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Abstract

In forced two-dimensional turbulence on a rotating sphere, it is well known
that a multiple zonal-band structure, i.e. a structure with alternating east-
ward and westward jets, emerges in the course of time development. The
multiple zonal-band structure then experiences intermittent mergers and dis-
appearances of zonal jets, and a structure with only a few large-scale zonal
jets is realised as an asymptotic state (Obuse et al., 2010). With the view of
understanding the long-time behaviour of the zonal jets in two-dimensional
turbulence in rotating systems, we consider large-scale zonal flows superposed
upon a homogeneous zonal flow and a small-scale sinusoidal transversal flow
on a β plane, which is the model originally introduced by Manfroi and Young
(1999), and investigate the merging and disappearing processes of zonal jets.
First, we analytically obtain solutions of steady isolated zonal jet of the evo-
lution equation of such zonal flows. Then it is shown that these steady zonal
jet solutions are all linearly unstable. The numerical time integration of the
evolution equation also confirms that the final state of a perturbed unstable
steady solution is a uniform flow. These results suggest that mergers and
disappearances of zonal jets in two-dimensional turbulence on β plane and
on a rotating sphere might be due to the instability of the zonal jets caused
by the effect of turbulence. Utilising the analytical solution of steady isolated
zonal jet, the weak interaction between two neighbouring zonal jets is also
studied. The time derivative of the distance between two identical zonal jets
is estimated by a perturbation method, confirming that two zonal jets placed
apart attract each other, and the attraction becomes stronger as the distance
between them gets shorter. The estimated time derivative of the distance be-
tween two zonal jets is in agreement with that obtained from the numerical
time integration of the evolution equation. It is also found by numerical sim-
ulation that the two zonal jets then merge to a new steady isolated zonal jet
of different parameters. Because of the linear instability of the new steady
zonal jet, the final state is expected to be a uniform flow. These results
are consistent with gradual mergers and disappearances of zonal jets seen in
forced two-dimensional turbulence on β plane and on a rotating sphere, and
implies the importance of the weak interaction between neighbouring zonal
jets for the long-time behaviour of zonal jets in forced two-dimensional tur-
bulence in rotating systems. Finally, we modify the Manfroi-Young model by



taking account of the spatial variation of the disturbance in the zonal direc-
tion, and the surface variation of the fluid layer, in order to make the model
a little more realistic. The linear stability analysis of analytical solutions of
steady isolated zonal jet in these models suggests that the instability of zonal
jets is widely common in turbulence on β plane.
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Chapter 1

Introduction

Many studies on fluid dynamics in an irrotational system have been carried
out in relation to fluid phenomena in daily life. The fluid dynamics in a
rotating system is also attracting much interest in respect, for instance, of
observations in geoscience and of environmental problems. In these areas,
there are plenty of mathematical models with a wide range of complexity, in
terms of the treatments of the physical processes. With the great progress
in computer’s performance these days, more and more realistic numerical
simulations are performed by use of such complex models.

One of the features seen in a rotating system which has been attracted
people’s interest may be an existence and the robustness of multiple zonal-
band structures, i. e., a structure consists of alternating eastward and west-
ward jets, observed on many giant planets. The atmosphere in a surface
or in an outer shell of a planet is believed to be in turbulent state induced
by, for example, a heat convection caused by an inner heating system or
heat injection from the sun. A large-scale zonal-band structure is commonly
observed and maintained for a very long time, almost keeping their shapes
in many giant planets. The emergence of the multiple zonal-band structure
is interesting not only because it may have emerged from and maintained
in a perturbed small-scale flow filed, but also because it possesses a strong
anisotropic structure.

One of the mainstream researches for the origin of the multiple zonal-
band structure started from Busse [1], who argued that the structure is a
surface manifestation of three-dimensional circulation deep inside of a planet.
This appealing theory is difficult to prove though, especially because of the
lack of the knowledge we have for the interior of a planet, and because of
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the lack of computational power. Nevertheless many three-dimensional re-
searches including heavy numerical calculations have been done (Sun et al.
[2], Heimpel et al. [3]), and Busse’s idea [1] is considered to be reasonable
and possesses strong support in a wide area of geoscience these days. Un-
fortunately however, it is difficult to extract the essence of the physics in
the complex mathematical models used there, and in fact, even the basic na-
ture of simple mathematical models, being the foundation of such complex
models, are not yet well understood.

A simpler model for the origin of multiple zonal-band structure was pro-
posed by Rhines [4] with a pioneering numerical study of two-dimensional
turbulence on a tangent plane of a rotating sphere with a linear approxima-
tion of Coriolis parameter with respect to the meridional direction (y− coor-
dinate ), namely, a β plane. He found that a multiple zonal-band structure is
built up as the turbulent motion evolves, and robustly maintained for quite
a long time. The formation and the robustness of the multiple zonal-band
structure was explained by introducing the Rhines scale, where the β effect,
i.e. the effect of differential rotation, and the advective effect in the gov-
erning equation become comparable. It is well known that two-dimensional
turbulence in an irrotational system is characterised by the inverse energy
cascade (Kraichinan [5]), in contrast to the energy transfer to smaller-scale
structure in three-dimensional system. The kinetic energy injected at small
scales is then transferred to larger scales, which brings about a statistically
isotropic larger-scale structure as time progresses. The β effect retards this
inverse energy cascade at scales smaller than the Rhines scale, and causes
the anisotropic zonal features whose width is roughly the same as the Rhines
scale.

Many succeeding studies have confirmed the emergence of the multiple
zonal-band structure on both β plane and two-dimensional sphere (Vallis and
Maltrud [6], Williams[7]). The multiple zonal-band structure suggests many
fascinating problems including the mechanism of energy’s concentration to
zonal jets (Chekhlov et al. [8], Huang and Robinson [9], Balk [10]), and the
asymmetry of the eastward and westward jets’ profiles. However, the long-
time asymptotic state of zonal flows observed in two-dimensional turbulence
in rotating systems is not yet fully known, and the physics of their long-time
behaviour is not well understood, either.

Yoden and Yamada [11] investigated the long-time asymptotic states of
freely decaying two-dimensional barotropic incompressible flows on a rotat-
ing sphere. Interestingly, the long-time asymptotic states are not necessarily
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characterised by the multiple zonal-band structure but by strong westward
circumpolar jets, which become prominent after long-time integration, al-
though there remains weak multiple zonal-band structure in the low and
middle latitudes. The scaling laws for this circumpolar jets are obtained by
Takehiro et al. [12]; when the rotation rate of the sphere Ω increases, the

strength of the jets increases as Ω
1
4 and the width of the jets decreases as

Ω− 1
4 .

On the other hand, for a forced two-dimensional barotropic incompress-
ible flow on a two-dimensional sphere, Nozawa and Yoden [13] performed nu-
merical simulations, with a Markovian random forcing of constant strength,
of 18 cases with different combinations of a rotation rate of the sphere and a
forcing wavenumber. There, they showed that the generated flow fields are
characterised by a multiple zonal-band structure or a structure with westward
circumpolar jets. They also pointed out that the two different structures arise
according to the relative magnitude between the Rhines wavenumber (the in-
verse of the Rhines scale) of the flow and the forcing wavenumber, and also
that when the forcing wavenumber is higher than the Rhines wavenumber,
the inverse energy cascade continues until the characteristic wavenumber of
the flow reaches around the Rhines wavenumber to form the multiple zonal-
band structure; but when the forcing wavenumber is lower than the Rhines
wavenumber, the inverse energy cascade hardly occurs, and the circumpolar
jets appear as a result. In contrast, Huang et al. [14] performed simula-
tions with a white noise forcing of constant energy input to the system, and
obtained an asymptotic state consisting of zonal jets whose representative
wavenumber is lower than the Rhines wavenumber. They then inferred that
the Markovian random forcing in Nozawa and Yoden [13] may be regarded
as a strong drag of low wavenumbers dissipation which maintains the formed
multiple zonal-band structure.

A recent numerical experiment of forced two-dimensional turbulence on
a rotating sphere shows, however, that when the time integration is carried
much further than the previous studies, including Nozawa and Yoden [13],
multiple zonal jets merge passing over the Rhines scale, and as a result, two
or three large-scale alternating zonal jets remain at the final stage, even under
the use of Markovian random forcing of constant strength (Obuse et al. [15]).
This, together with the result of Huang et al. [14], suggests that the long-
time asymptotic states of two-dimensional turbulence on a rotating sphere
may be a structure with only two or three large-scale alternating zonal jets.
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This result suggests that long-time behaviour of zonal flows on a rotating
sphere is beyond Rhines’ theory, and therefore the insight into the process of
mergers and disappearances of zonal jets is essential when we consider the
long-time behaviour of zonal jets in forced two-dimensional turbulence on a
rotating sphere. Unfortunately, the process cannot be explained in a simple
framework of laminar flows because of the linear stability of karge laminar
zonal jets. As a consequence, it is inevitable to take the effect of turbulence
into the theory for zonal jets in an analytically treatable way when we hope
to understand the long-time behaviour of zonal jets on a rotating sphere and
β plane.

One thing we have to notice here from the results of Huang et al. [14]
and Obuse et al. [15] is that the two-dimensional model may not be very
suitable for a planetary atmosphere because of the decrease of the number of
zonal jets in its long-time evolution. Nevertheless, as this is one of the most
fundamental models for planetary atmospheres, the insight of the basic na-
ture of this model will bring a good understanding for more realistic models.
Therefore, we clear out the idea of the applicability of this model to planetary
atmosphere for a while, and treat it as one of the ideal mathematical models,
and investigate its basic properties. Hence, this thesis is dedicated to the in-
vestigation of the long-time behaviour of forced two-dimensional barotropic
incompressible flows on a rotating sphere.

A long-time behaviour of a large-scale flow, including structure with zonal
jets, under the influence of small-scale turbulence is a fascinating and impor-
tant subject to know, from the viewpoints of dynamics of planetary atmo-
spheres and fluid dynamics. However, it contains great amount of difficulties
in both analytical and numerical aspects. One of the strongest reasons for
the difficulties may originates from the randomness and stochastic nature
of the turbulence. There, the deterministic methods to forecast the future
is powerless. Length of the time scale we need to deal with is also one of
the factors of the difficulties when we hope to understand the long-time be-
haviour of the flow. Even an infinitesimal deviation from an assumed state,
caused from the randomness of the turbulence or numerical errors, can be
critical since the small deviation may grow to make the flow filed completely
different. In addition to these factors, the spherical geometry of the domain,
the existence of curvature and north and south poles for instance, makes the
analytical treatment of the problem more complicated.

To avoid the difficulties stated above, we assume a small-scale deter-
ministic forcing instead of a stochastic forcing, and also utilise β-plane ap-
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proximation in the main part of this thesis. We consider a situation that
large-scale zonal flows are superposed upon a deterministic small-scale si-
nusoidally transversal background base flow on an infinite β plane, where
the flow is confined in a plane with no curvature, and where the Coriolis
parameter is approximated linearly with respect to the meridional direction
(y−coordinate).

Zonal flows superposed upon a small-scale deterministic non-zonal back-
ground base flow was originally considered by Manfroi and Young [16]. They
have considered the situation where homogeneous zonal flow and a small-
scale sinusoidal transversal steady flow are realised as a base flow under
the existence of a suitable forcing. Then assuming the Reynolds number of
the flow to be slightly larger than the critical Reynolds number, i. e. the
situation where the base flow is slightly unstable, they considered a time
evolution of a large-scale zonal disturbance flow. The model contains the in-
teraction between the zonal disturbance flows and the background non-zonal
flow, and therefore treating a weakly nonlinear theory. Manfroi and Young
[16] derived the time evolution amplitude equation of the zonal flows by em-
ploying a multiple-scale expansion technique. This equation is a special case
of Cahn-Hilliard equation [17], and we call it the Manfroi-Young equation for
clarity. In numerical experiments of the Manfroi-Young equation, when the
bottom drag is absent, a multiple zonal-band structure emerges, and then
the gradual disappearances of the zonal jet occur one by one, forming a thin
eastward jet and a broad westward jet in the considered periodic domain
(Manfroi and Young [16]). They also pointed out that the structure with
one set of alternating zonal jets is the final state, by using a Lyapunov func-
tional analysis. Since the evolution of the zonal-band structure seen in their
numerical experiment is similar to long-time behaviour of zonal jets on a ro-
tating sphere mentioned above, we may deduce some physical insight about
the dynamics of zonal flows induced by small-scale stochastic forcing by ex-
amining the system derived by Manfroi and Young more precisely. Therefore
in the main part of this thesis, by utilising an analytical solution of steady
isolated zonal jet of the Manfroi-Young equation, we investigate the merging
and disappearing processes observed on a rotating sphere and on β plane.

In this thesis, first we summarise the results of long-time asymptotic
states of forced two-dimensional barotropic incompressible turbulence ob-
tained in Obuse et al. in §2. There, mergers and disappearances of zonal
jets are observed as one of the most the outstanding properties of long-time
behaviour of zonal flow. Then in §3, we investigate the merging and dis-
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appearing processes by utilising the Manfroi-Young model. Showing that
the merging and disappearing processes are also observed as an outstanding
property of long-time behaviour of forced two-dimensional turbulence on β
plane in §3.2, we give a brief derivation of the Manfroi-Young equation, and
then analytically derive its steady isolated zonal jet solutions in §3.3. The
disappearing process of zonal jets seen in a Manfroi and Young’s numerical
experiment and in forced two-dimensional turbulence both on β plane and
on rotating sphere, is discussed by examining the linear stability of steady
isolated zonal jet solutions and their nonlinear time evolution in §3.4. The
Merging process of zonal jets seen in forced two-dimensional turbulence both
on β plane and on a rotating sphere, on the other hand, is investigated by
considering the weak interaction between two steady isolated zonal jet solu-
tions placed apart (two-jet state) in §3.5. There, the time derivative of the
distance between two zonal jets is estimated by a perturbation method and
compared with that obtained from a numerical time integration of Manfroi-
Young equation, and then the final state of the two-jet state is numerically
examined. Finally in §3.6, we modify the Manfroi-Young model by taking
account of the spatial variation of the disturbance in the zonal direction, and
the surface variation of the fluid layer, in order to make the models a little
more realistic, and examine the linear stability of steady isolated zonal jets
in these models. In §3.7, discussions and conclusions are given.

13



Chapter 2

Long-time asymptotic states of
forced two-dimensional
turbulence on a rotation sphere

1

2.1 Introduction

A Larger-scale flow on a planet is often treated as two-dimensional flow be-
cause of the effect of the rotation of the planet and a stratification of the
fluid. Forced two-dimensional barotropic incompressible flow on a rotating
sphere is one of the most basic models used under such assumption. How-
ever, in rotating systems, even the basic properties of simple mathematical
models is not necessarily clear. One of such unclear characteristics is a long-
time asymptotic state of the system, which is one of the most interesting
properties from the viewpoints of dynamics of planetary atmospheres and
fluid dynamics. Although a great deal of study have been carried out in
order to investigate a long-time asymptotic state of a forced two-dimensional
barotropic incompressible flow on a rotating sphere, as discussed in §1, it is
not yet well clarified. One of the biggest reasons for this is that numerical
time integrations of the previous studies seem not to be long enough to ob-
tain long-time asymptotic states. Therefore, in this chapter, by following the

1Published in Obuse et al. [15]
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settings of Nozawa and Yoden [13], which is one of the most systematic stud-
ies of the asymptotic states, we reexamine the long-time asymptotic states of
two-dimensional barotropic incompressible flows on a rotating sphere with a
small-scale, homogeneous, isotropic, and Markovian random forcing to cer-
tify the asymptotic state, the outstanding properties of long-time behaviour
of zonal flows, and whether the dependence of the settings of the forcing
exists.

2.2 Equation of motion and numerical method

The model equation considered in here is a non-dimensionalised vorticity
equation for a forced two-dimensional barotropic incompressible flow on a
rotating sphere, given in longitude φ and sine latitude μ : 2

∂ζ

∂t
+ J(ψ, ζ) + 2Ω

∂ψ

∂φ
= F + ν

(∇2 + 2
)
ζ. (2.1)

Here, t is time, ψ is the stream function and ζ ≡ ∇2ψ is the vorticity,
where ∇2 is the horizontal Laplacian on a sphere. Ω is a dimensionless
constant rotation rate of the sphere, ν is the dimensionless kinematic viscosity
coefficient, and F = F (φ, μ, t) is the vorticity forcing function. J(A,B) is
the Jacobian operator: J(A,B) ≡ (∂A/∂φ)(∂B/∂μ) − (∂A/∂μ)(∂B/∂φ).
The term 2νζ in the viscosity term is necessary for the conservation of total
angular momentum of the system, as discussed in, for example, Silberman
[18].

The vorticity forcing function F is taken to be the same as that in
Nozawa and Yoden [13]; small-scale, homogeneous, isotropic, Markovian ran-
dom function is given by

F (φ, μ, jΔt) = RF (φ, μ, (j − 1)Δt) +
√

(1 − R2)F̂ (φ, μ, jΔt), (2.2)

where Δt is the time step interval, j is the number of time steps, and R =
0.982 is the memory coefficient. F̂ is a random vorticity source generated at

2In the case of Jovian atmosphere, Eq.(2.1) has been obtained aJ = 7.00 × 107 m, as
length scale and one Jovian day, 1J.day = 3.57 × 104 sec, as time scale, and thus the
non-dimensional rotation rate is ΩJ = 2π.
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each time step as

F̂ (φ, μ, jΔt) =

nf+Δn∑
n=nf−Δn

n∑
m=−n
m�=0

F̂m
n (j)Y m

n (φ, μ), (2.3)

where F̂m
n is the expansion coefficient of F̂ and Y m

n is the spherical har-
monic with total wavenumber n and zonal wavenumber m. The phase of
F̂m

n (m ≥ 0) are random and uniformly distributed on [0, 2π]. The ampli-

tude of F̂m
n (m ≥ 0) are also random with ‖ F ‖=

√
〈F̂ 2〉 being a prescribed

value, where 〈· · · 〉 denotes the spherical mean. Then ˆF−m
n (m > 0) are the

complex conjugate of F̂m
n (m > 0), since F̂ is real. This vorticity forcing is

given in a narrow band in the wavenumber space: nf − Δn ≤ n ≤ nf + Δn
with Δn = 2. Fig.2.1 shows the examples of the vorticity forcing fields with
nf = 20, 40, and 79 and Δt = 0.05.

For numerical calculations, the parameters in the governing equation (2.1)
are all set equal to those used in Nozawa and Yoden [13]. The kinematic
viscosity coefficient is ν = 3.46 × 10−6. The rotation rate of the sphere Ω
takes five different values; Ω/ΩJ = 0.25, 0.5, 1.0, 2.0, and 4.0, with ΩJ ≡ 2π.
The central total wavenumber of the forcing nf takes three different values

nf = 20, 40, and 79, and for each of nf , the rms amplitude of F̂ i.e. ‖ F ‖ is
given as shown in table 2.1 3.

A spectral method with the spherical harmonics is used for the calcula-
tion. The stream function ψ is expanded as

ψ(φ, μ, t) =

NT∑
n=0

n∑
m=−n

ψm
n (t)Y m

n (φ, μ)

=

NT∑
n=0

n∑
m=−n

ψm
n (t)Pm

n (μ) exp(imφ).

Here, ψm
n is the expansion coefficient. We set the truncation wavenumber to

be NT = 199, then we take 600 and 300 spatial grid points in longitudinal

3As Nozawa and Yoden [13] used different normalising coefficients of the spherical
harmonics for vorticity forcing from those for other variables, ‖ F ‖ has to correspond to
the value

√
2 times larger than those used in Nozawa and Yoden [13] in our calculation

using the same normalising coefficients for all variables. We greatly thank Dr. Nozawa for
having kindly shown us his simulation code.
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Figure 2.1: Vorticity forcing field at dimensionless time t = 1000. nf of the
left, the middle and the right panels are 20, 40, and 79, respectively. The top
of the sphere, the bottom of the sphere, and the centre line correspond to the
North Pole (90◦ N), the South Pole (90◦ S), and the equator, respectively.

and latitudinal direction, which are sufficiently large to eliminate the aliasing
errors. Linear terms in the governing equation are analytically treated by
using exponential function (See §A.1). The time integration is performed
with the 4th order Runge-Kutta method with a time step Δt = 0.05 from
the initial condition ζ = 0. The integration time is extended to about 100 to
500 times of that of Nozawa and Yoden [13](table 2.1). With the conditions
above, 15 simulations with different combinations of Ω and nf (table 2.1) are
performed 4 Note that the run numbers are 2− 6, 8− 12, and 14− 18, which
keep the numbering correspondence between the simulations of Nozawa and
Yoden [13] and ours.

4The convergence of the numerical simulations in this section has been checked by
performing calculations with different parameters; Δt = 0.025, which is half of the one
used here; the truncation wavenumber NT = 341 and the spatial grid points 1024 × 512
which realise almost twice higher resolution than the one here. See §A.2
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Table 2.1: Ω, nf , ‖ F ‖, and integration time in each run. Run numbers
correspond to those in Nozawa and Yoden [13].

run number Ω nf ‖ F ‖ integration time

2 0.5 π 1.0 × 105

3 π 1.0 × 105

4 2 π 20 1.412 × 10−2 1 × 105

5 4 π 1.0 × 105

6 8 π 1.0 × 105

8 0.5 π 1.0 × 105

9 π 1.0 × 105

10 2 π 40 3.929 × 10−2 1.2 × 105

11 4 π 2.5 × 105

12 8 π 1.6 × 105

14 0.5 π 1.0 × 105

15 π 1.0 × 105

16 2 π 79 1.415 × 10−1 5.3 × 105

17 4 π 5.2 × 105

18 8 π 5.7 × 105
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2.3 Results of numerical experiments

2.3.1 Zonal-mean zonal angular momentum

We first observe temporal development of zonal-mean zonal angular momen-
tum [Llon] in 0 ≤ t ≤ 1000. Here, [· · · ] denotes the zonal mean, and [Llon] is
given by

[Llon] ≡ 1

2π

∫ 2π

0

ulon

√
1 − μ2 dφ,

where ulon = −√1 − μ2 (∂ψ/∂μ) is the longitudinal component of velocity.
Fig.2.2 corresponds to the main result of Nozawa and Yoden [13], who

discussed the flow pattern by using the numerical integration from t = 0 to
1000. On runs 2, 3, 8−11, and 14−18, a structure with alternating eastward
and westward zonal jets, which we call a multiple zonal-band structure, is
formed, while westward circumpolar jets and the weak eastward flow at low
− mid latitude appear on runs 4− 6, and 12. These results are in agreement
with those of Nozawa and Yoden [13].

Then we continue the time integrations further to t = 1.0 × 105 or more,
which is at least 100 times as long as the integration time in Nozawa and
Yoden [13]. Fig.2.3 shows the temporal development of zonal-mean zonal
angular momentum [Llon]. It is apparent that, in all cases, in spite of the
classification made at t = 1000 by Nozawa and Yoden [13], a multiple zonal-
band structure appears in the course of time development, and then enters a
quasi-steady state with little change in its flow pattern, followed by a sudden
merger and disappearance of the jets. In most cases, two prograde jets merge
and a retrograde jet between the two prograde jets disappears. At the final
stage of the time integration, a zonal-band structure with only a few broad
zonal jets is realised; two jets remain in runs 2 − 6, 8 − 12, 14and 15, and
three jets in runs 16− 18. The structure with two broad jets, which consists
of a eastward and a westward jets, shows no correlation with whether the
eastward jet covers the Northern hemisphere or the Southern hemisphere.

There is a tendency that the integration time needed to reach the struc-
ture with a few zonal jets becomes longer as the forcing wavenumber nf

becomes higher and the rotation rate Ω becomes larger. For example, when
nf = 20, the case with Ω = 4π (run 5) and the case with Ω = 8π (run 6)
require 4 × 104 and 8 × 104 dimensionless time to get to the structure with
2 broad jets respectively. Also for instance, when Ω = 4π, the case with
nf = 20 (run5) , 40 (run 11) require 4 × 104, 2 × 105 dimensionless time to
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form the structures with two broad jets, and the case nf = 79 (run 17) takes
3×105 dimensionless time even to get to the structure with three broad jets.

It is interesting to note that, in most of the cases, eastward jets merge
whilst a westward jet disappears. In the process of the merger and disap-
pearance of the jets, only one of the two merging jets becomes very strong
and intrudes into the other, intercepting the development of the middle jet.

It is widely known, when the state is still with a multiple zonal-band
structure, there exist significant asymmetries between eastward and westward
jets in terms of their strength and width. Nevertheless, at sufficiently large
time, there are no apparent asymmetries between the two (or three) broad
jets.

The structure with two broad zonal jets is one of the long-time asymptotic
states of the system. The inverse cascade does not proceed any more, and the
two zonal jets cannot merge to one zonal jet because of the conservation law
of the total angular momentum of the system. Therefore, according to our
numerical results, the asymptotic states of the flow in runs 2 − 6, 8 − 12, 14,
and 15 consists of two broad zonal jets dominating over the whole sphere. On
the other hand, the final states in runs 16, 17, and 18 consists of three broad
zonal jets, but it is not clear whether or not the three jets further merge or
disappear at a later time. This will be discussed again in §2.4.

20



20=fn

π
5.

0
=

Ω

40=fn 79=fn

π
=

Ω
π

2
=

Ω
π
4

=
Ω

π
8

=
Ω

1.0E3 1.0E3 1.0E3

1.0E31.0E3

1.0E3

1.0E3

1.0E3

1.0E3

00 0

00 0

0 0 0

00 0

00 0

1.0E3

1.0E3

1.0E3 1.0E3

1.0E3

1.0E3

Time Time Time

L
a

�
tu

d
e

L
a

�
tu

d
e

L
a

�
tu

d
e

L
a

�
tu

d
e

L
a

�
tu

d
e

90

-90

0

0

0

0

0

-90

-90

-90

-90

90

90

90

90

0-0.032 0.032

Figure 2.2: Temporal development (t = 0−1000) of zonal-mean zonal angular
momentum [Llon]. The horizontal and the vertical axes in each panel are time
and latitude in linear scale, respectively. This corresponds to Fig.3 in Nozawa
and Yoden [13]
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Figure 2.3: Long-time development of the zonal-mean zonal angular momen-
tum [Llon]. The horizontal and the vertical axes in each panel are time and
latitude in linear scale, respectively. The temporal integrations have been
performed t = 0 − 1 × 105 in runs 2 − 6, 8, 9, 14, and 15, t = 0 − 1.2 × 105 in
run 10, t = 0−2.5×105 in run 11, t = 0−1.6×105 in run 12, t = 0−5.3×105

in run 16, t = 0 − 5.2 × 105 in run 17, and t = 0 − 5.7 × 105 in run 18.
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2.3.2 Energy of zonal flow

H
o

ri
z
o

n
ta

l 
w

a
v

e
n

u
m

b
e
r

H
o

ri
z
o

n
ta

l 
w

a
v

e
n

u
m

b
e
r

H
o

ri
z
o

n
ta

l 
w

a
v

e
n

u
m

b
e
r

H
o

ri
z
o

n
ta

l 
w

a
v

e
n

u
m

b
e
r

H
o

ri
z
o

n
ta

l 
w

a
v

e
n

u
m

b
e
r

H
o

ri
z
o

n
ta

l 
w

a
v

e
n

u
m

b
e
r

Time Time Time

Time Time Time

E0 E0 E0

E0E0E0

E1 E1 E1

E1E1E1

E2E2E2

E2E2E2

000

000 2.0E2

3.0E4 1.0E5

1.0E3

5.0E3

1.0E2

1.2E-7

0

000

0

9.0E-54.5E-52.7E-59.0E-6 1.45E-43.6E-7

9.0E-46.0E-43.0E-4

1.8E-52.4E-7

5.4E-33.6E-31.8E-30 1.8E-3 2.7E-39.0E-4

Figure 2.4: Temporal variation of spectral distribution of the energy of zonal
flow 〈Ez〉 in run 2. The horizontal and the vertical axes in each panel are time
in linear scale and the total wavenumber n in log scale, respectively. The
left, the middle, and the right panels in the upper row show the integrations
t = 0 − 100, 500, and 1000 respectively. The left, the middle, and the right
panels in the lower row show the integrations t = 0 − 5 × 103, 3 × 104, and
1 × 105 respectively.

The details of the formation of a structure with a few zonal jets is observed
in the temporal variation of the spectral distribution of the energy of zonal
flow

〈Ez(n, t)〉 ≡ 1

2
n(n + 1) |ψ0

n(t)|2

Note that the total wavenumber n of the stream function corresponds to the
number of the zonal jets. For instance, from the temporal development of 〈Ez〉
in run 2 (Fig.2.4), it is confirmed that at an early stage of the time integration
(t ∼ 100), wavenumbers around the forcing wavenumber (nf = 20) mainly
possess the zonal energy. The energy-containing wavenumbers then decrease,
and at t ∼ 500, the total wavenumbers n = 3 and 7 mainly possess the zonal
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energy. At t ∼ 1000, the zonal energy at n = 3 is the strongest, and this state
remains stable until t ∼ 2.4 × 104, when most of the zonal energy speedily
cascade to n = 2. The temporal variations of 〈Ez〉 from t = 0 to the final
integral times in all runs are shown in Fig.2.5, where the colour is in such a
way that the final stage of the energy transfer is stressed. Although energy-
containing wavenumbers experience a long quasi-steady period at n ≥ 3, they
resume to transfer the energy to lower wavenumbers and eventually reach to
2 (runs 2−6, 8−12, 14, and 15) or 3 (run 16). The energy transfer to lower n
is not clearly seen in runs 17 and 18 as 〈Ez〉 is very weak compared to other
runs.
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Figure 2.5: Temporal variation of spectral distribution of the energy of zonal
flow 〈Ez〉. The horizontal and the vertical axes in each panel are time in linear
scale and the total wavenumber n in log scale, respectively. The temporal
integrations have been performed t = 0−1×105 in runs 2−6, 8, 9, 14, and 15,
t = 0 − 1.2 × 105 in run 10, t = 0 − 2.5 × 105 in run 11, t = 0 − 1.6 × 105

in run 12, t = 0 − 5.3 × 105 in run 16, t = 0 − 5.2 × 105 in run 17, and
t = 0 − 5.7 × 105 in run 18.
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2.3.3 The Rhines wavenumber

In Nozawa and Yoden [13], the main total wavenumbers n of the energy of
the zonal flow 〈Ez〉 spread over a quite wide range 2 � n � nβ at t = 1000,
where nβ is the Rhines wavenumber. Since, in all runs, the inverse energy
cascades proceed further than those in Nozawa and Yoden [13], we examine
the temporal change of the Rhines wavenumber nβ on a sphere which is
defined by

nβ(t) ≡
√

〈β〉
2Urms(t)

. (2.4)

Here, Urms(t) is the rms velocity of the fluid:

Urms(t) ≡
√

2E(t),

and 〈β〉 = πΩ/2 denotes the spherical mean of β, the latitudinal gradient
of the Coriolis parameter. Also, we define the energy-weighted mean total
wavenumber nmean as the characteristic total wavenumber of the flow;

nmean(n, t) ≡

NT∑
n=1

n〈Etot(n, t)〉
NT∑
n=1

〈Etot(n, t)〉
,

where 〈Etot〉 is given by

〈Etot(n, t)〉 ≡ 1

2

n∑
m=−n

n(n + 1)|ψm
n (t)|2,

which means the energy at the total wavenumber n.
The temporal variation of nβ and nmean is shown in Fig.2.6. The charac-

teristic wavenumber nmean becomes lower than the Rhines wavenumber nβ

in a very early stage of the time integration (before t = 1000) and decreases
to reach finally a fairly low wavenumber (2 to 6) at the final stage. Note that
nmean does not reach 2 precisely even when the fully developed two broad
jets are dominating over the sphere.

The above results suggest that the inverse energy cascade or the energy
transfer to lower wavenumbers continues even when nmean < nβ, for the flow
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field finally to consist of only a few (two or three) broad zonal jets. This
also suggests that the Rhines wavenumber does not give an estimation of the
characteristic wavenumber of the asymptotic flow field.
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t = 0 − 5.7 × 105 in run 18.
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2.3.4 The total energy

Fig.2.7 shows the temporal variation of the spherical-mean energy,

〈E(t)〉 ≡ 1

4π

∫ 2π

0

∫ 1

−1

u2
lon + u2

lat

2
dμ dφ

=
1

2

NT∑
n=0

n∑
m=−n

n(n + 1) |ψm
n (t)|2,

(2.5)

where NT is the truncation wavenumber. The most impressive feature is
the stepwise increase of 〈E〉 seen in runs 9 − 12, and 15 − 18. As Huang et
al. [14] pointed out, 〈E〉 experiences quasi-steady states with no apparent
energy increase in these runs. However, the quasi-steady state is followed by
a sudden increase of energy (except the last stairs in runs 16 − 18). This
implies that the standstill of the energy increase is not an effective sign of
the realisation of an asymptotic state. It is interesting that the temporal
variation of energy and the temporal development of jets have almost perfect
correspondence in two aspects; the period in which the energy shows little
increase coincides with the period in which the number of the jets remains
constant; the time when the energy suddenly restarts increasing coincides
with the time when the jets suddenly merge/disappear 5. On the other hand,
in runs 2−6, 8, and 14, where the zonal-mean zonal angular momentum [Llon]
shows a gradual formation of two broad jets in Fig.2.3, 〈E〉 also increase
gradually, and the stepwise behaviour is not observed. These results imply
that the merger and disappearance of jets bring about the energy increase.

Concerning the asymptotic states of the flow, in the run where two broad
jets are finally formed (runs 2− 6, 8− 12, 14, and 15), we can see a tendency
that after the two broad jets are formed, 〈E〉 keeps increasing for a while,
and then slowly relaxes. This implies that it is still not obvious whether the
3-jet state at its final integral time in runs 16 − 18 is the asymptotic state,
or still a transient state before the next merger and disappearance.

5We note that this correspondence is also found in the temporal variation of the char-
acteristic wavenumber nmean in Fig.2.6.

29



20=fn
π
5.

0
=

Ω

40=fn 79=fn
π

=
Ω

π
2

=
Ω

π
4

=
Ω

π
8

=
Ω

1.0E5 1.0E5 1.0E5

1.0E51.0E5

1.0E5

1.0E5

1.0E5

1.0E5

00 0

00 0

0 0 0

00 0

00 0

1.2E5

2.5E5

1.6E5 5.7E5

5.2E5

5.3E5

0 0 0

00 0

00 0

0 0 0

000

6.5E-3

6.2E-3

6.2E-3

6.3E-3

5.2E-3

5.2E-3

3.5E-3

3.0E-3

3.2E-3

2.8E-3

2.4E-3

2.0E-3

1.2E-3

3.5E-3

4.3E-3

Time Time Time

Figure 2.7: Temporal variation of spherical-mean energy 〈E〉. The horizontal
and the vertical axes in each panel are time and the energy in linear scale,
respectively. The temporal integrations have been performed t = 0− 1× 105
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in run 17, and t = 0 − 5.7 × 105 in run 18.
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2.3.5 Stream function

Lastly, we observe the stream function and the zonal velocity on the sphere.
In all runs, the zonal flow structure becomes dominant from an early stage
of time development. At around the time of the appearance of the zonal-
band structure in Fig.2.3, the structure with alternating rather eastward and
westward flows are already formed on a sphere (not shown). As time goes on,
these flows become more zonal undergoing their mergers and disappearances,
and fairly zonal flows have been formed by the final integration times in most
of runs (Fig.2.8), though some large-scale and non-zonal equatorial flows,
which are spoiling the zonal flows, are seen (runs 2, 8, and 14), and there
are several small non-zonal flows in the regions between the eastward and
the westward flows (runs 15 and 16). The early emergence of the zonal-
band structure and the realisation of the asymptotic with fewer zonal jets
through the mergers and disappearances of the jets may tempt us to interpret
the mergers and disappearances of the jets as a consequence of a barotropic
instability of them. However, it should be remarked that, as pointed out by
Rhines[4], a laminar zonal jet with a meridional scale larger than the Rhines
scale is linearly stable owing to Rayleigh’s condition. Therefore, non-zonal
flows superimposed on the zonal jets appear to be necessary for the merger
and disappearance of the jets.
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2.4 Stability of the 3-jet structure
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Figure 2.9: (a) The spectral distribution of the stream function ψm
n at t =

4.5 × 105 in run 17 in the wavenumber space (For only 1 ≤ n ≤ 10,−10 ≤
m ≤ 10 is shown). The horizontal and the vertical axes are total wavenumber
n and zonal wavenumber m in linear scale, respectively. (b) The spectral
distribution of zonal component of the stream function ψ0

n at t = 4.5 × 105

in run 17 in the wavenumber space (For only 1 ≤ n ≤ 10 is shown). The
horizontal and the vertical axes are total wavenumber n and the stream
function ψ0

n in linear scale, respectively.

As we have seen in §2.3.1, the structure with three zonal jets seen in
runs 16, 17 and 18 is persistent and show little change for nearly 3 × 105 of
non-dimensional time, whereas the asymptotic states consist of two broad
zonal jets in the rest of the runs. It is not clear if the broad 3-jet state is the
asymptotic state of the system. Here we examine the robustness of 3-jet state
in run 17 by adding small perturbations with (n,m) = (2, 0) to the stream
function, since the main component of the stream function of the 2-jet state
in the wavenumber space is the one with n = 2, and observe whether the
three jets experience a merger and disappearance to make 2-jets state or not.

Fig.2.9 shows the stream function at t = 4.5 × 105 in run 17. Now let
us magnify the (n, m) = (2, 0) component of this stream function two, three,
five, and ten times, then make temporal development taking each new flow
as the starting flow field at t = 4.5 × 105. The temporal variations of the
zonal-mean zonal angular momentum [Llon] from t = 4.5×105 to t = 4.6×105

are shown in Fig.2.10. In all cases, the three jets do not experience merger
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and disappearance and are persistently remain until the final time. Further
more, [Llon] appears to go back to the 3-jet state even when the starting
flow field consists of two strong jets and a very weak jet, the third (weakest)
jet is enhanced in the course of temporal development, and the 3-jet state
is reproduced at t = 4.6 × 105. In fact, as shown in Fig.2.11, the absolute
value of the (n,m) = (2, 0) component of the stream function decreases, and
the (n,m) = (4, 0) component increases instead. This suggests that the 3-jet
state in runs 16, 17 and 18 are robust, and the structure with three broad
zonal jets may be the long-time asymptotic state in these cases (runs 16, 17
and 18).
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2.5 Discussions and Conclusions

In §2.2 and §2.3, we have performed 15 numerical simulations with the Marko-
vian random forcing, with different combinations of the rotation rate of a
sphere Ω, and the central total wavenumber of the forcing nf . We have inte-
grated the equation of motion numerically from t = 0 to t = 1.0 × 105 (100
times of the integration time of Nozawa and Yoden [13]) or even more, with
the zero initial condition. At an early stage of the integration, in line with
the findings of Nozawa and Yoden [13], a multiple zonal-band structure or a
structure with westward circumpolar jets emerges. However, in the course of
further time development, multiple zonal-band structures appear in all runs,
and then enter quasi-steady states showing little energy increase with nearly
steady spectral distribution of the energy, followed by a sudden merger and
disappearance of the jets, accompanying an energy increase. At the final
stage of the time integration, a zonal-band structure with only a few (two or
three) zonal jets were realised in each case. This affects the spectral distri-
bution of the zonal energy, which shows the strong energy concentration to
the total wavenumber n = 2 or 3 (this n coincides with the number of the
jets) at the final integration time. At the final stage, the characteristic total
wavenumber is lower than the Rhines wavenumber of the flow.

The numerical results show that the 2-jet state obtained here is one of the
long-time asymptotic states of the two-dimensional barotropic incompress-
ible flow with a small-scale, homogeneous, isotropic, and Markovian random
forcing on a rotating sphere, as the energy inverse cascade cannot reach the
wavenumber n = 1 due to the conservation law of total angular momentum.
Contrary to this, it is not clear whether the 3-jet state at the final integra-
tion time is the asymptotic state or it is still changing to the 2-jet state. In
§2.4, we considered the stability of the 3-jet state to the perturbation with
wavenumber (n, m) = (2, 0), and the result suggest that the 3-jet state may
be possible to be one of the asymptotic states.

Huang et al. [14] has argued that the inverse energy cascade reaches
below the Rhines wavenumber when the forcing is white noise, but not def-
initely when it is a Markovian random forcing. In our case of Markovian
random forcing, the inverse energy cascade does not stop around the Rhines
wavenumber but proceeds down to lower wavenumbers in the course of long-
time evolution. This, together with the numerical result of Huang et al. [14],
suggests that, in the forced two-dimensional barotropic incompressible flow
on a rotating sphere, the inverse energy cascade cannot be arrested around
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the Rhines wavenumber by the β effect irrespective of the kind of the forcing
given to the system, and the asymptotic states consists of a very small number
of zonal jets. This may also imply that a forced two-dimensional barotropic
incompressible flow on a rotating sphere is not an appropriate model for the
dynamics of the planetary atmospheres with multiple zonal-band structure
such as the one seen on the Jupiter, as far as long-time asymptotic states are
concerned.

Last but not least, although the real flow on a sphere becomes zonal to
some degree even at an early stage of the time integration, the mergers and
disappearances of the zonal jets seen in the simulations in this section is
not explained by the barotropic instability, as a laminar zonal jet having a
meridional scale larger than the Rhines scale, and is therefore linearly stable
as discussed in §2.4. This strongly suggests that the turbulence behind the
zonal jets is essential for the mergers and disappearances of the zonal jets,
although the energy is almost concentrated on the zonal components. Hence
in the next chapter, we consider zonal flows superposed upon simple non-
zonal flow, which roughly models turbulence, and investigate the dynamics
of zonal flows.
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Chapter 3

Asymptotic analysis of
long-time development of zonal
flow

3.1 Introduction

In forced two-dimensional turbulence on a rotating sphere, a multiple zonal-
band structure emerges from a small-scale random flow. Long numerical time
integrations in §2 show that the multiple zonal jets experience merges and
disappearances, passing over the Rhines scale as time progresses, and the
structure with two or three large-scale alternating zonal jets remain at the
final stage. Mergers and disappearances of zonal jets and the realisation of
the zonal structure whose characteristic scale if larger than the Rhines scale
are the common properties for the forced two-dimensional turbulence on a
rotating sphere irrelevant to the settings of the forcing, whether the forcing
is Markovian or white in time for example, or the settings for numerical
simulation.

In the numerical simulation in §2, the representative flow scale becomes
sufficiently larger then the Rhines scale even in the early stage of time in-
tegration. This suggests that the mergers and disappearances of the zonal
jets and the realisation of the asymptotic state may be beyond the Rhines’
theory that the robust and long-living flow structure is explained by the ar-
rest of the inverse energy cascade around the Rhines number (Rhines [4]).
Furthermore, although the zonal jets possesses most of the energy of the
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flow at sufficiently large time where fully developed zonal-band structure is
formed in the simulation, the mergers and disappearances of the jets de-
scribed above cannot be explained only by the linear instability of laminar
zonal jets, as a laminar zonal jet having a meridional scale larger than the
Rhines scale becomes linearly stable. This strongly suggests that the effect of
the background small-scale turbulence is essential for the theory of long-time
behaviour of zonal jets in two-dimensional turbulence on a rotating sphere.

One of the possible interpretations of such a disappearance of zonal jets
is that the state with multiple zonal jets may be dynamically unstable and
the transition to a stable state with wider and fewer zonal jets may occur.
It is accordingly tempted to examine the stability of zonal jets driven and
maintained by a small-scale forcing and background small-scale turbulent
motions.

Also, the interaction between neighbouring zonal jets through their tails
and the background turbulence may be one of the conceivable physics which
are working in a merging process of zonal jets described above. Then, the ap-
plication of a reduction theory for the interaction between two isolated zonal
jets under the influence of background small-scale turbulence is expected to
work.

However, it is difficult to investigate the properties of zonal flows induced
by a small-scale stochastic forcing, because it is hard to construct an ana-
lytically tractable and reasonable physical configuration. We therefore study
zonal flows induced by a small-scale deterministic forcing instead of a stochas-
tic forcing as a first step. Manfroi and Young [16] investigated the evolution
of zonal flows on β plane when there is a homogeneous zonal flow and a small-
scale sinusoidal transversal flow as a background base flow. They derived a
time evolution equation of zonal flows with a small-scale background flow by
using a multiple-scale expansion technique. This equation is a special case
of Cahn-Hilliard equation [17], and we call it the Manfroi-Young equation
for clarity. From numerical experiments of the Manfroi-Young equation in
Manfroi and Young [16], it was found that, when the bottom drag is absent,
a multiple zonal-band structure emerges, and then gradual disappearances
of the zonal jet occur one by one, forming a thin eastward jet and a broad
westward jet in the considered periodic domain. They also pointed out that
the structure with one set of alternating zonal jets is the final state by using
a Lyapunov functional analysis. Since the evolution of the zonal band struc-
ture seen in their numerical experiment is similar to long-time behaviour
of zonal jets on a rotating sphere mentioned above, we may deduce some
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physical insight about the dynamics of zonal flows induced by small-scale
stochastic forcing by examining the system derived by Manfroi and Young
more precisely.

Therefore in this chapter, based on the work of Manfroi and Young [16],
we investigate the merging and the disappearing processes of zonal jets ob-
served in two-dimensional turbulence on a rotating sphere and β plane. Show-
ing that the merger and disappearance of zonal also observed as an outstand-
ing property of forced two-dimensional turbulence on β plane §3.2, we briefly
introduces the model and the equation used in Manfroi and Young [16],
and then we analytically derive the steady isolated zonal jet solution of the
Manfroi-Young equation in §3.3. In §3.4, to discuss the disappearing process,
we examine the linear stability of the steady jet solutions both numerically
and partially analytically, and also confirm their nonlinear time evolution.
§3.5 considers the merging process of zonal jets by investigating the weak
interaction between two identical steady zonal jets derived in §3.3. The time
derivative (Ei [19]) of the distance between two identical zonal jets (two-jet
state) is analytically estimated by using a perturbation method, and it is
numerical calculated for a certain set of parameters. This is then compared
with the result of numerical time integration of the Manfroi-Young equation.
The strong nonlinear stage and the final state of the two-jet state are also
examined numerically. Finally, We make modifications to the Manfroi and
Young’s model by taking account of the spatial variation of the disturbance
in the zonal direction, and the surface variation of the fluid layer, in order
to make the model a little more realistic, and investigate the linear stability
of steady isolated zonal jets in these models in §3.6. Then discussions and
conclusions are given in §3.7.
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3.2 Long-time behaviour of forced two-dimensional

turbulence on a β plane

β-plane approximation is often used in order to treat problems on a rotating
sphere much simpler. The flow in this model is confined in a plane with no
curvature, and the Coriolis parameter there is linearly approximated with re-
spect to the meridional direction (y−coordinate). Although these treatments
make the situation much simpler, same as the spherical-geometry case, long-
time behaviour of forced two-dimensional turbulence on β plane is not yet
fully known or understood.

Therefore in this section, we perform long-time integration of forced two-
dimensional barotropic incompressible flows on a β to see its long-time be-
haviour.

3.2.1 Equation of motion and numerical method

A non-dimensionalised vorticity equation for a forced two-dimensional barotropic
incompressible flow on a β plane at the position where (longitude, latitude)
= (φ0, θ0) on a rotating sphere is written by northward and eastward coor-
dinates (x, y) as :1

∂ζ

∂t
+ J(ψ, ζ) + β

∂ψ

∂x
= F + ν∇2ζ. (3.1)

Here, t is time, ψ is the stream function and ζ ≡ ∇2ψ is the vorticity,
where ∇2 is the horizontal Laplacian. Ω is a dimensionless constant rotation
rate of the sphere, β ≡ 2Ω cos(θ0) is the β parameter, and F = F (x, y, t)
is the vorticity forcing function. ν is the dimensionless kinematic viscosity
coefficient, and set to be ν = 3.46 × 10−6 here. J(A,B) is the Jacobian
operator: J(A,B) ≡ (∂A/∂x)(∂B/∂y) − (∂A/∂y)(∂B/∂x). The domain of
the β plane is [0, Lx] × [0, Ly].

The vorticity forcing function F is taken to be the same type as that
used for the case of spherical geometry in §2.2; small-scale, homogeneous,
isotropic, Markovian random function, is given by

F (x, y, jΔt) = RF (x, y, (j − 1)Δt) +
√

(1 − R2)F̂ (x, y, jΔt) (3.2)

1Same as the case of spherical geometry in §2.2, the non-dimensionalisation here is
done by utilising the radius of the sphere as a length scale and inverse of the rotation rate
of the sphere as a time scale.
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Figure 3.1: Vorticity forcing field at dimensionless time t = 5000. kf of the
left and right panels are 20and 40, respectively.

where Δt is the time step interval, j is the number of time steps, and R =
0.982 is the memory coefficient. F̂ is a random vorticity source generated at
each time step as

F̂ (x, y, jΔt) =
∑
kx,ky

kf−Δk≤k≤kf+Δk

F̂kx, ky(j) exp(
i 2πkxx

Lx

) exp(
i 2πkyy

Ly

). (3.3)

where F̂kx,ky(j) is the double Fourier expansion coefficient of F̂ , 2πkx

Lx
and

2πky

Ly
are wavenumbers of x− and y− directions. The phase of F̂kx,ky are

randomly and uniformly distributed on [0, 2π]. The amplitude of F̂kx,ky

are also random with ‖ F ‖=
√

〈F̂ 2〉 being a prescribed value, where 〈· · · 〉
denotes the spatial mean on the β plane. Then F̂−kx,−ky are the complex

conjugate of F̂kx,ky , since F̂ is real. This vorticity forcing is given in a small
square region in the wavenumber space: kf−Δk ≤ k ≤ kf +Δk with Δk = 2,

where k ≡
√

kx
2 + ky

2 and kf is a central total wavenumber of the forcing.

Fig.3.1 shows the examples of the vorticity forcing fields with kf = 20, 40
and Δt = 0.05.

For the domain of the β plane [0, Lx]× [0, Ly], we consider Lx = Ly = 2π
and a double periodic boundary condition. A double Fourier spectral method
is used for the calculation, by which the stream function ψ, for example, is
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expanded as

ψ(x, y, t) =

KxT∑
kx=−KxT

KyT∑
ky=−KyT

ψkx,ky(t) exp(i 2πkx x) exp(i 2πky y).

Here, ψkx,ky is the expansion coefficient. We set the truncation mode numbers
to be KxT = KyT = 170, then we take 512 spatial grid points for both in x−
and y− directions, which are sufficiently large to eliminate the aliasing errors.
Linear terms in the governing equation are analytically treated by using
exponential function (See §A.3). The time integration is performed with
the 4th order Runge-Kutta method with a time step width Δt = 0.05 from
the initial condition ζ = 0. With the conditions above, we have performed
numerical simulations with different combinations of β, kf and ‖ F ‖. 2

3.2.2 Results of numerical experiments

x-mean zonal x-direction velocity

Temporal development of x−mean x−direction velocity [ux], where ux is the
x-component of the velocity is shown in Fig.3.2. Here, [ ] denotes the x-mean,
and [ux] is given by

[ux] ≡ 1

2π

∫ 2π

0

ux dx,

Same as in the numerical simulations on a rotating sphere in §2.3.1, a mul-
tiple zonal-band structure appears in the course of time development. This
is followed by sudden mergers and disappearances of the zonal jets. The
intermittent mergers and disappearances of the zonal jets may be a robust
and common property of long-time behaviour of zonal flows on both a two-
dimensional rotating sphere and β plane.

There is an outstanding tendency which is not so strongly seen in the
spherical geometry case in §2.3.1; the mergers of the jets only occur for
eastward jets and the disappearances of the jets only occur for westward
jets, at least for the all cases we have considered 3.

2The convergence of the numerical simulations has been checked by performing cal-
culations with different parameters; Δt = 0.025, which is half of the one used here; the
truncation mode numbers KxT = KyT = 340 and the spatial grid points 1024×1024 which
realise twice higher resolution than the one here. See §A.4.

3Although eastward jets tend to merge whilst a westward jets tend to disappear, we
observe some mergers of westward jets in the spherical geometry case in §2.3.1.
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In contrast to the spherical geometry case in §2.3.1, we observe cases with
multiple zonal-band structure even at non-dimensional time t = 5.0×105 for
certain sets of parameters (See Fig.3.2 (b) for example.). The survival of mul-
tiple zonal-band structure at sufficiently large time on β plane may of course
be attributed from conditions for the numerical simulations we have consid-
ered: strength and spatial scales of the forcing, for example. However, it is
undeniable that the most critical reasons for this is caused by more funda-
mental differences between two systems: the absence of curvature on β plane;
and the absence of North and South poles and usage of periodic boundary
condition for North-South direction, i.e.,y−direction on β plane. Although
the result here does not give a simple suggestion for asymptotic stats on β
plane, it still suggests that the intermittent mergers and disappearances of
the zonal jets is an important and fundamental property of the long-time be-
haviour of the zonal flows on β plane as well as on a two-dimensional rotating
sphere.
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Figure 3.2: Long-time development of the x−mean x−velocity [ux] for (a):
kf = 20, β = 20.0, and ‖ F ‖= 1.412 × 10−2 (b): kf = 40, β = 10.0, and
‖ F ‖= 3.929 × 10−2. The horizontal and the vertical axes in each panel are
time and y in linear scale, respectively. The temporal integrations have been
performed (a): t = 0 − 1.5 × 105 and (b): t = 0 − 5.0 × 105.

The Rhines wavenumber

In the spherical-geometry case in §2.3.3, the inverse energy cascades proceed
further even after the characteristic total wavenumber of the flow became
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lower than the Rhines wavenumber, reflecting the realisation of the asymp-
totic states with a few large jets. This implies that the long-time behaviour of
the zonal flow on the rotating sphere is beyond Rhines’ theory that the robust
and long-living flow structure is explained by the arrest of the inverse energy
cascade around the Rhines number [4]. Here we compare the characteristic
total wavenumber of the flow and the Rhines wavenumber to see whether
the inverse energy cascade is stopped by the rotation effect around the the
Rhines wavenumber, and whether Rhines’ theory is valid in the long-time
behaviour of the zonal jets on β plane.

Rhines wavenumber kβ on a β plane is defined by

kβ(t) ≡
√

β

2Urms(t)
. (3.4)

Here, Urms(t) is the rms velocity of the fluid:

Urms(t) ≡
√

2E(t),

where E is the kinematic energy of the flow.
Now we define the energy-weighted mean total wavenumber kmean as the

characteristic total wavenumber of the flow;

kmean(k, t) ≡
∑KxT

kx=−KxT

∑KyT

ky=−KyT
k〈Etot(k, t)〉∑KxT

kx=−KxT

∑KyT

ky=−KyT
〈Etot(k, t)〉

,

where k =
√

kx
2 + ky

2 is the total wavenumber. 〈Etot〉 is given by

〈Etot(k, t)〉 ≡
∑
kx,ky√

kx
2+ky

2=k

(kx
2 + ky

2) |ψkx,ky(t)|2,

and this is the energy at the total wavenumber k.
The temporal variation of the Rhines wavenumber kβ and the charac-

teristic wavenumber kmean is shown in Fig.3.3. Note that both of them are
infinity at t = 0, because E(0) = 〈Etot〉 = 0. The characteristic wavenumber
kmean becomes lower than the Rhines wavenumber kβ in a very early stage
of the time integration, and decreases to reach a fairly low wavenumber at
the final stage. The result suggests that the inverse energy cascade or the
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energy transfer to lower wavenumbers continues even when kmean < kβ, and
that the Rhines wavenumber does not give an estimation of the characteristic
wavenumber of the asymptotic flow field. Note that kmean does not reach 1
precisely, even when the fully developed two broad jets are dominating over
the β plane.

Now, We consider the necessary condition for the instability of a laminar
zonal jet whose x−velocity is ux on β plane: β − ∂2ux/∂y2 changes its sign
at least once in the considered domain. Then the scale analysis

β − ∂2ux

∂y2
∼ β − Urms

L2
β

∼ β − β = 0, (3.5)

where Lβ is the Rhines scale defined by Lβ ≡ 1/kβ, implies that the jets’
mergers and disappearances seen in Fig.3.2 cannot be explained in a frame-
work of laminar zonal flows, since a laminar jet having a meridional (y−direction)
scale larger than the Rhines scale Lβ becomes linearly stable, and that the
effect of the background turbulence, though it is far weaker than the zonal
jets, is an essential element for the long-time behaviour of zonal jets.
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Figure 3.3: Temporal variation of the Rhines wavenumber kβ (solid line) and
the characteristic wavenumber kmean (dashed line) for (a): kf = 20, β = 20.0,
and ‖ F ‖= 1.412 × 10−2 (b): kf = 40, β = 10.0, and ‖ F ‖= 3.929 × 10−2.
Note that both kβ and kmean are infinity at t = 0 because E(0) = 〈Etot〉 = 0.
The horizontal and the vertical axes in each panel are time in linear scale and
the Rhines wavenumber and the mean wavenumber in log scale, respectively.
The temporal integrations have been performed (a): t = 0 − 1.5 × 105 and
(b): t = 0 − 5.0 × 105.
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3.3 Weakly nonlinear model and its steady

isolated jet solution

From Sections §2 and §3.2, it has been confirmed that the intermittent merg-
ers and disappearances of the zonal jets is one of the most fundamental and
outstanding properties of the long-time behaviour of the zonal flow on both
a two-dimensional rotating sphere and β plane. In addition to this, we have
to keep it in our mind that, in these cases, it is not enough to discuss zonal
jets in the framework of laminar flows, and the influence of the background
turbulence should always be taken into account when we discuss mergers
and disappearances of the zonal jets. This suggest that, in order to un-
derstand the long-time behaviour of the zonal structure appearers in forced
two-dimensional Navier-Stokes turbulence on a rotating sphere and β plane,
it is necessary to investigate the mechanism of merger and disappearance
of the zonal jets having turbulent flows in their background. For this pur-
pose, we now make the most of one of the features of β plane approximation,
i.e., we consider zonal flows and simply-modelled turbulence on an infinite β
plane, and perform asymptotic analysis by utilising the spatial variables.

In this section, we briefly introduce weakly-nonlinear model of zonal flows
induced by a small-scale deterministic forcing instead of a stochastic forcing
and the amplitude equation of zonal flow, originally derived by Manfroi and
Young [16]. Then we analytically derive one of its steady isolated jet solu-
tions.

3.3.1 Model and the Manfroi-Young equation

To investigate zonal flows induced by a small-scale deterministic forcing in-
stead of a stochastic forcing, Manfroi and Young [16] derived the governing
equation of a zonal flow having a small-scale sinusoidal transversal flow be-
hind it on a β plane, and studied their temporal evolution. Here, we briefly
explain their derivation of the governing equation.

Let us consider an incompressible forced two-dimensional flow on a β
plane where the governing equation for such flow is written as

∂Z

∂t
+ J(Ψ, Z) + β

∂Ψ

∂x
= F + ν∇2Z. (3.6)

Here t, Ψ, and Z = ∇2Ψ are the time, the stream function, and the vortic-
ity. F and ν are the vorticity forcing function and the kinematic viscosity
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coefficient. J(A,B) is the Jacobian operator: J(A,B) ≡ (∂A/∂x)(∂B/∂y)−
(∂A/∂y)(∂B/∂x), and ∇ = (∂/∂x, ∂/∂y).

Suppose a steady base flow with the velocity

(uB, vB) =

(
−∂ΨB

∂y
,
∂ΨB

∂x

)
= (UB,mΨB0 sin mx) (3.7)

is driven by a suitable forcing function on this β plane, where ΨB, uB and vB

are the stream function, x and y components of the base flow, respectively, UB

and ΨB0 are constants, and m is an integer. Now assume that the base flow
is slightly unstable, that is, the Reynolds number of the base flow R ≡ ΨB0/ν
is slightly larger than the critical Reynolds number Rc,

R = Rc(1 + ε2), (3.8)

where ε is a small parameter. Then we write the total stream function of the
flow as Ψ = ΨB(x) + ψ(x, y, t), where ψ(x, y, t) is the stream function of the
disturbance flow and, from Eq.(3.6), satisfies

∂ζ

∂t
+UB

∂ζ

∂x
+mΨB0

(
∂ζ

∂y
+ m2∂ψ

∂y

)
sin(mx)+J(ψ, ζ)+β

∂ψ

∂x
= ν∇2ζ, (3.9)

in which ζ ≡ ∇2ψ is the vorticity of the disturbance flow. Introducing new
variables,

(x̂, ŷ) ≡ (mx,my), t̂ ≡ tm2ν, ψ̂ ≡ ψ

ν
, (3.10)

we non-dimensionalise Eq.(3.9) as

∂ζ̂

∂t̂
+ ûB

∂ζ̂

∂x̂
+ R

(
∂ζ̂

∂ŷ
+

∂ψ̂

∂ŷ

)
sin x̂ + J(ψ̂, ζ̂) + β̂

∂ψ̂

∂x̂
= ∇̂2ζ̂ , (3.11)

where

ûB ≡ uB

mν
, β̂ ≡ β

m3ν
. (3.12)

We, hereafter, drop the notation ˆ for the dimensionless variables and oper-
ators for simplicity.

Using the small parameter ε defined in (3.8), we now perform perturbation
expansions of the stream function of the disturbance flow ψ, UB, and the β
parameter:

ψ = ψ0 + εψ1 + ε2ψ2 + · · · ,

UB = UB0 + εUB1 + ε2UB2 + · · · ,

β = β0 + εβ1 + ε2β2 + · · · ,

(3.13)
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and multiple-scale expansions:

∂

∂x
→ ∂

∂x
+ ε6 ∂

∂ξ
,

∂

∂y
→ ε

∂

∂η
,

∂

∂t
→ ε4 ∂

∂τ
, (3.14)

where η, τ and ξ are defined as

η ≡ εy, τ ≡ ε4t, ξ ≡ ε6x. (3.15)

Substituting the expanded variables and operators (3.13), (3.14), and
(3.15) into Eq.(3.11), then we obtain the equation for the O(1) elements

∂4ψ0

∂x4
− UB0

∂3ψ0

∂x3
− β0

∂ψ0

∂x
= 0, (3.16)

which is satisfied if ψ0 depends on ξ, η, τ as

ψ0 = A(ξ, η, τ ). (3.17)

Substituting the expanded variables and operators (3.13), (3.14), and (3.15)
into Eq.(3.11) again, we next take the x-mean of it. By gathering the O(ε6)
elements, we obtain

∂

∂τ

∂2A

∂η2
+ 2

∂4A

∂η4
+ 3

∂6A

∂η6
− ∂3

∂η3

[(
β1 − UB1 +

∂A

∂η

)2
∂A

∂η

]

+
1

3

∂3

∂η3

(
∂A

∂η

)3

+ β0
∂A

∂ξ
= 0.

(3.18)

Considering the ξ-independent solution A(η, τ) of Eq. (3.18), Eq.(3.18) can
be integrated over η twice. After all, the amplitude equation for the O(1)
elements of the x-independent disturbance flow U(η, τ)

U(η, τ) ≡ −∂A(η, τ)

∂η
, (3.19)

is obtained as

∂U

∂τ
= −(2 − γ2)

∂2U

∂η2
− 3

∂4U

∂η4
− 2γ

∂2U2

∂η2
+

2

3

∂2U3

∂η2
, (3.20)

where γ is defined as
γ ≡ β1 − UB1. (3.21)

50



Eq.(3.20) governs zonal flows having a small-scale sinusoidal transversal back-
ground flow. We call Eq.(3.20) the Manfroi-Young equation, and investigate
the linear stability of its steady solutions. The full derivation of Eq.(3.20) is
available in §4 in Manfroi and Young [16].

The Manfroi-Young equation is a special form of the one-dimensional
Cahn-Hilliard equation [17] whose steady solutions and their stabilities have
attracted much attention. Langer [20] studied the linear stability of the one-
dimensional steady solution of the form of tanh, and also gave an intuitive
explanation for the general stability criterion for a steady solution with a
periodic boundary condition in an arbitrary dimensional case, which was
extended to the cases of a natural boundary condition, or a null flux boundary
condition, by Novick-Cohen and Segel [21]. Bettinson and Rowlands [22]
performed linear stability analysis of a one-dimensional steady kink solution
to a general Cahn-Hilliard equation in an infinite domain for both small- and
large-wavenumber three-dimensional perturbations, and gave an approximate
formula for eigenvalues by perturbation methods. The linear stability of
a steady one-dimensional kink-antikink solution, which is called a bubble
solution, and of a multibubble solution was studied by Argentina et al. [23].
The bifurcations originating from varying system size are discussed for both
a periodic boundary condition and a natural boundary condition. Villain-
Guillot [24] suggested that steady non-symmetric soliton-lattice solutions,
which belong to the family of the soliton-lattice solutions discussed in Novick-
Cohen and Segel [21] are linearly unstable. Although a great deal of research
has been carried out for the stability of steady solutions of the Cahn-Hilliard
equation, to the best of the authors’ knowledge, the steady solution which
consists of one bump in an infinite domain and their linear stabilities relevant
to the present β plane problem have not been investigated yet. Thus in
the following two sections, we derive steady solutions of the Manfroi-Young
equation analytically and investigate their linear stability both numerically
and analytically.

3.3.2 Steady isolated zonal jet solution U0

4

Now, we consider a steady solution U0(η) of Eq.(3.20), having one bump

4Published in Obuse et al. [25]
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and U0 → UW as η → ±∞, where UW is a constant5. The equation and
boundary conditions for the U0 are

−(2−γ2)
d2U0

dη2
− 3

d4U0

dη4
− 2γ

d2U2
0

dη2
+

2

3

d2U3
0

dη2
= 0, (3.22a)

U0 → UW ,
dU0

dη
→ 0 as η → ±∞. (3.22b)

To solve Eq.(3.22a), we first integrate it over η twice, and use conditions
(3.22b)6. Multiplying dU0/dη to both hand sides of the obtained equation,
and integrating it with η again, we have

dU0

dη
= ±1

3

√
−V (U0). (3.23)

Here, the potential V (U0) is defined as

V (U0) ≡ −U4
0 + 4γU3

0 + 3(2 − γ2)U2
0 − 6C1U0 − 3C2, (3.24)

and the constants of integration C1 and C2 are

C1 = (2 − γ2)UW + 2γU2
W − 2

3
U3

W ,

C2 = U4
W − 8

3
γU3

W − (2 − γ2)U2
W .

(3.25)

To realise the solution U0 that takes the same value UW at η → ±∞, the
potential V (U0) should have the shape shown in Fig.3.4, specifically; V (U0)
must take a double root UW and two other different real roots UE and UR

(UE = UR)7 V (U0), as a consequence, should be expressed as

V (U0) = (U0 − UW )2(U0 − UE)(U0 − UR),

UE < UR, UW = UE, UW = UR.
(3.26)

5The steady solution having the eastward/westward bump is expressed as a steady
solution with an/a eastward/westward jet hereafter.

6We adopt natural conditions d2U0/dη2, d3U0/dη3 → 0 (η → ±∞)
7UW ,UE correspond to the UW , UE in Fig.3 in Manfroi and Young[16], and UR is the

rest root. For the case U0 is an eastward jet, UW and UE give the westward and eastward
maximum values of the U0, respectively; for the case U0 is a westward jet, UR and UW

give the westward and eastward maximum values of the U0, respectively.
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Figure 3.4: Examples of the shape of potential V (U0) which realises a solution
U0(η) that satisfies U0 → UW as η → ±∞. UW < UE < UR for V (U0) which
realises U0 with an eastward jet (Left: for the case γ = −5, UW = 1), while
UE < UR < UW for V (U0) which realises U0 with a westward jet (Right: for
the case γ = 5, UW = −1).

From the definitions (3.24) and (3.25), on the other hand, V (U0) can be
factorised as

V (U0) = −(U0 − UW )2{U0
2 − 2(2γ − UW )U0 − (6 − 3γ2 + 8γUW − 3UW

2)}.
(3.27)

As V (U0) has to be factorised to the form of Eq.(3.26), there must exist two
different real roots UE and UR in addition to UW . For the discriminant of
the last factor of Eq.(3.27) to be positive, we have

γ − 1

2

√
6(γ2 + 2) < UW < γ +

1

2

√
6(γ2 + 2). (3.28)

Note that in the case where

UW = γ−1

2

√
6(γ2 + 2) (3.29a)

or

UW = γ+
1

2

√
6(γ2 + 2), (3.29b)

V (U0) has two real double roots UW and UE = UR, the only solution of
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(3.22a) and (3.22b) is U0 = UW
8. The parameters UW , UE, and UR should

satisfy UW < UE < UR (for an eastward jet) or UE < UR < UW (for a
westward jet) as shown in Fig.3.4. Therefore, the last factor of (3.27),

U2
0 − 2(2γ − UW )U0 − (6 − 3γ2 + 8γUW − 3U2

W ) = (U0 − UE)(U0 − UR),

has to be positive at U0 = UW , and thus

UW < γ − 1

2

√
2(γ2 + 2) or γ +

1

2

√
2(γ2 + 2) < UW , (3.30)

should be satisfied. Again note that the case

UW = γ−1

2

√
2(γ2 + 2) (3.31a)

or

UW = γ+
1

2

√
2(γ2 + 2). (3.31b)

corresponds to the situation that either UE or UR is the same value as the
double root UW .

The conditions (3.28) and (3.30) are shown in Fig.3.5 where the hatched
regions give (γ, UW ) corresponding to a steady solution U0 which has one
bump and takes the value UW at η → ±∞. The upper hatched region
corresponds to U0 with a westward jet, while lower hatched region to U0

with an eastward jet.
Under the conditions of (3.28) and (3.30), U0 has a double real root UW

and two other different real roots UE and UR;

UE = 2γ − UW −
√
−2U2

W + 4γUW + γ2 + 6, (3.32)

UR = 2γ − UW +
√
−2U2

W + 4γUW + γ2 + 6. (3.33)

8Apart from this uniform solution, if we do not assume that U0 should converge to a
same value, UW , as η goes to ±∞, Eq.(3.22a) has a sigmoid solution

U0sig = ±
(

UE +
UW − UE

exp[(η − c)(UW − UE)/3] + 1

)
,

where c is a constant which determine the centre position of these solutions. These solution
U0sig are the asymptotic forms of the rising and decreasing curves of U0, i.e. U0 is made
by superposing two U0sig of different signs.
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Figure 3.5: The regions of (γ, UW ) which realise one-bump steady solution U0.
The upper and lower hatched regions correspond to U0 with an eastward jet
and with a westward jet, respectively. The boundary curves are, from above,
(3.29b)(dark green), (3.31b)(brown), (3.31a)(light blue), and (3.29a)(purple).

Eq.(3.23) is then written as

dU0

dη
= ±1

3

√
(U0 − UW )2(U0 − UE)(U0 − UR). (3.34)

A steady solution with an eastward jet U0east(η) (UW ≤ U0east(η) ≤ UE) is
obtained by integrating Eq.(3.34) as

∫ η

ηE

dη = ±3

∫ U0east(η)

UE

dU0

(U0 − UW )
√

(U0 − UE)(U0 − UR)
,
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Figure 3.6: Examples of steady solutions with an eastward jet; (γ, UW ) =
(5.0,−1.363961):dashed line, (5.0, 0.5):thicker solid line, (5.0, 1.28):thinner
solid line.

where ηE is defined to satisfy U0east(ηE) = UE, which leads to

U0east(η) =
a2

eastUR tanh2
[

(UR−UW )aeast

6
η
]
− UE

a2
east tanh2

[
(UR−UW )aeast

6
η
]
− 1

, (3.35a)

aeast ≡
√

UE − UW

UR − UW

. (3.35b)

Examples of U0east(η) are shown in Fig.3.6 for some combinations of γ and
UW . Jets near the boundary curve (3.29a) have trapezoid-like shape; jets near
the boundary curve (3.31a) are almost flat; and jets apart from the bound-
aries have sharp shapes. A steady solution with a westward jet U0west(η)
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(UR ≤ U0west(η) ≤ UW ) is similarly obtained as

U0west(η) =
a2

westUE tanh2
[

(UE−UW )awest

6
η
]
− UR

a2
west tanh2

[
(UE−UW )awest

6
η
]
− 1

, (3.36a)

awest ≡
√

UR − UW

UE − UW

. (3.36b)

Note that no steady solution exists on the boundary curves (3.29a), (3.29b),
(3.31a), and (3.31b).
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3.4 Disappearing processes of zonal jets – Lin-

ear stability of U0

9

From numerical experiments of the Manfroi-Young equation (3.20), Man-
froi and Young [16] found, when the bottom drag is absent, a multiple zonal-
band structure, i.e. the structure with multiple zonal jets emerges, and then
gradual disappearances of the zonal jet occurs one by one, forming a thin
eastward jet and a broad westward jet in the considered periodic domain.
We now pay attention to the disappearing process of zonal jets seen in their
numerical simulation. This is discussed by examining the linear stability of
steady isolated zonal jet solution U0 introduced in §3.3.2, and their nonlinear
time evolution.

3.4.1 Characteristic equation and eigenvalues

To investigate the linear stability of a steady solution U0(η), we first derive
its characteristic equation. Consider the case in which a sufficiently small
perturbation v(η, τ) is added to the steady solution U0(η). Substituting U =
U0 + v for U in Eq.(3.20), we linearise it with respect to v. Further, we
assume v to be in the following form,

v = exp(στ)f(η),

where f(η) is a certain function, which satisfies,

f → 0,
df

dη
→ 0 as η → ±∞.

Then, we have

σf =
d2

dη2

{
[−(2 − γ2) + (2U2

0 − 4γU0)]f − 3
d2f

dη2

}
. (3.37)

Assume that σ = 0. By integrating Eq.(3.37) over η twice, we find∫ ∞

−∞

∫ η

−∞
f(η′)dη′ dη = 0.10

9Published in Obuse et al. [25]
10We assume d2f/dη2, d3f/dη3 → 0 (η → ±∞) as in Eq.(3.22a)
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Now rewriting f(η) as

f(η) =
d2g(η)

dη2
, g(η) → 0,

dg(η)

dη
→ 0, as η → −∞.

We have

g(η) = g(η) − g(−∞) =

∫ η

−∞

∫ η′

−∞

d2g(η′′)
dη′′2 dη′′ dη′ =

∫ η

−∞

∫ η′

−∞
f(η′′) dη′′ dη′.

This means that, g, dg/dη → 0 as η → ±∞. Putting f = d2g/dη2 into
Eq.(3.37), and integrating this equation over η twice, the characteristic equa-
tion is obtained as follows.

σg =
[−(2 − γ2) + (2U2

0 − 4γU0)
] d2g

dη2
− 3

d4g

dη4
, (3.38)

g → 0,
dg

dη
→ 0 as η → ±∞.

From the symmetry property of the characteristic equation, it easily follows
that investigating the linear stability of U0east with γ ≥ 0 is enough to know
the linear stability of all the U0 (See §A.5). It is easily verified that the
characteristic equation (3.38) also holds for σ = 0.

We solve the eigenvalue problem (3.38) numerically by the Fourier spec-
tral method, where U0, U

2
0 , g are expressed as

U0 =
K∑

k=−K

uk exp

(
ik

2π

Lη

η

)
,

U2
0 =

K∑
k=−K

dk exp

(
ik

2π

Lη

η

)
,

g =
K∑

k=−K

ck exp

(
ik

2π

Lη

η

)
.

(3.39)

We consider the domain [0, Lη] and a periodic boundary condition for η. The
width of the domain, Lη, was determined so that the numerical calculation
converges sufficiently 11. The width of the spatial grids was set to be around

11We have performed numerical calculations with both Lη = 150 and Lη = 225, and
have confirmed that the relative errors are less than 0.1%.
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10−3, and the truncation mode number K was taken in the way that the
maximum wavenumber 2πK/Lη becomes 10π for each case.

Fig.3.7 shows the real parts of the leading eigenvalues, σfr ≡ Max{Re(σ)|
(γ, UW ) : fixed}, for γ = 0.0, 1.0, and 5.0 and UW satisfying the conditions
(3.28) and (3.30). It is apparent that every σfr is positive and that the
maximum value of σfr becomes larger for the larger γ, while σfr converges to
0 as UW approaches the two boundary curves (3.29a) and (3.31a) (the purple
and the light blue curves in Figs.3.5 and 3.7). The square roots of σfr are
plotted in Fig.3.8. It is clear that

√
σfr are aligned in the vicinity of the point

on the two boundaries (3.29a) and (3.31a), and the zeros on the line obtained
by the least square fitting are quite precisely on the boundaries (3.29a) and
(3.31a) with the relative errors less than 0.4% for γ = 0, 1.0, and 5.0. The
numerical results therefore show that the real part of every leading eigenvalue
is positive, implying that the steady solutions U0(η; γ, UW ) are all linearly
unstable.
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Figure 3.7: The real parts of the leading eigenvalues (red squares) for (a):
γ = 0.0, (b): 1.0, and (c): 5.0. The purple and the light blue lines denote
the two boundaries (3.29a) and (3.31a), which also correspond to the purple
and the light blue curves in Fig.3.5. The green circle and the blue lozenge
are the zeros obtained from the fitted lines shown in Fig.3.8.
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Figure 3.8: The square roots of the real parts of the leading eigenvalues (red
squares) for (a): γ = 0.0, (b): 1.0, and (c): 5.0. The purple and the light blue
lines denote the two boundaries (3.29a) and (3.31a), which also correspond
to the purple and the light blue curves in Fig.3.5. The dark green and the
dark blue lines are the fitted lines from the data, and the green circle and
the blue lozenge are the zeros obtained from these fitted lines.
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3.4.2 The analytical evaluation of the eigenvalues

It is numerically showed in §3.4.1 that, for a fixed γ, the real part of the
leading eigenvalues σfr = Max{Re(σ)|(γ, UW ) : fixed} has zeros of the second
order with respect to UW on the curves (3.29a) and (3.31a). This feature is
partly confirmed analytically below.

Around the upper boundary

On the boundary of the curve (3.31a), UW is given by

UW = γ − 1

2

√
2 (γ2 + 2) ≡ UWC

,

which give UE ≡ UEC
= UWC

and

UR = (2γ − UWC
) +
√

−2U2
WC

+ 4γUWC
+ γ2 + 6 ≡ URC

,

and then

UEC
− UWC

= 2(γ − UWC
) −
√
−2U2

WC
+ 4γUWC

+ γ2 + 6 = 0. (3.40)

Let us consider a point close to C(γ, UWC
): N(γ, UW = UWC

− δ), where δ is
positive and small. As UWC

= UEC
on the curve (3.31a), UE at the point N

is expressed as UE = UW + ε, where

ε ≡ UE − UW

= 2(γ − UW ) −
√
−2U2

W + 4γUW + γ2 + 6 (3.41)

= 2(γ − UWC
+ δ) −

√
−2(UWC

− δ)2 + 4γ(UWC
− δ) + γ2 + 6. (3.42)

Using the Eqs.(3.40) and (3.42), ε is given as

ε = 3δ + O(δ2). (3.43)

From (3.41) and (3.32), we have

2U2
W − 4γUW − (2 − γ2) =

4

3
(γ − UW )ε + O(ε2). (3.44)

Noting that a2 = O(
√

ε), the steady solution U0 on the point N can be
written from (3.35a) as

U0 ≡ UW + εS(
√

εη) + O(ε2)
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where

S(
√

εη) = sech2

[√
UR − UW

6

√
εη

]
.

The characteristic equation (3.38) precise to O(ε) is, therefore,

σg =

[
(γ − UW )

(
4

3
− 4S(

√
εη)

)
ε

]
d2g

dη2
− 3

d4g

dη4
. (3.45)

Here, Eq.(3.44) has been used. Defining s ≡ √
εη, Eq.(3.45) becomes

σ1g =

[
(γ − UW )

(
4

3
− 4S(s)

)]
d2g

ds2
− 3

d4g

ds4
. (3.46)

where σ1 = σ/ε2. Hence, an eigenvalue σ given by Eq.(3.45) can be expressed
with an eigenvalue σ1 given by Eq.(3.46) as

σ = ε2σ1 = 9σ1δ
2 = 9σ1(UWC

− UW )2. (3.47)

where (3.43) has been used. Eq.(3.47) demonstrates that the eigenvalues in
the vicinity of the point C(γ, UWC

) behave as 9σ1(UWC
− UW )2.

Fig.3.9 shows the real parts of the eigenvalues σfr, the two zeros ob-
tained from the fitted line in §3.4.1, and the analytical curve (3.47), for
γ = 0.0, 1.0, and 5.0 and UW which satisfy the conditions (3.28) and (3.30).
σ1 is obtained as σ1 = 0.111111, 0.166668, and 1.500000, respectively, by solv-
ing (3.46) numerically. The analytical curve fits fairly well with the leading
eigenvalues in the vicinity of the point C(γ, UWC

).
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Figure 3.9: The real parts of the leading eigenvalues numerically calculated
in §3.4.1 (red squares) and the analytical curve (3.47) (dark blue curves) for
(a): γ = 0.0, (b): 1.0, and (c): 5.0. The purple and the light blue lines
correspond to the two boundaries (3.29a) and (3.31a). The green circle and
the blue lozenge are the zeros obtained from the fitted lines shown in §3.4.1.
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Around the lower boundary

For the eigenvalues at (γ, UW ) close to the other boundary curve (3.29a),
we analytically show below that the eigenvalues converge to zero as (γ, UW )
approaches an arbitrary point D on the boundary curve (3.29a).

Let us denote UW at D as UWD
,

UWD
= γ − 1

2

√
6(γ2 + 2),

and consider a point M close to the point D(γ, UWD
): M(γ, UW = UWD

+ δ),
where δ is positive and small. Then a defined in Eq.(3.35b) at M satisfies

a2 = 1 − ε + O(δ),

where ε is defined as

ε ≡
2
√

2
√

6(γ2 + 2)δ − 2δ2√
6(γ2 + 2)

.

Introducing α by

α ≡a

6
(UR − UW )

=

√
6(γ2 + 2)

6

(
1 − ε

2
+ O(δ)

)
,

we can write U0(η) as

U0(η) = γ − δ +
1

2

√
6(γ2 + 2)(1 + ε) −

√
6(γ2 + 2)

sech2(αη)/ε + tanh2(αη) + O(δ)

for small δ. Now write η as η = η0 + η′, where η0 is defined such that

sech(αη0) =
√

ε,

then, when δ → 0,

dU0(η0 + η′)
dη′ = −1

6
(−2U2

0 + 4γU0 + γ2 + 6),
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and after all, the characteristic equation (3.38) becomes

σg =

[
6
dU0

dη′ + 2(2 + γ2)

]
d2g

dη′2 − 3
d4g

dη′4 . (3.48)

Multiplying d2g†/dη′2, where g† is an adjoint solution of g, to both sides
of Eq.(3.48) and integrating this over η, we obtain

−σ

∫ ∣∣∣∣ dg

dη′

∣∣∣∣2 dη′ =

∫ [
6
dU0

dη′ + 2(2 + γ2)

] ∣∣∣∣ d2g

dη′2

∣∣∣∣2 dη′ + 3

∫ ∣∣∣∣ d3g

dη′3

∣∣∣∣2 dη′.

(3.49)
We next introduce φ ≡ d2g/dη′2, and define a function

I[φ] ≡
∫ [

6
dU0

dη′ |φ|2 + 3

∣∣∣∣ dφ

dη′

∣∣∣∣2
]

dη′

=

∫ [
−3(γ2 + 2)sech2(αη′)|φ|2 + 3

∣∣∣∣ dφ

dη′

∣∣∣∣2
]

dη′. (3.50)

Now, we know that the Schrödinger equation(
− �

2

2m

d2

dx2
− A0sech

2βx

)
ψ = Eψ, A0 > 0, (3.51)

has its minimum eigenvalue (Landau-Lifshitz [26]),

E0 = −�
2β2

8m

[
−1 +

√
1 +

8mA0

�2β2

]2

,

and therefore, we have∫ (
�

2

2m

∣∣∣∣dψ

dx

∣∣∣∣2 − A0sech
2βx|ψ|2

)
dx ≥ E0

∫
|ψ|2dx.

Applying this to Eq.(3.50) yields

I[φ] ≥ −2(γ2 + 2)

∫
|φ|2dη′,

hence, from Eq.(3.49),

−σ

∫ ∣∣∣∣ dg

dη′

∣∣∣∣2 dη′ = I[φ] + 2(γ2 + 2)

∫
|φ|2dη′ ≥ 0;

this certifies the limit of the eigenvalue σ as δ → 0 is real and non-positive,
which, together with Fig.3.7 and Fig.3.8, indicates lim

δ→0
σ = 0 at the point D.
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3.4.3 The growth of an unstable eigenfunction and the
final flow field

As discussed above, every non-trivial steady solution U0(η) of Eq.(3.20) is
linearly unstable. The next question is the final state (at τ = ∞) of this
unstable jet when it is slightly perturbed.

Fig.3.10 shows the leading eigenfunction and the time development of U0

added its leading eigenfunction as the perturbation for the case (γ, UW ) =
(1.0,−1.05). The amplitude of the perturbation function is set to be 3%
of that of U0. The solution of Eq.(3.20) is numerically calculated with the
Fourier spectral method. The time integration is performed with the 4th
order Runge-Kutta method with a time step width Δτ = 1.0 × 10−5. The
boundary condition, the width of the domain, the truncation mode number
K for the Fourier expansion, and the number of the grid point are all set to
be the same with those used for the calculation for the eigenvalues in §3.4.1.
In Fig.3.10, the jet become flat gradually, and the uniform flow is realised
at the end. Note that it is easily verified that this uniform flow U = UW is
linearly stable in the parameter regions shown in Fig.3.5 (See §A.6)12.

12Precisely, the uniform flow obtained in the numerical simulation is not U = UW , since
the numerical simulation is performed in a periodic domain and conserves the momentum
of the flow. However, if we use a domain sufficiently wide for the numerical calculation, it
is almost equivalent to considering the development of the flow in an ideal infinite domain,
then the resulting uniform flow is U = UW . Actually, in Fig.3.10, we do not see visible
shift of the baseline of the flow.
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Perturbation (τ=0)

U (τ=0) U (τ=200) U (τ=230)
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Figure 3.10: The eigenfunction of the leading eigenfunction (top row) and
the temporal variation of the U0 added the eigenfunction as a perturbation
(middle and bottom rows) for the case (γ, UW ) = (1.0,−1.05). Each panel is
at time τ = 0, 200, 230,(middle row, from the left to right) τ = 250, 300, and
1000 (the bottom row, from the left to the right).
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3.5 Merging processes of zonal jets – Weak

interaction between two zonal jets

The results of linear stability analysis of steady isolated zonal jet solutions U0

and its long-time behaviour discussed in §3.4 seem to be in a good agreement
with the evolution of zonal flows in the numerical experiment in Manfroi
and Young [16], and also seem to imply the importance of the instability of
zonal jets caused by the effect of the turbulence. In the long-time numerical
simulations of two-dimensional turbulence on a rotating sphere and on β
plane in §2 and §3.2, however, the disappearance of a zonal jet does not
happen on its own, but it is almost always accompanied by a merger of the
neighbouring two zonal jets. To closely study this situation, we investigate
the weak interaction between two zonal jets by utilising a steady isolated
zonal jet solution U0.

3.5.1 Estimation of a weak interaction between two
zonal jets

Here we estimate a weak interaction (Ei [19]) between two identical zonal jets
using steady isolated zonal jet solutions (3.35a) of Manfroi-Young equation
(3.20). This idea originate from the fact that the attraction of two neighbour-
ing zonal jets each other precesses the merger in the numerical simulations of
forced two-dimensional barotropic incompressible flows on a rotating sphere
and on β plane.

Suppose two isolated zonal jets placed sufficiently far from each other are
interacting through their tails (two-jet state). If the distance between them is
large enough so that the interaction is very weak, we can estimate the effect
of the interaction by utilising a perturbation method. Here, we have to be
careful with the stability of zonal jets we use; the theory will not work well
if the zonal jets are linearly unstable. Now all U0(η) are linearly unstable as
stated in §3.4. Nevertheless, if we recall that U0 is almost marginally stable
when the combination of the parameters (γ, UW ) is near one of the boundary
curves (3.29a), (3.29b), (3.31a), and (3.31b) (§3.4), and if we only consider
such (UW , γ), it may be allowed to assume that U0 is linearly stable.

First of all, we decompose the steady solution U0(η) as

U0(η) = Ũ0(η) + UW . (3.52)
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Then Ũ0 → 0 when η → ±∞, so the tail of Ũ0 is O(δ), where δ is small and
positive. According to this decomposition, Manfroi-Young equation (3.20) is
also rewritten as

∂Ũ

∂τ
= −(2 − γ2)

∂2Ũ

∂η2
− 3

∂4Ũ

∂η4
− 2γ

(
∂2Ũ2

∂η2
+ 2UW

∂2Ũ

∂η2

)

+
2

3

(
∂2Ũ3

∂η2
+ 3UW

∂2Ũ2

∂η2
+ 3U2

W

∂2Ũ

∂η2

)
.

(3.53)

Now we place two identical jets Ũ01 and Ũ02 with sufficiently large distance
h from each other and let them interact through their tails. Strictly, this two-
jet state is not an exact solution of Eq.(3.20). If h is large enough, however,
it may be possible to assume that it is an approximate solution of (3.53),
and can be expressed as

Ũ(η, τ) = Ũ01 (η − �1(τ))) + Ũ02 (η − �2(τ)) + Ṽ (η, τ), (3.54)

where Ṽ is the function to describe the deformation of the two jets. When
h = |�1 − �2| is large enough as stated above, the height of the tail of one
jet is sufficiently small at the centre of the other jet, i.e. U0i(η = �j) =
O(δ), (i, j = 1 or 2, i = j). Using this δ, we make further assumptions as
follows.

�1, �2 : O(1), Ṽ (η, τ) : O(δ3),
∂

∂τ
: O(δ2),

∂

∂η
: O(1).

Now let us consider the influence that Ũ02 gives to Ũ01. To do this,
we pay attention only to η ∼ �1, where Ũ01(η) is O(1) and Ũ02(η) is O(δ).
Substituting the approximate solution (3.54) into Eq.(3.53), we obtain

−�̇1
∂Ũ01

∂η
− �̇2

∂Ũ02

∂η
= L(Ũ01 + Ũ02) + LṼ + O(ε4). (3.55)

Here, ∗̇ denotes ∂∗/∂τ . L and L are operators which satisfy

L(Ũ0) ≡ −(2 − γ2)
∂2Ũ0

∂η2
− 3

∂4Ũ0

∂η4
− 2γ

(
∂2Ũ2

0

∂η2
+ 2UW

∂2Ũ0

∂η2

)

+
2

3

(
∂2Ũ3

0

∂η2
+ 3UW

∂2Ũ2
0

∂η2
+ 3U2

W

∂2Ũ0

∂η2

)
,
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LṼ ≡ −(2 − γ2)
∂2Ṽ

∂η2
− 3

∂4Ṽ

∂η4
− 4γ

∂2

∂η2
(Ũ01 + UW )Ṽ + 2

∂2

∂η2
(Ũ01 + UW )2Ṽ .

If we write ξ ≡ η − �1(τ), then Ũ01, Ũ02, and Ṽ are rewritten as⎧⎪⎪⎨⎪⎪⎩
Ũ01 (η − �1(τ)) = Ũ01(ξ),

Ũ02 (η − �2(τ)) = Ũ02 (ξ − (�2 − �1)) = Ũ02(ξ − h),

Ṽ (η, τ) = Ṽ (ξ, τ),

(3.56)

We hereafter use Ũ0(ξ) and Ũ0(ξ−h(τ)) instead of Ũ01 (η − �1(τ)) and Ũ02 (η − �2(τ)).
With these new notations, Eq.(3.55), L, and L are

0 = �̇1
∂Ũ0(ξ)

∂ξ
+ �̇2

∂Ũ0(ξ − h)

∂ξ
+ L

(
Ũ0(ξ) + Ũ0(ξ − h)

)
+ LṼ (ξ, τ) (3.57)

L(Ũ0(ξ)) ≡ −(2 − γ2)
∂2Ũ0(ξ)

∂ξ2
− 3

∂4Ũ0(ξ)

∂ξ4
− 2γ

(
∂2Ũ0(ξ)

2

∂ξ2
+ 2UW

∂2Ũ0(ξ)

∂ξ2

)

+
2

3

(
∂2Ũ0(ξ)

3

∂ξ2
+ 3UW

∂2Ũ0(ξ)
2

∂ξ2
+ 3U2

W

∂2Ũ0(ξ)

∂ξ2

)
,

(3.58)

LV ≡ −(2−γ2)
∂2Ṽ

∂ξ2
−3

∂4Ṽ

∂ξ4
−4γ

∂2

∂ξ2
(Ũ0(ξ)+UW )Ṽ +2

∂2

∂ξ2
(Ũ0(ξ)+UW )2Ṽ .

(3.59)
Now we introduce a new function

g(ξ, τ) ≡ �̇1
∂Ũ0(ξ)

∂ξ
+ L

(
Ũ0(ξ) + Ũ0(ξ − h)

)
(3.60)

so that Eq.(3.57) is written as

−�̇2
∂Ũ0(ξ − h)

∂ξ
= LṼ + g. (3.61)

Incidentally, since Ũ0(η) is a steady solution of Eq.(3.53), i.e.

LŨ0(ξ) = 0
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differentiating the above equation with respect to ξ yields

0 =
∂2

∂ξ2

[{
−(2 − γ2) − 3

∂2

∂ξ2
− 4γ

(
Ũ0(ξ) + UW

)
+ 2
(
Ũ0(ξ) + UW

)2
}

∂Ũ0(ξ)

∂ξ

]

(3.62)

= L
∂Ũ0(ξ)

∂ξ
. (3.63)

From Eq.(3.63), L possesses a zero eigenvalue whose eigenfunction is ∂Ũ0/∂ξ.
The adjoint operator of L

L† ≡
{
−(2 − γ2) − 3

∂2

∂ξ2
− 4γ

(
Ũ0(ξ) + UW

)
+ 2
(
Ũ0(ξ) + UW

)2
}

∂2

∂ξ2

(3.64)
also possesses a zero eigenvalue whose eigenfunction φ is a certain real func-
tion which satisfies

L†φ = 0. (3.65)

We assume φ converges to a certain constant as ξ → ±∞.
The inside of [ ] in Eq.(3.62) can be written as Aξ + B by utilising

∃A,B ∈ R:{
−(2 − γ2) − 3

∂2

∂ξ2
− 4γ

(
Ũ0(ξ) + UW

)
+ 2
(
Ũ0(ξ) + UW

)2
}

∂Ũ0(ξ)

∂ξ
= Aξ+B

Remembering Ũ0 → 0 and ∂Ũ0/∂ξ → 0 as ξ → ±∞, it is apparent that

A = B = 0. This means, if we write the inside of [ ] in (3.62) as M(Ũ0(ξ)+

UW )∂Ũ0(ξ)/∂ξ,

M(Ũ0(ξ) + UW )
∂Ũ0(ξ)

∂ξ
= 0 (3.66)

holds. Then, from definition (3.64) and Eqs.(3.65) and (3.66),

∂2φ

∂ξ2
=

∂Ũ0(ξ)

∂ξ
. (3.67)

Integrating (3.67) with respect to ξ gives

∂φ

∂ξ
= Ũ0(ξ) + C,
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where C is constant. Since φ converges to a constant as ξ → ±∞, C should
be zero, i.e.

∂φ

∂ξ
= Ũ0(ξ). (3.68)

φ can be multiplied by an arbitrary constant by its definition, here we nor-
malise it as 〈

∂Ũ0(ξ)

∂ξ
, φ

〉
L2

= 1, (3.69)

where < ∗, ∗ >L2 is a L2−inner product: < f, g >L2=
∫

Ω
fg dμ, where Ω is

a domain and μ is a measure. In addition to this, as φ only appears in the
inner product with other functions, its constant term has no importance. We
therefore set φ(ξ = 0) = 0.

Now we return to Eq.(3.61), and take an inner product between Eq.(3.61)
and φ. This yields

−
〈

φ, �̇2
∂Ũ0(ξ − h)

∂ξ

〉
L2

= 〈φ, g〉L2 . (3.70)

Here we have used Eq.(3.65). As the orders, i.e. O(δn), n = 0, 1, 2, ..., of both
sides of Eq.(3.70) are different, we can deduce that

〈φ, g〉L2 = 0,

and together with the normalisation (3.69), it follows

�̇1 = −
〈
L
(
Ũ0(ξ) + Ũ0(ξ − h)

)
, φ
〉

L2
. (3.71)

This is the shift of the centre of the jet Ũ01 attributed to the existence of Ũ02.
The influence from Ũ01 to Ũ02 is obtained in the same manner at η ∼ �2,

and the resulting shift of the centre of Ũ02 is

�̇2 = −
〈
L
(
Ũ0(ξ + h) + Ũ0(ξ)

)
, φ
〉

L2
. (3.72)

From Eqs.(3.71) and (3.72), we finally obtain the estimation of the time
derivative of the distance between two identical zonal jets

ḣ = �̇2 − �̇1

=
〈
L
(
Ũ0(ξ) + Ũ0(ξ − h)

)
, φ
〉

L2
−
〈
L
(
Ũ0(ξ + h) + Ũ0(ξ)

)
, φ
〉

L2
.

(3.73)
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Figure 3.11: Examples of ḣP . (a): γ = 0, UW = −1.7 (solid line), −1.5
(dashed line), and −1.1 (dotted line), (b): γ = 1, UW = −1.12 (solid line),
−0.8 (dashed line), and −0.4 (dotted line), (c): γ = 5, UW = −1.36 (solid
line), 0.0 (dashed line), and 1.0 (dotted line).

3.5.2 Numerical evaluation of the time derivative of
the distance between two zonal jets

Time derivative of the distance between two identical zonal jets ḣ has been
obtained as (3.73) by perturbation analysis in §3.5.1. Now we numerically
evaluate it, which will be addressed as ḣP hereafter. This then will be com-
pared with ḣN , the numerically obtained time derivative of the distance be-
tween two identical zonal jets by a full nonlinear calculation of Eq.(3.53).
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For the numerical calculation of ḣP , we use the 4th order Runge-Kutta
method to obtain unnormalised φ, and use the trapezoidal rule to normalise φ
and calculate ḣP from Eqs.(3.73) and (3.58). We consider the domain [0, Lη]
and a periodic boundary condition for ξ 13. Lη is chosen to be Lη = 50,
the width of the grids for space ξ and h are set to be Δξ = 1.0 × 10−3

and Δh = 1.0 × 10−3, respectively. The numerical calculation sufficiently
converges with these Lη, Δξ, and Δh.

Fig.3.11 shows examples of ḣP . Parameters γ and UW are chosen so that
the examples locate near (3.29a), near (3.31a), and near neither (3.29a) nor
(3.31a), respectively, for different values of γ in the parameter space. ḣP is
suggested to be all negative when two jets are sufficiently far from each other
in any case. It is also confirmed, by checking several cases, that ḣP → 0
monotonically as h → 0. Note that although ḣP take positive values for
certain sets of parameters when two jets are close, it is the region where the
assumption given in §3.5.1 that two jets should be placed with sufficiently
large distance from each other does not hold. The results show that two
identical zonal jets placed sufficiently apart may attract each other, and the
attraction becomes stronger as the distance h between them gets smaller.

Now we choose the set of the parameters γ = 5.0, UW = −1.36, where the
instability of the steady solution Ũ0 is fairly weak, and compare ḣP with ḣN .

ḣN is calculated from a full nonlinear numerical time integration of Eq.(3.53).

The initial state for this is the one that two jets Ũ0 are placed with h(τ =
0) = 4.3, as shown in Fig.3.12 (solid line), in the domain [0, Lη], Lη = 50
with a periodic boundary condition with respect to η. We use Fourier spectral
method with a truncation K = 150, and the time integration is performed
by the 4th order Runge-Kutta method. The width of the spatial and time
grids are Δη ∼ 0.7×10−3 and Δτ = 5.0×10−5, respectively. ḣN is calculated
every 30 × Δτ from obtained h. The states at τ = 20.0 is shown in Fig.3.12
(dashed line).

Fig.3.13 shows ḣP and ḣN . In agreement with ḣP , ḣN takes negative
value and |ḣN | becomes larger monotonically as h gets smaller, reflecting the
fact that the two identical zonal jets placed apart attract each other and
the attraction becomes stronger as the distance h gets smaller in the full
nonlinear numerical time integration of Eq.(3.53).

13Although φ is not continuous at the boundary, this brings no critical problems since φ
is always taken inner products with some functions, all of which converge to zero around
the boundary.
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Figure 3.12: Solid line: initial two-jet state for the numerical time integration
of Eq.(3.53). Dashed line: the state at τ = 20.0 obtained by numerical time
integration of Eq.(3.53). Parameters are γ = 5.0, UW = −1.36.

The results obtained in this section strongly suggest that the attraction
and the merger of the neighbouring zonal jets is due to the weak interaction
between them through their tails.

3.5.3 Strongly nonlinear stage and the final state

Here, we numerically check the behaviour of two-jet states considered in
§3.5.1 and §3.5.2 at strongly nonlinear stages and the final states. This is
basically investigated by performing a longer numerical time integrations of
Eq.(3.53) we have considered in §3.5.2.
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Figure 3.13: Upper dotted line: ḣN , Lower solid line: ḣP . Parameters are
γ = 5.0, UW = −1.36.
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Weakly-unstable type

We choose the case γ = 5.0, UW = −1.36, the same parameter set considered
in §3.5.2, as an example of weakly-unstable type. Fig.3.14 shows the time
development of the velocity U . During the first stage of time integration,
two jets are attracted by each other and gradually shorten the distance h
between them (not shown). Then, once h becomes small enough i.e. the
effect of the interaction between two jets becomes strong enough, they speed
up moving towards each other, keeping their general shapes, and merge to
one jet at the centre of the first position of the two jets.
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U (τ = 5000)U (τ = 23.0)

U (τ = 22.0)U (τ = 21.0)U (τ = 0.0)

U (τ = 22.3)
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η
25 500

η
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Figure 3.14: Ũ of γ = 5.0, UW = −1.36 at τ = 0.0, 21.0, 22.0 (upper row,
from the left to right), τ = 22.3, 23.0 5000.0 (lower row, from the left to
right).

The one jet resulted from the merger of two original jets survives very
long time in the numerical simulation we have performed (Fig.3.14). This is

probably because the obtained new jet is an another steady solution Ũ0 of
the same γ but a different UW , whose instability is much weaker than the
original steady jet Ũ0 of γ = 5.0, UW = −1.36. If we admit this assumption,
as the numerical calculation here is performed in the periodic domain, which
means the total momentum should be conserved, we can estimate UWnew of
the new steady jet solution realised after the merger. UWnew obtained by
Newton’s method is UWnew ∼ −1.363960. The numerically obtained new
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jet after the merger and the steady solution U0new of γ = 5.0, UWnew =
−1.363960 are plotted in the same panel in Fig.3.15(a). Ũ0new falls in with
the numerically realised new jet very well, showing that the assumption given
above may be correct. Note that the small difference in UW causes a big
difference to the shape of Ũ0 in this parameter range, and that the agreement
of the shape can be a crucial support of the assumption that the numerically
obtained new jet after the merger is a new steady jet of a different UW .
For an example of steady jet solution of another slightly different UW , see
Fig.3.15(b). The instability of the new steady isolated jet Ũ0new is much

weaker than the original steady isolated jet Ũ0 (§3.4) so that this allows

Ũ0new to survive for a very long time as we see in Fig.3.14. Actually, by
utilising fitted data of the leading eigenvalues of various UW for γ = 5.0, it
is suggested that Re[leading eigenvalue] of γ = 5.0, UW = −1.36 is O(10−4)
and that of γ = 5.0, UW = −1.363960 is O(10−5), which indicate that time
integration should be performed very long if we wish to see the deformation of
Ũ0new. Nevertheless, as all Ũ0 is linearly unstable (§3.4), U0new may, therefore,
become a stable uniform flow (§3.4) in the end, and this will be the final state
of two-jet states considered in §3.5.1 and §3.5.2.

(a) (b)

25 500
η

25 500
η
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15

Figure 3.15: (a) Numerically obtained new jet Ũ after the merger at τ =

5000 (red solid line, γ = 5.0, UW = −1.36) and Ũ0new (black dashed line,

γ = 5.0, UW = −1.363960). (b) Ũ0new (γ = 5.0, UW = −1.363960, solid line)

and Ũ0 of γ = 5.0, UW = −1.363961 (dashed line).
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Strongly-unstable type

Here we consider the parameter set γ = 5.0, UW = −1.28. The real part of
the leading eigenvalue of the steady isolated zonal jet Ũ0 is O(10−1), then
the jet is much more unstable than that of γ = 5.0 UW = −1.36 whose real
part of leading eigenvalue is O(10−4)14.

Again in this parameter range, in agreement with the theoretical expec-
tation and same as the numerically investigated weakly-unstable case, two
identical zonal jets attract each other in the very first stage of the time in-
tegration. In contrast to the weakly-unstable type, however, then the strong
deformation of the jets occurs, and as a result, one of the two jets disappears
by being ’absorbed’ into the other one (Fig.3.16). Here, the centre of the
resulted one jet is shifted to the centre position of ’survived’ jet. Under the
the same assumption we made in §3.5.3 that the new jet is an another steady
jet solution of the same γ but a different UW , by utilising the conservation
of the total momentum, UWnew of new steady jet solution expected to be re-
alised after the merger is expected to be UWnew ∼ −1.363860. The shape of
isolated steady jet solution of γ = 5.0, UW = UWnew falls in with that of nu-
merically realised jet after the merger well (not shown). Consequently, from

the instability of the isolated zonal jet Ũ0new, the final state of the two-jet
state may be a uniform flow, same as the weakly-unstable type.

U (τ = 0.0)

10

5

0

15

25 500

η

U (τ = 22.0) U (τ = 30.0)

25 500

η
25 500

η

Figure 3.16: Ũ of γ = 5.0, UW = −1.28 at τ = 0.0, 22.0, 30.0 (from the left
to right).

14While the eigenvalue of Ũ0 of γ = 5.0, UW = −1.28 has been obtained by numerical
calculation of its characteristic equation, that of Ũ0 of γ = 5.0, UW = −1.28 has been
obtained by fitting other data because of a poor convergence of the eigenvalue calculation.
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3.6 Modifications to the Manfroi-Young model

In §3.3 – §3.5, we have investigated the merging and disappearing processes
of zonal jets through Manfroi-Young model. Although it is a highly simpli-
fied zonal flow – turbulence model, it seems to capture many fundamental
dynamics zonal in two-dimensional turbulence on a rotating sphere and β
plane. Here we modify the Manfroi-Young model to enquire into slightly more
realistic situations. First, in §3.6.1, we add ξ−dependence to the Manfroi-
Young equation and examine the linear stability of steady isolated zonal jets
there. Then we consider zonal flows superposed upon a small-scale sinusoidal
transversal flow in a quasi-geostrophic model, and perform the same asymp-
totic analysis which was employed in Manfroi and Young [16]. Both cases
that the large-scale disturbance flow is ξ−independent and ξ−dependent are
discussed in §3.6.2 and §3.6.3, respectively.

3.6.1 Two-dimensional barotropic model; x-dependent
case

In the derivation of the amplitude equation of zonal flows, namely the Manfroi-
Young equation (3.20), we have considered the ξ-independent solution A(η, τ)
of Eq.(3.18), where ξ is ξ ≡ ε6x as introduced in (3.15). Although this spe-
cially idealised case is adequate for the first step to see the usefulness of the
model and to study the zonal flows under the influence of non-zonal flow, real
zonal jets observed in the long-time numerical simulations of two-dimensional
Navier-Stokes turbulence on a rotating sphere in §2 and on a β plane in §3.2
are always governed by two-dimensional equations. In order to take this
into account, here we consider the case that the solution A of Eq.(3.18) has
ξ-dependence; A(ξ, η, τ).

Amplitude equation and its steady solution U0

If we allow the solution A of Eq.(3.18) to be ξ-dependent, i.e. A(ξ, η, τ ), the
amplitude equation for the O(1) elements of the x-independent but ξ− and
η− dependent disturbance flow U(ξ, η, τ)

U(ξ, η, τ) ≡ −∂A(ξ, η, τ)

∂η
,
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is obtained as

∂3U

∂τ∂η2
= −(2 − γ2)

∂4U

∂η4
− 3

∂6U

∂η6
− 2γ

∂4U2

∂η4
+

2

3

∂4U3

∂η4
− β0

∂U

∂ξ
, (3.74)

by taking the derivative of Eq.(3.18) with respect to η, where γ is defined by
(3.21). Eq.(3.74) governs ξ− and η− dependent flows having a small-scale
sinusoidal transversal base flow in their background.

U0east(η) given by (3.35a) and U0west(η) given by (3.36a) in §3.3.2 again
become steady isolated zonal jet solutions of Eq.(3.74). Now this U0(η) rep-
resents a zonal flow superposed upon a small-scale sinusoidal transversal
background flow, governed by an amplitude equation having ξ− and η−
dependence.

Linear stability of U0

Let us investigate the linear stability of U0(η) in the xi− dependent case.
Same as in §3.4.1, we consider the situation in which a sufficiently small
perturbation v is added to the steady solution U0(η), but this time v =
v(ξ, η, τ). First, we assume v to be in the following form,

v = exp(στ)h(ξ)f(η),

where h(ξ) and f(η) are certain functions, which satisfy

h → 0,
dh

dξ
→ 0 as ξ → ±∞, f → 0,

df

dη
→ 0 as η → ±∞.

Substituting U = U0 + v for U in Eq.(3.74), we linearise it with respect to v,
then we have

σh(ξ)
∂2f(η)

∂2η
= h(ξ)

d4

dη4

{
[−(2 − γ2) + (2U2

0 − 4γU0)]f − 3
d2f

dη2

}
−β0f(η)

dh(ξ)

dξ
.

(3.75)
Assume that σ = 0. By integrating Eq.(3.75) over η twice, we find∫ ∞

−∞

∫ η

−∞
f(η′)dη′ dη = 015

15We assume d2f/dη2, d3f/dη3 → 0 (η → ±∞) as in Eq.(3.22a)

83



or
dh(ξ)

dξ
= 0.

As we are considering ξ-dependent case in this section, dh(ξ)/dξ = 0, then∫ ∞

−∞
f(η′)dη′ = 0.

Now rewriting f(η) as

f(η) =
d2g(η)

dη2
, g(η) → 0,

dg(η)

dη
→ 0, as η → −∞.

We have

g(η) = g(η) − g(−∞) =

∫ η

−∞

∫ η′

−∞

d2g(η′′)
dη′′2 dη′′ dη′ =

∫ η

−∞

∫ η′

−∞
f(η′′) dη′′ dη′.

This means that, g, dg/dη → 0 as η → ±∞. Putting f = d2g/dη2 into
Eq.(3.75), and integrating this equation over η twice, the characteristic equa-
tion is obtained as follows.

σ
d2g

∂d2
= −(2 − γ2)

d4g

dη4
− 3

d6g

dη6
+

d2

dη2

[
(2U2

0 − 4γU0)
d2g

dη2

]
− β0g(η)

dh(ξ)

dξ
,

(3.76)

g → 0,
dg

dη
→ 0 as η → ±∞.

Incidentally, since the ξ−dependence in (3.76) only appear in a form
dh(ξ)/dξ, by considering a Fourier expansion of h

h(ξ) =
∞∑

nξ=−∞
hnξ

exp

(
i
2πnξ

Lξ

ξ

)
,

it is sufficient to solve

σ
d2g

∂d2
= −(2−γ2)

d4g

dη4
−3

d6g

dη6
+

d2

dη2

[
(2U2

0 − 4γU0)
d2g

dη2

]
−i

2πnξ

Lξ

β0g(η) (3.77)

for various 2πβ0nξ/Lξ, where Lξ is a width of the domain in ξ direction.
Same as in §3.4, from the symmetry property of the characteristic equa-

tion, it easily follows that investigating the linear stability of U0east with
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γ ≥ 0 is enough to know the linear stability of all the U0 (See §A.5). Also, it
is easily verified that the characteristic equation (3.77) holds also for σ = 0.

We solve the eigenvalue problem (3.77) numerically by the Fourier spec-
tral method, where U0, U

2
0 , and g are expressed as

U0 =
K∑

k=−K

uk exp

(
ik

2π

Lη

η

)
,

U2
0 =

K∑
k=−K

dk exp

(
ik

2π

Lη

η

)
,

g =
K∑

k=−K

ck exp

(
ik

2π

Lη

η

)
.

(3.78)

We consider the domain [0, Lη] and a periodic boundary condition for
η. The width of the domain, Lη, was determined so that the numerical
calculation sufficiently converges 16. The width of the spatial grids was set
to be 1/(210), and the truncation mode number K was taken in the way that
K/Lη becomes 125/16 for each case.

Fig.3.17 shows the real parts of the leading eigenvalues for various 2πβ0nξ/Lξ,
for the cases (γ, UW ) = (1.0,−1.0) and (5.0,−1.0). The real parts of the
leading eigenvalues are positive when |2πβ0nξ/Lξ = 0| is smaller than cer-
tain value, which is depending upon (γ, UW ). So these mode grows in time.
2πβ0nξ/Lξ = 0 which corresponds to ξ−independent case takes positive and
the maximum value of the real parts of the leading eigenvalues for a fixed
(γ, UW ), which means ξ−independent mode is most unstable and grows
fastest. Meanwhile, non-growing mode appears in ξ−depending case (See
the nested panels in Fig.3.17). Although it was not possible to solve the
characteristic equation (3.77) for large 2πβ0nξ/Lξ since the continuous mode
appears and the calculation does not converge there, from the shapes of the
graphs, it may be reasonable to assume that the real part of leading eigen-
value for sufficiently large 2πβ0nξ/Lξ are all negative. This suggest that, U0

only in small parameter regions are linearly unstable for a perturbation of
limited ξ− wavenumber. Still, there certainly is an sector in a parameter
region of nξ around nξ = 0, where the perturbation grows in time, and this
means that the steady isolated zonal jet solution U0 is also unstable even

16We mainly took Lη = 216 and 512 for each case and confirmed the convergence of the
calculations.
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when it is governed by a ξ−depending equation so that allowed to have non-
zonal variation. The instability is expected to bring about the deformation of
U0, and causes its disappearance. This is consistent with the disappearance
of westward jet in full nonlinear two-dimensional simulations on β plane in
§3.2.
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γ =5.0 , UW = -1.0

β0 ∗ nξ ∗ 2π / Lξ

γ =5.0 , UW = -1.0

β0 ∗ nξ ∗ 2π / Lξ

γ =1.0 , UW = -1.0

β0 ∗ nξ ∗ 2π / Lξ

γ =1.0 , UW = -1.0

β0 ∗ nξ ∗ 2π / Lξ

Figure 3.17: The real parts of the leading eigenvalues (red crosses) for
(γ, UW ) = (1.0,−1.0) (top) and (5.0,−1.0) (bottom). The nested panel in
each larger panel shows the region around one of two points where the real
part of the leading eigenvalue becomes zero.
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3.6.2 Quasi-Geostrophic model; x-independent case

Two-dimensional barotropic model describes the dynamics of a fluid with a
constant density in a thin layer whose depth is constant both in time and
in space, and sufficiently thinner than its horizontal scale. This is one of
the most simple models used for large-scale flows on rotating systems. Very
simple as the model is, it shows rich phenomena, including the formation of
a zonal-band structure. The the zonal-band structure in the model, however,
may be realised by a different mechanism from the one working in real plan-
ets such as Jupiter, for the multiple zonal-band structure in two-dimensional
barotropic model does not survive and a structure with a few zonal jets is re-
alised asymptotically §2. When we turn our eyes to more complicated models
for planetary atmospheres, we notice that we nearly always observe zonal-
band structures in the systems, but again, the mechanisms of their formation
and the long-time behaviour are not yet well known. For this reason, now
we modify the Manfroi-Young model to a system which contains a little bit
more complexity than two-dimensional barotropic system. Consider a fluid
with a constant density in one of the thin layers of a stratification on a rotat-
ing sphere, but this time, in contrast to the barotropic case, allows the layer
to vary its depth both in time and space, then its dynamics is written in a
shallow-water equations. The model still treats a two-dimensional dynamics
but allows for divergence to take place. Further, we assume the situation
that the rotation of the sphere is very strong i. e. the Rossby number

Ro ≡ inertia

rotation effect
=

U

fLx

is sufficiently small, where U, f, and Lx are representative speed of the
flow, Coriolis parameter, and the representative horizontal length scale of the
flow. Expanding the shallow-water equations by Ro and collect terms O(1)
and O(Ro), then the equations are called shallow-water quasi-geostrophic
equations. For the small modification of the Manfroi-Young model, we next
use this shallow-water quasi-geostrophic system.

Amplitude equation and its steady solution U0

The analysis to derive an amplitude equation of O(1) elements of the x-
independent zonal flows having a small-scale sinusoidal transversal back-
ground flow is basically same as the one in the two-dimensional barotropic
case in §3.3.
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We consider an incompressible forced shallow-water quasi-geostrophic
flow on a β plane where the governing equation for such flow is written
as

∂Z

∂t
+ J(Ψ, Z) + β

∂Ψ

∂x
− 1

L2
d

∂Ψ

∂t
= F + ν∇2Z. (3.79)

Here t, Ψ, and Z = ∇2Ψ are the time, the stream function, and the vorticity.
F and ν are the vorticity forcing function and the kinematic viscosity coeffi-
cient. Ld ≡ gH/f 2

0 is a Rossby radius of deformation, where g, H, and f0 are
gravitational acceleration, vertical width of a fluid layer, and Coriolis param-
eter at the reference latitude, respectively. J(A,B) is the Jacobian operator:
J(A,B) ≡ (∂A/∂x)(∂B/∂y) − (∂A/∂y)(∂B/∂x), and ∇ = (∂/∂x, ∂/∂y).

We suppose a steady base flow with the velocity (3.7) is driven by a
suitable forcing function on this β plane, and assume that the base flow
is slightly unstable, that is, the Reynolds number of the base flow R ≡
ΨB0/ν is slightly larger than the critical Reynolds number Rc, as (3.8). Then
we write the total stream function of the flow as Ψ = ΨB(x) + ψ(x, y, t),
where ψ(x, y, t) is the stream function of the disturbance flow and, from the
Eq.(3.79), satisfies a non-dimensionalised equation

∂ζ̂

∂t̂
+ ûB

∂ζ̂

∂x̂
+ R

(
∂ζ̂

∂ŷ
+

∂ψ̂

∂ŷ

)
sin x̂ + J(ψ̂, ζ̂) + β̂

∂ψ̂

∂x̂
− 1

L2
d

∂ψ̂

∂t̂
= ∇̂2ζ̂ . (3.80)

Here, ζ ≡ ∇2ψ is the vorticity of the disturbance flow, x̂, ŷ, t̂, and ψ̂ are non-
dimensionalised variables given in (3.10). ûB and β̂ are defined in (3.12),
and L̂d ≡ mLd. We, hereafter, drop the notation ˆ for the dimensionless
variables and operators for simplicity.

Using the small parameter ε defined in (3.8), we now perform perturba-
tion expansions of the stream function of the disturbance flow ψ, UB, the β
parameter, and 1/Ld by (3.13) and

1

Ld

=
1

L0

+ ε
1

L1

+ · · · , (3.81)

and multiple-scale expansion (3.14), and (3.15).
Substituting the expanded variables and operators (3.13), (3.14), 3.81,

and (3.15) into Eq.(3.80), then we obtain Eq.(3.16) for the O(1) elements.
This is satisfied if ψ0 depends on ξ, η, τ as ψ0 = A(ξ, η, τ) as in (3.17).
Substituting the expanded variables and operators (3.13), (3.14), 3.81, and
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(3.15) into Eq.(3.80) again, we next take the x-mean of it. By gathering the
O(ε6) elements, we obtain

∂

∂τ

∂2A

∂η2
− 1

L2
1

∂A

∂τ
+ 2

∂4A

∂η4
+ 3

∂6A

∂η6

− ∂3

∂η3

[(
β1 − UB1 +

∂A

∂η

)2
∂A

∂η

]
+

1

3

∂3

∂η3

(
∂A

∂η

)3

+ β0
∂A

∂ξ
= 0.

(3.82)

Taking the derivative of Eq.(3.82) with respect to η and considering the ξ-
independent solution A(η, τ) of Eq.(3.82), we obtain the amplitude equation
for the O(1) elements of the x-independent disturbance flow U(η, τ) defined
in (3.19) as

∂3U

∂τ∂η2
− 1

�L2
1

∂U

∂τ
= −(2 − γ2)

∂4U

∂η4
− 3

∂6U

∂η6
− 2γ

∂4U2

∂η4
+

2

3

∂4U3

∂η4
, (3.83)

where γ is again defined as (3.21). Eq.(3.83) governs zonal flows having a
small-scale sinusoidal transversal background flow in the shallow-water quasi-
geostrophic model. We call Eq.(3.83) the QG-Manfroi-Young equation.

U0east(η) given by (3.35a) and U0west(η) given by (3.36a) in §3.3.2 again
become steady isolated zonal jet solutions of Eq.(3.83).

Linear stability of U0

The characteristic equation for the situation when sufficiently small pertur-
bation v(η, τ) of the form v = exp(στ)f(η) is added to the steady solution
U0(η) is derived completely in the same manner in §3.4.1:

σ

[
d2

dη2
− 1

L2
1

]
g = −(2 − γ2)

d4g

dη4
− 3

d6g

dη6
+

d2

dη2

[
(2U2

0 − 4γU0)
d2g

dη2

]
. (3.84)

Here g is the function which satisfies

v = exp(στ)f(η) = exp(στ)
d2g(η)

dη2
,

g → 0,
dg

dη
→ 0 as η → ±∞.

Same as the two-dimensional case in §3.4.1, we solve the eigenvalue prob-
lem (3.84) numerically, by the Fourier spectral method, where U0, U

2
0 , g and
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h are expressed by (3.39). We consider the domain [0, Lη] and a periodic
boundary condition for η. The width of the domain, Lη, was determined
so that the numerical calculation converges sufficiently 17 The width of the
spatial grids was set to be 1/210, and the truncation mode number K was
taken in the way that K/Lη becomes 125/16 for each case. The O(ε) element
of Rossby radius of deformation, L1, was express by taking the ratio of L1 to
LJ , the width of the steady zonal jet U0

18.
The real parts of the leading eigenvalues are shown in Fig.3.18. When

L1/LJ is large, the real part of the leading eigenvalue falls almost in line
with that of U0 in a barotropic system obtained in §3.4.1 (The pink line in
Fig.3.18). This is because the vorticity equation of a shallow-water quasi-
geostrophic model (3.79) reduces to that of a barotropic model (3.6) when
Ld → ∞. The real parts of the leading eigenvalue decreases as L1/LJ de-
creases, and looks as if it covered to zero. Nevertheless, varying L1/LJ only
corresponds to looking at the same instability in a different time scale, and the
real part of the leading eigenvalue is taking positive value, not zero, even when
L1/LJ = 1.0 × 10−6. To see this, let us define σb ≡ σ [−(d2/dη2) + (1/L2

1)].
The characteristic equation (3.84) is written as

σbg = +(2 − γ2)
d4g

dη4
+ 3

d6g

dη6
− d2

dη2

[
(2U2

0 − 4γU0)
d2g

dη2

]
. (3.85)

The Eq.3.85 gives a certain value of σb for a fixed (γ, Uw). Then σ =
σb/ [−(d2/dη2) + (1/L2

1)] takes various values when L1/LJ is varied, but never
takes minus value or precisely zero since σ′ takes positive value as discussed
in §3.4.1 – §3.4.2. In the limit of L1 → 0, σ becomes infinitesimal because
σ ∼ σb/(1/L

2
1) → 0, but again, it has a positive value. This is certified by

plotting the real parts of the leading eigenvalues divided by L2
1, shown in

Fig.3.19. We can see that the real parts of the leading eigenvalues divided
by L2

1 agrees with σb. Therefore, all the steady isolated jet solution U0 are
linearly unstable, same as the barotropic case in §3.4, though the instabil-
ity is weaker compared to the barotropic case. Then again, the instability is
expected to bring about the deformation of U0, and causes its disappearance.

17We mainly took Lη = 216, and 512 for each case and confirmed the convergence of
the calculations.

18We defined LJ , the width of U0 to be LJ ≡ 2�U0 , where �U0 satisfies
| [U0(0) − U0(�U0)] / [U0(0) − UW ] | = 1/e
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γ =1.0 , UW = -1.0
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Figure 3.18: The real parts of the leading eigenvalues (red crosses) for
(γ, UW ) = (1.0,−1.0) (top) and (5.0,−1.0) (bottom). The pink dotted line
corresponds to the value of the eigenvalue of U0 in a barotropic model.
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Figure 3.19: The real parts of the leading eigenvalues divided by L2
1(red

crosses) for (γ, UW ) = (1.0,−1.0) (top) and (5.0,−1.0) (bottom). The light
blue dotted line corresponds to the value of σb
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3.6.3 Quasi-Geostrophic model; x-dependent case

Same as the barotropic case, here, we consider the case that the solution A
of Eq.(3.82) has ξ-dependence; A(ξ, η, τ).

Amplitude equation and its steady solution U0

The amplitude equation for the O(1) elements of the x-independent but
ξ−dependent disturbance flow U(ξ, η, τ)

U(ξ, η, τ) ≡ −∂A(ξ, η, τ)

∂η
,

is obtained as

∂3U

∂τ∂η2
− 1

�L2
1

∂U

∂τ
= −(2−γ2)

∂4U

∂η4
−3

∂6U

∂η6
−2γ

∂4U2

∂η4
+

2

3

∂4U3

∂η4
−β0

∂U

∂ξ
, (3.86)

This U0(η) represents a zonal flow superposed upon a small-scale sinusoidal
transversal background flow governed by an amplitude equation having ξ−
and η− dependence in shallow-water quasi-geostrophic system.

U0east(η) given by (3.35a) and U0west(η) given by (3.36a) in §3.3.2 again
become steady isolated zonal jet solutions of Eq.(3.86). Now this U0(η) rep-
resents a zonal flow superposed upon a small-scale sinusoidal transversal
background flow, governed by an amplitude equation having ξ− and η−
dependence.

Linear stability of U0

The characteristic equation for the situation when sufficiently small pertur-
bation v(ξ, η, τ) of the form v = exp(στ)h(ξ)f(η) is added to the steady
solution U0(η) is derived completely in the same manner in §3.6.1, then writ-
ten as

σ

[
d2

∂d2
− 1

L2
1

]
g = −(2−γ2)

d4g

dη4
−3

d6g

dη6
+

d2

dη2

[
(2U2

0 − 4γU0)
d2g

dη2

]
−i

2πnξ

Lξ

β0g(η).

(3.87)
Here g is the function which satisfies

v = exp(στ)f(η) = exp(στ)
d2g(η)

dη2
,
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g → 0,
dg

dη
→ 0 as η → ±∞,

Lξ is a width of the domain in ξ direction, and 2πnξ/Lξ is a wavenumber of
mode nξ ∈ N of Fourier expansion of h(ξ).

Same as the two-dimensional case in §3.6.1, we solve the eigenvalue prob-
lem (3.87) numerically by the Fourier spectral method, where U0, U

2
0 , and

g are expressed by (3.78). We consider the domain [0, Lη] and a periodic
boundary condition for η. The width of the domain, Lη, was determined
so that the numerical calculation converges sufficiently 19. The width of the
spatial grids was set to be 1/210, and the truncation mode number K was
taken in the way that K/Lη becomes 125/16 for each case. The O(ε) element
of Rossby radius of deformation L1 taken to be the width of the steady zonal
jet U0

20.
Fig.3.20 shows the real parts of the leading eigenvalues for fixed γ, Uw,

and 2πnξβ0/Lξ. For small enough |2πnξβ0/Lξ|, the real parts of the leading
eigenvalues monotonically decreases as L1/Lj decreases, and the shape is
similar to that of ξ−independent case in Fig.3.18. This is natural, because
2πnξβ0/Lξ = 0 corresponds to ξ−independent case. On the other hand, for
larger |2πnξβ0/Lξ|, the parts of the leading eigenvalues take the maximum
values at L1/LJ ∼ 101/2. The bump becomes higher as |2πnξβ0/Lξ| becomes
larger, but the real part of the leading eigenvalue of larger |2πnξβ0/Lξ| does
not become larger than that of smaller |2πnξβ0/Lξ| even at L1/LJ ∼ 101/2,
so the real parts of the leading eigenvalues for a fixed L1/LJ monotonically
decreases as |2πnξβ0/Lξ| increases. We will check this again in Fig.3.21 later.
The mechanism of the appearance of the bump is not clear, and the structure
of the eigenfunctions shows no apparent change from those of large or small
|2πnξβ0/Lξ|. Now, paying attention only to the region where L1/LJ is small,
all the real parts of the leading eigenvalues look as if they converge to zero.
From the same reason stated in the ξ−independent case in §3.6.3, they do
not become zero but take positive values for the values of |2πnξβ0/Lξ| shown
in Fig.3.20. This analysis cannot be used for the case with much larger
|2πnξβ0/Lξ|, though. This will be discussed by using Fig.3.21 later.

Now, the plot of the the real parts of the leading eigenvalues for fixed
γ, Uw, and L1/LJ is shown in Fig.3.21. For both L1/LJ where real parts

19We mainly took Lη = 216, and 512 for each case and confirmed the convergence of
the calculations.

20We defined the width of U0 to be 2�U0 , where �U0 satisfies
| [U0(0) − U0(�U0)] / [U0(0) − UW ] | = 1/e
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Figure 3.20: The real parts of the leading eigenvalues for γ = 1.0, UW =
−1.0), 2πnξβ0/Lξ = 1.0×10−4 (red thick solid line), 5.0×10−4 (orange thick
dashed line), 1.0−3 (Blue thick dotted line), 1.1×10−3 (green thin solid line),
and 1.2×10−3 (light blue thin dotted line). The pink dotted line corresponds
to the eigenvalue of the ξ−independent barotropic case.

of the leading eigenvalues may or may not take a maximum value for fixed
|2πnξβ0/Lξ| in Fig.3.20, the real parts of the leading eigenvalue monotoni-
cally decreases as |2πnξβ0/Lξ| increases, and takes the maximum value at
2πnξβ0 = 0. This certifies that the real part of the leading eigenvalue at
the higher bump of larger |2πnξβ0/Lξ| does not become larger than that of
smaller |2πnξβ0/Lξ| in Fig.3.20. We could not obtain the eigenvalue for large
|2πnξβ0/Lξ| because continuous modes appear and the numerical calcula-
tion does not converge there. However, from the shape of the graph, it may
be reasonable to expect the real parts of the leading eigenvalue to be nega-
tive at sufficiently large |2πnξβ0/Lξ|. There are some differences between ξ-
depending case in the shallow-water quasi-geostrophic system discussing here
and ξ−depending case in the barotropic system in §3.6.1, for example, the
real parts of the leading eigenvalues does not have a cusp at 2πnξβ0/Lξ = 0
now whilst it does in the barotropic case in §3.6.1, and the instability for
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the same γ, Uw, and L1/LJ is weaker than that of the barotropic case. How-
ever, the essential facts are the same as the ξ−depending barotropic case; U0

certainly is linearly unstable. The instability is expected to bring about the
deformation of the steady isolated zonal jet U0 and causes its disappearance.
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3.7 Discussions and Conclusions

In this chapter, we have examined the merging and the disappearing pro-
cesses observed in a long-time development of zonal jets on a rotating sphere
and β plane, by considering a simpler model of zonal jets with a non-zonal
background flow on a β plane.

Firstly in §3.2, it was confirmed that the intermittent mergers and dis-
appearances of zonal jets is also seen in two-dimensional turbulence on a β
plane, and such dynamics of fully developed zonal jets cannot be explained in
the framework of the laminar zonal flow because of the instability of laminar
zonal jet whose representative scale is larger than the Rhines scale. For this
reason, the effect of the background turbulence is inevitable for the theory of
mergers and disappearances of such zonal jets in two dimensional turbulence
in rotating systems.

To investigate zonal jets under the influence of turbulence, we have con-
sidered zonal jet flows on a β plane subject to the effect of a background
small-scale sinusoidal transversal flow in §3.3 – §3.5. This model is originally
introduced by Manfroi and Young[16], and the evolution equation of such
zonal flow is given in Manfroi-Young equation (Manfroi and Young[16]).

Analytical solutions of steady isolated zonal jet of Manfroi-Young equa-
tion were obtained in §3.3.2. The solution U0 exists in certain regions of a
parameter space, and is uniquely determined by fixing two parameters.

In order to investigate the disappearing mechanism of zonal jets, the
linear stability of U0 was investigated both numerically and partially analyt-
ically, and it was found that the steady isolated zonal jet solutions U0 are all
linearly unstable. Numerical time integrations of the evolution equation also
showed that the perturbed unstable steady jet solution gradually decreases
its amplitude, and becomes a uniform flow in the long run (§3.4).

Comparing the results shown in §3.4 to the numerical experiment per-
formed by Manfroi and Young [16], there seems to be a disagreement at first
sight. Every steady jet solution is linearly unstable, whilst the jets appear
in the numerical simulation in Manfroi and Young [16] disappear one by one
quite deliberatively, ending up with one jet in the considering domain at the
final stage.

This disagreement may be caused by the fact that the leading eigenval-
ues have zeros of second order on the curves (3.29a), (3.29b), (3.31a), and
(3.31b). In Manfroi and Young [16], they only fixed γ in advance in their
numerical simulation, where UW was “selected” spontaneously by the system
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itself and the resultant parameters (γ, UW ) was very close to the boundary
curve (3.29a), which suggests that the zonal jets in the simulation are almost
marginally stable. This implies that although the jets seen in the numerical
simulation in Manfroi and Young [16] really were linearly unstable, their in-
stability was very weak and the jets have behaved as if they had been linearly
stable.

Concerning the difference between the analyses in Manfroi and Young
[16] and our study, we also have to mention the differences of the boundary
condition. The solution in Manfroi and Young [16] is affected by the periodic
boundary condition, and alternative eastward westward jets rather than an
isolated jet are observed. We, on the other hand, perform the analyses in the
infinitely extended domain. For the calculations of the eigenvalue problems
and numerical time integrations, we take a sufficiently large computational
domain in order that the amplitude of disturbances may vanish when it is far
from the isolated jets. Note that the eigenfunction decays spatially slower
than the jet. The periodic boundary condition allows the baseline shift of the
jet profile, which does not occur when the equation is considered in an infinite
domain. Therefore, strictly speaking, the result of our analyses cannot be
applied to the final state of their solution.

Nevertheless, we may find a point of our result consistent with the nu-
merical experiment by Manfroi and Young [16]. Disappearance of the thin
jet seen in Fig.3 in Manfroi and Young [16] at τ = 500–600 may be caused
by the intrinsic instability of the jet obtained in the present study, firstly
because the baseline of the jet does not vary during the disappearance of the
jet, consistently with the presumption of our analysis, and secondary because
the stability of the thin jet is considered not to be affected by the adjacent
jets, as the eigenfunction of the unstable disturbance is concentrated around
the basic jet (Fig.3.10).

For the merging process of zonal jets, again, we have considered the steady
isolated zonal jet solutions of Manfroi-Young equation, and have estimated
a weak interaction (Ei [19]) between two identical zonal jets U0 by a pertur-
bation method, and calculated time derivative of the distance between two
zonal jets ḣP in §3.5. It has been found that the two identical zonal jets
placed apart (two-jet state) attract each other, and the attraction becomes
stronger as the distance between them gets shorter. The result is consistent
with the behaviour of two jets and and the time derivative of the distance
between them ḣN , obtained by a numerical time integration of the Manfroi-
Young equation. There is a slight disagreement between ḣP and ḣN in terms
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of numerical values, though. This had not been improved by changing any
parameter used to obtain ḣP and ḣN . The biggest reason for this may arises
from the linear instability of a steady isolated jet U0. Although U0 we have
used are nearly marginally stable, the deformation of them, especially around
the centres of their bumps, may have not been small enough to neglect. This
can bring some errors when the distance between two jets is measured from
the full nonlinear numerical simulation. Even though, the result obtained
here still strongly suggests that the weak interaction between two neighbour-
ing jets through their tails is essential for their attraction of each other.

We have also investigated the strong nonlinear stage and the final state
of two-jet state seen after a fairly long weak nonlinear stage. For the case
that the linear instability of the steady isolated zonal jet solution U0 is weak,
when the distance between two jets becomes small enough, the jets promptly
merge to one larger jet. This larger jet then survives for a very long time,
keeping its shape. However, as this new jet is a steady isolated zonal jet
solution U0 of the same γ but different UW , it may gradually decreases its
amplitude and finally becomes a uniform flow, because of its linear instability
discussed in §3.4. Meanwhile, in the case that the linear instability of the
steady isolated jet is strong, when the distance between two jets becomes
small enough, one of the jets disappears by being ’absorbed’ into the other
one. This may be what has happened in the numerical simulation performed
by Manfroi and Young [16].

The total result found in §3.5 is consistent with gradual mergers and
disappearances of zonal jets seen in the forced two-dimensional barotropic
incompressible flows on a rotating sphere and on β plane; the mergers and
disappearances takes longer time when the distance between the adjacent
jets is larger; the mergers and disappearances take place quickly after the
distance between the adjacent jets becomes short enough; and the zonal
jets survives much longer time when they become a larger jet after having
experienced several mergers and disappearances. This may suggests that
the weak interaction between neighbouring jets can be essential to the jets
mergers and disappearances as well as their intrinsic instability discussed in
§3.4.

Then finally, we have made small modifications to Manfroi-Young model
by taking account of the spatial variation of the disturbance in the zonal
direction, and the surface variation of the fluid layer in §3.6. The Manfroi-
Young model considers a special case that the zonal flow superposed upon a
small-scale sinusoidal flow is governed by an amplitude equation that does not
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have x−direction dependence. The real zonal jets in two-dimensional turbu-
lence, on the contrary, is governed by two-dimensional governing equations.
Hence in §3.6.1, we have considered the linear stability of steady isolated
zonal jet solution U0 when it is allowed to have a non-zonal variation. For
another way to modify the Manfroi-Young equation, we have allowed the fluid
to have divergence i. e. allow the fluid layer depth to have a slight variation
both in time and space. We have performed an asymptotic analysis following
the Manfroi and Young [16] in a shallow-water quasi-geostrophic system, and
studied the linear stability of steady isolated zonal jet solution U0 in §3.6.2
when it is governed by an amplitude equation independent of x−direction,
and §3.6.3 when its amplitude equation has x−direction dependence.

It was found that U0 is linearly unstable for three cases stated above.
Long-time behaviour and the final state of the steady isolated zonal jet U0 in
these systems, especially when the U0 is allowed non-zonal variation, is the
problem desired to be clarified, and this is now under investigation.
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Chapter 4

Conclusion

In this thesis, long-time behaviour of zonal jets in two-dimensional turbulence
on both a rotating sphere and β plane was considered, and the mechanisms of
mergers and disappearances of zonal jets was investigated by an asymptotic
analysis on a β plane.

In two-dimensional turbulence on a rotating sphere, a structure with al-
ternating eastward and westward jets, namely a multiple zonal-band struc-
ture, emerges from a randomly perturbed small-scale flow filed, in the course
time development. The multiple zonal-band structure then experiences in-
termittent mergers and disappearances of zonal jets, and at the final stage of
the time integration, a zonal-band structure with only a few (two or three)
large-scale zonal jets is realised. The merger and disappearance of zonal jets
is also seen in a simpler model, i.e., two-dimensional turbulence on β plane,
and it is one of the most outstanding properties of long-time behaviour of
two-dimensional turbulence in rotating systems. The mechanism of the pro-
cess, however, is not yet well understood, and one essential point we have to
notice is that this is not explained in the framework of laminar flows because
of the linear stability of large-scale laminar zonal jets. As a consequence, it
is inevitable to take the effect of turbulence into the theory for zonal jets
in an analytically treatable way when we hope to understand the long-time
behaviour of zonal jets on a rotating sphere and β plane.

The simple model for a zonal flows superposed upon a homogeneous flow
and a small-scale sinusoidal transversal background base flow, originally in-
troduced by Manfroi and Young [16], is one of the most successful models
in order to inspect the dynamics of zonal flows under the influence of tur-
bulence. By utilising a deterministic forcing instead of turbulence whose
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properties are stochastic, the model enables us to investigate the dynamics
of zonal flows analytically to some extent.

Manfroi and Young has derived the time evolution amplitude equation of
a zonal flow with a small-scale background flow (the Manfroi-Young equa-
tion), by utilising a multiple-scale expansion technique. From their numerical
experiments, when the bottom drag is absent, it is known that a multiple
zonal-band structure emerges from a random initial flow, and the gradual
disappearances of the zonal jet occur one by one, forming a structure with
one thin eastward jet and one broad westward jet in the considered periodic
domain. Since the evolution of the zonal-band structure seen in their numer-
ical experiment is similar to long-time behaviour of zonal jets on a rotating
sphere or β plane, we may deduce some physical insight about the merging
and the disappearing process of zonal flows induced by small-scale stochastic
forcing by examining this system.

Therefore in the main part of this thesis, we first have derived an ana-
lytical steady solution of the Manfroi-Young equation in the form of isolated
zonal jet with one bump and having a constant value at sufficiently far field.
The solution, U0, was found to exist in certain regions of a parameter space,
and to be uniquely determined by fixing two parameters.

Then, by examining a linear stability of U0, we have discussed the dis-
appearing process of zonal jets. It was numerically confirmed that U0 is
linearly unstable for all the parameter regions where it can exist. The dis-
tribution of leading eigenvalues are partially proved analytically, too. It was
also shown by a numerical long-time integration of the evolution equation,
the perturbed unstable steady jet solution U0 gradually decreases its ampli-
tude, and becomes a uniform flow in the long run. The disappearing process
of U0 in this numerical simulation agrees well with the disappearing process of
zonal flows in the Manfroi and Young’s numerical experiment, and this is also
consistent with disappearance of zonal jets in two-dimensional turbulence on
a rotating sphere and β plane. The result suggests the possibility of the zonal
jets’ disappearance because of their intrinsic instability in two-dimensional
turbulence in rotating systems.

The merging process of the neighbouring zonal jets was investigated by
considering the weak interaction between two identical steady zonal jet solu-
tions U0 placed apart (two-jet state) through their tails. Applying a reduc-
tion theory to the interaction between two U0, we have analytically estimated
the time derivative of the distance between two zonal jets: ḣP . Using the
analytical notation of ḣP , it has been numerically certified that the two iden-
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tical zonal jets placed apart attract each other, and the attraction becomes
stronger as the distance between them gets shorter. The result is consistent
with the behaviour of two jets and the time derivative of the distance be-
tween tow jets ḣN , obtained by a numerical time integration of the two-jet
state governed by the Manfroi-Young equation. The strong nonlinear stage
and the final state of the two-jet state was also investigated numerically, and
it was found that two zonal jets attract each other, and merge at the centre
of their original position when the instability of U0 is weak enough, whilst
one of the two zonal jets is absorbed into the other one when the instability
of U0 is strong.

The result is consistent with gradual mergers and disappearances of zonal
jets seen in forced two-dimensional turbulence on a rotating sphere and β
plane; the mergers and disappearances takes longer time when the distance
between the adjacent jets is larger; the mergers and disappearances take
place quickly after the distance between the adjacent zonal jets becomes
short enough; and the zonal jets survives much longer when they become a
larger jet after having experienced several mergers and disappearances. This
may suggests that the weak interaction between neighbouring jets can be
essential to the jets mergers and disappearances as well as their instability
caused by the effect of turbulence.

Futhermore, we have made small modifications to Manfroi-Young model
by taking account of the spatial variation of the disturbance in the zonal
direction, and the surface variation of the fluid layer. Note that in real two-
dimensional turbulence, zonal flows are always governed by a two-dimensional
equations, whilst the Manfroi-Young equation only possesses y−direction
dependence. It was found that U0 is linearly unstable even when it is allowed
a non-zonal variation or when the depth of total flow layer is not constant as
two-dimensional barotropic case but allowed to slightly vary both in time and
space. This implies that the instability of zonal flow is a common property of
wide range of systems on a β plane. The long-time behaviour and the final
state of the steady isolated zonal jet U0 in these systems, especially when
the U0 is allowed non-zonal growth variation, is the problem desired to be
clarified, and this is now under investigation.

Although the results described in this thesis are consistent with the long-
time behaviour of zonal jets in two-dimensional turbulence in rotating sys-
tems, and seem to be suggesting partially reasonable explanation to them,
the applicability of the results of the study here to the mergers and dis-
appearances of the zonal jets in the problems of stochastically forced two-
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dimensional turbulence on a rotating sphere (§2) or β plane (Chekhlov et
al. [8], §3.2) is not clear, because the background turbulence in these case
consists of a lot of wavy modes varying in time, and the background single
sinusoidal flow adopted in this study may be too simple to incorporate the ef-
fect of turbulence. However, the notion of the instability of zonal jets caused
by the background small-scale non-zonal flow and the attraction between
neighbouring zonal jets by the weak interaction through their tails appear to
work in the complex flow at least phenomenologically, and deserves further
investigation.

106



Appendices

A.1 Treatment of liner terms in the govern-

ing equation (2.1) in numerical calcula-

tions in §2
In the numerical time integration of Eq.(2.1) in §2, linear terms are analyti-
cally treated in advance. Here we introduce the method used in §2.

When using a spectral method with the spherical harmonics Y m
n whose

total wavenumber n and zonal wavenumber m, the stream function ψ, the
vorticity ζ, and the forcing function F are expanded as

ψ(φ, μ, t) =

NT∑
n=0

n∑
m=−n

ψm
n (t)Y m

n (φ, μ),

ζ(φ, μ, t) =

NT∑
n=0

n∑
m=−n

ζm
n (t)Y m

n (φ, μ),

F (φ, μ, t) =

NT∑
n=0

n∑
m=−n

Fm
n (t)Y m

n (φ, μ).

(A.1)

Here, NT is the truncation wavenumber, and ψm
n , ζm

n , Fm
n are the expansion

coefficients. Substituting the expansion (A.1) into Eq.(2.1), multiplying Y m′
n′

†

to both hand sides of the equation, and integrating it in a whole domain, we
obtain

∂ζm
n

∂t
+

1

a2
[J(ψ, ζ)]mn +

2Ω

a2

[
∂ψ

∂φ

]m

n

= Fm
n + ν

−n(n + 1) + 2

a2
ζm
n . (A.2)

Here, [J(ψ, ζ)]mn and [∂ψ/∂φ]mn are the spherical harmonics expansions coef-
ficients of J(ψ, ζ) and ∂ψ/∂φ, respectively.
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Noticing ζ = ∇2ψ so that[
∂ψ

∂φ

]m

n

= − a2m

n(n + 1)
ζm
n

holds, and introducing the phase velocity of the Rossby wave

vR(n,m) ≡ − 2Ωm

n(n + 1)
,

and

−ν∗ ≡ ν
−n(n + 1) + 2

a2
,

Eq.(A.2) is rewritten as

∂ζm
n

∂t
= − 1

a2
[J(ψ, ζ)]mn + vR(n,m) ζm

n + Fm
n − ν∗ζm

n . (A.3)

Now we introduce

ζ̂m
n (t) ≡ ζm

n (t) exp[(−vR(n,m) + ν∗) t ], (A.4)

then the left and right hand sides of Eq.(A.3) become

(vR − ν∗)ζ̂m
n exp[−(−vR(n,m) + ν∗)t] +

∂ζ̂m
n

∂t
exp[−(−vR(n,m) + ν∗)t],

and

− 1

a2
[J(ψ, ζ)]mn + Fm

n + (vR(n,m) − ν∗) ζ̂m
n exp[−(−vR(n,m) + ν∗)t],

respectively. Consequently, from Eq.(A.3), we obtain

∂ζ̂m
n

∂t
=

(
− 1

a2
[J(ψ, ζ)]mn + Fm

n

)
exp[(−vR(n,m) + ν∗) t ]. (A.5)

After all, what we have to do for the time integration of Eq.(2.1) is calculat-
ing ζ̂m

n (t) by performing the time integration of Eq.(A.5), and obtain ζm
n (t)

through Eq.(A.4) in every time step.

108



A.2 Convergence of the numerical calculations

in §2
The convergence of the numerical simulations in §2 has been checked by
performing calculations with different parameters; Δt = 0.025, which is half
of the one used here; the truncation wavenumber NT = 341 and the spatial
grid points 1024× 512 which realises almost twice higher resolution than the
original one.

Temporal developments of zonal-mean zonal angular momentum [Llon] of
run 4 with different conditions for numerical simulation are shown in Fig.A.1.
Although the details of the temporal development of zonal jets are different,
the general tendency, the appearance of zonal-band structure in the first stage
of time integration and the realisation of an asymptotic state with two zonal
jets through mergers and disappearances of zonal jets, are common for three
simulations. This suggest that these common properties are independent of
conditions of numerical simulation. Note that which hemisphere is covered
by an eastward jet in the asymptotic state strongly depends on the random
force given to the system so that it is natural that different hemisphere is
covered by an eastward jet for the different numerical simulations.
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Figure A.1: The temporal development of zonal-mean zonal angular mo-
mentum [Llon] by calculations with different time step width Δt, truncation
wavenumber NT , and the number of spatial grid points. Rest of the parame-
ters are all set to be the same as those of run 4. (a): The original calculation
(run 4). (b): Δt = 0.025, which is half of the one used in the original calcu-
lation. (c): NT = 341 and the spatial grid points 1024 × 512 which realise
almost twice higher resolution than the original calculation(This calculation
is performed only to t = 4.5 × 104).
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A.3 Treatment of liner terms in the govern-

ing equation (3.1) in numerical calcula-

tions in §3.2

Here we introduce the method to treat the linear terms of Eq.(3.1) analyt-
ically in advance, used when we perform the numerical time integration of
Eq.(3.1) in §3.2. The manner is almost same as that described in §A.1.

First, we perform double Fourier expansions to the stream function ψ,
the vorticity ζ, and the forcing function F :

ψ(x, y, t) =

KxT∑
kx=−KxT

KyT∑
ky=−KyT

ψkx,ky(t) exp(ikx x) exp(iky y),

ζ(x, y, t) =

KxT∑
kx=−KxT

KyT∑
ky=−KyT

ζkx,ky(t) exp(ikx x) exp(iky y),

F (x, y, t) =

KxT∑
kx=−KxT

KyT∑
ky=−KyT

Fkx,ky(t) exp(ikx x) exp(iky y),

(A.6)

where KxT , KyT are the truncation mode numbers, and ψkx,ky , ζkx,ky , Fkx,ky

are the the expansion coefficients. Substituting the expansions (A.6) into
Eq.(3.1), multiplying exp(−ik′

x x) exp(−ik′
y y) to both hand sides of the

equation, and integrating it in a whole domain, we obtain

∂ζkx,ky

∂t
+ [J(ψ, ζ)]kx,ky

+

[
β

∂ψ

∂x

]
kx,ky

= Fkx,ky − ν (kx
2 + ky

2) ζkx,ky , (A.7)

where [J(ψ, ζ)]kx,ky and [β∂ψ ∂x]kx,ky
are the double Fourier expansion coef-

ficients of J(ψ, ζ) and β∂ψ/∂x, respectively.
Noticing ζ = ∇2ψ so that

∂ψ

∂x
= −ikx

[
(kx

2 + ky
2)
]−1

ζkx+ky

holds, and introducing the phase velocity of the Rossby wave

vR(β, kx, ky) ≡ −βkx

[
(kx

2 + ky
2)
]−1
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and
−ν∗ ≡ −ν (kx

2 + ky
2),

Eq.(A.7) is rewritten as

∂ζkx,ky

∂t
= − [J(ψ, ζ)]kx,ky

− ivR(β, kx, ky)ζkx,ky + Fkx,ky − ν∗ζkx,ky . (A.8)

Now we introduce

ζ̂kx,ky(t) ≡ ζkx,ky(t) exp[(ivR(β, kx, ky) + ν∗) t ], (A.9)

then the left and right hand sides of (A.8) become

− (ivR(β, kx, ky) + ν∗) ζ̂kx,ky exp[−(ivR(β, kx, ky) + ν∗) t

+
∂ζ̂kx,ky

∂t
exp[−(ivR(β, kx, ky) + ν∗) t,

and

− [J(ψ, ζ)]kx,ky
+ Fkx,ky

− (ivR(β, kx, ky) + ν∗) ζ̂kx,ky exp[−(ivR(β, kx, ky) + ν∗) t

respectively. Consequently, from Eq.(A.8), we obtain

∂ζ̂kx,kY

∂t
=
(
− [J(ψ, ζ)]kx,ky

+ Fkx,ky

)
exp[(ivR(β, kx, ky) + ν∗) t. (A.10)

After all, what we have to do for the time integration of Eq.(3.1) is calcu-
lating ζ̂kx,ky(t) by performing the time integration of Eq.(A.10), and obtain
ζkx,ky(t) through Eq.(A.9) in every time step.
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A.4 Convergence of the numerical calculations

in §3.2

The convergence of the numerical simulations in §3.2 has been checked by
performing calculations with different parameters; Δt = 0.025, which is half
of the one used here; the truncation wavenumber KxT = KyT = 340 and the
spatial grid points 1024 × 1024 which realises twice higher resolution than
the original one.

Temporal developments of x−mean x−direction velocity [ux] for the case
of kf = 20, β = 20.0 with different conditions numerical simulation are shown
in Fig.A.2. Although the details of the temporal development of zonal jets
are different, the general tendency, the appearance of zonal-band structure
in the first stage of time integration and the realisation of an asymptotic
state with two zonal jets through mergers of eastward jets and disappear-
ances of westward jets, are common for three simulations. This suggest that
these common properties are independent of conditions of numerical simula-
tion. Note that which where is covered by an eastward jet in the asymptotic
state strongly depends on the random force given to the system so that it is
natural that different region is covered by an eastward jet for the different
numerical simulations. In addition, as we are using double periodic condition
for numerical simulation, the y−position of each zonal jet has no physical
meaning.
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x-mean x-velocity; original

x-mean x-velocity; Δt = 0.05 x-mean x-velocity; higher resolution
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Figure A.2: Long-time development of the x−mean x−velocity [ux] by cal-
culations with different time step width Δt, the truncation mode numbers
KxT , KyT and the number of spatial grid points. Rest of the parameters are
kf = 20, β = 20.0 and ‖ F ‖= 1.412 × 10−2. (a): The original calculation.
(b): Δt = 0.025, which is half of the one used in the original calculation.
(c): KxT = KyT = 340 and the spatial grid points 1024 × 1024 which realise
twice higher resolution than the original calculation.
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A.5 Symmetry of the characteristic equation

(3.38)

Here, we show that it is sufficient to investigate U0east with γ ≥ 0 to know
the linear stability of all steady solutions U0(η). For the sake of convenience,
we divide the parameter region which realises U0 into four sectors:

R+
east ≡ {(γ, UW ) | γ − 2

√
6(γ2 + 2) < UW < γ − 1

2

√
2(γ2 + 2), γ ≥ 0},

R−
east ≡ {(γ, UW ) | γ − 2

√
6(γ2 + 2) < UW < γ − 1

2

√
2(γ2 + 2), γ ≤ 0},

R+
west ≡ {(γ, UW ) | γ + 2

√
6(γ2 + 2) > UW > γ +

1

2

√
2(γ2 + 2), γ ≥ 0},

R−
west ≡ {(γ, UW | γ + 2

√
6(γ2 + 2) > UW > γ +

1

2

√
2(γ2 + 2), γ ≤ 0}.

(A.11)

R+
east, R−

east, R+
west, and R−

west correspond to U0east with γ ≥ 0, U0east with
γ ≤ 0, U0west with γ ≥ 0, and U0west with γ ≤ 0 respectively.

Now, take an arbitrary combination (γ, UW ) ∈ R+
east, and consider (−γ, UW−

2γ), which is in the sector R−
east. Then, from the definitions (3.32), (3.33),

(3.35b), and (3.35a), the relations

U−
Eeast = U+

Eeast − 2γ,

U−
Reast = U+

Reast − 2γ,

a−
east = a+

east,

U−
0east = U+

0east − 2γ,

(A.12)

hold. Subscripts east,
+ and − above represent eastward jet, R+

east, and R−
east

respectively; for example, U−
Eeast means UE at (−γ, UW − 2γ) ∈ R−

east. Using
Eq.(A.12), the characteristic equation (3.38) for U−

0east can be written as

σg =
[
−(2 − γ2) +

(
2
(
U−

0east

)2 − 4γU−
0east

)] d2g

dη2
− 3

d4g

dη4

=
[
−(2 − γ2) +

(
2
(
U+

0east

)2 − 4γU+
0east

)] d2g

dη2
− 3

d4g

dη4
,

which is the same characteristic equation for U+
0east. Hence, investigating the

stability of U+
0east will certainly tell the stability of U0east.
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Next, take an arbitrary combination (γ, UW ) ∈ R+
east again, and consider

(−γ,−UW ), which is easily show to be in the sector R−
west. Then, from the

definitions (3.32), (3.33), (3.35b), and (3.35a), the relations

U−
Ewest = −U+

Reast,

U−
Rwest = −U+

Eeast,

a−
west = a+

east,

U−
0west = −U+

0east

(A.13)

hold. Using Eq.(A.13), the characteristic equation (3.38) for U−
0west appears

to be written as

σg =
[
−(2 − γ2) +

(
2
(
U−

0west

)2 − 4γU−
0west

)] d2g

dη2
− 3

d4g

dη4

=
[
−(2 − γ2) +

(
2
(
U+

0east

)2 − 4γU+
0east

)] d2g

dη2
− 3

d4g

dη4
,

which is the same characteristic equation for U+
0east. Hence, investigating the

stability of U+
0east will also certainly tell the stability of U0west. Consequently,

it is sufficient to investigate U0east ∈ R+
east to know the linear stability of all

the U0.
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A.6 Linear stability of an uniform flow in a

Manfroi-Young model

Linear stability of a uniform flow U = UW for the Manfroi-Young equation
(3.20).

Let us consider a small perturbation u to the uniform flow. Substituting
the total flow U = UW + u into Eq.(3.20) and linearising the equation with
respect to u yield

∂u

∂τ
= −(2 − γ2)

∂2u

∂η2
− 3

∂4u

∂η4
− 4γUW

∂2u

∂η2
+ 2U2

W

∂2u

∂η2
.

If we consider the perturbation to be in the form u = u0 exp (στ + ikη), the
characteristic equation

σ = k2
[
(2 − γ2 + 4γUW − 2U2

W ) − 3k2
]

(A.14)

is obtained. The uniform flow U = UW is linearly stable for the set of
parameters (γ, UW ) where

(2 − γ2 + 4γUW − 2U2
W ) − 3k2 = 0

does not have k ∈ R. The parameter regions where flow U = UW become
linearly stable are

UW ≤ γ − 1

2

√
2(γ2 + 2) or γ +

1

2

√
2(γ2 + 2) ≤ UW ,

and this is includes the parameter regions which realise one-bump steady
solution U0 ((3.28) and (3.30), shown in Fig.3.5).

Hence, the uniform flow UW obtained from the instability of U0 of a
parameter set (γ, UW ) in an infinite domain is always linearly stable, and
this may be the final state of perturbed U0.
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