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Abstract: We consider a market model in which all commodities are inher-

ently indivisible and thus are traded in integer quantities. We ask whether a

finite set of price-quantity observations satisfying the Generalized Axiom of Re-

vealed Preference (GARP) is consistent with utility maximization. Although

familiar conditions such as non-satiation become meaningless in the current

discrete model, by refining the standard notion of demand set we show that

Afriat’s celebrated theorem still holds true. Exploring network structure and

a new and easy-to-use variant of GARP, we propose an elementary, simple,

intuitive, combinatorial, and constructive proof for the result.
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1 Introduction

The theory of demand typically assumes that all commodities in the market are perfectly

divisible, and a consumer, when faced with prices and a budget, will choose an affordable

bundle to achieve a maximal utility. In a pioneering article, Afriat (1967) started with

a finite set of observed market prices and the consumer’s demand quantities and asked

whether such observations are actually consistent with the maximization of a locally non-

satiated utility function. By induction he established a remarkable result stating that

the observations are consistent with utility maximization if and only if they satisfy the

Generalized Axiom of Revealed Preference—a simple testable condition. This work has

stimulated considerable interest and substantial follow-up research; see Diewert (1973),

Varian (1982), Chiappori (1988), Browning and Chiappori (1998), Blundell, Browning and

Crawford (2003), Fostel, Scarf and Todd (2004), Piaw and Vohra (2003), Cherchye, De

1Part of this research was done while the second author was visiting the Research Institute for Math-
ematical Sciences, Kyoto University, Japan. The author wishes to thank the institute for its hospitality
and financial support.

2S. Fujishige, Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan;
fujishig@kurims.kyoto-u.ac.jp.

3Z. Yang, Department of Economics and Related Studies, University of York, Heslington, York, YO10
5DD, UK; zaifu.yang@york.ac.uk.
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Rock and Vermeulen (2007), Blow, Browning and Crawford (2008), and Crawford (2010)

among many others. See Varian (2006) and Vermeulen (2011) for more references.

While the literature focuses on the case of divisible goods, the current paper attempts

to extend the theory to an equally important and practical case in which all commodities

are traded in integer quantities, for instance, when all goods are inherently indivisible.4

In reality, indivisible commodities are pervasive and constitute significant parts of many

economies. In general, they are durable and expensive, to name but a few, such as houses,

cars, computers, machines, arts, employees, and airplanes. In fact, many divisible goods

are also traded in discrete quantities, such as oil sold in barrels. Obviously, modeling

economies with indivisibilities is more meaningful and more realistic. The importance of

studying such economies has long been recognized by many economists, including Lerner

(1944), Koopmans and Beckmann (1957), Debreu (1959), Arrow and Hahn (1971), Shapley

and Scarf (1974), Crawford and Knoer (1981), Kelso and Crawford (1982), Scarf (1986,

1994), Ausubel (2006), Sun and Yang (2006), and Milgrom (2007). In the current envi-

ronment, due to absence of perfect divisibility and continuity, familiar conditions such as

non-satiation can no longer be applied. To tackle the problem, we need to refine the stan-

dard concept of demand set. Using this refinement, we will be able to show that Afriat’s

theorem still holds true in the current discrete case. This demonstrates surprisingly wide

appeal and adaptability of Afriat’s theorem. We also introduce an easy-to-use variant

of the Generalized Axiom of Revealed Preference. Using network structure and the new

variant of GARP, we present a very elementary, simple, intuitive, combinatorial and con-

structive proof for the result. The basic idea of the proof was used explicitly in Piaw and

Vohra (2003) and also implicitly in Afriat (1967), Diewert (1973), Varian (1982), and Fos-

tel, Scarf and Todd (2004). Here we improve the argument considerably and make it very

transparent and accessible without assuming the reader’s familiarity with any fundamental

result from graph theory, linear programming, or any other mathematical subject. The

proof is so easy that it can be understood by college economics students. In addition the

proof is not restricted to indivisible goods and can be equally applied to divisible goods.

2 Main Results

We begin by reviewing the purchase decision problem of a consumer. There are n different

types of commodities in the market. The consumer has a budget b for consumption and

4After this paper was circulated, we heard from John Quah of Oxford University that he and Matthew
Polisson of Leicester University had an independent manuscript “Discreteness, separability, and revealed
preference” (2012) addressing a similar issue via a different approach.
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a utility function u : IRn
+ → IR.5 Suppose p ∈ IRn

+ are the prevailing market prices, each

component pi indicating the price of commodity i. Then the consumer’s decision problem

is to choose a bundle x in IRn
+ which gives him the highest utility and is also affordable

to him. Such a bundle is called an optimal bundle. Alternatively, we can describe all his

optimal bundles by using the demand set Du(p, b) = arg max{u(x) | p · x ≤ b, x ∈ IRn
+}.

In the literature it is typically assumed that all commodities are perfectly divisible

and also the consumer’s utility function u is locally non-satiated in the sense that for

every x ∈ IRn
+, and in every neighborhood of x, there is another bundle having a higher

utility. Suppose that a market analyst wishes to examine the consumer’s demand behavior.

It is natural to assume that the analyst does not know the consumer’s utility function

and his budget flow but does know that the consumer does not change his preferences

over a period of time. Suppose that the analyst has now collected a finite observed data

set {(pi, xi) | i = 1, · · · ,m} with respect to the consumer over the time i = 1, · · · ,m,

where pi ∈ IRn
+ is the price vector and xi ∈ IRn

+ is the consumer’s demand bundle under

prices pi and (probably an unobservable) budget bi (which may vary over the time). The

fundamental question raised by Afriat (1967) is whether these observations are consistent

with the consumer’s demand behavior under a locally non-satiated utility function u in the

sense that xi ∈ Du(p
i, bi) for all i = 1, · · · , m. To verify the consistency, several criteria

have been proposed. Among them, the Strong Axiom of Revealed Preference (SARP) and

the Generalized Axiom of Revealed Preference (GARP) are most well-known and widely

used.

A consumer’s choice behavior is said to satisfy the Strong Axiom of Revealed Preference

(SARP) if, for every sequence of pairs of price vector and demand bundle (p1, x1), (p2, x2),

· · · , (pm, xm) satisfying pj · xj+1 ≤ pj · xj for all j ≤ m − 1, we have pm · x1 > pm · xm.

SARP was due to Houthakker (1950).6 Moreover, we say that the consumer’s behavior

satisfies the Generalized Axiom of Revealed Preference (GARP) if, for every sequence of

pairs of price vector and demand bundle (p1, x1), · · · , (pm, xm) satisfying pj · xj+1 ≤ pj · xj

for all j ≤ m− 1, we have pm · x1 ≥ pm · xm. GARP is more general than SARP and was

introduced in Varian (1982).7

Given a finite observed data set {(pi, xi) | i ∈ M}, where M = {1, 2, · · · ,m}, pi ∈ IRn
+

is a price vector and xi ∈ IRn
+ is the corresponding demand bundle, we say that a utility

function u rationalizes the observed behavior if the data can be generated as the outcome

of the utility-maximization, i.e., xi ∈ Du(p
i, bi) for some bi and for all i. We also say that

5Here IRn
+ denotes the nonnegative orthant of the n-dimensional Euclidean space IRn. We use Zn and

Zn
+ to stand for the set of all integral vectors in IRn and IRn

+, respectively.
6Samuelson (1948) introduced a more restrictive axiom than SARP, now known as the Weak Axiom of

Revealed Preference.
7GARP is equivalent to Afriat (1967)’s Cyclical Consistency.
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the data set {(pi, xi) | i ∈ M} satisfies GARP if, for every subset {(pij , xij) | j = 1, · · · , t}
of the data set {(pi, xi) | i ∈ M}, pij · xij+1 ≤ pij · xij for all j ≤ t − 1 implies pit · xi1 ≥
pit · xit . Afriat (1967) establishes a celebrated result stating that a finite observed data set

{(pi, xi) | i ∈ M} is consistent with utility maximization if and only if the observations

satisfy GARP. To prove that the observations derived from utility maximization satisfy

GARP, the standard approach is to use the non-satiation property of the utility function;

see, e.g., Diewert (1973, pp. 420-421), Fostel, Scarf and Todd (2004, p.212), and Varian

(1982, p.946). On this point, see Vermeulen (2011, p.4) for a historical account.

As stated earlier, our purpose is to consider the environment where all commodities are

inherently indivisible, such as houses and cars. Needless to say, it is more realistic to assume

that all goods are traded in integer (or rational) quantities. Thus in the current situation,

the consumer’s consumption set will be Zn
+ instead of IRn

+, and his utility function will be

u : Zn
+ → IR. To make the model even more practical, the price space is also assumed to be

Zn
+ instead of IRn

+. For instance, no unit of a price is less than a penny or cent. Under the

current framework, non-satiation is meaningless. This implies that the existing approach of

using non-satiation to show that the observations derived from utility maximization satisfy

GARP can no longer be applied. To deal with the current model, we first need to modify

the standard notion of the consumer’s demand set. Given p ∈ Zn
+ and budget b ∈ Z+, the

demand set of the consumer is given by Du(p, b) = arg max{u(x) | p · x ≤ b, x ∈ Zn
+}. We

refine the demand set Du(p, b) as follows:

D∗
u(p, b) = {x ∈ Du(p, b) | p · x ≤ p · y, ∀y ∈ Du(p, b)}

That is, D∗
u(p, b) contains those bundles which not only give the consumer the highest

utility under his budget but also have the least cost. Any bundle in D∗
u(p, b) will be called

an optimal bundle with tight budget and D∗
u(p, b) the tight budget demand set. In this case,

we say that the consumer is a tight budget utility maximizer. A tiny step forward as it

might appear to be, this refinement is meaningful and natural, more importantly crucial

to our analysis on the current discrete model. Of course, this concept can be applied to

the continuous case as well from which the non-satiation assumption can be dropped.

The next little example demonstrates that observations derived just from utility max-

imization without tight budget could violate GARP. Suppose that the consumer faces

two indivisible goods and has the utility function of u(x1, x2) = min{x1, x2} for every

(x1, x2) ∈ Z2
+ and a budget of 32. The prevailing market prices are p1 = (10, 11) and

p2 = (11, 10), respectively. Then we have possible outcomes x1 = (1, 2) ∈ Du(p
1, b) =

{(2, 1), (1, 2), (1, 1)} and x2 = (2, 1) ∈ Du(p
2, b) = Du(p

1, b). Because p1·(x2−x1) = −1 < 0

and p2 · (x1 − x2) = −1 < 0, GARP is violated! However, using the tight budget demand

set we have D∗
u(p

1, b) = {(1, 1)} = D∗
u(p

2, b), so that outcomes should be x1 = x2 = (1, 1).

Because p1 · (x2 − x1) = p2 · (x1 − x2) = 0, GARP is satisfied! Let us make a com-
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parison with the case of divisible goods. We have the same form of utility function

u(x1, x2) = min{x1, x2} for every (x1, x2) ∈ IR2
+ and the same budget of 32. The same

market prices are p1 = (10, 11) and p2 = (11, 10), respectively. Note that because goods

are perfectly divisible, the consumption space is IR2
+ instead of Z2

+. In this case we have

Du(p
1, b) = D∗

u(p
1, b) = Du(p

2, b) = D∗
u(p

2, b) = {(32
21

, 32
21

)} and GARP is trivially satisfied.

Moreover the consumer achieves a higher utility of 32
21

than 1 in the case of indivisible

goods.

The following result shows a benefit of the introduction of the tight budget demand

set. Observe that we do not impose any condition on the consumer’s utility function

u : Zn
+ → IR. The proof is quite simple but does make use of the definition of the tight

budget demand set.

Lemma 1 If a finite observed data set {(pi, xi) | i ∈ M} with (pi, xi) ∈ Zn
+ × Zn

+ for all

i ∈ M is derived from tight budget utility maximization, the data set must satisfy GARP.

Proof. By assumption we know xj ∈ D∗
u(p

j, bj) for all j = 1, 2, · · · ,m. Suppose that

if pj · xj+1 ≤ pj · xj, then xj+1 could have been purchased at prices pj. Since xj+1 was

not purchased at pj, it cannot be strictly preferred to xj so that u(xj) ≥ u(xj+1). The

entire sequence of inequalities u(xj) ≥ u(xj+1), j = 1, 2, · · · ,m− 1 implies u(x1) ≥ u(xm).

Suppose to the contrary that pm · x1 < pm · xm. Then u(xm) ≤ u(x1) together with

pm ·x1 < pm ·xm would imply xm 6∈ D∗
u(p

m, bm), yielding a contradiction! So pm ·x1 ≥ pm ·xm

and GARP is satisfied. 2

It is also worth pointing out another advantage of tight budget utility maximization: it

can avoid a well-known pathological phenomenon caused by the standard notion of utility

maximization that any finite number of observations can be rationalized by the trivial

constant utility function; see Varian (1982, p. 946; 1992, pp. 131-132), and Cherchye, De

Rock and Vermeulen (2010, p. 1147).

A utility function u : Zn
+ → IR is discrete concave if, for every x1, x2, · · · , xt ∈ Zn

+ with

t ≤ n+1 and every rational λ1 ≥ 0, λ2, · · · , λt ≥ 0 with
∑t

j=1 λj = 1 and
∑t

j=1 λjx
j ∈ Zn

+,

we have u(
∑t

j=1 λjx
j) ≥ ∑t

j=1 λju(xj).

The following theorem is a discrete analogue of the Afriat’s theorem and gives a simple

testable necessary and sufficient condition that a finite observed data set must satisfy in

order to be consistent with tight budget utility maximization.

Theorem 1 The observations (pj, xj) ∈ Zn
+ × Zn

+ for all j ∈ M satisfy GARP if and only

if there exists a discrete concave and integer-valued utility function that rationalizes the

observations in the sense of tight budget utility maximization.

‘If part’ is proved in Lemma 1 above. The proof of ‘only if’ proceeds in several steps. First

we construct the data matrix B = (b(i, j)) of order m from the observations (pj, xj) for
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all j ∈ M by defining b(i, j) = pi · (xj − xi), ∀ i, j ∈ M . Observe that b(i, i) = 0 and all

b(i, j)’s are integral, because xj’s and pj’s are integral.

Following Afriat (1967), let us first assume (in fact later we will show) that there exist

integers ψ1, ψ2, · · · , ψm, and β1 > 0, β2 > 0, · · · , βm > 0 to the following system of linear

inequalities—called Afriat inequalities

ψj ≤ ψi + βib(i, j), ∀ i, j ∈ M. (1)

Now we define the utility function on IRn
+ by

ũ(x) = min{ψ1 + β1p
1 · (x− x1), · · · , ψm + βmpm · (x− xm)}

Every term in this expression is linear and hence concave. Thus, ũ, as their point-wise

minimum, is also concave. Since all ψj, βj, pj, and xj are integral, ũ(x) is an integer value

as long as x is integral. Because ũ is concave on IRn
+, obviously its restriction on Zn

+ must

be discrete concave and integer-valued. The next two steps show that ũ rationalizes the

observations.

(i). ũ(xj) = ψj for all j ∈ M . By definition ũ(xj) = mini∈M{ψi + βib(i, j)} = ψj, where

the minimum is taken from the Afriat inequalities.

(ii). pj ·x ≤ pj ·xj implies ũ(x) ≤ ũ(xj). Note that ũ(x) ≤ ψj +βjp
j ·(x−xj) ≤ ψj = ũ(xj),

where the first inequality follows from the definition of ũ, the second from the fact that

pj · x ≤ pj · xj and βj > 0, and the last equality from (i).

We have shown that the Afriat inequalities imply the existence of a desirable utility

function ũ rationalizing the observations. We will soon prove that if the observations

(pj, xj), j ∈ M , satisfy GARP, the Afriat inequalities (1) must have integral solutions ψ∗1,

· · · , ψ∗m, and β∗1 > 0, · · · , β∗m > 0.

We use the data matrix B = (b(i, j)) to construct a directed graph G(β) = (M, A, β)

with β ∈ Zm
+ , where M = {1, 2, · · · ,m} is the set of vertices corresponding to the indices

1, · · · ,m of the observations, and for i, j ∈ M with i 6= j the ordered pair (i, j) ∈ A is

an arc with an integer length or weight βib(i, j). Here i is the tail and j the head of the

arc (i, j). Let 1 = (1, · · · , 1) ∈ Zm
+ be the m-vector of all 1′s. In the sequel, we first pay

attention to the particular graph G(1).

We need to borrow several basic definitions from graph theory. A path in a graph G is

an alternating sequence (i1, (i1, i2), i2, (i2, i3), · · · , (ik−1, ik), ik), where ij, j = 1, · · · , k are

vertices, and (ij, ij+1), j = 1, · · · , k − 1, are arcs in the graph. In this case we also say

that there is a path from vertex i1 to vertex ik. i1 is called the starting vertex and ik the

terminal vertex of the path. A path is a shortest path from vertex i to vertex j in a graph

if the sum of the lengths of all arcs on the path is smallest among all possible paths from

i to j in the graph. A path with at least one arc is called a cycle if the starting vertex

6



of the path coincides with its terminal vertex and the other vertices are distinct. A cycle

is called a negative (zero, or positive) length cycle if the sum of the lengths of all arcs in

the cycle is strictly less than zero (equal to zero, or strictly greater than zero). We may

use C to denote a cycle. For ease of notation, C means simply the collection of all arcs in

the cycle C. A (sub)graph H is said to be strongly connected if for arbitrary two vertices

u, v in the graph H there exists a path in H from u to v. A maximal strongly connected

subgraph of a graph G is called a strongly connected component of the graph G.

With respect to the graph G(1), we can rephrase the Generalized Axiom of Revealed

Preference (GARP) in three slightly different ways. The first was used in Afriat (1967) as

Cyclical Consistency, the second was given in Piaw and Vohra (2003), and the third is new

but similar to the second, and convenient to use in the following proof.

Definition 1 The data matrix B satisfies GARP if every cycle C in the graph G(1) with

b(i, j) ≤ 0 for all arcs (i, j) ∈ C, implies b(i, j) = 0 for all (i, j) ∈ C.

Definition 2 The data matrix B satisfies GARP if every negative length cycle in the graph

G(1) contains at least one arc of positive length.

The following definition differs from the second in that it does not need to use the sum of

the lengths of all arcs in each cycle but instead it requires that if any cycle contains an arc

of negative weight, it should also contain an arc of positive weight.

Definition 3 The data matrix B satisfies GARP if in the graph G(1) every cycle that

contains an arc of negative length must also contain an arc of positive length.

We are now ready to present a constructive and combinatorial proof which gives ex-

plicitly integral solutions ψ∗1, · · · , ψ∗m, and β∗1 > 0, · · · , β∗m > 0 to the system (1) of Afriat

inequalities. As pointed out previously, the basic idea of our proof has been used explicitly

in Piaw and Vohra (2003), and also implicitly in Afriat (1967), Diewert (1973), Varian

(1982), Fostel, Scarf and Todd (2004). Piaw and Vohra (2003) explicitly used the net-

work structure underlying the Afriat inequalities, whereas Afriat (1967), Diewert (1973),

Varian (1982), and Fostel, Scarf and Todd (2004) only explored it implicitly or in a less

straightforward way. Here we make the argument very elementary, transparent and acces-

sible without using any fundamental result from graph theory, linear programming, or any

other subject. Another advantage of the current proof is that it can help the reader have

a better understanding of why the original case considered by Afriat (1967) is essential,

albeit restrictive in the sense that all b(i, j)’s are required to be non-zero.

The proof is based on an algorithm which uses the data matrix B as input and yields

integral solutions ψ∗1, · · · , ψ∗m, and β∗1 > 0, · · · , β∗m > 0 as output. The algorithm goes as

follows. (If b(i, j) ≥ 0 for all i, j ∈ M , then β∗i = 1 and ψ∗i = c (∀i ∈ M) for any integer
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c give a feasible solution of Afriat’s inequalities, so that we assume b(i, j) < 0 for some

i, j ∈ M in the sequel.)

Initialization Use the data matrix B to construct the graph G(1) = (M, A,1).

Step 1 Remove all arcs (i, j) with positive weight b(i, j) > 0 from the graph G(1),

resulting in a directed graph G−(1).

Step 2 Decompose the graph G−(1) into strongly connected components H1, H2, · · · ,
Hκ, where H ′

is are indexed in such a way that if there exists a path from Hi to Hj with

i 6= j, then i < j. If some component Hi contains an arc of negative length, then the

observed data is not consistent with GARP, and the algorithm terminates.

Step 3 Choose a sufficiently large integer L > 0, e.g., take L = (m−1) maxi,j∈M{|b(i, j)| |
b(i, j) < 0}. For every l = 1, 2, · · · , κ, let the multiplier β∗i of every vertex i in the subgraph

Hl be equal to β∗i = Ll−1, the (l − 1)-th power of L.

Step 4 Use the integers β∗i , i ∈ M , to construct the graph G(β∗). Take ψ∗1 = 0. For

any i ∈ M with i > 1, let ψ∗i be equal to the length of a shortest path from vertex 1 to

vertex i in the graph G(β∗).

The numbering of the strongly connected components H1, H2, · · · , Hκ is called a

topological ordering, and each Hi is an equivalence class with respect to the binary relation

induced by reachability by paths. Let us illustrate the working of the algorithm by an

example. Suppose that the data set is given

{(pi, xi) | i ∈ M} = {((10, 1), (1, 2)), ((10, 11), (1, 1)), ((1, 10), (2, 1)), ((11, 10), (1, 1))},

where M = {1, 2, 3, 4}. Then its corresponding data matrix is

B =




0 −1 9 −1

11 0 10 0

9 −1 0 −1

10 0 11 0


 .

It is easy to check that the graph G−(1) consists of three strongly connected components

H1 containing vertex 1, H2 vertex 3, and H3 vertices 2 and 4. Then we have κ = 3, L = 3,

β∗1 = 1, β∗3 = 3, and β∗2 = β∗4 = 9. Computing shortest paths from vertex 1 to i ∈ M in

the graph G(β∗) yields ψ∗1 = 0, ψ∗3 = 9, and ψ∗2 = ψ∗4 = −1. We could also have another

topological ordering due to the fact that in the graph G−(1), vertices 1 and 3 are not

connected. So the graph G−(1) also consists of three strongly connected components H1

containing vertex 3, H2 vertex 1, and H3 vertices 2 and 4. We have κ = 3, L = 3, β∗3 = 1,

β∗1 = 3, and β∗2 = β∗4 = 9. Computing shortest paths in the graph G(β∗) yields ψ∗1 = 0,

ψ∗3 = 27, and ψ∗2 = ψ∗4 = −3.

We are now ready to establish the following general result.
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Lemma 2 Under GARP, the integers β∗i > 0 and ψ∗i , i ∈ M , generated by the algorithm,

are the solution to the system of Afriat inequalities.

Proof. It is easy to see that the graph G−(1) generated in Step 1 of the algorithm

contains no negative length cycle because of GARP, but may contain zero length cycle

with all arcs of zero length. Each zero length cycle with all arcs of zero length must be

in one of strongly connected components H ′
is. Notice that due to the decomposition into

strongly connected components of G−(1) there exists no path from Hj to Hi with j > i.

See, e.g., Fujishige (2005, p.13) on the decomposition of more general graphs.

Next we show that the graph G(β∗) contains no negative length cycle. Put K =

maxi,j∈M{|b(i, j)| | b(i, j) < 0} and L = (m − 1)K. Let C be any cycle in G(β∗). If all

the vertices of cycle C belong to the vertex set of a single strongly connected component,

the length of C is nonnegative. Hence we assume that C contains vertices of at least two

strongly connected components. Let i∗ be the maximum index i such that Hi contains a

vertex of cycle C. Then there exists an arc (y∗, z∗) in C such that y∗ belongs to Hi∗ and

z∗ to Hj∗ with j∗ < i∗. Now suppose that the arcs in C of negative length are given by

(y1, z1), · · · , (y`, z`). Note that for each s = 1, · · · , `, vertex ys belongs to Hj with j < i∗.

Hence,

the length of C ≥ β∗y∗b(y
∗, z∗) + β∗y1

b(y1, z1) + · · ·+ β∗y`
b(y`, z`)

≥ Li∗−1 − `KLi∗−2 ≥ Li∗−1 − (m− 1)KLi∗−2 = 0,

where note that b(y∗, z∗) is a positive integer.

Because the graph G(β∗) contains no negative length cycle, for every i ∈ M with

i > 1 there exists a shortest path, of length ψ∗i , from vertex 1 to vertex i and thus ψ∗i is

well-defined and is an integer. Hence we have

ψ∗j ≤ ψ∗i + β∗i b(i, j), ∀i, j ∈ M.

Observe that the left-hand side is the length of a shortest path from vertex 1 to vertex j

and the right-hand side is the length of a path from vertex 1 to vertex j composed of a

shortest path from vertex 1 to vertex i and the arc (i, j) from vertex i to vertex j. The

definition of a shortest path validates clearly the above inequality for all i, j ∈ M . 2

3 Concluding Remarks

We wrap up our discussion with several remarks. Afriat (1967) established his theorem

using the method of induction for the special but essential case of all b(i, j) 6= 0 with

i 6= j. This can be seen from our proof, namely, his case will generate exactly m strongly
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connected components H1, H2, · · · , Hm, each consisting of a single vertex, where m is the

number of observations.

Diewert (1973) and Varian (1982) studied the general case in which b(i, j)’s with i 6= j

are allowed to be zero. This case involves the subtle issue of indifference classes in the re-

vealed preference ordering. They considered the binary relation (i, j) meaning b(i, j) ≤ 0,

and examined the transitive closure of the relation and indifference classes. Their indiffer-

ence classes can be seen as the strongly connected components in our graph G−(1). While

Diewert (1973) found the solution to the system of Afriat inequalities by solving a lin-

ear programming problem, in part of his proof Varian (1982) employed a graph-theoretic

algorithm for computing the transitive closure of the binary relation. Their proofs also

contained an inductive argument and were complex and lengthy.

Fostel, Scarf and Todd (2004) provided two proofs of Afriat’s theorem. The first is an

induction method and also implicitly uses a structure similar to our graph G−(1). Their

second proof makes use of the duality theorem from linear programming. Piaw and Vohra

(2003) explored explicitly the network structure inherent in the Afriat inequalities and

presented a graph-theoretic constructive proof.

In the current paper we identify a common property—equivalence classes—used ex-

plicitly or implicitly in the five previous papers, and make full use of it. In particular,

we simplify their approaches by decomposing G−(1) into strongly connected components

and taking a topological ordering of the components as H1, H2, , · · · , Hκ, from which

we can check whether observed data are consistent with GARP, and if consistent, we can

compute feasible β∗i for i = 1, · · · ,m. This requires O(m2) time, while computing ψ∗i for

i = 1, · · · ,m requires O(m3) time shortest path computation.

In summary, our proof is similar to Piaw and Vohra (2003) and also closely related to

Afriat (1967), Diewert (1973), Varian (1982), and Fostel, Scarf and Todd (2004). Here

we have made the argument more transparent and more accessible without assuming the

reader’s familiarity with any fundamental mathematical result. In our argument, the ex-

plicit use of the decomposition into strongly connected components plays an important

role in helping reveal more detailed and more subtle structures of the graph G(1) and

simplify the proof considerably. Of course, the very elementary, intuitive and simple proof

of Afriat’s theorem is merely a byproduct of the current paper whose purpose has been to

extend the theory to the equally important case of indivisible goods. We hope that this

paper will be of interest and use to researchers who wish to grasp the essence and wide

applicability of Afriat’s celebrated theorem.
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