satisfy
(∑

j≥0

f (j)(t, ρ)aj
)((∑

j≥0

x
(j)
0 (t, ρ)aj

)2

− a2
)

(1.1.1.5)

= (t2 − a2)
(∑

j≥0

∂x
(j)
0

∂t
aj
)2(∑

j≥0

A
(j)
0 (t, ρ)aj+1

+
(∑

j≥0

x
(j)
0 (t, ρ)aj

)(∑

j≥0

B
(j)
0 (ρ)aj

))
.

Comparing the coefficients of like powers of a, we find

− f (p−2) +
∑

j+k+l=p

x
(j)
0 x

(k)
0 f (l)

(1.1.1.5.p) (=[5.p])

= t2
( ∑

j+k+l=p

∂x
(j)
0

∂t

∂x
(k)
0

∂t
A

(l−1)
0 +

∑

j+k+l+m=p

∂x
(j)
0

∂t

∂x
(k)
0

∂t
x

(l)
0 B

(m)
0

)

−
( ∑

j+k+l=p−2

∂x
(j)
0

∂t

∂x
(k)
0

∂t
A

(l−1)
0 +

∑

j+k+l+m=p−2

∂x
(j)
0

∂t

∂x
(k)
0

∂t
x

(l)
0 B

(m)
0

)
.

In what follows we use the symbol [5.p] to denote (1.1.1.5.p) for the

brevity of the notation. We also note that terms whose indices do

not meet the requirements should be ignored in [5.p]; e.g. for p = 1,

f (p−2),
∑

j+k+l=p−2

x
(j)′
0 x

(k)′
0 A

(l−1)
0 and

∑

j+k+l+m=p−2

x
(j)′
0 x

(k)′
0 x

(l)
0 B

(m)
0 are

absent in [5,p] (=[5.1]). Here and also in the following, x′ designates

∂x/∂t. With these conventions we find

[5.0] tx
(0)2
0 f̃ (0) = t2x

(0)′2
0 x

(0)
0 B

(0)
0 .
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Dividing this by tx
(0)
0 , we find

[5.0]′ x
(0)
0 f̃ (0) = tx

(0)′2
0 B

(0)
0 .

Hence we find

(1.1.1.6) x
(0)
0 (t, ρ) =

1

4B
(0)
0

(∫ t

0

√
f̃ (0)(t, ρ)
√
t

dt
)2

.

Here we assume that B
(0)
0 can be chosen to be different from 0; we

will see later (cf. (1.1.1.22) below) that this is automatically satisfied

thanks to the assumption (1.1.1). We note that (1.1.1.6) together with

(1.2) and (1.3) entails the existence of holomorphic function x̃
(0)
0 (t, ρ)

that satisfies

(1.1.1.7) x
(0)
0 (t, ρ) = tx̃

(0)
0 (t, ρ)

with

(1.1.1.8) x̃
(0)
0 (0, ρ) =

ρ

B
(0)
0

.

Although x
(0)
0 depends on B

(0)
0 at this stage, B

(0)
0 will be eventually

fixed. Hence we do not make the dependence of x
(0)
0 on B

(0)
0 explicit

in the above notation. The remark of this sort applies to x
(p)
0 to be

studied below. Next we study

2x
(0)
0 x

(1)
0 f (0) + x

(0)2
0 f (1)[5.1]

= t2(x
(0)′2
0 A

(0)
0 + 2x

(0)′
0 x

(1)′
0 x

(0)
0 B

(0)
0

+ x
(0)′2
0 x

(1)
0 B

(0)
0 + x

(0)′2
0 x

(0)
0 B

(1)
0 ).

It then follows from (1.1.1.7) that the left-hand side of [5.1] has the

form

(1.1.1.9) t2
(
2x̃

(0)
0 x

(1)
0 f̃ (0) + x̃

(0)2
0 f (1)

)
.
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Thus we are to solve

2x
(0)′
0 x

(1)′
0 x

(0)
0 B

(0)
0 + x

(0)′2
0 x

(1)
0 B

(0)
0 − 2x̃

(0)
0 x

(1)
0 f̃ (0)[5.1]′

= −x(0)′2
0 A

(0)
0 − x

(0)′2
0 x

(0)
0 B

(1)
0 + x̃

(0)2
0 f (1).

In view of (1.1.1.7) and (1.1.1.8) we now introduce a new variable

(1.1.1.10) s = x
(0)
0 (t, ρ);

in what follows we use the symbol ẋ(s, ρ) to designate dx/ds. Dividing

[5.1]′ by x
(0)′2
0 and rewriting the equation in s-variable, we use [5.0]′ to

find

2B
(0)
0 s

dx
(1)
0 (s, ρ)

ds
−B

(0)
0 x

(1)
0 (s, ρ)[5.1]′′

= −A(0)
0 − sB

(1)
0 +

[(
x

(0)′
0

)−2
x̃

(0)2
0 f (1)

] (
t(s, ρ), ρ

)
,

where t(s, ρ) designates the inverse function of s = x
(0)
0 (t, ρ). Then we

find that [5.1]′′ is a differential equation with a regular singularity at

s = 0 with the characteristic index 1/2. Hence it has a holomorphic

solution x
(1)
0 (s, ρ) near s = 0 for any A

(0)
0 and B

(0)
0 , which are arbitrary

constants at this stage. Furthermore we find

(1.1.1.11) x
(1)
0 (0, ρ) =

1

B
(0)
0

(
A

(0)
0 − f (1)(0, ρ)

)

and

(1.1.1.12)

ẋ
(1)
0 (0, ρ) =

1

B
(0)
0

(
−B(1)

0 + Z−1
0

(
z′(0, ρ)f (1)(0, ρ) + f (1)′(0, ρ)

))
,

where

(1.1.1.13) Z0 = x
(0)′
0 (0, ρ)

(
= x̃

(0)
0 (0, ρ) =

ρ

B
(0)
0

)
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and

(1.1.1.14) z(t, ρ) =
(
x

(0)′
0 (t, ρ)

)−2
x̃

(0)
0 (t, ρ)2.

We next consider

− f (0) +
(
2x

(2)
0 x

(0)
0 + x

(1)2
0

)
f (0) + 2x

(1)
0 x

(0)
0 f (1) + x

(0)2
0 f (2)[5.2]

= t2
[
x

(0)′2
0 A

(1)
0 + 2x

(0)′
0 x

(1)′
0 A

(0)
0 + x

(0)′2
0 x

(2)
0 B

(0)
0

+ 2x
(0)′
0 x

(1)′
0 x

(1)
0 B

(0)
0 + x

(0)′2
0 x

(1)
0 B

(1)
0

+
(
2x

(2)′
0 x

(0)′
0 + x

(1)′2
0

)
x

(0)
0 B

(0)
0 + 2x

(1)′
0 x

(0)′
0 x

(0)
0 B

(1)
0

+ x
(0)′2
0 x

(0)
0 B

(2)
0

]
− x

(0)′2
0 x

(0)
0 B

(0)
0 .

Here we observe a new feature which we did not encounter in the study

of [5.p] (p = 0, 1): [5.2] is not divisible by t2 as it stands. Thus the

existence of a holomorphic solution x
(2)
0 (t, ρ) near t = 0 requires that

the following function B(1)(t, ρ) given by (1.1.1.15) should vanish at

t = 0. Note that tB(1)(t, ρ) is the sum of terms in [5.2] which contain

the factor t1 only, at least explicitly.

(1.1.1.15) B(1)(t, ρ) = f̃ (0) − x
(1)2
0 f̃ (0) − 2x̃

(0)
0 x

(1)
0 f (1) − x

(0)′2
0 x̃

(0)
0 B

(0)
0 .

Substituting (1.3), (1.1.1.8) and (1.1.1.11) into B(1)(t, ρ), we find

B(1)(0, ρ) = ρ− ρ(B
(0)
0 )−2

(
A

(0)
0 − f (1)(0, ρ)

)2
(1.1.1.16)

− 2ρ(B
(0)
0 )−1(B

(0)
0 )−1

(
A

(0)
0 − f (1)(0, ρ)

)
f (1)(0, ρ)

−
(
ρ(B

(0)
0 )−1

)3
B

(0)
0

= ρ(B
(0)
0 )−2

(
B

(0)2
0 −

(
A

(0)
0 − f (1)(0, ρ)

)2
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− 2
(
A

(0)
0 − f (1)(0, ρ)

)
f (1)(0, ρ) − ρ2

)

= ρ(B
(0)
0 )−2

(
B

(0)2
0 − A

(0)2
0 + f (1)(0, ρ)2 − ρ2

)
.

In view of the assumption (1.1.1) we thus require

(1.1.1.17) B
(0)2
0 −A

(0)2
0 + f (1)(0, ρ)2 − ρ2 = 0.

Assuming (1.1.1.17) , we can divide [5.2] by t2x
(0)′
0 (t, ρ)2 to find

B
(0)
0

(
2s
d

ds
x

(2)
0 (s, ρ) + x

(2)
0 (s, ρ)

)
[5.2]′

− 2
(
x

(0)′
0 (t, ρ)

)−2
x̃

(0)
0 (t, ρ)f̃ (0)(t, ρ)x

(2)
0 (t, ρ)

= −A(1)
0 −B

(2)
0 s− 2ẋ

(1)
0 (s, ρ)A

(0)
0

− 2ẋ
(1)
0 (s, ρ)x

(1)
0 (s, ρ)B

(0)
0 − x

(1)
0 (s, ρ)B

(1)
0

− ẋ
(1)
0 (s, ρ)2sB

(0)
0 − 2ẋ

(1)
0 (s, ρ)sB

(1)
0 + z(t, ρ)f (2)(t, ρ)

− t−1
(
x

(0)′
0 (t)

)−2(B(1)(t, ρ) − B(1)(0, ρ)
)
.

Here we note one universal (i.e., common to every p) phenomenon,

which was also observed for p = 1 : [5.0]′ entails that the left-hand side

of [5.2]′ is equal to

(1.1.1.18) B
(0)
0

(
2s
d

ds
− 1
)
x

(2)
0 (s, ρ).

This considerably facilitates the computation of x
(2)
0 (0, ρ) and ẋ

(2)
0 (0, ρ),

which are needed in our reasoning. But we postpone their actual com-

putation until the stage where (A
(0)
0 , B

(0)
0 ) is fixed; (A

(0)
0 , B

(0)
0 ) will

be fixed without knowing the explicit form of x
(2)
0 (0, ρ) and ẋ

(2)
0 (0, ρ),

whereas their explicit form becomes substantially simplified when (A
(0)
0 ,

B
(0)
0 ) is fixed. Here we only note that (∂B(1)/∂t)(0, ρ) etc. should
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be taken into account in the computation of x
(2)
0 (0, ρ) etc. To fix

(A
(0)
0 , B

(0)
0 ), we consider next stage, i.e., [5.3].

− f (1) +
∑

j+k+l=3

x
(j)
0 x

(k)
0 f (l)

[5.3]

= t2
( ∑

j+k+l=2

x
(j)′
0 x

(k)′
0 A

(l)
0 +

∑

j+k+l+m=3

x
(j)′
0 x

(k)′
0 x

(l)
0 B

(m)
0

)

−
[
x

(0)′2
0 A

(0)
0 + x

(0)′2
0 x

(0)
0 B

(1)
0 +

(
x

(0)′2
0 x

(1)
0 + 2x

(0)′
0 x

(1)′
0 x

(0)
0

)
B

(0)
0

]
.

For the existence of a holomorphic solution x
(3)
0 (t, ρ) of [5.3] near t = 0,

we clearly need the coincidence of the value of the left-hand side at

t = 0 and that of the right-hand side. Although one immediately

notices another condition is necessary for the existence of x
(3)
0 (t, ρ),

we first concentrate our attention on this coincidence. Then it follows

from (1.1.1.8) and (1.1.1.11) that we have

f (1)(0, ρ)
[
− 1 +

( 1

B
(0)
0

(
A

(0)
0 − f (1)(0, ρ)

))2 ]
(1.1.1.19)

= −
( ρ

B
(0)
0

)2[
A

(0)
0 + A

(0)
0 − f (1)(0, ρ)

]
.

Then the substitution of

(1.1.1.17′) A
(0)2
0 −B

(0)2
0 = f (1)(0, ρ)2 − ρ2

into (1.1.1.19) entails

0 = f (1)(0, ρ)
(
f (1)(0, ρ)2 − ρ2 − 2A

(0)
0 f (1)(0, ρ)

(1.1.1.20)

+ f (1)(0, ρ)2
)

+ ρ2
(
2A

(0)
0 − f (1)(0, ρ)

)
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= 2f (1)(0, ρ)2
(
f (1)(0, ρ) −A

(0)
0

)
− 2ρ2

(
f (1)(0, ρ) −A

(0)
0

)

= 2
(
f (1)(0, ρ)2 − ρ2

)(
f (1)(0, ρ) − A

(0)
0

)
.

Thus the assumption (1.1.2) implies

(1.1.1.21) A
(0)
0 = f (1)(0, ρ).

Substituting (1.1.1.21) into (1.1.1.17) we obtain

(1.1.1.22) B
(0)2
0 = ρ2,

that is,

(1.1.1.22′) B
(0)
0 = ±ρ.

These results lead to the following important assertions: First (1.1.1.22)

together with (1.1.1.13) implies

(1.1.1.23) x
(0)′
0 (0, ρ) = ±1,

and second, a still more important result follows from (1.1.1.11) and

(1.1.1.21):

(1.1.1.24) x
(1)
0 (0, ρ) = 0 !

This result will repeatedly play a decisively important role in our sub-

sequent reasoning.

Before proceeding further, we show how these results are used in the

explicit computation of x
(2)
0 (0, ρ), which will later become necessary

to compute (A
(1)
0 , B

(1)
0 ). First, in order to see the explicit form of

[t−1(x
(0)′
0 )−2

(
B(1)(t, ρ) −B(1)(0, ρ)

)
] evaluated at t = 0, we calculate

(∂B(1)/∂t)(0, ρ):

∂B(1)

∂t
(0, ρ) = ρg′(0, ρ) − 2Z0f

(1)(0, ρ)x
(1)′
0 (0, ρ)(1.1.1.25)

− 2B
(0)
0 x

(0)′′
0 (0, ρ) −B

(0)
0 x̃

(0)′
0 (0, ρ).
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In obtaining this result we used (1.1.1.24) at several spots. Replacing

f (1)(0, ρ) by A
(0)
0 , we encounter one remarkable cancellation of terms

containing A
(0)
0 in [5.2]′ evaluated at s = 0:

(1.1.1.26) −2ẋ
(1)
0 (0, ρ)A

(0)
0 + 2Z−2

0

(
Z2

0A
(0)
0 ẋ

(1)
0 (0, ρ)

)
= 0.

Cancellation of this sort will play a crucially important role in the

construction of
(
x

(p)
0 , A

(p)
0 , B

(p)
0

)
and their estimation in the subsequent

sections. Using (1.1.1.24) again, we thus find

(1.1.1.27) B
(0)
0 x

(2)
0 (0, ρ) = A

(1)
0 − f (2)(0, ρ) + χ

(0)
0 B

(0)
0 ,

where χ
(0)
0 is a constant fixed by g(t, ρ) (and Z0 = ±1). Here we notice

no B
(1)
0 -dependent terms remain in the right-hand side of (1.1.1.27).

Now let us return to the study of [5.3]. To find the conditions that

guarantee the existence of holomorphic x
(3)
0 (t, ρ), let us introduce the

following functions B, B(0), B(1) and B(2):

B(t, ρ) = − f (1)(t, ρ) +
∑

j+k+l=3

x
(j)
0 x

(k)
0 f (l)(1.1.1.28)

+ x
(0)′2
0 A

(0)
0 + x

(0)′2
0 x

(0)
0 B

(1)
0

+
(
x

(0)′2
0 x

(1)
0 + 2x

(0)′
0 x

(1)′
0 x

(0)
0

)
B

(0)
0 ,

(1.1.1.29) B(0) = −f (1) + x
(0)′2
0 A

(0)
0 ,

B(1) = 2x̃
(0)
0 x

(2)
0 f (1) + x

(0)′2
0 x̃

(0)
0 B

(1)
0(1.1.1.30)

+
(
x

(0)′2
0 x̃

(1)
0 + 2x

(0)′
0 x

(1)′
0 x̃

(0)
0

)
B

(0)
0 ,

where

(1.1.1.31) x̃
(1)
0 (t, ρ) = x

(1)
0 (t, ρ)/t,
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and

B(2) = 2
(
x̃

(0)
0 x

(3)
0 + x̃

(1)
0 x

(2)
0

)
f̃ (0) + x̃

(1)2
0 f (1)(1.1.1.32)

+ 2x̃
(0)
0 x̃

(1)
0 f (2) + x̃

(0)2
0 f (3).

It is obvious that we have

(1.1.1.33) B = B(0) + tB(1) + t2B(2).

One immediately notices that B(0)(0, ρ) = 0 is equivalent to (1.1.1.19)

and that “another condition” needed for the existence of holomorphic

x
(3)
0 (t, ρ) is given by

(1.1.1.34)
∂B(0)

∂t
(0, ρ) + B(1)(0, ρ) = 0.

Thus we obtain

2Z0A
(0)
0 x

(2)
0 (0, ρ) + Z0B

(1)
0(1.1.1.35)

+
(
x̃

(1)
0 (0, ρ) + 2x

(1)′
0 (0, ρ)

)
B

(0)
0

− ∂f (1)

∂t
(0, ρ) + 2A

(0)
0 Z0x

(0)′′
0 (0, ρ) = 0

with the help of (1.1.1.21), (1.1.1.23) and (1.1.1.24). We now substitute

(1.1.1.12) and (1.1.1.27) into (1.1.1.35) to find

2Z0
A

(0)
0

B
(0)
0

(
A

(1)
0 − f (2)(0, ρ) + χ

(0)
0 B

(0)
0

)
(1.1.1.36)

− 2Z0B
(1)
0 + 3z′(0, ρ)A(0)

0 + 2f (1)′(0, ρ)

+ 2Z0x
(0)′′
0 (0, ρ)A

(0)
0 = 0.

Dividing (1.1.1.36) by Z0(= ±1), we find

2
A

(0)
0

B
(0)
0

A
(1)
0 − 2B

(1)
0(1.1.1.37)
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= 2
A

(0)
0

B
(0)
0

f (2)(0, ρ) − 2A
(0)
0 χ

(0)
0 − 3Z−1

0 z′(0, ρ)A(0)
0

− 2Z−1
0 f (1)′(0, ρ) − 2x

(0)′′
0 (0, ρ)A

(0)
0 .

Thus “another condition” for the existence of holomorphic x
(3)
0 (t, ρ)

gives a constraint on
(
A

(1)
0 , B

(1)
0

)
.

Now assumptions (1.1.1.19) and (1.1.1.34) enable us to divide [5.3]

by t2(x
(0)′
0 )2 to obtain

B
(0)
0

(
2s
d

ds
+ 1
)
x

(3)
0 (s, ρ)

[5.3]′

= −A(2)
0 − sB

(3)
0 −

[ ∑

j+k+l=2
l≤1

ẋ
(j)
0 ẋ

(k)
0 A

(l)
0 +

∑

j+k+l+m=3
j,k,l,m≤2

ẋ
(j)
0 ẋ

(k)
0 x

(l)
0 B

(m)
0

]

+ A
(0)
0 + sB

(1)
0 +

(
x

(1)
0 + 2sẋ

(1)
0

)
B

(0)
0

+
[ 3∑

n=0

φn(t, ρ)
]∣∣∣
t=t(s,ρ)

where

φ0 = 2
(
x

(0)′
0

)−2
x̃

(0)
0 f̃ (0)x

(3)
0 ,(1.1.1.38)

φ1 =
(
x

(0)′
0

)−2 (
2x̃

(1)
0 x

(2)
0 f̃ (0) + x̃

(1)2
0 f (3)(1.1.1.39)

+ 2x̃
(0)
0 x̃

(1)
0 f (1) + x̃

(0)2
0 f (3)

)

φ2 = 2
(
x

(0)′
0

)−2 (
x̃

(0)
0 f (1)

)
x

(2)′
0(1.1.1.40)

φ3 = t−2
(
x

(0)′
0

)−2[B(0)(t, ρ) + tB(1)(t, ρ) − B(0)(0, ρ)(1.1.1.41)
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− t
(
B(1)(0, ρ) + (∂B(0)/∂t)(0, ρ)

)
− t2

(
x

(0)′
0

)2
φ2

]
.

Here we have separated out φ0 (resp., φ2) from φ1 (resp., φ3) to call

the attention of the reader to the peculiar roles φ0 and φ2 play in our

computation, as has already been noticed when p = 2: First, [5.0]′

entails φ0 coincides with 2B
(0)
0 x

(3)
0 (t, ρ); second, we observe φ2(t(0, ρ))

coincides with 2ẋ
(2)
0 (0, ρ)A

(0)
0 .

It is clear that [5.3]′ has a holomorphic solution x
(3)
0 (t, ρ) near t =

0 for any A
(2)
0 and B

(3)
0 , on the condition that (A

(0)
0 , B

(0)
0 ) satisfies

(1.1.1.21) and (1.1.1.22) and that (A
(1)
0 , B

(1)
0 ) obeys the constraint

(1.1.1.37). Using this holomorphic solution x
(3)
0 (t, ρ), we can write

down [5.4]:

− f (2) +
∑

j+k+l=4

x
(j)
0 x

(k)
0 f (l)[5.4]

= t2
( ∑

j+k+l=3

x
(j)′
0 x

(k)′
0 A

(l)
0 +

∑

j+k+l+m=4

x
(j)′
0 x

(k)′
0 x

(l)
0 B

(m)
0

)

−
( ∑

j+k+l=1

x
(j)′
0 x

(k)′
0 A

(l)
0 +

∑

j+k+l+m=2

x
(j)′
0 x

(k)′
0 x

(l)
0 B

(m)
0

)
.

Assuming x
(4)
0 (t, ρ) is holomorphic near t = 0, we set t = 0 in [5.4] to

obtain

− f (2)(0, ρ) + x
(0)′2
0 (0, ρ)A

(1)
0(1.1.1.42)

+ 2x
(0)′
0 (0, ρ)x

(1)′
0 (0, ρ)A

(0)
0 + x

(0)′2
0 (0, ρ)x

(2)
0 (0, ρ)B

(0)
0

= 0.

Here we have used (1.1.1.7) and (1.1.1.24) to guarantee that there is no

contribution from the sum
∑

j+k+l=4

x
(j)
0 x

(k)
0 f (l) and

( ∑

j+k+l+m=2

x
(j)′
0 x

(k)′
0
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x
(l)
0 B

(m)
0

)
−x(0)′2

0 x
(2)
0 B

(0)
0 . Substituting (1.1.1.12) and (1.1.1.27) into

(1.1.1.42), we find

− f (2)(0, ρ) + A
(1)
0 + 2A

(0)
0

(
B

(0)
0

)−1
(
−B

(1)
0 + Z−1

0

(
z′(0, ρ)A(0)

0

(1.1.1.43)

+ f (1)′(0, ρ)
))

+ A
(1)
0 − f (2)(0, ρ) + χ

(0)
0 B

(0)
0

= 0.

Then the assumption (1.1.2) enables us to solve (1.1.1.37) and (1.1.1.43);

(A
(1)
0 , B

(1)
0 ) is fixed in terms of f (2)(0, ρ), A

(0)
0 , B

(0)
0 , z′(0, ρ), f (1)′(0, ρ),

χ
(0)
0 , Z0 and x(0)′′(0, ρ). We next calculate the coefficient of t1 in [5.4]

to find a constraint on (A
(2)
0 , B

(2)
0 ) which guarantees the existence of

holomorphic x
(4)
0 (t, ρ) near t = 0. In principle, what we are to do now

is to repeat this procedure to find
(
x

(p)
0 (t, ρ), A

(p)
0 , B

(p)
0

)
for every p and

then to estimate them. But the computation becomes more and more

complicated as p increases; hence we first describe the core feature of

the induction process in Section 1.1.2 and then brush it up in Section

1.1.3, so that the estimation may become smoothly performed with the

refined version.

1.1.2 Description of the dependence of
{
x

(p)
0 (t, ρ)

}
p≥0

upon
{
A

(q)
0 , B

(q)
0

}
q≥0

As the concrete computation in the preceding subsection indicates, one

constraint is placed on
(
A

(q)
0 , B

(q)
0

)
for the existence of holomorphic

x
(q+2)
0 (t, ρ) and another constraint on

(
A

(q)
0 , B

(q)
0

)
is added for the ex-

istence of holomorphic x
(q+3)
0 (t, ρ); these two conditions combined will

fix
(
A

(q)
0 , B

(q)
0

)
. In order to confirm that this process runs smoothly

by the assumption (1.1.2), we like to know the concrete structure of
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x
(p)
0 (t, ρ), or at least its “principal part”. For this purpose let us first

prepare some notations related to [5.p] (=(1.1.1.5.p)).

Definition 1.1.2.1. Assume p ≥ 4. Then B[p] = B[p](t, ρ), B[p](0),

B[p](1) and B[p](2) are respectively defined by the following:

B[p] =
∑

i+j+k=p−3

∂x
(i)
0

∂t
(t, ρ)

∂x
(j)
0

∂t
(t, ρ)A

(k)
0(1.1.2.1)

+
∑

i+j+k+l=p−2

x
(k)
0 (t, ρ)

∂x
(i)
0

∂t
(t, ρ)

∂x
(j)
0

∂t
(t, ρ)B

(l)
0

+
∑

i+j+k=p

x
(i)
0 (t, ρ)x

(j)
0 (t, ρ)f (k)(t, ρ) − f (p−2)(t, ρ),

B[p](0) =
∑

i+j+k=p−3

∂x
(i)
0

∂t
(t, ρ)

∂x
(j)
0

∂t
(t, ρ)A

(k)
0(1.1.2.2)

+
∑

i+j+k+l=p−2
k≥2

x
(k)
0 (t, ρ)

∂x
(i)
0

∂t
(t, ρ)

∂x
(j)
0

∂t
(t, ρ)B

(l)
0

+
∑

i+j+k=p
i,j≥2, k≥1

x
(i)
0 (t, ρ)x

(j)
0 (t, ρ)f (k)(t, ρ) − f (p−2)(t, ρ)

B[p](1) = x̃
(0)
0 (t, ρ)

( ∑

i+j+l=p−2

∂x
(i)
0

∂t
(t, ρ)

∂x
(j)
0

∂t
(t, ρ)B

(l)
0

)
(1.1.2.3)

+ x̃
(1)
0 (t, ρ)

( ∑

i+j+l=p−3

∂x
(i)
0

∂t
(t, ρ)

∂x
(j)
0

∂t
(t, ρ)B

(l)
0

)
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+ 2x̃
(0)
0 (t, ρ)

( ∑

j+k=p
j≥2, k≥1

x
(j)
0 (t, ρ)f (k)(t, ρ)

)

+ 2x̃
(1)
0 (t, ρ)

( ∑

j+k=p−1
j≥2, k≥1

x
(j)
0 (t, ρ)f (k)(t, ρ)

)

+
∑

i+j=p
i,j≥2,

x
(i)
0 (t, ρ)x

(j)
0 (t, ρ)f̃ (0)(t, ρ),

B[p](2) =
∑

i+j+k=p
i,j=0,1; k≥1

x̃
(i)
0 (t, ρ)x̃

(j)
0 (t, ρ)f (k)(t, ρ)

(1.1.2.4)

+ 2
(
x̃

(0)
0 (t, ρ)x

(p)
0 (t, ρ) + x̃

(1)
0 (t, ρ)x

(p−1)
0 (t, ρ)

)
f̃ (0)(t, ρ).

Remark 1.1.2.1. In parallel with (1.1.1.33) we have

(1.1.2.5) B[p] = B[p](0) + tB[p](1) + t2B[p](2).

To rewrite [5.p] more concretely we further introduce the following

symbols. First, we let E(p) denote

∑

i+j+k=p−1

∂x
(i)
0

∂t
(t, ρ)

∂x
(j)
0

∂t
(t, ρ)A

(k)
0(1.1.2.6)

+
∑

i+j+k+l=p

∂x
(i)
0

∂t
(t, ρ)

∂x
(j)
0

∂t
(t, ρ)x

(k)
0 (t, ρ)B

(l)
0 .

Second, we define t-independent functions C
(p)
0 and D

(p)
0 by the follow-

ing:

(1.1.2.7) C
(p)
0 (ρ) = B[p](0)(0, ρ),
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(1.1.2.8) D
(p)
0 (ρ) = B[p](1)(0, ρ) +

∂B[p](0)

∂t
(0, ρ).

Using C
(p)
0 and D

(p)
0 , we define F (p) by

(1.1.2.9) B[p](0)(t, ρ) + tB[p](1)(t, ρ) −
(
C

(p)
0 + tD

(p)
0

)
.

It is then clear that F (p) is divisible by t2 and we use the symbol E (p)

to denote

(1.1.2.10) t−2F (p).

Having in mind the results in Section 1.1.1, we plan to fix constants(
A

(q)
0 , B

(q)
0

)
by equations

(1.1.2.11) C
(q+3)
0 = 0 and D

(q+2)
0 = 0,

and construct x
(p)
0 by solving

[5.p] E(p) − E (p) − B[p](2) = 0.

As is observed in the preceding subsection, we can rewrite [5.p] using

the variable

(1.1.2.12) s = x
(0)
0 (t, ρ)

and its inverse function t(s, ρ) as follows:

B
(0)
0

(
2s
d

ds
− 1
)
x

(p)
0 (s, ρ)

[5.p]′

= −A(p−1)
0 −B

(p)
0 s−

∑

i+j+k=p−1
k≤p−2

ẋ
(i)
0 ẋ

(j)
0 A

(k)
0 −

∑

i+j+k+l=p
i,j,k,l≤p−1

ẋ
(i)
0 ẋ

(j)
0 x

(k)
0 B

(l)
0

+
[(
x

(0)′
0 (t, ρ)

)−2
(
E (p) + 2x̃

(1)
0 (t, ρ)f̃ (0)(t, ρ)x

(p−1)
0 (t, ρ)

+
∑

i+j+k=p
i,j=0,1; k≥1

x̃
(i)
0 (t, ρ)x̃

(j)
0 (t, ρ)f (k)(t, ρ)

)]∣∣∣
t=t(s,ρ)

,
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where E (p) denotes the sum of functions given by (1.1.2.10).

Remark 1.1.2.2. In parallel with (1.1.1.40) we note that the value at

s = 0 of 2ẋ
(0)
0 ẋ

(p−1)
0 A

(0)
0 coincides with that of

[
2
(
x

(0)′
0

)−2
x̃

(0)
0 f (1)

x
(p−1)′
0

]∣∣∣
t=t(s,ρ)

, which originates from ∂B[p](1)/∂t; through the Tay-

lor expansion this term appears among the terms of E (p) evaluated at

s=0. A similar relation holds between 2ẋ
(1)
0 ẋ

(p−2)
0 A

(0)
0 and

[
2
(
x

(0)′
0

)−2

x̃
(1)
0 f (1) x

(p−2)′
0

]∣∣∣
t=t(s,ρ)

, which also originates from ∂B[p](1)/∂t. Fur-

thermore the value at s = 0 of
∑

i+j=p−1
i,j≥2

ẋ
(i)
0 ẋ

(j)
0 A

(0)
0

is also coincident with that of
[(
x

(0)′
0

)−2
∑

i+j=p−1
i,j≥2

x
(i)′
0 x

(j)′
0 f (1)

]∣∣∣
t=t(s,ρ)

,

which is a part of the coefficient of t2 in the Taylor expansion of

B[p](0)(t, ρ). These coincidences will play important roles in our sub-

sequent reasoning.

In order to facilitate pointing out the core part of our reasoning, we

further prepare the following

Definition 1.1.2.2. Let
(
~A0[p], ~B0[p

′]
)

stand for
(
A

(0)
0 , A

(1)
0 , · · ·

A
(p)
0 , B

(0)
0 , B

(1)
0 , · · · B(p′)

0

)
and let X = X

(
~A0[p], ~B0[p

′]
)

and Y =

Y
(
~A0[p], ~B0[p

′]
)

be their functions. IfX−Y depends only on
(
~A0[q−1],

~B0[q − 1]
)

for some q, then we say

(1.1.2.13) X ≡
(q)
Y.
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Remark 1.1.2.3. In the above definition we concentrate our attention

on the dependence on
(
~A0[p], ~B0[p

′]
)

which are newly introduced to our

discussions as parameters in the canonical form of an M2P1T operator.

Hence the influence of the quantities contained in the starting operator

such as f (k)(0, ρ) are taken into account only through their effects on(
~A0[p], ~B0[p

′]
)
.

As a preparation for Proposition 1.1.2.1 below, we present the fol-

lowing Lemma 1.1.2.1, where we suppose p ≥ 4 for the sake of the

uniformity of expression. (Cf. Remark 1.1.2.4 below.)

Lemma 1.1.2.1. (i) C
(p+1)
0 (ρ) has the following structure:

C
(p+1)
0 (ρ) =

[(
x

(0)′
0

)2
A

(p−2)
0(1.1.2.14)

+ 2x
(0)′
0 x

(p−2)′
0 A

(0)
0 +

(
x

(0)′
0

)2
x

(p−1)
0 B

(0)
0

]∣∣∣
t=0

+ C(p+1)
(
x

(i)′
0 (i ≤ p− 3), x

(j)
0 (j ≤ p− 2),

A
(k)
0 (k ≤ p− 3), B

(l)
0 (l ≤ p− 3)

)∣∣∣
t=0
,

where

C(p+1) =
∑

i+j+k=p−2
i,j,k≤p−3

x
(i)′
0 x

(j)′
0 A

(k)
0(1.1.2.15)

+
∑

i+j+k+l=p−1
2≤k≤p−2

x
(i)′
0 x

(j)′
0 x

(k)
0 B

(l)
0

+
∑

i+j+k=p+1
i,j≥2; k≥1

x
(i)
0 x

(j)
0 f (k) − f (p−1).
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(ii) D
(p)
0 (ρ) has the following structure:

D
(p)
0 (ρ) =

[
2x̃

(0)
0 x

(0)′
0 x

(p−2)′
0 B

(0)
0

(1.1.2.16)

+ x̃
(0)
0 x

(0)′2
0 B

(p−2)
0 + 2x̃

(0)
0 f (1)x

(p−1)
0

+
(
x

(0)′
0

)2
x

(p−2)′
0 B

(0)
0

]∣∣∣
t=0

+ D(p)
(
x

(i)′
0 , x

(i′)′′
0 (i, i′ ≤ p− 3), x

(j)
0 (j ≤ p− 2),

A
(k)
0 (k ≤ p− 3), B

(l)
0 (l ≤ p− 3)

)∣∣∣
t=0
,

where

D(p) = x̃
(0)
0

( ∑

i+j+l=p−2
i,j,l≤p−3

x
(i)′
0 x

(j)′
0 B

(l)
0

)
+ x̃

(1)
0

( ∑

i+j+l=p−3

x
(i)′
0 x

(j)′
0 B

(l)
0

)(1.1.2.17)

+ 2x̃
(0)
0

( ∑

j+k=p
j,k≥2

x
(j)
0 f (k)

)
+ 2x̃

(1)
0

( ∑

j+k=p−1
j≥2, k≥1

x
(j)
0 f (k)

)

+
∑

i+j=p
i,j≥2

x
(i)
0 x

(j)
0 f̃ (0) + 2

∑

i+j+k=p−3

x
(i)′′
0 x

(j)′
0 A

(k)
0

+
∑

i+j+k+l=p−2
2≤k≤p−3

x
(k)′
0 x

(i)′
0 x

(j)′
0 B

(l)
0 + 2

∑

i+j+k+l=p−2
k≥2

x
(k)
0 x

(i)′′
0 x

(j)′
0 B

(l)
0

+ 2
∑

i+j+k=p
i,j≥2; k≥1

x
(i)′
0 x

(j)
0 f (k) +

∑

i+j+k=p
i,j≥2; k≥1

x
(i)
0 x

(j)
0 f (k)′ − f (p−2)′.

Remark 1.1.2.4. In our later reasoning we will basically use the pair

of equations C
(p+1)
0 = 0 and D

(p)
0 = 0 to fix

(
A

(p−2)
0 , B

(p−2)
0

)
. Hence
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for the convenience of the future reference we have listed the concrete

form of C
(p+1)
0 and D

(p)
0 , not C

(p)
0 and D

(p)
0 . We also note that C(p+1)

and D(p) will turn out to be “non-principal parts” in the computation

in what follows, in the sense that only
(
A

(q)
0 , B

(q)
0

)
(q ≤ p − 3) are

relevant to these parts. (See Remark 1.1.2.5 after Proposition 1.1.2.1

below.) From the experience in the previous subsection one might find

the following term in the “principal parts” of D
(p)
0

(1.1.2.18)
(
x

(0)′
0

)2
x

(p−2)′
0 B

(0)
0

to be somewhat unexpected. As a matter of fact this term originates

from

(1.1.2.19)
∂

∂t

( ∑

i+j+k+l=p−2
k≥2

x
(k)
0 x

(i)′
0 x

(j)′
0 B

(l)
0

)
,

and hence

(1.1.2.20) p− 2 ≥ 2, i.e., p ≥ 4

is required for the appearance of this term. This is the reason why

we did not encounter this term when p = 3. Thus for the sake of

the uniformity of presentation we assume p ≥ 4 in Proposition 1.1.2.1

below. At the same time we note that the term

(1.1.2.21) x̃
(1)
0

( ∑

i+j+l=p−3

x
(i)′
0 x

(j)′
0 B

(l)
0

)∣∣∣
t=0

in the “non-principal part” D(p) coincides with (1.1.2.18) evaluated at

t = 0 when p = 3. Since x
(1)′
0 (0, ρ) = x̃

(1)
0 (0, ρ), the term (1.1.2.21)

had better been regarded as one of the principal terms when p = 3.

This coincidence of terms peculiar to p = 3 explains why the “principal

part” of (1.1.1.35) assumes the same form as that claimed in A0(p) (vi)

(p ≥ 4) in Proposition 1.1.2.1 below; this fact might, at first, look
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somewhat puzzling in view of the absence of (1.1.2.18) in the “principal

part” of (1.1.1.35).

Using these notations we now state the following

Proposition 1.1.2.1. Let x
(p)
0 (s, ρ) be a solution of the equation

[5.p]′ (listed below (1.1.2.12)) with subsidiary conditions

(1.1.2.22) C
(p)
0 = D

(p)
0 = 0.

Then the following set A0(p) of assertions
(
A0(p)(i), A0(p)(ii), · · · ,

A0(p)(vi)
)

is valid for every p ≥ 4.

A0(p) :





A0(p)(i) : x
(p)
0 (s, ρ) is holomorphic near s = 0,

A0(p)(ii) : x
(p)
0 (s, ρ) depends on

(
~A0[p− 1], ~B0[p]

)

=
(
A

(0)
0 , A

(1)
0 , · · · , A(p−1)

0 , B
(0)
0 , B

(1)
0 , · · · , B(p)

0

)
,

A0(p)(iii) : x
(p)
0 (0, ρ) ≡

(p−1)
A

(p−1)
0 /B

(0)
0 ,

A0(p)(iv) :
dx

(p)
0

ds
(0, ρ) ≡

(p)
−B

(p)
0 /B

(0)
0 ,

A0(p)(v) : C
(p)
0 ≡

(p−3)
2A

(p−3)
0 − 2

A
(0)
0

B
(0)
0

B
(p−3)
0 ,

A0(p)(vi) : D
(p)
0 ≡

(p−2)
2
Z0A

(0)
0

B
(0)
0

A
(p−2)
0 − 2Z0B

(p−2)
0

Remark 1.1.2.5. The validity of A0(p)(v) and A0(p)(vi) justifies calling

C(p) and D(p) “non-principal parts”.

Proof of Proposition 1.1.2.1. [I] Let us first confirm A0(4). As the

argument for this case serves as a good specimen of the reasoning for

the general case, we give it in a detailed manner. To begin with we
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summarize the results obtained in the precedent subsection. First,

we know (i) the explicit form of the equation that x
(0)
0 (t, ρ) satisfies

(cf. [5.0]′), (i′) the concrete form of x
(0)
0 (t, ρ) and (ii) x

(0)
0 (0, ρ) and

x
(0)′
0 (0, ρ) (cf. (1.1.1.7), (1.1.1.8) and (1.1.1.23)); second, we know (i)

the concrete form of the equation that x
(1)
0 (s, ρ) satisfies (cf. [5.1]′′) and

(ii) x
(1)
0 (0, ρ) and ẋ

(1)
0 (0, ρ) (cf. (1.1.1.11), (1.1.1.12) and (1.1.1.24));

third, we know (i) the explicit form of the equation that x
(2)
0 (s, ρ) sat-

isfies (cf. [5.2]′ and (1.1.1.18)) and (ii) x
(2)
0 (0, ρ) (cf. (1.1.1.27)), and

fourthly we present the explicit form of the equation that x
(3)
0 (s, ρ)

satisfies (cf. [5.3]′). These results, among other things, guarantee the

validity of A0(q)(ii) (q ≤ 3). At the same time we notice that we have

so far fixed
(
A

(1)
0 , B

(1)
0

)
(cf. (1.1.1.37) and (1.1.1.43)) to guarantee the

holomorphy of x
(q)
0 (s, ρ) (q ≤ 3) near s = 0. One important obser-

vation to be made is that holomorphic x
(3)
0 (s, ρ) exists for arbitrary

constants
(
A

(2)
0 , B

(2)
0 , B

(3)
0

)
at this stage; any constraints have not yet

been imposed upon these constants on which x
(3)
0 (s, ρ) depends.

Now, to find a holomorphic solution x
(4)
0 of [5.4]′ we are to suppose

C
(4)
0 = D

(4)
0 = 0. To find the explicit constraints on the parame-

ters
(
A

(1)
0 , B

(1)
0

)
and others, we want to have concrete expressions of

C
(4)
0 and D

(4)
0 which enable us to see their implications. The explicit

computation of all terms in C
(p)
0 and D

(p)
0 is a laborious task, but the

filtration with respect to p we are using facilitates our computation

substantially. For example, the thorough computation of ẋ
(2)
0 (0, ρ) is

considerably more arduous than that of x
(2)
0 (0, ρ), but the confirmation

of A0(2)(iv) is a rather straightforward task; in the right-hand side of

[5.2]′ all terms except for −A(1)
0 −B

(2)
0 s are expressed in terms of

{
x

(q)
0 (q = 0, 1) and their derivatives, f (0), f (1) and f (2),(1.1.2.23)

A
(0)
0 , B

(0)
0 and B

(1)
0

}
,
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and hence, thanks to A0(q)(ii) (q = 0, 1), we may ignore them in

confirming A0(2)(iv). Similarly the confirmation of A0(3)(iii), which

we need in confirming A0(4)(vi), is not difficult, if we note the following

fact (C):

If we set s = 0 in the right-hand side of [5.3]′, the remaining(C)

terms are free from B
(2)
0 .

Clearly A0(3)(iii) follows from (C), and the fact (C) is a consequence

of the following two facts (C.i) and (C.ii):

(C.i) −2ẋ
(2)
0 (0, ρ)A

(0)
0 and φ2(0, ρ) cancel out (cf. Remark 1.1.2.2),

[ ∑

j+k+l+m=3
j,k,l,m≤2

ẋ
(j)
0 ẋ

(k)
0 x

(l)
0 B

(m)
0

]∣∣∣
s=0

(C.ii)

=
[ ∑

j+k+l+m=3
l=2

ẋ
(j)
0 ẋ

(k)
0 x

(l)
0 B

(m)
0

]∣∣∣
s=0

=
[ ∑

j+k+m=1

ẋ
(j)
0 ẋ

(k)
0 B

(0)−1
0

(
A

(1)
0 − f (2)(0, ρ) + χ

(0)
0 B

(0)
0

)
B

(m)
0

]∣∣∣
s=0
,

which follows from (1.1.1.24) and (1.1.1.27). Since these terms are the

only terms in the right-hand side of [5.3]′ that may contain B
(2)
0 , (C.i)

and (C.ii) entail (C). The disappearance of B
(p−1)
0 in the right-hand

side of [5.p]′ is a universal phenomenon, as we will see below.

Using A0(2)(iv) and A0(3)(iii), which we have just confirmed, to-

gether with the results obtained in the preceding subsection, we can

now confirm A0(4)(v) and A0(4)(vi). Let us first compute C
(4)
0 . Then
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it follows from (1.1.2.14), (1.1.1.12) and (1.1.1.27) that

C
(4)
0 (ρ) ≡

(1)
A

(1)
0 + 2ẋ

(1)
0 (0, ρ)A

(0)
0 + x

(2)
0 (0, ρ)B

(0)
0(1.1.2.24)

≡
(1)

2A
(1)
0 − 2

A
(0)
0

B
(0)
0

B
(1)
0 .

This confirms A0(4)(v). To compute D
(4)
0 we apply A0(2)(iv) and

A0(3)(iii) together with A0(q)(ii) (q ≤ 2) to (1.1.2.16) to find

D
(4)
0 (ρ) ≡

(2)
2Z0

(
− B

(2)
0

B
(0)
0

)
B

(0)
0 + Z0B

(2)
0(1.1.2.25)

+2Z0A
(0)
0

(A(2)
0

B
(0)
0

)
+Z0

(
−B

(2)
0

B
(0)
0

)
B

(0)
0

= 2
Z0A

(0)
0

B
(0)
0

A
(2)
0 − 2Z0B

(2)
0 .

This validates A0(4)(vi).

These concrete expressions of the “top parts” of C
(4)
0 and D

(4)
0 tell

us how the subsidiary conditions given by (1.1.2.22) (with p = 4) put

new constraints on
(
A

(1)
0 , B

(1)
0 , A

(2)
0 , B

(2)
0

)
. Now we know

(
A

(1)
0 , B

(1)
0

)
.

obeys the constraint (1.1.1.37) which may be summarized, in our cur-

rent context, as follows:

(1.1.2.26) 2
A

(0)
0

B
(0)
0

A
(1)
0 − 2B

(1)
0 = given data.

Considering this equation simultaneously with C
(4)
0 (ρ) = 0, we find

that these two constraints are consistent, i.e., admit a simultaneous

(unique) solution
(
A

(1)
0 , B

(1)
0

)
thanks to our assumption (1.1.2) (sup-

plemented with (1.1.1.21) and (1.1.1.22)). Thus A0(4)(i) is valid, and
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then A0(4)(ii), A0(4)(iii) and A0(4)(iv) can be readily confirmed. In

order to make our argument as concrete as possible, let us write down

[5.4]′ explicitly:

B
(0)
0

(
2s
d

ds
− 1
)
x

(4)
0 (s, ρ)

[5.4]′

= −A(3)
0 −B

(4)
0 s−

∑

i+j+k=3
k≤2

ẋ
(i)
0 ẋ

(j)
0 A

(k)
0 −

∑

i+j+k+l=4
i,j,k,l≤3

ẋ
(i)
0 ẋ

(j)
0 x

(k)
0 B

(l)
0

+
[(
x

(0)′
0 (t, ρ)

)−2
(
E (4) + 2x̃

(1)
0 (t, ρ)f̃ (0)(t, ρ)x

(3)
0 (t, ρ)

+
∑

i+j+k=4
i,j=0,1 k≥1

x̃
(i)
0 (t, ρ)x̃

(j)
0 (t, ρ)f (k)(t, ρ)

)]∣∣∣
t=t(s,ρ)

,

where

E (4) = t−2
[ ∑

i+j+k=1

x
(i)′
0 (t, ρ)x

(j)′
0 (t, ρ)A

(k)
0(1.1.2.27)

+ x
(2)
0 (t, ρ)

(
x

(0)′
0 (t, ρ)

)2
B

(0)
0 − f (2)

+ tx̃
(0)
0 (t, ρ)

( ∑

i+j+l=2

x
(i)′
0 (t, ρ)x

(j)′
0 (t, ρ)B

(l)
0

)

+ tx̃
(1)
0 (t, ρ)

( ∑

i+j+l=1

x
(i)′
0 (t, ρ)x

(j)′
0 (t, ρ)B

(l)
0

)

+ 2tx̃
(0)
0 (t, ρ)

( ∑

j+k=4
j≥2, k≥1

x
(j)
0 (t, ρ)f (k)(t, ρ)

)

+ 2tx̃
(1)
0 (t, ρ)x

(2)
0 (t, ρ)f (1)(t, ρ)
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+
(
x

(2)
0 (t, ρ)

)2
f (0)(t, ρ) −

(
C

(4)
0 + tD

(4)
0

)]
.

Since x
(4)
0 (s, ρ) is a (unique) holomorphic solution of [5.4]′, which has a

regular singularity at s = 0 with its characteristic index 1/2, it suffices

to examine the structure of each term in the right-hand side of [5.4]′ to

find how x
(4)
0 (s, ρ) depends on the parameters. Since we have validated

A0(q)(ii) (q ≤ 3), the explicit form of the right-hand side of [5.4]′ entails

that x
(4)
0 (s, ρ) depends on

(
~A0[3], ~B0[4]

)
. This means that A0(4)(ii) is

confirmed. To validateA0(4)(iii), we need A0(3)(iv), which we have not

yet checked; but its confirmation is a straightforward one, because all

terms except for−B(3)
0 s in the right-hand side of [5.3]′ are free fromB

(3)
0

(and A
(3)
0 ). Exactly in parallel with the confirmation of A0(3)(iii), we

then use the cancellation of −2ẋ
(3)
0 (0, ρ)A

(0)
0 and 2x̃

(0)
0 (0, ρ) f (1)(0, ρ)

x
(3)′
0 (0, ρ) (cf. Remark 1.1.2.2) and the relation

[ ∑

i+j+k+l=4
i,j,k,l≤3

ẋ
(i)
0 ẋ

(j)
0 x

(k)
0 B

(l)
0

]∣∣∣
s=0

(1.1.2.28)

=
[ ∑

i+j+k+l=4
k=2,3

ẋ
(i)
0 ẋ

(j)
0 x

(k)
0 B

(l)
0

]∣∣∣
s=0
,

which follows from (1.1.1.24). Here we clearly observe that the right-

hand side of (1.1.2.28) is free from B
(3)
0 . Then by checking indices of

all terms in the right-hand side of [5.4]′ (including terms in E (4)) we

use A0(q)(ii) (q ≤ 3) to conclude that the right-hand side of [5.4]′

evaluated at s = 0 is independent of B
(3)
0 . Thus we have confirmed

A0(4)(iii). The confirmation of A0(4)(iv) is a straightforward one,

because all terms except for −B(4)
0 s in the right-hand side of [5.4]′ are

free from B
(4)
0 (and A

(4)
0 , which has not yet come into our discussion).

Thus we have confirmed
(
A0(4)(i), A0(4)(ii), · · · A0(4)(vi)

)
. In the
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course of the confirmation new parameters
(
A

(3)
0 , B

(4)
0

)
came into our

discussion, whereas
(
A

(1)
0 , B

(1)
0

)
was fixed and one constraint D

(4)
0 = 0

was imposed on
(
A

(2)
0 , B

(2)
0

)
. Thus our reasoning enters the next stage

with free parameters
(
A

(3)
0 , B

(3)
0 , B

(4)
0

)
, neither free nor fixed param-

eters
(
A

(2)
0 , B

(2)
0

)
(i.e., constants controlled by D

(4)
0 = 0 ) and fixed

constants
(
A

(q)
0 , B

(q)
0

)
(q = 0, 1).

[II] Let us now suppose that A0(p) (4 ≤ p ≤ q) has been validated

and show that A0(q + 1) is valid. To begin with, we note that in part

[I] of this proof we have confirmed the following statements (S1), (S2)

and (S3) besides our real target A0(4).

(S1) A0(p)(i) and A0(p)(ii) are valid for 0 ≤ p ≤ 3 (with the conven-

tional understanding that A
(−1)
0 = 0 ).

(S2) A0(p)(iii) is valid for p = 2, 3, and A0(p)(iv) is valid for 1≤p ≤3.

(S2)
(
A

(1)
0 , B

(1)
0

)
is fixed.

We also note that
(
A

(0)
0 , B

(0)
0

)
has been fixed in Section 1.1.1.

It then follows from (S1) that the right-hand side of [5.q+1]′ depends

on
(
~A0[q], ~B0[q + 1]

)
. On the other hand, the conditions C

(q+1)
0 =

D
(q+1)
0 = 0 guarantee the unique existence of holomorphic solution

x
(q+1)
0 (s, ρ) of [5.q + 1]′. Hence A0(q + 1)(i) and A0(q + 1)(ii) are

valid on the condition that C
(q+1)
0 = D

(q+1)
0 = 0 are consistent with

previously imposed constraints on
(
~A0[q], ~B0[q + 1]

)
. In parallel with

the reasoning in part [I] it suffices to confirm A0(q+ 1)(v) and A0(q+

1)(vi); A0(q + 1)(v) combined with A0(q + 1)(vi) shows the existence

of constants
(
A

(q−2)
0 , B

(q−2)
0

)
that satisfy D

(q)
0 = C

(q+1)
0 = 0, with the

help of the assumption (1.1.2). Parenthetically A0(q+ 1)(vi) describes

the constraint upon
(
A

(q−1)
0 , B

(q−1)
0

)
, which will be used to fix them at

the next stage. On the other hand, the confirmation of A0(q + 1)(v)
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and A0(q + 1)(vi) is readily done by

(α) applying A0(p)(ii) (0 ≤ p ≤ q), A0(p)(iii) (2 ≤ p ≤ q) and

A0(p)(iv) (1 ≤ p ≤ q − 1) to (1.1.2.14), and

(β) applying A0(p)(ii) (0 ≤ p ≤ q), A0(p)(iii) (2 ≤ p ≤ q) and

A0(p)(iv) (1 ≤ p ≤ q − 1) to (1.1.2.16).

By way of parenthesis the counterpart of A0(p)(iii) (p = 0, 1) (resp.,

A0(0)(iv)) is given by x
(0)
0 (0, ρ) = x

(1)
0 (0, ρ) = 0 (resp., ẋ

(0)
0 (0, ρ) = 1),

which are used in the above confirmation.

Thus what remains to be confirmed is
(
A0(q+1)(iii), A0(q+1)(iv)

)
.

Using the explicit form of [5.q+1]′ together with A0(p)(ii) (0 ≤ p ≤ q),

we immediately find A0(q + 1)(iv). To validate A0(q + 1)(iii), we use

the setoff between −2ẋ
(q)
0 (0, ρ) A

(0)
0 and 2x̃

(0)
0 (0, ρ) f (1)(0, ρ) x

(q)′
0 (0, ρ)

together with the relation
[ ∑

i+j+k+l=q+1
i,j,k,l≤q

ẋ
(i)
0 ẋ

(j)
0 x

(k)
0 B

(l)
0

]∣∣∣
s=0

(1.1.2.29)

=
[ ∑

i+j+k+l=q+1
2≤k≤q

ẋ
(i)
0 ẋ

(j)
0 x

(k)
0 B

(l)
0

]∣∣∣
s=0
.

Thus exactly the same reasoning used to confirm A0(4)(iii) shows that

A0(q + 1)(iii) is valid. Thus we have confirmed (A0(q + 1)(i), A0(q +

1)(ii), · · · , A0(q + 1)(vi)), and hence the induction proceeds.

�

1.1.3 Formal construction of
{
x

(p)
n , A

(p)
n , B

(p)
n

}
p,n≥0

—– the case where g±(t) = 0

Although the reasoning in the previous subsection is natural and in-

structive, the setting employed there is somewhat clumsy, particularly

when we want to estimate the growth order of
{
x

(p)
0 , A

(p)
0 , B

(p)
0

}
p≥0

.
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The primary purpose of this subsection is to present a more refined in-

duction procedure for the construction of
{
x

(p)
0 , A

(p)
0 , B

(p)
0

}
p≥0

. We

later (in Proposition 1.1.3.2) confirm that the procedure works for

the construction of
{
x

(p)
n , A

(p)
n , B

(p)
n

}
p,n≥0

which are used to transform

an M2P1T equation to its canonical form; for the sake of simplicity

of reasoning we assume g±(t) = 0 in this subsection. In what fol-

lows, x
(0)
0 (s, ρ) denotes the holomorphic function given by (1.1.1.6) and

x
(1)
0 (s, ρ) is the holomorphic solution of [5.1]′′ satisfying the condition

(1.1.1.24) , that is,

(1.1.3.1) x
(1)
0 (0, ρ) = 0.

The constantsA
(0)
0 andB

(0)
0 are those satisfying (1.1.1.21) and (1.1.1.22),

respectively and
(
A

(1)
0 , B

(1)
0

)
designates a common solution of (1.1.1.37)

and (1.1.1.43): In this subsection we conventionally understand that

the relationsC
(3)
0

(
A

(0)
0 , B

(0)
0

)
= D

(2)
0

(
A

(0)
0 , B

(0)
0

)
= 0 andC

(4)
0

(
A

(1)
0 , B

(1)
0

)

= D
(3)
0

(
A

(1)
0 , B

(1)
0

)
= 0 respectively mean the relations that

(
A

(0)
0 , B

(0)
0

)

and
(
A

(1)
0 , B

(1)
0

)
satisfy. We also understand C

(2)
0

(
A

(−1)
0 , B

(−1)
0

)
= 0

to be an empty condition, which is a reflection of the fact that [5.2]

is free from the constant term. By way of parenthesis we note that

D
(3)
0

(
A

(1)
0 , B

(1)
0

)
= 0 is well-defined (i.e., without any extra convention)

as is given by (1.1.1.37) despite the seeming ambiguity in separating

out its “principal part” (cf. Remark 1.1.2.4). Similarly C
(p+1)
0 with

p = 3 given by (1.1.2.14) is coincident with (1.1.1.43).

In order to present the refined induction procedure we prepare some

notations and auxiliary results. We use the symbol A0(p) to mean the

assertion that a triplet of data T
(r)
0 =

{
x

(r)
0 (s, ρ), A

(r)
0 , B

(r)
0

}
is given

for 0 ≤ r ≤ p so that they satisfy the following conditions:

(1.1.3.2.r) x
(r)
0 (s, ρ) is a holomorphic solution of [5.r]′ (to be found

below (1.1.2.12)) near s = 0,
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(1.1.3.3.r) x
(r)
0 (s, ρ) depends on ( ~A0[r − 1], ~B0[r]) = (A

(0)
0 , A

(1)
0 ,

· · · , A(r−1)
0 , B

(0)
0 , B

(1)
0 , · · · , B(r)

0 ),

(1.1.3.4.r) C
(r+3)
0 (ρ) and D

(r+2)
0 (ρ) depend on ( ~A0[r], ~B0[r]),

and ( ~A0[r], ~B0[r]) satisfies the relations C
(r+3)
0 (ρ) =

D
(r+2)
0 (ρ) = 0,

(1.1.3.5.r) C
(r+3)
0 (ρ) ≡

(r)
2A

(r)
0 − 2

A
(0)
0

B
(0)
0

B
(r)
0 ,

(1.1.3.6.r) D
(r+2)
0 (ρ) ≡

(r)
2Z0A

(r)
0

A
(0)
0

B
(0)
0

− 2Z0B
(r)
0 .

We will show later in Proposition 1.1.3.1 that A0(p) entails A0(p+1).

Remark 1.1.3.1.A main difference of the contents of A0(p) and A0(p) is

that A0(p) refers to the structure ofC
(r+3)
0 (ρ) andD

(r+2)
0 (ρ) for r ≤ p−

1; in view of Lemma 1.1.2.1 one might be puzzled with the appearance

of x
(p+1)
0 (0, ρ) in the expression of C

(p+3)
0 (ρ) and D

(p+2)
0 (ρ). As Lemma

1.1.3.3 and Lemma 1.1.3.4 below show, x
(p+1)
0 (0, ρ) can be written down

in terms of
{
T

(r)
0

}
0≤r≤p and x

(p+1)
0 (0, ρ) − A

(p)
0 /B

(0)
0 is free from A

(p)
0

and B
(p)
0 . These facts are implicitly woven into conditions (1.1.3.4.r),

(1.1.3.5.r) and (1.1.3.6.r). The reader will find the mechanism in the

proof of Proposition 1.1.3.1, where conditions (1.1.3.5.r) and (1.1.3.6.r)

are confirmed for r = p + 1.

In proving Lemma 1.1.3.1 ∼ Lemma 1.1.3.4 below we assume that

A0(p) (p ≥ 1) has been validated.

Lemma 1.1.3.1. The right-hand side of [5.p + 1]′ (p ≥ 1) has the

following form:

(1.1.3.7) −A(p)
0 −B

(p+1)
0 s +B

(0)
0 R

(p+1)
0 (s, ρ),
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where B
(p+1)
0 is a complex number and

B
(0)
0 R

(p+1)
0 (s, ρ) = −

∑

i+j+k=p
k≤p−1

ẋ
(i)
0 ẋ

(j)
0 A

(k)
0 −

∑

i+j+k+l=p+1
i,j,k,l≤p

ẋ
(i)
0 ẋ

(j)
0 x

(k)
0 B

(l)
0

(1.1.3.8)

+
[(
x

(0)′
0 (t, ρ)

)−2
t−2
( ∑

i+j+k=p−2

x
(i)′
0 x

(j)′
0 A

(k)
0

+
∑

i+j+k+l=p−1

x
(i)′
0 x

(j)′
0 x

(k)
0 B

(l)
0 +

∑

i+j+k=p+1
k≥1

x
(i)
0 x

(j)
0 f (k)

+
∑

i+j=p+1
i,j≥1

x
(i)
0 x

(j)
0 f (0) − f (p−1)

)]∣∣∣
t=t(s,ρ)

.

Remark 1.1.3.2. The factor B
(0)
0 in front of R

(p+1)
0 (s, ρ) is a rather

conventional one; it will turn out to be notationally convenient when

we estimate the growth order of x
(p)
0 (s, ρ) etc. with an emphasis on

their ρ-dependence. Recall that B
(0)
0 = ±ρ holds by (1.1.1.22′).

Proof of Lemma 1.1.3.1. Since C
(p+1)
0 (ρ) = D

(p+1)
0 (ρ) = 0 holds by

the assumption, we can read off the above result immediately from

(1.1.1.5.p+ 1) in view of the definition of [5.p+ 1]′. We only note that

we have shifted

(1.1.3.9) 2
(
x

(0)′
0 (t, ρ)

)−2
x̃

(0)
0 (t, ρ)x

(p+1)
0 (t, ρ)f̃ (0)(t, ρ)

∣∣∣
t=t(s,ρ)

to the left-hand side of [5.p + 1]′; we have left

(1.1.3.10)
[(
x

(0)′
0 (t, ρ)

)−2
t−2
( ∑

i+j=p+1
i,j≥1

x
(i)
0 x

(j)
0 f (0)

)]∣∣∣
t=t(s,ρ)
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in B
(0)
0 R

(p+1)
0 (s, ρ) despite the fact that a term similar to (1.1.3.9), i.e.,

(1.1.3.11) 2
(
x

(0)′
0

)−2
x̃

(1)
0 x

(p)
0 f̃ (0)

∣∣∣
t=t(s,ρ)

,

is contained in the sum (1.1.3.10); this non-uniformity of treatment

is just due to the convention that the left-hand of [5.p + 1]′ should

contain only the (at this level) unknown function x
(p+1)
0 (s, ρ) and that

its right-hand side should consist of given data.

�

Lemma 1.1.3.2. The function R
(p+1)
0 (s, ρ) is determined by{

T
(r)
0

}
0≤r≤p, and it is free from A

(p)
0 .

Proof. This is an immediate consequence of the concrete expression

(1.1.3.8) of R
(p+1)
0 (s, ρ).

�

Lemma 1.1.3.3. (i) For an arbitrary complex number B
(p+1)
0 we

find a unique holomorphic solution x
(p+1)
0 (s, ρ) near s = 0 of the

following equation [5.p + 1]′:

(1.1.3.12) (=[5.p+ 1]′)

B
(0)
0

(
2s
d

ds
− 1
)
x

(p+1)
0 (s, ρ) = −A(p)

0 −B
(p+1)
0 s +B

(0)
0 R

(p+1)
0 (s, ρ).

(ii) The solution x
(p+1)
0 (s, ρ) depends on ( ~A0[p], ~B0[p + 1]) .

(iii) For the above solution x
(p+1)
0 (s, ρ) we find

(1.1.3.13) B
(0)
0 x

(p+1)
0 (0, ρ) = A

(p)
0 −B

(0)
0 R

(p+1)
0 (0, ρ)

and

(1.1.3.14) B
(0)
0 ẋ

(p+1)
0 (0, ρ) = −B(p+1)

0 +B
(0)
0 Ṙ

(p+1)
0 (0, ρ).
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Proof. (i) Since C
(p+1)
0 (ρ) = D

(p+1)
0 (ρ) = 0 holds by the assumption,

and since B
(0)
0 is different from 0 by the assumption (1.1.1) together

with the relation (1.1.1.22′), the unique existence of a holomorphic

solution of [5.p + 1]′ is evident.

(ii) This immediately follows from Lemma 1.1.3.2 (on the condition

that A0(p) is valid).

(iii) By setting s = 0 in (1.1.3.12), we readily obtain (1.1.3.13). By

first differentiating both sides of (1.1.3.12) and then setting s = 0, we

obtain (1.1.3.14).

�

Remark 1.1.3.3. It is clear that relations similar to (1.1.3.13) and

(1.1.3.14) hold for any holomorphic solution x
(q)
0 (s, ρ) of the follow-

ing equation

(1.1.3.15)

B
(0)
0

(
2s
d

ds
− 1
)
x

(q)
0 (s, ρ) = −A(q−1)

0 −B
(q)
0 s +B

(0)
0 R

(q)
0 (s, ρ),

where A
(q−1)
0 and B

(q)
0 are complex numbers and R

(q)
0 (s, ρ) is holomor-

phic near s = 0; that is, we have

(1.1.3.16) B
(0)
0 x

(q)
0 (0, ρ) = A

(q−1)
0 −B

(0)
0 R

(q)
0 (0, ρ)

and

(1.1.3.17) B
(0)
0 ẋ

(q)
0 (0, ρ) = −B(q)

0 +B
(0)
0 Ṙ

(q)
0 (0, ρ).

Lemma 1.1.3.4. The value B
(0)
0 R

(p+1)
0 (0, ρ) is free from B

(p)
0 .

Proof. When p = 0, [5,1]′′ together with (1.1.1.21) entails that

B
(0)
0 R

(1)
0 (0, ρ) coincides with A

(0)
0 ; thus it is free from B

(0)
0 . Hence we
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assume p ≥ 1 in the discussion below. It then follows from (1.1.3.3.r)

that x
(r)
0 (s, ρ) (0 ≤ r ≤ p − 1) is free from B

(p)
0 . Hence the terms

in R
(p+1)
0 (s, ρ) whose relevance we have to check are those containing

B
(p)
0 , x

(p)
0 or ẋ

(p)
0 . Furthermore, (1.1.3.16) with q = p guarantees that

it suffices to concentrate our attention on terms containing B
(p)
0 or ẋ

(p)
0 .

Thus the terms to be checked are the following:

(1.1.3.18) −
( ∑

i+j+k=1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)x

(k)
0 (0, ρ)

)
B

(p)
0 ,

−
( ∑

i+j=p+1
i,j≤p

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)
x

(0)
0 (0, ρ)B

(0)
0(1.1.3.19)

−
( ∑

i+j=p

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)( ∑

k+l=1

x
(k)
0 (0, ρ)B

(l)
0

)
,

(1.1.3.20) −2ẋ
(0)
0 (0, ρ)ẋ

(p)
0 (0, ρ)A

(0)
0

and terms in the coefficients of the Taylor expansion of

(1.1.3.21)
[(
x

(0)′
0

)−2
t−2
(
2x

(0)
0 x

(p)
0 f (1) + 2x

(1)
0 x

(p)
0 f (0)

)]∣∣∣
t=t(s,ρ)

.

Here we encounter a situation essentially the same as that observed

in the fact (C) used for the confirmation of A0(3)(iii) in the proof of

Proposition 1.1.2.1. First the important relation (1.1.3.1) together with

(1.1.1.7), i.e., x
(0)
0 (0, ρ) = 0, entails the vanishing of each term in the

sum (1.1.3.18) and the sum (1.1.3.19); this reasoning corresponds to

(C.ii). Second, (1.1.3.20) is cancelled out by the term

(1.1.3.22)

2
(
x

(0)′
0

)−2
x̃

(0)
0 x

(p)′
0 f (1)

∣∣∣
t=t(0,ρ)

= 2ẋ
(p)
0 (0, ρ)f (1)(0, ρ) = 2ẋ

(p)
0 (0, ρ)A

(0)
0 ,

which originates from

(1.1.3.23)
[(
x

(0)′
0

)−2
t−2
(
2x

(0)
0 x

(p)
0 f (1)

)]∣∣∣
t=t(s,ρ)

.
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This fact corresponds to (C.i). We note that the contribution from

(1.1.3.24)
[(
x

(0)′
0

)−2
t−2
(
2x

(1)
0 x

(p)
0 f (0)

)]∣∣∣
t=t(s,ρ)

.

is

(1.1.3.25) 2
(
x

(0)′
0 (0, ρ)

)−2
x̃

(1)
0 (0, ρ)f̃ (0)(0, ρ)x

(p)
0 (0, ρ);

thus this part is irrelevant to B
(p)
0 . This completes the proof of Lemma

1.1.3.4.

�

So far we have constructed a holomorphic solution x
(p+1)
0 (s, ρ) of

[5.p+1]′ by using the data given in A0(p) together with a newly added

arbitrary complex number B
(p+1)
0 . Since

(1.1.3.26) C
(p+3)
0 (ρ) = D

(p+2)
0 (ρ) = 0

is contained in the assertion A0(p), the equation [5.p+ 2]′ is given by

(1.1.3.27)

B
(0)
0

(
2s
d

ds
− 1
)
x

(p+2)
0 (s, ρ) = −A(p+1)

0 −B
(p+2)
0 s +B

(0)
0 R

(p+2)
0 (s, ρ),

where A
(p+1)
0 and B

(p+2)
0 are newly added arbitrary complex numbers

and R
(p+2)
0 (s, ρ) is given by replacing p with p + 1 in (1.1.3.8). Note

that x
(p+1)
0 (s, ρ) and B

(p+1)
0 are available at this stage. Furthermore,

by using exactly the same reasoning as in the proof of Lemma 1.1.3.4,

we find

(1.1.3.28) R
(p+2)
0 (0, ρ) is free from (A

(p+1)
0 and) B

(p+1)
0 .

For the sake of the completeness of the reasoning we note that no

condition on A
(p)
0 and B

(p)
0 are used in the proof of Lemma 1.1.3.4.

We are now ready to prove the following
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Proposition 1.1.3.1. The assertion A0(p) is valid for every p≥1.

Proof. As we have confirmed the validity of A0(1) in previous subsec-

tions, it suffices to validate A0(p+1) supposing that A0(p) is valid. (It

is possible to start the induction from p = 0, but to avoid the use of

conventional interpretation of the symbol such as D
(2)
0 we have started

from p = 1.) As we have seen above, we have constructed x
(p+1)
0 (s, ρ)

that satisfied (1.1.3.2.p + 1) and (1.1.3.3.p + 1) by incorporating an

a priori arbitrary complex number B
(p+1)
0 with the given data. Fur-

thermore the condition (1.1.3.26) contained in A0(p) enables us to find

the equation (1.1.3.27) for x
(p+2)
0 (s, ρ), where A

(p+1)
0 and B

(p+2)
0 are

a priori arbitrary complex numbers and B
(p+1)
0 and x

(p+1)
0 (s, ρ) are

used to define R
(p+2)
0 (s, ρ). Thus what we have to do for confirming

A0(p + 1) is to show (1.1.3.5.p + 1) and (1.1.3.6.p + 1) and to prove

that
(
A

(p+1)
0 , B

(p+1)
0

)
can be chosen so that

(1.1.3.29) C
(p+4)
0 (ρ) = D

(p+3)
0 (ρ) = 0

may be satisfied. Meanwhile, once we confirm (1.1.3.5.p + 1) and

(1.1.3.6.p + 1), we can readily solve (1.1.3.29) to fix
(
A

(p+1)
0 , B

(p+1)
0

)

thanks to the assumption (1.1.2) combined with (1.1.1.21) and (1.1.1.22).

To confirm (1.1.3.5.p + 1) and (1.1.3.6.p + 1) we substitute (1.1.3.14)

and (1.1.3.16) with q = p + 2 into (1.1.2.14) and (1.1.2.16) . Then

the required results follow from (1.1.3.3.r) (r ≤ p + 1) together with

(1.1.3.13). As the reasoning is the same for (1.1.3.5.p+1) and (1.1.3.6.p+

1), we show the reasoning for C
(p+4)
0 (ρ). By substituting (1.1.3.14) and

(1.1.3.16) (with q = p + 2) into (1.1.2.14) we find the following:

C
(p+4)
0 (ρ) =A

(p+1)
0 + 2

A
(0)
0

B
(0)
0

(
−B

(p+1)
0 +B

(0)
0 Ṙ

(p+1)
0 (0, ρ)

)
(1.1.3.30)

+
(
A

(p+1)
0 −B

(0)
0 R

(p+2)
0 (0, ρ)

)
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+ C(p+4)
(
x

(i)′
0 (i ≤ p), x

(j)
0 (j ≤ p + 1),

A
(k)
0 (k ≤ p), B

(l)
0 (l ≤ p)

)∣∣∣
t=0
.

Then it follows from (1.1.3.28) and the structure of C(p+4)
∣∣
t=0

supple-

mented by (1.1.3.13) that

(1.1.3.31) 2A
(0)
0 Ṙ

(p+1)
0 (0, ρ) −B

(0)
0 R

(p+2)
0 (0, ρ) + C(p+4)

0

∣∣∣
t=0

is free fromA
(p+1)
0 andB

(p+1)
0 ; it depends on

(
~A0[p], ~B0[p]

)
by (1.1.3.3.r)

(r ≤ p). Thus we find

(1.1.3.5.p+ 1) C
(p+4)
0 ≡

(p+1)
2A

(p+1)
0 − 2

A
(0)
0

B
(0)
0

B
(p+1)
0 .

As we have noted earlier, we can readily find (A
(p+1)
0 , B

(p+1)
0 ) that

annihilates C
(p+4)
0 (ρ) and D

(p+3)
0 (ρ) by their expressions (1.1.3.5.p+ 1)

and (1.1.3.6.p + 1). Thus we obtain the required triplet T
(p+1)
0 ={

x
(p+1)
0 (s, ρ), A

(p+1)
0 , B

(p+1)
0

}
. Therefore A0(p + 1) is validated, and

the induction proceeds.

�

Next we study how the construction of triplets T
(r)
l =

{
x

(r)
l (s, ρ),

A
(r)
l , B

(r)
l

}
(l, r ≥ 0) are done. In what follows we use the symbol

(1.1.3.32) {x; t}(p)
n

to denote the coefficient of apη−n of the expansion of {x; t}, that is,
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(1.1.3.33) {x; t} =
∑

p,n≥0

{x; t}(p)
n a

pη−n.

We eventually need more explicit description of {x; t} in terms of the

derivatives of x
(r)
l , but it suffices to use this simplified symbol for the

time being.

First we note (1.1.6) with g± = 0 entails

(1.1.3.34)

(x2−a2)f = (t2−a2)
(∂x
∂t

)2

(aA+xB)− 1

2
η−2(t2−a2)(x2−a2){x; t}.

Since

(1.1.3.35)

x2ν+1(t, a, ρ) = A2ν+1(a, ρ) = B2ν+1(a, ρ) = 0 (ν = 0, 1, 2, · · · )
holds by Proposition A.1 in Appendix A, we then find the following

relation (1.1.3.36) for n ≥ 1 by the comparison of the coefficients of

η−2n of (1.1.3.34) :

( ∑

i+j=n

x2ix2j

)
f

(1.1.3.36)

= (t2 − a2)
( ∑

i+j+k=n

x′2ix
′
2jaA2k +

∑

i+j+k+l=n

x′2ix
′
2jx2kB2l

)

− 1

2
(t2 − a2)

∑

i+j+k=n−1
r≥0

x2ix2j{x; t}(r)
2k a

r
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+
1

2
(t2 − a2)a2

(∑

r≥0

{x; t}(r)
2(n−1)a

r
)
.

Expanding (1.1.3.36) in powers of a and comparing the coefficients of

ap, we obtain

∑

q+r+u=p
i+j=n

x
(q)
2i x

(r)
2j f

(u)

(1.1.3.37)

= t2
[ ∑

q+r+u=p−1
i+j+k=n

x
(q)′
2i x

(r)′
2j A

(u)
2k +

∑

q+r+u+v=p
i+j+k+l=n

x
(q)′
2i x

(r)′
2j x

(u)
2k B

(v)
2l

− 1

2

∑

q+r+u=p
i+j+k=n−1

x
(q)
2i x

(r)
2j {x; t}(u)

2k +
1

2
{x; t}(p−2)

2(n−1)

]

−
[ ∑

q+r+u=p−3
i+j+k=n

x
(q)′
2i x

(r)′
2j A

(u)
2k +

∑

q+r+u+v=p−2
i+j+k+l=n

x
(q)′
2i x

(r)′
2j x

(u)
2k B

(v)
2l

− 1

2

∑

q+r+u=p−2
i+j+k=n−1

x
(q)
2i x

(r)
2j {x; t}(u)

2k +
1

2
{x; t}(p−4)

2(n−1)

]
.

Let us now define Φ
(p)
2n and Ψ

(p)
2n by the following:

Φ
(p)
2n =

∑

q+r+u=p−3
i+j+k=n

x
(q)′
2i x

(r)′
2j A

(u)
2k +

∑

q+r+u+v=p−2
i+j+k+l=n

x
(q)′
2i x

(r)′
2j x

(u)
2k B

(v)
2l(1.1.3.38)

+
( ∑

q+r+u=p
i+j=n

x
(q)
2i x

(r)
2j f

(u) − 2x
(0)
0 x

(p)
2n f

(0)
)
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− 1

2

∑

q+r+u=p−2
i+j+k=n−1

x
(q)
2i x

(r)
2j {x; t}(u)

2k +
1

2
{x; t}(p−4)

2(n−1),

Ψ
(p)
2n =

∑

q+r+u=p−1
i+j+k=n

x
(q)′
2i x

(r)′
2j A

(u)
2k +

∑

q+r+u+v=p
i+j+k+l=n

x
(q)′
2i x

(r)′
2j x

(u)
2k B

(v)
2l

(1.1.3.39)

− 2x̃
(0)
0 f̃ (0)x

(p)
2n − 1

2

∑

q+r+u=p
i+j+k=n−1

x
(q)
2i x

(r)
2j {x; t}(u)

2k +
1

2
{x; t}(p−2)

2(n−1).

Remark 1.1.3.4.The separation of terms into Φ
(p)
2n and Ψ

(p)
2n is somewhat

loosely done to make the expression simpler in view of our experience in

Section 1.1.1. Some terms which evidently contain the factor t2 remain

in Φ
(p)
2n ; a typical example is

∑

i+j=n
i,j≤n−1

x
(0)
2i x

(p)
2j f

(0). Since leaving these

terms in Φ
(p)
2n does not cause any problems in our induction procedure

described below, we have not paid much attention to this point. The

term 2x
(0)
0 x

(p)
2n f

(0) plays an exceptional role in our reasoning, and we

have separated it from Φ
(p)
2n and put −2t−2x

(0)
0 f (0)x

(p)
2n into Ψ

(p)
2n .

Thus we are to determine T
(r)
l =

{
x

(r)
l , A

(r)
l , B

(r)
l

}
(r, l ≥ 0) so that

they satisfy

(1.1.3.40) Φ
(p)
2n − t2Ψ

(p)
2n = 0

for every p, n ≥ 0. Using the variable

(1.1.3.41) s = x
(0)
0 (t, ρ),

we can rewrite (1.1.3.40) as
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(1.1.3.42)
(
2s
d

ds
− 1
)
x

(p)
2n = −A

(p−1)
2n

B
(0)
0

− B
(p)
2n

B
(0)
0

s + R
(p)
2n (s, ρ),

where

R
(p)
2n (s, ρ)(1.1.3.43)

= −
∑

q+r+u=p−1
i+j+k=n

(u,k)6=(p−1,n)

ẋ
(q)
2i ẋ

(r)
2j

A
(u)
2k

B
(0)
0

(α.i)

−
∑

q+r+u+v=p
i+j+k+l=n

∗
ẋ

(q)
2i ẋ

(r)
2j x

(u)
2k

B
(v)
2l

B
(0)
0

(α.ii)

+ t−2
∑

q+r+u=p−3
i+j+k=n

ẋ
(q)
2i ẋ

(r)
2j

A
(u)
2k

B
(0)
0

(α.iii)

+ t−2
∑

q+r+u+v=p−2
i+j+k+l=n

ẋ
(q)
2i ẋ

(r)
2j x

(u)
2k

B
(v)
2l

B
(0)
0

(α.iv)

+
t−2

B
(0)
0

(dt
ds

)2 ∑

q+r+u=p
i+j=n

i,j≤n−1

x
(q)
2i x

(r)
2j f

(u) (α.v)

+
2t−2

B
(0)
0

(dt
ds

)2 ∑

q+r+u=p
q≤p−1

x
(q)
2nx

(r)
0 f (u) (α.vi)
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− t−2

2B
(0)
0

(dt
ds

)2 ∑

q+r+u=p−2
i+j+k=n−1

x
(q)
2i x

(r)
2j {x; t}(u)

2k (α.vii)

+
t−2

2B
(0)
0

(dt
ds

)2

{x; t}(p−4)
2(n−1) (α.viii)

+
1

2B
(0)
0

(dt
ds

)2 ∑

q+r+u=p
i+j+k=n−1

x
(q)
2i x

(r)
2j {x; t}(u)

2k (α.ix)

− 1

2B
(0)
0

(dt
ds

)2

{x; t}(p−2)
2(n−1) (α.x)

with
∑∗ in (α.ii) meaning the following:

(1.1.3.44)
∑

q+r+u+v=p
i+j+k+l=n

∗
=

∑

q+r+u+v=p
i+j+k+l=n

(q,i),(r,j),(u,k),(v,l)6=(p,n)

.

Here the formula number (α.l) is put to each sum for the later reference.

We note that, as is usual,

(1.1.3.45)
2t−2

B
(0)
0

(dt
ds

)2

x
(p)
2nx

(0)
0 f (0)

has been shifted to the left-hand side of (1.1.3.42) thanks to [5.0]′; this

is the reason why we encounter somewhat puzzling sums (α.v) and

(α.vi). Our task is to show a generalization of Proposition 1.1.3.1 that

is applicable to T
(r)
l =

{
x

(r)
l , A

(r)
l , B

(r)
l

}
(l 	 0). In order to see how

we can, and really do, adjust the constants contained in R
(p)
2n to find a

holomorphic solution x
(p)
2n (s, ρ) of (1.1.3.42) near s = 0, we first show

a generalization of Proposition 1.1.2.1. To present the generalization

we prepare some notations.
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Definition 1.1.3.1. (i) The infinite vector
(
x

(0)
l , x

(1)
l , · · · , x

(r)
l , · · ·

)

(resp.,
(
A

(0)
l , A

(1)
l , · · · , A

(r)
l , · · ·

)
and

(
B

(0)
l , B

(1)
l , · · · , B(r)

l , · · ·
)
) is

denoted by ~xl[∞] (resp., ~Al[∞] and ~Bl[∞]).

(ii) ~xn[p] (resp., ~An[p] and ~Bn[p]) stands for
(
~x0[∞], ~x1[∞], · · · ,

~xn−1[∞], x
(0)
n , x

(1)
n , · · · , x(p)

n

)
(resp.,

(
~A0[∞], ~A1[∞], · · · , ~An−1[∞],

A
(0)
n , A

(1)
n , · · · , A(p)

n

)
and

(
~B0[∞], ~B1[∞], · · · , ~Bn−1[∞], B

(0)
n , B

(1)
n ,

· · · , B(p)
n

)
).

(iii) We say ~xl[∞] is holomorphic near s = 0 (or t = 0) if there exists a

neighborhood U (resp., O) of {s ∈ C; s = 0} (resp., {ρ ∈ C; ρ = 0})
for which x

(r)
l (s, ρ) is holomorphic on U × (O − {0}) for every r ≥ 0.

(iv) We say ~xn[p] is holomorphic near s = 0 (or t = 0) if there exists a

neighborhood U (resp., O) of {s ∈ C; s = 0} (resp., {ρ ∈ C; ρ = 0})
for which the following holds:

(iv.a) x
(r)
l (s, ρ) is holomorphic on U × (O − {0}) for 0 ≤ l ≤
n− 1 and r ≥ 0,

and

(iv.b) x
(r)
n (s, ρ) is holomorphic on U×(O−{0}) for 0 ≤ r ≤ p.

(v) Let X = X ( ~An[p], ~Bn[p
′]) and Y = Y( ~An[p], ~Bn[p

′]) be functions

of ~An[p] and ~Bn[p
′]. If X −Y depends only on ( ~An[q − 1], ~Bn[q− 1]),

then we say

(1.1.3.46) X ≡
(n;q)

Y .

If there is no fear of confusion, we abbreviate it as

(1.1.3.47) X ≡
(q)

Y .
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Remark 1.1.3.5. As a convention we understand

(
~An[−1], ~Bn[−1]

)(1.1.3.48)

=
(
~A0[∞], ~A1[∞], · · · , ~An−1[∞], ~B0[∞], ~B1[∞], · · · , ~Bn−1[∞]

)
.

Although the following Lemma 1.1.3.5 is an immediate consequence

of (1.1.3.38) (together with (1.1.1.23)), it plays an important role in

finding the concrete description of the conditions which guarantee the

existence of a holomorphic solution x
(p)
2n (s, ρ) of (1.1.3.42) with p > r.

(Cf. Proposition 1.1.3.2 and Proposition 1.1.3.3 below.)

Lemma 1.1.3.5. If ~x2n[r] is holomorphic near s = 0, then Φ
(r)
2n (t, ρ)

is holomorphic near t = 0.

As mentioned in the above, this is an immediate consequence of the

definition of Φ
(r)
2n . The importance of Lemma 1.1.3.5 consists in the fact

that the holomorphy of Φ
(r+1)
2n (t, ρ) near t = 0 is needed to describe

the conditions which guarantee the existence of a holomorphic solution

x
(r+1)
2n (t, ρ) of (1.1.3.42) with p = r + 1 on the condition that ~x2n[r]

is holomorphic. In what follows we let [E; r, l] designate the following

equation:

[E; r, l]
(
2s
d

ds
− 1
)
x

(r)
l (s, ρ) = −A

(r−1)
l

B
(0)
0

− B
(r)
l

B
(0)
0

s +R
(r)
l (s, ρ),

where

(1.1.3.49) A
(r−1)
l and B

(r)
l are complex numbers,

(1.1.3.50) A
(−1)
l = 0,

(1.1.3.51) A
(r−1)
2ν+1 = B

(r)
2ν+1 = R

(r)
2ν+1 = 0 for r, ν = 0, 1, 2, · · · ,

(1.1.3.52) R
(p)
2n is given by (1.1.3.43).
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Remark 1.1.3.6. In our subsequent discussion, we arrange our reason-

ing so that each quantity in the definition of R
(p)
2n has been given by

preceding arguments.

Let us begin our discussion by showing the following

Lemma 1.1.3.6. Suppose that constants ( ~Al[∞], ~Bl[∞] (l = 0, 1,

· · · , 2n − 1) and holomorphic (near s = 0) ~xl[∞] (l = 0, 1, · · · ,
2n− 1) are given with x

(r)
l satisfying [E; r, l]. Suppose further

(1.1.3.53) x
(0)
l (0, ρ) = 0 (l = 0, 1, · · · , 2n− 1).

Then there exists a holomorphic (in s) solution x
(r)
2n (s, ρ) of [E; r, 2n]

for r = 0, 1 for any
(
A

(0)
2n , B

(0)
2n , B

(1)
2n

)
. Furthermore they satisfy the

following:

(1.1.3.54) x
(0)
2n (0, ρ) = 0,

(1.1.3.55) ẋ
(0)
2n (0, ρ) ≡

(2n;0)
−B

(0)
2n

B
(0)
0

,

(1.1.3.56) x
(1)
2n (0, ρ) ≡

(2n;0)

A
(0)
2n

B
(0)
0

,

(1.1.3.57) ẋ
(1)
2n (0, ρ) ≡

(2n;1)
−B

(1)
2n

B
(0)
0

.

Proof. We first show the existence of holomorphic x
(0)
2n (s, ρ) and con-

firm its properties (1.1.3.54) and (1.1.3.55). Checking each term in

(1.1.3.43), we readily find that the possible singularity of R
(0)
2n arises

from the sum (α.v). On the other hand, (1.1.3.53) and the definition

of f (0) entail

(1.1.3.58)
∑

q+r+u=0
i+j=n

i,j≤n−1

x
(q)
2i x

(r)
2j f

(u) =
( ∑

i+j=n
i,j≤n−1

x
(0)
2i x

(0)
2j

)
f (0) = O(t3).
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Hence the contribution from (α.v) is holomorphic near t = 0. There-

fore [E; 0, 2n] has a (unique) holomorphic solution x
(0)
2n (s, ρ) for any

complex number B
(0)
2n . Furthermore the contribution from (α.v) de-

pends only on
(
~A0[∞], ~A1[∞], · · · , ~A2n−1[∞], ~B0[∞], ~B1[∞], · · · ,

~B2n−1[∞]
)
, and it vanishes at t = 0. On the other hand it follows from

(1.1.3.44) that each term in (α.ii) with p = 0 contains a factor x
(0)
2k with

k ≤ n− 1. Hence the value of (α.ii) at s = 0 is 0. Clearly (α.ix) with

p = 0 also vanishes at s = 0. Thus we obtain (1.1.3.54) . Since

(α.ii) also depends only on
(
~A0[∞], ~A1[∞], · · · , ~A2n−1[∞], ~B0[∞],

~B1[∞], · · · , ~B2n−1[∞]
)
, R

(0)
2n (s, ρ) depends only on these parameters.

Therefore we find

(1.1.3.59)
(
2s
d

ds
− 1
)
x

(0)
2n (s, ρ) +

B
(0)
2n

B
(0)
0

s ≡
(2n;0)

0,

and, in particular, we obtain (1.1.3.55).

We next investigate the structure of R
(1)
2n . The contribution from

(α.v) with p = 1 is:

(1.1.3.60)
( ∑

q+r=1
i+j=n

i,j≤n−1

x
(q)
2i x

(r)
2j

)
f (0) +

( ∑

i+j=n
i,j≤n−1

x
(0)
2i x

(0)
2j

)
f (1).

Then it follows from (1.1.3.53) that

(1.1.3.61)
∑

q+r=1
i+j=n

i,j≤n−1

x
(q)
2i x

(r)
2j = O(t),

(1.1.3.62)
∑

i+j=n
i,j≤n−1

x
(0)
2i x

(0)
2j = O(t2).

Hence the contribution from (α.v) with p = 1 is holomorphic near

t = 0. Similarly the contribution from (α.vi) with p = 1 is holomorphic
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near t = 0, because

(1.1.3.63) x
(0)
2n

(
x

(1)
0 f (0) + x

(0)
0 f (1)

)
= O(t2)

by (1.1.3.54). Other terms in R
(1)
2n are evidently holomorphic near

s = 0, and hence [E; 1, 2n] has a holomorphic solution x
(1)
2n (s, ρ) near

s = 0 for any complex numbers A
(0)
2n , B

(0)
2n and B

(1)
2n . To confirm its

property (1.1.3.56) we next show

(1.1.3.64) R
(1)
2n (0, ρ) is free from B

(0)
2n .

The proof of this fact is basically the same as that of Proposition 1.1.2.1;

in parallel with the cancellation (C.i),

(1.1.3.65)
2

B
(0)
0

ẋ
(0)
2n (0, ρ)ẋ

(0)
0 (0, ρ)f (1)(0, ρ),

which originates from the Taylor expansion of the second term in

(1.1.3.63), is cancelled out by the term

(1.1.3.66) −2ẋ
(0)
0 ẋ

(0)
2n

A
(0)
0

B
(0)
0

∣∣∣
s=0

in the sum (α.i) evaluated at s = 0, whereas, in parallel with (C.ii),

the term which contains ẋ
(0)
2n and B

(0)
2n in the sum (α.ii) evaluated at

s = 0, that is,

(1.1.3.67)

−
(
2ẋ

(0)
2n ẋ

(1)
0 x

(0)
0 + 2ẋ

(0)
2n ẋ

(0)
0 x

(1)
0 +

∑

q+r+u=1

ẋ
(q)
0 ẋ

(r)
0 x

(u)
0

B
(0)
2n

B
(0)
0

)∣∣∣
s=0

is equal to

(1.1.3.68) −
(
2ẋ

(0)
2n ẋ

(1)
0 x

(0)
0 +2ẋ

(0)
2n ẋ

(0)
0 x

(1)
0 +

(
x

(1)
0 +2ẋ

(1)
0 x

(1)
0

)B(0)
2n

B
(0)
0

)∣∣∣
s=0
,
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which vanishes by (1.1.1.7) and (1.1.1.24). Thus the evaluation of

[E; 1, 2n] at s = 0 entails

(1.1.3.69) x
(1)
2n (0, ρ) ≡

(2n;0)

A
(0)
2n

B
(0)
0

,

as is required. Since R
(1)
2n (s, ρ) is clearly free from B

(1)
2n (and A

(1)
2n , which

has not yet appeared in our discussion), the relation (1.1.3.57) is an

immediate consequence of [E; 1, 2n].

�

An important fact which lies behind the existence of holomorphic

x
(r)
2n (s, ρ) with r = 0, 1 is the validity of the following:

(1.1.3.70) Φ
(0)
2n

∣∣
t=0

=
dΦ

(0)
2n

dt

∣∣∣
t=0

= Φ
(1)
2n

∣∣
t=0

=
dΦ

(1)
2n

dt

∣∣∣
t=0

= 0.

In passing we note

(1.1.3.71) Φ
(2)
2n

∣∣
t=0

= 0

also follows from (1.1.3.53) and (1.1.3.54), although we cannot expect

(1.1.3.72)
dΦ

(2)
2n

dt

∣∣∣
t=0

= 0

in general. Actually as we will see below (1.1.3.72) gives a constraint

on A
(0)
2n and B

(0)
2n , which are free parameters in Lemma 1.1.3.6. Now,

in parallel with Proposition 1.1.2.1 we find the following

Proposition 1.1.3.2. Let us suppose the same conditions as in

Lemma 1.1.3.6, that is, the existence of constants ( ~Al[∞], ~Bl[∞])

(l = 0, 1, · · · , 2n−1) and holomorphic ~xl[∞] (l = 0, 1, · · · , 2n−1)

that satisfies (1.1.3.53). Then the following set A2n(p) of assertions

(A2n(p)(i), A2n(p)(ii), · · · , A2n(p)(vi)) is valid for every p ≥ 0 with
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the proviso that A2n(p)(v) (p = 0, 1, 2) and A2n(p)(vi) (p = 0, 1) are

void statements (i.e., trivially correct statements in the sense that

both sides are 0 under the convention

(1.1.3.73) A
(q)
2n = B

(q′)
2n = 0 for q, q′ = −3,−2 and q′ = −1,

which supplements (1.1.3.50).)
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A2n(p) :





A2n(p)(i) : We can find constraints on parameters(
A

(p−2)
2n , B

(p−2)
2n , A

(p−3)
2n , B

(p−3)
2n

)
which are

consistent with the constraints on
(
~A2n[p−

3], ~B2n[p−3]
)

that have been given in previ-

ous stages (i,e., in A2n(p
′)(i) (0 ≤ p′ ≤ p−

1)), so that a solution x
(p)
2n (s, ρ) of [E; p, 2n]

is holomorphic in s,

A2n(p)(ii) : The solution x
(p)
2n (s, ρ) found in A2n(p)(i)

depends on
(
~A2n[p− 1], ~B2n[p]

)
,

A2n(p)(iii) : x
(p)
2n (0, ρ) ≡

(2n;p−1)

A
(p−1)
2n

B
(0)
0

,

A2n(p)(iv) : ẋ
(p)
2n (0, ρ) ≡

(2n;p)
− B

(p)
2n

B
(0)
0

,

A2n(p)(v) : Φ
(p)
2n

∣∣
t=0

≡
(2n;p−3)

A
(p−3)
2n − 2

A
(0)
0

B
(0)
0

B
(p−3)
2n ,

A2n(p)(vi) :
dΦ

(p)
2n

dt

∣∣∣
t=0

≡
(2n;p−2)

2Z0
A

(0)
0

B
(0)
0

A
(p−2)
2n − 2Z0B

(p−2)
2n .

Proof. With the convention (1.1.3.73) we find by Lemma 1.1.3.6 and

(1.1.3.70) that A2n(0) and A2n(1) are valid. To make the induction

run smoothly we confirm A2n(2) separately, although one may build it

in the induction procedure. We first note that A2n(2)(vi) follows from
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A2n(1)(iii) and A2n(0)(iv) through the explicit computation of each

term in dΦ
(2)
2n /dt

∣∣
t=0

. In the computation we repeatedly use (1.1.1.24);

for example, 2f (0)′x(1)
2nx

(1)
0

∣∣
t=0

, which may depend on A
(0)
2n through

x
(1)
2n

∣∣
t=0

, actually vanishes thanks to the vanishing factor x
(1)
0

∣∣
t=0

, and

so on. Then, as the constraint on
(
A

(0)
2n , B

(0)
2n

)
required in A2n(2)(i),

we employ

(1.1.3.74)
dΦ

(2)
2n

dt

∣∣∣
t=0

= 0;

the confirmed assertion A2n(2)(vi) guarantees that this gives a linear

relation of
(
A

(0)
2n , B

(0)
2n

)
whose coefficients are determined by

(
~A2n[−1],

~B2n[−1]
)

(in the notation of (1.1.3.48)). It is clear from the definition

of R
(2)
2n that (1.1.3.74) together with (1.1.3.71) entails the holomorphy

of R
(2)
2n (s, ρ) near s = 0 and hence the existence of a holomorphic

solution x
(2)
2n (s, ρ) of [E; 2, 2n]. Thus we have validated A2n(2)(i). The

assertion A2n(2)(ii) then immediately follows from the definition of

the equation [E; 2, 2n]. To confirm A2n(2)(iii) it suffices to show that

R
(2)
2n (0, ρ) is free from B

(1)
2n . This fact can be verified by a reasoning

similar to the proof of Lemma 1.1.3.4; the terms we have to examine

are the following:

(1.1.3.75) −2ẋ
(1)
2n (0, ρ)ẋ

(0)
0 (0, ρ)A

(0)
0 /B

(0)
0 ,

(1.1.3.76) −
( ∑

q+r+u=1

ẋ
(q)
0 (0, ρ)ẋ

(r)
0 (0, ρ)x

(u)
0 (0, ρ)

)
B

(1)
2n /B

(0)
0 ,

(1.1.3.77) −2ẋ
(1)
2n (0, ρ)

( ∑

r+u+v=1

ẋ
(r)
0 (0, ρ)x

(u)
0 (0, ρ)B

(v)
0 /B

(0)
0

)

and

(1.1.3.78) 2ẋ
(1)
2n (0, ρ)ẋ

(0)
0 (0, ρ)f (1)(0, ρ)/B

(0)
0 ,
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which originates from the Taylor expansion of

(1.1.3.79) 2
∑

r+u=1

x
(1)
2nx

(r)
0 f (u)/B

(0)
0 .

Then, as we have often observed (1.1.3.75) and (1.1.3.78) sum up

to 0, and (1.1.3.76) and (1.1.3.77) vanish by (1.1.1.24) together with

(1.1.1.7). Thus we have validated A2n(2)(iii). The confirmation of

A2n(2)(iv) is trivial, as R
(2)
2n (s, ρ) does not contain B

(2)
2n . Summing up,

we have confirmed A2n(2). Let us now begin the induction argument.

Suppose that A2n(p) is valid for 0 ≤ p ≤ p0− 1 with p0 ≥ 3. Then, as

is in the confirmation of A2n(2), we see that A2n(p0)(v) follows from

A2n(p0−2)(iii) and A2n(p0−3)(iv), and that A2n(p0)(vi) follows from

A2n(p0−1)(iii) and A2n(p0−2)(iv). In order to guarantee the existence

of a holomorphic solution x
(p0)
2n (s, ρ) of [E; p0, 2n], we require

(1.1.3.80) Φ
(p0)
2n

∣∣
t=0

= 0

and

(1.1.3.81)
dΦ

(p0)
2n

dt

∣∣∣
t=0

= 0.

The condition (1.1.3.81) gives a linear constraint on
(
A

(p0−2)
2n , B

(p0−2)
2n

)

whose coefficients are described by
(
~A2n[p0 − 3], ~B2n[p0 − 3]

)
, whereas

(1.1.3.80) supplemented by A2n(p0)(v), together with the constraint on(
A

(p0−3)
2n , B

(p0−3)
2n

)
given in the preceding stage, i.e.,

(1.1.3.82)
dΦ

(p0−1)
2n

dt

∣∣∣
t=0

= 0,

fixes
(
A

(p0−3)
2n , B

(p0−3)
2n

)
in terms of

(
~A2n[p0− 4], ~B2n[p0− 4]

)
. Here we

have used the assumption (1.1.2) together with (1.1.1.21) and (1.1.1.22).

Then the validity of A2n(p0)(i) and A2n(p0)(ii) is obvious. The confir-

mation of A2n(p0)(iii) requires the validation of the fact thatR
(p0)
2n (0, ρ)
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is free from B
(p0−1)
2n ; this validation can be done by exactly the same

reasoning used when p0 = 2. Thus we have confirmed A2n(p0)(iii).

The validation of A2n(p0)(iv) is trivial, as R
(p0)
2n (s, ρ) is free from B

(p0)
2n .

Hence the induction proceeds, and A2n(p) is seen to be valid for every

p ≥ 0.

�

Remark 1.1.3.7. As is clear from the above proof, “constraints on pa-

rameters
(
A

(p−2)
2n , B

(p−2)
2n A

(p−3)
2n , B

(p−3)
2n

)
” to be found in A2n(p)(i) are

(1.1.3.80) and (1.1.3.81). These conditions turn out to be consistent

with previously imposed constraints on
(
~A2n[p − 3], ~B2n[p − 3]

)
by

A2n(p)(v) and A2n(p)(vi), and hence we have avoided the explicit state-

ment of the conditions in A2n(p)(i).

In Proposition 1.1.3.2 indices of the fixed quantity at the stage

A2n(p) are not uniform; x
(p)
2n is fixed with free parameters

(
A

(p−1)
2n ,

B
(p−1)
2n , B

(p)
2n

)
and parameters

(
A

(p−2)
2n , B

(p−2)
2n

)
constrained by (1.1.3.81),

whereas
(
~A2n[p− 3], ~B2n[p− 3]

)
is fixed. Hence we rearrange the set-

ting so that T
(r)
l = {x(r)

l , A
(r)
l , B

(r)
l } (l, r ≥ 0), following the way

in which Proposition 1.1.3.1 is stated. In what follows we assume the

same conditions as in Lemma 1.1.3.6, that is, the existence of con-

stants
(
~Al[∞], ~Bl[∞]

)
(l = 0, 1, · · · , 2n− 1) and holomorphic ~xl[∞]

(l = 0, 1, · · · , 2n− 1) that satisfies (1.1.3.53). Under this assumption

we use the symbol A2n(p − 1) to mean the assertion that a triplet of

data T
(r)
2n = {x(r)

2n (s, ρ), A
(r)
2n , B

(r)
2n } is given for 0 ≤ r ≤ p− 1 so that

they satisfy the following conditions:

(1.1.3.83.r) x
(r)
2n (s, ρ) is a holomorphic solution of [E; r, 2n] near

s = 0,
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(1.1.3.84.r) x
(r)
2n (s, ρ) depends on

(
~A2n[r − 1], ~B2n[r]

)
,

(1.1.3.85.r) x
(0)
2n (0, ρ) = 0,

(1.1.3.86.r) Φ
(r+3)
2n

∣∣
t=0

and
dΦ

(r+2)
2n

dt

∣∣∣
t=0

depend on
(
~A2n[r], ~B2n[r]

)
,

and
(
~A2n[r], ~B2n[r]

)
satisfies Φ

(r+3)
2n

∣∣
t=0

=
dΦ

(r+2)
2n

dt

∣∣∣
t=0

=

0,

(1.1.3.87.r) Φ
(r+3)
2n

∣∣
t=0

≡
(2n;r)

2A
(r)
2n − 2

A
(0)
0

B
(0)
0

B
(r)
2n ,

(1.1.3.88.r)
dΦ

(r+2)
2n

dt

∣∣∣
t=0

≡
(2n;r)

2Z0
A

(0)
0

B
(0)
0

A
(r)
2n − 2Z0B

(r)
2n .

Proposition 1.1.3.3. The assertion A2n(p) is valid for every

p ≥ 0.

As the proof is essentially the same as that of Proposition 1.1.3.1,

we describe its core part only. In the course of the proof of Proposition

1.1.3.2 we have seen that A2n(p) (p = 0, 1, 2) are valid. Let us suppose

that A2n(p) is valid for 0 ≤ p ≤ p0 − 1 with p0 ≥ 3, and we want to

confirm A2n(p0). By adding an arbitrary complex number B
(p0)
2n to the

given data T
(r)
2n (r ≤ p0 − 1) we can define the equation [E; p0, 2n]. It

then follows from (1.1.3.86.(p0 − 3)) and (1.1.3.86.(p0 − 2)) that

(1.1.3.89) Φ
(p0)
2n

∣∣
t=0

=
dΦ

(p0)
2n

dt

∣∣∣
t=0

= 0

holds. Hence R
(p0)
2n is holomorphic near s = 0. Then (1.1.3.83.p0) and

(1.1.3.84.p0) are immediate consequences of [E; p0, 2n]. As the con-

firmation of (1.1.3.87.p0) and (1.1.3.88.p0) requires the description of
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x
(p0+1)
2n (0, ρ), we further consider [E; p0 + 1, 2n]; we add arbitrary con-

stants A
(p0)
2n and B

(p0+1)
2n to the given data to write down [E; p0 +1, 2n]

with the aid of x
(p0)
2n (s, ρ) we have just constructed. Then (1.1.3.86.(p0−

2)) and (1.1.3.86.(p0 − 1)) guarantee

(1.1.3.90) Φ
(p0+1)
2n

∣∣
t=0

=
dΦ

(p0+1)
2n

dt

∣∣∣
t=0

= 0.

Hence R
(p0+1)
2n (s, ρ) is holomorphic near s = 0. Furthermore, by the

same reasoning as in the proof of Lemma 1.1.3.4, we can verify that

R
(p0+1)
2n (0, ρ) is free from B

(p0)
2n . Then, evaluating [E; p0 + 1, 2n] at

s = 0, we find

(1.1.3.91) x
(p0+1)
2n (0, ρ) ≡

(2n;p0)

A
(p0)
2n

B
(0)
0

−R
(p0+1)
2n (0, ρ).

Using this relation together with

(1.1.3.92) ẋ
(p0)
2n (0, ρ) ≡

(2n;p0)
− B

(p0)
2n

B
(0)
0

,

we find (1.1.3.87.p0) and (1.1.3.88.p0). Then we can fix
(
A

(p0)
2n , B

(p0)
2n

)

so that
(
~A2n[p0], ~B2n[p0]

)
annihilates Φ

(p0+3)
2n

∣∣
t=0

and dΦ
(p0+2)
2n /dt

∣∣
t=0

,

as is required in (1.1.3.86.p0). We note that no constraint is imposed

upon the complex numberB
(p0+1)
2n introduced for defining [E; p0+1, 2n]

at this stage. Hence the induction proceeds, completing the proof.

1.2 Growth order properties of T
(p)
n =

{
x

(p)
n , A

(p)
n , B

(p)
n

}

(p, n ≥ 0) — the case where g±(t) = 0

The purpose of this section is to estimate the growth order properties

of
{
T

(p)
n

}
p,n≥0

so that the formal transformation of an M2P1T oper-

ator to its canonical form (the ∞-Mathieu equation) may acquire the
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microlocal analytic meaning, as will be explained later in Section 5.

For the sake of simplicity of our reasoning we assume g±(t) = 0 in this

section. The proof of the corresponding result when g± 6= 0 is given

in Appendix C. Let us first prepare some notations and elementary

inequalities which will be frequently used in our computation.

Definition 1.2.1. For l in N0 = {0, 1, 2, · · · } and ~λ = (λ1, · · · , λn)
in Nn

0 , we define

(1.2.1) C(l) =
3

2π2(l + 1)2
,

(1.2.2) C(~λ) =
n∏

j=1

C(λj).

An important property they enjoy is described by the following

Lemma 1.2.1. When ~λ = (λ1, λ2, · · · , λn) ranges over the set of

all vectors that satisfy

(1.2.3) λ1 + λ2 + · · · + λn = l,

the sum of C(~λ) is dominated by C(l), that is,

(1.2.4)
∑

λ1+λ2+···+λn=l

C(~λ) ≤ C(l).

See [KKKoT, Lemma B.3] for the proof.

Lemma 1.2.2. The following inequality (1.2.5) holds for any pos-

itive integers l and n satisfying l ≥ n:

(1.2.5)
∑

λ1+λ2+···+λn=l
λ1,λ2,··· ,λn≥1

λ1!λ2! · · ·λn! ≤ 4n−1(l − n + 1)!
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See [AKT2, Lemma A.4] for the proof.

In what follows we use the symbol ‖h‖[r] for a holomorphic function

h(s) on {s ∈ C; |s| ≤ r} (r > 0) to denote its supremum norm on the

disc, that is,

(1.2.6) ‖h‖[r] = sup
|s|≤r

|h(s)|.

Using these symbols we now give the precise statement on the growth

order of |f (j)(s, ρ)|:
There exist positive constants σ0, κ0 and L0 for which the following

inequality (1.2.7) holds for every j in N0 and ρ in {ρ ∈ C; 0 < |ρ| ≤
σ0}:
(1.2.7) ‖f (j)(·, ρ)‖[σ0] ≤ κ0C(j)Lj0.

Here the auxiliary factor C(j) is intended for the convenience in per-

forming the induction procedure in what follows.

We begin our estimation by studying the growth order property of

the triplet T
(p)
0 =

{
x

(p)
0 (s, ρ), A

(p)
0 , B

(p)
0

}
(p ≥ 0). For the sake of

convenience we introduce the following notations:

(1.2.8) Ã
(p)
0 =

def
A

(p)
0 /B

(0)
0 and B̃

(p)
0 =

def
B

(p)
0 /B

(0)
0 ,

(1.2.9) Ã
(−1)
0 = 0,

(1.2.10) z
(p)
0 (s, ρ) =

def
x

(p)
0 (s, ρ) − Ã

(p−1)
0 + B̃

(p)
0 s.

It then follows from

(1.1.3.15′)
(
2s
d

ds
− 1
)
z

(p)
0 (s, ρ) = R

(p)
0 (s, ρ),

(1.1.3.16) and (1.1.3.17) (with q = p) that we find

(1.2.11) z
(p)
0 (0, ρ) = x

(p)
0 (0, ρ) − Ã

(p−1)
0 = −R(p)

0 (0, ρ)
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and

(1.2.12) ż
(p)
0 (0, ρ) = ẋ

(p)
0 (0, ρ) + B̃

(p)
0 = Ṙ

(p)
0 (0, ρ).

We first prepare the following

Lemma 1.2.3. There exist positive constants (r0, R0) and suffi-

ciently small positive constant C0 for which the following estimate

[G; p, 0] holds for every p ≥ 1 and ρ in {ρ ∈ C; 0 < |ρ| ≤ r0}.

[G; p, 0]






(p.i) |z(p+1)
0 (0, ρ)| ≤ C0C(p)

(
R0|ρ|−1

)p

(p.ii) |ż(p)
0 (0, ρ)| ≤ C0C(p)

(
R0|ρ|−1

)p

(p.iii) ‖z(p)
0 (·, ρ)‖[r0] ≤ C0C(p)

(
R0|ρ|−1

)p

(p.iv) ‖ż(p)
0 (·, ρ)‖[r0] ≤ C0C(p)

(
R0|ρ|−1

)p

(p.v) |Ã(p)
0 (ρ)| ≤ C0C(p)

(
R0|ρ|−1

)p

(p.vi) |B̃(p)
0 (ρ)| ≤ C0C(p)

(
R0|ρ|−1

)p

Remark 1.2.1. We may assume that r0 and R−1
0 are sufficiently small,

and hence,
(
R0|ρ|−1

)−1
is also sufficiently small. (In what follows, we

consider r0 and R−1
0 as sufficiently small positive constants.) Therefore

it is clear that [G; p, 0] entails

‖x(p)
0 (·, ρ)‖[r0] ≤

(
1 + r0 +

(
R0|ρ|−1

)−1)
C0C(p)

(
R0|ρ|−1

)p
(p.ĩii)

≤ 2C0C(p)
(
R0|ρ|−1

)p

and

(p.ĩv) ‖ẋ(p)
0 (·, ρ)‖[r0] ≤ 2C0C(p)

(
R0|ρ|−1

)p
.

Furthermore these estimates hold for p = 1 by the concrete computa-

tion in Section 1.1.3. We also note that, as the form of the estimates
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[G; p, 0] for p ≥ 1 indicates, we can take C0 > 0 arbitrarily small by

taking R0 > 0 sufficiently large.

Proof of Lemma 1.2.3. Before embarking on the induction, we check

the situation concretely when p = 0. When p = 0, B̃
(0)
0 = 1 and

|Ã(0)
0 | = |A(0)

0 |/|ρ|. Thus (0.v) and (0.vi) are violated. Furthermore

x
(1)
0 (0, ρ) = 0 entails

(1.2.13) z
(1)
0 (0, ρ) = −Ã(0)

0 ,

and hence (0.i) is also violated, whereas (0.ii), (0.iii) and (0.iv) trivially

hold as z
(0)
0 (s, ρ) = x

(0)
0 (s, ρ) −B̃(0)

0 s = 0 holds. Since the results

in Section 1.1.3 confirm [G; 1, 0], we assume that [G; p, 0] is valid for

1 ≤ p ≤ p0 − 1 and validate [G; p0, 0]. As the reasoning is lengthy, we

separate it into several parts.

[I] Let us first confirm the most delicate statement (p0.i). As we will

see later, the confirmation of (p0.ii) can be done in a similar manner

(actually simpler because the relevant index is p0, not p0 + 1). To be-

gin with we note that Proposition 1.1.3.1 guarantees that T
(p)
0 exists

for every p ≥ 0 and that it annihilates Φ
(p)
0 |t=0 and dΦ

(p)
0 /dt|t=0 (cf.

(1.1.3.38)) for every p. Hence R
(p)
0 (s, ρ) given by (1.1.3.8) is holomor-

phic in s if taken as a whole, though each individual term in the sum

may be singular at s = 0. Therefore we find

R
(p0+1)
0 (0, ρ) =

1

2πi

∫

|s|=r0
R

(p0+1)
0 (s, ρ)

ds

s
(1.2.14)

=
1

2πi

∮
R

(p0+1)
0 (s, ρ)

ds

s
.

In order to clarify our reasoning we label the terms inR
(p0+1)
0 as follows:

R
(p0+1)
0 (s, ρ)

(1.2.15)
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= −
∑

i+j+k=p0
k≤p0−1

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)Ã

(k)
0 (β.i)

−
∑

i+j+k+l=p0+1
i,j,k,l≤p0

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)x

(k)
0 (s, ρ)B̃

(l)
0 (β.ii)

+ t−2
( ∑

i+j+k=p0−2

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)Ã

(k)
0

)
(β.iii)

+ t−2
( ∑

i+j+k+l=p0−1

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)x

(k)
0 (s, ρ)B̃

(l)
0

)
(β.iv)

+
(dt
ds

)2 t−2

B
(0)
0

( ∑

i+j+k=p0+1
k≥2

x
(i)
0 (s, ρ)x

(j)
0 (s, ρ)f (k)(t(s, ρ), ρ)

)
(β.v)

+
(dt
ds

)2 t−2

B
(0)
0

( ∑

i+j=p0

x
(i)
0 (s, ρ)x

(j)
0 (s, ρ)f (1)(t(s, ρ), ρ)

)
(β.vi)

+
(dt
ds

)2 t−1

B
(0)
0

f̃ (0)(t(s, ρ), ρ)
( ∑

i+j=p0+1
i,j≥1

x
(i)
0 (s, ρ)x

(j)
0 (s, ρ)

)
(β.vii)

−
(dt
ds

)2 t−2

B
(0)
0

f (p0−1)(t(s, ρ), ρ). (β.viii)

In what follows we use the symbol (β.j) (j = i, ii, · · · , viii) to de-

note the sum labeled by the symbol; for example, we denote Cauchy’s

integral of the second sum in R
(p0+1)
0 as follows:

(1.2.16)
1

2πi

∮
(β.ii)

ds

s
.
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Since (β.ii) is holomorphic near s = 0, this is equal to

(1.2.17) −
∑

i+j+k+l=p0+1
i,j,k,l≤p0

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)x

(k)
0 (0, ρ)B̃

(l)
0 .

In using the induction hypothesis we have to take extra care in dealing

with ẋ
(0)
0 , x

(0)
0 and B̃

(0)
0 , and we also use

(1.2.18) x
(1)
0 (0, ρ) = 0

as an excellent substitute of (p.i) with p = 0. Thanks to the constraint

on the indices in (1.2.17), at most two indices among (i, j, k, l) may be-

come 0. Furthermore (1.2.18) implies the vanishing of annoying terms

such as ẋ
(0)
0 (0, ρ)2x

(1)
0 (0, ρ)B̃

(p0)
0 and ẋ

(0)
0 (0, ρ)ẋ

(p0)
0 (0, ρ)x

(1)
0 (0, ρ)B̃

(0)
0 .

Among the surviving terms let us consider the estimation of the fol-

lowing terms as an example; this term is one of the terms that give the

worst contribution to the estimates of (β.ii):
∣∣ẋ(0)

0 (0, ρ)ẋ
(1)
0 (0, ρ)x

(p0)
0 (0, ρ)B̃

(0)
0

∣∣(1.2.19)

≤ 22(C(0))−2C2
0C(0)C(1)C(p0 − 1)C(0)

(
R0|ρ|−1

)p0.

Since ẋ
(0)
0 (0, ρ) = B̃

(0)
0 = 1, the estimates (1.2.19) follows from (p0 −

1.i), (1.ii), (p0−1.v) and (1.vi). The unnecessary factor (C(0))−2C(0)2

is inserted for the convenience of applying Lemma 1.2.1 to the estima-

tion of the constant (N.ii) used in (1.2.21) below. In this way, we ob-

tain the following estimates from the induction hypothesis and Lemma

1.2.1:

∣∣∣−
∑

i+j+k+l=p0+1
i,j,k,l≤p0

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)x

(k)
0 (0, ρ)B̃

(l)
0

∣∣∣
(1.2.20)

≤
(
22(C(0))−2 + 23(C(0))−1C0 + 24C2

0

)
C2

0C(p0)
(
R0|ρ|−1

)p0.
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(Actually it suffices to use
(
22(C(0))−2 + 23(C(0))−1C0 + 24C2

0

)
C0 as

the extra factor due to the vanishing of x
(0)
0 (0, ρ).) Hence we obtain

(1.2.21)
∣∣∣

1

2πi

∮
(β.ii)

ds

s

∣∣∣ ≤ N(ii)C0C(p0)
(
R0|ρ|−1

)p0,

where

(1.2.22) N(ii) =
(
22(C(0))−2 + 23(C(0))−1C0 + 24C2

0

)
C0.

It is clear that N(ii) has the form γC0 with a constant γ that is uni-

formly bounded for C0 ≤ 1. Otherwise stated, we can choose a suf-

ficiently small constant N(ii) that is independent of p0 by choosing

C0 sufficiently small. The choice of N(ii) is made in accordance with

the number of sums used to compute z
(p0+1)
0 (0, ρ), that is, 7 at this

stage, although we need to make it smaller to sum up around 20 kinds

of such sums in computing
(
Ã

(p0)
0 , B̃

(p0)
0

)
. This is the reason why we

keep an extra constant N0 in (1.2.56) below. Thus, logically speaking,

we should fix N(j) at the very end of the proof of this lemma. The

important point is that we can choose them independent of p0,

Since the domination of Cauchy’s integral of (β.i) requires some

delicate treatment as we will see below, we next study the contribution

from (β.j) (j = iii, iv, v). As these terms may contain singularities

at s = 0 through the factor t−2, we estimate the contour integral for

r0 6= 0. When p0 = 2, (β.iii) reduces to t−2Ã
(0)
0 , and hence we find

(1.2.23)
1

2πi

∮
(β.iii; p0 = 2)

ds

s
=

1

2πi

∫

|s|=r0

s2

t2
Ã

(0)
0

ds

s3
=
def
Ã

(0)
0 I(r).

Therefore we have the following relation (1.2.24) for R0 ≥ 1:

(1.2.24)
∣∣∣

1

2πi

∫

|s|=r0
(β.iii; p0 = 2)

ds

s

∣∣∣ ≤ N0(iii)C0C(2)
(
R0|ρ|−1

)2
,

where N0(iii) is a constant which has the form

(1.2.25) γR−1
0
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with γ being given by

(1.2.26)
(
C0C(2)

)−1|A(0)
0 | |I(r)|

(
R0|ρ|−1

)−1
.

When p0 ≥ 3, the induction hypothesis entails the following:

∣∣∣
1

2πi

∮
(β.iii)

ds

s

∣∣∣

(1.2.27)

=
∣∣∣

1

2πi

∫

|s|=r0

s2

t2

[
Ã

(0)
0

(
2ẋ

(p0−2)
0 (s, ρ) +

∑

i+j=p0−2
i,j≥1

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)

)

+
∑

1≤k≤p0−3

Ã
(k)
0

(
2ẋ

(p0−2−k)
0 (s, ρ) +

∑

i+j=p0−2−k
i,j≥1

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)

)

+ Ã
(p0−2)
0

]ds
s3

∣∣∣

≤ |I(r)|
(
4(C(0))−1|ρ|−1|A(0)

0 |(1 + C0) + 4C0(1 + C0) + 1
)

× C0C(p0−2)
(
R0|ρ|−1

)p0−2

≤ N(iii)C0C(p0)
(
R0|ρ|−1

)p0,

where

(1.2.28)

N(iii) = 4|I(r)|
(
4(C(0))−1|A(0)

0 |(1+C0)+4|ρ|C0(1+C0)+|ρ|
)
|ρ|R−2

0 .

Here the factor 4 dominates C(p0 − 2)/C(p0) for p0 ≥ 3. The estima-

tion of the integral of (β.j) (j = iv, v) can be done in a similar manner,

and we find

(1.2.29)
∣∣∣
∮

(β.iv)
ds

s

∣∣∣ ≤ N(iv)C0C(p0 − 1)
(
R0|ρ|−1

)p0
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and

(1.2.30)
∣∣∣
∮

(β.v)
ds

s

∣∣∣ ≤ N(v)C0C(p0 − 1)
(
R0|ρ|−1

)p0,

where

(1.2.31) N(iv), N(v) = γ
(
R0|ρ|−1

)−1

with a uniformly bounded constant γ for R0|ρ|−1 � 1. The domina-

tion of the integral of (β.viii) is trivial: by (1.2.7) we have

(1.2.32)
∣∣∣
∮

(β.viii)
ds

s

∣∣∣ ≤ N(viii)C0C(p0 − 1)
(
R0|ρ|−1

)p0

with

(1.2.33) N(viii) = γ
(
R0|ρ|−1

)−1
.

Thus what remain to be examined are (β.i), (β.vi) and (β.vii). In-

terestingly enough, their estimation is closely related to the fact C

observed below (1.1.2.23) in the proof of Proposition 1.1.2.1.

We first study (β.vii). By the Taylor expansion we find
∑

i+j=p0+1
i,j≥1

x
(i)
0 (s, ρ)x

(j)
0 (s, ρ)(1.2.34)

=
∑

i+j=p0+1
i,j≥1

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)

+ 2
∑

i+j=p0+1
i,j≥1

x
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)s + O(s2).

Since f̃ (0) = ρg(t, ρ) with g(0, ρ) = 1, the substitution of (1.2.34) into

the integral in the left-hand side of (1.2.35) below entails the following:
∣∣∣

1

2πi

∮ (dt
ds

)2 t−1

B
(0)
0

f̃ (0)
( ∑

i+j=p0+1
i,j≥1

x
(i)
0 x

(j)
0

)ds
s

∣∣∣(1.2.35)
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=
∣∣∣

1

2πi

∮ (dt
ds

)2(s
t

)
Z0g(t, ρ)

{ ∑

i+j=p0+1
i,j≥1

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)

+ 2s
( ∑

i+j=p0+1
i,j≥1

x
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)
+O(s2)

}ds
s2

∣∣∣,

where Z0 = ±1 (cf. (1.1.1.13) and (1.1.1.22)). Clearly there is no

contribution to the resulting integral from the third term in the braces

(i.e.,O(s2)), whereas [G; p, 0] (p ≤ p0−1) is effectively used to estimate

the contribution from the first sum and that from the second one. Let

us now recall

(1.2.36) x
(1)
0 (0, ρ) = 0.

Hence the indices (i, j) in the first sum and the index i in the second

sum may be assumed to be equal to or greater than 2. Hence the

induction hypothesis entails

(1.2.37)
∣∣∣

1

2πi

∮
(β.vii)

ds

s

∣∣∣ ≤ N(vii)C0C(p0)
(
R0|ρ|−1

)p0,

where

(1.2.38) N(vii) = γC0

((
R0|ρ|−1

)−1
+ 2
)

with γ being a uniformly bounded constant for C0 ≤ 1.

We next study the contribution from (β.i) and (β.vi). At first one

might be puzzled by the term

(1.2.39) −
∑

i+j=p0

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)Ã

(0)
0 ,

which contains

(1.2.40) −2ẋ
(p0)
0 Ã

(0)
0 .
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Fortunately the contribution of this term is cancelled by the contribu-

tion from the coefficient of s2 in the Taylor expansion of

(1.2.41)
(dt
ds

)2 t−2

B
(0)
0

( ∑

i+j=p0

x
(i)
0 (s, ρ)x

(j)
0 (s, ρ)

)
f (1)(t(s, ρ), ρ)

after the contour integration
∮
ds/s, as we see below. By expanding

(1.2.42)
∑

i+j=p0

x
(i)
0 (s, ρ)x

(j)
0 (s, ρ)

in powers of s as
∑

i+j=p0

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)(1.2.43)

+ 2s
∑

i+j=p0

x
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

+ s2
{ ∑

i+j=p0

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

+
∑

i+j=p0

x
(i)
0 (0, ρ)ẍ

(j)
0 (0, ρ)

}

+O(s3),

we find

(1.2.44)
1

2πi

∮
(β.vi)

ds

s
= I0 + I1,

where

(1.2.45)

I0 =
1

2πi

1

B
(0)
0

∮
s2

t2

(dt
ds

)2( ∑

i+j=p0

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)
f (1)(t, ρ)

ds

s
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and

I1 =
1

2πi

1

B
(0)
0

∮
s2

t2

(dt
ds

)2{ ∑

i+j=p0
i,j≥2

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)(1.2.46)

+ 2s
( ∑

i+j=p0
i≥2

x
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)

+ s2
( ∑

i+j=p0
i≥2

x
(i)
0 (0, ρ)ẍ

(j)
0 (0, ρ)

)

+ O(s3)
}
f (1)(t, ρ)

ds

s3
.

On the other hand (1.1.1.21) and (1.1.1.23) entail

(1.2.47) I0 =
1

B
(0)
0

( ∑

i+j=p0

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)
A

(0)
0 .

Hence the puzzling part (1.2.39) of the contribution from (β.i) is can-

celled out by I0 ! Therefore

(1.2.48)
1

2πi

∮ {
(β.i) + (β.vi)

}ds
s

= I2 + I1,

where

(1.2.49) I2 =
−1

2πi

∮ ( ∑

i+j+k=p0
1≤k≤p0−1

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)Ã

(k)
0

)ds
s
.

Since ∑

i+j+k=p0
1≤k≤p0−1

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)Ã

(k)
0(1.2.50)

= 2ẋ
(0)
0 (s, ρ)

( ∑

j+k=p0
j≥1, p0−1≥k≥1

ẋ
(j)
0 (s, ρ)Ã

(k)
0

)
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+
∑

i+j+k=p0
i,j≥1, p0−1≥k≥1

ẋ
(i)
0 (s, ρ)ẋ

(j)
0 (s, ρ)Ã

(k)
0

holds, the induction hypothesis entails the existence of a constant N(i)

which satisfy the following:

(1.2.51) |I2| ≤ N(i)C0C(p0)
(
R0|ρ|−1

)p0,

(1.2.52) N(i) = 4C0(2 + C0).

To estimate I1, we note that ẍ
(0)
0 (s, ρ) = 0 and

|ẍ(j)
0 (0, ρ)| =

∣∣∣
1

2πi

∮
ẋ

(j)
0 (s, ρ)

ds

s2

∣∣∣(1.2.53)

≤ 2r−2
0 C0C(p0)

(
R0|ρ|−1

)p0

holds for j ≥ 1. Using these facts, we find

(1.2.54) |I1| ≤ N(vi)C0C(p0)
(
R0|ρ|−1

)p0

with

(1.2.55) N(vi) = γ
(
C0

(
R0

)−2|ρ|+R−1
0 + r−1

0 C0R
−1
0

)
,

where γ is a constant originating from innocent factors in the integrand

(i.e., irrelevant to C0, R0 and |ρ|−1 ).

Summing up the estimates of the contributions from β(j) (j =

i, ii, · · · , viii) we find that [G; p, 0] (1 ≤ p ≤ p0 − 1) entails

(1.2.56) |z(p0+1)
0 (0, ρ)| ≤ N0C0C(p0)

(
R0|ρ|−1

)p0,
where N0 is a constant which is independent of p0 and can be chosen

as small as we want if we choose C0 and R−1
0 sufficiently small. Note

that each N(j) found in the above contains a factor C0 or R−1
0 or their

sum. We also note that the estimate (1.2.56) validates, in particular,

(p0.i).
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Let us next confirm (p0.ii). In view of (1.2.12) we start with (1.2.57)

below, whose counterpart in the confirmation of (p0.i) is (1.2.14).

(1.2.57) ż
(p0)
0 (0, ρ) = Ṙ

(p0)
0 (0, ρ) =

1

2πi

∮
R

(p0)
0 (s, ρ)

ds

s2
.

An important difference between (1.2.14) and (1.2.57) is the follow-

ing point: the index in question in (1.2.14) was (p0 + 1), whereas the

corresponding index is p0 in (1.2.57). Thus the domination is easier

this time. Actually, as we will note below, even the estimation of the

contribution from (β.i) (cf. (1.2.40) and (1.2.60) below) does not re-

quire the subtle reasoning related to the fact C observed in the proof of

Proposition 1.1.2.1. Hence we avoid the detailed reasoning and content

ourselves with locating the points which need some special attention.

In what follows we let I(j) (j = i, ii, · · · , viii) denote

(1.2.58)
1

2πi

∮ [
(β.j) with the index (p0 + 1) being replaced by p0

]ds
s2
.

(i) Concerning the estimation of I(i): Since we have
∑

i+j+k=p0−1
k≤p0−2

ẋ
(i)
0 ẋ

(j)
0 Ã

(k)
0(1.2.59)

= Ã
(0)
0

(
2ẋ

(p0−1)
0 +

∑

i+j=p0−1
i,j≥1

ẋ
(i)
0 ẋ

(j)
0

)

+
∑

1≤k≤p0−2

Ã
(k)
0

(
2ẋ

(p0−1−k)
0 +

∑

i+j=p0−1−k
i,j≥1

ẋ
(i)
0 ẋ

(j)
0

)
,

we find that the most troublesome term may be

(1.2.60) 2Ã
(0)
0 ẋ

(p0−1)
0 .
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However, even the contribution from this term is dominated by

|A(0)
0 ||ρ|−12C0C(p0 − 1)

(
R0|ρ|−1

)p0−1
(1.2.61)

= 2|A(0)
0 | C(p0 − 1)

C(p0)
R−1

0 C0C(p0)
(
R0|ρ|−1

)p0.

Hence we can readily find

(1.2.62) |I(i)| ≤ N(i)C0C(p0)
(
R0|ρ|−1

)p0

with a constantN(i) that can be chosen arbitrarily small independently

of p0 by choosing R−1
0 sufficiently small. Making a contrast to the

earlier estimation of
∮

(β.i)ds/s with the index (p0 +1), the estimation

I(i) does not require the cancellation among terms in (β.i) and (β.vi).

(ii) Concerning the estimation of I(ii): The integral I(ii) cannot enjoy

such a simple form as (1.2.17), because the double pole s−2 is con-

tained in the integrand. Still, the restriction on indices (i, j, k, l) again

guarantees that at most two of them are allowed to be 0. Hence the

induction hypothesis entails

(1.2.63) |I(ii)| ≤ N(ii)C0C(p0)
(
R0|ρ|−1

)p0

for a constant N(ii) that contains a factor C0 like the constant N(ii)

in (1.2.22).

(iii) Concerning the estimation of I(iii): Since we have (for p0 ≥ 4)

I(iii) =
1

2πi

∮
s2

t2

( ∑

i+j+k=p0−3

ẋ
(i)
0 ẋ

(j)
0 Ã

(k)
0

)ds
s4

(1.2.64)

=
1

2πi

∮
s2

t2

(
Ã

(0)
0

(
2ẋ

(p0−3)
0 +

∑

i+j=p0−3
i,j≥1

ẋ
(i)
0 ẋ

(j)
0

)
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+
∑

1≤k≤p0−4

Ã
(k)
0

(
2ẋ

(p0−3−k)
0 +

∑

i+j=p0−3−k
i,j≥1

ẋ
(i)
0 ẋ

(j)
0

)
+Ã

(p0−3)
0

)
ds

s4
,

we use the induction hypothesis to find

(1.2.65) |I(iii)| ≤ N(iii)C0C(p0)
(
R0|ρ|−1

)p0−2

with a constant N(iii) that can be chosen arbitrarily small indepen-

dently of p0 by choosing C0 and R−1
0 sufficiently small.

(iv), (v) The estimation of I(iv) and I(v) can be done in the same way

as in the estimation of I(iii).

(vi) Concerning the estimation of I(vi): By using the Taylor expansion

of

(1.2.66)
∑

i+j=p0−1

x
(i)
0 (s, ρ)x

(j)
0 (s, ρ)

in s, we can readily confirm

(1.2.67) |I(vi)| ≤ N(vi)C0C(p0)
(
R0|ρ|−1

)p0

with a constant N(vi) that can be chosen arbitrarily small indepen-

dently of p0 by choosing C0 and R−1
0 sufficiently small. We note that

the estimation is uniformly done including the part corresponding to

I0 given by (1.2.45), that is,

(1.2.68)
1

2πi

1

B
(0)
0

∮
s2

t2

(dt
ds

)2( ∑

i+j=p0−1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)

)
f (1)(t, ρ)

ds

s2
,

just because the required exponent in the right-hand side of (1.2.67) is

p0, not p0 − 1.

(vii) The estimation of I(vii) can be done similarly as that of I(vi)

with the help of the Taylor expansion of x
(i)
0 (s, ρ) in s.
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(viii) The required estimation of I(viii) is attained by choosing R0

sufficiently large compared with κ0 and L0 in (1.2.7).

Summing up the observations (i), (ii), · · · , (viii) we find that the

validity [G; p, 0] (1 ≤ p ≤ p0 − 1) implies that

(1.2.69) |ż(p0)
0 (0, ρ)| ≤ N1C0C(p0)

(
R0|ρ|−1

)p0

holds for any given small constant N1 if we choose C0 and R−1
0 suffi-

ciently small. In particular we have thus confirmed (p0.ii).

[II] Using the results in part [I], together with the induction hypothesis,

we next confirm (p0.v) and (p0.vi). For this purpose let us write down

the conditions Φ
(p0+3)
0 |t=0 and dΦ

(p0+2)
0 /dt|t=0 using s-variable. For the

sake of notational simplicity, in what follows, we keep some t-derivatives

as they are; they are denoted as x
(k)′
0 etc. as usual.

(ds
dt

)−2

Φ
(p0+3)
0

∣∣∣
s=0

(1.2.70)

=
[ ∑

i+j+k=p0

ẋ
(i)
0 ẋ

(j)
0 A

(k)
0

+
(ds
dt

)−2( ∑

i+j+k=p0+3

x
(i)
0 x

(j)
0 f (k) − 2x

(0)
0 x

(p0+3)
0 f (0)

)

+
∑

i+j+k+l=p0+1

ẋ
(i)
0 ẋ

(j)
0 x

(k)
0 B

(l)
0

]∣∣∣
s=0

= A
(p0)
0 + 2ẋ

(p0)
0 (0, ρ)A

(0)
0

+
∑

i+j+k=p0
i,j,k≤p0−1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)A

(k)
0
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+
( ∑

i+j=p0+2
i,j≥2

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)

)
f (1)(0, ρ)

+
∑

i+j+k=p0+3
i,j,k≥2

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)f (k)(0, ρ)

+ x
(p0+1)
0 (0, ρ)B

(0)
0

+
∑

i+j+k+l=p0+1
2≤k≤p0

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)x

(k)
0 (0, ρ)B

(l)
0

= A
(p0)
0 + 2

(
ż

(p0)
0 (0, ρ) − B̃

(p0)
0

)
A

(0)
0

+
(
z

(p0+1)
0 (0, ρ) + Ã

(p0)
0

)
B

(0)
0

+
∑

i+j+k=p0
i,j,k≤p0−1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)A

(k)
0

+
( ∑

i+j=p0+2
i,j≥2

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)

)
A

(0)
0

+
∑

i+j+k=p0+3
i,j,k≥2

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)f (k)(0, ρ)

+
∑

i+j+k+l=p0+1
2≤k≤p0

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)x

(k)
0 (0, ρ)B

(l)
0 ,

(ds
dt

)−2 dΦ
(p0+2)
0

dt

∣∣∣
s=0

(1.2.71)
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=
[
2
(ds
dt

)−1 ∑

i+j+k=p0−1

x
(i)′′
0 ẋ

(j)
0 A

(k)
0

+
(ds
dt

)−2( ∑

i+j+k=p0+2

x
(i)
0 x

(j)
0 f (k)′ − 2x

(0)
0 x

(p0+2)
0 f (0)′

)

+ 2
(ds
dt

)−1( ∑

i+j+k=p0+2

ẋ
(i)
0 x

(j)
0 f (k) −

( d
ds

(
x

(0)
0 x

(p0+2)
0

))
f (0)
)

+ 2
(ds
dt

)−1( ∑

i+j+k+l=p0

x
(i)′′
0 ẋ

(j)
0 x

(k)
0 B

(l)
0

)

+
∑

i+j+k+l=p0

ẋ
(i)
0 ẋ

(j)
0 x

(k)′
0 B

(l)
0

]∣∣∣
s=0

= 2Z0

∑

i+j+k=p0−1

x
(i)′′
0 (0, ρ)ẋ

(j)
0 (0, ρ)A

(k)
0

+
( ∑

i+j=p0+2
i,j≥2

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)

)
ρ

+
∑

i+j+k=p0+2
i,j≥2, k≥1

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)f (k)′(0, ρ)

+ 2Z0x
(p0+1)
0 (0, ρ)A

(0)
0

+ 2Z0

∑

i+j=p0+1
2≤j≤p0

ẋ
(i)
0 (0, ρ)x

(j)
0 (0, ρ)A

(0)
0

+ 2Z0

∑

i+j+k=p0+2
j,k≥2

ẋ
(i)
0 (0, ρ)x

(j)
0 (0, ρ)f (k)(0, ρ)
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+ 2Z0x
(0)′′
0 (0, ρ)x

(p0)
0 (0, ρ)B

(0)
0

+ 2Z0

∑

i+j+k+l=p0
2≤k≤p0−1

x
(i)′′
0 (0, ρ)ẋ

(j)
0 (0, ρ)x

(k)
0 (0, ρ)B

(l)
0

+ 3Z0ẋ
(p0)
0 (0, ρ)B

(0)
0 + Z0B

(p0)
0

+ Z0

∑

i+j+k+l=p0
i,j,k,l≤p0−1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)ẋ

(k)
0 (0, ρ)B

(l)
0

= 2Z0

(
z

(p0+1)
0 (0, ρ) + Ã

(p0)
0

)
A

(0)
0

+ 3Z0

(
ż

(p0)
0 (0, ρ) − B̃

(p0)
0

)
B

(0)
0 + Z0B

(p0)
0

+ 2Z0

∑

i+j+k=p0−1

x
(i)′′
0 (0, ρ)ẋ

(j)
0 (0, ρ)A

(k)
0

+ ρ
( ∑

i+j=p0+2
i,j≥2

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)

)

+
∑

i+j+k=p0+2
i,j≥2, k≥1

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)f (k)′(0, ρ)

+ 2Z0

∑

i+j=p0+1
2≤j≤p0

ẋ
(i)
0 (0, ρ)x

(j)
0 (0, ρ)A

(0)
0

+ 2Z0

∑

i+j+k=p0+2
j,k≥2

ẋ
(i)
0 (0, ρ)x

(j)
0 (0, ρ)f (k)(0, ρ)

+ 2Z0x
(0)′′
0 (0, ρ)x

(p0)
0 (0, ρ)B

(0)
0
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+ 2Z0

∑

i+j+k+l=p0
2≤k≤p0−1

x
(i)′′
0 (0, ρ)ẋ

(j)
0 (0, ρ)x

(k)
0 (0, ρ)B

(l)
0

+ Z0

∑

i+j+k+l=p0
i,j,k,l≤p0−1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)ẋ

(k)
0 (0, ρ)B

(l)
0 .

In the above computation we have repeatedly used

(1.2.72) x
(0)
0 (s, ρ) = s (cf. (1.1.1.10)),

(1.2.73) x
(1)
0 (0, ρ) = 0 (cf. (1.1.1.24)),

(1.2.74) f (0)(t, ρ) = tρg(t, ρ) with g(0, ρ) = 1 (cf. (1.1) and (1.3)),

(1.2.75) Z0 = x
(0)′
0 (0, ρ) = ±1 (cf. (1.1.1.13) and (1.1.1.23)),

(1.2.76) f (1)(0, ρ) = A
(0)
0 (cf. (1.1.1.21)),

(1.2.77) B
(0)
0 = Z−1

0 ρ (cf. (1.1.1.13)),

(1.2.78) x
(p0+1)
0 (0, ρ) = z

(p0+1)
0 (0, ρ) + Ã

(p0)
0 (cf. (1.2.11))

and

(1.2.79) ẋ
(p0)
0 (0, ρ) = ż

(p0)
0 (0, ρ) − B̃

(p0)
0 (cf. (1.2.12)),

and we have separated out
(
A

(p0)
0 , B

(p0)
0

)
from other terms. Here we

have used Lemma 1.1.3.4 together with (1.1.3.3.r) that T
(r)
0 satisfies.

Thus we have found the following relations which determine
(
Ã

(p0)
0 ,

B̃
(p0)
0

)
:

− 2
(
B

(0)
0 Ã

(p0)
0 −A

(0)
0 B̃

(p0)
0

)
(1.2.70′)
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= −2A
(p0)
0 + 2

A
(0)
0

B
(0)
0

B
(p0)
0

= 2ż
(p0)
0 (0, ρ)A

(0)
0 (γ.i)

+ z
(p0+1)
0 (0, ρ)B

(0)
0 (γ.ii)

+
∑

i+j+k=p0
i,j,k≤p0−1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)B

(0)
0 Ã

(k)
0 (γ.iii)

+
∑

i+j=p0+2
i,j≥2

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)B

(0)
0 Ã

(0)
0 (γ.iv)

+
∑

i+j+k=p0+3
i,j,k≥2

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)f (k)(0, ρ) (γ.v)

+
∑

i+j+k+l=p0+1
2≤k≤p0

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)x

(k)
0 (0, ρ)B

(0)
0 B̃

(l)
0 (γ.vi)

=
def

Γ
(p0)
0

− 2
(
A

(0)
0 Ã

(p0)
0 −B

(0)
0 B̃

(p0)
0

)
(1.2.71′)

= −2
A

(0)
0

B
(0)
0

A
(p0)
0 + 2B

(p0)
0

= 2z
(p0+1)
0 (0, ρ)A

(0)
0 (δ.i)

+ 3ż
(p0)
0 (0, ρ)B

(0)
0 (δ.ii)
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+ 2
∑

i+j+k=p0−1

x
(i)′′
0 (0, ρ)ẋ

(j)
0 (0, ρ)B

(0)
0 Ã

(k)
0 (δ.iii)

+ Z0ρ
( ∑

i+j=p0+2
i,j≥2

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)

)
(δ.iv)

+ Z0

∑

i+j+k=p0+2
i,j≥2, k≥1

x
(i)
0 (0, ρ)x

(j)
0 (0, ρ)f (k)′(0, ρ) (δ.v)

+ 2
∑

i+j=p0+1
2≤j≤p0

ẋ
(i)
0 (0, ρ)x

(j)
0 (0, ρ)A

(0)
0 (δ.vi)

+ 2
∑

i+j+k=p0+2
j,k≥2

ẋ
(i)
0 (0, ρ)x

(j)
0 (0, ρ)f (k)(0, ρ) (δ.vii)

+ 2x
(0)′′
0 (0, ρ)x

(p0)
0 (0, ρ)B

(0)
0 (δ.viii)

+ 2
∑

i+j+k+l=p0
2≤k≤p0−1

x
(i)′′
0 (0, ρ)ẋ

(j)
0 (0, ρ)x

(k)
0 (0, ρ)B

(0)
0 B̃

(l)
0 (δ.ix)

+
∑

i+j+k+l=p0
i,j,k,l≤p0−1

ẋ
(i)
0 (0, ρ)ẋ

(j)
0 (0, ρ)ẋ

(k)
0 (0, ρ)B

(0)
0 B̃

(l)
0 (δ.x)

=
def

∆
(p0)
0 .

Then, by using the assumption (1.1.2) together with (1.2.75), (1.2.76)

and (1.2.77), we obtain the following relation (1.2.80) from (1.2.70′) and
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(1.2.71′):
(1.2.80)
Ã

(p0)
0

B̃
(p0)
0


 =

(
− 1

2

)(
B

(0)2
0 − A

(0)2
0

)−1


B

(0)
0 Γ

(p0)
0 −A

(0)
0 ∆

(p0)
0

A
(0)
0 Γ

(p0)
0 −B

(0)
0 ∆

(p0)
0


 .

Hence it suffices to dominate each of terms (γ.j) (j = i, ii, · · · , vi) and

(δ.j) (j = i, ii, · · · , x) by a constant of the form

(1.2.81) NC0C(p0)
(
R0|ρ|−1

)p0

with a constant N which can be chosen sufficiently small and inde-

pendent of p0 by letting C0 and R−1
0 sufficiently small. As we have

already confirmed the estimate of this sort for (γ.i), (γ.ii), (δ.i) and

(δ.ii) it is enough to examine other terms. The reasoning is basically

the same as that used in part [I]. For example we find the following

estimate (1.2.82) for the sum (γ.iv), which one may think to be the

most troublesome one in view of the range of indices:

|(γ.iv)|(1.2.82)

=
∣∣∣
∑

i′+j′=p0
i′,j′≥1

x
(i′+1)
0 (0, ρ)x

(j′+1)
0 (0, ρ)A

(0)
0

∣∣∣

=
∣∣∣
∑

i′+j′=p0
i′,j′≥1

(
z

(i′+1)
0 (0, ρ) + Ã

(i′)
0

)(
z

(j′+1)
0 (0, ρ) + Ã

(j′)
0

)
A

(0)
0

∣∣∣

≤ 4C2
0C(p0)

(
R0|ρ|−1

)p0∣∣A(0)
0

∣∣.
Therefore we find

(1.2.83) |(γ.iv)| ≤ N(γ.iv)C0C(p0)
(
R0|ρ|−1

)p0

with

(1.2.84) N(γ.iv) = 4
∣∣A(0)

0

∣∣C0.
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The same technique that makes full use of the estimate of |z(p0+1)
0 (0, ρ)|

also applies to (γ.v), (γ.vi), (δ.iv), (δ.v), (δ.vi), (δ.vii), (δ.viii) and

(δ.ix), whereas the rest of terms, i.e., (γ.iii), (δ.iii) and (δ.x) are rather

easy to handle. For example we readily find

(1.2.85) |(δ.x)| ≤ N(δ.x)C0C(p0)
(
R0|ρ|−1

)p0

with

(1.2.86) N(δ.x) = 4
(
(C(0))−2 + 2(C(0))−1C0 + 4C2

0

)
|ρ|C0.

Thus the induction hypothesis together with (1.2.80) entails that

(1.2.87) |Ã(p0)
0 | ≤ N2C0C(p0)

(
R0|ρ|−1

)p0

and

(1.2.88) |B̃(p0)
0 | ≤ N2C0C(p0)

(
R0|ρ|−1

)p0

hold, where N2 is a constant which is independent of p0 and can be

chosen as small as we want if we choose C0 and R−1
0 sufficiently small.

In particular we have thus confirmed (p0.v) and (p0.vi).

[III] Next we validate (p0.iii) and (p0.iv). We first note that, by the

same reasoning with the estimation (1.2.69) of Ṙ
(p0)
0 (0, ρ) (cf. (1.2.57)),

we find

(1.2.89)
∥∥R(p0)

0 (·, ρ)
∥∥
r0
≤ N2C0C(p0)

(
R0|ρ|−1

)p0

holds, where N2 is a constant which is independent of p0 and can

be chosen as small as we want if we choose C0 and R−1
0 sufficiently

small. ( Since R
(p0)
0 is holomorphic at s = 0, the estimates (1.2.89)

directly follows from the maximum modulus principle and the induction

hypothesis.) Then, to obtain (p0.iii), we use the following integral

representation (1.2.91) of the holomorphic solution x
(p0)
0 (s, ρ) of the
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equation (1.2.90).

(1.2.90) (=[E; p0, 0] )
(
2s

d

ds
− 1
)
x

(p0)
0 (s, ρ) = −Ã(p0−1)

0 − B̃
(p0)
0 s +R

(p0)
0 (s, ρ),

x
(p0)
0 (s, ρ) = x

(p0)
0 (0, ρ)

(1.2.91)

+
s1/2

2

∫ s

0

u−3/2
(
R

(p0)
0 (u, ρ) − Ã

(p0−1)
0 − B̃

(p0)
0 u + x

(p0)
0 (0, ρ)

)
du.

Here we note that the integrand of the integral in the right-hand side

of (1.2.91) is integrable near u = 0, because (1.2.11) entails that it has

the form

(1.2.92) u−1/2
((
R

(p0)
0 (u, ρ) −R

(p0)
0 (0, ρ)

)
u−1 − B̃

(p0)
0

)
.

Therefore, combining the results in part [I], [II] and (1.2.89), we obtain

the following estimates:

(1.2.93)
∥∥x(p0)

0 (·, ρ)
∥∥
r0
≤ N2C0C(p0)

(
R0|ρ|−1

)p0,
where N2 is a sufficiently small constant. Then (p0.iii) immediately

follows from (1.2.87), (1.2.88) and (1.2.93). Further, to obtain (p0.iv),

we rewrite (1.2.90) as follows:

(1.2.94) ẋ
(p0)
0 (s, ρ) =

1

2s

(
x

(p0)
0 (s, ρ)− Ã(p0−1)

0 − B̃(p0)
0 s+R

(p0)
0 (s, ρ)

)
.

Then the following estimates follow from the maximum modulus prin-

ciple:

(1.2.95)
∥∥ẋ(p0)

0 (·, ρ)
∥∥
r0
≤ N2C0C(p0)

(
R0|ρ|−1

)p0,
where N2 is a sufficiently small constant. Thus (p0.iv) follows from

(1.2.88) and (1.2.93).
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Summing up the results in part [I], [II] and [III], we conclude that

the induction proceeds. This completes the proof of Lemma 1.2.3.

�

We now embark on the proof of Proposition 1.2.1 below. In order

to facilitate the concrete expression of the Taylor expansion of the

Schwarzian derivative {x; t} we prepare the following notations.

Definition 1.2.2. (i) For multi-indices ~κ = (κ1, κ2, · · · , κµ) and
~λ = (λ1, λ2, · · · , λµ) in Nµ

0 , we define

(1.2.96) |~λ|µ =

µ∑

j=1

λj,

(1.2.97) ~λ! =

µ∏

j=1

λj!.

(ii) For (~λ,~κ)-dependent quantities X
(λj)
κj (such as dx

(λj)
κj /dt) we define

(1.2.98) X
(~λ)
~κ =

µ∏

j=1

X
(λj)
κj

and

(1.2.99)
∑

|~κ|µ=k

∗ ∑

|~λ|µ=l

X
(~λ)
~κ =





1 for µ = 0
∑

|~κ|µ=k
κj≥1

∑

|~λ|µ=l

µ∏

j=1

X
(λj)
κj for µ ≥ 1.

For the notational convenience we also introduce the following

Definition 1.2.3. We define Ã
(p)
2n and B̃

(p)
2n by the following:

(1.2.100) Ã
(p)
2n = A

(p)
2n /B

(0)
0 , B̃

(p)
2n = B

(p)
2n /B

(0)
0 ,

(1.2.101) Ã
(−1)
2n = 0.
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Proposition 1.2.1. There exist positive constants (r0, R,A) and

a sufficiently small constant N0 for which the following estimate

[G; p, 2n] holds for every p ≥ 0, every n ≥ 1, every ρ in {ρ ∈ C; 0 <

ρ ≤ r0} and any positive constant ε that is smaller than r0/3 :

[G; p, 2n] =



(p, 2n)(i) |x(p+1)
2n (0, ρ)|≤N0C(p)

(
R|ρ|−1

)p
(2n)!ε−2n(A|ρ|−1)n,

(p, 2n)(ii) |Ã(p)
2n (ρ)| ≤N0C(p)

(
R|ρ|−1

)p
(2n)!ε−2n

(
A|ρ|−1

)n
,

(p, 2n)(iii) |B̃(p)
2n (ρ)| ≤N0C(p)

(
R|ρ|−1

)p
(2n)!ε−2n

(
A|ρ|−1

)n
,

(p, 2n)(iv) ‖x(p)
2n (·, ρ)‖[r0−ε] ≤N0C(p)

(
R|ρ|−1

)p
(2n)!ε−2n

(
A|ρ|−1

)n
,

(p, 2n)(v) ‖ẋ(p)
2n (·, ρ)‖[r0−ε] ≤N0C(p)

(
R|ρ|−1

)p
(2n)!ε−2n

(
A|ρ|−1

)n
.

In what follows, for the simplicity of the notation, we use the symbol

‖h‖[r] to denote ‖h(·, ρ)‖[r] even when a holomorphic function h(s, ρ)

contains ρ as an auxiliary variables other than s.

Remark 1.2.2. We note that, as the form of the estimates [G; p, 2n] for

n ≥ 1 indicates, we can take N0 > 0 arbitrarily small by taking A > 0

sufficiently large.

Remark 1.2.3. As we will see in the proof below, the order of |ρ|
relevant to n in [G; p, 2n] is inductively determined by the contribution

from (α.ix) in (1.1.3.43). (Cf. (1.2.179) and (1.2.180).)

Remark 1.2.4. In view of Remark 1.2.1, we see that [G; p, 2n] with

n = 0 coincides with [G; p, 0] in Lemma 1.2.3.

Proof. Aside from the treatment of terms originating from the Schwarzian

derivative, the flow of the reasoning is basically the same as that in the

proof of Lemma 1.2.3. As the proof is lengthy, we separate it into four

parts, part [I] ∼ part [IV]. Before beginning the proof we note that the
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term in the left-hand side of each (p, 2n)(j) (j = (i), (ii), · · · , (v) with

(p, n) = (0, 1) vanishes. This fact is implicitly confirmed in what fol-

lows, but, in view of its interest, we give a detailed proof in Appendix

B.

[I] Let us first study how to dominate the contribution from {x; t}(p)
2(n−1).

Using the Taylor expansion we find

{x; t}(p)
2(n−1)

(1.2.102)

=
∑

k1+k2=n−1
l1+l2+l3=p

d3x
(l1)
2k1

dt3

k2∑

ν=min{1,k2}
(−1)ν

((dx0

dt

)−ν−1)(l2) ∑

|~κ|ν=k2

∗ ∑

|~λ|ν=l3

dx
(~λ)
2~κ

dt

− 3

2

∑

k1+k2+k3=n−1
l1+l2+l3+l4=p

d2x
(l1)
2k1

dt2
d2x

(l2)
2k2

dt2

k3∑

ν=min{1,k3}
(−1)ν(ν + 1)

((dx0

dt

)−ν−2)(l3)

×
∑

|~κ|ν=k3

∗ ∑

|~λ|ν=l4

dx
(~λ)
2~κ

dt
,

where we use the symbol
(
(dx0/dt)

−ν−1
)(l2) (resp.,

(
(dx0/dt)

−ν−2
)(l3)

to mean the coefficient of al2 (resp., al3) of the Taylor expansion of

(dx0/dt)
−ν−1 (resp., (dx0/dt)

−ν−2) in powers of a. To dominate them

we prepare the following

Lemma 1.2.4. Let x0(s, a, ρ) denote

(1.2.103)
∑

p≥0

x
(p)
0 (s, ρ)ap.
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Then Lemma (1.2.3) entails the existence of some positive con-

stants r0,M0 and R for which the following inequality holds:

(1.2.104)
∥∥∥
((dx0

dt

)−ν)(l)∥∥∥
[r0]

≤M ν
0C(l)

(
R|ρ|−1

)l
.

Proof. Since we may assume that

(1.2.105)
dx

(0)
0

dt
(s, ρ) =

(dt
ds

)−1

6= 0

holds on {s; |s| ≤ r0}, it follows from the estimates (p.ĩii) of ẋ
(p)
0 in

Remark 1.2.1 that there exist some positive constant M̃0 for which

(dx0/dt)
−1 is holomorphic on Ω = {(s, a, ρ); |s| ≤ r0, 2R0|a| ≤ |ρ|}

and

(1.2.106) sup
Ω

∣∣∣
dx0

dt

∣∣∣
−1

≤ M̃0

holds. Hence we find

(1.2.107) sup
Ω

∣∣∣
(dx0

dt

)−ν∣∣∣ ≤ M̃ ν
0 .

This then implies

(1.2.108)
∥∥∥
((dx0

dt

)−ν)(l)∥∥∥
[r0]

≤ M̃ ν
0

(
2R0|ρ|−1

)l
.

On the other hand it immediately follows from the definition (1.2.1) of

C(l) that

(1.2.109)
3

2π2
2−l−2 ≤ C(l)

holds for every l in N0. Therefore we obtain

(1.2.110)
∥∥∥
((dx0

dt

)−ν)(l)∥∥∥
[r0]

≤M ν
0C(l)

(
R|ρ|−1

)l
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by setting

(1.2.111) M0 =
8

3
π2M̃0 and R = 4R0.

This completes the proof of Lemma 1.2.4.

�

We now resume the proof of Proposition 1.2.1. Let us begin our rea-

soning by dominating the first sum in the right-hand side of (1.2.102),

namely

S
(p)
2(n−1) =

def

∑

k1+k2=n−1
l1+l2+l3=p

d3x
(l1)
2k1

dt3

k2∑

ν=min{1,k2}
(−1)ν

((dx0

dt

)−ν−1)(l2)

(1.2.112)

×
∑

|~κ|ν=k2

∗ ∑

|~λ|ν=l3

dx
(~λ)
2~κ

dt
.

We first note that (p.ĩii) Remark 1.2.1 and Cauchy’s integral formula

applied to dx
(l)
0 /dt entail

(1.2.113)
∥∥∥
d2x

(l)
0

dt2

∥∥∥
[r0−ε]

≤M0C(l)
(
R|ρ|−1

)l
ε−1,

(1.2.114)
∥∥∥
d3x

(l)
0

dt3

∥∥∥
[r0−ε]

≤2!M0C(l)
(
R|ρ|−1

)l
ε−2

for l ≥ 0 and some positive constant M0. Indeed, (1.2.113) and

(1.2.114) follow from (1.2.105) and the following relations for the dif-

ferentiation of a holomorphic function f(s) with respect to the two

variables t and s:

d2f

dt2
(s) =

(dt(s)
ds

)−2 d2

ds2
f(s) +

1

2

d

ds

(dt(s)
ds

)−2 d

ds
f(s),(1.2.115)
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d3f

dt3
(s) =

(dt(s)
ds

)−3 d3

ds3
f(s) +

d

ds

(dt(s)
ds

)−3 d2

ds2
f(s)(1.2.116)

+
1

2

(dt(s)
ds

)−1 d2

ds2

(dt(s)
ds

)−2 d

ds
f(s).

Remark 1.2.5. Since we can take the constant C0 in (p.ĩii) in Remark

1.2.1 for p ≥ 1 arbitrarily small by taking R0 sufficiently large, we

can take M0 in (1.2.113) and (1.2.114) for l ≥ 1 also arbitrarily small.

However this fact does not hold for l = 0. Fortunately, our reasoning

below does not require M0 to be arbitrarily small. Hence, for the

simplicity of presentation, we use the estimates (1.2.113) and (1.2.114)

in the form that is applicable to both cases l = 0 and l ≥ 1, that is,

we only assert the existence of some positive constant M0 there.

Further, the following lemma follows from the induction hypothesis:

Lemma 1.2.5. For each (l, k) (l ≥ 0, k ≥ 1), [G; l, 2k](v) entails

the following:

∥∥∥
d2x

(l)
2k

ds2

∥∥∥
[r−ε]

≤ e2N0C(l)
(
R|ρ|−1

)l
(2k + 1)!ε−2k−1

(
A|ρ|−1

)k
,

(1.2.117)

∥∥∥
d3x

(l)
2k

ds3

∥∥∥
[r−ε]

≤ e2N0C(l)
(
R|ρ|−1

)l
(2k + 2)!ε−2k−2

(
A|ρ|−1

)k
,

(1.2.118)

where e = 2.718 · · · .
Proof. Let ε̃ denote kε/(k + 1). Then [G; l, 2k](v) entails

sup
|s|≤r−ε̃

|ẋ(l)
2k(s)|(1.2.119)

≤ N0C(l)
(
R|ρ|−1

)l
(2k)!ε̃−2k

(
A|ρ|−1

)k
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= N0C(l)
(
R|ρ|−1

)l
(2k)!

(
1 +

1

k

)2k

ε−2k
(
A|ρ|−1

)k

≤ e2N0C(l)
(
R|ρ|−1

)l
(2k)!ε−2k

(
A|ρ|−1

)k
.

To derive (1.2.117) and (1.2.118), we use (1.2.119) together with the

following representation of djx
(l)
2k/ds

j (j = 2, 3):

djx
(l)
2k

dsj
=

(j − 1)!

2π
√
−1

∫

|s̃−s|=(k+1)−1ε

ẋ
(l)
2k(s̃)

(s̃− s)1+j
ds̃.(1.2.120)

Since

|s̃| ≤ |s̃− s| + |s|(1.2.121)

≤ (k + 1)−1ε + r − ε

= r − ε̃

holds for s in {s; |s| ≤ r − ε} and s̃ on the above contour, we obtain

(1.2.117) and (1.2.118).

�

We note that Lemma 1.2.5 together with (1.2.115) and (1.2.116) im-

plies the following inequalities (1.2.122) and (1.2.123) for some positive

constant M0:

(1.2.122)
∥∥∥
d2x

(l)
2k

dt2

∥∥∥
[r0−ε]

≤M0N0C(l)(2k + 1)!
(
R|ρ|−1

)l
ε−2k−1

(
A|ρ|−1

)k
,

(1.2.123)
∥∥∥
d3x

(l)
2k

dt3

∥∥∥
[r0−ε]

≤M0N0C(l)(2k + 2)!
(
R|ρ|−1

)l
ε−2k−2

(
A|ρ|−1

)k

Let us again return to the proof of Proposition 1.2.1. First we observe
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that (1.2.114) and Lemma 1.2.3 (via Lemma 1.2.4) entail the following:

∥∥S(p)
0

∥∥
[r0−ε] =

∥∥∥∥∥
∑

l1+l2=p

d3x
(l1)
0

dt3

((dx0

dt

)−1)(l2)

∥∥∥∥∥
[r0−ε]

(1.2.124)

≤ 2M 2
0C(p)

(
R|ρ|−1

)p
ε−2.

To dominate S
(p)
2(n−1) for n ≥ 2 we assume that [G; l, 2k] for 0 ≤ l ≤

p and 1 ≤ k ≤ n − 1; this assumption is a part of the induction

hypothesis to be employed in parts [II], [III] and [V]. We then perform

its estimation by separating the situation into the following three cases:

(i) k1 = 0, (ii) k2 = 0 and (iii) k1, k2 6= 0.

(i) k1 = 0 : In this case, applying Lemma 1.2.1 and Lemma 1.2.2, we

find

∥∥∥∥∥
∑

l1+l2+l3=p

d3x
(l1)
0

dt3

n−1∑

ν=1

(−1)ν
((dx0

dt

)−ν−1)(l2) ∑

|~κ|ν=n−1

∗ ∑

|~λ|ν=l3

dx
(~λ)
2~κ

dt

∥∥∥∥∥
[r0−ε]

(1.2.125)

≤
∑

l1+l2+l3=p

2M 2
0C(l1)

(
R|ρ|−1

)l1 ε−2
( n−1∑

ν=1

M ν
0C(l2)

(
R|ρ|−1

)l2)

× 4−1(4M0N0)
νC(l3)(2(n− 1) − ν + 1)!

×
(
R|ρ|−1

)l3 ε−2(n−1)
(
A|ρ|−1

)n−1

≤ 2M 4
0N0C(p)

(
R|ρ|−1

)p
(2(n− 1))!ε−2n

×
(
A|ρ|−1

)n−1
n−1∑

ν=1

(4M 2
0N0)

ν−1

(ν − 1)!

≤ 2e4M2
0N0M 4

0N0C(p)
(
R|ρ|−1

)p
(2(n− 1))! ε−2n

(
A|ρ|−1

)n−1
.
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Here M0 is taken so that

(1.2.126) sup
|t|≤r0

∣∣∣
ds

dt

∣∣∣ ≤M0

holds.

(ii) k2 = 0 : In this case we find
∥∥∥∥∥
∑

l1+l2=p

d3x
(l1)
2(n−1)

dt3

((dx0

dt

)−1)(l2)
∥∥∥∥∥

[r0−ε]
(1.2.127)

≤M 2
0N0C(p)(2n)!

(
R|ρ|−1

)p
ε−2n

(
A|ρ|−1

)n−1
.

(iii) k1, k2 ≥ 1 : We first observe

∥∥∥∥∥

k2∑

ν=min{1,k2}
(−1)ν

((dx0

dt

)−ν−1)(l2) ∑

|~κ|ν=k2

∗ ∑

|~λ|ν=l3

dx
(~λ)
2~κ

dt

∥∥∥∥∥
[r0−ε]

(1.2.128)

≤
k2∑

ν=1

M ν+1
0 C(l2)

(
R|ρ|−1

)l2(M0N0)
νC(l3)4

ν−1(2k2 − ν + 1)!

×
(
R|ρ|−1

)l3 ε−2k2
(
A|ρ|−1

)k2

≤M 3
0e

4M2
0N0N0C(l2)C(l3)

(
R|ρ|−1

)l2+l3 (2k2)!ε
−2k2
(
A|ρ|−1

)k2.

Hence we obtain (1.2.129) below by (1.2.123) and (1.2.128):

∥∥∥∥∥
∑

k1+k2=n−1
l1+l2+l3=p
k1,k2≥1

d3x
(l1)
2k1

dt3

k2∑

ν=min{1,k2}
(−1)ν

((dx0

dt

)−ν−1)(l2)∑

|~κ|ν=k2

∗ ∑

|~λ|ν=l3

dx
(~λ)
2~κ

dt

∥∥∥∥∥
[r0−ε]

(1.2.129)

≤M 4
0e

4M2
0N0N 2

0C(p)
(
|ρ|−1

)p
(2n)! ε−2n

(
A|ρ|−1

)n−1
.
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Thus the following estimate (1.2.130) follows from (1.2.125), (1.2.127)

and (1.2.129) for some positive constant M that is independent of

N0, C0, R and A:

(1.2.130)∥∥S(p)
2(n−1)

∥∥
[r0−ε]

≤MN0C(p)
(
R|ρ|−1

)p
(2n)! ε−2n

(
A|ρ|−1

)n−1
.

The reasoning given so far equally applies to the second sum in the

right-hand side of (1.2.102), i.e.,

− 3

2

∑

k1+k2+k3=n−1
l1+l2+l3+l4=p

d2x
(l1)
2k1

dt2
d2x

(l2)
2k2

dt2
(1.2.131)

×
k3∑

ν=min{1,k3}
(−1)ν(ν + 1)

((dx0

dt

)−ν−2)(l3)∑

|~κ|ν=k3

∗ ∑

|~λ|ν=l4

dx
(~λ)
2~κ

dt
.

Summing up, we have found

(1.2.132)
∥∥{x; t}(p)

0

∥∥
[r0−ε] ≤ 2!MC(p)

(
R|ρ|−1

)p
ε−2,

by Lemma 1.2.3 via Lemma 1.2.4, and we have also confirmed, for

n ≥ 2,

(1.2.133)∥∥{x; t}(p)
2(n−1)

∥∥
[r0−ε]

≤MN0C(p)
(
R|ρ|−1

)p
(2n)! ε−2n

(
A|ρ|−1

)n−1

for some positive constant M that is independent of N0, C0, R and A

by assuming the validity of [G; l, 2k] for 0 ≤ l ≤ p and 1 ≤ k ≤ n− 1,

besides Lemma 1.2.4.

Making use of these results, we now show that the validity of [G; q, 2k]

(q: arbitrary, 1 ≤ k ≤ n − 1) together with the validity of [G; r, 2n]

(r ≤ p0 − 1) entails [G; p0, 2n]. In what follows we call these assump-

tions as the induction hypothesis for short. It is clear that the induction

hypothesis is stronger than the assumptions we have used to confirm
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(1.2.133) with p = p0. We also remark that the validity of [G; 0, 2n] is

guaranteed by the same reasoning if we assume the validity of [G; q, 2k]

(q: arbitrary, 1 ≤ k ≤ n − 1) besides Lemma 1.2.3 (i.e., the validity

of [G; q, 0] for q ≥ 1). Parenthetically we note that it suffices to use

only [G; q, 2k] (1 ≤ k ≤ n− 1) with q ≤ p0 to validate [G; p0, 2n]; the

situation is the same when p0 = 0.

[II] Let us first dominate x
(p0+1)
2n (0, ρ) − Ã

(p0)
2n on the above induction

hypothesis. The reasoning used for the domination is basically the

same as that used in the proof of Lemma 1.2.3 reinforced with the

results in part [I], which are applied to the estimation of terms (α.j)

(j = vii, viii, ix, x) in (1.1.3.43). Hence in what follows we focus our

attention on the points which require some special care, and we will

try to avoid routine repetitions. As in the proof of Lemma 1.2.3 we use

the concrete expression (1.1.3.43) of R
(p+1)
2n (s, ρ) to dominate

− x
(p0+1)
2n (0, ρ) + Ã

(p0)
2n = R

(p0+1)
2n (0, ρ)(1.2.134)

=
1

2πi

∫

|s|=r0−ε
R

(p0+1)
2n (s, ρ)

ds

s
=

1

2πi

∮
R

(p0+1)
2n

ds

s
.

As in (1.2.16) we also use the notation

(1.2.135)
1

2πi

∮
(α.j)

ds

s

to denote Cauchy’s integral of the term labelled by (α.j) (j = i, ii, · · · , x)

in (1.1.3.43). In what follows we use the notation introduced in Defini-

tion 1.2.3; A
(u)
2k /B

(0)
0 etc. in (1.1.3.43) are respectively denoted by Ã

(u)
2k

etc.

To begin with, we note that the contribution from the parts

(1.2.136) −
∑

q+r=p0
i+j=n, i,j≤n−1

ẋ
(q)
2i (s, ρ)ẋ

(r)
2j (s, ρ)Ã

(0)
0

99



and

(1.2.137) −2
∑

q+r=p0

ẋ
(q)
2n (s, ρ)ẋ

(r)
0 (s, ρ)Ã

(0)
0

in (α.i) are cancelled out respectively by the worst (in estimating) part

of the contribution from (α.v) with u = 1 and by that from (α.vi) with

u = 1, that is,

(1.2.138)
1

2πi

∮
f (1)(t, ρ)

B
(0)
0

(dt
ds

)2 s2

t2

( ∑

q+r=p0
i+j=n, i,j≤n−1

ẋ
(q)
2i (0, ρ)ẋ

(r)
2j (0, ρ)

) ds
s

and

(1.2.139)
2

2πi

∮
f (1)(t, ρ)

B
(0)
0

(dt
ds

)2 s2

t2

( ∑

q+r=p0

ẋ
(q)
2n (0, ρ)ẋ

(r)
0 (0, ρ)

) ds
s
.

The mechanism of the cancellation is the same for both parts; first

we consider the Taylor expansion x
(q)
2i (s, ρ)x

(r)
2j (s, ρ) and pick up the

coefficient of s2 and then we use

(1.2.140) f (1)(t, ρ)
(dt
ds

)2 s2

t2

∣∣∣
s=0

= A
(0)
0 .

Once (1.2.138) is set aside, other contributions from (α.v) with u = 1,

i.e.,

∑

q+r=p0
i+j=n, i,j≤n−1

1

2πi

∮
f (1)(t, ρ)

B
(0)
0

(dt
ds

)2 1

t2

(
x

(q)
2i (0, ρ)x

(r)
2j (0, ρ)

(1.2.141)

+ 2sx
(q)
2i (0, ρ)ẋ

(r)
2j (0, ρ) + s2x

(q)
2i (0, ρ)ẍ

(r)
2j (0, ρ)

) ds
s

is seen to be tame. In fact, each integral to be examined contains either

x
(q)
2i (0, ρ) (1 ≤ i ≤ n − 1) in its integrand and hence the integral is
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dominated by

M |ρ|−1N 2
0C(p0)

(
R|ρ|−1

)p0−1
(2n)! ε−2n

(
A|ρ|−1

)n
(1.2.142)

=MR−1N 2
0C(p0)

(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
,

where M is a constant that originates from the innocent part of the

integrand such as

(1.2.143)
((dt
ds

)2 1

t2
f (1)(t, ρ)

)ds
s
.

If we set aside (1.2.139), we use the same reasoning to find the contri-

bution from (α.vi) with u = 1 is dominated by

(1.2.144) MR−1N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
.

Because of the constraint on the indices

(1.2.145) q + r + u = p0 + 1,

contributions from (α.vi) with u ≥ 2 and (α.v) with u ≥ 2 are dom-

inated by similar constants, whereas contributions from (α.vi) with

u = 0 and (α.v) with u = 0 require some special care. To fix the

notation we discuss the contribution from (α.vi) with u = 0; the con-

tribution from (α.v) with u = 0 is handled in the same manner. We

first note that f (0) has the form ρtg(t, ρ) with g(0, ρ) = 1. Hence we

find

1

2πi

∮
2t−2

B
(0)
0

(dt
ds

)2

f (0)
( ∑

q+r=p0+1
q≤p0

x
(q)
2nx

(r)
0

)ds
s

(1.2.146)

=
1

2πi

∮
2Z0

s

t
g(t, ρ)

(dt
ds

)2( ∑

q+r=p0+1
q≤p0

x
(q)
2nx

(r)
0

)ds
s2
.

Thus we observe that the annoying factor 1/B
(0)
0 has disappeared

and that it suffices to study the Taylor expansion (in powers of s)
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of
∑
x

(q)
2nx

(r)
0 up to the degree 1 part; each term in the Taylor expan-

sion to be estimated contains x
(q)
2n (0, ρ) or x

(r)
0 (0, ρ) as its factor. Since

x
(0)
0 does not appear in the sum, [G; p, 0] (p ≥ 1) and the induction

hypothesis guarantee that each contribution is dominated by

(1.2.147) MC0N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n

with some positive constant M that is independent of C0, N0, R and

A. (In what follows, M stands for such a constant.)

Returning to the estimation of (α.i), we find by [G; p, 0] (p ≥ 1) and

the induction hypothesis that each term in (α.i) except for (1.2.137)

and (1.2.136) is dominated by a constant of the form

(1.2.148) M(C0 +N0)N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
.

Next let us study the contribution from (α.ii). This term is basically

handled by the application of the induction hypothesis. Since ẋ
(0)
0 (0, ρ)

and B̃
(0)
0 are not covered by [G; p, 0] (p ≥ 1), we have to pay attention

to them. However, all the terms in (α.ii) contain two factors; one of

them has a suffix (2k1, (q1)) with k1 ≥ 1 and the other has a suffix

(2k2, (q2)) with q2 ≥ 1. Thus we can dominate the contribution from

(α.ii) by

(1.2.149) MC0N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
.

The succeeding target is (α.iii). In view of the structure of the in-

duction hypotheses, we rewrite

∑

q+r+u=p0−2
i+j+k=n

ẋ
(q)
2i ẋ

(r)
2j Ã

(u)
2k

(1.2.150)
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= Ã
(0)
0

(
2ẋ

(0)
0 ẋ

(p0−2)
2n +

∑

q+r=p0−2
i+j=n

(q,i),(r,j)6=(0,0)

ẋ
(q)
2i ẋ

(r)
2j

)
+

∑

q+r+u=p0−2
i+j+k=n

(u,k)6=(0,0)

Ã
(u)
2k ẋ

(q)
2i ẋ

(r)
2j

= 2Ã
(0)
0 ẋ

(0)
0 ẋ

(p0−2)
2n + Ã

(0)
0

(
∑

q+r=p0−2
i+j=n

(q,i),(r,j)6=(0,0)

ẋ
(q)
2i ẋ

(r)
2j

)
+ Ã

(p0−2)
2n ẋ

(0)2
0

+ 2
∑

r+u=p0−2
j+k=n

(u,k),(r,j)6=(0,0)

Ã
(u)
2k ẋ

(0)
0 ẋ

(r)
2j +

∑

q+r+u=p0−2
i+j+k=n

(u,k),(q,i),(r,j)6=(0,0)

Ã
(u)
2k ẋ

(q)
2i ẋ

(r)
2j .

Thus the worst contribution from (α.iii) is dominated as follows:
∣∣∣

1

2πi

∮
s2

t2
(
2Ã

(0)
0 ẋ

(p0−2)
2n

)ds
s3

∣∣∣(1.2.151)

≤M |ρ|−1N0C(p0)
(
R|ρ|−1

)p0−2
(2n)! ε−2n

(
A|ρ|−1

)n

≤MR−1N0C(p0)
(
R|ρ|−1

)p0−1
(2n)! ε−2n

(
A|ρ|−1

)n
.

Parenthetically we note that the contribution from Ã
(p0−2)
2n ẋ

(0)2
0 (=

Ã
(p0−2)
2n ) is weaker than (1.2.151) by the factor |ρ|.
In parallel with the study of (α.iii) we can readily find that the worst

contribution from (α.iv) is

(1.2.152)
∣∣∣

1

2πi

∮
s2

t2
(
ẋ

(0)2
0 x

(p0−1)
2n B̃

(0)
0

)ds
s3

∣∣∣,

which is dominated by

(1.2.153) MN0C(p0)
(
R|ρ|−1

)p0−1
(2n)! ε−2n

(
A|ρ|−1

)n
.

The domination of contributions from (α.vii) ∼ (α.x) can be done in

a similar manner. Since the domination of contributions from (α.viii)
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and (α.x) are straightforward, we concentrate our attention on (α.vii)

and (α.ix). Among the contributions from (α.vii) the worst ones are

(1.2.154)
∣∣∣

1

2πi

∮
t−2

2B
(0)
0

(dt
ds

)2

x
(0)2
0 {x; t}(p0−1)

2(n−1)

ds

s

∣∣∣

and

(1.2.155)
∣∣∣

1

2πi

∮
t−2

B
(0)
0

(dt
ds

)2(
x

(0)
0 x

(p0−1)
2(n−1){x; t}(0)

0

) ds
s

∣∣∣,

which are respectively dominated by

|ρ|−1MN0C(p0)
(
R|ρ|−1

)p0−1
(2n)! ε−2n

(
A|ρ|−1

)n−1
(1.2.156)

=MR−1N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n−1

and

MR−1N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n−1
.(1.2.157)

Concerning the contributions of (α.ix) we discuss the case n = 1 and

the case n ≥ 2 separately. When n = 1, (α.ix) evaluated at s = 0 is

given by

(1.2.158)
1

2B
(0)
0

∑

q+r+u=p0+1
q,r≥2

x
(q)
0 (0, ρ)x

(r)
0 (0, ρ){x; t}(u)

0

∣∣∣
s=0
,

which is dominated by

|ρ|−1MC2
0C(p0)

(
R|ρ|−1

)p0−1
ε−2(1.2.159)

=MC2
0(N0RA)−1N0C(p0)

(
R|ρ|−1

)p0 ε−2A.

When n ≥ 2, it follows from the results in part [I] together with

the induction hypotheses that the sum (α.ix) evaluated at s = 0 is

dominated by

MC0N0|ρ|−1C(p0)
(
R|ρ|−1

)p0−1
(2n)! ε−2n

(
A|ρ|−1

)n−1
(1.2.160)
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= MC0R
−1N0C(p0)

(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n−1
.

Summing up the results obtained in this part, we find

∣∣x(p0+1)
2n (0, ρ) − Ã

(p0)
2n

∣∣ =
∣∣R(p0+1)

2n (0, ρ)
∣∣(1.2.161)

≤ N2N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
,

where

(1.2.162) N2 = M
(
C0 +N0 + R−1 + C0(N0RA)−1

)
.

By using the same reasoning as above, we also find

∣∣ẋ(p0)
2n (0, ρ) + B̃

(p0)
2n

∣∣ =
∣∣Ṙ(p0)

2n (0, ρ)
∣∣(1.2.163)

≤ N2N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
.

Actually the domination is easier than the confirmation of (1.2.161),

because this time we do not need to seek for the cancellation of annoying

terms such as (1.2.136), (1.2.137), (1.2.138) and (1.2.139). Hence we

omit the proof of (1.2.163).

Remark 1.2.6. By taking C0 and N0 sufficiently small and then letting

R and A sufficiently large, we may consider the factor N2 is sufficiently

small. Here we note that the factor A is not used essentially in the es-

timation in part [II] (and also part [III] below), that is, we can obtain

(1.2.161) and (1.2.163) with N2 sufficiently small from the induction

hypothesis without taking A sufficiently large. The factor A plays an

essential role in part [IV] to make the constant M(N0A)−1N0 (resp.,

MA−1N0) in (1.2.179) (resp., (1.2.180)) sufficiently small. Parentheti-

cally we also note that this stage of the reasoning is not an appropriate

place to detect the proper order of |ρ| relevant to n; for example the

order in question is 0 in (1.2.160), whereas it is −1 in the estimate
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(1.2.179) of the corresponding term in part [IV]. Since (1.2.179) is a

consequence of Lemma 1.2.3 as we will see later, that is the spot where

we find the appropriate order.

[III] Using the results in part [II] we dominate Ã
(p0)
2n and B̃

(p0)
2n by the

induction on p0. The reasoning is basically the same as the reasoning in

part [II] of the proof of Lemma 1.2.3 except for the estimation of terms

involving the effect of the Schwarzian derivative. By concretely writing

down the conditions (ds/dt)−2Φ
(p0+3)
2n

∣∣
s=0

= (ds/dt)−2
(
dΦ

(p0+2)
2n /dt

)∣∣
s=0

= 0, we obtain the following relations which determine
(
Ã

(p0)
2n , B̃

(p0)
2n

)
,

where z
(p0)
2n (s, ρ) stands for x

(p0)
2n (s, ρ)− Ã

(p0−1)
2n + B̃

(p0)
2n s. (Cf. (1.2.70),

(1.2.70′), (1.2.71) and (1.2.71′).)

− 2
(
B

(0)
0 Ã

(p0)
2n − A

(0)
0 B̃

(p0)
2n

)(1.2.164)

= 2ż
(p0)
2n (0, ρ)A

(0)
0 (γ̃.i)

+ z
(p0+1)
2n (0, ρ)B

(0)
0 (γ̃.ii)

+
∑

q+r+u=p0
i+j+k=n

(q,i),(r,j),(u,k)6=(p0,n)

ẋ
(q)
2i (0, ρ)ẋ

(r)
2j (0, ρ)B

(0)
0 Ã

(u)
2k (γ̃.iii)

+ 2
∑

q+r+u=p0+3
q≥2, r,u≥1

x
(q)
0 (0, ρ)x

(r)
2n (0, ρ)f (u)(0, ρ) (γ̃.iv)

+
∑

q+r+u=p0+3, q,r,u≥1
i+j=n, i,j≥1

x
(q)
2i (0, ρ)x

(r)
2j (0, ρ)f (u)(0, ρ) (γ̃.v)
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+
∑

q+r+u+v=p0+1
i+j+k+l=n

(u,k)6=(p0+1,n)

ẋ
(q)
2i (0, ρ)ẋ

(r)
2j (0, ρ)x

(u)
2k (0, ρ)B

(0)
0 B̃

(v)
2l (γ̃.vi)

+
1

2
{x; t}(p0−1)

2(n−1)

∣∣
s=0

(γ̃.vii)

− 1

2

∑

q+r+v=p0+1
i+j+k=n−1

x
(q)
2i (0, ρ)x

(r)
2j (0, ρ){x; t}(v)

2k

∣∣
s=0

(γ̃.viii)

=
def

Γ
(p0)
2n ,

− 2
(
A

(0)
0 Ã

(p0)
2n −B

(0)
0 B̃

(p0)
2n

)(1.2.165)

= 2A
(0)
0 z

(p0+1)
2n (0, ρ) (δ̃.i)

+ 3B
(0)
0 ż

(p0)
2n (0, ρ) (δ̃.ii)

+ 2
∑

q+r+u=p0−1
i+j+k=n

x
(q)′′
2i ẋ

(r)
2j A

(u)
2k

∣∣
s=0

(δ̃.iii)

+
∑

q+r=p0+2
i+j=n

x
(q)
2i (0, ρ)x

(r)
2j (0, ρ)

(
f (0)′∣∣

t=0

)
(δ̃.iv)

+
∑

q+r+u=p0+2,u≥1
i+j=n

x
(q)
2i (0, ρ)x

(r)
2j (0, ρ)

(
f (u)′∣∣

t=0

)
(δ̃.v)

+
∑

q+r=p0+1
i+j=n,(r,j)6=(p0+1,n)

ẋ
(q)
2i (0, ρ)x

(r)
2j (0, ρ)f (1)(0, ρ) (δ̃.vi)
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+
∑

q+r+u=p0+2,u≥2
i+j=n

ẋ
(q)
2i (0, ρ)x

(r)
2j (0, ρ)f (u)(0, ρ) (δ̃.vii)

+ 2
∑

q+r+u+v=p0
i+j+k+l=n

(
x

(q)′′
2i ẋ

(r)
2j

)∣∣∣
t=0

x
(u)
2k (0, ρ)B

(v)
2l (δ̃.viii)

+
∑

q+r+u+v=p0
i+j+k+l=n

(q,i),(r,j),(u,k),(v,l)6=(p0,n)

ẋ
(q)
2i (0, ρ)ẋ

(r)
2j (0, ρ)ẋ

(u)
2k (0, ρ)B

(v)
2l (δ̃.ix)

+
1

2

( d
dt
{x; t}(p0−2)

2(n−1)

)∣∣∣
t=0

(δ̃.x)

− 1

2

( d
dt

∑

q+r+u=p0
i+j+k=n−1

x
(q)
2i x

(r)
2j {x; t}(u)

2k

)∣∣∣
t=0

(δ̃.xi)

=
def

∆
(p0)
2n .

Thus, as in part [II] of the proof of Lemma 1.2.3, it suffices to confirm

that

(1.2.166)

|Γ(p0)
2n |, |∆(p0)

2n | ≤ N3N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n

holds, where N3 is a sufficiently small constant given by (1.2.162).

Using the induction hypothesis, we readily find that |(γ̃.j)| (j =

i, ii, iii) is dominated by a constant of the form

(1.2.167) N3N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n

with

N3 = MN2 for (γ̃.i)(1.2.168)

N3 = |ρ|N2 for (γ̃.ii)(1.2.169)
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N3 = MC0 for (γ̃.iii).(1.2.170)

In view of the wideness of the range of indices we are to pay some

attention to (γ̃.iv) with u = 1. This term is seen to be dominated by

a constant of the form (1.2.167) with (1.2.170) if we set

(1.2.171) q̃ = q − 1, r̃ = r − 1

and use [G; q̃, 0] ((q̃.i) and (q̃.v)) and [G; r̃, 2n] ((r̃, 2n)(i)). Paren-

thetically, here we observe that q̃, r̃ ≤ p0, as we have noted before

beginning the discussion of part [II]; this is consistent with our delicate

way of constructing x
(p)
2n (s, ρ). (Cf. Proposition 1.1.3.3.) The same

reasoning also applies to (γ̃.v) and (γ̃.vi). We find they are dominated

by a constant of the form (1.2.167) with

(1.2.172) N3 = MN0

and (1.2.170) respectively. It immediately follows from (1.2.132) and

(1.2.133) that |(γ̃.vii)| is dominated by a constant of the form (1.2.167)

with

(1.2.173) N3 = M |ρ|2
(
N0RA

)−1
for n = 1

and

(1.2.174) N3 = M |ρ|2
(
RA
)−1

for n ≥ 2.

To dominate (γ̃.viii) we use (1.2.132) and (1.2.133) together with the

technique employed in dominating |(γ̃.iv)|. Then we find (γ̃.viii) satis-

fies the estimates of the form (1.2.167) with

(1.2.175) N3 = M |ρ|2C0

(
RA
)−1

.

Thus we have seen that |Γ(p0)
2n | satisfies (1.2.166). The domination of

|∆(p0)
2n | can be done in the same manner. We only note that, using

Cauchy’s inequality, the domination of x
(q)′′
2i in (δ̃.iii) and the differen-

tiated terms (δ̃.x) and (δ̃.xi) can be done without any trouble, because
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their value are considered at s = 0; the order of ε is not affected by

differentiation as in Lemma 1.2.5. Thus by rewriting (1.2.164) and

(1.2.165) in the form of (1.2.80) we conclude that |Ã(p0)
2n | and |B̃(p0)

2n |
are dominated by

(1.2.176) N2N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
,

where N2 is a sufficiently small constant of the form (1.2.162).

[IV] Finally let us dominate ‖x(p0)
2n ‖[r0−ε] and ‖ẋ(p0)

2n ‖[r0−ε]. We first note

that, by a straightforward calculation, we find

(1.2.177) ‖R(p0)
2n ‖[r0−ε] ≤ N4N0C(p0)

(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n

with

(1.2.178) N4 = M(C0 +N0 +R−1 + (N0A)−1).

(We can not expect the cancellation of terms in R
(p0)
2n (u, ρ) which is

similar to that observed between (1.2.136) and (1.2.138). However,

without the cancellation, we can still confirm (1.2.177), although N4

contains a term (N0A)−1; to make this term small we take A suffi-

ciently large.) Here we only mention the estimation of (α.ix), whose

contribution determines the order of |ρ| relevant to n in [G; p, 2n]. It

follows from (1.2.132) and (1.2.133) that
∥∥∥

1

2B
(0)
0

(dt
ds

)2 ∑

q+r+u=p0

x
(q)
0 x

(r)
0 {x; t}(u)

0

∥∥∥
[r0−ε]

(1.2.179)

≤M |ρ|−1C(p0)
(
R|ρ|−1

)p02! ε−2

≤M(N0A)−1N0C(p0)
(
R|ρ|−1

)p02! ε−2A|ρ|−1

for n = 1 and
∥∥∥

1

2B
(0)
0

(dt
ds

)2 ∑

q+r+u=p0
i+j+k=n−1

x
(q)
2i x

(r)
2j {x; t}(u)

2k

∥∥∥
[r0−ε]

(1.2.180)
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≤M |ρ|−1N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n−1

≤MA−1N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n

for n ≥ 2.

Then the domination of ‖x(p0)
2n ‖[r0−ε] and ‖ẋ(p0)

2n ‖[r0−ε] can be readily

done by the same reasoning as part [III] in the proof of Lemma 1.2.3.

Thus the induction proceeds. This completes the proof of Proposition

1.2.1.

�

1.3 Correspondence between a WKB solution of an M2P1T equa-

tion and that of the Mathieu equation

The purpose of this section is to show how we can relate a WKB

solution of an M2P1T equation to an appropriate WKB solution of

an ∞-Mathieu equation. To begin with we summarize the results in

Section 1.1, Section 1.2 and Appendix C in the form of Theorem 1.3.1

below. To avoid the notational confusions which we will later explain

in Remark 1.3.1, we now assume

(1.3.1) B
(0)
0 = ρ.

Theorem 1.3.1. Let Q(t, a, ρ) be a potential of an M2P1T oper-

ator given in Definition 1.1. Then there exist positive constants r

and R0, and holomorphic functions

(1.3.2) A2n(a, ρ) =

∞∑

j=0

A
(j)
2n (ρ)aj,

(1.3.3) B2n(a, ρ) =
∞∑

j=0

B
(j)
2n (ρ)aj
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and

(1.3.4) x2n(t, a, ρ) =
∞∑

j=0

x
(j)
2n (t, ρ)aj

(n ≥ 0) on

E1
r,R0

= {(t, a, ρ) ∈ C3 : |t| ≤ r, 0 < |ρ| ≤ r, R0|a| ≤ |ρ|}(1.3.5)

for which the following conditions are satisfied there:

(1.3.6) A(a, ρ, η), B(a, ρ, η) and x(t, a, ρ, η) satisfy (1.1.6),

(1.3.7) A0(0, ρ) = f (1)(0, ρ),

(1.3.8) B0(0, ρ) = ρ,

(1.3.9)
∂x0

∂t
(0, 0, ρ) = 1,

(1.3.10) the function x0(t, a, ρ) of t is injective for each fixed a

and ρ on E1
r,R0

,

(1.3.11) x0(t, a, ρ)
∣∣
t=±a = ±a.

Furthermore there exists a positive constant R1 for which the fol-

lowing estimates hold for n ≥ 1:

|A2n(a, ρ)| ≤ |ρ|(2n)!Rn
1 |ρ|−n,(1.3.12)

|B2n(a, ρ)| ≤ |ρ|(2n)!Rn
1 |ρ|−n,(1.3.13)

|x2n(t, a, ρ)| ≤ (2n)!Rn
1 |ρ|−n,(1.3.14)

∣∣∣
dx2n

dt
(t, a, ρ)

∣∣∣ ≤ (2n)!Rn
1 |ρ|−n.(1.3.15)
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Remark 1.3.1. Using this occasion we make a correction in our an-

nouncement paper [KKT, (1.105) and (1.106)]; the exponent of |ρ|
should be −n, not −n+ 1. We note that the exponent of |ρ| in [KKT,

(1.103) and (1.104)] should be kept intact, i.e., −n + 1.

Proof. It suffices to show (1.3.10) and (1.3.11), as the other relations

have been explicitly stated in Section 1.1 and Section 1.2. In what

follows, by taking r sufficiently small, we assume

f(±a, a, ρ) 6= 0,(1.3.16)

which the assumptions (1.3), (1.4) and (1.5) guarantee. Since A0, B0

and x0 satisfy

(x2
0 − a2)f = (t2 − a2)(x′0)

2(aA0 + x0B0),(1.3.17)

by letting t = ±a in (1.3.17), we find that

(1.3.18) x2
0(±a, a, ρ) = a2

holds. Since x
(j)
0 (0, ρ) = 0 (j = 0, 1), it follows from (1.1.1.13) that

x0(±a, a, ρ)
a

=
x

(0)
0 (±a, ρ)

a
+ x

(1)
0 (±a, ρ) + a

∞∑

j=2

x
(j)
0 (±a, ρ)aj−2

(1.3.19)

−→
a→0

±∂x
(0)
0

∂t
(0, ρ) = ± ρ

B
(0)
0

.

Hence (1.3.1) and (1.3.18) entail (1.3.11).

To confirm (1.3.10) we use s = x
(0)
0 (t, ρ) as a coordinate. Take r1

and ε be sufficiently small so that x0(s, a, ρ) is holomorphic on

Ẽ1
r1+2ε,R0

= {(s, a, ρ) ∈ C3 : |s| ≤ r1 + 2ε, 0 < |ρ| ≤ r1, R0|a| ≤ |ρ|}.
(1.3.20)
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Then, by taking R0 sufficiently large, we can assume that

|x0(s, a, ρ) − s| < ε(1.3.21)

holds on Ẽ1
r1+2ε,R0

. Therefore, for any ŝ in x0(Ẽ
1
r1,R0

), we find |s− ŝ| >
ε holds on {s ∈ C : |s| = r1 + 2ε}. Appealing to Rouché’s theorem,

we find that x0(s, a, ρ) is injective on {s ∈ C : |s| ≤ r1}. By taking r

so that x
(0)
0 (t, ρ) is injective and satisfies |x(0)

0 (t, ρ)| ≤ r1 on E1
r,R0

, we

obtain (1.3.10).

Remark 1.3.2. When B
(0)
0 = −ρ, some minor adjustments of signs etc.

are needed at several points in Theorem 1.3.1. For the sake of the

reader’s convenience, we list up the formulas that require the adjust-

ments below; each formula is appropriately modified and endowed with

a new label obtained by adding ′ to the original number of formulas.

In accordance with the adjustments, (1.1.6) is also changed to

Q(t, a, ρ; η)(1.1.6′)

=
(∂x
∂t

)2
(
aA + xB

x2 − a2
+ η−2

( g+(−a)
(x− a)2

+
g−(a)

(x + a)2

))

− 1

2
η−2{x; t}.

(1.3.3′) A(a, ρ, η), B(a, ρ, η) and x(t, a, ρ, η) satisfy (1.1.6′).

(1.3.5′) B0(0, ρ) = −ρ.

(1.3.6′)
∂x0

∂t
(0, 0, ρ) = −1.

(1.3.8′) x0(t, a, ρ)
∣∣
t=±a = ∓a.
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As is shown in [KT], Theorem 1.3.1 entails the following

Theorem 1.3.2. Let Ŝ and S̃ be a solution of

Ŝ2 +
∂Ŝ

∂t
= η2Q(t, a, ρ, η)(1.3.22)

and

S̃2 +
∂S̃

∂x
= η2

(
aA + xB

x2 − a2
+ η−2

(
g+(a)

(x− a)2
+
g−(−a)
(x + a)2

))
(1.3.23)

respectively, and suppose that

arg Ŝ−1(t, a, ρ) = arg

(
∂x0

∂t
S−1(x0(t, a, ρ), a, A0(a, ρ), B0(a, ρ))

)(1.3.24)

holds. Then they satisfy

Ŝodd(t, a, ρ, η)(1.3.25)

=

(
∂x

∂t

)
S̃odd(x(t, a, ρ, η), a, A(a, ρ, η), B(a, ρ, η), η),

where Ŝodd and S̃odd respectively be the odd part of Ŝ and S̃.

We also have the following theorem (cf. [AKT1]):

Theorem 1.3.3. Let ψ̂±(t, a, ρ, η) be WKB solutions of a generic

(i.e., aρ 6= 0) M2P1T equation (1.7) that are normalized at a simple

pole t = a as

ψ̂±(t, a, ρ, η) =
1√
Ŝodd

exp

(
±
∫ t

a

Ŝodddt

)
,(1.3.26)

and let ψ̃±(x, a, A,B, η) denote WKB solutions of the Mathieu

equation

(
d2

dx2
− η2

(
aA + xB

x2 − a2
+ η−2

(
g+(a)

(x− a)2
+
g−(−a)
(x + a)2

)))
ψ̃ = 0

(1.3.27)
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which are normalized at a simple pole x = a as

ψ̃±(x, a, A,B, η) =
1√
S̃odd

exp

(
±
∫ x

a

S̃odddx

)
.(1.3.28)

Then ψ̂± and ψ̃± satisfy the following relation on the set E1
r,R0

given by (1.3.5):

ψ̂±(t, a, ρ, η)(1.3.29)

=

(
∂x

∂t

)−1/2

ψ̃±(x(t, a, ρ, η), a, A(a, ρ, η), B(a, ρ, η), η),

where x(t, a, ρ, η), A(a, ρ, η) and B(a, ρ, η) are the series given in

Theorem 1.3.1.

2 Reduction of the Mathieu equation to the Legendre

equation near its simple poles

The main purpose of this section is to construct a transformation that

brings the Mathieu equation

(
d2

dx2
− η2

(
aA + xB

x2 − a2
+ η−2

(
g+(a)

(x− a)2
+
g−(−a)
(x + a)2

)))
ψ̃ = 0

(2.1)

with genuine constants A(6= 0) and B to the following Legendre equa-

tion

(
d2

dz2
− η2

(
aΛ2

z2 − a2
+ η−1

√
aΛ

z2 − a2
+ η−2azν + a2(µ2 − 1)

(z2 − a2)2

))
φ = 0

(2.2)

on a neighborhood of the line segment connecting two simple poles at

x = ±a.
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We note that introducing the large parameter η as in (2.2) to the

classical Legendre equation is a natural one from the WKB-theoretic

viewpoint; an elementary evidence for the naturalness is given by the

fact that the WKB solutions ψ± of (2.2) with ν = 0 and µ2 = 1/4 is

expressed in a closed form, i.e.,

(2.3)
(
η
√
aΛ +

1

2

)−1/2

(z2 − a2)1/4
(z +

√
z2 − a2

a

)±(η
√
aΛ+1/2)

,

which forms a counterpart of the interesting formula for P
±1/2√
aΛ

and

Q
±1/2√
aΛ

([Er, vol.I, p.150])). This naturalness seems to have enabled

Koike ([Ko3]) to find the explicit form of the Voros coefficient for (2.2),

of which we will make essential use in Section 4. However, there is

one technical problem with the equation (2.2); it contains a term with

degree 1 in η. Although the appearance of degree 1 (or, more generally,

an odd degree part) in η is natural from the viewpoint of the general

theory of simple-pole type operators (cf. e.g. [KKoT]), it is somewhat

unhandy in this paper; the equations we are dealing with in this paper

contain only even degree terms in η. Hence, as an auxiliary equation

we consider the following equation:
(
d2

dz2
− η2

(
aΓ

z2 − a2
+ η−2

(
g+(a)

(z − a)2
+
g−(−a)
(z + a)2

)))
ψ = 0,(2.4)

which can be smoothly related with (2.1). We will show the WKB-

theoretic equivalence of (2.2) and (2.4) later in Proposition 2.1. Thus

our first task is to construct the transformation series

z(x, a, A,B, η) =
∞∑

n=0

z2n(x, a, A,B)η−2n(2.5)

and

Γ(a,A,B, η) =
∞∑

n=0

Γ2n(a,A,B)η−2n(2.6)
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so that they satisfy

aA + xB

x2 − a2
+ η−2

(
g+(a)

(x− a)2
+
g−(−a)
(x + a)2

)
(2.7)

=

(
∂z

∂x

)2(
aΓ

z2 − a2
+ η−2

(
g+(a)

(z − a)2
+
g−(−a)
(z + a)2

))

− 1

2
η−2{z; x}.

In order to attain the required reduction of the Mathieu equation

to the Legendre equation near its simple poles, we need several deli-

cate properties of the series including their domains of definition and

estimates. Hence the precise target is to prove the following

Theorem 2.1. There exist holomorphic functions z2n(x, a, A,B)

and Γ2n(a,A,B) on

E2
r1,r2

=
{
(x, a, A,B) ∈ C4 : |x| < r1|a|, a 6= 0, A 6= 0, |B| < r2|A|

}(2.8)

for some constants r1 > 1 and r2 > 0 such that z(x, a, A,B, η) and

Γ(a,A,B, η) respectively given by (2.5) and (2.6) satisfy (2.7) and

the following conditions there:

(2.9) the function z0(x, a, A,B) of x is injective on Dr1|a| =

{x ∈ C : |x| < r1|a|} for fixed a,A and B,

(2.10) z0(±a, a, A,B) = ±a,

(2.11)
∂z0

∂x
(x, a, A,B) 6= 0.

Furthermore they satisfy the following estimates: for any h > 0

we can take sufficiently small δ > 0 so that

|z2n(x, a, A,B)| ≤ (2n)!hn|aA|−n,(2.12)
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|Γ2n(a,A,B)| ≤ (2n)!hn|aA|−n(2.13)

hold on E2
r1,δ

for n ≥ 1.

In order to explain the geometric meaning of Theorem 2.1, we give

some remarks before beginning its proof.

Remark 2.1. Since the two simple poles of (2.1) are contained in Dr1|a|,
Theorem 2.1 guarantees that the reduction of (2.1) to (2.4) is successful

on a full neighborhood of the line segment joining these two poles. On

the other hand, Theorem 2.1 does not say anything about the simple

turning point of (2.1).

Remark 2.2. Two simple poles at x = ±a and the simple turning point

at x = −aA/B all merge at the origin when a tends to 0. But, by

taking B/A sufficiently small, we can regard that the turning point is

sufficiently far away from the two simple poles in the scale of a.

Proof of Theorem 2.1. Let x̃, z̃, B̃ and η̃ be

x̃ = x/a,(2.14)

z̃ = z/a,(2.15)

B̃ = B/A,(2.16)

η̃ =
√
aAη,(2.17)

then (2.1) is rewritten as follows:

(
d2

dx̃2
− η̃2

(
1 + x̃B̃

x̃2 − 1
+ η̃−2

(
g+(a)

(x̃− 1)2
+
g−(−a)
(x̃ + 1)2

)))
ψ̃ = 0.

(2.18)

Hence if we construct

z̃(x̃, B̃, η̃) =
∞∑

n=0

z̃2n(x̃, B̃)η̃−2n(2.19)
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and

Γ̃(B̃, η̃) =
∞∑

n=0

Γ̃2n(B̃)η̃−2n(2.20)

so that they satisfy

1 + x̃B̃

x̃2 − 1
+ η̃−2

(
g+(a)

(x̃− 1)2
+
g−(−a)
(x̃ + 1)2

)
(2.21)

=

(
∂z̃

∂x̃

)2
(

Γ̃

z̃2 − 1
+ η̃−2

(
g+(a)

(z̃ − 1)2
+
g−(−a)
(z̃ + 1)2

))

− 1

2
η̃−2{z̃; x̃},

then we find

z(x, a, A,B, η) = az̃(x/a,B/A,
√
aAη)(2.22)

and

Γ(a,A,B, η) = AΓ̃(B/A,
√
aAη)(2.23)

satisfy (2.7).

Therefore it suffices to show the following properties of z̃ and Γ̃:

(2.24) z̃2n(x̃, B̃) and Γ̃2n(B̃) are holomorphic on

Ẽ2
r1,r2

=
{
(x̃, B̃) ∈ C2 : |x̃| ≤ r1, |B̃| ≤ r2

}

for some positive constants r1 > 1 and r2 > 0,

(2.25) the function z̃0(x̃, B̃) of x̃ is injective on Dr1 = {x̃ ∈ C :

|x̃| ≤ r1} for fixed B̃ with |B̃| ≤ r2,

(2.26) z̃0(±1, B̃) = ±1,

(2.27)
∂z̃0

∂x̃
(x̃, B̃) 6= 0 on Dr1
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and they satisfy the following estimates: for any h > 0 we can take

sufficiently small δ > 0 so that

|Γ̃2n(B̃)| ≤ (2n)!hn,(2.28)

|z̃2n(x̃, B̃)| ≤ (2n)!hn(2.29)

hold on Ẽ2
r1,δ

for n ≥ 1.

We first show (2.25), (2.26) and (2.27). Comparing the coefficients

of η̃0 of (2.21), we find that z̃0 and Γ̃0 satisfy

1 + x̃B̃

1 − x̃2
=

(
∂z̃0

∂x̃

)2
Γ̃0

1 − z̃2
0

.(2.30)

Therefore we take z̃0 and Γ̃0 as follows:

z̃0(x̃, B̃) = cos



 1√
Γ̃0

∫ x̃

1

√
1 + x̃B̃

1 − x̃2
dx̃



 ,(2.31)

√
Γ̃0(B̃) =

−1

π

∫ −1

1

√
1 + x̃B̃

1 − x̃2
dx̃.(2.32)

From (2.31) and (2.32), we immediately find that

z̃0(x̃, 0) = x̃,(2.33)
√

Γ̃0(0) = 1(2.34)

and (2.26) hold. Let r1 > 1 be a constant. Then, for any positive con-

stant ε, we can take δ > 0 so that z̃0(x̃, B̃) and Γ̃0(B̃) are holomorphic

on Ẽ2
r1+2ε,δ = {(x̃, B̃) ∈ C2 : |x̃| ≤ r1 + 2ε, |B̃| ≤ δ} and satisfy the

following estimates there:

max

{
|z̃0(x̃, B̃) − x̃|,

∣∣∣∣
∂z̃0

∂x̃
− 1

∣∣∣∣ , |Γ̃0(B̃) − 1|
}
< ε.(2.35)
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Therefore, for any y ∈ z̃0(Ẽ
2
r1,δ

), we find |x̃ − y| > ε holds on {x̃ ∈
C : |x̃| = r1 + 2ε} and hence, appealing to Rouché’s theorem, we find

that (2.25) holds for r2 < δ. Note that (2.27) follows also from (2.35).

Next we show (2.24). Comparing the coefficients of η̃−2n (n ≥ 1) of

(2.21), we obtain the following relations for
(
z̃2n, Γ̃2n

)
(n ≥ 1):

2Γ̃0

z̃2
0 − 1

∂z̃0

∂x̃

∂z̃2n

∂x̃
−
(
∂z̃0

∂x̃

)2
2z̃0Γ̃0

(z̃2
0 − 1)2

z̃2n +

(
∂z̃0

∂x̃

)2
Γ̃2n

z̃2
0 − 1

= Φ̃2n,

(2.36)

where Φ̃2n (n ≥ 1) is a sum of terms that are determined by
(
z̃2k, Γ̃2k

)
(0

≤ k ≤ n−1). Multiplying both sides of (2.36) by (z̃2
0−1)/(2Γ̃0∂z̃0/∂x̃),

we can rewrite (2.36) as follows:

∂z̃2n

∂x̃
− ∂z̃0

∂x̃

z̃0

z̃2
0 − 1

z̃2n +
∂z̃0

∂x̃

Γ̃2n

2Γ̃0

= Φ2n.(2.37)

Now, we give the concrete form of Φ2n (n ≥ 1). The concrete form

of Φ2 is rather simple:

Φ2 =
z̃2

0 − 1

2Γ̃0

(
dz̃0

dx̃

)−1{
1

2
{z̃0; x̃} +

(
g+(a)

(x̃− 1)2
+
g−(−a)
(x̃ + 1)2

)(2.38)

−
(
∂z̃0

∂x̃

)2 (
g+(a)

(z̃0 − 1)2
+
g−(−a)
(z̃0 + 1)2

)}
.

Then, to simplify the expression of Φ2n (n ≥ 2) and also the discussion

given below, we introduce y2k(x̃, B̃) (k = 0, 1, · · · ) by

y0(x̃, B̃) =
z̃2

0(x̃, B̃) − 1

x̃2 − 1
,(2.39)

y2k(x̃, B̃) =
1

x̃2 − 1

k∑

l=0

z̃2l(x̃, B̃)z̃2(k−l)(x̃, B̃) (k ≥ 1).(2.40)

122



We immediately see that they satisfy the following relation:

(x̃2 − 1)
∞∑

n=0

η̃−2ny2n(x̃, B̃) = z̃2(x̃, B̃, η̃) − 1.(2.41)

Further we use the following notation: for a multi-index ~κ = (κ1, κ2, · · · ,
κµ) in Nµ

0 and for κj-dependent (j = 1, 2, · · · , µ) quantities Xκj
, we

define

(2.42) |~κ|µ =

µ∑

j=1

κj,

(2.43)
∑∗

|~κ|µ=k

Xκ1 · · ·Xκµ =





1 for µ = 0∑

|~κ|µ=k
κj≥1

Xκ1 · · ·Xκµ for µ ≥ 1.

Using these notations, we can describe the concrete form of Φ2n (n ≥ 2)

as follows:

Φ2n = Φ
(1)
2n + Φ

(2)
2n + Φ

(3)
2n ,(2.44)

where Φ
(1)
2n , Φ

(2)
2n and Φ

(3)
2n are

Φ
(1)
2n = − 1

2

dz̃0

dx̃

n∑

µ=2

∑∗

|~κ|µ=n

(−1)µ
y2κ1 · · · y2κµ

yµ0

(2.45)

− 1

2Γ̃0

∑

k1+···+k4=n
k1,··· ,k4≤n−1

(
dz̃0

dx̃

)−1
dz̃2k1

dx̃

dz̃2k2

dx̃
Γ̃2k3

×
k4∑

µ=min{1,k4}

∑∗

|~κ|µ=k4

(−1)µ
y2κ1 · · · y2κµ

yµ0
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+
1

2

1

z̃2
0 − 1

dz̃0

dx̃

∑∗

k1+k2=n

z̃2k1z̃2k2,

Φ
(2)
2n =

z̃2
0 − 1

4Γ̃0

∑

k1+k2=n−1

(
dz̃0

dx̃

)−2
d3z̃2k1

dx̃3

(2.46)

×
k2∑

µ=min{1,k2}

∑∗

|~κ|µ=k2

(−1)µ
(
dz̃0

dx̃

)−µ
dz̃2κ1

dx̃
· · ·

dz̃2κµ

dx̃

− 3(z̃2
0 − 1)

8Γ̃0

∑

k1+k2+k3=n−1

(
dz̃0

dx̃

)−3
d2z̃2k1

dx̃2

d2z̃2k2

dx̃2

×
k3∑

µ=min{1,k3}

∑∗

|~κ|µ=k3

(−1)µ(µ + 1)

(
dz̃0

dx̃

)−µ
dz̃2κ1

dx̃
· · ·

dz̃2κµ

dx̃
,

Φ
(3)
2n = − z̃2

0 − 1

2Γ̃0

∑

k1+k2+k3=n−1

(
dz̃0

dx̃

)−1
dz̃2k1

dx̃

dz̃2k2

dx̃

g+(a)

(z̃0 − 1)2

(2.47)

×
k3∑

µ=min{1,k3}

∑∗

|~κ|µ=k3

(−1)µ(µ + 1)
z̃2κ1 · · · z̃2κµ

(z̃0 − 1)µ

− z̃2
0 − 1

2Γ̃0

∑

k1+k2+k3=n−1

(
dz̃0

dx̃

)−1
dz̃2k1

dx̃

dz̃2k2

dx̃

g−(−a)
(z̃0 + 1)2

×
k3∑

µ=min{1,k3}

∑∗

|~κ|µ=k3

(−1)µ(µ + 1)
z̃2κ1 · · · z̃2κµ

(z̃0 + 1)µ
.
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Then we recursively determine (z̃2n(x̃, B̃), Γ̃2n(B̃)) (n ≥ 1) as follows:

Γ̃2n(B̃) =
−2Γ̃0

π

∫ −1

1

(1 − z̃2
0)

−1/2Φ2n(x̃, B̃)dx̃,

(2.48)

z̃2n(x̃, B̃) = (1 − z̃2
0)

1/2

∫ x̃

1

(1 − z̃2
0)

−1/2
(
Φ2n(x̃, B̃) − Γ̃2n

2Γ̃0

dz̃0

dx̃

)
dx̃

(2.49)

= (1 − z̃2
0)

1/2

∫ x̃

−1

(1 − z̃2
0)

−1/2
(
Φ2n(x̃, B̃) − Γ̃2n

2Γ̃0

dz̃0

dx̃

)
dx̃.

Now we inductively confirm that (z̃2n(x̃, B̃), Γ̃2n(B̃)) (n ≥ 1) satisfy

(2.24), (2.37) and

z̃2n(±1, B̃) = 0.(2.50)

We first confirm that (z̃2(x̃, B̃), Γ̃2(B̃)) satisfies (2.24) and (2.50). From

(2.27) we immediately see that {z̃0; x̃} is holomorphic on Ẽ2
r1,r2

. Fur-

thermore, using (2.25) and (2.26), we find that

(z̃2
0 − 1)

(
g+(a)

(x̃− 1)2
−
(
∂z̃0

∂x̃

)2
g+(a)

(z̃0 − 1)2

)
(2.51)

= g+(a)
z̃0 + 1

z̃0 − 1

((
z̃0 − 1

x̃− 1

)2

−
(
∂z̃0

∂x̃

)2
)

is holomorphic at x̃ = 1 and hence on Ẽ2
r1,r2

. By the same reasoning,

the counterpart of (2.51) in Φ2, i.e.,

(z̃2
0 − 1)

(
g−(a)

(x̃ + 1)2
−
(
∂z̃0

∂x̃

)2
g−(a)

(z̃0 + 1)2

)
(2.52)

= g−(a)
z̃0 − 1

z̃0 + 1

((
z̃0 + 1

x̃ + 1

)2

−
(
∂z̃0

∂x̃

)2
)
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is also holomorphic on Ẽ2
r1,r2

. In conclusion Φ2 is holomorphic on Ẽ2
r1,r2

.

It is clear from the representation (2.48) (resp. (2.49)) of Γ̃2 (resp. z̃2)

that they are holomorphic and satisfy (2.37) and (2.50) on Ẽ2
r1,r2

.

Next we confirm that (z̃2n, Γ̃2n) satisfies (2.24), (2.37) and (2.50)

under the assumption that (z̃2k, Γ̃2k) (1 ≤ k ≤ n − 1) satisfy these

properties. By the same reasoning as the case of n = 1, it suffices to

show that Φ2n is holomorphic on Ẽ2
r1,r2

. We first note that, since z̃0

satisfies (2.25) and (2.26), y0 is holomorphic and satisfies

y0(x̃, B̃) 6= 0 on Ẽ2
r1,r2

.(2.53)

Further the holomorphy of y2k (1 ≤ k ≤ n − 1) follows from the

induction hypothesis (2.50). Then the holomorphy of Φ
(1)
2n and Φ

(2)
2n

immediately follows from the induction hypothesis also. On the other

hand the seeming poles at x̃ = ±a that appear in (2.47) are cancelled

out thanks to Lemma C.1 in Appendix C, and hence Φ
(3)
2n is holomorphic

on Ẽ2
r1,r2

. (Indeed, we can apply Lemma C.1 with w0 = z̃0 ± 1 and

wk = z̃2k (k = 1, 2, · · · ) in this case.) Thus, we find that Φ2n is

holomorphic on Ẽ2
r1,r2

. Then the induction proceeds, and hence we

obtain (2.24) and (2.50) for n ≥ 1.

Now we embark on the proof of the estimates (2.28) and (2.29). Let

N be an arbitrarily large natural number. In order to derive these

estimates, we introduce a new variable ζ given by

ζ = exp
[ 1

N
log
( x̃
N

)]
(2.54)

and we consider a holomorphic function g(x̃) on DN = {x̃ ∈ C : |x̃| ≤
N} as a holomorphic function g(NζN) on {ζ ∈ C : |ζ| ≤ 1}.
Remark 2.3. As we will see below, to obtain (2.28) and (2.29) for

arbitrarily small h, we will let N sufficiently large so that (2.65) holds.

Then DN becomes larger and larger as N increases. Still, the same
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reasoning as in the proof of (2.24), (2.25) and (2.27) guarantee that,

(2.55) for arbitrary large N , we can take δ > 0 sufficiently small so

that z̃2n(x̃, B̃) (n = 0, 1, 2, · · · ) are holomorphic on Ẽ2
N,δ.

In what follows, we use the following notation: for a holomorphic

function f(ζ) on {ζ ∈ C : |ζ| ≤ 1}, we define ‖f‖{ε} by

‖f‖{ε} := sup
|ζ|≤1−ε

|f(ζ)|(2.56)

for 0 < ε < 1. Then our task is to show the following

Lemma 2.1. There exist positive constants C0(< 1) and C1 such

that, for arbitrarily large natural number N , we can take a suf-

ficiently small positive constant δ (depending on N) so that the

following estimates hold for |B̃| ≤ δ and 0 < ε ≤ (2N)−1 logN :

for 1 ≤ k ≤ N − 1,

|Γ̃2k| ≤ C0N
k−N (εN)−2k(2k)!(C1 logN)k,(2.57)

‖z̃2k‖{ε} ≤ C0N
k+1−N (εN)−2k(2k)!(C1 logN)k,(2.58)

∥∥∥∥
dz̃2k

dx̃

∥∥∥∥
{ε}

≤ C0N
k−N (εN)−2k(2k)!(C1 logN)k,(2.59)

∥∥∥∥
y2k

y0

∥∥∥∥
{ε}

≤ C0N
k−N (εN)−2k(2k)!(C1 logN)k,(2.60)

and for k ≥ N ,

|Γ̃2k| ≤ C0N
−1(εN)−2k(2k)!(C1 logN)k,(2.61)

‖z̃2k‖{ε} ≤ C0(εN)−2k(2k)!(C1 logN)k,(2.62)
∥∥∥∥
dz̃2k

dx̃

∥∥∥∥
{ε}

≤ C0N
−1(εN)−2k(2k)!(C1 logN)k,(2.63)
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∥∥∥∥
y2k

y0

∥∥∥∥
{ε}

≤ C0N
−1(εN)−2k(2k)!(C1 logN)k.(2.64)

As the proof of Lemma 2.1 is delicate and lengthy, we describe its

role in our whole reasoning before proving it; the proof of Lemma 2.1

will be given after we explain its role. Now a crucial point is that the

estimate (2.28) (resp. (2.29)) we want to prove follows from (2.57) and

(2.61) (resp. (2.58) and (2.62)). This can be confirmed in the following

manner: Let h > 0 be an arbitrarily small number. Then we take N

so that it satisfies

4C1

logN
< h.(2.65)

By taking ε = (2N)−1 logN , we obtain the following estimates from

(2.57) and (2.61) for n ≥ 1:

|Γ̃2n(B̃)| ≤ C0N
−1(2n)!

( 4C1

logN

)n
(2.66)

for |B̃| ≤ δ, where δ is a positive constant appearing in Lemma 2.1.

By the same way, we obtain the following estimates from (2.58) and

(2.62):

|z̃2n(x̃, B̃)| = |z̃2n(Nζ
N , B̃)| ≤ C0(2n)!

( 4C1

logN

)n
(2.67)

for |ζ| ≤ 1 − (2N)−1 logN and |B̃| ≤ δ. Here we note that, for

sufficiently large N ,

(2.68) |x̃| ≥ N 1/2/2 holds when |ζ| = 1 − (2N)−1 logN .

Indeed, (2.68) follows from the relation x̃ = NζN and the following

inequality:

(2.69) N
(
1 − logN

2N

)N
≥ 1

2
N exp

[
− 1

2
logN

]
=

1

2
N 1/2
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holds for sufficiently large N . Thus we can assume that (2.67) holds for

|x̃| ≤ N 1/2/2. Hence, by taking N so that it satisfies r1 ≤ N 1/2/2 and

(2.65), we obtain (2.28) and (2.29). In conclusion, we obtain Theorem

2.1. Thus the proof of Theorem 2.1 will be completed if we verify

Lemma 2.1.

Proof of Lemma 2.1. To begin with we confirm that (2.57) ∼ (2.60)

hold for k = 1. We first show that Φ2 satisfies the following estimates:

there exists a positive constant C̃0 such that, for an arbitrary positive

constant p > 1, we can take a positive constant δ so that

sup
|x̃|≤N

|Φ2(x̃, B̃)| ≤ C̃0N
−p+1(2.70)

holds for |B̃| ≤ δ.

Remark 2.4. As (2.33) and (2.34) indicate, we readily find

(2.71) Φ2n(x̃, 0) = 0 for n ≥ 1.

Therefore it is natural to expect that (2.70) holds by taking δ suffi-

ciently small depending on N and p.

Indeed, by taking δ > 0 sufficiently small, we may assume that

Γ̃0, y0 and dz̃0/dx̃ are holomorphic on Ẽ2
N+Np,δ. Furthermore, since

Γ̃0(0) = y0(x̃, 0) = dz̃0/dx̃(x̃, 0) = 1, by letting δ > 0 sufficiently

small again, we may also assume that

sup
|x̃|≤N+Np

|B̃|≤δ

{
|(Γ̃0)

±1|, |(y0)
±1|,

∣∣∣
(dz̃0

dx̃

)±1∣∣∣
}

≤ 2(2.72)

holds. We fix B̃ in the disc {B̃ : |B̃| ≤ δ}. Then we obtain the

following estimates for j = 1, 2, · · · from Cauchy’s inequality:

sup
|x̃|≤N

∣∣∣∣
dj z̃0

dx̃j

∣∣∣∣ ≤ 2(j − 1)!N−(j−1)p.(2.73)
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Therefore, from (2.73) we obtain

|{z̃0; x̃}| ≤
∣∣∣∣
(dz̃0

dx̃

)−1d3z̃0

dx̃3

∣∣∣∣ +
3

2

∣∣∣∣
(dz̃0

dx̃

)−2(d2z̃0

dx̃2

)2
∣∣∣∣(2.74)

≤ 32N−2p

on DN . In what follows, we fix p at N +2 and take δ sufficiently small

so that (2.70) holds.

Next we derive the estimates of (2.51) on DN . Since (2.51) is holo-

morphic on DN , appealing to the maximum modulus principle, it suf-

fices to estimate (2.51) on the boundary ∂DN of DN . Further, since

g±(x) is holomorphic at the origin, we can assume that

|g±(±a)| ≤ C̃1(2.75)

holds for some positive constant C̃1. From the representation

z̃0(x̃) = 1 + (x̃− 1)
∂z̃0

∂x̃
−
∫ x̃

1

(x̃− 1)
∂2z̃0

∂x̃2
dx̃(2.76)

of z̃0(x̃), we obtain
(
z̃0 − 1

x̃− 1

)2

−
(
∂z̃0

∂x̃

)2

= − 2

x̃− 1

∂z̃0

∂x̃

∫ x̃

1

(x̃− 1)
∂2z̃0

∂x̃2
dx̃(2.77)

+

(
1

x̃− 1

∫ x̃

1

(x̃− 1)
∂2z̃0

∂x̃2
dx̃

)2

.

Here we note that it follows from (2.73) that the following estimates

hold on ∂DN :∣∣∣∣
1

x̃− 1

∫ x̃

1

(x̃− 1)
∂2z̃0

∂x̃2
dx̃

∣∣∣∣ ≤
2(N + 1)2

N − 1
N−p.(2.78)

Further, by taking δ sufficiently small, we may assume that (2.35) holds

with ε = 1/2 on DN , and hence,

N − 3

2
≤ |z̃0 ± 1| ≤ N +

3

2
(2.79)
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holds on ∂DN . Then, combining (2.75), (2.78) and (2.79), we obtain

the following estimates of (2.51):

sup
|x̃|=N

∣∣∣∣∣g+(a)
z̃0 + 1

z̃0 − 1

((
z̃0 − 1

x̃− 1

)2

−
(
∂z̃0

∂x̃

)2
)∣∣∣∣∣(2.80)

≤ C̃1
N + 3/2

N − 3/2

(
8(N + 1)2

N − 1
N−p +

(2(N + 1)2

N − 1
N−p

)2
)

≤ 320C̃1N
−p+1.

By the same reasoning, we obtain the same estimates with (2.80) for

(2.52). Therefore, combining (2.72), (2.74), (2.79) and (2.80), we obtain

(2.70).

Now we derive (2.57) ∼ (2.60) from (2.70) for k = 1. Since 0 <

ε ≤ (2N)−1 logN , (2.57) for k = 1 immediately follows from the

representation (2.48) of Γ̃2, (2.70) for C1 ≥ (C0)
−1C̃0 as follows:

|Γ̃2(B̃)| ≤ 4
∣∣∣
Γ̃0

π

∣∣∣ sup
|x̃|≤N

|Φ2|
∫ −1

1

|1 − z̃2
0|−1/2

∣∣∣
(dz̃0

dx̃

)−1∣∣∣|dz̃0|(2.81)

≤ 8C̃0N
−p+1

≤ 8C̃0N
−p+1(εN)−22−2(logN)2

≤ C0N
−p+2(εN)−22!(C0)

−1C̃0 logN.

Next we consider the estimates of z̃2. Since z̃2 is holomorphic onDN , it

suffices to estimate it for x̃ ∈ ∂DN . We obtain the following estimates

from (2.49) and (2.70) for x̃ ∈ ∂DN ∩ {Rex̃ ≥ 0}:
|z̃2(x̃, B̃)|(2.82)

≤ |1 − z̃2
0|1/2

(
2 sup
|x̃|≤N

|Φ2| +
|Γ̃2|
2|Γ̃0|

)∫ z̃0(x̃)

1

|1 − z̃2
0|−1/2|dz̃0|
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≤ 5(2N + 3)C̃0N
−p+1C̃2 logN

≤ 20C̃0C̃2N
−p+2 logN

≤ C0N
−p+4(εN)−22!(C0)

−15C̃0C̃2 logN,

where the integration path is taken as a straight line segment that

connects 1 and x̃; thus this choice of the integration path together with

the assumption on x̃ enables us to dominate the multivalued integral

in the following manner:

sup
±Rex̃≥0
|x̃|≤N

∫ z̃0(x̃)

±1

|1 − z̃2
0|−1/2|dz̃0| ≤ C̃2 logN,(2.83)

where C̃2 is a positive constant that is independent of N . Using the

second representation of (2.49), we find that z̃2 satisfies the same es-

timates with (2.82) for x̃ ∈ ∂DN ∩ {−Rex̃ ≥ 0}. Therefore (2.82)

holds on DN . Then, since |NζN | ≤ N for |ζ| ≤ 1 − ε, by taking

C1 ≥ (C0)
−15C̃0C̃2, we immediately have (2.58) for k = 1. Further,

from (2.37), (2.70), (2.81) and (2.82), we obtain the following estimates

on DN :

∣∣∣∣
∂z̃2

∂x̃

∣∣∣∣ ≤
∣∣∣∣
∂z̃0

∂x̃

z̃0

z̃2
0 − 1

z̃2

∣∣∣∣ +
∣∣∣∣∣
∂z̃0

∂x̃

Γ̃2

2Γ̃0

∣∣∣∣∣ + |Φ2|

(2.84)

≤ N + 1/2

(N − 3/2)2
40C̃0C̃2N

−p+2 logN + 16C̃0N
−p+1 + C̃0N

−p+1

≤ C̃0(320C̃2 logN + 17)N−p+1

≤ C0N
−p+3(εN)−22!(2C0)

−1C̃0(320C̃2 + 17) logN.

Therefore, by taking C1 ≥ (2C0)
−1C̃0(320C̃2 + 17), we obtain (2.59)

for k = 1. Finally, from (2.40) and (2.82), we obtain the following

132



estimates on DN :

|y2| ≤
∣∣∣∣

2z̃0

x̃2 − 1

∣∣∣∣ |z̃2|(2.85)

≤ N + 1/2

(N − 1)2
40C̃0C̃2N

−p+2 logN

≤ C0N
−p+3(εN)−22!(C0)

−1C̃0160C̃2 logN.

Hence we obtain (2.60) for k = 1 with C1 ≥ (C0)
−1C̃0160C̃2. In

conclusion, we obtain (2.57) ∼ (2.60) for k = 1. Here we remark that,

from the discussion above,

(2.86) we can takeC0 > 0 arbitrarily small by takingC1 sufficiently

large.

Next we show (2.57) ∼ (2.60) for k = n (2 ≤ n ≤ N − 1) under

the assumption that these estimates hold for 1 ≤ k ≤ n− 1. We first

confirm the following estimates:

‖Φ2n‖{ε} ≤C̃0C
2
0N

n−N(εN)−2n(2n)!Cn
1 (logN)n−1,(2.87)

where C̃0 is a positive constant that is independent of n, N and ε. Let

us consider the first term of Φ
(1)
2n . From Lemma 1.2.2 and the induction

hypothesis, we obtain the following estimates:
∥∥∥∥

1

2

dz̃0

dx̃

n∑

µ=2

∑∗

|~κ|µ=n

(−1)µ
y2κ1 · · · y2κµ

yµ0

∥∥∥∥
{ε}

(2.88)

≤ 1

2

∥∥∥∥
dz̃0

dx̃

∥∥∥∥
{ε}

n∑

µ=2

∑∗

|~κ|µ=n

∥∥∥
y2κ1

y0

∥∥∥
{ε}

· · ·
∥∥∥
y2κµ

y0

∥∥∥
{ε}

≤
n∑

µ=2

∑∗

|~κ|µ=n

Cµ
0N

n−µN (εN)−2n(2κ1)! · · · (2κµ)!(C1 logN)n
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≤
n∑

µ=2

(4C0)
µ(2n− µ + 1)!Nn−µN(εN)−2n(C1 logN)n

≤ Nn(εN)−2n(2n− 1)!(C1 logN)n
n∑

µ=2

(4C0N
−N )µ

(µ− 2)!

≤ 16e4C0C2
0N

n−2N (εN)−2n(2n− 1)!(C1 logN)n.

Here we note that the same reasoning as in (2.88) entails the following

estimates for 1 ≤ k ≤ n− 1:
∥∥∥∥∥∥

k∑

µ=1

∑∗

|~κ|µ=k

(−1)µ
y2κ1 · · · y2κµ

yµ0

∥∥∥∥∥∥
{ε}

(2.89)

≤ 4e4C0C0N
k−N (εN)−2k(2k)!(C1 logN)k.

Next we consider the second term of Φ
(1)
2n . Since at least two of kj ’s are

non-zero, the factor C0N
−N appears at least twice in the estimation of

the term. For example, the following part of the term with k2 = k3 = 0

is one of the essential terms in the estimation:
∥∥∥∥

1

2

∑

k1+k4=n
1≤k1,k4≤n−1

dz̃2k1

dx̃

k4∑

µ=1

∑∗

|~κ|µ=k4

(−1)µ
y2κ1 · · · y2κµ

yµ0

∥∥∥∥
{ε}

(2.90)

≤ 8e4C0C2
0N

n−2N (εN)−2n(2n− 1)!(C1 logN)n.

On the other hand, when at least three of k1, · · · , k4 are non-zero, the

factor C0N
−N appears at least three times. Then, since C0N

−N � 1,

we obtain better estimates than (2.90) for these terms. Therefore the

second term of Φ
(1)
2n satisfies the following estimates for some positive
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constant C̃0:
∥∥∥∥

1

2Γ̃0

∑

k1+···+k4=n
k1,··· ,k4≤n−1

(
dz̃0

dx̃

)−1
dz̃2k1

dx̃

dz̃2k2

dx̃
Γ̃2k3(2.91)

×
k4∑

µ=min{1,k4}

∑∗

|~κ|µ=k4

(−1)µ
y2κ1 · · · y2κµ

yµ0

∥∥∥∥
{ε}

≤ C̃0C
2
0N

n−2N (εN)−2n(2n− 1)!(C1 logN)n.

Finally, since |z̃2
0 − 1| ≥ (|x̃| − 3/2)2 ≥ N/8 holds for |ζ| = 1 − ε

(0 < ε ≤ (2N)−1 logN) (cf. (2.68) and (2.79)), the estimates of the

third term of Φ
(1)
2n follows from the maximum modulus principle and

the induction hypothesis as follows:
∥∥∥

1

2

1

z̃2
0 − 1

dz̃0

dx̃

∑∗

k1+k2=n

z̃2k1z̃2k2

∥∥∥
{ε}

(2.92)

≤ 8C2
0N

n+1−2N (εN)−2n(2n− 1)!(C1 logN)n.

We thus obtain the following estimates of Φ
(1)
2n from (2.88), (2.91) and

(2.92) for some positive constant C̃0:

‖Φ(1)
2n‖{ε} ≤ C̃0C

2
0N

n+1−2N (εN)−2n(2n− 1)!(C1 logN)n(2.93)

≤ C̃0C
2
0N

n−N (εN)−2n(2n− 1)!Cn
1 (logN)n−1

Now we consider the estimation of Φ
(2)
2n . We first show the following

Lemma 2.2. Let dz̃2k/dx̃ satisfy (2.59) for 0 < ε ≤ (2N)−1 logN .

Then the following inequalities hold:

∥∥∥
d2z̃2k

dx̃2

∥∥∥
{ε}

≤ e2(1 − ε)−NC0N
k−1−N (εN)−2k−1(2k + 1)!(C1 logN)k,

(2.94)
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∥∥∥
d3z̃2k

dx̃3

∥∥∥
{ε}

≤ e2(1 − ε)−2NC0N
k−2−N

(2.95)

×
(

1 +
logN

2k + 2

)
(εN)−2k−2(2k + 2)!(C1 logN)k.

Proof. Appealing to the maximum modulus principle, it is enough to

show (2.94) and (2.95) for |ζ| = 1 − ε. We first note the following

relation:

d2z̃2k

dx̃2
=
ζ−N+1

N 2

d

dζ

dz̃2k

dx̃
,(2.96)

d3z̃2k

dx̃3
=

(
ζ−2N+2

N 4

d2

dζ2
+

−N + 1

N 4
ζ−2N+1 d

dζ

)
dz̃2k

dx̃
.(2.97)

We use the following representation:

dj

dζj
dz̃2k

dx̃
=

j!

2π
√
−1

∫

|ζ̃−ζ|=(k+1)−1ε

dz̃2k

dx̃

dζ̃

(ζ̃ − ζ)j+1
.(2.98)

We immediately find that the integral path of (2.98) is contained in

|ζ̃| ≤ 1 − ε̃ with ε̃ = kε/(k + 1). Since
∥∥∥
dz̃2k

dx̃

∥∥∥
{ε̃}

≤ C0N
k−N (ε̃N)−2k(2k)!(C1 logN)k(2.99)

= C0N
k−N

(
1 +

1

k

)2k

(εN)−2k(2k)!(C1 logN)k

≤ e2C0N
k−N (εN)−2k(2k)!(C1 logN)k

follows from (2.59), we obtain the following estimates from (2.98):

∥∥∥
dj

dζj
dz̃2k

dx̃

∥∥∥
{ε}

≤ j!(k + 1)jε−je2C0N
k−N (εN)−2k(2k)!(C1 logN)k.

(2.100)
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Then, from (2.100), we obtain the estimates of (2.96) and (2.97) as

follows:
∥∥∥
ζ−N+1

N 2

d

dζ

dz̃2k

dx̃

∥∥∥
{ε}

(2.101)

≤ e2(1 − ε)−NC0N
k−1−N (εN)−2k−1(2k + 1)!(C1 logN)k,

∥∥∥
(
ζ−2N+2

N 4

d2

dζ2
+

−N + 1

N 4
ζ−2N+1 d

dζ

)
dz̃2k

dx̃

∥∥∥
{ε}

(2.102)

≤ e2(1 − ε)−2NC0N
k−2−N (εN)−2k−2(2k + 2)!(C1 logN)k

+ 2e2(1 − ε)−2NC0N
k−2−N (εN)−2k−1(2k + 1)!(C1 logN)k.

Since εN ≤ 2−1 logN , (2.94) and (2.95) immediately follow from

(2.101) and (2.102).

We return to the estimation of Φ
(2)
2n . Let us consider the first term of

Φ
(2)
2n . By the same reasoning as the estimation of (2.89), the following

holds for k ≥ 1:

∥∥∥
k∑

µ=1

∑∗

|~κ|µ=k

(−1)µ
(
dz̃0

dx̃

)−µ
dz̃2κ1

dx̃
· · ·

dz̃2κµ

dx̃

∥∥∥
{ε}

(2.103)

≤ 8e8C0C0N
k−N(εN)−2k(2k)!(C1 logN)k.

By the discussion similar to the estimation of (2.91), we find that the

terms with k1 = 0 or k2 = 0 are essential in the estimation. In

particular, since (2.73) holds, we see that the following term with k2 = 0

is the worst contribution:
∥∥∥
z̃2

0 − 1

4Γ̃0

(
dz̃0

dx̃

)−2 d3z̃2(n−1)

dx̃3

∥∥∥
{ε}

(2.104)
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≤ 2(N 2(1 − ε)2N + 3)e2(1 − ε)−2NC0N
n−3−N

×
(

1 +
logN

2n

)
(εN)−2n(2n)!(C1 logN)n−1

≤ e2C0N
n−N (εN)−2n(2n)!(C1 logN)n−1.

Therefore, having (2.73) in mind, we obtain the following estimates for

some positive constant C̃0:

∥∥∥
z̃2

0 − 1

4Γ̃0

∑

k1+k2=n−1

(
dz̃0

dx̃

)−2
d3z̃2k1

dx̃3
(2.105)

×
k2∑

µ=min{1,k2}

∑∗

|~κ|µ=k2

(−1)µ
(
dz̃0

dx̃

)−µ
dz̃2κ1

dx̃
· · ·

dz̃2κµ

dx̃

∥∥∥
{ε}

≤ C̃0C0N
n−N (εN)−2n(2n)!(C1 logN)n−1.

By the same reasoning, we find that the following estimates for the

second term of Φ
(2)
2n follows from (2.94) and Lemma 1.2.2:

∥∥∥
3(z̃2

0 − 1)

8Γ̃0

∑

k1+k2+k3=n−1

(
dz̃0

dx̃

)−3
d2z̃2k1

dx̃2

d2z̃2k2

dx̃2

(2.106)

×
k3∑

µ=min{1,k3}

∑∗

|~κ|µ=k3

(−1)µ(µ + 1)

(
dz̃0

dx̃

)−µ
dz̃2κ1

dx̃
· · ·

dz̃2κµ

dx̃

∥∥∥
{ε}

≤ C̃0C0N
n−1−2N (εN)−2n(2n− 1)!(C1 logN)n−1.

Thus we see that the following estimates hold for some positive constant

C̃0:

‖Φ(2)
2n ‖{ε} ≤ C̃0C0N

n−N (εN)−2n(2n)!(C1 logN)n−1.(2.107)
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Finally we consider the estimation of Φ
(3)
2n . Let us consider the first

term of Φ
(3)
2n . Since it is holomorphic on |ζ| < 1, it suffices to estimate

it for |ζ| = 1 − ε. We first note that, since |z̃0 − 1| ≥ 4−1
√
N holds

on |ζ| = 1 − ε, we find the following estimates:

∥∥∥
k∑

µ=1

∑∗

|~κ|µ=k

(−1)µ(µ + 1)
z̃2κ1 · · · z̃2κµ

(z̃0 − 1)µ

∥∥∥
{ε}

(2.108)

≤ 32e32C0C0N
k−N+1/2(εN)−2k(2k)!(C1 logN)k.

By the same discussion as the estimation of (2.91), we find that the

terms with one of kj’s being n − 1 are essential in the estimation. In

particular, since 32e32C0N−1/2 � 1, comparison of (2.108) and (2.59)

entails that the worst is the term with k3 = n − 1, which can be

estimated as follows:

∥∥∥
z̃0 + 1

z̃0 − 1

dz̃0

dx̃

g+(a)

2Γ̃0

n−1∑

µ=1

∑∗

|~κ|µ=n−1

(−1)µ(µ + 1)
z̃2κ1 · · · z̃2κµ

(z̃0 − 1)µ

∥∥∥
{ε}

(2.109)

≤ N(1 − ε)N + 3/2

N(1 − ε)N − 3/2
43C̃1e

32C0C0

×Nn−N−1/2(εN)−2(n−1)(2n− 2)!(C1 logN)n−1

≤ 43C̃1e
32C0C0N

n−N−1/2 (logN)2

n2
(εN)−2n(2n)!(C1 logN)n−1

≤ 45C̃1e
32C0C0N

n−N(εN)−2n(2n)!(C1 logN)n−1,

where C̃1 is a positive constant that satisfies (2.75). In this way, we can

obtain the estimates of the first term of Φ
(3)
2n . On the other hand, we

immediately find that the second term also satisfies the same estimates

with the first term. Therefore we find that the following estimates hold
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for Φ
(3)
2n with a positive constant C̃0:

‖Φ(3)
2n ‖{ε} ≤ C̃0C0N

n−N (εN)−2n(2n)!(C1 logN)n−1.(2.110)

By taking C−1
1 ≤ C0 and summing up (2.93), (2.107) and (2.110), we

obtain (2.87).

Now we confirm (2.57) ∼ (2.60) for k = n. We first note that the

following estimates follow from (2.48) and (2.87):

|Γ̃2n(B̃)| ≤ 4|Γ̃0|
π

∫ −1

1

|1 − z̃2
0|−1/2|dz̃0|‖Φ2n‖{ε}(2.111)

≤ 8C̃0C
2
0N

n−N (εN)−2n(2n)!Cn
1 (logN)n−1.

Then, by taking C0 sufficiently small so that they satisfy 8C̃0C0 < 1,

we obtain (2.57). Next, from (2.49), (2.87) and (2.111), we obtain the

following estimates on {|x̃| = N(1 − ε)N} ∩ {Rex̃ ≥ 0}:

|z̃2n(x̃, B̃)| ≤ |1 − z̃2
0|1/2

∫ x̃

1

|1 − z̃2
0|−1/2|dz̃0|

(
2‖Φ2n‖{ε} +

|Γ̃2n|
2|Γ̃0|

)
(2.112)

≤ 20(1 − ε)NC̃0C̃2C
2
0N

n+1−N (εN)−2n(2n)!(C1 logN)n,

where C̃2 is a positive constant appearing in (2.83). By the same dis-

cussion, we find from the second representation of (2.49) that (2.112)

also holds on {|x̃| = N(1− ε)N}∩{−Rex̃ ≥ 0}. Since z̃2n is holomor-

phic on {|x̃| ≤ N(1 − ε)N}, we see that (2.112) holds there. Hence,

by taking C0 so that 20C̃0C̃2C0 < 1 holds, we obtain (2.58) for k = n.

Then, using the relation (2.37), we obtain the following estimates from

(2.87), (2.111) and (2.112):

∥∥∥
∂z̃2n

∂x̃

∥∥∥
{ε}

≤ 2
N(1 − ε)N + 1/2

(N(1 − ε)N − 3/2)2
‖z̃2n‖{ε} + 2|Γ̃2n| + ‖Φ2n‖{ε}

(2.113)
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≤ (320C̃0C̃2 + 9C̃0)C
2
0N

n−N (εN)−2n(2n)!(C1 logN)n.

Therefore, by taking C0 so that (320C̃0C̃2 + 9C̃0)C0 < 1 holds, we

find that z̃2n satisfies (2.59). Furthermore, by the maximum modulus

principle, we obtain the following estimates from (2.40), (2.58), (2.69)

and (2.112):

‖y2n‖{ε}

(2.114)

≤ 1

N 2(1 − ε)2N − 1

(
2‖z̃0‖{ε}‖z̃2n‖{ε} +

n−1∑

k=1

‖z̃2k‖{ε}‖z̃2(n−k)‖{ε}
)

≤ 4

N 2(1 − ε)2N
(
80N(1 − ε)2NC̃0C̃2 + 2n−1N 1−N)

× C2
0N

n+1−N (εN)−2n(2n)!(C1 logN)n

≤ 4(80C̃0C̃2 + 1)C2
0N

n−N (εN)−2n(2n)!(C1 logN)n.

Therefore, by taking C0 so that it satisfies 4(80C̃0C̃2 + 1)C0 < 1, we

obtain (2.60) for k = n. Thus the induction proceeds and we obtain

(2.57) ∼ (2.60) for 1 ≤ k ≤ N − 1.

Now, we confirm (2.61) ∼ (2.64) for k ≥ N . We first remark that,

from (2.57) ∼ (2.60), we find that (2.61) ∼ (2.64) also hold for 1 ≤
k ≤ N − 1. Hence we show (2.61) ∼ (2.64) for k = n (n ≥ N) under

the assumption that these estimates hold for 1 ≤ k ≤ n − 1. By the

same discussion with the derivation of (2.57) ∼ (2.60) from (2.87), it

suffices to show the following estimates:

‖Φ2n‖{ε} ≤C̃0C
2
0N

−1(εN)−2n(2n)!Cn
1 (logN)n−1,(2.115)

where C̃0 is some positive constant. We first confirm the following

estimates:

‖Φ(1)
2n‖{ε} ≤C̃0C

2
0N

−1(εN)−2n(2n− 1)!(C1 logN)n.(2.116)
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Then, since logN ≤ n, we find that Φ
(1)
2n satisfies (2.115). As in the

derivation of (2.93), the following term is essential in the estimation of

Φ
(1)
2n :

∥∥∥
1

2

1

z̃2
0 − 1

dz̃0

dx̃

∑∗

k1+k2=n

z̃2k1z̃2k2

∥∥∥
{ε}

(2.117)

≤ 8N−1C2
0(εN)−2n(C1 logN)n

∑∗

k1+k2=n

(2k1)!(2k2)!

≤ 32C2
0N

−1(εN)−2n(2n− 1)!(C1 logN)n.

Here we used the fact that |z̃2
0 − 1| ≥ N/8 holds for |ζ| = 1 − ε. In

this way, we can show that the first and the second term of Φ
(1)
2n also

satisfy (2.116) by the same discussion with the estimation of (2.88) and

(2.91).

Next, we show the following estimates:

‖Φ(2)
2n ‖{ε} ≤C̃0C0N

−1(εN)−2n(2n)!(C1 logN)n−1.(2.118)

We first note that, by the same discussion with the proof of Lemma

2.2, we obtain the following estimates for k = 1, 2, · · · from (2.63):

∥∥∥
d2z̃2k

dx̃2

∥∥∥
{ε}

≤ e2(1 − ε)−NC0N
−2(εN)−2k−1(2k + 1)!(C1 logN)k,

(2.119)

∥∥∥
d3z̃2k

dx̃3

∥∥∥
{ε}

≤ e2(1 − ε)−2NC0N
−3

(2.120)

×
(

1 +
logN

2k + 2

)
(εN)−2k−2(2k + 2)!(C1 logN)k.

Let us consider the first term of Φ
(2)
2n , which is essential in the estimation
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of Φ
(2)
2n . Since logN ≤ n, we find the following estimates from (2.120):

∥∥∥
d3z̃2(n−1)

dx̃3

∥∥∥
{ε}

≤ 3e2

2
(1 − ε)−2NC0N

−3(εN)−2n(2n)!(C1 logN)n−1.

(2.121)

And, since logN ≤ N , we find the following estimates from (2.120)

for 1 ≤ k ≤ n− 2:

∥∥∥
d3z̃2(k−1)

dx̃3

∥∥∥
{ε}

≤ e2(1 − ε)−2NC0N
−2(εN)−2k(2k)!(C1 logN)k−1.

(2.122)

Then, by the same reasoning with the estimates of (2.105), we obtain

the following estimates for the first term of Φ
(2)
2n :

∥∥∥∥∥
z̃2

0 − 1

4Γ̃0

(
dz̃0

dx̃

)−2{d3z̃2(n−1)

dx̃3

(2.123)

+
∑∗

k1+k2=n−1

d3z̃2k1

dx̃3

k2∑

µ=min{1,k2}

∑∗

|~κ|µ=k2

(−1)µ
(
dz̃0

dx̃

)−µ
dz̃2κ1

dx̃
· · ·

dz̃2κµ

dx̃

+
d3z̃0

dx̃3

n−1∑

µ=1

∑∗

|~κ|µ=k2

(−1)µ
(
dz̃0

dx̃

)−µ
dz̃2κ1

dx̃
· · ·

dz̃2κµ

dx̃

}∥∥∥∥
{ε}

≤ 8N 2(1 − ε)2N{e2(1 − ε)−2NC0N
−3(εN)−2n(2n)!(C1 logN)n−1

+ 8e8C0+2(1 − ε)−2NC2
0N

−3(εN)−2n(2n)!(C1 logN)n−1

+ 8e8C0C0N
−1−p(εN)−2(n−1)(2n− 2)!(C1 logN)n−1}

≤ 8C0N
−1(εN)−2n(2n)!(C1 logN)n−1

× {e2 + 8e8C0+2C0 + e8C0N−p+2n−2(logN)2}.
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Since p ≥ N+2, we immediately find that the first term of Φ
(2)
2n satisfies

(2.118). In the same way, from (2.119), we can show the following

estimates:

∥∥∥
3(z̃2

0 − 1)

8Γ̃0

∑

k1+k2+k3=n−1

(
dz̃0

dx̃

)−3
d2z̃2k1

dx̃2

d2z̃2k2

dx̃2

(2.124)

×
k3∑

µ=min{1,k3}

∑∗

|~κ|µ=k3

(−1)µ(µ + 1)

(
dz̃0

dx̃

)−µ
dz̃2κ1

dx̃
· · ·

dz̃2κµ

dx̃

∥∥∥
{ε}

≤ C̃0C0N
−2(εN)−2n(2n− 1)!(C1 logN)n−1.

Hence, from (2.123) and (2.124), we obtain (2.118).

Finally, by the same discussion with the estimation of (2.109), we

obtain the following estimates:

‖Φ(3)
2n‖{ε} ≤C̃0C0N

−3/2(εN)−2n+2(2n− 2)!(C1 logN)n−1.(2.125)

Then, since N 1/2 ≤ n and (εN)2 ≤ n, we find that Φ
(3)
2n satisfies

(2.115).

Summing up, we have confirmed (2.61) ∼ (2.64) for k = n. Thus

the induction proceeds. This completes the proof of Lemma 2.1, com-

pleting the proof of Theorem 2.1.

�

As is shown in [KT], we can deduce the following Theorem 2.2 from

Theorem 2.1:

Theorem 2.2. Let S̃ and S respectively be a solution of

S̃2 +
∂S̃

∂x
= η2

(
aA + xB

x2 − a2
+ η−2

(
g+(a)

(x− a)2
+
g−(−a)
(x + a)2

))
(2.126)
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and

S2 +
∂S

∂z
= η2

(
aΓ

z2 − a2
+ η−2

(
g+(a)

(z − a)2
+
g−(−a)
(z + a)2

))
,(2.127)

and suppose that

arg S̃−1(x, a, A,B) = arg

(
∂z0

∂x
S−1(z0(x, a, A,B), a,Γ0(a,A,B))

)(2.128)

holds. Then they satisfy

S̃odd(x, a, A,B, η)(2.129)

=

(
∂z

∂x

)
Sodd(z(x, a, A,B, η), a,Γ(a,A,B, η), η)

on E2
r1,r2

, where S̃odd and Sodd respectively denote the odd part of

S̃ and S.

We also have the following

Theorem 2.3. Let ψ̃±(x, a, A,B, η) be WKB solutions of the generic

(i.e., a 6= 0) Mathieu equation (2.1) that are normalized at a simple

pole x = a as

ψ̃±(x, a, A,B, η) =
1√
S̃odd

exp

(
±
∫ x

a

S̃odddx

)
,(2.130)

and ψ±(z, a,Γ, η) be WKB solutions of the Legendre equation (2.4)

that is normalized at a simple pole z = a as

ψ±(z, a,Γ, η) =
1√
Sodd

exp

(
±
∫ z

a

Sodddz

)
.(2.131)

Then they satisfy the following relation (2.132) on an open set E2
r1,r2

given by (2.8):

ψ̃±(x, a, A,B, η)(2.132)
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=

(
∂z

∂x

)−1/2

ψ±(z(x, a, A,B, η), a,Γ(a,A,B, η), η),

where z(x, a, A,B, η) and Γ(a,A,B, η) are the series constructed

in Theorem 2.1.

We have so far discussed how WKB solutions of (2.1) are related

to WKB solutions of (2.4). But we need in Section 3 the Legendre

equation in the form (2.2). Here we discuss how WKB solutions of

(2.4) and those of (2.2) are related; as we will see below the relation

can be found in a straightforward manner. For the sake of simplicity

of description we consider the situation when the parameter Γ in (2.4)

is a genuine constant; this restriction does not cause any problems in

our later discussion, as appropriate use of microdifferential operators

will enable us to relate (2.4) with Γ being a genuine constant and (2.4)

with Γ being infinite series. (See Proposition 4.3.) To relate (2.4) and

(2.2) we define an infinite series

Λ(a,Γ, η) =

∞∑

n=0

Λn(a,Γ)η−n(2.133)

and functions µ(a) and ν(a) of a by

Λ =

√
Γ + (

√
aη)−2

(
g+(a) + g−(−a) +

1

4

)
− (

√
aη)−1

2
,(2.134)

µ =
√

1 + 2(g+(a) + g−(−a)),(2.135)

ν = 2(g+(a) − g−(−a)).(2.136)

Since Λ(a,Γ, η) satisfy

aΓ = aΛ2 + η−1
√
aΛ − η−2(g+(a) + g−(−a)),(2.137)

we immediately obtain (2.4) from (2.2) by choosing Λ, µ and ν in
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(2.2) respectively by (2.134),(2.135) and (2.136). Therefore we find the

following

Proposition 2.1. Let Todd(z, a,Λ, µ, ν, η) and φ±(z, a,Λ, µ, ν, η)

respectively be the odd part of the solution of the Riccati equation

T 2 +
∂T

∂z
= η2

(
aΛ2

z2 − a2
+ η−1

√
aΛ

z2 − a2
+ η−2azν + a2(µ2 − 1)

(z2 − a2)2

)(2.138)

and WKB solutions of (2.2) that are normalized at a simple pole

z = a as

φ±(z, a,Λ, µ, ν, η) =
1√
Todd

exp

(
±
∫ z

a

Todddz

)
.(2.139)

Then the following relations hold:

Sodd(z, a,Γ, η) = Todd(z, a,Λ(a,Γ, η), µ(a), ν(a), η),(2.140)

ψ±(z, a,Γ, η) = φ±(z, a,Λ(a,Γ, η), µ(a), ν(a), η),(2.141)

where the infinite series Λ(a,Γ, η) and the functions µ(a) and ν(a)

are those given by (2.134), (2.135) and (2.136) respectively.

Remark 2.5. Since Λ(a,Γ, η) given by (2.134) is a convergent power

series in η, Λn(a,Γ) (n ≥ 1) satisfy the following estimates: There

exists a positive constant C such that

|Λn(a,Γ)| ≤
√
|Γ|
(

C√
|aΓ|

)n

(2.142)

holds for aΓ 6= 0 and n ≥ 1.

3 Analytic properties of Borel transformed WKB solu-

tions of the Legendre equation with a large parameter

The main purpose of this section is to present analytic properties

of Borel transformed WKB solutions of (2.2) with genuine constants
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a,Λ, µ and ν. To begin with, we show the following important

Proposition 3.1. Let Todd(z, a,Λ, η) be the odd part of the solution

of (2.138) whose top degree part T−1(z, a,Λ) is chosen so that it is

positive for positive a, z(> a) and Λ. Then we have
∮

γ

Todd(z, a,Λ, η)dz = 2πi
√
aΛη + πi,(3.1)

where γ is a closed curve that encircles two simple poles z = ±a
counterclockwise.

Proof. Let

T (±)(z, a,Λ, η) =
∞∑

n=−1

T (±)
n (z, a,Λ)η−n(3.2)

be the solutions of (2.138) whose top degree parts T
(±)
−1 (z, a,Λ) are

respectively given by

T
(±)
−1 (z, a,Λ) = ±

√
aΛ2

z2 − a2
.(3.3)

Then T
(±)
0 and T

(±)
1 are respectively given by

T
(±)
0 =

1

2

z

z2 − a2
± 1

2

1√
z2 − a2

(3.4)

and

T
(±)
1 = ±4aνz + a2(4µ2 − 1)

8
√
aΛ(z2 − a2)3/2

.(3.5)

Further we can inductively confirm that T
(±)
n (n ≥ 2) have the follow-

ing form:

T (±)
n =

∑

2≤p≤n+2

c(±)
p,n (z2 − a2)−p/2(3.6)
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+
∑

3≤p≤n+2

d(±)
p,n z(z

2 − a2)−p/2,

where c
(±)
p,n and d

(±)
p,n are constants. Hence, by noting that

∮

γ

dz√
z2 − a2

= 2πi(3.7)

and ∮

γ

T (±)
n dz = 0(3.8)

hold for n ≥ 1, we immediately obtain (3.1).

Now we consider the Voros coefficient

V (a,Λ, η) =
∞∑

n=1

Vnη
−n(3.9)

of (2.2), which is, by definition, given by
∫ ∞

a

(
Todd − ηT−1 −

1

2z

)
dz(3.10)

(cf. [DP], [AKT2]). Let φ
(∞)
± be WKB solutions of (2.2) that are

normalized at infinity as

φ
(∞)
± =

z±1/2

√
Todd

e±ηy+ exp

[
±
∫ z

∞

(
Todd − ηT−1 −

1

2z

)
dz

]
,(3.11)

where

y+(z, a,Λ) =

∫ z

a

√
aΛ2

z2 − a2
dz.(3.12)

Then WKB solutions (2.139) of (2.2) that are normalized at z = a as

(2.139) are written by V and φ
(∞)
± as follows:

φ± = a∓1/2 exp (±V )φ
(∞)
± .(3.13)
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An important property of φ
(∞)
± is that they are Borel summable when

(3.14) the path of integration of (3.11) from ∞ to z can be de-

formed so that it does not intersect Stokes curves of (2.2).

See [KoS] for the proof of the Borel summability of φ
(∞)
± . Hence the

representation (3.13) of φ± entails that the calculation of the alien

derivative of φ± is reduced to that of V . Fortunately the explicit form

of V has been given by T. Koike ([Ko3]) as follows:

Vn =
1

n(n + 1)(
√
aΛ)n

(3.15)

×
[
Bn+1 +

∑

k+2l=n+1
k,l≥0

(n + 1)!

k!(2l)!
Bk

{(1

2

)2l

− θ2l
+ − θ2l

−

}]

for n ≥ 1, where Bn (n = 0, 1, 2, · · · ) are Bernoulli numbers defined

by

t

et − 1
=

∞∑

n=0

Bn

n!
tn(3.16)

and

θ±(µ, ν) =

√
µ2 ±

√
µ4 − ν2

2
.(3.17)

In [Ko3] the derivation of (3.15) is done in a parallel way to the compu-

tation of the Voros coefficient of the Weber equation and the Whittaker

equation. See [SS] and [T] (resp., [KoT]) for the computation of the

Voros coefficient of the Weber equation (resp., the Whittaker equa-

tion). Hence the Borel transform VB(a,Λ, y) of V is concretely given

by

VB =
1

y(exp(y/
√
aΛ) − 1)

(3.18)
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×
{

1 + cosh

(
y

2
√
aΛ

)
− cosh

(
θ+y√
aΛ

)
− cosh

(
θ−y√
aΛ

)}
.

It immediately follows from (3.18) that VB behaves as

VB =
1

2
√
aΛ

(
1

4
− (θ2

+ + θ2
−)

)
+O(y)(3.19)

near y = 0 and

VB =
1 + (−1)m − cosh (2mπiθ+) − cosh (2mπiθ−)

2mπi(y − 2mπi
√
aΛ)

+ O(1)(3.20)

near y = 2mπi
√
aΛ for m ∈ Z \{0}. Therefore VB is singular at

y = 2mπi
√
aΛ (m ∈ Z \{0}) and it has simple poles there.

Now let us compute the alien derivative

∆V =
∑

m≥1

∆y=2mπi
√
aΛV(3.21)

of the Voros coefficient V by using the alien calculus initiated by [Ec]

and developed by [P], [DP] and [Sa]. Since VB is single-valued and only

has simple pole singularities, ∆y=2mπi
√
aΛV is given by the residue of

VB at y = 2mπi
√
aΛ, i.e.,

∆y=2mπi
√
aΛV =

1 + (−1)m − cosh (2mπiθ+) − cosh (2mπiθ−)

m
.

(3.22)

Then, by employing the alien calculus, we find

∆y=2mπi
√
aΛ exp(±V )

(3.23)

= ±1 + (−1)m − cosh (2mπiθ+) − cosh (2mπiθ−)

m
exp(±V ).

Noting the fact that

∆y=2mπi
√
aΛ

(
e∓ηy+a∓1/2φ

(∞)
±

)
= 0(3.24)
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hold for m ≥ 1 under the condition (3.14), we find (3.13) entails the

following relations when (3.14) is satisfied:

∆y=2mπi
√
aΛ

(
e∓ηy+φ±

)
(3.25)

= ∆y=2mπi
√
aΛ

(
e∓ηy+a∓1/2 exp(±V )φ

(∞)
±

)

= e∓ηy+a∓1/2φ
(∞)
± ∆y=2mπi

√
aΛ (exp(±V ))

= ±1 + (−1)m − cosh (2mπiθ+) − cosh (2mπiθ−)

m

× e∓ηy+a∓1/2φ
(∞)
± exp(±V )

= ±1 + (−1)m − cosh (2mπiθ+) − cosh (2mπiθ−)

m
e∓ηy+φ±.

Summing up all these, we obtain the following

Theorem 3.1. Let φ±(z, η) denote the WKB solutions of the Leg-

endre equation (2.2) that are normalized at a simple pole z = a as

in (2.139). Then their Borel transform φ±,B(z, y) are singular at

y = ∓y+(z) + 2mπi
√
aΛ (m = 0,±1,±2, · · · ),(3.26)

where y+(z) is the function given by (3.12), and its alien derivative

there satisfies the following relation (3.27) for z that can be con-

nected with z = ∞ by a path that is contained in the interior of a

Stokes region of the Legendre equation.

(
∆y=∓y++2mπi

√
aΛφ±

)
B

(z, y) = ± Ξm(µ, ν)φ±,B(z, y − 2mπi
√
aΛ),

(3.27)

where

Ξm(µ, ν) =
1

m




1 + (−1)m − cosh


2πim

√
µ2 +

√
µ4 − ν2

2




(3.28)
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− cosh


2πim

√
µ2 −

√
µ4 − ν2

2







 .

4 Analytic properties of Borel transformed WKB solu-

tions of the Mathieu equation — properties relevant

to simple poles

The principal aim of this section is to deduce analytic properties of

Borel transformed WKB solutions of the Mathieu equation (2.1) for

a 6= 0 and A 6= 0 that are relevant to its two simple poles from those

of the Legendre equation (2.2) through the transformation obtained in

Section 2. To begin with, we show a result corresponding to Proposition

3.1 for the Mathieu equation. First, combining Proposition 2.1 and

Proposition 3.1 we immediately find∮

γ

Sodd(z, a,Γ, η)dz = 2πi
√
aΛ(a,Γ, η)η + πi,(4.1)

where γ is the path given in Proposition 3.1. Therefore Proposition

4.1 below follows from Theorem 2.2.

Proposition 4.1. Let S̃odd(x, a, A,B, η) be the odd part of the so-

lution of (2.126) whose top degree part S̃−1(x, a, A,B) is chosen so

that it satisfies (2.128). Then we have
∮

γ

S̃odd(x, a, A,B, η)dx = 2πi
√
aΛ(a,Γ(a,A,B, η), η)η + πi,(4.2)

where the infinite series Λ(a,Γ, η) and Γ(a,A,B, η) are those given

in Proposition 2.1 and Theorem 2.2 respectively and γ is a closed

curve that encircles two simple poles counterclockwise.

Let us now employ the relation (2.141) between φ± and ψ± to deduce

analytic properties of ψ±,B from those of φ±,B. Here we make full use

153



of microlocal analysis, which has been made possible by the estimation

(2.142) that Λn satisfies. The concrete procedure is as follows: first, by

the Taylor expansion, the right-hand side of (2.141), can be written as
∞∑

k=0

Λ̃k(a,Γ, η)

k!

∂k

∂Λk
φ±(z, a,Λ0(a,Γ), µ(a), ν(a), η),(4.3)

where

Λ̃(a,Γ, η) = Λ(a,Γ, η) − Λ0(a,Γ).(4.4)

Then, taking into account the estimates (2.142) of Λn, we can rewrite

(4.3) in the form of an action of a microdifferential operator

L =: exp
(
Λ̃θΛ

)
:(4.5)

upon φ±,B through the Borel transformation. Here : · : designates

the normal ordered product (cf.[A1]) and θΛ is the symbol of ∂Λ, i.e.,

: θΛ := ∂Λ. More concretely, we can write the action of L as an action

of an integro-differential operator so that (4.3) can be rewritten as

follows:

Proposition 4.2. Suppose that the constants a 6= 0 and Λ in (2.2)

are different from 0. Let φ±,B (resp., ψ±,B) be the Borel trans-

formed WKB solutions of (2.2) (resp., (2.4)) and suppose that they

are both normalized at a simple pole z = a. Then they satisfy the

following relation:

ψ±,B(z, a,Γ, y)

(4.6)

=

∫ y

∓y+
KΛ(a,Γ, y − y′, ∂Λ)φ±,B(z, a,Λ, µ(a), ν(a), y′)dy′

∣∣∣
Λ=Λ0(a,Γ)

,

where KΛ(a,Γ, y, ∂Λ) is a differential operator of infinite order that

is defined on {(Λ, y) ∈ C2}, which analytically depends on a and Γ
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with the exception aΓ = 0, and

y+(z, a,Γ) =

∫ z

a

√
aΓ

z2 − a2
dz,(4.7)

Λ0(a,Γ) =
√

Γ.(4.8)

Here µ(a) and ν(a) are functions that are respectively given by

(2.135) and (2.136).

See [K] and [SKK] for the notion of differential operators of infinite

order.

Remark 4.1. The differential operatorKΛ is locally defined for a,Γ 6= 0.

However, as (2.134) implies, KΛ is multivalued on {(a,Γ,Λ, y) ∈ C4 :

a,Γ 6= 0}.
Remark 4.2. It immediately follows from (4.7) and (4.8) that

y+(z, a,Γ) =

∫ z

a

√
aΛ2

0(a,Γ)

z2 − a2
dz.(4.9)

Therefore, comparing (3.12) and (4.9), we find that y+ is preserved by

a change of parameters from (Λ, µ, ν) to (Γ, g+(a), g−(−a)).
Combining Theorem 3.1 and Proposition 4.2, we obtain the following

Lemma 4.1. Let ψ±(z, a,Γ, η) denote the WKB solutions of the

Legendre equation (2.4) that are normalized at a simple pole z =

a as in (2.131). Then their Borel transform ψ±,B(z, a,Γ, y) are

singular at

y = ∓y+(z, a,Γ) + 2mπi
√
aΓ (m = 0,±1,±2, · · · ),(4.10)

where y+(z) is the function given by (4.7). Furthermore their alien

derivatives there satisfy the following relation (4.11) on the condi-

tion that z can be connected with z = ∞ by a path that is contained
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in the interior of a Stokes region of the Legendre equation (2.4):

(
∆y=∓y++2mπi

√
aΓ ψ±

)
B

(z, a,Γ, y)

(4.11)

= ± Ξm(µ, ν)
(

exp(−2mπi
√
aΛ̃η)ψ±

)
B
(z, a,Γ, y − 2mπi

√
aΓ),

where µ = µ(a) and ν = ν(a) are functions that are given by

(2.135) and (2.136) respectively and Λ̃(a,Γ, η) is a formal power

series given by (2.134) and (4.4).

Proof. From the representation (4.6) of ψ±,B and the definition of the

alien derivative, we find
(
∆y=2mπi

√
aΓ e

∓ηy+ψ±
)
B

(z, a,Γ, y)(4.12)

= L2mπi
√
aΛ

(
∆y=2mπi

√
aΛ φ

(0)
±
)
B
(z, a,Λ, y)

∣∣
Λ=Λ0(a,Γ)

holds, where Ly0 is the integro-differential operator obtained by taking

y = y0 as the end point of integration instead of y = ∓y+ in (4.6) and

φ
(0)
± = e∓ηy+φ±. Therefore it follows from Theorem 3.1 that the right

hand side of (4.12) is equal to

± Ξm(µ(a), ν(a))L2mπi
√
aΛ

(
φ

(0)
±,B(z, a,Λ, y − 2mπi

√
aΛ)
)∣∣

Λ=Λ0(a,Γ)
.

(4.13)

Let us introduce the following coordinate transformation from (y,Λ)

to (y′,Λ′):

(4.14)

{
y′ = y − 2mπi

√
aΛ

Λ′ = Λ.

We now prepare the following general lemma:
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Lemma 4.2. Let F : (y,Λ1, · · · ,Λp) → (y′,Λ′
1, · · · ,Λ′

p) be a coor-

dinate transformation given by

(4.15)





y′ = y + f(Λ1, · · · ,Λp)

Λ′
1 = Λ1

...

Λ′
p = Λp,

where f(Λ1, · · · ,Λp) is a holomorphic function of Λ = (Λ1, · · · ,Λp) ∈
Cp at Λ =

◦
Λ. Let Λ̃1, · · · , Λ̃p be symbols of microdifferential oper-

ators of the following form:

Λ̃j(Λ1, · · · ,Λp, η) =

∞∑

n=1

η−nΛj,n(Λ1, · · · ,Λp) (j = 1, · · · , p).

(4.16)

Then the following relation holds:

: exp
(
Λ̃(Λ, η) · θΛ

)
:(4.17)

=: exp
[
η′
(
f(Λ′ + Λ̃) − f(Λ′)

)]
:: exp

(
Λ̃(Λ′, η′) · θΛ′

)
:,

where η′ = σ(∂/∂y′), θΛ1 = σ(∂/∂Λ1), · · · , θΛ = (θΛ1, · · · , θΛp),

etc., and · is the inner product.

Proof. Let P (Λ, θΛ, η) denote the symbol of the left-hand side of (4.17),

i.e.,

P (Λ, θΛ, η) = exp
(
Λ̃(Λ, η) · θΛ

)
.(4.18)

We first note the following equality:

: P (Λ, θΛ, η) :=: P ′(Λ′, θΛ′, η′) :,(4.19)

where P ′ is given by

P ′(Λ′, θΛ′, η′)

(4.20)
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= exp
[
− F (y,Λ) · (η′, θΛ′)

]
exp(∂η̂ · ∂ŷ + ∂θ̂Λ · ∂Λ̂)

× P (Λ, θ̂Λ, η̂) exp
[
F (ŷ, Λ̂) · (η′, θΛ′)

]∣∣∣(y,Λ)=(ŷ,Λ̂)=F−1(y′,Λ′)
θ̂Λ=η̂=0

= exp(∂η̂ · ∂ŷ + ∂θ̂Λ · ∂Λ̂)P (Λ, θ̂Λ, η̂)

× exp
[
(F (y + ŷ,Λ + Λ̂) − F (y,Λ)) · (η′, θΛ′)

]∣∣∣(y,Λ)=F−1(y′,Λ′)
Λ̂=ŷ=θ̂Λ=η̂=0

.

(Cf. [SKK, Chapter 2, Theorem 1.5.5]. See also the proof of [AKY,

Proposition 1.2.13].) Since

(F (y + ŷ,Λ + Λ̂) − F (y,Λ)) · (η′, θΛ′)(4.21)

= ŷη′ + (f(Λ + Λ̂) − f(Λ))η′ + Λ̂ · θΛ′

and

e−ẑζ exp(∂ζ̂ · ∂ẑ)eẑζf(ζ̂) = f(ζ̂ + ζ)(4.22)

holds for a holomorphic function f(ζ), we find

P ′(Λ′, θΛ′, η′)(4.23)

= exp(∂θ̂Λ · ∂Λ̂)P (Λ, θ̂Λ, η̂ + η′)

× exp
[
(f(Λ + Λ̂) − f(Λ))η′ + Λ̂ · θΛ′

]∣∣∣(y,Λ)=F−1(y′,Λ′)
Λ̂=ŷ=θ̂Λ=η̂=0

= exp(∂θ̂Λ · ∂Λ̂) exp
(
Λ̃1(Λ, η

′)θ̂Λ1

)
· · · exp

(
Λ̃p(Λ, η

′)θ̂Λp

)

× exp
[
(f(Λ + Λ̂) − f(Λ))η′ + Λ̂ · θΛ′

]∣∣∣ Λ=Λ′
Λ̂=θ̂Λ=0

= exp
[
η′
(
f(Λ′ + Λ̃) − f(Λ′)

)
+ Λ̃ · θΛ′

]
.

Thus we obtain (4.17) from (4.19).

We resume the proof of Lemma 4.1. It follows from (4.17) that

L =: exp
(
Λ̃(a,Γ, η)θΛ

)
:(4.24)
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=: exp
(
− 2mπi

√
aη′Λ̃(a,Γ, η′)

)
:: exp

(
Λ̃(a,Γ, η′)θΛ′

)
: .

Therefore we find

L2mπi
√
aΛ

(
φ

(0)
±,B(z, a,Λ, y − 2mπi

√
aΛ)
)(4.25)

=: exp
(
− 2mπi

√
a(Λ1 + Λ2η

′−1 + · · · )
)

:
(
L0φ

(0)
±,B
)
(z, a,Λ′, y′),

where the action of : η′−1 : is fixed by taking y′ = 0 as the end point

of integration. Here we note that, from (4.6) and (4.8), we obtain
(
L0φ

(0)
±,B
)
(z, a,Λ, y − 2mπi

√
aΛ)
∣∣
Λ=Λ0(a,Γ)

(4.26)

=
(
e∓ηy±ψ±

)
B
(z, a,Γ, y − 2mπi

√
aΓ).

Then (4.11) follows from (4.12), (4.13), (4.25) and (4.26).

From (4.1) and (4.8), we find that (4.11) can be rewritten as follows:(
∆y=∓y++2mπi

√
aΓ ψ±

)
B

(z, a,Γ, y)(4.27)

= ±(−1)mΞm(µ, ν)
(

exp(−m
∮

γ

Sodddx)ψ±
)
B
(z, a,Γ, y).

Now, we will study the singularity structure of Borel transformed

WKB solutions of the Mathieu equation (2.1) using the transformation

obtained in Theorem 2.1. To begin with, to simplify the notation, we

restate the estimates (2.12) and (2.13) in the following form: there

exists

(4.28) a continuous increasing function h : R>0 → R>0 that satis-

fies h(δ) → 0 when δ → 0

such that z2n and Γ2n (n ≥ 1) given in Theorem 2.1 satisfy the following

estimates on E2
r1,δ

for 0 < δ < r2:

|z2n(x, a, A,B)| ≤ (2n)!hn(δ)|aA|−n,(4.29)
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|Γ2n(a,A,B)| ≤ (2n)!hn(δ)|aA|−n.(4.30)

Let us consider the following ∞-Legendre equation:

(
d2

dz2
− η2

(
aΓ(a,A,B, η)

z2 − a2
+ η−2

(
g+(a)

(z − a)2
+
g−(−a)
(z + a)2

)))
ψ† = 0.

(4.31)

We immediately see that WKB solutions ψ†
±(z, a, A,B, η) of (4.31)

that are normalized at its simple pole z = a are given by

ψ†
±(z, a, A,B, η) = ψ±(z, a,Γ(a,A,B, η), η).(4.32)

Similarly to the relation between φ±,B and ψ±,B discussed in Proposi-

tion 4.2, by applying the Taylor expansion and the Borel transforma-

tion successively to (4.32), we can relate the Borel transform of ψ†
± with

that of ψ± through the action of a microdifferential operator defined

by

G =: exp(Γ̃θΓ) :,(4.33)

where

Γ̃(a,A,B, η) = Γ(a,A,B, η) − Γ0(a,A,B)(4.34)

and θΓ is the symbol of ∂Γ. To be more specific, we find the following

thanks to (4.30):

Proposition 4.3. Let ψ±,B (resp. ψ†
±,B) be the Borel transformed

WKB solutions of (2.4) (resp. (4.31)) for a 6= 0 (resp. A 6= 0) that

are normalized at a simple pole z = a. Then ψ±,B and ψ†
±,B satisfy

the following relation:

ψ†
±,B(z, a, A,B, y)

(4.35)
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=

∫ y

∓y+
KΓ(a,A,B, y − y′, ∂Γ)ψ±,B(z, a,Γ, y′)dy′

∣∣∣
Γ=Γ0(a,A,B)

,

where KΓ(a,A,B, y, ∂Γ) is a differential operator of infinite order

that is defined on

{(a,A,B,Γ, y) ∈ C5 : a,A 6= 0, |B/A| < r2, h(|B/A|)|y| <
√
|aA|},

(4.36)

y+(z, a, A,B) =

∫ z

a

√
aΓ0(a,A,B)

z2 − a2
dz,(4.37)

and

√
Γ0(a,A,B) =

1

2πi
√
a

∫

γ

√
aA + xB

x2 − a2
dx.(4.38)

In view of Lemma 4.1, we expect that ψ†
±,B have singularities at

y = ∓y+ + 2mπi
√
aΓ0 (m = 0,±1,±2, · · · ). This is the case if

the representation (4.35) holds there, that is, they actually have the

singularities there that correspond to those of ψ±,B. Let us confirm this

fact when these singularities are contained in the domain of definition

of the integro-differential operator given in Proposition 4.3. We first

note that Γ0 is independent of a. Indeed, by taking x̃ = x/a as a new

variable, we obtain

√
Γ0(a,A,B) =

1

2πi

∫

γ

√
A + x̃B

x̃2 − 1
dx̃.(4.39)

Therefore, by taking r2 sufficiently small, we can assume that

1

2
|A| <

∣∣Γ0(a,A,B)
∣∣ < 2|A|(4.40)

holds on {|B| < r2|A|}. Hence, if m ∈ Z, A and B satisfy

(4.41) 2
√

2|m|πh(|B/A|) < 1,
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the m-th singular point is in the domain of definition of the integro-

differential operator. For each m ∈ Z, this condition is satisfied by

taking |B/A| sufficiently small. Further, through the representation

(4.35), we can derive from Lemma 4.1 the following

Lemma 4.3. Let ψ†
±(z, a, A,B, η) denote the WKB solutions of the

∞-Legendre equation (4.31) that are normalized at a simple pole

z = a. Then, when (4.41) holds, its Borel transform ψ†
±,B(z, a, A,B,

y) is singular at

y = ∓y+(z, a, A,B) + 2mπi
√
aΓ0(a,A,B)(4.42)

and its alien derivative there satisfies

(
∆y=∓y++2mπi

√
aΓ0

ψ†
±

)
B

(z, a, A,B, y)

(4.43)

= ±(−1)mΞm(µ, ν)
(

exp(−m
∮

γ

S†
odddx)ψ†

±
)
B
(z, a, A,B, y),

where µ = µ(a) and ν = ν(a) are functions that are given by (2.135)

and (2.136) respectively and S†
odd is the odd part of the solutions of

the Riccati equation associated with (4.31).

Proof. As in the proof of Lemma 4.1, it suffices to show

G2mπi
√
aΓ

((
exp(−2mπi

√
aΛ̃η)ψ

(0)
±
)
B
(z, a,Γ, y − 2mπi

√
aΓ)
)∣∣

Γ=Γ0

(4.44)

=
(

exp(−m
∮

γ

S†
odddx)e∓ηy+ψ†

±
)
B
(z, a, A,B, y),

where Gy0 is the integro-differential operator obtained by taking y = y0

as the end point of integration instead of y = ∓y+ in (4.35) and ψ
(0)
± =
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e∓ηy+ψ±. Let us introduce the following coordinate transformation

from (y,Γ) to (y′,Γ′):

(4.45)

{
y′ = y − 2mπi

√
aΓ

Γ′ = Γ.

Then, from Lemma 4.2, we obtain

G =: exp
(
Γ̃(a,A,B, η)θΓ

)
:

(4.46)

=: exp
[
− 2mπi

√
aη′
(√

Γ′ + Γ̃ −
√

Γ′
)]

:: exp
(
Γ̃(a,A,B, η′)θΓ′

)
: .

Therefore we find

G2mπi
√
aΓ

((
exp(−2mπi

√
aΛ̃η)ψ

(0)
±
)
B
(z, a,Γ, y − 2mπi

√
aΓ)
)

(4.47)

=: exp
[
− 2mπi

√
aη′
(√

Γ′ + Γ̃ −
√

Γ′
)]

:

× : exp
(
Γ̃(a,A,B, η′)θΓ′

)
:
(

exp(−2mπi
√
aΛ̃η′)ψ(0)

±
)
B
(z, a,Γ′, y′)

=: exp
[
− 2mπi

√
aη′
(√

Γ′ + Γ̃ −
√

Γ′
)]

:

×
(

exp(−2mπi
√
aη′Λ̃(a,Γ′ + Γ̃, η′))ψ(0)

± (z, a,Γ′ + Γ̃, η′)
)
B

where the action of : η′−1 : is fixed by taking y′ = 0 as the end point of

integration. From (4.8) and (4.32), we find that, by replacing Γ with

Γ0(a,A,B), the rightmost term of (4.47) equals to

: exp
[
− 2mπi

√
aη
(
Λ(a,Γ(a,A,B, η), η) −

√
Γ0(a,A,B)

)]
:

(4.48)

×
(
e∓ηy+ψ†

±
)
B

(
z, a, A,B, y − 2mπi

√
aΓ0

)
.
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Then (4.43) follows from the following equality:

∮

γ

S†
odd(z, a, A,B, η)dz = 2πi

√
aΛ(a,Γ(a,A,B, η), η)η + πi.

(4.49)

Now, we derive the singularity structure of Borel transformed WKB

solutions of the Mathieu equation (2.1) from Lemma 4.3. We first

remark that the Mathieu equation has two simple poles and one simple

turning point. On the other hand, the (∞-)Legendre equation has only

two simple poles. Therefore, if we want to relate the Mathieu equation

with the Legendre equation, in other words, if we want to focus our

attention on the two simple poles of the Mathieu equation, we have to

remove the effect of the simple turning point. This can be attained by

controlling the merging velocity of the turning point, that is, |A/B|.
Indeed, since the turning point is located at x = −aA/B, it is distant

enough from the poles located at x = ±a if |A/B| is large. The

existence of the function h(δ) that satisfies (4.28) ∼ (4.30) enables us to

ignore the effect of the simple turning point and to derive the structure

of Borel transformed WKB solutions of the Mathieu equation at the

(fixed) singularities related only to the two simple poles from that of

the Legendre equation as is discussed below (especially in Theorem

4.2).

Let ψ̃± be WKB solutions of the Mathieu equation (2.1). Then,

from (2.132), we obtain the following relation:

ψ̃±(x, a, A,B, η) =
(∂z
∂x

)−1/2

ψ†
±(z(x, a, A,B, η), a, A,B, η).

(4.50)

For the simplicity of discussion, we take z0(x, a, A,B) as a new co-

ordinate variable instead of x. This is guaranteed by Theorem 2.1.
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Let M and L∞ respectively be the Borel transformed Mathieu opera-

tor expressed in (z0, a, A,B, y)-coordinate and the Borel transformed

∞-Legendre operator, i.e.,

M =
( ∂x
∂z0

)−2 ∂2

∂z2
0

− ∂2x

∂z2
0

( ∂x
∂z0

)−3 ∂

∂z0
(4.51)

− aA + xB

x2 − a2

∂2

∂y2
− g+(a)

(x− a)2
− g−(−a)

(x + a)2
,

L∞ =
∂2

∂z2
0

− aΓ(a,A,B, ∂/∂y)

z2
0 − a2

∂2

∂y2
− g+(a)

(z0 − a)2
− g−(−a)

(z0 + a)2
.(4.52)

Then, we find the following

Theorem 4.1. There exist invertible microdifferential operators

Z and W that satisfy

(4.53) MZ = WL∞

on
{
(z0, y, a,A,B; ζ0, η) ∈ T ∗ Cz0 ×Ṫ ∗ Cy×C3 :(4.54)

|z0| < r1|a|, a 6= 0, A 6= 0, |B| < r2|A|
}

for some positive constants r1 and r2 with the exception of z2
0−a2 =

0. The concrete form of Z and W are as follows:

Z =:
( ∂x
∂z0

)1/2(
1 +

∂z̃

∂z0

)−1/2

exp
(
z̃(z0, a, A,B, η)ζ0

)
:,(4.55)

W =:
( ∂x
∂z0

)−3/2(
1 +

∂z̃

∂z0

)3/2

exp
(
z̃(z0, a, A,B, η)ζ0

)
:,(4.56)

where

z̃(z0, a, A,B, η) = z(x(z0, a, A,B), a, A,B, η) − z0.(4.57)
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Theorem 4.1 follows from the following proposition (cf. [AY]):

Proposition 4.4. Let x(t) be a holomorphic change of variables

at the origin from Ct to Cx satisfying

x(0) = 0 and
dx

dt
(0) 6= 0(4.58)

and suppose that the following microdifferential operators P and

Q are given:

(4.59) P =
∂2

∂t2
− p
(
t,
∂

∂y

) ∂2

∂y2
,

(4.60) Q =
∂2

∂x2
− q
(
x,

∂

∂y

) ∂2

∂y2
,

where p (resp., q) are microdifferential operators of order 0 de-

fined near t = 0 (resp., x = 0) except for η = 0. Furthermore

let r(x, η) be the symbol of a microdifferential operator of order

−1 and suppose that the total symbols p(t, η) := σ
(
p(t, ∂/∂y)

)
,

q(x, η) := σ
(
q(x, ∂/∂y)

)
and z(x, η) = x + r(x, η) satisfy the fol-

lowing relation:

(4.61) p(t, η) =
(dz(x(t), η)

dt

)2

q(z(x(t), η), η)− 1

2
η−2{z(x(t), η); t}.

Then the following relation holds:

(4.62) PX = YQ,
where X and Y are microdifferential operators defined by

(4.63) X =:
(dz
dt

)−1/2

exp
(
r(x(t), η)ξ

)
:,

(4.64) Y =:
(dz
dt

)3/2

exp
(
r(x, η)ξ

)
:

and ξ = σ(∂/∂x).
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Proof. Let P (x, ξ, η),Q(x, ξ, η),X(x, ξ, η) and Y (x, ξ, η) respectively

be total symbols of P , Q, X and Y in (x, y)-coordinate. For example,

P (x, ξ, η) and Q(x, ξ, η) are respectively given by

(4.65) P (x, ξ, η) =
( dt
dx

)−2

ξ2 −
( dt
dx

)−3 d2t

dx2
ξ − η2p(t(x), η)

and

(4.66) Q(x, ξ, η) = ξ2 − η2q(x, η),

where t(x) is the inverse function of x(t). Then it suffices to show

P ◦X(x, ξ, η) = Y ◦Q(x, ξ, η),(4.67)

where the composition ◦ is defined by

P ◦X(x, ξ, η) = exp
(
∂ξ̂∂x̂

)
P (x, ξ̂, η)X(x̂, ξ, η)

∣∣∣
x̂=x
ξ̂=ξ

.(4.68)

(Cf. [A2, Proposition 2.5].) We first note that P (x, ξ, η) is expressed

in terms of the total symbol

(4.69) P̃ (t, τ, η) = τ 2 − η2p(t, η)

of P in (t, y)-coordinate, where τ = σ(∂/∂t), as follows:

P (x, ξ, η) = e−xξ exp
(
∂τ̂∂t̂

)
P̃ (t, τ̂ , η)ex(t̂)ξ

∣∣∣
t̂=t(x)
τ̂=0

.(4.70)

Combining (4.68) and (4.70), we find

P ◦X(x, ξ, η)(4.71)

= exp
(
∂τ̂∂t̂

)
P̃ (t, τ̂ , η) exp

(
∂ξ̂∂x̂

)
e(x(t̂)−x)ξ̂X(x̂, ξ, η)

∣∣∣ t̂=t(x),τ̂=0

x̂=x,ξ̂=ξ

= exp
(
∂τ̂∂t̂

)
P̃ (t, τ̂ , η)e(x(t̂)−x)ξX(x(t̂), ξ, η)

∣∣∣
t̂=t(x)
τ̂=0

.
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Therefore it follows from the concrete form of P̃ (t, τ, η) and (4.71) that

P ◦X(x, ξ, η) = − η2p(t(x), η)X(x, ξ, η)(4.72)

+
∂2

∂t̂2

(
e(x(t̂)−x)ξX(x(t̂), ξ, η)

)∣∣∣
t̂=t(x)

.

On the other hand, since Y satisfies ∂kξY = rk(x, η)Y , we find

Y ◦Q(x, ξ, η)(4.73)

= Y (x, ξ, η)Q(x, ξ, η) − η2
∞∑

k=1

1

k!

∂k

∂ξk
Y (x, ξ, η)

∂k

∂xk
q(x, η)

= Y (x, ξ, η)Q(x, ξ, η) + η2Y (x, ξ, η)q(x, η)

− η2Y (x, ξ, η)q(x + r(x, η), η)

= Y (x, ξ, η)ξ2 − η2Y (x, ξ, η)q(z(x, η), η).

Then, since Y = (dz/dt)2X , it follows from (4.61) and (4.73) that

Y ◦Q(x, ξ, η) = Y (x, ξ, η)ξ2 − η2X(x, ξ, η)p(t(x), η)(4.74)

− 1

2
{z; t}X(x, ξ, η).

Thus, comparing (4.72) and (4.74), we find that (4.67) immediately

follows if the following relation is confirmed:

∂2

∂t̂2

(
e(x(t̂)−x)ξX(x(t̂), ξ, η)

)∣∣∣
t̂=t(x)

= Y (x, ξ, η)ξ2 − 1

2
{z; t}X(x, ξ, η).

(4.75)

Since the left hand side of (4.75) is equal to

e−xξ
∂2

∂t̂2

((dz(x(t̂), η)

dt̂

)−1/2

exp
(
z(x(t̂), η)ξ

))∣∣∣
t̂=t(x)

(4.76)

= exp
(
r(x, η)ξ

) ∂2

∂t2

(dz
dt

)−1/2

+
(dz
dt

)3/2

ξ2 exp
(
r(x, η)ξ

)
,

168



we find that (4.75) is an immediate consequence of

{z; t} = −2
(dz
dt

)1/2 d2

dt2

(dz
dt

)−1/2

.(4.77)

This completes the proof.

Remark 4.3. In the situation of Theorem 4.1, P and Q correspond to

M and L∞ respectively.

In view of (4.29), we obtain the following

Proposition 4.5. Let ψ±,B and ψ̃±,B respectively be the Borel

transformed WKB solutions of (2.4) and (2.1) for a 6= 0 and A 6= 0

that are normalized at their simple poles as (2.131) and (2.130).

Then they satisfy the following relation:

ψ̃±,B(z0, a, A,B, y)(4.78)

=

∫ y

∓y+
Kz(z0, a, A,B, y − y′, ∂z0)ψ±,B(z0, a, A,B, y

′)dy′,

where Kz(z0, a, A,B, y, ∂z0) is a differential operator of infinite or-

der that is defined on

Ẽ2
r1,h

= {(z0, a, A,B, y) ∈ C5 :a,A 6= 0, |x| < r1|a|, |B/A| < r2,

(4.79)

h(|B/A|)|y| <
√
|aA|}

with some positive constants r1 > 1 and r2 > 0 and

y+(z0, a, A,B) =

∫ z0

a

√
aΓ0(a,A,B)

z2
0 − a2

dz0.(4.80)

In conclusion, by employing similar discussions to Lemma 4.3 and

Proposition 4.1, we obtain
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Theorem 4.2. Let ψ̃±(x, a, A,B, η) be WKB solutions of the Math-

ieu equation (2.1) with a 6= 0 and A 6= 0 that is normalized at a

simple pole x = a. Then, for each integer m we can take some pos-

itive constant δ so that the following holds when |B/A| < δ is sat-

isfied: The Borel transform ψ̃±,B(x, a, A,B, y) of ψ̃±(x, a, A,B, η)

is singular at

y = ∓y+(x, a, A,B) + 2mπi
√
aΓ0(a,A,B)(4.81)

and its alien derivative there satisfies

(
∆y=∓y++2mπi

√
aΓ0

ψ̃±
)
B

(x, a, A,B, y)

(4.82)

= ±(−1)mΞm(µ, ν)
(

exp(−m
∮

γ

S̃odddx)ψ̃±
)
B
(x, a, A,B, y),

where

Ξm(µ, ν) =
1

m



1 + (−1)m − cosh


2πim

√
µ2 +

√
µ4 − ν2

2




(4.83)

− cosh



2πim

√
µ2 −

√
µ4 − ν2

2







 ,

µ = µ(a) =
√

1 + 2(g+(a) + g−(−a)),(4.84)

ν = ν(a) = 2(g+(a) − g−(−a)),(4.85)

y+(x, a, A,B) =

∫ x

a

√
aA + xB

x2 − a2
dx(4.86)
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and

√
Γ0(a,A,B) =

1

2πi
√
a

∫

γ

√
aA + xB

x2 − a2
dx.(4.87)

Here γ is a closed curve that encircles two simple poles counter-

clockwise.

Remark 4.4. In Theorem 4.2, the positive constant δ should be taken

so small that (4.41) is satisfied for |B/A| < δ for an arbitrarily given

m ∈ Z.

Remark 4.5. In (x, a, A,B)-coordinate, y+(x, a, A,B) is given by (4.86).

However, since

z0(x, a, A,B) = a cos

(
1√
aΓ0

∫ x

a

√
aA + xB

x2 − a2
dx

)
(4.88)

satisfies

aA + xB

x2 − a2
=

(
∂z0

∂x

)2
aΓ0

z2
0 − a2

,(4.89)

we find (4.80) is equivalent to (4.86).

5 Analytic properties of Borel transformed WKB solu-

tions of an M2P1T equation

In this section, we study WKB theoretic structure of an M2P1T equa-

tion

(5.1)
( d2

dt2
− η2Q(t, a, ρ, η)

)
ψ̂ = 0,

where the potentialQ(t, a, ρ) is given in Definition 1.1. We constructed

transformation series x(t, a, ρ, η), A(a, ρ, η) and B(a, ρ, η) in Section
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1 that give equivalence between an M2P1T equation and the following

∞-Mathieu equation:
( d2

dx2
− η2

(aA(a, ρ, η) + xB(a, ρ, η)

x2 − a2
(5.2)

+ η−2
( g+(a)

(x− a)2
+
g−(−a)
(x + a)2

)))
ψ̃† = 0.

As the following discussion shows, (5.2) behaves as the WKB theoretic

canonical form of an M2P1T equation.

Let ψ̂± and ψ̃†
± respectively be WKB solutions of (5.1) and (5.2)

that are normalized at their simple poles t = a and x = a. Then, from

Theorem 1.3.3, we find the following relation holds:

ψ̂±(t, a, ρ, η) =
(∂x
∂t

)−1/2

ψ̃†
±(x(t, a, ρ, η), a, ρ, η).(5.3)

For the simplicity of discussion, we take x0(t, a, ρ) as a new coor-

dinate variable instead of t. This is guaranteed by Theorem 1.3.1.

Let N and M∞ respectively be the Borel transformed M2P1T op-

erator expressed in (x0, a, ρ, y)-coordinate and the Borel transformed

∞-Mathieu operator, i.e.,

N =
( ∂t
∂x0

)−2 ∂2

∂x2
0

− ∂2t

∂x2
0

( ∂t
∂x0

)−3 ∂

∂x0
−Q(t, a, ρ, ∂/∂y)

∂2

∂y2
(5.4)

M∞ =
∂2

∂x2
0

− aA(a, ρ, ∂/∂y) + x0B(a, ρ, ∂/∂y)

x2
0 − a2

∂2

∂y2

(5.5)

− g+(a)

(x0 − a)2
− g−(−a)

(x0 + a)2
.

Then, from Theorem 1.3.1 and Proposition 4.4, we obtain the following
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Theorem 5.1. There exist invertible microdifferential operators

X and Y that satisfy

(5.6) NX = YM∞

on
{
(x0, y, a, ρ; ξ0, η) ∈T ∗ Cx0 ×Ṫ ∗ Cy×C2 :(5.7)

|x0| < r, 0 < |ρ| < r,R0|a| < |ρ|
}

for some positive constants r and R0 with the exception of x2
0−a2 =

0. The concrete form of X and Y are as follows:

Z =:
( ∂t
∂x0

)1/2(
1 +

∂x̃

∂x0

)−1/2

exp
(
x̃(x0, a, ρ, η)ξ0

)
:,(5.8)

W =:
( ∂t
∂x0

)−3/2(
1 +

∂x̃

∂x0

)3/2

exp
(
x̃(x0, a, ρ, η)ξ0

)
:,(5.9)

where

x̃(x0, a, ρ, η) = x(t(x0, a, ρ), a, ρ, η) − x0.(5.10)

For the correspondence of Borel transformed WKB solutions, we

have the following

Proposition 5.1. Let ψ̂±,B and ψ̃†
±,B respectively be Borel trans-

formed WKB solutions of a generic M2P1T equation (i.e. a, ρ 6= 0)

and the ∞-Mathieu equation that are normalized at their simple

poles t = a and x = a. Then they satisfy the following relation:

ψ̂±,B(x0, a, ρ, y) =

∫ y

∓y+
Kx(x0, a, ρ, y − y′, ∂x0)ψ̃

†
±,B(x0, a, ρ, y

′)dy′,

(5.11)

where Kx(x0, a, ρ, y, ∂x0) is a differential operator of infinite order

that is defined on

Ẽ1
r,R0,R1

= {(x0, a, ρ, y) ∈ C4 :|x0| < r, 0 < |ρ| < r,(5.12)
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R0|a| < |ρ|, R1|y| <
√
|ρ|},

and

y+(x0, a, ρ) =

∫ x0

a

√
aA(a, ρ) + x0B(a, ρ)

x2
0 − a2

dx0.(5.13)

Thus, the analysis of the singularity structure of Borel transformed

WKB solutions of an M2P1T equation should be reduced to that of the

∞-Mathieu equation. However the complete singularity structure of

Borel transformed WKB solutions of the (∞-)Mathieu equation is too

complicated to be analyzed directly. Fortunately, as the discussion in

Section 4 shows, the singularity structure of Borel transformed WKB

solutions of the Mathieu equation that is relevant to its two simple poles

is now clarified. Using this knowledge for the Mathieu equation, we

discuss the singularity structure of Borel transformed WKB solutions

of an M2P1T equation in what follows.

We first relate the ∞-Mathieu equation with the Mathieu equation.

To this end we use the following relation:

ψ̃†
±(x, a, ρ, η) = ψ̃±(x, a, A(a, ρ, η), B(a, ρ, η), η).(5.14)

Applying the Borel transformation to (5.14), we can relate the Borel

transform ψ̃†
±,B of ψ̃†

± with ψ̃±,B through the action of a microdiffer-

ential operator

AB =: exp
(
ÃθA + B̃θB

)
:,(5.15)

where

Ã(a, ρ, η) = A(a, ρ, η) −A0(a, ρ),(5.16)

B̃(a, ρ, η) = B(a, ρ, η) −B0(a, ρ)(5.17)

and θA (resp. θB) is the symbol of ∂A (resp. ∂B). Thanks to the

estimates (1.3.12) and (1.3.13), we obtain the following
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Proposition 5.2. Let ψ̃†
±,B and ψ̃±,B respectively be Borel trans-

formed WKB solutions of the ∞-Mathieu equation and the Math-

ieu equation that are normalized at their simple poles x = a. Then

they satisfy the following relation:

ψ̃†
±,B(x, a, ρ, y)

(5.18)

=

∫ y

∓y+
KA,B(a, ρ, y − y′, ∂A, ∂B)ψ̃±,B(x, a, A,B, y′)dy′

∣∣∣A=A0(a,ρ)
B=B0(a,ρ)

,

where KA,B(a, ρ, y− y′, ∂A, ∂B) is a differential operator of infinite

order that is defined on

{(a, ρ, A,B, y) ∈ C5 : 0 < |ρ| < r,R0|a| < |ρ|, R1|y| <
√
|ρ|}

(5.19)

with some positive constants r, R0 and R1 and

y+(x, a, ρ) =

∫ x

a

√
aA(a, ρ) + xB(a, ρ)

x2 − a2
dx.(5.20)

Now we study the singularity structure of ψ̃†
±,B using Theorem 4.2.

Let us focus on the m-th singular point of ψ̃±,B located at (4.81).

Evidently, from (4.41), the following condition should be satisfied:

(5.21) 2
√

2|m|πh(|B0(a, ρ)/A0(a, ρ)|) < 1,

where h(δ) is a function that satisfies (4.28) ∼ (4.30). Since A0(0, 0) =

f (1)(0, 0) 6= 0 and B0(0, ρ) = ρ, Lemma 1.2.3 tells us that, by taking

R0 sufficiently large, we can assume that A0(a, ρ) and B0(a, ρ) satisfy

1

2

∣∣f (1)(0, 0)
∣∣ ≤
∣∣A0(a, ρ)

∣∣ ≤ 3

2

∣∣f (1)(0, 0)
∣∣,(5.22)

1

2
|ρ| ≤

∣∣B0(a, ρ)
∣∣ ≤ 3

2
|ρ|(5.23)
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on {R0|a| < |ρ|}. Since h(δ) is an increasing function, we find that

(5.21) follows from

(5.24) 2
√

2|m|πh(3|ρ|/|f (1)(0, 0)|) < 1.

Therefore, by taking ρ sufficiently small with keeping the relation

R0|a| < |ρ|, we can make |B0(a, ρ)/A0(a, ρ)| arbitrary small so that

(5.24) holds. On the other hand, when

2|m|πR1

√
|aΓ0(a,A0(a, ρ), B0(a, ρ))| <

√
|ρ|(5.25)

is satisfied, the m-th singular point is contained in the domain of def-

inition of the integro-differential operator in (5.18). Hence, in view of

(4.40) and (5.22), it suffices to take a sufficiently small relative to ρ so

that

2
√

3|m|πR1

√
|f (1)(0, 0)|

√
|a| <

√
|ρ|(5.26)

holds. Then, using Theorem 4.2 and Proposition 5.2, we can show the

following

Lemma 5.1. Let ψ̃†
± denote the WKB solutions of the ∞-Mathieu

equation (5.2) that are normalized at a simple pole x = a. Then,

when (5.24) and (5.26) hold, its Borel transform ψ̃†
±,B(x, a, A,B, y)

is singular at

y = ∓y+(x, a, ρ) +mp(a, ρ)(5.27)

and its alien derivative there satisfies(
∆y=∓y++mp ψ̃

†
±

)
B

(x, a, ρ, y)(5.28)

= ±(−1)mΞm(µ, ν)
(

exp(−m
∮

γ

S̃†
odddx)ψ̃†

±
)
B
(x, a, ρ, y),

where

p(a, ρ) =

∫

γ

√
f(t, a, ρ)

t2 − a2
dt(5.29)
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and Ξm(µ, ν), µ(a) and ν(a) are functions that are given by (4.83),

(4.84) and (4.85) respectively.

Proof. We first note the following relation, which is an immediate con-

sequence of Proposition 4.1:
∮

γ

S̃†
odd(x, a, ρ, η)dx(5.30)

= 2πi
√
aΛ(a,Γ(a,A(a, ρ, η), B(a, ρ, η), η), η)η + πi,

where Λ and Γ are formal power series given in Section 2, S̃†
odd is the

odd part of a solution of the Riccati equation associated with the ∞-

Mathieu equation and γ is a contour that encircles two simple poles of

the ∞-Mathieu equation counterclockwise avoiding its simple turning

point. Especially, we find

p(a, ρ) = 2πi
√
aΓ0(a,A0(a, ρ), B0(a, ρ)).(5.31)

Then, in a way parallel to the proof of Lemma 4.3, applying Lemma

4.2 to the symbol of AB and using a coordinate transformation F :

(y, A,B) → (y′, A′, B′) defined by

(5.32)





y′ = y − 2mπi
√
aΓ0(a,A,B)

A′ = A

B′ = B

instead of (4.45), we obtain Lemma 5.1.

Remark 5.1. From (4.40), (5.22) and (5.31), we find

|p(a, ρ)| = O(
√
|a|)(5.33)

when a tends to 0.

Now, from Theorem 1.3.2 and (5.30), we obtain the following
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Proposition 5.3. Let Ŝodd be the odd part of a solution of the

Riccati equation associated with an M2P1T equation. Then
∮

γ

Ŝodd(t, a, ρ, η)dt(5.34)

= 2πi
√
aΛ(a,Γ(a,A(a, ρ, η), B(a, ρ, η), η), η)η + πi

holds, where γ is a contour that encircles two simple poles of

the M2P1T equation counterclockwise avoiding its simple turning

point.

In conclusion, combining Proposition 5.1, Lemma 5.1 and Proposi-

tion 5.3, we obtain

Theorem 5.2. Let ψ̂±(t, a, ρ, η) be WKB solutions of a generic

(i.e. a 6= 0, ρ 6= 0) M2P1T equation that is normalized at a simple

pole t = a. Then, for each integer m we can take some positive

constants δ1 and δ2 so that the following holds when |ρ| < δ1 and

0 < |a| < δ2|ρ| are satisfied: The Borel transform ψ̂±,B(t, a, ρ, y)

of ψ̂±(t, a, ρ, η) is singular at

y = ∓y+(t, a, ρ) +mp(a, ρ)(5.35)

and its alien derivative there satisfies
(
∆y=∓y++mp ψ̂±

)
B

(t, a, ρ, y)(5.36)

= ±(−1)mΞm(µ, ν)
(

exp(−m
∮

γ

S̃odddx)ψ̂±
)
B
(t, a, ρ, y),

where

Ξm(µ, ν) =
1

m




1 + (−1)m − cosh


2πim

√
µ2 +

√
µ4 − ν2

2




(5.37)
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− cosh


2πim

√
µ2 −

√
µ4 − ν2

2







 ,

µ = µ(a) =
√

1 + 2(g+(a) + g−(−a)),(5.38)

ν = ν(a) = 2(g+(a) − g−(−a)),(5.39)

y+(t, a, ρ) =

∫ t

a

√
f(t, a, ρ)

t2 − a2
dt(5.40)

and

p(a, ρ) =

∫

γ

√
f(t, a, ρ)

t2 − a2
dt.(5.41)

Here γ is a contour that encircles two simple poles of the M2P1T

equation counterclockwise avoiding its simple turning point.

Remark 5.2. In Theorem 5.2, the positive constants δ1 and δ2 should

be taken so small that (5.24) and (5.26) are satisfied for |ρ| < δ1 and

0 < |a| < δ2|ρ| for an arbitrarily given m ∈ Z.

Remark 5.3. In (t, a, ρ)-coordinate, y+(t, a, ρ) is given by (5.40). How-

ever, since x0(t, a, ρ) satisfies

f(t, a, ρ

t2 − a2
=

(
∂x0

∂t

)2
aA0 + x0B0

x2
0 − a2

(5.42)

we find (5.40) is equivalent to (5.13).
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A The vanishing of the odd degree (in η−1) part of the

transformation x(t, a, η)

The purpose of this section is to prove Proposition A.1 below. From the

logical viewpoint this result should be placed in Section 1.1.3. But in

order not to divert the reader’s attention from the main stream of the

reasoning we separately show this result here. We also note that one

can bypass this reasoning by first constructing x(t, a, η) that consists

of even degree part and then proving its convergence. We hope the

proof of Proposition A.1 will give some insight into the structure of

x(t, a, η). For the sake of simplicity we assume

(A.1) g± = 0

in this section.

Proposition A.1. The transformation x and constants A and B

respectively have the form (1.1.3), (1.1.4) and (1.1.5), that is, their

odd degree parts in η−1 vanish.

Proof. Let us begin our discussion by studying the structure of

(A.2) x1(t, a, ρ) =
∑

p≥0

x
(p)
1 (t, ρ)ap

and

(A.3) A1(a) =
∑

p≥0

A
(p)
1 ap and B1(a) =

∑

p≥0

B
(p)
1 ap.

It then follows from (1.1.6) that we have

(A.4)

2x0x1f = (t2− a2)
[
(x′0)

2(aA1+ x0B1+ x1B0)+ 2x′0x
′
1(aA0 + x0B0)

]
,
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where

(A.5) x0 =
∑

p≥0

x
(p)
0 (t, ρ)ap

and

(A.6) A0 =
∑

p≥0

A
(p)
0 ap and B0 =

∑

p≥0

B
(p)
0 ap.

Comparing the coefficients of a0 in (A.4), we find

(A.7)

2x
(0)
0 x

(0)
1 f (0) = t2

[(
x

(0)′
0

)2(
x

(0)
0 B

(0)
1 + x

(0)
1 B

(0)
0

)
+ 2x

(0)′
0 x

(0)′
1 x

(0)
0 B

(0)
0

]
.

Then we obtain

2t2x̃
(0)
0 f̃ (0)x

(0)
1

(A.8)

= t2
(
x

(0)′
0

)2[(
sB

(0)
1 +B

(0)
0 x

(0)
1 (s, ρ) + 2B

(0)
0 s

d

ds
x

(0)
1 (s, ρ)

)]∣∣∣
s=x

(0)
0 (t,ρ)

.

Dividing both sides of (A.8) by t2(x
(0)′
0 )2, we use [5.0]′ divided by t,

i.e.,

(A.9) x̃
(0)
0 f̃ (0) =

(
x

(0)′
0

)2
B

(0)
0

to find

(A.10) B
(0)
0

(
2s
d

ds
− 1
)
x

(0)
1 (s, ρ) = −sB(0)

1 .

Therefore we obtain

(A.11) x
(0)
1 (s, ρ) = − B

(0)
1

B
(0)
0

s.

In particular, we have

(A.12) x
(0)
1 (0, ρ) = 0,
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(A.13) ẋ
(0)
1 (0, ρ) = − B

(0)
1

B
(0)
0

.

Similarly comparison of the coefficients of a1 in (A.4) entails

2
(
x

(0)
0 x

(1)
1 + x

(1)
0 x

(0)
1

)
f (0) + 2x

(0)
0 x

(0)
1 f (1)

(A.14)

= t2
[(
x

(0)′
0

)2(
A

(0)
1 + x

(1)
0 B

(0)
1 + x

(0)
0 B

(1)
1 + x

(0)
1 B

(1)
0 + x

(1)
1 B

(0)
0

)

+ 2x
(0)′
0 x

(1)′
0

(
x

(0)
0 B

(0)
1 + x

(0)
1 B

(0)
0

)
+ 2x

(0)′
0 x

(0)′
1 A

(0)
0

+ 2x
(1)′
0 x

(0)′
1 x

(0)
0 B

(0)
0 + 2x

(0)′
0 x

(1)′
1 x

(0)
0 B

(0)
0

+ 2x
(0)′
0 x

(0)′
1 x

(1)
0 B

(0)
0 + 2x

(0)′
0 x

(0)′
1 x

(0)
0 B

(1)
0

]
.

It then follows from (1.1.1.7), (1.1.1.24) and (A.12) that the left-hand

side of (A.14) has the form

(A.15) 2t2
(
x̃

(0)
0 x

(1)
1 + tx̃

(1)
0 x̃

(0)
1

)
f̃ (0) + 2t2x̃

(0)
0 x̃

(0)
1 f (1),

where

(A.16) x̃
(0)
1 = t−1x

(0)
1 .

Hence by dividing both sides of (A.14) by t2
(
x

(0)′
0

)2
, we readily find

B
(0)
0

(
2s
d

ds
− 1
)
x

(1)
1 (s, ρ)(A.17)

= −A(0)
1 − sB

(1)
1 + 2

(
x

(0)′
0

)−2
x̃

(0)
0 x̃

(0)
1 f (1) − 2ẋ

(0)
1 A

(0)
0 + V,

where

V =2
(
x

(0)′
0

)−2
x̃

(1)
0 x

(0)
1 f̃ (0)

∣∣∣
t=t(s,ρ)

(A.18)

−
(
x

(1)
0 B

(0)
1 + x

(0)
1 B

(1)
0 + 2ẋ

(1)
0 sB

(0)
1 + 2ẋ

(1)
0 x

(0)
1 B

(0)
0

+ 2ẋ
(1)
0 ẋ

(0)
1 sB

(0)
0 + 2ẋ

(0)
1 x

(1)
0 B

(0)
0 + 2ẋ

(0)
1 sB

(1)
0

)
.
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Here we note that V vanishes at s = 0, and furthermore (1.1.1.21)

entails

(A.19)

2
(
x

(0)′
0

)−2
x̃

(0)
0 x̃

(0)
1 f (1)

∣∣∣
t=0

= 2Z2
0 ẋ

(0)
1 (0, ρ)A

(0)
0 = 2A

(0)
0 ẋ

(0)
1 (0, ρ),

where Z0 stands for x
(0)′
0 (0, ρ) = ±1 (cf.(1.1.1.13) and (1.1.1.23)).

Therefore we obtain

(A.20) x
(1)
1 (0, ρ) =

A
(0)
1

B
(0)
0

.

Next, by comparing the coefficients of a2 in (A.4), we encounter

terms which do not have factor t2 explicitly, that is,

(A.21) 2f (1)x
(0)
0 x

(1)
1

in the left-hand side of (A.4) and

(A.22) −
[(
x

(0)′
0

)2(
x

(0)
0 B

(0)
1 + x

(0)
1 B

(0)
0

)
+ 2x

(0)′
0 x

(0)′
1 x

(0)
0 B

(0)
0

]

in the right-hand side. It is clear that each term in (A.21) and (A.22) is

divisible by t1. Hence the existence of a holomorphic solution x
(2)
1 (s, ρ)

requires

(A.23)
[
2f (1)x̃

(0)
0 x

(1)
1 +

(
x

(0)′
0

)2(
x̃

(0)
0 B

(0)
1 +x̃

(0)
1 B

(0)
0

)
+2x

(0)′
0 x

(0)′
1 x̃

(0)
0 B

(0)
0

]∣∣∣
t=0

= 0.

Then by using (A.12), (A.13) and (A.20) we find that

2A
(0)
0 Z0

A
(0)
1

B
(0)
0

+ Z0B
(0)
1 + Z0

(
− B

(0)
1

B
(0)
0

)
B

(0)
0 + 2Z3

0

(
− B

(0)
1

B
(0)
0

)
B

(0)
0

(A.24)
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= 2Z0

(A(0)
0

B
(0)
0

A
(0)
1 −B

(0)
1

)
= 0

should hold. Similar computation of constant terms in the coefficients

of a3 in (A.4) shows the vanishing of the following sum is required for

the existence of x
(3)
1 :

[
2
( ∑

j+k+l=3

x
(j)
0 x

(k)
1 f (l)

)
(A.25)

+
(
x

(0)′
0

)2(
A

(0)
1 + x

(0)
0 B

(1)
1 + x

(1)
0 B

(0)
1 + x

(0)
1 B

(1)
0 + x

(1)
1 B

(0)
0

)

+ 2x
(0)′
0 x

(1)′
0

(
x

(0)
0 B

(0)
1 + x

(0)
1 B

(0)
0

)

+ 2x
(0)′
0 x

(0)′
1

(
A

(0)
0 + x

(0)
0 B

(1)
0 + x

(1)
0 B

(0)
0

)

+
(
2x

(0)′
0 x

(1)′
1 + 2x

(1)′
0 x

(0)′
1

)
x

(0)
0 B

(0)
0

]∣∣∣
t=0

= A
(0)
1 + x

(1)
1 (0, ρ)B

(0)
0 + 2Z2

0 ẋ
(0)
1 (0, ρ)A

(0)
0

= 2A
(0)
1 − 2

A
(0)
0

B
(0)
0

B
(0)
1 .

The vanishing of (A.25) together with (A.24) entails the vanishing of(
A

(0)
1 , B

(0)
1

)
by the assumption (1.1.2) combined with (1.1.1.21) and

(1.1.1.22). Then it follows from (A.11) that

(A.26) x
(0)
1 (s, ρ) = 0.

Thus we can define

(A.27) x̂1(t, a, ρ) = a−1x1(t, a, ρ)

and

(A.28) Â1 = a−1A1 and B̂1 = a−1B1.
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On the other hand, dividing both sides of (A.4) by a, we find

(A.29)

2x0x̂1f = (t2 − a2)
[
(x′0)

2(aÂ1 + x0B̂1 + x̂1B0) + 2x′0x̂
′
1(aA0 + x0B0)

]
.

Hence by repeating the reasoning which guaranteed the vanishing of(
x

(0)
1 (s, ρ), A

(0)
1 , B

(0)
1

)
, we find the vanishing of

(
x̂

(0)
1 (s, ρ), Â

(0)
1 , B̂

(0)
1

)

=
(
x

(1)
1 (s, ρ), A

(1)
1 , B

(1)
1

)
. By repeating this reasoning we find

(A.30) x1(s, a, ρ) = 0

and

(A.31) A1(a, ρ) = B1(a, ρ) = 0.

To prove the required result we use the induction: let us assume

(A.32.ν) x2n−1(s, a, ρ) = 0 and A2n−1(a, ρ) = B2n−1(a, ρ) = 0

hold for n ≤ ν,

and show (A.32.ν+1) is valid. First we multiply (1.1.6) (with g± = 0)

by (x2 − a2) (t2 − a2) to find

(A.33)

(x2− a2)f = (x′)2(aA + xB)(t2− a2) − 1

2
η−2(x2− a2)(t2− a2){x; t}.

Comparing the coefficients of η−2ν−1 in (A.33) we find

2x0x2ν+1f = (t2− a2)
[
(x′0)

2
(
aA2ν+1 + x0B2ν+1 + x2ν+1B0

)
(A.34)

+ 2x′0x
′
2ν+1(aA0 + x0B0)

]
.

This has the same form as (A.4); only the suffix 1 in (A.4) is replaced

by ν + 1. Hence the same reasoning used to show x1 = A1 = B1 = 0

applies to (A.34). Then we find (A.32.ν + 1) is valid. Therefore the

induction proceeds, completing the proof of Proposition A.1.

�
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B The vanishing of x
(1)
2n (0, ρ), Ã

(0)
2n and B̃

(0)
2n for n ≥ 1 when

g±(t) = 0.

In Section 1.1 and Section 1.2, the vanishing of x
(1)
0 (0, ρ) repeatedly

played an important role in our reasoning. Hence it is reasonable for

the reader to wonder how is the situation for the higher order terms.

The answer is that a similar vanishing is observed if g±(t) = 0 but that

it does not hold in general when g±(t) 6= 0. Hence we content ourselves

with a rather weak statement given in Lemma 1.1.3 so that the rea-

soning in Section 1.1.3 may be applicable to the case where g±(t) 6= 0.

(See the reasoning in Appendix C.) It may be, however, of some inter-

est to see how the actual situation is when g± = 0. Accordingly, we

show the following

Proposition B.1. Assume g±(t) = 0. Then we find the following

properties for the triplet T
(p)
2n =

{
x

(p)
2n , A

(p)
2n , B

(p)
2n

}
constructed in

Section 1.1.3:

x
(1)
2n (0, ρ) = 0 for n ≥ 0,(B.1)

ẋ
(0)
2n (0, ρ) = 0 for n ≥ 1,(B.2)

A
(0)
2n = B

(0)
2n = 0 for n ≥ 1.(B.3)

Proof. Let us first recall

(B.4) x
(0)
2j (0, ρ) = 0 for j = 0, 1, 2, · · · .

(Cf. (1.1.3.54).) Then, by using (B.4), we validate by the induction on

k the following statement V(k) (k ≥ 1):

V(k) :






(i) ẋ
(0)
2i (0, ρ) = 0, i = 1, 2, · · · , k,

(ii) x
(1)
2i (0, ρ) = 0, i = 0, 1, · · · , k,

(iii) A
(0)
2i = B

(0)
2i = 0, i = 1, 2, · · · , k.

(B.5)
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Let us first prove V(1). To begin with, we note

(B.6) R
(0)
2 (s, ρ) =

1

2B
(0)
0

(dt
ds

)2

s2{x; t}(0)
0 ;

other terms in R
(0)
2 (s, ρ) do not exist because of the constraints on the

indices. Since Ã
(−1)
2 = 0 by the assumption (1.1.3.50), (B.6) entails

(B.7) x
(0)
2 (s, ρ) = −B̃(0)

2 s +O(s2).

We also note that z
(0)
2 (s, ρ), which is, by definition, x

(0)
2 (s, ρ)− Ã(−1)

2 +

B̃
(0)
2 s, satisfies

(B.8) ż
(0)
2 (0, ρ) = 0.

We next show

(B.9) R
(1)
2 (0, ρ) = 0.

In what follows (untill (B.18)), we use the symbol (α.j) (j = i, ii, · · · , x)

to denote the term labelled by (α.j) in (1.1.3.43) with (p, n) = (1, 1);

for example, (α.i)|s=0 means

(B.10) −
∑

q+r+u=0
i+j+k=1

(u,k)6=(0,1)

ẋ
(q)
2i (0, ρ)ẋ

(r)
2j (0, ρ)Ã

(u)
2k .

Using this expression together with (B.7), we find

(α.i)|s=0 = −2ẋ
(0)
2 (0, ρ)ẋ

(0)
0 (0, ρ)Ã

(0)
0(B.11)

= 2B̃
(0)
2 Ã

(0)
0 .

Seemingly the ρ-dependence of this term is wilder than that one might

expect at this stage. But fortunately, as we will see below (cf. (B.16)),

it is cancelled out by (α.vi)|s=0, which is equal to

(B.12)
2t−2

B
(0)
0

ṫ2
∑

r+u=1

x
(0)
2 (s, ρ)x

(r)
0 (s, ρ)f (u)(t, ρ)

∣∣∣
s=0
.
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Since we have

(B.13) x
(0)
2n (s, ρ)x

(1)
0 (s, ρ)f (0)(t, ρ) = O(s3)

thanks to the relation

(B.14) x
(1)
0 (0, ρ) = 0,

it suffices to study the contribution from x
(0)
2 (s, ρ)x

(0)
0 (s, ρ)f (1)(t, ρ).

Then it follows from (B.7) and the relation
(
ds/dt

∣∣
t=0

)2
= 1 that

2t−2

B
(0)
0

ṫ2x
(0)
2 (s, ρ)x

(0)
0 (s, ρ)f (1)(t, ρ)

∣∣∣
s=0

(B.15)

=
2

B
(0)
0

(
− B̃

(0)
2 )A

(0)
0 = −2B̃

(0)
2 Ã

(0)
0 .

Thus we find

(B.16) (α.i)|s=0 + (α.vi)|s=0 = 0.

In view of the constraint on the indices, we find that (α.j) (j =

iii, iv, v, vii, viii, x) contains no term. It is clear that (α.ix)|s=0 vanishes.

Thus the remaining term to be studied is only (α.ii)|s=0; because of

the constraint on the indices, we find either (i) q + r + v = 1 or (ii)

q+ r+ v = 0. In case (i) u is 0, and hence x
(u)
2k (0, ρ) vanishes by (B.4).

In case (ii), u should be 1 and hence the constraint (u, k) 6= (1, 1)

entails k = 0, leading to the vanishing of this term by (B.14).

Summing up all these, we thus find

(B.17) R
(1)
2 (0, ρ) = 0.

This implies

(B.18) z
(1)
2 (0, ρ) = 0.

By using this and (B.8), we next show Γ
(0)
2 = ∆

(0)
2 = 0 by examining

each term in (1.2.164) and (1.2.165). We use symbols (γ̃.j) and (δ̃.k)

to mean terms labelled by them there.
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The vanishing of (γ̃.i) and (γ̃.ii) immediately follows from (B.8) and

(B.18). For (p0, n) = (0, 1), one of (i, j, k) in (γ̃.iii) should be 1, which

is forbidden in (γ̃.iii). Thus (γ̃.iii) contains no term.

Concerning (γ̃.iv), we first consider the case where u = 1, i.e., q+r =

2. If q = 2, then r = 0; thus x
(r)
2 (0, ρ) = 0 by (B.4). If q = 0 or 1

x
(q)
0 (0, ρ) vanishes by (B.4) or (B.14). Thus every term with u = 1 in

(γ̃.iv) is 0. The same reasoning applies to terms with u = 2. Thus

(γ̃.iv) is 0. It is clear that (γ̃.v) contains no term when n = 1. To study

(γ̃.vi), we first consider the case where q + r + v = 1. Then u = 0,

and hence x
(u)
2k (0, ρ) vanishes by (B.4). When q + r + v = 0, u = 1;

then the constraint (u, k) 6= (1, 1) forces k to be 0. Hence x
(u)
2k (0, ρ)

is 0 by (B.14). Thus (γ̃.vi) is 0. The term (γ̃.vii) does not exist for

(p0, n) = (0, 1). The vanishing of (γ̃.viii) is an immediate consequence

of (B.4) (with j = 0). Thus we have confirmed

(B.19) Γ
(0)
2 = 0.

We next study ∆
(0)
2 . Again by (B.18) and (B.8) we find that (δ̃.i)

and (δ̃.ii) are 0. When (p0, n) = (0, 1), (δ̃.iii) contains no term. To

study (δ̃.iv), we may assume (i, j) = (0, 1) without loss of generality.

Then x
(q)
2i (0, ρ) vanishes for q = 0 or 1 by (B.4) or (B.14), whereas

x
(r)
2 (0, ρ) vanishes for q = 2 (and hence r = 0). Thus (δ̃.iv) is 0 in

our case. The vanishing of (δ̃.v) can be confirmed in the same manner.

Concerning (δ̃.vi), x
(r)
2j (0, ρ) = 0 for r = 0 by (B.4). On the other

hand, r = 1 forces j to be 0, and hence the vanishing of x
(r)
2j (0, ρ)

follows from (B.14). Thus (δ̃.vi) is also 0. The vanishing of (δ̃.vii)

is clear for (p0, n) = (0, 1). For each term in (δ̃.viii), u = 0 in our

case, and hence the vanishing of (δ̃.viii) follows from (B.4). When

(p0, n) = (0, 1), (δ̃.x) contains no term because of the constraint on

189



the indices, and (δ̃.x) does not exist. Finally in (δ̃.xi) we find

(B.20) x
(q)
2i x

(r)
2j =

(
x

(0)
0

)2
= s2.

Hence

(B.21)
d

dt

( ∑

q+r+u=0
i+j+k=0

x
(q)
2i x

(r)
2j {x; t}(u)

2k

)∣∣∣
t=0

= 0.

Thus we have confirmed

(B.22) ∆
(0)
2 = 0.

Therefore (B.19) and (B.22) imply

(B.23) A
(0)
2 = B

(0)
2 = 0.

Then

(B.24) ẋ
(0)
2 (0, ρ) = 0

follows from (B.7) and (B.23), and

(B.25) x
(1)
2 (0, ρ) = Ã

(0)
2 + z

(1)
2 (0, ρ) = 0

follows from (B.18) and (B.23). Thus we have validated V(1).

Let us now validate V(n) (n ≥ 2) by assuming that V(k) (1 ≤ k ≤
n− 1) have been validated. To validate V(n) we first prove

(B.26) R
(0)
2n (s, ρ) = O(s2).

From this point to (B.34), (α.j) (j = i, ii, · · · , x) means the term

labelled by (α.j) in (1.1.3.43) with (p, n) = (0, n). As (α.j) (j =

i, iii, iv, vi, vii, viii, x) contains no term, we concentrate our attention

on other terms.

To study (α.ii), p = 0 implies q = r = u = v = 0. Then the

convention (1.1.3.44) entails

(B.27) i, j, k, l ≤ n− 1.
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Hence at most two of (i, j, k, l) are allowed to be 0; otherwise stated,

at least two of them are equal to or greater than 1. Therefore it follows

from V(n− 1)(i), (iii) that

(B.28) (α.ii) = O(s2)

(including the possibility of its vanishing).

Concerning (α.v) with n ≥ 2, the constraint on the indices entails

(B.29) i, j ≥ 1.

Hence V(n− 1)(i) implies

(B.30) x
(0)
2i x

(0)
2j f

(0) = O(s5),

that is,

(B.31) (α.v) = O(s3).

As to (α.ix) we divide the situation into two cases: (i) k ≤ n− 2, (ii)

k = n − 1. In case (i), i + j = n − 1 − k ≥ 1 and hence (B.4) and

V(n− 1)(i) entail

(B.32) x
(0)
2i x

(0)
2j {x; t}(0)

2k = O(s3),

whereas in case (ii) we find i = j = 0 and thus

(B.33) x
(0)
0 x

(0)
0 {x; t}(0)

2(n−1) = O(s2).

In any event, we obtain

(B.34) (α.ix) = O(s2).

Summing up all these, we find

(B.35) R
(0)
2n (s, ρ) = O(s2).

Next we study R
(1)
2n (0, ρ). From this point to (B.44), (α.j) stands for

the term labelled by it in (1.1.3.43) with (p, n) = (1, n), where n ≥ 2.
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Let us first examine (α.i)|s=0. It follows from the definition that

(α.i)|s=0 = −
∑

i+j=n

(ẋ
(0)
2i ẋ

(0)
2j Ã

(0)
0 )
∣∣∣
s=0

−
∑

i+j+k=n
1≤k≤n−1

(ẋ
(0)
2i ẋ

(0)
2j Ã

(0)
2k )
∣∣∣
s=0
.

(B.36)

Then the second sum vanishes by V(n− 1)(iii). On the other hand, all

terms except −(ẋ
(0)
0 ẋ

(0)
2n + ẋ

(0)
2n ẋ

(0)
0 )Ã

(0)
0

∣∣∣
s=0

in the first sum vanish by

V(n− 1)(i). Thus we find

(B.37) (α.i)|s=0 = −2ẋ
(0)
2n (0, ρ)Ã

(0)
0 .

As one expects, this term is cancelled out by (α.vi); let us confirm

it first, by setting aside the study of other terms. Since (B.4) and

V(n − 1)(ii) guarantee x
(0)
2nx

(1)
0 f (0) = O(s3), what we have to worry

about in (α.vi) is the term

(B.38)
2t−2

B
(0)
0

(dt
ds

)2

x
(0)
2n sf

(1)(t, ρ)
∣∣∣
s=0
,

which cancels (α.i)|s=0 by (B.4). Let us now return to the study of

(α.ii)|s=0, following the numbering. To study (α.ii)|s=0, we first note

that x
(u)
2k (0, ρ) with u = 0 vanishes by (B.4), and hence we suppose

u = 1. But then, the condition (u, k) 6= (1, n) forces k ≤ n − 1.

This means that one of (i, j, l) is equal to or greater than 1. Hence

V(n− 1)(i), (iii) guarantees

(B.39) ẋ
(0)
2i ẋ

(0)
2j B̃

(0)
2l

∣∣
s=0

= 0.

Thus we find

(B.40) (α.ii)|s=0 = 0.

It is clear that (α.iii) and (α.iv) contain no term when p = 1. As to
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(α.v) we rewrite
∑

q+r+u=1
i+j=n

i,j≤n−1

x
(q)
2i x

(r)
2j f

(u) =
∑

q+r=1
i+j=n

i,j≤n−1

x
(q)
2i x

(r)
2j f

(0) +
∑

i+j=n
i,j≤n−1

x
(0)
2i x

(0)
2j f

(1).(B.41)

Then, in the first sum either q or r is 0 and both i and j is equal to or

greater than 1. Hence V(n− 1)(i), (ii) implies

(B.42) x
(q)
2i x

(r)
2j f

(0) = O(s4).

It is also clear from V(n− 1)(i) that each term in the second sum is of

O(s4). Thus we obtain

(B.43) (α.v)|s=0 = 0.

Since (α.vii), (α.viii) and (α.x) contain no term and since (α.vi) has

already been examined, what remains to be studied is (α.ix). But,

either q or r is equal to 0 in each term in (α.ix). Hence (B.4) guarantees

(B.44) (α.ix)|s=0 = 0.

Thus we have confirmed

(B.45) R
(1)
2n (0, ρ) = 0.

We now show

(B.46) Γ
(0)
2n = ∆

(0)
2n = 0.

To begin with we note

(B.47) ż
(0)
2n (0, ρ) = z

(1)
2n (0, ρ) = 0

follows from (B.35) and (B.45). Then, using the symbol (γ̃.i) etc. to

denote the corresponding term in (1.2.164) and (1.2.165) with p0 = 0,

we find by (B.47) that

(B.48) (γ̃.i) = (γ̃.ii) = 0.
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Concerning (γ̃.iii), we first note

(B.49) q = r = u = 0

and hence the constraint on the indices entails

(B.50) i, j, k ≤ n− 1.

Therefore at least one of (i, j, k) is equal to or greater than 1. Then

V(n− 1)(i), (iii) guarantees

(B.51) (γ̃.iii) = 0.

It is clear that (γ̃.iv) contains no term when p0 = 0. As to (γ̃.v) each

term in the sum has the form

(B.52) x
(1)
2i (0, ρ)x

(1)
2j (0, ρ)f (1)(0, ρ)

with i, j ≥ 1. Hence V(n− 1)(ii) implies it vanishes, and thus we have

(B.53) (γ̃.v) = 0.

Regarding (γ̃.vi) we divide the situation into two cases: (i) u = 1 and

(ii) u = 0. In case (i), (u, k) 6= (1, n) entails k ≤ n− 1, and hence at

least one of (i, j, l) is equal to or greater than 1. Therefore V(n−1)(i),

(iii) implies that the term in question is 0. In case (ii), (B.4) applies to

the term. Thus

(B.54) (γ̃.vi) = 0.

Clearly (γ̃.vii) does not exist. Concerning the sum (γ̃.viii) either q or

r is equal to 0 in each summand and hence (B.4) entails its vanishing.

Thus we find

(B.55) Γ
(0)
2n = 0.

As to ∆
(0)
2n , (δ̃.i) and (δ̃.ii) vanish by (B.47), and (δ̃.iii) contains no

term for p0 = 0. Concerning (δ̃.iv), we rewrite
∑

q+r=2
i+j=n

x
(q)
2i (0, ρ)x

(r)
2j (0, ρ)
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as follows:

(B.56) 2
∑

i+j=n

x
(0)
2i (0, ρ)x

(2)
2j (0, ρ) +

∑

i+j=n

x
(1)
2j (0, ρ)x

(1)
2j (0, ρ).

Then (B.4) implies the vanishing of each term in the first sum. On

the other hand, if one of (i, j) is n then the other is 0 in each term in

the second sum. Hence V(n− 1)(ii) entails the vanishing of the second

sum. Thus we find

(B.57) (δ̃.iv) = 0.

Similarly (B.4) guarantees

(B.58) (δ̃.v) = 0,

and we can readily confirm the vanishing of (δ̃.vi) in the same way as

that used for the confirmation of (B.57). The vanishing of (δ̃.vii) and

(δ̃.viii) is an immediate consequence of (B.4). Concerning (δ̃.ix) with

p0 = 0, the constraints on the indices entail

(B.59) i, j, k, l ≤ n− 1,

and hence at least two of (i, j, k, l) are equal to or greater than 1.

Hence V(n− 1)(i), (iii) guarantees that every term in (δ̃.ix) should be

0. As (δ̃.x) does not exist for p0 = 0, the last term to be examined for

the confirmation of the vanishing of ∆
(0)
2n is (δ̃.xi): each term in (δ̃.x)

for p0 = 0 contains the factor x
(0)
2i x

(0)
2j . Thus we find

(B.60) (δ̃.xi) = 0.

Summing up all these we have confirmed

(B.61) R
(0)
2n (s, ρ) = O(s2),

and

(B.62) R
(1)
2n (0, ρ) = 0
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together with

(B.63) Γ
(0)
2n = ∆

(0)
2n = 0,

which implies

(B.64) A
(0)
2n = B

(0)
2n = 0.

Therefore we find

(B.65) ẋ
(0)
2n (0, ρ) = −B̃(0)

2n + Ṙ
(0)
2n (0, ρ) = 0,

(B.66) x
(1)
2n (0, ρ) = Ã

(0)
2n +R

(1)
2n (0, ρ) = 0.

As (B.64), (B.65) and (B.66), together with V(n − 1), imply that

V(n) is validated. Thus the induction proceeds, and the proof of the

proposition is completed.

Remark B.1. By following the reasoning in Appendix C, one can con-

firm that, if g±(t) 6= 0, x
(1)
2 (0, ρ), together with (Ã

(0)
2 , B̃

(0)
2 ), is different

from 0 in general.

C Construction and estimation of the transformation

series that brings an M2P1T equation to the Mathieu

equation when η−2
( g+(t)

(t− a)2
+

g−(t)

(t + a)2

)
is not 0.

The purpose of this appendix is to confirm the results in Section 1.1.3

and Section 1.2 without assuming g±(t) = 0. For the sake of definite-

ness of the description we assume B
(0)
0 = ρ (and hence x

(0)′
0 (0, ρ) = 1).

For the sake of computation of terms of the form
(∑

l≥0

zl(t)η
−l
)−p

(p

= 1, 2) we first prepare the following Lemma C.1. The computation of

the above series with p = 2 is not used in this appendix but used in

196



Section 1.3. As the reasoning for the case p = 2 is basically the same

as that for the case p = 1 we bring them together here.

Lemma C.1. Let wk(t) (k = 0, 1, 2, · · · , n) be holomorphic func-

tions at t = t0 and satisfy

dw0

dt
(t0) 6= 0(C.1)

and

wk(t0) = 0 (k = 0, 1, 2, · · · ).(C.2)

Then fn(t) and gn(t) (n = 1, 2, · · · ) defined by

fn(t) =
∑

k1+k2+k3=n

dwk1

dt

dwk2

dt

k3∑

µ=min{1,k3}

∑∗

|~κ|µ=k3

(−1)µ
wκ1 · · ·wκµ

wµ
0

,

(C.3)

gn(t) =
∑

k1+k2+k3=n

dwk1

dt

dwk2

dt

k3∑

µ=min{1,k3}

∑∗

|~κ|µ=k3

(−1)µ(µ + 1)
wκ1 · · ·wκµ

wµ
0

(C.4)

satisfy the following relations:

(C.5) fn(t0) =
dw0

dt

dwn
dt

∣∣∣∣
t=t0

,

(C.6) gn(t0) = 0.

In particuler, w−1
0 gn(t) is holomorphic at t = t0.

Proof. Using the assumption (C.2) we define αk by

αk =
wk
w0

∣∣∣
t=t0

=
(dw0

dt

)−1dwk
dt

∣∣∣
t=t0

.(C.7)
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In order to obtain (C.5), it suffices to show

(C.8) αn =
∑

k1+k2+k3=n

αk1αk2

k3∑

µ=min{1,k3}
(−1)µβ

(µ)
k3

for n ≥ 1, where β
(µ)
k is a constant defined by

β
(µ)
k =

∑∗

|~κ|µ=k

ακ1 · · ·ακµ.(C.9)

Since α0 = β
(0)
0 = 1, β

(k)
n = 0 for k ≥ n + 1 and
∑∗

k1+k2=n

αk1β
(µ)
k2

= β(µ+1)
n ,(C.10)

we find

∑

k1+k2+k3=n

αk1αk2

k3∑

µ=min{1,k3}
(−1)µβ

(µ)
k3

(C.11)

= 2α0β
(0)
0 αn + β

(0)
0

∑∗

k1+k2=n

αk1αk2 + α2
0

n∑

µ=1

(−1)µβ(µ)
n

+ 2α0

∑∗

k1+k2=n

αk1

k2∑

µ=1

(−1)µβ
(µ)
k2

+
∑∗

k1+k2+k3=n

αk1αk2

k3∑

µ=1

(−1)µβ
(µ)
k3

= 2αn + β(2)
n +

n∑

µ=1

(−1)µβ(µ)
n + 2

n−1∑

µ=1

(−1)µβ(µ+1)
n +

n−2∑

µ=1

(−1)µβ(µ+2)
n

= 2αn − β(1)
n .

Since β
(1)
k = αk, we obtain (C.8).
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Next, we show

∑

k1+k2+k3=n

αk1αk2

k3∑

µ=min{1,k3}
(−1)µ(µ + 1)β

(µ)
k3

= 0.(C.12)

By using the same result as above, we can rewrite the left-hand side

of (C.12) as follows:

β
(0)
0

∑

k1+k2=n

αk1αk2 + α2
0

n∑

µ=1

(−1)µ(µ + 1)β(µ)
n(C.13)

+ 2α0

∑∗

k1+k2=n

αk1

k2∑

µ=1

(−1)µ(µ + 1)β
(µ)
k2

+
∑∗

k1+k2+k3=n

αk1αk2

k3∑

µ=1

(−1)µ(µ + 1)β
(µ)
k3

=
∑

k1+k2=n

αk1αk2 +

n∑

µ=1

(−1)µ(µ + 1)β(µ)
n

+ 2
n−1∑

µ=1

(−1)µ(µ + 1)β(µ+1)
n +

n−2∑

µ=1

(−1)µ(µ + 1)β(µ+2)
n

= 2αn + β(2)
n − 2β(1)

n − β(2)
n .

Since β
(1)
n = αn, we obtain (C.12); thus we have confirmed (C.6).

Let us now confirm Proposition 1.1.3.2 together with the estimate

[G′; p, 2n] given in Proposition C.1 below, which is totally the same

estimates with [G; p, 2n] in Proposition 1.2.1, when the lower order

term

(C.14) η−2
( g+(t)

(t− a)2
+

g−(t)

(t + a)2

)
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is not assumed to be 0. In what follows we sometimes refer to this

lower order term as the additional term so that the background of our

reasoning may become apparent. The main reason why we perform the

construction and the estimation simultaneously is that we want to use

the analyticity of
{
x2k(t, a, ρ)

}
0≤k≤n−1

on a sufficiently large set, say

on E1
r,R0

in constructing x2k(t, a, ρ); the analyticity of
{
x2k

}
0≤k≤n−1

enables us to find Lemma C.2. The relation (C.18) leads us to introduce

the auxiliary functions
{
y±,2k(t, a, ρ)

}
0≤k≤n−1

, which facilitates the

manipulation of the singularities at t = ±a contained in the additional

terms, as we will see below.

Proposition C.1. There exist positive constants (r0, R,A) and

a sufficiently small constant N0 for which the following estimate

[G′; p, 2n] holds for every p ≥ 0, every n ≥ 1, every ρ in {ρ ∈
C; 0 < |ρ| ≤ r0} and any positive constant ε that is smaller than

r0/3 :

[G′; p, 2n] =



(p, 2n)(i) |x(p+1)
2n (0, ρ)|≤N0C(p)

(
R|ρ|−1

)p
(2n)!ε−2n(A|ρ|−1)n,

(p, 2n)(ii) |Ã(p)
2n | ≤N0C(p)

(
R|ρ|−1

)p
(2n)!ε−2n

(
A|ρ|−1

)n
,

(p, 2n)(iii) |B̃(p)
2n | ≤N0C(p)

(
R|ρ|−1

)p
(2n)!ε−2n

(
A|ρ|−1

)n
,

(p, 2n)(iv) ‖x(p)
2n‖[r0−ε] ≤N0C(p)

(
R|ρ|−1

)p
(2n)!ε−2n

(
A|ρ|−1

)n
,

(p, 2n)(v) ‖ẋ(p)
2n‖[r0−ε] ≤N0C(p)

(
R|ρ|−1

)p
(2n)!ε−2n

(
A|ρ|−1

)n
.

To confirm Proposition 1.1.3.2 and Proposition C.1 when the po-

tential Q contains the additional terms, we first note that (1.1.6)

requires x =
∑

n≥0 x2n(t, a, ρ)η
−2n, A =

∑
n≥0A2n(a, ρ)η

−2n, and
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B =
∑

n≥0B2n(a, ρ)η
−2n, should satisfy

(x2 − a2)
{
f + η−2

(t + a

t− a
g+(t) +

t− a

t + a
g−(t)

)}(C.15)

= (t2 − a2)
(∂x
∂t

)2{
aA + xB + η−2

(x + a

x− a
g+(a) +

x− a

x + a
g−(−a)

)}

− 1

2
η−2(t2 − a2)(x2 − a2){x; t}.

Since the additional terms do not affect the relation that A0(a, ρ),

B0(a, ρ) and x0(t, a, ρ) should satisfy, Proposition 1.1.2.1 and Lemma

1.2.3 apply to the case where Q contains the additional terms.

In parallel with (1.1.3.36), the comparison of the coefficients of η−2n

(n = 1, 2, · · · ) of (C.15) leads us to the following relation:

( ∑

k1+k2=n

x2k1x2k2

)
f

(C.16)

+
( ∑

k1+k2=n−1

x2k1x2k2 − δn,1a
2
)(t + a

t− a
g+(t) +

t− a

t + a
g−(t)

)

= (t2 − a2)
( ∑

k1+k2+k3=n

x′2k1
x′2k2

aA2k3 +
∑

k1+···+k4=n

x′2k1
x′2k2

x2k3B2k4

)

+ (t2 − a2)
∑

k1+···+k4=n−1

x′2k1
x′2k2

x2k3

×
( g+(a)

x0 − a

k4∑

µ=min{1,k4}

∑∗

|~κ|µ=k4

(−1)µ
x2κ1 · · ·x2κµ

(x0 − a)µ
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+
g−(−a)
x0 + a

k4∑

µ=min{1,k4}

∑∗

|~κ|µ=k4

(−1)µ
x2κ1 · · · x2κµ

(x0 + a)µ

)

+ (t2 − a2)a
∑

k1+k2+k3=n−1

x′2k1
x′2k2

×
( g+(a)

x0 − a

k3∑

µ=min{1,k3}

∑∗

|~κ|µ=k3

(−1)µ
x2κ1 · · ·x2κµ

(x0 − a)µ

− g−(−a)
x0 + a

k3∑

µ=min{1,k3}

∑∗

|~κ|µ=k3

(−1)µ
x2κ1 · · ·x2κµ

(x0 + a)µ

)

− 1

2
(t2 − a2)

∑

k1+k2+k3=n−1

x2k1x2k2{x; t}2k3

+
1

2
(t2 − a2)a2{x; t}2(n−1),

where δn,1 is the Kronecker delta and {x; t}2k is the coefficient of η−2k

of {x; t}.
Let us now confirm that A2n(p) (p ≥ 0) hold under the assumption

that A2k(p) and [G′; p, 2k] hold for 0 ≤ k ≤ n − 1 and p ≥ 0. It

follows from [G′; p, 2k] (p ≥ 0) that x2k(s, a, ρ) is holomorphic on

Ẽ1
r0,2R

= {(s, a, ρ) ∈ C3 : |s| ≤ r0, 0 < |ρ| ≤ r0, |a| ≤ (2R)−1|ρ|}.
(C.17)

Using this analyticity we first show the following

Lemma C.2.

(C.18) x2k(t, a, ρ)|t=±a = 0

holds for 1 ≤ k ≤ n− 1.

Proof. It follows from (C.16) with n = 1 that x2 satisfies the following
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relation:

2x0x2f + (x2
0 − a2)

(t + a

t− a
g+(t) +

t− a

t + a
g−(t)

)(C.19)

= (t2 − a2)
( ∑

k1+k2+k3=1

x′2k1
x′2k2

aA2k3 +
∑

k1+···+k4=1

x′2k1
x′2k2

x2k3B2k4

)

+ (t2 − a2)(x′0)
2
(x0 + a

x0 − a
g+(a) +

x0 − a

x0 + a
g−(−a)

)

− 1

2
(t2 − a2)(x2

0 − a2){x; t}0.

Since x0 satisfies (1.3.11), by setting t = ±a in (C.19), we obtain

(C.20) 2ax2(t, a, ρ)f(t, a, ρ)|t=±a = 0.

Hence (C.18) for k = 1 follows from (1.3.16). Next we show (C.18) for

k = l (2 ≤ l ≤ n − 1) under the assumption that (C.18) holds for

1 ≤ k ≤ l − 1. By setting t = a in (C.16) with n = l, we obtain

(2ax2lf + 4a2g+x
′
2(l−1))

∣∣
t=a

(C.21)

= (t2 − a2)g+(a)
x0 + a

x0 − a

×
∑

k1+k2+k4=l−1

x′2k1
x′2k2

k4∑

µ=min{1,k4}

∑∗

|~κ|µ=k4

(−1)µ
x2κ1 · · ·x2κµ

(x0 − a)µ

∣∣∣∣
t=a

.

Since w0 = x0−a and wk = x2k satisfy (C.1) and (C.2) at t0 = a, (C.5)

implies that the right-hand side of (C.21) is equal to 4a2g+x
′
2(l−1)|t=a.

Hence we obtain

(C.22) 2ax2lf
∣∣
t=a

= 0.
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We then see that x2l|t=a = 0. Using the same reasoning as above, we

find x2l|t=−a = 0 holds. Hence we obtain (C.18) for k = l.

Let us now define y±,2k(t, a, ρ) (k = 0, 1, 2, · · · ) by

y±,0 =
x0 ∓ a

t∓ a
(C.23)

y±,2k =
x2k

t∓ a
.(C.24)

Then, from Theorem 1.3.1 and (C.18), we find that (y±,0)−1 and y±,2k
(k = 0, 1, 2, · · · ) are holomorphic on Ẽ1

r0,2R
. We denote the coeffi-

cients of ap of (y±,0)−µ (µ = 1, 2, · · · ) and y±,2k by w
µ,(p)
± and y

(p)
±,2k

respectively as follows:

(y±,0)
−µ(t, a, ρ) =

∞∑

p=0

w
µ,(p)
± (t, ρ)ap,(C.25)

y±,2k(t, a, ρ) =

∞∑

p=0

y
(p)
±,2k(t, ρ)a

p.(C.26)

We also denote the coefficients of tp of g± by g
(p)
± , i.e.,

(C.27) g±(t) =

∞∑

p=0

g
(p)
± tp.

In parallel with (1.1.3.37), comparison of the coefficients of ap in (C.16)

leads us to the following relation:

∑

l1+l2+l3=p
k1+k2=n

x
(l1)
2k1
x

(l2)
2k2
f (l3) + F (p)

2n

(C.28)
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= t2
[ ∑

l1+l2+l3=p−1
k1+k2+k3=n

x
(l1)′
2k1

x
(l2)′
2k2

A
(l3)
2k3

+
∑

l1+···+l4=p
k1+···+k4=n

x
(l1)′
2k1

x
(l2)′
2k2

x
(l3)
2k3
B

(l4)
2k4

− 1

2

∑

l1+l2+l3=p
k1+k2+k3=n−1

x
(l1)
2k1
x

(l2)
2k2

{x; t}(l3)
2k3

+
1

2
{x; t}(p−2)

2(n−1)

]

−
[ ∑

l1+l2+l3=p−3
k1+k2+k3=n

x
(l1)′
2k1

x
(l2)′
2k2

A
(l3)
2k3

+
∑

l1+···+l4=p−2
k1+···+k4=n

x
(l1)′
2k1

x
(l2)′
2k2

x
(l3)
2k3
B

(l4)
2k4

− 1

2

∑

l1+l2+l3=p−2
k1+k2+k3=n−1

x
(l1)
2k1
x

(l2)
2k2

{x; t}(l3)
2k3

+
1

2
{x; t}(p−4)

2(n−1)

]
+ G(p)

2n ,

where F (p)
2n and G(p)

2n are functions that depend only on x
(l)
2k, y

(l)
±,2k (0 ≤

k ≤ n − 1, l ≥ 0) and g±. The concrete forms of F (p)
2n and G(p)

2n are

given as follows:

F (p)
2 =tg+(t)

∑

l1+l2=p

x
(l1)
0 y

(l2)
+,0 + g+(t)

∑

l1+l2=p−1

x
(l1)
0 y

(l2)
+,0(C.29)

+ tg+(t)y
(p−1)
+,0 + g+(t)y

(p−2)
+,0

+ tg−(t)
∑

l1+l2=p

x
(l1)
0 y

(l2)
−,0 − g−(t)

∑

l1+l2=p−1

x
(l1)
0 y

(l2)
−,0

− tg−(t)y
(p−1)
−,0 + g−(t)y

(p−2)
−,0 ,

F (p)
2n =2tg+(t)

∑

l1+l2=p

x
(l1)
0 y

(l2)
+,2(n−1)(C.30)

+ tg+(t)
∑∗

k1+k2=n−1

∑

l1+l2=p

x
(l1)
2k1
y

(l2)
+,2k2
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+ 2g+(t)
∑

l1+l2=p−1

x
(l1)
0 y

(l2)
+,2(n−1)

+ g+(t)
∑∗

k1+k2=n−1

∑

l1+l2=p−1

x
(l1)
2k1
y

(l2)
+,2k2

+ 2tg−(t)
∑

l1+l2=p

x
(l1)
0 y

(l2)
−,2(n−1)

+ tg−(t)
∑∗

k1+k2=n−1

∑

l1+l2=p

x
(l1)
2k1
y

(l2)
−,2k2

− 2g−(t)
∑

l1+l2=p−1

x
(l1)
0 y

(l2)
−,2(n−1)

− g−(t)
∑∗

k1+k2=n−1

∑

l1+l2=p−1

x
(l1)
2k1
y

(l2)
−,2k2

for n ≥ 2 and

G(p)
2n =

(
t

∑

k1+···+k4=n−1
l1+···+l6=p

x
(l1)′
2k1

x
(l2)′
2k2

x
(l3)
2k3
g

(l4)
+

(C.31)

+
∑

k1+···+k4=n−1
l1+···+l6=p−1

x
(l1)′
2k1

x
(l2)′
2k2

x
(l3)
2k3
g

(l4)
+

)

×
k4∑

µ=min{1,k4}
w
µ+1,(l5)
+

∑∗

|~κ|µ=k4

∑

|~λ|µ=l6

(−1)µy
(λµ+1)
+,2κ1

· · · y(λ2µ)
+,2κµ

+
(
t

∑

k1+···+k4=n−1
l1+···+l6=p

x
(l1)′
2k1

x
(l2)′
2k2

x
(l3)
2k3

(−1)l4g
(l4)
−
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−
∑

k1+···+k4=n−1
l1+···+l6=p−1

x
(l1)′
2k1
x

(l2)′
2k2

x
(l3)
2k3

(−1)l4g
(l4)
−

)

×
k4∑

µ=min{1,k4}
w
µ+1,(l5)
−

∑∗

|~κ|µ=k4

∑

|~λ|µ=l6

(−1)µy
(λµ+1)
−,2κ1

· · · y(λ2µ)
−,2κµ

+
(
t

∑

k1+···+k4=n−1
l1+···+l5=p−1

x
(l1)′
2k1

x
(l2)′
2k2

g
(l3)
+

+
∑

k1+···+k4=n−1
l1+···+l5=p−2

x
(l1)′
2k1

x
(l2)′
2k2

g
(l3)
+

)

×
k4∑

µ=min{1,k4}
w
µ+1,(l4)
+

∑∗

|~κ|µ=k4

∑

|~λ|µ=l5

(−1)µy
(λµ+1)
+,2κ1

· · · y(λ2µ)
+,2κµ

−
(
t

∑

k1+···+k4=n−1
l1+···+l5=p−1

x
(l1)′
2k1

x
(l2)′
2k2

(−1)l3g
(l3)
−

−
∑

k1+···+k4=n−1
l1+···+l5=p−2

x
(l1)′
2k1
x

(l2)′
2k2

(−1)l3g
(l3)
−

)

×
k4∑

µ=min{1,k4}
w
µ+1,(l4)
−

∑∗

|~κ|µ=k4

∑

|~λ|µ=l5

(−1)µy
(λµ+1)
−,2κ1

· · · y(λ2µ)
−,2κµ

for n ≥ 1.

Now, we define Φ̃
(p)
2n and R̃

(p)
2n by

Φ̃
(p)
2n = Φ

(p)
2n + F (p)

2n − G(p)
2n ,(C.32)
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R̃
(p)
2n = R

(p)
2n +

t−2

B
(0)
0

(dt
ds

)2

(F (p)
2n − G(p)

2n ),(C.33)

where Φ
(p)
2n and R

(p)
2n are respectively given by (1.1.3.38) and (1.1.3.43).

It is evident from (C.28) that, if we want to construct {x,A,B} when

g± 6= 0, Φ̃
(p)
2n (resp., R̃

(p)
2n ) is the required substitute of Φ

(p)
2n (resp., R

(p)
2n )

used in Section 1.1.3. Since F (p)
2n ≡

(2n;q)
0 and G(p)

2n ≡
(2n;q)

0 for any p ≥ 0 and

q ≥ 0, by the same reasoning as that in Section 1.1.3, we find A2n(p)

(p ≥ 0) is also valid in this case.

Next we estimate the constructed series as Proposition C.1 requires.

For this purpose we prepare the following

Lemma C.3. The series F (p)
2n and G(p)

2n (p ≥ 0) satisfy the following

estimates for some positive constant M0 under the assumption that

[G; p, 0] and [G′; p, 2k] (1 ≤ k ≤ n− 1, p ≥ 0) hold:

∣∣F (p+3)
2n

∣∣
t=0

∣∣ ≤M0A
−1N0C(p)

(
R|ρ|−1

)p
(2n− 2)!ε−2n+2

(
A|ρ|−1

)n
,

(C.34)

∣∣F (p+2)′
2n

∣∣
t=0

∣∣ ≤M0A
−1N0C(p)

(
R|ρ|−1

)p
(2n− 2)!ε−2n+2

(
A|ρ|−1

)n
,

(C.35)

∥∥F (p)
2n

∥∥
[r0−ε] ≤M0N0C(p)

(
R|ρ|−1

)p
(2n− 2)!ε−2n+2

(
A|ρ|−1

)n−1
,

(C.36)

∣∣G(p+3)
2n

∣∣
t=0

∣∣ ≤M0A
−1N0C(p)

(
R|ρ|−1

)p
(2n− 2)!ε−2n+2

(
A|ρ|−1

)n
,

(C.37)

∣∣G(p+2)′
2n

∣∣
t=0

∣∣ ≤M0A
−1N0C(p)

(
R|ρ|−1

)p
(2n− 2)!ε−2n+2

(
A|ρ|−1

)n
,

(C.38)

∥∥G(p)
2n

∥∥
[r0−ε] ≤M0N0C(p)

(
R|ρ|−1

)p
(2n− 2)!ε−2n+2

(
A|ρ|−1

)n−1
.

(C.39)
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Proof. To begin with, we derive the estimates of y
(p)
±,2k and w

(p)
± from

those of x
(p)
±,2k as follows:

Lemma C.4. The functions y
(p)
±,2k and w

µ,(p)
± (0 ≤ k ≤ n − 1, p ≥

0, µ ≥ 1) satisfy the following estimates for some positive constant

M under the assumption that [G; p, 0] and [G′; p, 2k] (1 ≤ k ≤
n− 1, p ≥ 0) hold:

∥∥y(p)
±,0
∥∥

[r0]
≤MC(p)

(
R|ρ|−1

)p
,(C.40)

∥∥wµ,(p)
±
∥∥

[r0]
≤MµC(p)

(
R|ρ|−1

)p
,(C.41)

∥∥y(p)
±,2k
∥∥

[r0−ε] ≤MN0C(p)
(
R|ρ|−1

)p
(2k)!ε−2k

(
A|ρ|−1

)k
.(C.42)

Proof. Since (y±,0)±1 are holomorphic on Ẽ1
r,2R and bounded by some

positive constant M there, we find that, by taking R sufficiently large

if necessary, y
(p)
±,0 and w

µ,(p)
± (p ≥ 0, µ ≥ 1) satisfy (C.40) and (C.41).

Further, it follows from the definition of y±,2k that y
(p)
±,2k satisfy the

following relation:

y
(p)
±,2k = t−1(x

(p)
2k ± y

(p−1)
±,2k ),(C.43)

where we conventionally regard y
(−1)
±,2k as 0. It is then evident that

we can estimate
∥∥y(p)

±,2k
∥∥

[r0−ε] in an inductive manner with the help of

[G′; p, 2k]. Actually, with an appropriate choice of constants M and

R that is specified below, the maximum modulus principle enables to

find the following:

∥∥y(p)
±,2k
∥∥

[r0−ε] ≤
M

2

(∥∥x(p)
2k

∥∥
[r0−ε] +

∥∥y(p−1)
±,2k

∥∥
[r0−ε]

)
(C.44)

≤M
2

(
1 +MR−1|ρ|C(p− 1)C(p)−1

)
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×N0C(p)
(
R|ρ|−1

)p
(2k)!ε−2k

(
A|ρ|−1

)k

≤MN0C(p)
(
R|ρ|−1

)p
(2k)!ε−2k

(
A|ρ|−1

)k
.

Here we take M > 0 so that

sup
|s|=r0−ε

∣∣t−1(s)
∣∣ ≤M/2(C.45)

holds for 0 < ε < r0/3 and assume that, by taking R sufficiently large,

(C.46) MR−1|ρ|C(p− 1)C(p)−1 ≤ 1

holds.

Remark C.1. As the recursive relation (C.43) for y
(p)
±,2k (k ≥ 1) implies,

if we write y
(p)
±,2k in terms of x

(p)
2k , it looks as if it had a pole at t = 0

whose order became higher and higher with increasing p. However

(C.18) guarantees that the pole actually does not appear. This is also

the case for y
(p)
±,0 and w

µ,(p)
± .

Now let us return to the proof of Lemma C.3. Suppose g± is bounded

by some positive constant M as follows:

(C.47)
∥∥g±

∥∥
[r0]

≤M.

Then, for example, the second term of F (p+3)
2 , i.e., g+

∑

l1+l2=p+2

x
(l1)
0 y

(l2)
+,0

is estimated as follows for t = 0:
∥∥g+

∥∥
[r0]

∑

l1+l2=p+2

∣∣x(l1)
0 (0, ρ)

∣∣∥∥y(l2)
+,0

∥∥
[r0]

(C.48)

≤M 2C0C(p + 2)
(
R|ρ|−1

)p+1
.

In this way, we can readily confirm that the following estimate holds

for p ≥ 0:
∣∣F (p+3)

2

∣∣
t=0

∣∣ ≤ 4M 2C0C(p + 2)
(
R|ρ|−1

)p+1
.(C.49)
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Therefore, by taking M0 sufficiently large so that 4M 2C0R ≤ M0N0

holds, we obtain (C.34) for n = 1. In the same way, we easily

find that F (p+3)
2n

∣∣
t=0

(n = 2, 3, · · · ) satisfy (C.34). The estimation

of F (p+2)′
2n

∣∣
t=0

required in (C.35) can be also done in a similar man-

ner; by using Cauchy’s inequality we can estimate, for example, the

derivative of the third term of F (p+2)
2n

∣∣
t=0

evaluated at t = 0, i.e.,(
2g+(t)

∑

l1+l2=p+1

x
(l1)
0 y

(l2)
+,2(n−1)

)′∣∣∣
t=0

as follows:

∣∣∣
(
2g+(t)

∑

l1+l2=p+1

x
(l1)
0 y

(l2)
+,2(n−1)

)′∣∣∣
t=0

∣∣∣

(C.50)

≤ 2

r0 − ε

∥∥g+

∥∥
[r0]

∑

l1+l2=p+1

∥∥x(l1)
0

∥∥
[r0]

∥∥y(l2)
+,2(n−1)

∥∥
[r0−ε]

≤ 3M 2N0

r0
C(p + 2)

(
R|ρ|−1

)p+1
(2n− 2)!ε−2n+2

(
A|ρ|−1

)n−1
.

In this way, we find the estimation (C.35). The estimate (C.36) is an

immediate consequence of the induction hypothesis.

Next, we confirm (C.37). Since

(C.51)
∣∣x(l)′

2k (0, ρ)
∣∣ ≤ M

r0 − ε

∥∥x(l)
2k

∥∥
[r0−ε]

holds for some positive constant M and since we may assume that g
(l)
±

satisfy

(C.52)
∣∣g(l)

±
∣∣ ≤MC(l)r−l0 ,
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the first term of G(p+3)
2n

∣∣
t=0

can be estimated as follows:

∑

k1+···+k4=n−1
l1+···+l6=p+2

∣∣x(l1)′
2k1

(0, ρ)
∣∣∣∣x(l2)′

2k2
(0, ρ)

∣∣∣∣x(l3)
2k3

(0, ρ)
∣∣∣∣g(l4)

+

∣∣

(C.53)

×
k4∑

µ=min{1,k4}

∥∥wµ+1,(l5)
+

∥∥
[r0]

∑∗

|~κ|µ=k4

∑

|~λ|µ=l6

∥∥y(λµ+1)
+,2κ1

∥∥
[r0−ε] · · ·

∥∥y(λ2µ)
+,2κµ

∥∥
[r0−ε]

≤ M 3

(r0 − ε)2
(
R|ρ|−1

)p+1
ε−2n+2

(
A|ρ|−1

)n−1

×
∑

k1+···+k4=n−1
l1+···+l6=p+2

C(l1)C(l2)C(l3)C(l4)(2k1)!(2k2)!(2k3)!
( |ρ|
r0R

)l4

×
k4∑

µ=min{1,k4}
M 2µ+1Nµ

0C(l5)C(l6)
∑∗

|~κ|µ=k4

(2κ1)! · · · (2κµ)!

≤ 9r−2
0 M 3e4M2N0C(p + 2)

(
R|ρ|−1

)p+1
(2n− 2)!ε−2n+2

(
A|ρ|−1

)n−1
.

Similar estimation is validated for other terms in G (p+3)
2n

∣∣
t=0

. Hence, by

takingM0 so that 36r−2
0 M 3e4M2N0R ≤ N0M0 holds, we obtain (C.37).

We can confirm (C.38) in a similar manner. The validation of (C.39)

is a straightforward task.

Finally let us discuss how to deduce [G′; p0, 2n] from Lemma C.3.

Since the estimates (1.2.161) still holds, we can deduce the following

estimates for R̃
(p0+1)
2n (0, ρ) from (C.34) and (C.37) with p = p0 − 2:

∣∣R̃(p0+1)
2n (0, ρ)

∣∣ ≤N1N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
,(C.54)
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where

(C.55) N1 = M(C0 +N0 +R−1 + (N0A)−1)

with a positive constant M that is independent of C0, N0, R and

A. Since (1.2.163) and (1.2.177) also hold, we obtain the following

estimates from (C.36) and (C.39) with p = p0:
∣∣ ˙̃R

(p0)
2n (0, ρ)

∣∣ ≤N1N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
,(C.56)

∥∥R̃(p0)
2n

∥∥
[r0−ε] ≤N1N0C(p0)

(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
.(C.57)

Now let us define Γ̃
(p)
2n and ∆̃

(p)
2n by

Γ̃
(p)
2n = Γ

(p)
2n +

(
F (p+3)

2n − G(p+3)
2n

)∣∣
t=0
,(C.58)

∆̃
(p)
2n = ∆

(p)
2n +

(
F (p+2)′

2n − G(p+2)′
2n

)∣∣
t=0
.(C.59)

(Here we note that Γ
(p)
2n and ∆

(p)
2n are obtained from Φ

(p+3)
2n

∣∣
t=0

and

Φ
(p+2)′
2n

∣∣
t=0

respectively.) Hence, in view of (C.32), we find that what

plays the role of Γ
(p)
2n (resp., ∆

(p)
2n ) in this case is Γ̃

(p)
2n (resp., ∆̃

(p)
2n ). Then,

combining (1.2.166), we obtain the following estimates from (C.34),

(C.35), (C.37) and (C.38) with p = p0:

|Γ̃(p0)
2n |, |∆̃(p0)

2n | ≤N1N0C(p0)
(
R|ρ|−1

)p0(2n)! ε−2n
(
A|ρ|−1

)n
.(C.60)

Thus, by the same reasoning with part [III] and [IV] in the proof of

Proposition 1.2.1, we find that [G′; p, 2n] follows from (C.54), (C.56),

(C.57) and (C.60). Therefore, the induction proceeds, and hence, we

obtain Proposition C.1.
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ifférentiels d’ordre infini. I, Ann. Inst. Fourier, Grenoble

33 (1983), 227-250.

[AKY] T. Aoki, K. Kataoka and S. Yamazaki: Hyperfunctions,

FBI transformations and pseudo-differential operators of

infinite order, (in Japanese) Kyoritsu-Shuppan CO., LTD,

2004.

[AKT1] T. Aoki, T. Kawai and T. Takei: The Bender-Wu analysis

and the Voros theory, Special Functions, Springer-Verlag,

1991, pp.1–29.

[AKT2] : The Bender-Wu analysis and the Voros theory. II,

Advanced Studies in Pure Mathematics, 54, Math. Soc.

Japan, 2009, pp.19–94.

[AY] T. Aoki and J. Yoshida: Microlocal reduction of ordinary

differential operators with a large parameter, Publ. RIMS,

Kyoto Univ., 29(1993), 959–975.

[DP] E. Delabaere and F. Pham: Resurgent methods in

semi-classical asymptotics, Ann. Inst. Henri Poincaré,
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[Er] A. Erdélyi: Higher Transcendental Functions, I, II, III,

McGraw-Hill, 1955; reprinted in 1981 by Robert E.

Krieger Publishing Company, Malabar, Florida.

[KKKoT] S. Kamimoto, T. Kawai, T. Koike and Y. Takei: On

the WKB theoretic structure of the Schrödinger opera-

tors with a merging pair of a simple pole and a simple

turning point, Kyoto J. Math., 50 (2010), 101–164.

[KKT] S. Kamimoto, T. Kawai and Y. Takei: Microlocal analysis

of fixed singularities of WKB solutions of a Schrödinger

equation with a merging triplet of two simple poles and

a simple turning point, to appear in The Mathematical

Legacy of Leon Ehrenpreis, 1930 - 2010.

[K3] M. Kashiwara, T. Kawai, T. Kimura: Foundations of Al-

gebraic Analysis, Princeton University Press, Princeton,

1986.

[K] T. Kawai: Systems of linear differential equations of infi-

nite order — an aspect of infinite analysis, Proc. Symp. in

Pure Math., 49, Part 1, Amer. Math. Soc., 1989, pp.3–17.

[KKoT] T. Kawai, T. Koike and Y. Takei: On the exact WKB

analysis of higher order simple-pole type operators, Adv.

in Math., 228 (2011), 63–96.

[KT] : Algebraic Analysis of Singular Perturbation The-

ory, Amer. Math. Soc., 2005.

[Ko1] T. Koike: On a regular singular point in the exact WKB

analysis, Toward the Exact WKB Analysis of Differen-

tial Equations, Linear or Non-Linear, Kyoto Univ. Press,

2000, pp.39–54.

215



[Ko2] : On the exact WKB analysis of second order linear

ordinary differential equations with simple poles, Publ.

RIMS, Kyoto Univ., 36 (2000), 297–319.

[Ko3] : in preparation.

[KoS] T. Koike and R. Schäfke: in preparation.
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