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Abstract
Let (M, deg) be a cancellative monoid M equipped with a discrete degree

map deg :M →R≥0, and let PM,deg(t) :=
∑

u∈M/∼t
deg(u) be its generating

series, called the growth function of M . We show the inversion formula

PM,deg(t) ·NM,deg(t) = 1

where the second factor of the formula is given by

NM,deg(t) := 1 +
∑

T∈Tmcm(M,I0)
(−1)#J1+···+#Jn−n+1 ∑

∆∈|T | t
deg(∆),

which we call the skew-growth function of M , and is a signed generating
series of certain tree Tmcm(M, I0) of towers of minimal common multiple
sets constructed inM of theminimalgenerator systemI0 :=min{M/∼\{1}}.

If the monoid is (M, deg) = (Z>0, log), we get Riemann’s zeta func-
tion PZ>0,log(exp(−s))= ζ(s) as the growth function. Then the inversion

formula turns out to be the Euler product formula ζ(s)
∏

p∈I0
(1−p−s)=1.
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1 Introduction

Let M be a monoid, i.e. a semigroup with the unit 1, and let deg : M →R≥0

be a discretely valued degree map on M (see §4). Then the (spherical) growth
function of M with respect to deg is defined as the generating series:

1Acknowledgement: The author is deeply grateful to Tadashi Ishibe for various dis-
cussions on cancellativity of monoids as well as several explicit calculations of examples of the
skew growth functions of monoids, which inspired and supported the present work. He is also
grateful to Scott Carnahan for the careful reading of the manuscript.
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PM,deg(t) :=
∑

u∈M/∼

tdeg(u),

where u ∼ v for u, v ∈ M means u |l v and v |l u. Even though the definition
of the growth function of a monoid looks a simple generalization of that for a
group, not much work seems to be available except for some case studies and
some general works on language ([A-N][B][C][G-P][I1][S1234][S-I]), and we know
little about its general nature. The purpose of the present paper is to give a
new approach to the growth function of a monoid by giving a presentation of
its inversion function 1

PM,I(t)
by a certain ”skew generating function” of some

common multiple sets in the monoid M (which is not a group!).
Let us explain the idea of the inversion function in the most naive case

studied in [A-N] and [S23]. Let M be a monoid generated by a finite set I with
positive homogeneous relations. It admits naturally an integral degree map by
giving weight 1 to each generator in I. Suppose, further, that M is cancellative
and that any subset J of I admits either the least right common multiple ∆J

or no common multiple in M (typically the case for Artin monoids [B-S]). Then
the inversion function of the growth function PM,I(t) is given by the formula:

NM,I(t) :=
∑
J⊂I

(−1)#J tdeg(∆J )

where the summation index J runs over all subsets of I whose least right common
multiple exists. 2

This formula says that the inversion function PM,I(t)
−1 of PM,I(t) for this

class of monoids can be described by the datum {∆I}J⊂I of the least common
multiples for subsets J of I. However, in general, a monoid may not admit the
least common multiple ∆J = lcm(J) for a given finite subset J of M . More
precisely, even if there exist common right-multiples of J , there may not exist
the unique least element among them: i.e. the unique minimal element among
the common right-multiples of J with respect to the partial order defined by
the division (from the left) relation may not exist in general. That is, the lack
of the least common multiples in M may look an obstruction to generalize the
above inversion formula to a wider class of monoids.

The purpose of the present paper is to resolve this problem as follows. By
assuming the descending chain condition on M with respect to the partial order
induced by left-divisibility relation, for any given finite set J ⊂ M , we are able
to consider the set mcm(J) of minimal common right-multiples for J instead
of considering the least common right-multiple ∆J . However, still the datum
{mcm(J)}J⊂I is not sufficient to recover the inversion formula, since in general
(as we shall see in examples), a subset J ′ of mcm(J) may have common right-
multiples. So we need to consider the set mcm(J ′) for any subset J ′ of mcm(J).
Then again, we may need to consider mcm(J ′′) for a subset J ′′⊂mcm(J ′), and
so on. Repeating this process, we are necessarily lead to consider a tower: a

2In this case, NM,I(t) is a polynomial. Actually, it is shown that the coefficients of NM,I(t)
give the recursion relation on the sequence γn (n ∈ Z≥0) of coefficients of PM,deg(t) (which
is generalized in §5 of the present paper). Zero loci of the polynomial NM,I(t) plays a quite
important role in the study of limit functions in [S1234], which motivated the present work.
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finite sequence I ⊃ J, J ′, J ′′, · · · of subsets of M such that J ′ ⊂mcm(J), J ′′ ⊂
mcm(J ′), J ′′′⊂mcm(J ′′), · · · . It is convenient to put an oriented graphstructure
on the set Tmcm(M) of all towers, by putting an arrow from a tower T to its
immediate successor T ′. The graph decomposes into a disjoint union of rooted
trees Tmcm(M)=⊔I⊂MTmcm(M, I) where the label I, as the ground of towers,
runs over all subsets of M satisfying the minimality condition I=min(I).

If M has a discrete degree map deg : M→R≥0,
3 we can define not only the

growth function PM,deg(t) as above, but also the ”skew generating function”

NM,I(t) := 1 +
∑

T∈Tmcm(M,I)

(−1)#J1+···+#Jn−n+1
∑

∆∈|T |

tdeg(∆)

with respect to deg for the tree Tmcm(M, I)of all towers grounded over the label
setI. Here,the summation index T runs over the vertex of the tree Tmcm(M, I),
J1, · · · , Jn are the stages of the tower T and |T | := mcm(Jn) is the set of the
minimal common multiples on the top stage of the tower T (see §4).

In particular, for the label set I0 = min(M/ ∼ \{1}) (the set of minimal
elements of M with respect to the partial ordering induced by the left division
relation), we set NM,deg(t) := NM,I0(t). Then, as the main result of the present
paper, we obtain an inversion formula (§5 Theorem):

PM,deg(t) ·NM,deg(t) = 1.

We stress that the first factor PM,deg(t) describes the growth nature of the
monoid M and the second factor NM,deg(t) describes the multiplicative nature of
the monoid M , which are combined as in the formula. In order to illustrate this
nature of the formula, let us consider the monoid M =Z>0 with the ordinary
product structure and take ”log” to be the degree map (§5 Example 2). Then, by
a change of variable t = exp(−s), we have PZ>0,log(exp(−s)) = ζ(s) (Riemann’s
zeta-function) and the inversion formula turns out to be the Euler product
formula:

ζ(s) ·
∏

p:prime
numbers

(1− p−s) = 1.

The construction of the paper is as follows. In §2, we fix basic concepts and
notation on division theory on a monoid assuming a descending chain condition,
where we introduce two operations ”cm” (common multiple), ”min” (minimal)
and their composition ”mcm=min·cm” (minimal common multiple) on subsets
of a monoid. The concept of a tower of minimal common multiples, and the
graph structure on the set of all towers are introduced in §3. Introducing a con-
cept of a discrete degree map on a monoid, we introduce, in §4, the generating
functions and the skew generating functions. The inversion formula is formu-
lated and proven in §5. In §6, we describe presentations of monoids satisfying
the assumptions of the main theorem, and, using it, we give an example where
the growth function and the skew-growth function belong to the Novikov ring.

3The range of the degree map may not necessarily be contained in an arithmetic progres-
sion, but we assume only the discreteness (see §4 Definition). Therefore, the (skew-)growth
functions are not necessarily power series in the usual sense, but they may better be regarded
as Dirichlet series (see Remark 4.3 and §6 Example).
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2 Minimal common multiples

We recall some basic concepts on monoids and fix notations.

Definition. 1. A semigroup M with the unit element 1 is called a monoid.

2. A monoid M is called cancellative if a relation aub = avb for elements
a, b, u, v ∈ M implies a relation u = v.

3. For two elements u, v of M , we denote

u |l v
if there exists an element x ∈ M such that v = ux, and say that u divides v
from the left, or, v is a multiple of u from the right.

4. A monoid M is called (left) conical if relations u |l v and v |l u for
elements u, v ∈ M imply u = v.

For a monoid M which may not be conical, one can define an equivalence
relation on M by putting u ∼ v ⇔def. u |l v and v |l u. We shall often
confuse u ∈ M with its class in M/ ∼. What is important is that by this
equivalence relation, the left divisibility relation are preserved (i.e. if u ∼ u′,
v ∼ v′ and u |l v then u′ |l v′). Thus, we obtain a partial order set structure
”≤” (or ≥) on the quotient set M/∼ induced by the left division relation |l, i.e.
u |l v⇔u ≤ v⇔v ≥ u. We shall denote by u<v (or v>u) if u |l v and u ̸∼ v.

In case when M is cancellative, the equivalence relation ∼ has much simpler
interpretation as follows.

Assertion 2.1. Let M be a cancellative monoid. Then, the set of right invertible
elements of M coincides with the set of left invertible elements of M and they
form the largest subgroup, denote by G, of M . Then, u ∼ v for u, v ∈ M if and
only if uG = vG, that is:

M/∼ = M/G.

Proof. This is immediate from the definition and left to the reader.

Remark 2.2. In the sequel of the present paper, the enumerations in the growth
functions and skew growth functions are done in the level of the quotient set
M/∼ but not of M , since we use only the division relations among the elements
in M/∼ but not the product structure on M .

In fact, the product structure on M may not be preserved on the quotient
M/∼ (i.e. u∼u′ and v∼v′ does not imply uv∼u′v′ in general). If the product
structure is preserved (i.e. ∼ is a normal relation and G is a normal subgroup)
then the quotient M/∼ is automatically a conical monoid.

Above Remarks and Assertion all together indicate that the growth functions
and their inversions, which we are studying in the present paper, live essentially
in the world of non invertible monoids (but not of the groups) where only the
poset structure on M/∼ coming from division relation equipped with the left
M -action: M ×M/∼ → M/∼ plays the role. This causes a question: what is
the relationship between the growth function of a monoid M and that of the
group G = MM obtained by localizing the monoid?
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In the rest of the paper, we assume the following chain condition on M/∼.

Descending chain condition. There does not exist an infinite strictly de-
creasing sequence u1 > u2 > u3 > · · · of elements in M/ ∼.

We consider two operations on the set of subsets of M/∼: common multiple
set and minimal set. For a subset J of M/∼ (which may not necessarily be
finite), put

cm(J) := { u ∈ M/∼ | j |l u ∀j ∈ J }
min(J) := { u ∈ J | ̸ ∃v ∈ J s.t. v < u },

and their composition: the set of minimal common multiples of the set J by

mcm(J) := min(cm(J)).

Actually, cm(J) may be the empty set. However, due to the Descending chain
condition, if J ̸=∅ then min(J) ̸=∅. More precisely, we have the following fact.

Fact. For any u ∈ J there exists an element v ∈ min(J) such that v |l u holds.

3 Tower of minimal common multiples

Let M be, as in §2, a monoid satisfying Descending chain condition. In this
section, we introduce towers of minimal common multiples for M .

Definition. A tower of M of height n ∈ Z≥0 is a sequence

T := (I0, J1, J2, · · · , Jn)

of subsets of M/∼ \{1} satisfying the following:

i) I0 ̸= ∅ and I0 = min(I0).
ii) mcm(Jk) ̸= ∅ and we put Ik := mcm(Jk) for k = 1, · · · , n.
iii) Jk ⊂ Ik−1 such that 1<#Jk for k = 1, · · · , n.

We call I0 the ground of the tower T , Jk and Ik the kth stage and the set of
minimal common multiples on the kth stage of the tower T , respectively. In
particular, the set mcm(Jn) of minimal common multiples on the top stage is
denoted by |T | := In. The set of all towers of M shall be denote by Tmcm(M).

Definition. We put an oriented graph structure on Tmcm(M) as follows.
i) The set of vertices is equal to the set Tmcm(M) of all towers.
ii) An oriented edge from a tower T of height n to a tower T ′ of height

n′ is given if and only if n′ = n + 1 with T = (I0, J1, · · · , Jn) and T ′ =
(I0, J1, · · · , Jn+1) (or, we shall write T ′ = (T, Jn+1) ). That is, T ′ is a tower
obtained by just adding one stage above to the tower T .

We denoted again by Tmcm(M) the set equipped with this graph structure.
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Since any tower of height n ≥ 1 has exactly one immediate predecessor and
any tower of height 0 has no predecessor, each connected component of the
graph Tmcm(M) is a rooted tree whose root is given by a tower of height 0 of
the form T0 = (I0) for a ground set I0 ⊂ M with I0 = min(I0). Denoting the
tree (component) by Tmcm(M, I0), we have the disjoint decomposition:

Tmcm(M) =
⊔

I0∈ 2M\{∅}
I0=min(I0)

Tmcm(M, I0).

Example. 1. Let M be a free monoid. Then, any tower of M is of height 0.
2. Let M be a monoid, which admits least common right-multiples, that is,

for any subset J of M , the set mcm(J) is either empty or consisting of a single
element (in M/ ∼). Then, any tower has height at most 1. (Proof. For any
tower T of height ≥ 1, I1 = mcm(J1) ̸= ∅ consists of a single element so that
the Definition iii) of a tower prohibits to have J2.)

Thus, each component Tmcm(M, I0) is star-shaped, consisting of the vertex
(I0) (the ground) and the vertices of the form (I0, J1) where J1 is a finite subset
of I0 having more than two elements which have the common multiple.

4 Generating functions PM,I0(t) and NM,I0(t)

From present section, we fix a discrete degree map deg defined on a monoid M .
Using it, we introduce a growth function PM,I0(t) and a skew growth function
NM,I0(t) labeled by a set I0 ⊂ M satisfying I0 = min(I0). In particular, if the
label set I0 is the set min{M/∼ \{1}} of all minimal elements of M , we call
them the growth function and the skew-growth function of (M,deg) and denote
them by PM,deg(t) and NM,deg(t), respectively.

Definition. A discrete degree map on a monoid M is a map

deg : M −→ R≥0

such that i) deg(u) = 0 if and only if u ∼ 1,
ii) deg(uv) = deg(u) + deg(v) for any u, v ∈ M ,
iii) #{u ∈ M/∼ | deg(u) ≤ r} < ∞ for any r ∈ R>0.

If u |l v then ii) implies deg(u)≤deg(v), and, hence, if u∼v then deg(u)=deg(v)
so that deg induces a map M/∼→ R≥0, denoted by the same notation ”deg”.
Thus, the condition iii) has a meaning. The iii), in particular, implies that the
range deg(M) is a discrete subset of R and

dmin := inf{ deg(u) | u ∈ (M/∼ \{1}) }

is a positive constant. This implies that the additive sub-semigroup of R≥0

generated by the image set deg(M) is also a discrete subset of R≥0.

For any subset A of M/∼, put deg(A) := inf{deg(u) | u ∈ A}. In particular,
we call

deg(|T |) := min{deg(∆) | ∆ ∈ mcm(Jn)}

the minimal degree of the tower T of height n.
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Assertion 4.1. Let T be a tower of height n, then we have

deg(|T |) ≥ (n+ 1)dmin.

Proof. Put T = (I0, J1, · · · , Jn). Using the condition §3 Def. iii) for a tower,
we see that

deg(|T |) = deg(In) ≥ deg(Jn) + dmin (§3 Def.iii))
≥ deg(In−1) + dmin ≥ deg(Jn−1) + 2dmin (§3 Def.iii))
≥ · · · ≥ · · · (· · · )
≥ deg(I1) +(n−1)dmin ≥ deg(J1) + ndmin (§3 Def.i))
≥ deg(I0) + ndmin ≥ (n+ 1)dmin (4.2).

Remark 4.2. i) The existence of a discrete degree map implies automatically
that the monoid M satisfies the descending chain condition.

ii) The existence of a discrete degree map implies automatically #(Jk) < ∞
for any tower T and k ≤ height of T , since mcm(Jk) ̸= ∅ is assumed.

Next, associated with any algebra A (we shall use only the case A=Z in the
present paper), let us introduce an algebra RA over A equipped with a formal
topology (see Remark 4.3 below). Set a topological A-module by

RA :=
{ ∞∑
n=0

ant
dn

∣∣∣ an∈A (∀n∈Z≥0), and {dn}n∈Z≥0
is

a sequence in R≥0 divergent to +∞.

}
where the system of (formal) neighbourhoods of 0 ∈ RA are given by

tdRA :=
{ ∞∑
n=0

ant
dn ∈ RA

∣∣∣min{dn | n∈Z≥0 and an ̸=0} ≥ d
}

for d ∈ R≥0. Then, the product w.r.t. this topology is well-defined by setting∑
d∈R≥0

( ∑
n,m∈Z≥0
dn+em=d

anbm
)
td :=

( ∞∑
n=0

ant
dn
)( ∞∑

m=0

bmtem
)

so that RA becomes an A-algebra.

Remark 4.3. In some literature, from a topological view point, the ring RA

is called a Novikov ring. However, for our later applications, it is convenient to
regard it as the ring of formal Dirichlet series (see [H-R]) as we explain below.

For any f(t) ∈ RA, by a change t = exp(−s) of the variable, we consider a
formal series

f(exp(−s)) =

∞∑
n=0

an exp(−dns).

Assume an∈C (n∈Z≥0). The expression is called a Dirichlet series (of exponen-
tial type) for lim

n→∞
dn=+∞. If the series converges (absolutely) at s0∈C, then it

also converges (absolutely) for all {s ∈ C | ℜ(s)>ℜ(s0)} and defines a holomor-
phic function on that half plane. The product in the ring RC is compatible with
the product as holomorphic function (if both factors are absolutely convergent).
The holomorphic function may extends meromorphically (including branches)
to a region covering C. For our application ([S1,2,3,4]), we are interested in the
locations of the poles and the zeros of these extended functions.
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We return to the construction of growth and skew-growth functions, which,
due to the discreteness of the degree map, belong to the ring RZ of integral
Dirichlet series.

1. Growth function PM,deg(t) of (M, deg).

For any subset I0 of M/∼ \{1} with I0=min(I0), consider the submonoid
M(I0) of M generated by I0, that is, the smallest submonoid N of M satisfying

i) an element of M whose equivalence class belongs to I0 belongs to N ,
ii) if u, v ∈ M satisfies u ∈ N and u ∼ v then v ∈ N .

Then, in this new monoid M(I0), we can consider the division theory and define
the equivalence relation as in §2. Then, M(I0)/∼ is naturally embedded into
M/∼. Thus, the restriction of the degree map on M to M(I0) induces also a
degree map which we shall denote again by deg.

Then, the generating function of the degree map on M(I0), which sometimes
is also called a growth function labeled by I0, is defined as follows.

PM,I0(t) :=
∑

u∈M(I0)/∼

tdeg(u) =
∑

d∈R≥0

#((M(I0)/∼)d) t
d.

Here, we put
(M(I0)/∼)d :={u ∈ M(I0)/∼ | deg(u)=d}

for any real number d∈R≥0, which is a finite set due to the assumption on deg,
and therefore PM,I0(t) ∈ RZ. In particular, by choosing I0 to be the minimal
generating set I0=min(M/∼\{1}) of M (⇔ M(I0)=M), we define the growth
function of the monoid M with respect to the degree map deg by

PM,deg(t) :=
∑

u∈M/∼

tdeg(u) =
∑

d∈R≥0

#((M/∼)d) t
d.

2. Skew growth function NM,deg(t) of (M,deg).

For any tower T of height n, consider the sum∑
∆∈|T |

tdeg(∆).

It is well-defined in the ring RZ for any tower T due to the the finiteness iii) on
the degree map, and it belongs to the ideal tdeg(|T |)RZ.

Assertion 4.4. To any non-empty set I0 ⊂ M/∼ \{1} with I0 = min(I0), we
define a skew generating function labeled by I0 by

NM,I0(t) := 1 +
∑

T∈Tmcm(M,I0)

(−1)#J1+···+#Jn−n+1
∑

∆∈|T |

tdeg(∆)

where we recall that Tmcm(M, I0) is the connected component of the graph
Tmcm(M) (consisting of all towers whose ground is the set I0) and the sum-
mation index T is a tower of the form (I0, J1, · · · , Jn) on the ground I0. Then,
the formal sum is convergent in the ring RZ.
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Proof. In order to show that the sum with respect to the running index T ∈
Tmcm(M, I0) is convergent in the ring RZ, it is sufficient to show that for any
positive number r ∈ R≥0, the set {T ∈ Tmcm(M, I0) | deg(|T |) ≤ r} is finite.

a) We first recall the inequality deg(|T |) ≥ (n + 1)dmin for any tower T of
height n. Thus the height of a tower whose minimal degree is bounded by a
constant r is bounded by (r/dmin)− 1.

b) Next, let us show by induction on n ∈ Z≥0 that the number of towers
in #{T ∈ Tmcm(M, I0) | the height of T is equal to n & deg(|T |) ≤ r} < ∞.
Since there is only one tower T = (I0) of height 0, the first induction hypothesis
is satisfied. Assume the result for n. Any tower T ′ of height n + 1 has the
form (T, Jn+1) for the predecessor T of height n. The requirement r ≥ deg(|T ′|)
implies the boundedness r − dmin ≥ deg(|T |). By induction hypothesis, the
number of such T is finite. Therefore, it is sufficient to show that for any
tower T ∈ Tmcm(M, I0) of height n, the number of its successors T ′ such that
r ≥ deg(|T ′|) is finite. The choice of T ′ is determined by the choice of the
subset Jn+1 of In, where we have the equality: deg(|T ′|) = min{deg(∆) | ∆ ∈
|T ′| = mcm(Jn+1)}. Since, for any ∆ ∈ In+1 := mcm(Jn+1) and any j ∈ Jn+1,
one has j < ∆ (proof. That j ≤ ∆ is obvious by ∆ ∈ cm(Jn+1). But ∆ ≤ j
is impossible, if else, then any element of Jn+1 is less of equal than j which
contradicts that Jn+1 consists of more than two elements (§3 Def. ii)) so that
deg(∆) ≥ dmin +max{deg(j) | j ∈ Jn+1}, and, hence, deg(j) ≤ r− dmin. This
means that Jn+1 is a subset of I ′n := {j ∈ In | deg(j) ≤ r− dmin}. However, by
the discreteness condition (§4 Def. iii)) on deg, the number of elements of I ′n is
finite. This means the freedom of the choice of Jn is also finite.

Combining a) and b), the proof of Assertion is completed.

In particular, we define the skew-growth function of (M, deg) by

NM,deg(t) := NM,min(M/∼\{1})(t).

5 Inversion formula for the growth function

The main result of the present paper is formulated in the following theorem.

Theorem. Let M be a cancellative monoid equipped with a discrete degree map.
Then we have the inversion formula in the ring RZ:

PM,deg(t) ·NM,deg(t) = 1.

Proof. For d ∈ R≥0, putmd := #({u ∈ M/∼ | deg(u) = d}) so that PM,deg(t) =∑
d∈R≥0

mdt
d. Then we have to show the ”infinite recursion” relation

∗ : md +
∑

T∈Tmcm(M,I0)

(−1)#J1+···+#Jn−n+1
∑

∆∈|T |

md−deg(∆) = 0

for all d ∈ R>0 (which is an analogous of Möius inversion formula).
For any subset I and J of M/∼, let us introduce two sets:

M I := {u ∈ M/∼ | ∃∆ ∈ I s.t. ∆|lu}
MJ := {u ∈ M/∼ | ∀∆ ∈ J s.t. ∆|lu}.
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4 Note that we have an obvious relation:

MJ = Mmcm(J) and M I = ∪J∈2I\{∅}MJ

for any subset J and I of M/∼. In particular, we have M∅ = ∅ and M∅ = M/∼.
We also put M I

d := Md ∩M I and Md,J := Md ∩MJ .

Since Md = M I0
d , we express Md = ∪∆∈I0Md,{∆} = ∪J1∈2I0\{∅}Md,J1 , where

we have Md,J1 = ∩∆∈J1Md,{∆} for any J1 ̸= ∅ ⊂ I0, and Md,J1 may be an empty
set. We remark that {J1 ∈ 2I0 | Md,J1 ̸= ∅} is a finite set, since J1 should be a
subset of {∆ ∈ I0 | deg(∆) ≤ d} which is a finite set due to the discreteness of
the degree map deg. Then, the following is a finite sum and has a meaning.

#(Md) =
∑

J1∈2I0\{∅}

(−1)#J1−1#(Md,J1).

Since we have Md,J1 = M
mcm(J1)
d , by putting I1 := mcm(J1), we have

Md,J1 = ∪∆∈I1Md,{∆}, and again decompose

Md,J1 = ∪J2∈2I1\{∅}Md,J1,J2 ,

where Md,J1,J2 := Md,J1 ∩MJ2(= Md,J2). Therefore

#(Md,J1) =
∑

J2∈2I1\{∅}

(−1)#J2−1#(Md,J1,J2).

Repeating the same process n-times, we obtain a formula

⋆ : #(Md) =
∑

J1∈2I0\{∅}

∑
J2∈2I1\{∅}

· · ·
∑

Jn∈2In−1\{∅}

(−1)#J1+#J2+···+#Jn−n#(Md,J1,J2,··· ,Jn)

where we put Ik = mcm(Jk) (k = 1, · · · , n − 1). Some of Md,J1,J2,··· ,Jn =
Md ∩MJ1

∩ · · · ∩MJn
(= Md,Jn

) may be an empty set.

Assertion 5.1. If a running index Jk of the formula ⋆ for some 1 ≤ k ≤ n
consists only of a single element, say ∆, then we have Jk=Jk+1= · · ·=Jn={∆}
and Md,J1,··· ,Jk

=Md,J1,··· ,Jk,Jk+1
= · · ·=Md,J1,··· ,Jk,··· ,Jn =∆̂ ·Md−deg(∆), where

∆̂ is a representative in M of the equivalence class ∆ ∈ M/∼.
ii) If n ≥ d/dmin, then, for any running index (J1, · · · , Jn) of the formula

⋆, either the set Jn consists of a single element, or the set Md,J1,J2,··· ,Jn is
empty.

Proof. i) The fact Jk = {∆} implies that Md,J1,··· ,Jk
= ∆̂ ·Md−deg(∆). On the

other hand, we have Ik := mcm(Jk) = {∆}. Therefore, if k < n, then the only
possible choice of Jk+1 is the only non-empty subset of Ik, i.e. {∆}.

ii) If #Jn ≥ 2. Then, due to above i), we should have all of J1, · · · , Jn
must have the cardinality greater or equal than 2. That is, for any j ∈ Jk+1 ⊂

4The notation MJ is confusing with Md given in the previous section. However, we shall
only use the suffixes d and J (or J1, J2, · · · ) so that they should be distinguished.
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mcm(Jk), we have deg(j) ≥ max{deg(∆) | ∆ ∈ Jk} + dmin ≥ deg(Jk) + dmin

for k = 1, · · · , n − 1 so that we have deg(Jn) ≥ deg(Jn−1) + dmin ≥ · · · ≥
deg(J1) + (n− 1)dmin ≥ ndmin. Therefore, any element of Md,J1,··· ,Jn

= Md,Jn

(if it exists) has degree at least deg(Jn) ≥ ndmin > d, which is impossible.

Assertion 5.2. Let n ∈ Z such that n ≥ d/dmin. Then we have a bijection

{(∆, T ) ∈ (M/∼ ×Tmcm(I0)) | ∆ ∈ |T |,deg(∆) ≤ d}
≃ {(J1, · · · , Jn) | J1⊂I0, Jk⊂mcm(Jk−1) (2≤k≤n), Md,J1,··· ,Jn ̸= ∅}.

If (∆, T = (I0, J1, · · · , Jn0)) and (J1, · · · , Jn) are corresponding to each other,
then we have the equality

(−1)#J1+#J2+···+#Jn0−n0md−deg(∆) = (−1)#J1+#J2+···+#Jn−n#(Md,J1,J2,··· ,Jn).

Proof. a) Let (∆, T ) be an element in LHS, and let T = (I0, J1, · · · , Jn0). The
condition implies d ≥ deg(∆) ≥ deg(|T |) ≥ (n0 + 1)dmin, and hence n0 <
d/dmin ≤ n. Then (J1, · · · , Jn0 , {∆}, · · · , {∆}) belongs to RHS.

b) Let (J1, · · · , Jn) be an element in RHS such that Md,J1,··· ,Jn ̸= ∅. Due
to Assertion ii), in such case, we have #(Jn) = 1. For such index, put n0 +1 =
inf{1 ≤ k ≤ n | #Jk = 1} for some 0 ≤ n0 < n. Then Jn0+1 = {∆} and
∆ ∈ mcm(Jn0). Since #(Jn0) ≥ 2, T := (I0, J1, · · · , Jn0) is a tower such that
(∆, T ) belongs to LHS.

It is clear that a) and b) are inverse to each other. Suppose (J1, · · · , Jn) ↔
(∆, T ), then we have the equality

(−1)#J1+#J2+···+#Jn−n#(Md,J1,J2,··· ,Jn)
= (−1)#J1+#J2+···+#Jn0+1−(n0+1)#(Md,J1,J2,··· ,Jn0+1)
= (−1)#J1+#J2+···+#Jn0−n0#(Md,Jn0+1)

= (−1)#J1+#J2+···+#Jn0−n0#(∆̂ ·Md−deg(∆)).

The cacellativity of the monoidM implies the bijection ∆̂·Md−deg(∆)≃Md−deg(∆).

Here, the bijection ∆̂ · u↔ u depends on a choice of ∆̂. However it does not
effect on the enumeration of the cardinality of both sides, so that the last term
is equal to (−1)#J1+#J2+···+#Jn0−n0#(Md−deg(∆)).

Last Assertion shows that the formula⋆ is the same as the recursion formula
∗. This completes the proof of the recursion formula and of Theorem.

Corollary 5.3. For any subset I0 of M/∼ \{1} with I0 = min(I0), we have

PM,I0(t) ·NM,I0(t) = 1.

Remark 5.4. If the both Dirichlet series PM,I0(exp(−s)) and NM,I0(exp(−s))
converge absolutely in some half plane {s∈C | ℜ(s)>c} for some c∈R, then the
inversion formula gives a functional equation PM,I0(exp(−s))NM,I0(exp(−s))=1
on the half plane. This implies, in particular, that they do have neither zeros
nor poles on the half plane. Let us denote by the same PM,I0(exp(−s)) and
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NM,I0(exp(−s)) their meromorphic continuations (including algebraic branches),
respectively. Obviously, the functional equation extends meromorphically, i.e.
one meromorphic continuation determines the other as the inverse function,
where the poles and the zeros of them interchange to each other. Motivated by
a trace formula for thermo-dynamical limit functions ([S1-4]), we are interested
in zeros of NM,I0(exp(−s)). In particular, we ask the followings (c.f. [T]).

Conjecture 5.5. If the Dirichlet series PM,I0(exp(−s)) converges absolutely
on some half plane {s∈C | ℜ(s)>σ} for some σ∈R, then NM,I0(exp(−s)) also
converges absolutely on the same half plane.

Problem 5.6. Show following Assertion for a suitable class (which should yet
be clarified) of a pair (M,deg) of a monoid with a discrete deree map:

Assertion. Let σ0 ∈ R be the minimal of σ’s in Conjecture 5.5. Then the
Dirichlet series NM,deg(exp(−s)) continues holomorphically on a open neighbor-
hood of the point σ0∈C where the function takes the value 0 at σ0.

5

What is the meaning of the order of zeros of NM,I0(exp(−s)) at σ0?

All the following Examples 1. i),ii),iii),iv),v), 2. and 3., satisfy positively
above Conjecture 5.5 and belong to the class in Problem 5.6. In next section
§6, we shall give a series of examples where Conjecture 5.5 is satisfied by all
examples, but they may not always belong to the class in Problem 5.6.

Example. 1. For a monoidM (cancellative and satisfying the descending chain
condition) and a subset I0⊂(M/∼ \{1}) with I0=min(I0), set

h(M, I0) := max{height of T ∈ Tmcm(M, I0)}.

i) It is clear that M is a free monoid if and only if h(M, I0) = 0 for any I0.
ii) An Artin monoid (or, more generally, a monoid, any of whose finite subsets

admits the least common multiple) has h(M, I0) ≤ 1 (see following 2.).
iii) Ishibe [I2] gave an example of NM,deg(t) with h(M, deg)=2.
iv) In general, if h(M, I0) < ∞, then NM,I0(t) is a polynomial in t.
v) Ishibe [I2] has determined explicitlyNM,deg(t) for monoid of type Bii ([I1],[S-I])

and certain Zariski-van Kampen monoids, which have h(M, deg)=∞.

2. Let M :=Z>0 with the ordinary product structure. We remark that the unit
group of this case is a trivial group so that Z>0/∼=Z>0. As for the degree map,
we take the logarithm function deg(n) :=log(n) for n ∈ Z>0, which is discrete
since limn→∞ log(n)=∞. Then, by a change t=exp(−s) of variable, the growth
function is equal to Riemann’s zeta-function (in the region ℜ(s)>1)

PZ>0,log(t) :=
∞∑

n=1

tlog(n) =
∞∑

n=1

nlog(t) =
∞∑

n=1

n−s = ζ(s),

5This condition on the class of (M,deg) comes from a view point of the limit functions [S1].
One would like to think more stronger class of (M,deg), where NM,deg(exp(−s)) continues
holomorphically on a open neighbourhood of the axis {ℜ(s) = σ0} ⊂ C, where the order of
zeros at s=σ0 is the maximal among all zeros on ℜ(s) = σ0.
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which is welknow to extend meromorphically to the whole plane C with a simple
pole at s=1.

On the other hand, the skew-growth function for (Z>0, log) is determined
as follows. The ground set is given by I0 :=min(Z>0\{1})={prime numbers}.
Since there exists always the least common multiple for any finite subset of I0,
all non-trivial towers have height 1. Thus the skew-growth function is given by

NZ>0,log(t) :=
∑

J:finite set of
prime numbers

(−1)#J
∏
p∈J

tlog(p) =
∏

p:prime numbers

(1− p−s).

Thus, the inversion formula turns out to be the Euler product formula:

ζ(s) ·
∏

p:prime

(1− p−s) = 1

for the Riemann zeta function.

3. We give an example whose towers can have arbitrarily large heights.

Consider the monoid M := ⟨a, b | a2 = b2, ab = ba⟩mo (for a precise defini-
tion of this notation, see the next section §6). The condition deg(a) = deg(b) = 1
uniquely determine a degree map on M . Put c := a2 = b2 in M . Then, it is
easy to see that any element of M is uniquely expressed in the form

aε1bε2cn for some ε1, ε2 ∈ {0, 1}, n ∈ Z≥0.

Therefore, the growth function is given by

PW,deg(t) =
1

1− t2
+

t

1− t2
+

t

1− t2
+

t2

1− t2
=

1 + t

1− t
.

On the other hand, put Jn =

{
{ac[n/2], bc[n/2]} for odd n ∈ Z>0

{c[n/2], abc[n/2]−1} for even n ∈ Z>0.
Then,

one shows easily mcm(Jn) = Jn+1 (n ∈ Z>0). This implies that there exists
a unique tower Tn = (I0, J1, · · · , Jn) of height n ∈ Z>0 with the ground set
I0 = {a, b}. Therefore, the skew growth function is given by

NW,deg(t) = 1 +
∞∑

n: odd≥1

2tn+1 −
∞∑

n: even≥1

2tn−1 =
1− t

1 + t
.

6 Positive homogeneous presentation of a monoid

In this section, we discuss presentations of monoids by infinite generators and
relations, which are natural extension of the class of positive homogeneously
presented monoids studied in [S-I]. Using the presentation, we give examples of
monoids, where the Novikov ring RZ is necessarily used in their growth func-
tions.

Including the Zariski-van Kampen monoids of type Bii, Ishibe has shown the
cancellativity for several monoids in this class and calculated the skew-growth
function NM,deg(t) explicitly (see a forthcoming paper [I2]).
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Definition. 1. We call a pair ⟨L | R⟩mo a presentation of a monoid defined
below, if i) L is a set, called generators, and ii) R is a set, called relations,
consisting of expressions Ri=Si with Ri and Si are positive words ∈ L∗. Both
sets L and R may not necessarily be finite.

2. The monoid associated with the presentation ⟨L | R⟩mo is defined as the
quotient of the free monoid L∗ generated by L by the equivalence relation ≃
defined by the following 1) and 2).

1) two words U and V in L∗ are called elementarily equivalent if either U = V
or V is obtained from U by substituting a substring Ri of U by Si where Ri=Si

is a relation of R (Si = Ri is also a relation if Ri = Si is a relation),
2) two words U and V in L∗ are called equivalent, denoted by U ≃ V if there

exists a sequence U=W0,W1, · · · ,Wn=V of words in L∗ for n∈Z≥0 such that
Wi is elementarily equivalent to Wi−1 for i = 1, · · · , n.

3) If U1 ≃ V1 and U2 ≃ V2, then U1U2 ≃ V1V2. Thus, we define the product
between the equivalence classes.

3. A map deg : L −→ R≥0, which naturally extends to a map L∗ → R≥0

additively denoted again by deg, is called a degree map, if i) deg(Ri) = deg(Si)
for any relation Ri = Si in R, and ii) if deg(a) = 0 for some a ∈ L then
there exists a′ ∈ L∗ and a relation aa′ = ∅. The condition i) implies that deg
induces an additive map ⟨L | R⟩mo → R≥0, denoted again by deg called a degree
map. The condition ii) requires that deg(u) = 0 implies u is invertible in the
monoid. If, further, the inverse image deg−1(0, r) of an interval (0, r) ⊂ R for
any r ∈ R>0 intersect with L by a finite set, then deg gives a discrete degree
map on the monoid ⟨L | R⟩mo.

Example. For any sequence p = {pk}k∈Z≥0
with pk ∈ Z≥0 (k ∈ Z≥0) and

p1 ∈ 2Z>0, let us consider a pair (Mp, deg) presented as follows:

L = {ak}k∈Z≥0
and R = {a2k = apk

0 ak−1}k∈Z≥1
∪ {akal = alak}k,l∈Z≥0

,

deg : L → R>0, ak 7→ dk := 1
2k

+
∑k

i=1
pi

2k−i+1 ,

The degree map is discrete if the sequence d0=1, d1, d2, · · · diverges to +∞.

Assertion 6.1. i) Any element u of the monoid Mp has a unique expression:

∗) an0

∞∏
k=1

aεkk

for suitable n∈Z≥0 and ε ∈ E := {(εk)k∈Z≥1
∈ {0, 1}Z≥1 | εk = 0 for k >> 0}.

The degree map deg gives an embedding of Mp into R≥0.
ii) There exists an additive function m(p, δ) ∈ Z on p depending δ ∈ E such

that a number r=m+
∑∞

k=1 δk/2
k ∈ R for m∈Z and δ ∈ E belongs to the image

deg(Mp) if and only if m ≥ m(p, δ).

Terminology. We shall call the expression ∗) the normal form of u, an0 and∏∞
k=1 a

εk
k the integral part and 2-decimal part of u, respectively. The number

depth(u) := max{k ∈ Z≥1 | εk ̸= 0} shall be called the depth of u ∈ Mp.
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Proof. i) Using the relations R, it is clear that any element u of ⟨L,R⟩mo can
be expressed in the form ∗). Then, we have

deg(u) = n+

∞∑
k=1

εk
( 1

2k
+

k∑
i=1

pi
2k−i+1

)
.

Note that RHS is a finite sum w.r.t. the index k, and expressed as a 2-decimal
number. In view of the fact that the leading term (the deepest part) of the
2-decimal expansion of dk is equal to 1

2k
(k ∈ Z≥0), the 2-decimal part of the

number deg(u) mod 1 determines the part ε= (εk)
∞
k=1 of the word ∗). So the

exponent n of the integral part an0 of ∗) is given by deg(u)−
∑∞

k=1 εkdk. Thus
the expression ∗) is uniquely determined from deg(u), and this implies that the
correspondence u 7→ deg(u) is injective.

ii) For the given r=m+
∑∞

k=1 δk/2
k ∈ R, we want to solve the equation

n+
∞∑
k=1

εk
( 1

2k
+

k∑
i=1

pi
2k−i+1

)
= m+

∞∑
k=1

δk
2k

on (n, ε) ∈ Z≥0×E. The comparison of 2-decimal parts of both hand sides,
says that ε is uniquely determined from δ and p. Then, in view of the equal-

ity: n+
[∑∞

k=1 εk
(

1
2k

+
∑k

i=1
pi

2k−i+1

)]
=m (here, ”[ · ]” is the Gauss symbol),

the condition: n ≥ 0 is transformed to m−
[∑∞

k=1 εk
(

1
2k

+
∑k

i=1
pi

2k−i+1

)]
≥ 0.

Rewriting ε in terms of δ, we obtain the result.

Corollary 6.2. Using the normal form, the growth function is given by

PMp,deg(t) =
∞∑

n=0

tn ·
∞∏
k=1

1∑
εk=0

tdeg(ak)εk =

∏∞
k=1(1 + tdeg(ak))

1− t
.

The Dirichlet series PMp,deg(exp(−s)) (up to the factor 1−exp(−s)) converges on

the domain {s∈C | ℜ(s)> lim
m→∞

1
m log(#{n∈Z≥0 | [m]≤dn<m})} (Kojima).

Applying this formula to the inversion formula, we have the following de-
scription of the skew-growth function.

NMp,L(t) =
1− t∏∞

k=1(1 + tdeg(ak))

=
∑
n

(−1)|n| tdeg(∆n) +
∑
n

(−1)|n|+1 tdeg(a0∆n),

where we put ∆n :=
∏∞

k=1 a
nk

k for any sequence n = {nk}∞k=1 of non-negative
integer where only finite nk are non-zero, and we put |n| =

∑∞
k=1 nk.

Remark 6.3. Let r be the radius of absolute convergence of
∏∞

k=1(1+tdeg(ak)).
Since dk = deg(ak) is a divergent sequence, one has r ≤ 1 and, hence, the
radius of absolute convergence of PMp,L(t) is equal to r. On the other hand,
it may be clear that NMp,L(t) converges absolutely on the disc of radius r so
that Conjecture 5.5 is satisfied by these examples. However, whether (Mp,deg)
belongs to the class in Problem 5.6. or not is an open question.
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We do not know how to obtain this formula directly through the towers
Tmcm(Mp, L). As a first step to determine Tmcm(Mp), we describe algorithms
i), ii) and iii) to obtain the set mcm(J) for any finite subset J of Mp.

i) If the elements of J have depth bounded by k ∈ Z>0, then the depth of
the elements of mcm(J) is also bounded by the same k.

Proof. Let v has depth K>k and let v= v′
∏K

j=k+1 a
εj
j be the normal form of

v where v′ has depth at most k. If v is divisible by u ∈ J , then the decimal
expansion deg(v/u)=deg(v)−deg(u) deeper than k is unchanged from that of v.

That is, v/u=w
∏K

j=k+1 a
εj
j for some w∈Mp. That is, v′/u=w∈M . In other

words, v′=v/
∏K

j=k+1 a
εj
j is still divisible by u ∈ J , i.e. v was not minimal.

ii) For each ε ∈ E, consider the set Mε := {an0
∏∞

k=1 a
εk
k | n ∈ Z≥0}. Then,

there exists a unique minimal element of Mε ∩ cm(J), denoted by mcmε(J).

Proof. The intersection Mε ∩ cm(J) is non-empty since aN0 is always divisible
by a given finite set J for sufficiently large N . Since Mε is inductively ordered
by Z≥0, the intersection always has the minimal element.

iii) In view of i) and ii), mcm(J) ⊂ {mcmε(J) | depth(ε) ≤ depth(J)}. Since
RHS is a finite set, we can choose its minimal subset mcm(J) by finite steps.

Using the above i)-iii), for any finite subset J⊂L of the generator set L and
a positive integer n∈Z≥0, we are algorithmically able to determine all towers
having J as its first stage and height less or equal than n, and to check that
minimal common multiples which appear in these towers have expressions of
the form either ∆n or a0∆n for some n (which are independent of the structure
constant p). However, an explicit list of all towers on the ground L (i.e. the
explicit description of Tmcm(Mp, L)) is still unknown.

Remark 6.4. In [S-I], we have studied a particular subclass of presentation of
monoids, where the set L is finite and the set R consists of relations of the form
Ri = Si where Ri and Si are words in L of the same length. In this case, the
map deg : L → {1} automatically defines a discrete degree map on the monoid.
Actually, Artin monoids [B-S] and many Zariski-van Kampen monoids (see e.g.
[S-I], [I1],[I2]) belong to this class of monoids. In a forthcoming paper [I2], skew
growth functions for some monoids in this class, in particular for the monoid of
type Bii [I1], and also some other examples shall be determined explicitly.
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