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ABSTRACT. In the present paper, we give necessary and sufficient
conditions for a birational Galois section of a projective smooth
curve over either the field of rational numbers or an imaginary qua-
dratic field to be geometric. As a consequence, we prove that, over
such a small number field, to prove the birational section conjec-
ture for projective smooth curves, it suffices to verify that, roughly
speaking, for any birational Galois section of the projective line,
the local points associated to the birational Galois section avoid
distinct three rational points, and, moreover, a certain Galois repre-
sentation determined by the birational Galois section is unramified
at all but finitely many primes. Moreover, as another consequence,
we obtain some examples of projective smooth curves for which
any prosolvable birational Galois section is geometric.
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INTRODUCTION

Let k be a field of characteristic 0, k an algebraic closure of k, and
X a projective smooth geometrically connected curve over k. Write Gk

def
=

Gal(k/k) for the absolute Galois group of k determined by the fixed
algebraic closure k of k. Now we have a natural surjection

π1(X) ³ Gk

2000 Mathematics Subject Classification. 14H30.
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from the étale fundamental group π1(X) of X to Gk induced by the
structure morphism of X . Then Grothendieck’s section conjecture
may be stated as follows: If k is finitely generated over the field of ra-
tional numbers, and X is of genus ≥ 2, then any section of this surjec-
tion π1(X) ³ Gk arises from a k-rational point of X , i.e., the image
of any section of this surjection coincides with, or, equivalently, is
contained in, a decomposition subgroup of π1(X) associated to a k-
rational point of X . In the present paper, we discuss the birational
version of this conjecture, i.e., the birational section conjecture. Denote
by k(X) the function field of X . Fix an algebraic closure k(X) of k(X)

containing k and write Gk(X)
def
= Gal(k(X)/k(X)). Then the natural

inclusions k ↪→ k(X), k ↪→ k(X) determine a surjection

Gk(X) ³ Gk ,

which factors through the above surjection π1(X) ³ Gk. We shall
refer to a section of this surjection Gk(X) ³ Gk as a [pro-Primes] bira-
tional Galois section of X/k [cf. Definition 1.2]. In the present paper,
we discuss the geometricity of birational Galois sections.

Let x be a closed point of X and Dx ⊆ Gk(X) a decomposition sub-
group of Gk(X) associated to x. Then, as is well-known, the image
of the composite Dx ↪→ Gk(X) ³ Gk coincides with the open sub-
group Gk(x) ⊆ Gk of Gk corresponding to the residue field k(x) of X
at x, and, moreover, the resulting surjection Dx ³ Gk(x) admits a [not
necessarily unique] section. In particular, if, moreover, k(x) = x, i.e.,
x ∈ X(k), then the closed subgroup Dx ⊆ Gk(X) of Gk(X) contains the
image of a [not necessarily unique] birational Galois section of X/k.
We shall say that a birational Galois section of X/k is geometric if its
image is contained in a decomposition subgroup of Gk(X) associated
to a [necessarily k-rational] closed point of X [cf. Definition 1.3].

The birational section conjecture over local fields has been solved
affirmatively. In [8], Koenigsmann proved that if k is either a p-adic
local field for some prime number p [i.e., a finite extension of the p-
adic completion of the field of rational numbers] or the field of real
numbers, then any birational Galois section of X/k is geometric [cf. [8]
Proposition 2.4, (2)]. Moreover, in [12], Pop obtained a result con-
cerning birational Galois sections over p-adic local fields [cf. [12],
Theorem A], which leads naturally to a proof of the geometrically pro-
p version of Koenigsmann’s result over p-adic local fields [cf. Proposi-
tion 1.7]. In [16], Wickelgren proved a strong version of the birational
section conjecture over the field of real numbers [cf. [16], Corollary 1.2].

In the rest of the present introduction, we discuss the geometricity
of birational Galois sections over number fields; suppose that k is a
number field [i.e., a finite extension of the field of rational numbers].

First, let us recall that, in [1], Esnault and Wittenberg proved that
if the Shafarevich-Tate group of the Jacobian variety of X over k is
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finite, then the existence of a birational Galois section of X/k implies
the existence of a divisor of degree 1 on X ; more precisely, the existence
of a section of the natural surjection Gk(X)/[Gk·k(X), Gk·k(X)] ³ Gk,

where we write Gk·k(X)
def
= Gal(k(X)/k·k(X)) and [Gk·k(X), Gk·k(X)] for

the closure of the commutator subgroup of Gk·k(X), is equivalent to
the existence of a divisor of degree 1 on X [cf. [1], Theorem 2.1]. Next,
let us recall that, in [4], Harari and Stix proved, as a consequence of
results obtained by Stoll in [14], that if there exist an abelian variety
A over k and a nonconstant morphism X → A over k such that both
the Mordell-Weil group and the Shafarevich-Tate group of A/k are
finite, then any birational Galois section of X/k is geometric [cf. [4],
Theorem 17]. This result of Harari and Stix gives us some examples
of X/k for which any birational Galois section is geometric [cf. [4],
Remark 18, (1)].

To state our main results, let us discuss local points associated to a bi-
rational Galois section. Write Pf

k for the set of nonarchimedean primes
of k. For each p ∈ Pf

k , fix an algebraic closure kp of the p-adic comple-
tion kp of k containing k and write Gp

def
= Gal(kp/kp) ⊆ Gk. Finally,

write Af
k ⊆

∏
p∈Pf

k
kp for the finite part of the adele ring of k, i.e.,

the subring of
∏

p∈Pf
k
kp consisting of elements (ap)p∈Pf

k
∈

∏
p∈Pf

k
kp

such that ap is contained in the ring of integers of kp for all but
finitely many p ∈ Pf

k . Then it follows from a result obtained in
[8], as well as [12], that, for each p ∈ Pf

k , a birational Galois sec-
tion s of X/k uniquely determines a kp-valued point xp of X such
that, for any open subscheme U ⊆ X of X , the image of the ho-
momorphism Gp → π1(U ⊗k kp) naturally determined by the iso-
morphism π1(U ⊗k kp)

∼→ π1(U) ×Gk
Gp and the composite Gp ↪→

Gk
s→ Gk(X) ³ π1(U) is contained in a decomposition subgroup

of π1(U ⊗k kp) associated to xp [cf. Proposition 2.9]; we shall refer
to the kp-valued point xp as the kp-valued point of X associated to s
[cf. Definition 2.6]. In particular, [since X is projective over k] the
birational Galois section s uniquely determines an Af

k-valued point
xA

def
= (xp)p∈Pf

k
∈ X(Af

k) ⊆
∏

p∈Pf
k
X(kp) of X ; we shall refer to the

Af
k-valued point xA as the Af

k-valued point of X associated to s [cf. Def-
inition 2.6]. Note that if the birational Galois section s is geometric,
then there exists a [necessarily unique] k-rational point x ∈ X(k) of
X such that, for each p ∈ Pf

k , the kp-valued point of X determined
by x is the kp-valued point of X associated to s [cf. Remark 2.6.1].

Now let us recall a conditional result on the section conjecture over
number fields. It seems to the author that [at least, a similar result
to] the following result is likely to be well-known to expert; since,
however, the result could not be found in the literature, the author
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decided to give a proof [cf. Theorem 4.1 in the case where C consists
of all finite groups, and s is a pro-C birational Galois section].

Theorem A. Let k be a number field, X a projective smooth geomet-
rically connected curve over k, and s a [pro-Primes] birational Galois
section of X/k [cf. Definition 1.2]. Then the following conditions are
equivalent:

(1) s is geometric [cf. Definition 1.3].
(2) There exist a subset T ⊆ Pf

k of Pf
k of density 0 and a closed sub-

scheme Z ⊆ X of X which is finite over k such that, for each
p ∈ Pf

k \ T , [the image of] the kp-valued point of X associated to s
is contained in Z ⊆ X .

The following result is our second main result, which gives neces-
sary and sufficient conditions for a birational Galois section of a pro-
jective smooth geometrically connected curve over a small number
field, i.e., either the field of rational numbers or an imaginary quadratic
field, to be geometric [cf. Theorem 4.5 in the case where C consists of
all finite groups].

Theorem B. Let k be either the field of rational numbers or an imag-
inary quadratic field, X a projective smooth geometrically con-
nected curve over k, and s a [pro-Primes] birational Galois section
of X/k [cf. Definition 1.2]. Then the following conditions are equivalent:

(1) s is geometric [cf. Definition 1.3].
(2) The following two conditions are satisfied:

(2-i) There exists a finite morphism φ : X → P1
k over k such that,

for each p ∈ Pf
k , the composite

Spec kp
xp−→ X

φ−→ P1
k

determines a kp-valued point of P1
k \ {0, 1,∞}.

(2-ii) For each open subscheme U ⊆ X of X which is a hyper-
bolic curve over k [where we refer to the discussion entitled
“Curves” in §0 concerning the term “hyperbolic curve”], there
exists a prime number lU such that the pro-lU Galois section
of U/k [cf. Definition 1.2] naturally determined by s is either
cuspidal [cf. Definition 4.3, (i)] or unramified almost ev-
erywhere [cf. Definition 4.3, (ii)].

(3) There exists a finite morphism φ : X → P1
k over k such that the

composite

Spec Af
k

xA−→ X
φ−→ P1

k

determines an Af
k-valued point of P1

k \ {0, 1,∞} ⊆ P1
k.

(4) There exist a finite subset T ⊆ Pf
k of Pf

k and a closed subscheme
Z ⊆ X of X which is finite over k such that, for each p ∈ Pf

k \ T ,
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[the image of] the kp-valued point xp of X associated to s is con-
tained in Z ⊆ X .

Note that Theorem B is a result without any assumption on the finite-
ness of a Shafarevich-Tate group. Next, let us observe that the equiva-
lence (1) ⇔ (3) of Theorem B may be regarded as a tripod analogue
of the result due to Harari and Stix discussed above, i.e., [4], Theo-
rem 17. The condition that k is either the field of rational numbers
or an imaginary quadratic field [i.e., the assumption that the group
of units of the ring of integers of k is finite] in the statement of The-
orem B may be regarded as an analogue of the finiteness condition
on the Mordell-Weil group in the statement of [4], Theorem 17; on
the other hand, since any abelian variety is proper, in the case of [4],
Theorem 17, the condition corresponding to our condition that the
birational Galois section determines [not only a

( ∏
p∈Pf

k
kp

)
-valued

point but also] an Af
k-valued point of the tripod P1

k \{0, 1,∞} in The-
orem B is automatically satisfied. Finally, in this case [i.e., in the case
where C consists of all finite groups], the equivalence (1) ⇔ (4) of
Theorem B is a consequence of Theorem A.

As a corollary of Theorem B, we prove the following result [cf.
Corollary 4.6].

Theorem C. Let k be either the field of rational numbers or an imagi-
nary quadratic field. Then the following assertions are equivalent:

(1) Any [pro-Primes] birational Galois section [cf. Definition 1.2] of
any projective smooth geometrically connected curve over k is geo-
metric [cf. Definition 1.3].

(2) Any [pro-Primes] birational Galois section of P1
k/k is geometric.

(3) Any [pro-Primes] birational Galois section s of P1
k/k satisfies the

following two conditions:
(3-i) There exist three distinct elements a, b, c ∈ P1

k(k) of P1
k(k)

such that, for any nonarchimedean prime p of k, the kp-valued
point of P1

k associated to s is 6∈ {a, b, c} ⊆ (P1
k(k) ⊆) P1

k(kp).
(3-ii) There exists a prime number l such that the pro-l Galois section

of P1
k \ {0, 1,∞} [cf. Definition 1.2] naturally determined by

s is either cuspidal [cf. Definition 4.3, (i)] or unramified
almost everywhere [cf. Definition 4.3, (ii)].

(4) Any [pro-Primes] birational Galois section s of P1
k/k satisfies the

following two conditions:
(4-i) There exist three distinct elements a, b, c ∈ P1

k(k) of P1
k(k)

such that, for any nonarchimedean prime p of k, the kp-valued
point of P1

k associated to s is 6∈ {a, b, c} ⊆ (P1
k(k) ⊆) P1

k(kp).
(4-ii) Write sP for the pro-Primes Galois section of P1

k\{0, 1,∞} [cf.
Definition 1.2] naturally determined by s. Then it holds either
that sP is cuspidal [cf. Definition 4.3, (i)], or that there exists
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a prime number l such that the l-adic Galois representation

Gk
sP
−→ π1(P1

k \ {0, 1,∞}) −→ GL2(Zl)

— where the second arrow π1(P1
k \ {0, 1,∞}) → GL2(Zl) is

the l-adic representation of π1(P1
k \ {0, 1,∞}) determined by

the Legendre family of elliptic curves over P1
k \ {0, 1,∞},

i.e., the elliptic curve over P1
k \ {0, 1,∞} = Spec k[u±1, (1 −

u)−1] determined by the equation “y2 = x(x − 1)(x − u)” —
is unramified at all but finitely many primes of k.

As a consequence [cf. the equivalences (1) ⇔ (3) and (1) ⇔ (4) of
Theorem C], for a number field k which is either the field of rational
numbers or an imaginary quadratic field, to prove the birational section
conjecture over k [i.e., assertion (1) of Theorem C], it suffices to verify
that, roughly speaking, for any birational Galois section of the pro-
jective line over k, the local points associated to the birational Galois
section avoid distinct three rational points [cf. conditions (3-i), (4-i)],
and, moreover, a certain Galois representation determined by the bi-
rational Galois section is unramified at all but finitely many primes [cf.
conditions (3-ii), (4-ii)]. However, it is not clear to the author at the
time of writing whether or not these are always satisfied.

Finally, let us observe that Theorem 4.1 leads naturally to the fol-
lowing generalization of the above result obtained by Harari and
Stix [cf. Corollary 4.2 in the case where s is a pro-C birational Galois
section]. Note that if k is either the field of rational numbers or an imag-
inary quadratic field, then the following result may also be derived
from Theorem 4.5 [cf. Remark 4.5.1, (iv)].

Theorem D. Let C be a full formation that contains all finite solvable
groups, k a number field, and X a projective smooth geometrically
connected curve over k. Suppose that there exist an abelian variety
A over k and a nonconstant morphism X → A over k such that both
the Mordell-Weil group and the Shafarevich-Tate group of A/k are finite.
Then any pro-C birational Galois section of X/k [cf. Definition 1.2] is
geometric [cf. Definition 1.3].

As in the case of the result of Harari and Stix, this result gives
us some examples of X/k for which any prosolvable birational Galois
section is geometric [cf. Remark 4.2.1].
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0. NOTATIONS AND CONVENTIONS

Numbers: The notation Primes will be used to denote the set of all
prime numbers. The notation Z will be used to denote the ring of
rational integers. If Σ ⊆ Primes, then we shall refer to a nonzero
integer whose prime divisors are ∈ Σ as a Σ-integer, and we shall
write ẐΣ for the pro-Σ completion of Z, i.e., ẐΣ def

= lim←−Z/nZ, where
the projective limit is over all positive Σ-integers n. We shall refer
to a finite (respectively, finitely generated) extension of the field of
rational numbers as a number field (respectively, finitely generated field
of characteristic 0). If p ∈ Primes, then the notation Zp will be used
to denote the p-adic completion of Z, and we shall refer to a finite
extension of the p-adic completion of the field of rational numbers as
a p-adic local field.

Profinite groups: Let G be a profinite group and H ⊆ G a closed
subgroup of G. Then we shall denote by ZG(H), NG(H), Z loc

G (H) the
centralizer, normalizer, local centralizer of H in G, respectively, i.e.,

ZG(H)
def
= { g ∈ G | ghg−1 = h for any h ∈ H } ,

NG(H)
def
= { g ∈ G | g · H · g−1 = H } ,

Z loc
G (H)

def
= lim−→

U

ZG(U)

— where the injective limit is over all open subgroups U ⊆ H of H .
We shall refer to Z(G)

def
= ZG(G), Z loc(G)

def
= Z loc

G (G) as the center,
local center of G, respectively. We shall say that G is center-free, slim if
Z(G) = {1}, Z loc(G) = {1}, respectively.

Let Σ ⊆ Primes be a nonempty subset of Primes [where we refer to
the discussion entitled “Numbers” concerning the set Primes]. Then
we shall say that a finite group G is Σ-group if the cardinality of G
is a Σ-integer [where we refer to the discussion entitled “Numbers”
concerning the term “Σ-integer”].

Let C be a full formation [i.e., a family of finite groups that is closed
under taking quotients, subgroups, and extensions]. We shall say
that a finite group is a C-group if [a finite group which is isomorphic
to] the finite group is contained in C. We shall say that a profinite
group is a pro-C group if every finite quotient of the profinite group
is a C-group. We shall write Σ(C) ⊆ Primes for the set of prime num-
bers p ∈ Primes such that Z/pZ is a C-group. Here, we note that one
verifies easily that Σ(C) = Primes if and only if C contains all finite
solvable groups. If C consists of all Σ-groups for some nonempty
subset Σ ⊆ Primes, then we shall refer to a pro-C group as a pro-Σ
group.
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Let G be a profinite group. Then we shall write Gab for the abelian-
ization of G, i.e., the quotient G/[G,G] of G by the closure [G,G] of
the commutator subgroup of G.

Let G be a profinite group. Then we shall write Aut(G) for the
group of [continuous] automorphisms of G, Inn(G) ⊆ Aut(G) for
the group of inner automorphisms of G, and

Out(G)
def
= Aut(G)/Inn(G) .

If, moreover, G is topologically finitely generated, then one verifies eas-
ily that the topology of G admits a basis of characteristic open sub-
groups, which thus induces a profinite topology on the group Aut(G),
hence also a profinite topology on the group Out(G).

Curves: Let S be a scheme and X a scheme over S. Then we shall say
that X is a smooth curve over S if there exist a scheme Xcpt which is
smooth, proper, geometrically connected, and of relative dimension
1 over S and a closed subscheme D ⊆ Xcpt of Xcpt which is finite
and étale over S such that the complement Xcpt \ D of D in Xcpt is
isomorphic to X over S. Note that, as is well-known, if X is a smooth
curve over [the spectrum of] a field k, then the pair “(Xcpt, D)” is
uniquely determined up to canonical isomorphism over k; we shall refer
to Xcpt as the smooth compactification of X over k and to a geometric
point of Xcpt whose image lies on D as a cusp of X .

Let S be a scheme. Then we shall say that a smooth curve X over
S is a hyperbolic curve (respectively, tripod) over S if there exist a pair
(Xcpt, D) satisfying the condition in the above definition of the term
“smooth curve” and a pair (g, r) of nonnegative integers such that
2g − 2 + r > 0 (respectively, (g, r) = (0, 3)), any geometric fiber of
Xcpt → S is [a necessarily smooth, proper, and connected curve] of
genus g, and the degree of D ⊆ Xcpt over S is r.

Let S be a scheme, U ⊆ S an open subscheme of S, and X a hyper-
bolic curve over U . Then we shall say that X admits good reduction
over S if there exists a hyperbolic curve XS over S such that XS ×S U
is isomorphic to X over U .

1. BIRATIONAL GALOIS SECTIONS AND THEIR GEOMETRICITY

In the present §1, we discuss the notion of a birational Galois section.
In the present §1, let C be a full formation, k a field of characteristic
0, and k an algebraic closure of k. For a finite extension k′ (⊆ k) of k,
write Gk′

def
= Gal(k/k′).

Definition 1.1. Let X be a quasi-compact scheme which is geometri-
cally integral over k.

(i) We shall write
k(X)
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for the function field of X .
(ii) We shall write

∆C
X/k

for the pro-C geometric fundamental group of X , i.e., the maxi-
mal pro-C quotient of π1(X ⊗k k), and

ΠC
X/k

for the geometrically pro-C fundamental group of X , i.e., the quo-
tient of π1(X) by the kernel of the natural surjection π1(X ⊗k

k) ³ ∆C
X/k. If X is the spectrum of a ring R, then we shall

write
∆C

R/k
def
= ∆C

X/k ; ΠC
R/k

def
= ΠC

X/k .

Thus, we have a commutative diagram of profinite groups

1 −−−→ ∆C
k(X)/k −−−→ ΠC

k(X)/k −−−→ Gk −−−→ 1y y ∥∥∥
1 −−−→ ∆C

X/k −−−→ ΠC
X/k −−−→ Gk −−−→ 1

— where the horizontal sequences are exact [cf. [3], Exposé
IX, Théorème 6.1].

If C consists of all Σ-groups [where we refer to the discus-
sion entitled “Profinite groups” in §0 concerning the term “Σ-
group”] for some nonempty subset Σ ⊆ Primes [where we
refer to the discussion entitled “Numbers” in §0 concerning
the set Primes], then we shall write

∆Σ
X/k

def
= ∆C

X/k ; ΠΣ
X/k

def
= ΠC

X/k .

Definition 1.2. Let X be a quasi-compact scheme which is geometri-
cally integral over k. Then we shall refer to a section of the upper
(respectively, lower) exact sequence of the commutative diagram of
Definition 1.1, (ii), as a pro-C birational Galois section (respectively, pro-
C Galois section) of X/k. The ∆C

k(X)/k-conjugacy (respectively, ∆C
X/k-

conjugacy) class of a pro-C birational Galois section (respectively,
pro-C Galois section) of X/k as the conjugacy class of the pro-C bi-
rational Galois section (respectively, pro-C Galois section).

If C consists of all Σ-groups for some nonempty subset Σ ⊆ Primes,
then we shall refer to a pro-C birational Galois section (respectively,
pro-C Galois section) of X/k as a pro-Σ birational Galois section (re-
spectively, pro-Σ Galois section) of X/k.

Definition 1.3. Let X be a smooth curve over k [where we refer to
the discussion entitled “Curves” in §0 concerning the term “smooth
curve”] and s a pro-C birational Galois section (respectively, pro-C
Galois section) of X/k [cf. Definition 1.2]. Then we shall say that s is
geometric if the image of s is contained in a decomposition subgroup
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of ΠC
k(X)/k (respectively, ΠC

X/k) associated to a [necessarily k-rational]
closed point of the [uniquely determined] smooth compactification
of X over k.

Remark 1.3.1. Let X be a scheme which is of finite type and geometri-
cally integral over k; Σ ⊆ Primes a nonempty subset of Primes. Then
it is immediate that the notion of “pro-Σ Galois section of X/k” de-
fined in Definition 1.2 coincides with the notion of “pro-Σ Galois
section of X/k” defined in [6], Definition 1.1, (i). If, moreover, X is
a smooth curve over k, and s is a pro-Σ Galois section of X/k, then it
is immediate that it holds that s is geometric in the sense of Defini-
tion 1.3 if and only if s is geometric in the sense of [6], Definition 1.1,
(iii).

Remark 1.3.2. Let X be a smooth curve over k. Then it follows imme-
diately from the various definitions involved that the geometricity of
a pro-C birational Galois section (respectively, pro-C Galois section)
of X/k depends only on its conjugacy class [cf. Definition 1.2].

Remark 1.3.3. Let X , Y be smooth curves over k and Y → X a dom-
inant morphism over k, which thus determines a finite extension
k(X) ↪→ k(Y ) over k. If a pro-C birational Galois section (respec-
tively, pro-C Galois section) s of Y/k is geometric, then it follows im-
mediately from the various definitions involved that the pro-C bi-
rational Galois section (respectively, pro-C Galois section) of X/k
determined by s and the morphism Y → X [i.e., the pro-C bira-
tional Galois section (respectively, pro-C Galois section) of X/k ob-
tained as the composite of s and the natural open homomorphism
ΠC

k(Y )/k → ΠC
k(X)/k (respectively, ΠC

Y/k → ΠC
X/k) induced by Y → X] is

geometric.

Remark 1.3.4. Let X be a projective smooth curve over k, U ⊆ X an
open subscheme of X , and s a pro-C birational Galois section of X/k.
Then it follows immediately from the various definitions involved
that if s is geometric, then the pro-C Galois section of U/k naturally
determined by s [i.e., the pro-C Galois section of U/k obtained as the
composite of s and the natural surjection ΠC

k(X)/k ³ ΠC
U/k] is geomet-

ric.

Lemma 1.4. Let X be a hyperbolic curve over k [where we refer to the
discussion entitled “Curves” in §0 concerning the term “hyperbolic curve”]
and x, y closed points of the [uniquely determined] smooth compactification
of X . Suppose that k is generalized sub-p-adic [i.e., k is isomorphic
to a subfield of a finitely generated extension of the p-adic completion of
the maximal unramified extension of the p-adic completion of the field of
rational numbers — cf. [10], Definition 4.11] for some p ∈ Σ(C) [where we
refer to the discussion entitled “Profinite groups” in §0 concerning the set
Σ(C)]. Then the following conditions are equivalent:
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(1) x = y.
(2) There exist respective decomposition subgroups Dx, Dy ⊆ ΠC

X/k of
ΠC

X/k associated to x, y such that the image of the composite

Dx ∩ Dy ↪→ ΠC
X/k ³ Gk

is open.

Proof. The implication (1) ⇒ (2) is immediate. Next, we verify the
implication (2) ⇒ (1). Suppose that condition (2) is satisfied. Then
it is immediate that, to verify the implication (2) ⇒ (1), by replac-
ing ΠC

X/k by an open subgroup of ΠC
X/k, we may assume without

loss of generality that X is of genus ≥ 2, and, moreover, the dis-
played composite of condition (2) is surjective, hence also that x and
y are k-rational. Thus, to verify the implication (2) ⇒ (1), by replac-
ing X by its smooth compactification, we may assume without loss
of generality that x, y ∈ X(k). Then, by considering the quotient
ΠC

X/k ³ Π
{p}
X/k of ΠC

X/k, the implication (2) ⇒ (1) follows immediately
from [10], Theorem 4.12 [cf. also [10], Remark following Theorem
4.12], together with a similar argument to the argument used in the
proof of [9], Theorem C. This completes the proof of the implication
(2) ⇒ (1), hence also of Lemma 1.4. ¤

The [equivalence (1) ⇔ (3) of the] following result is a slight gen-
eralization of [8], Lemma 1.7, and follows essentially from the argu-
ment applied in the proof of [15], Proposition 2.8, (iv).

Lemma 1.5. Let X be a smooth curve over k, s a pro-C birational Galois
section of X/k [cf. Definition 1.2], and k′ (⊆ k) a finite extension of k.
Suppose that k is either

(a) a finitely generated field of characteristic 0 [where we refer
to the discussion entitled “Numbers” in §0 concerning the term
“finitely generated field of characteristic 0”] or

(b) a p-adic local field [where we refer to the discussion entitled “Num-
bers” in §0 concerning the term “p-adic local field”] for some p ∈
Σ(C) [where we refer to the discussion entitled “Profinite groups”
in §0 concerning the set Σ(C)].

Then the following conditions are equivalent:
(1) s is geometric [cf. Definition 1.3].
(2) The pro-C birational Galois section s|Gk′ of X ⊗k k′/k′ determined

by s is geometric.
(3) For any open subgroup H ⊆ ΠC

k(X)/k of ΠC
k(X)/k containing the

image of s, the [uniquely determined] smooth compactification of the
normalization of X in the finite extension of k(X) corresponding to
H ⊆ ΠC

k(X)/k admits a k′-valued point.
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Proof. To verify Lemma 1.5, by replacing k′ by a finite extension of
k′, we may assume without loss of generality that k′ is Galois over k.
Moreover, to verify Lemma 1.5, by replacing ΠC

k(X)/k by an open sub-
group of ΠC

k(X)/k containing the image of s, we may assume without
loss of generality that X is of genus ≥ 2.

Now the implication (1) ⇒ (3) is immediate. Next, we verify the
implication (3) ⇒ (2). Suppose that condition (3) is satisfied. Write
{Hi}i∈I for the projective system of open subgroups Hi ⊆ ΠC

k(X)/k

of ΠC
k(X)/k containing the image of s. [Thus, we have that

⋂
i Hi =

Im(s).] For each i ∈ I , write Xi for the [uniquely determined] smooth
compactification of the normalization of X in the finite extension of
k(X) corresponding to Hi; thus, ΠC

k(Xi)/k = Hi ⊆ ΠC
k(X)/k, and we

have a projective system {Xi}i∈I of proper hyperbolic curves over
k [with finite morphisms over k], hence also a projective system
{Xi(k

′)}i∈I of sets. Now let us observe that if k is a finitely gener-
ated field of characteristic 0 (respectively, p-adic local field), then it fol-
lows immediately from the Mordell conjecture that was proved by
Faltings (respectively, from the consideration of models of the Xi’s
over the ring of integers of k) that, for each i ∈ I , Xi(k

′) admits
a compact topology with respect to which each morphism appearing
in the projective system {Xi(k

′)}i∈I is continuous. Thus, since, for
each i ∈ I , Xi(k

′) 6= ∅ by condition (3), it follows immediately that
lim←−Xi(k

′) 6= ∅. Let x∞ ∈ lim←−Xi(k
′) be an element of lim←−Xi(k

′). Then
one verifies easily that x∞ determines, for each i ∈ I , a closed point
xi of Xi which is defined over a subfield of k′ and a decomposition
subgroup Di ⊆ ΠC

k(Xi)/k = Hi of ΠC
k(Xi)/k = Hi associated to xi which

is compatible with each natural inclusion appearing in the projective
system {Hi}i∈I , and, moreover, the image of the composite⋂

i

Di ↪→ ΠC
k(X)/k ³ Gk

contains Gk′ ⊆ Gk. On the other hand, since
⋂

i Di ⊆
⋂

i Hi = Im(s),
one verifies easily that Im(s|Gk′

) ⊆
⋂

i Di; in particular, Im(s|Gk′
) is

contained in “Di” in the case where we take “Hi” to be ΠC
k(X)/k, i.e.,

s|Gk′
is geometric. This completes the proof of the implication (3) ⇒

(2).
Finally, we verify the implication (2) ⇒ (1). Suppose that condi-

tion (2) is satisfied. Then, to verify the implication (2) ⇒ (1), by the
verified implication (3) ⇒ (2) [in the case where we take “k′” to be
k], it suffices to verify that, for any open subgroup H ⊆ ΠC

k(X)/k of
ΠC

k(X)/k containing the image of s, the [uniquely determined] smooth
compactification Y of the normalization of X in the finite extension
of k(X) corresponding to H ⊆ ΠC

k(X)/k admits a k-rational point.
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Now it follows immediately from condition (2) that the pro-C bira-
tional Galois section of Y ⊗k k′/k′ naturally determined by s is geo-
metric; thus, there exist a closed point y of Y which is defined over
a subfield of k′ and a decomposition subgroup Dy ⊆ ΠC

k(Y )/k = H

of ΠC
k(Y )/k = H associated to y such that s(Gk′) ⊆ Dy. Let g ∈ Gk

be an element of Gk. Then since Gk′ ⊆ Gk is normal, it follows that
s(Gk′) ⊆ Dy ∩ (s(g) · Dy · s(g)−1). Thus, by considering the image of
Dy∩(s(g)·Dy ·s(g)−1) ⊆ ΠC

k(Y )/k in ΠC
Y/k, we conclude from Lemma 1.4

that y is fixed by g ∈ Gk, hence [by allowing g ∈ Gk to vary] that
y ∈ Y (k). This completes the proof of the implication (2) ⇒ (1),
hence also of Lemma 1.5. ¤

Lemma 1.6. Let X be a hyperbolic curve over k, s a pro-C Galois section
of X/k [cf. Definition 1.2], and k′ (⊆ k) a finite extension of k. Suppose
that k is either

(a) a finitely generated field of characteristic 0 or
(b) a p-adic local field for some p ∈ Σ(C).

Then the following conditions are equivalent:
(1) s is geometric [cf. Definition 1.3].
(2) The pro-C Galois section s|Gk′ of X ⊗k k′/k′ determined by s is

geometric.
(3) For any open subgroup H ⊆ ΠC

X/k of ΠC
X/k containing the image

of s, the [uniquely determined] smooth compactification of the finite
étale covering of X corresponding to H ⊆ ΠC

X/k admits a k′-valued
point.

Proof. This follows immediately from a similar argument to the ar-
gument applied in the proof of Lemma 1.5 [cf. also the proof of [7],
Lemma 54 (respectively, [15], Proposition 2.8, (iv)), concerning the
proof of the equivalence (1) ⇔ (2) (respectively, (1) ⇔ (3))]. ¤

The following result was essentially proved in [12].

Proposition 1.7. Let p be a prime number and X a smooth curve over
k. Suppose that p ∈ Σ(C) [where we refer to the discussion entitled “Profi-
nite groups” in §0 concerning the set Σ(C)], and that k is a p-adic local
field. Then any pro-C birational Galois section of X/k [cf. Definition 1.2]
is geometric [cf. Definition 1.3].

Proof. It follows from the equivalence (1) ⇔ (3) of Lemma 1.5 that,
to verify Proposition 1.7, it suffices to verify that, for any open sub-
group H ⊆ ΠC

k(X)/k of ΠC
k(X)/k containing the image of s, the [uniquely

determined] smooth compactification of the normalization of X in
the finite extension of k(X) corresponding to H ⊆ ΠC

k(X)/k admits
a k(ζp)-valued point, where we use the notation ζp ∈ k to denote a
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primitive p-th root of unity. On the other hand, this follows immedi-
ately from [12], Theorem A, (2). This completes the proof of Propo-
sition 1.7. ¤

2. LOCAL GEOMETRICITY OF BIRATIONAL GALOIS SECTIONS

In the present §2, we discuss the notion of the local geometricity
of birational Galois sections of smooth curves over number fields.
In the present §2, let C be a full formation, k a number field [where
we refer to the discussion entitled “Numbers” in §0 concerning the
term “number field”], k an algebraic closure of k, and X a smooth
curve over k [where we refer to the discussion entitled “Curves” in
§0 concerning the term “smooth curve”]. Write

ok ⊆ k

for the ring of integers of k,
Pf

k

for the set of all nonarchimedean primes of k, and

Xcpt

for the [uniquely determined] smooth compactification of X over k.
Moreover, for each p ∈ Pf

k , write

kp

for the p-adic completion of k and

op ⊆ kp

for the ring of integers of kp. For each p ∈ Pf
k , let us fix an algebraic

closure kp of kp containing k and write

Gp
def
= Gal(kp/kp) ⊆ Gk

def
= Gal(k/k) .

Definition 2.1. Let s be a pro-C Galois section of X/k [cf. Defini-
tion 1.2]. For a nonarchimedean prime p ∈ Pf

k of k, we shall say
that s is geometric at p if the pro-C Galois section of X ⊗k kp/kp nat-
urally determined by s [i.e., the pro-C Galois section of X ⊗k kp/kp

determined by the natural isomorphism

ΠC
X⊗kkp/kp

∼−→ ΠC
X/k ×Gk

Gp

and the composite
Gp ↪→ Gk

s→ ΠC
X/k ]

is geometric [cf. Definition 1.3]. For a subset S ⊆ Pf
k of Pf

k , we shall
say that s is geometric at S if, for each p ∈ S, s is geometric at p.
Finally, we shall say that s is locally geometric if s is geometric at Pf

k .

Remark 2.1.1. In the notation of Definition 2.1, it is immediate that
if s is geometric [cf. Definition 1.3], then s is locally geometric.
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Definition 2.2. Let S ⊆ Pf
k be a subset of Pf

k . Then we shall write

Ãf
k |S

def
=

∏
p∈S

kp ;

Af
k |S

def
=

{
(ap)p∈S ∈ Ãf

k |S
∣∣∣ ap ∈ op for all but finitely many p ∈ S

}
;

Ãf
k

def
= Ãf

k |Pf
k

; Af
k

def
= Af

k |Pf
k
.

Remark 2.2.1. Since Xcpt is proper over k, for any subset S ⊆ Pf
k of

Pf
k , the natural injection Xcpt(Af

k |S) ↪→ Xcpt(Ãf
k |S) is bijective.

Definition 2.3. Let s be a pro-C Galois section of X/k [cf. Defini-
tion 1.2]. If s is geometric at a nonarchimedean prime p ∈ Pf

k of k
[cf. Definition 2.1], i.e., there exists a kp-valued point xp ∈ Xcpt(kp) =
(Xcpt⊗kkp)(kp) of Xcpt such that the image of the pro-C Galois section
of X ⊗k kp/kp naturally determined by s is contained in a decompo-
sition subgroup of ΠC

X⊗kkp/kp
associated to xp, then we shall refer to

such a kp-valued point “xp” of Xcpt as a kp-valued point of Xcpt asso-
ciated to s. If s is geometric at a subset S ⊆ Pf

k of Pf
k , then we shall

refer to an Ãf
k |S-valued point, or, equivalently [cf. Remark 2.2.1], an

Af
k |S-valued point, of Xcpt determined by kp-valued points of Xcpt

associated to s — where p ranges over elements of S — as an Ãf
k |S-

valued point, or, equivalently, an Af
k |S-valued point, of Xcpt associated to

s.

Remark 2.3.1. In the notation of Definition 2.3, suppose that s is
geometric [cf. Definition 1.3], hence also locally geometric [cf. Defi-
nition 2.1; Remark 2.1.1]. Then it is immediate that there exists a
k-rational point x ∈ Xcpt(k) of Xcpt such that, for each p ∈ Pf

k , the
kp-valued point of Xcpt determined by x is a kp-valued point of Xcpt

associated to s. In particular, the Af
k-valued point of Xcpt determined

by x is an Af
k-valued point of Xcpt associated to s.

Note that if C contains all finite solvable groups, and X is a hyper-
bolic curve over k [where we refer to the discussion entitled “Curves”
in §0 concerning the term “hyperbolic curve”], then it follows from
Theorem 4.1 below that the converse holds, i.e., if s is locally geomet-
ric, and there exists a k-rational point x ∈ Xcpt(k) of Xcpt such that,
for each p ∈ Pf

k , the kp-valued point of Xcpt determined by x is a
kp-valued point of Xcpt associated to s, then s is geometric.

Lemma 2.4. Let s be a pro-C birational Galois section of X/k [cf. Defini-
tion 1.2] and p ∈ Pf

k . For an open subscheme U ⊆ Xcpt of Xcpt, write

s[U ]
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for the pro-C Galois section of U/k [cf. Definition 1.2] naturally determined
by s [i.e., the pro-C Galois section of U/k obtained as the composite of s and
the natural surjection ΠC

k(X)/k ³ ΠC
U/k];

s[U, p]

for the pro-C Galois section of U⊗kkp/kp naturally determined by s [i.e., the
pro-C Galois section of U ⊗k kp/kp determined by the natural isomorphism

ΠC
U⊗kkp/kp

∼−→ ΠC
U/k ×Gk

Gp

and the composite

Gp ↪→ Gk
s→ ΠC

k(X)/k ³ ΠC
U/k ].

Then the following conditions are equivalent:
(1) There exists a kp-valued point xp ∈ Xcpt(kp) = (Xcpt ⊗k kp)(kp)

of Xcpt such that, for any open subscheme U ⊆ Xcpt of Xcpt, the
image of the pro-C Galois section s[U, p] of U ⊗k kp/kp is contained
in a decomposition subgroup of ΠC

U⊗kkp/kp
associated to xp.

(2) For any open subscheme U ⊆ Xcpt of Xcpt, the pro-C Galois section
s[U ] of U/k is geometric at p [cf. Definition 2.1], i.e., the pro-C
Galois section s[U, p] of U ⊗k kp/kp is geometric [or, equivalently,
the image of s[U, p] is contained in a decomposition subgroup of
ΠC

U⊗kkp/kp
associated to a kp-rational point of Xcpt ⊗k kp].

(3) For any open subgroup H ⊆ ΠC
k(X)/k of ΠC

k(X)/k containing the
image of s, the [uniquely determined] smooth compactification of the
normalization of X in the finite extension of k(X) corresponding to
H ⊆ ΠC

k(X)/k admits a kp-valued point.
(4) The image of the homomorphism Gp → ΠC

k(X)/k×Gk
Gp induced by s

is contained in the image of a decomposition subgroup of ΠC
kp(X⊗kkp)/kp

associated to a [necessarily kp-rational] closed point of Xcpt ⊗k kp

by the natural surjection ΠC
kp(X⊗kkp)/kp

³ ΠC
k(X)/k ×Gk

Gp.

Proof. The implications (4) ⇒ (1) ⇒ (2) are immediate. Next, we
verify the implication (2) ⇒ (3). Suppose that condition (2) is satis-
fied. Write Y for the [uniquely determined] smooth compactification
of the normalization of X in the finite extension of k(X) correspond-
ing to H ⊆ ΠC

k(X)/k; thus, ΠC
k(Y )/k = H ⊆ ΠC

k(X)/k. Then it is immediate
that there exists an open subscheme U ⊆ Xcpt of Xcpt such that the
finite morphism Y → Xcpt determines a connected finite étale cov-
ering V

def
= Y ×Xcpt U → U which corresponds to an open subgroup

ΠC
V/k ⊆ ΠC

U/k of ΠC
U/k. On the other hand, since H = ΠC

k(Y )/k ⊆ ΠC
k(X)/k

contains the image of s, one verifies easily that the open subgroup
ΠC

V/k ⊆ ΠC
U/k contains the image of s[U ]. Thus, it follows immedi-

ately from condition (2) that Y (kp) 6= ∅. This completes the proof of
the implication (2) ⇒ (3).
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Finally, we verify the implication (3) ⇒ (4). Suppose that condi-
tion (3) is satisfied. Write {Hi}i∈I for the projective system of open
subgroups Hi ⊆ ΠC

k(X)/k of ΠC
k(X)/k containing the image of s. [Thus,

we have that
⋂

i Hi = Im(s).] For each i ∈ I , write Xi for the
[uniquely determined] smooth compactification of the normaliza-
tion of X in the finite extension of k(X) corresponding to Hi; thus,
ΠC

k(Xi)/k = Hi ⊆ ΠC
k(X)/k, and we have a projective system {Xi}i∈I

of projective smooth curves over k [with finite morphisms over k],
hence also a projective system {Xi(kp)}i∈I of compact sets with contin-
uous maps [cf. the proof of the implication (3) ⇒ (2) of Lemma 1.5].
Thus, it follows immediately from condition (3) that lim←−Xi(kp) 6= ∅.
Let x∞ ∈ lim←−Xi(kp) be an element of lim←−Xi(kp). Then one veri-
fies easily that x∞ determines, for each i ∈ I , a kp-rational point
xi of Xi ⊗k kp and a decomposition subgroup Di ⊆ ΠC

kp(Xi⊗kkp)/kp
of

ΠC
kp(Xi⊗kkp)/kp

associated to xi such that if we write DH
i ⊆ ΠC

k(Xi)/k×Gk

Gp = Hi ×Gk
Gp for the image of Di ⊆ ΠC

kp(Xi⊗kkp)/kp
by the natural

surjection ΠC
kp(Xi⊗kkp)/kp

³ ΠΣ
k(Xi)/k×Gk

Gp = Hi×Gk
Gp, then the DH

i ’s
are compatible with the various inclusions appearing in the projec-
tive system {Hi}i∈I , and, moreover, the image of the composite⋂

i

DH
i ↪→ ΠC

k(X)/k ³ Gk

coincides with Gp ⊆ Gk. On the other hand, since
⋂

i D
H
i ⊆

⋂
i Hi =

Im(s), one verifies easily that Im(s|Gp ) ⊆
⋂

i D
H
i ; in particular, Im(s|Gp)

is contained in “DH
i ” in the case where we take “Hi” to be ΠC

k(X)/k,
i.e., condition (4) is satisfied. This completes the proof of the impli-
cation (3) ⇒ (4), hence also of Lemma 2.4. ¤
Definition 2.5. Let s be a pro-C birational Galois section of X/k [cf.
Definition 1.2]. For a nonarchimedean prime p ∈ Pf

k of k, we shall
say that s is geometric at p if the pair (s, p) satisfies equivalent condi-
tions (1), (2), (3), and (4) of Lemma 2.4. For a subset S ⊆ Pf

k of Pf
k ,

we shall say that s is geometric at S if, for each p ∈ S, s is geometric
at p. Finally, we shall say that s is locally geometric if s is geometric at
Pf

k .

Remark 2.5.1. In the notation of Definition 2.5, it is immediate that
if s is geometric [cf. Definition 1.3], then s is locally geometric.

Definition 2.6. Let s be a pro-C birational Galois section of X/k [cf.
Definition 1.2]. If s is geometric at a nonarchimedean prime p ∈
Pf

k of k [cf. Definition 2.5], i.e., the pair (s, p) satisfies condition (1)
of Lemma 2.4, then we shall refer to a kp-valued point “xp” of Xcpt

appearing in condition (1) of Lemma 2.4 as a kp-valued point of Xcpt

associated to s. If s is geometric at a subset S ⊆ Pf
k of Pf

k , then we shall
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refer to an Ãf
k |S-valued point, or, equivalently [cf. Remark 2.2.1], an

Af
k |S-valued point, of Xcpt determined by kp-valued points of Xcpt

associated to s — where p ranges over elements of S — as an Ãf
k |S-

valued point, or, equivalently, an Af
k |S-valued point, of Xcpt associated to

s.

Remark 2.6.1. In the notation of Definition 2.6, suppose that s is
geometric [cf. Definition 1.3], hence also locally geometric [cf. Defi-
nition 2.5; Remark 2.5.1]. Then it is immediate that there exists a
k-rational point x ∈ Xcpt(k) of Xcpt such that, for each p ∈ Pf

k , the
kp-valued point of Xcpt determined by x is a kp-valued point of Xcpt

associated to s. In particular, the Af
k-valued point of Xcpt determined

by x is an Af
k-valued point of Xcpt associated to s.

Note that if C contains all finite solvable groups, then it follows
from Theorem 4.1 below that the converse holds, i.e., if s is locally
geometric, and there exists a k-rational point x ∈ Xcpt(k) of Xcpt such
that, for each p ∈ Pf

k , the kp-valued point of Xcpt determined by x is
a kp-valued point of Xcpt associated to s, then s is geometric.

Lemma 2.7. Let s be a pro-C birational Galois section (respectively, pro-C
Galois section) of X/k [cf. Definition 1.2] and S ⊆ Pf

k a subset of Pf
k .

Suppose that s is geometric at S [cf. Definition 2.5 (respectively, Def-
inition 2.1)], and that, for each p ∈ S, the residue characteristic of p is
∈ Σ(C) [where we refer to the discussion entitled “Profinite groups” in
§0 concerning the set Σ(C)]. Suppose, moreover, that if s is a pro-C Ga-
lois section of X/k, then X is a hyperbolic curve over k [where we refer
to the discussion entitled “Curves” in §0 concerning the term “hyperbolic
curve”]. Then an Af

k |S-valued point of Xcpt associated to s [cf. Defini-
tion 2.6 (respectively, Definition 2.3)] is uniquely determined by s.

Proof. Observe that, to verify Lemma 2.7, by replacing S by a sub-
set of S of cardinality 1, we may assume without loss of generality
that S = {p} for some p ∈ Pf

k . Then the uniqueness in question
follows immediately from Lemma 1.4. This completes the proof of
Lemma 2.7. ¤

Lemma 2.8. Let s be a pro-C birational Galois section of X/k [cf. Defini-
tion 1.2], S ⊆ Pf

k a subset of Pf
k , and xA ∈ Xcpt(Af

k |S) an Af
k |S-valued

point of Xcpt. Suppose that s is geometric at S [cf. Definition 2.5]. Write
s[X] for the pro-C Galois section of X/k [cf. Definition 1.2] naturally de-
termined by s. Then the following hold:

(i) s[X] is geometric at S [cf. Definition 2.1].
(ii) If xA ∈ Xcpt(Af

k |S) is an Af
k |S-valued point of Xcpt associated to s

[cf. Definition 2.6], then xA ∈ Xcpt(Af
k |S) is an Af

k |S-valued point
of Xcpt associated to s[X] [cf. Definition 2.3; assertion (i)].
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(iii) Suppose, moreover, that, for each p ∈ S, the residue characteristic
of p is ∈ Σ(C) [where we refer to the discussion entitled “Profinite
groups” in §0 concerning the set Σ(C)], and that X is a hyperbolic
curve over k. Then it holds that xA ∈ Xcpt(Af

k |S) is an Af
k |S-

valued point of Xcpt associated to s if and only if xA ∈ Xcpt(Af
k |S)

is an Af
k |S-valued point of Xcpt associated to s[X] [cf. assertion (i)].

Proof. Assertions (i), (ii) follow immediately from the various defini-
tions involved. Assertion (iii) follows immediately from Lemma 2.7,
together with assertion (ii). This completes the proof of Lemma 2.8.

¤
The following result was essentially proved in [12].

Proposition 2.9. Let s be a pro-C birational Galois section of X/k [cf.
Definition 1.2] and S ⊆ Pf

k a subset of Pf
k such that, for each p ∈ S,

the residue characteristic of p is ∈ Σ(C) [where we refer to the discussion
entitled “Profinite groups” in §0 concerning the set Σ(C)]. Then s is geo-
metric at S [cf. Definition 2.5]. In particular, s determines a unique
Af

k |S-valued point of Xcpt [cf. Definition 2.6].

Proof. If s is geometric at S, then the uniqueness of an Af
k |S-valued

point of Xcpt associated to s follows from Lemma 2.7. Thus, to verify
Proposition 2.9, it suffices to verify that s is geometric at S. More-
over, it follows immediately from the various definitions involved
that, to verify that s is geometric at S, by replacing S by a subset
of S of cardinality 1, we may assume without loss of generality that
S = {p} for some p ∈ Pf

k , whose residue characteristic we denote
by p. Thus, it follows from Lemma 2.10 below [cf. condition (5) of
Lemma 2.10 below] that, to verify Proposition 2.9, it suffices to ver-
ify that, for any open subgroup H ⊆ ΠC

k(X)/k of ΠC
k(X)/k containing the

image of s, the [uniquely determined] smooth compactification Y of
the normalization of X in the finite extension of k(X) corresponding
to H ⊆ ΠC

k(X)/k admits a kp(ζp)-valued point, where we use the nota-
tion ζp ∈ k to denote a primitive p-th root of unity. On the other hand,
by considering the restriction of the pro-C birational Galois section of
Y/k naturally determined by s to the closed subgroup Gal(k/k(ζp)

h)

of Gk, where we write k(ζp)
h ⊆ k for the algebraic closure of k(ζp)

in kp(ζp), we conclude from [12], Theorem B, (2), that Y (k(ζp)
h) 6= ∅,

hence also that Y (kp(ζp)) 6= ∅. This completes the proof of Proposi-
tion 2.9. ¤
Lemma 2.10. In the notation of Lemma 2.4, suppose, moreover, that the
residue characteristic of p is ∈ Σ(C) [where we refer to the discussion enti-
tled “Profinite groups” in §0 concerning the set Σ(C)]. Let k′

p (⊆ kp) be a
finite extension of kp. Then equivalent conditions (1), (2), (3), and (4) of
Lemma 2.4 are equivalent to the following conditions:
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(5) For any open subgroup H ⊆ ΠC
k(X)/k of ΠC

k(X)/k containing the
image of s, the [uniquely determined] smooth compactification of the
normalization of X in the finite extension of k(X) corresponding to
H ⊆ ΠC

k(X)/k admits a k′
p-valued point.

(6) The image of the composite of the natural inclusion Gal(kp/k
′
p) ↪→

Gp and the homomorphism Gp → ΠC
k(X)/k ×Gk

Gp induced by s is
contained in the image of a decomposition subgroup of ΠC

kp(X⊗kkp)/kp

associated to a closed point of Xcpt ⊗k kp [necessarily defined over a
subfield of k′

p] by the natural surjection ΠC
kp(X⊗kkp)/kp

³ ΠC
k(X)/k×Gk

Gp.

Proof. The implication (3) ⇒ (5) is immediate. Moreover, by ap-
plying the implication (3) ⇒ (4) of Lemma 2.4 to the restriction of
s to a suitable open subgroup of Gk, we conclude that the implica-
tion (5) ⇒ (6) holds. Finally, we verify the implication (6) ⇒ (3).
Suppose that condition (6) is satisfied. Then, to verify the implica-
tion (6) ⇒ (3), by replacing k′

p by a finite extension of k′
p, we may

assume without loss of generality that k′
p is Galois over kp. More-

over, to verify the implication (6) ⇒ (3), by replacing ΠC
k(X)/k by

an open subgroup of ΠC
k(X)/k containing the image of s, we may as-

sume without loss of generality that X is of genus ≥ 2. Write Y
for the [uniquely determined] smooth compactification of the nor-
malization of X in the finite extension of k(X) corresponding to
H ⊆ ΠC

k(X)/k; thus, ΠC
k(Y )/k = H ⊆ ΠC

k(X)/k. Now it follows imme-
diately from condition (6) that there exist a closed point y of Y ⊗k kp

which is defined over a subfield of k′
p and a decomposition subgroup

Dy ⊆ ΠC
kp(Y ⊗kkp)/kp

of ΠC
kp(Y ⊗kkp)/kp

associated to y such that if we
write DH

y ⊆ ΠC
k(Y )/k ×Gk

Gp = H ×Gk
Gp for the image of Dy ⊆

ΠC
kp(Y ⊗kkp)/kp

by the natural surjection ΠC
kp(Y ⊗kkp)/kp

³ ΠC
k(Y )/k ×Gk

Gp = H ×Gk
Gp, then s(Gal(kp/k

′
p)) ⊆ DH

y . Let g ∈ Gp be an ele-
ment of Gp. Then since Gal(kp/k

′
p) ⊆ Gp is normal, it follows that

s(Gal(kp/k
′
p)) ⊆ DH

y ∩ (s(g) · DH
y · s(g)−1). Thus, by considering the

image of DH
y ∩ (s(g) · DH

y · s(g)−1) ⊆ ΠC
k(Y )/k ×Gk

Gp = H ×Gk
Gp

in ΠC
Y/k ×Gk

Gp
∼← ΠC

Y ⊗kkp/kp
, we conclude from Lemma 1.4 that y is

fixed by g ∈ Gp, hence [by allowing g ∈ Gp to vary] that y ∈ Y (kp).
This completes the proof of the implication (6) ⇒ (3), hence also of
Lemma 2.10. ¤

Proposition 2.11. Suppose that X is a hyperbolic curve over k. Let
s be a pro-C Galois section of X/k [cf. Definition 1.2] and S ⊆ Pf

k a
subset of Pf

k such that, for each p ∈ S, the residue characteristic of p is
∈ Σ(C) [where we refer to the discussion entitled “Profinite groups” in §0
concerning the set Σ(C)]. Suppose that s arises from a pro-C birational



CONDITIONAL RESULTS ON BIRATIONAL SECTION CONJECTURE 21

Galois section of X/k [cf. Definition 1.2]. Then s is geometric at S [cf.
Definition 2.1]. In particular, s determines a unique Af

k |S-valued point of
Xcpt [cf. Definition 2.3].

Proof. The fact that s is geometric at S follows immediately from Propo-
sition 2.9, together with Lemma 2.8, (i). The fact that s determines a
unique Af

k |S-valued point of Xcpt follows immediately from Lemma 2.7.
This completes the proof of Proposition 2.11. ¤

3. GALOIS SECTIONS OF TORI THAT LOCALLY ARISE FROM POINTS

In the present §3, we discuss Galois sections of tori that locally arise
from points. We maintain the notation of the preceding §2. Let Σ ⊆
Primes be a nonempty subset of Primes [where we refer to the dis-
cussion entitled “Numbers” in §0 concerning the set Primes]. Write

Div(ok)
def
=

⊕
p∈Pf

k

Z ;

Pic(ok)
def
= Pic(Spec ok) ;

dk

for the minimal positive integer such that dk · Pic(ok) = {0};

Gm,Z
def
= P1

Z \ {0,∞} = Spec Z[u±1] ;

for each p ∈ Pf
k ,

vp : k× −→ Z
for the p-adic valuation which induces a surjection k×

p ³ Z;

divk : k× −→ Div(ok)
a 7→

∑
p∈Pf

k
vp(a) · p .

[Thus, we have an exact sequence of modules

0 −→ o×k −→ k× divk−→ Div(ok) −→ Pic(ok) −→ 0 .]

Write, moreover, for a ring R,

Gm,R
def
= Gm,Z ⊗Z R .

Let us identify Gm,R(R) with R× by the invertible function u ∈ R[u±1]×:

Gm,R(R) ' R× .

Definition 3.1. Let M be a module. Then we shall write

M [Σ]
def
= lim←−M/nM

— where n ranges over positive Σ-integers [where we refer to the dis-
cussion entitled “Numbers” in §0 concerning the term “Σ-integer”].
Thus, if, moreover, for any positive Σ-integer n, the module M/nM
is finite [e.g., M is finitely generated], then M [Σ] is the pro-Σ com-
pletion of M .
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Lemma 3.2.
(i) For every [not necessarily algebraic] extension k′ of k, if we write

GSΣ(Gm,k′/k′)

for the set of conjugacy classes of pro-Σ Galois sections of Gm,k′/k′

[cf. Definition 1.2], then the map

GSΣ(Gm,k′/k′) −→ H1(k′, ∆Σ
Gm,k/k)

determined by the natural isomorphism

∆Σ
Gm,k′/k′

∼−→ ∆Σ
Gm,k/k

induced by k ↪→ k′ and the map

GSΣ(Gm,k′/k′) −→ H1(k′, ∆Σ
Gm,k′/k′)

given by mapping an element s ∈ GSΣ(Gm,k′/k′) to the element
of H1(k′, ∆Σ

Gm,k′/k′) obtained by considering the difference of s and
the element GSΣ(Gm,k′/k′) arising from the k-rational point 1 ∈
(k′)× ' Gm,k′(k′) is bijective.

(ii) There exists a natural isomorphism ∆Σ
Gm,k/k

∼→ ẐΣ(1) [where “(1)”
denotes a Tate twist] such that, for every [not necessarily algebraic]
extension k′ of k, the following diagram of sets commutes:

Gm,k(k
′) −−−→ GSΣ(Gm,k′/k′)

∼−−−→ H1(k′, ∆Σ
Gm,k/k)

o
y o

y
(k′)× −−−→ (k′)×[Σ]

∼−−−→ H1(k′, ẐΣ(1)) .

Here, the left-hand upper horizontal arrow is the natural map given
by mapping a k′-rational point of Gm,k′ to the conjugacy class of a
pro-Σ Galois section of Gm,k′/k′ associated to the k′-rational point,
the right-hand upper horizontal arrow is the bijection of (i), the
left-hand vertical arrow is the natural identification by the fixed
invertible function u, the right-hand vertical arrow is the isomor-
phism induced by the isomorphism in question ∆Σ

Gm,k/k

∼→ ẐΣ(1),
the left-hand lower horizontal arrow is the natural homomorphism
[cf. Definition 3.1], and the right-hand lower horizontal arrow is
the natural isomorphism given by the Kummer theory.

(iii) Let S ⊆ Pf
k be a subset of Pf

k . Then there exists a natural isomor-
phism between the commutative diagram of sets

Gm,k(k) Gm,k(k) −−−→ GSΣ(Gm,k/k)y y
Gm,k(Af

k |S) −−−→ Gm,k(Ãf
k |S) −−−→

∏
p∈S GSΣ(Gm,kp/kp)
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and the commutative diagram of modules
k× k× −−−→ k×[Σ]y y

(Af
k |S)× −−−→ (Ãf

k |S)× −−−→
∏

p∈S(k×
p [Σ]) .

Proof. Assertion (i) follows immediately from the various definitions
involved. Next, we verify assertion (ii). For a positive integer n,
write µn ⊆ k for the group of n-th roots of unity. Then, as is well-
known, for a positive Σ-integer n, there exist natural isomorphisms

H1(∆Σ
Gm,k/k, µn)

∼−→ H1(Gm,k, µn)
∼←− k[u±1]×/(k[u±1]×)n .

Thus, the invertible function u ∈ k[u±1]× determines an element of

H1(∆Σ
Gm,k/k, ẐΣ(1))

∼−→ Hom(∆Σ
Gm,k/k, ẐΣ(1)) .

On the other hand, one verifies easily that the resulting homomor-
phism ∆Σ

Gm,k/k → ẐΣ(1) is an isomorphism and satisfies the condition
in the statement of assertion (ii). This completes the proof of asser-
tion (ii). Assertion (iii) follows immediately from assertion (ii). This
completes the proof of Lemma 3.2. ¤
Lemma 3.3. The following hold:

(i) The exact sequence of modules

1 −→ o×k −→ k× divk−→ Div(ok)

determines an exact sequence of modules

1 −→ o×k [Σ] −→ k×[Σ]
divk[Σ]−→ Div(ok)[Σ] .

(ii) There is no nontrivial element of the cokernel of the natural homo-
morphism k× → k×[Σ] which is annihilated by a Σ-integer.

Proof. First, we verify assertion (i). Write M
def
= Im(divk) ⊆ Div(ok)

for the image of divk. Then since M is a free Z-module, there ex-
ists a section of the natural surjection k× ³ M ; thus, we obtain a
noncanonical isomorphism o×k × M

∼→ k×. In particular, the natural
homomorphism o×k [Σ] → k×[Σ] is injective. Thus, to verify asser-
tion (i), it suffices to verify that the kernel of divk[Σ] is contained in
o×k [Σ] ⊆ k×[Σ], or, equivalently [by the existence of the noncanonical
isomorphism o×k × M

∼→ k×], the natural homomorphism M [Σ] →
Div(ok)[Σ] is injective.

For an element
∑

ai ·pi ∈ Div(ok), where ai ∈ Z and pi ∈ Pf
k , write

[
∑

ai · pi] ∈ Pic(ok) = Div(ok)/M for the element of the cokernel of
divk determined by

∑
ai · pi ∈ Div(ok). Now, for an element a ∈

Pic(ok), let us fix a nonarchimedean prime qa ∈ Pf
k of k such that a =

[1 · qa]. [Note that it follows immediately from Chebotarev’s density
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theorem that such a qa always exists.] Write T
def
= { qa ∈ Pf

k | a ∈
Pic(ok) }. Moreover, for each p ∈ Pf

k \ T , write xp
def
= 1 · p − 1 · q[1·p] ∈

Div(ok). Then one verifies easily that the Z-submodule N ⊆ Div(ok)

generated by {xp | p ∈ Pf
k \ T } is contained in M and determines a

section of the natural projection Div(ok) ³
⊕

p∈Pf
k\T

Z. In particular,
we obtain a commutative diagram of free Z-modules

0 −−−→ N −−−→ M −−−→ M/N −−−→ 0∥∥∥ y y
0 −−−→ N −−−→ Div(ok) −−−→ Div(ok)/N −−−→ 0

— where the horizontal sequences are exact, and the vertical arrows
are injective. On the other hand, since Pic(ok), hence also T , is finite,
M/N and Div(ok)/N are finitely generated free Z-modules. In particu-
lar, one verifies easily that the natural homomorphism (M/N)[Σ] →
(Div(ok)/N)[Σ] is injective. Thus, it follows immediately that the nat-
ural homomorphism in question M [Σ] → Div(ok)[Σ] is injective. This
completes the proof of assertion (i).

Next, we verify assertion (ii). Now let us observe that one verifies
easily that there is no nontrivial element of the cokernel of the nat-
ural homomorphism Z → ẐΣ which is annihilated by a Σ-integer.
Thus, assertion (ii) follows immediately from the existence of the
[noncanonical] isomorphism o×k × M

∼→ k× obtained in the proof
of assertion (i), together with the well-known fact that o×k is finitely
generated. This completes the proof of assertion (ii). ¤

Remark 3.3.1. The observation given in the proof of Lemma 3.3 was
related to the author by A. Tamagawa and S. Yasuda.

Lemma 3.4. By applying Lemma 3.2, (iii), let us identify Gm,k(k) (respec-
tively, Gm,k(Af

k); GSΣ(Gm,k/k);
∏

p∈Pf
k
GSΣ(Gm,kp/kp)) with k× (respec-

tively, (Af
k)

×; k×[Σ];
∏

p∈Pf
k
(k×

p [Σ])). Suppose that k is either the field of
rational numbers or an imaginary quadratic field. Let

(ap)p∈Pf
k
∈ (Af

k)
× ' Gm,k(Af

k)

a ∈ k×[Σ] ' GSΣ(Gm,k/k)

be such that their images in
∏

p∈Pf
k
(k×

p [Σ]) '
∏

p∈Pf
k
GSΣ(Gm,kp/kp) [cf.

the diagrams of Lemma 3.2, (iii)] coincide. Then the following hold:
(i) adk ∈ k×[Σ] ' GSΣ(Gm,k/k) is contained in the image of the nat-

ural homomorphism k× ' Gm,k(k) → k×[Σ] ' GSΣ(Gm,k/k).
(ii) If dk is a Σ-integer, then a ∈ k×[Σ] ' GSΣ(Gm,k/k) is con-

tained in the image of the natural homomorphism k× ' Gm,k(k) →
k×[Σ] ' GSΣ(Gm,k/k).
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(iii) If dk is a Σ-integer, and we fix an element ã ∈ k× ' Gm,k(k)
whose image in k×[Σ] ' GSΣ(Gm,k/k) coincides with a [cf. (ii)],
then, for each p ∈ Pf

k whose residue characteristic is ∈ Σ, the differ-
ence ap · ã−1 ∈ k×

p is a root of unity whose order is a (Primes\Σ)-
integer.

Proof. First, we verify assertion (i). Since the image of a ∈ k×[Σ] '
GSΣ(Gm,k/k) in

∏
p∈Pf

k
(k×

p [Σ]) '
∏

p∈Pf
k
GSΣ(Gm,kp/kp) is contained

in the image of the natural homomorphism (Af
k)

× ' Gm,k(Af
k) →∏

p∈Pf
k
(k×

p [Σ]) '
∏

p∈Pf
k
GSΣ(Gm,kp/kp), one verifies easily that the

image of a ∈ k×[Σ] by the homomorphism divk[Σ] : k×[Σ] → Div(ok)[Σ]
is contain in the Z-submodule Div(ok) ⊆ Div(ok)[Σ]. Thus, it follows
immediately from the definition of dk that there exists b̃ ∈ k× such
that the images b̃ and adk in Div(ok)[Σ] coincide. On the other hand,
since k is either the field of rational numbers or an imaginary quadratic
field, it holds that o×k is finite, which thus implies that o×k → o×k [Σ] is
surjective. Thus, it follows immediately from Lemma 3.3, (i), that, by
replacing b̃ by a suitable element of k×, we conclude that adk coin-
cides with the image of b̃ ∈ k× in k×[Σ]. This completes the proof of
assertion (i).

Assertion (ii) follows immediately from Lemma 3.3, (ii), together
with assertion (i); our assumption that dk is a Σ-integer. Finally, we
verify assertion (iii). One verifies easily that, for each p ∈ Pf

k whose
residue characteristic is ∈ Σ, the kernel of the natural homomor-
phism k×

p → k×
p [Σ] consists of roots of unity in kp whose orders are

(Primes \Σ)-integers. Thus, assertion (iii) follows immediately from
assertion (ii). This completes the proof of assertion (iii). ¤

Lemma 3.5. In the notation of Lemma 3.4, if Σ = Primes, then the com-
mutative diagram of sets

Gm,k(k) −−−→ GSΣ(Gm,k/k)y y
Gm,k(Af

k) −−−→
∏

p∈Pf
k
GSΣ(Gm,kp/kp)

is cartesian.

Proof. This follows immediately from Lemma 3.4, (ii), (iii). ¤

4. CONDITIONAL RESULTS ON THE BIRATIONAL SECTION
CONJECTURE

In the present §4, we prove conditional results on the birational
section conjecture for projective smooth curves over number fields.
We maintain the notation of the preceding §3.
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First, let us recall a conditional result on the section conjecture over
number fields. It seems to the author that [at least, a similar result
to] the following result is likely to be well-known to experts. Since,
however, the result could not be found in the literature, the author
decided to give a proof.

Theorem 4.1. Let C be a full formation that contains all finite solvable
groups, k a number field [where we refer to the discussion entitled “Num-
bers” in §0 concerning the term “number field”], X a projective smooth
curve (respectively, hyperbolic curve) over k [where we refer to the dis-
cussion entitled “Curves” in §0 concerning the term “smooth curve” (respe-
ctively, “hyperbolic curve”)], and s a pro-C birational Galois section
(respectively, locally geometric pro-C Galois section) of X/k [cf. Def-
inition 1.2 (respectively, Definitions 1.2; 2.1)]. Write Pf

k for the set of
nonarchimedean primes of k and Xcpt for the [uniquely determined] smooth
compactification of X over k. For each p ∈ Pf

k , write kp for the p-adic com-
pletion of k. Then the following conditions are equivalent:

(1) s is geometric [cf. Definition 1.3].
(2) There exist a subset T ⊆ Pf

k of Pf
k of density 0 and a closed sub-

scheme Z ⊆ Xcpt of Xcpt which is finite over k such that, for each
p ∈ Pf

k\T , the [image of the uniquely determined — cf. Lemma 2.7]
kp-valued point of Xcpt associated to s [cf. Definition 2.6; Proposi-
tion 2.9 (respectively, Definition 2.3)] is contained in Z ⊆ Xcpt.

Proof. First, we verify Theorem 4.1 in the case where s is a locally geo-
metric pro-C Galois section. The implication (1) ⇒ (2) is immediate [cf.
also Remark 2.3.1]. Next, we verify the implication (2) ⇒ (1). Now
observe that it follows from the equivalence (1) ⇔ (2) of Lemma 1.6
that, to verify the implication (2) ⇒ (1), by replacing k by a suit-
able finite extension of k, we may assume without loss of generality
that k is totally imaginary. Next, observe that, for each open sub-
group H ⊆ ΠC

X/k of ΠC
X/k containing the image of s, if we write Y for

the connected finite étale covering of X corresponding to H ⊆ ΠC
X/k

[thus, ΠC
Y/k = H ⊆ ΠC

X/k], then since the morphism Y → X is finite,
one verifies easily that the pro-C Galois section of Y/k naturally de-
termined by s [which is necessarily locally geometric by the various
definitions involved] satisfies condition (2). Thus, to verify the im-
plication (2) ⇒ (1), by replacing X by such a suitable Y , we may
assume without loss of generality that X is of genus ≥ 2; moreover,
it follows from the equivalence (1) ⇔ (3) of Lemma 1.6 that, to ver-
ify the implication (2) ⇒ (1), by applying the conclusion to various
open subgroups of ΠC

X/k containg the image of s, it suffices to verify
that Xcpt(k) 6= ∅. In particular, since X is of genus ≥ 2, and [one
verifies easily that] the pro-C Galois section of Xcpt/k naturally de-
termined by s is locally geometric and satisfies condition (2), to verify
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that Xcpt(k) 6= ∅, by replacing X by Xcpt, we may assume without
loss of generality that Xcpt = X .

Now since s is locally geometric, and k is totally imaginary, it follows
immediately from the definition of “X(Ak)

f-ab
• ” [cf. [14], Definition

5.4, (3)] that the [uniquely determined] kp-valued points of X asso-
ciated to s — where p ranges over nonarchimedean primes of k —
form a part of an element of X(Ak)

f-ab
• . Thus, it follows immediately

from [14], Theorem 8.2, together with condition (2), that Z(k) 6= ∅,
hence also X(k) 6= ∅. This completes the proof of the implication
(2) ⇒ (1), hence also of Theorem 4.1 in the case where s is a locally
geometric pro-C Galois section.

Next, we verify Theorem 4.1 in the case where s is a pro-C birational
Galois section. The implication (1) ⇒ (2) is immediate [cf. also Re-
mark 2.6.1]. Next, we verify the implication (2) ⇒ (1). First, observe
that it follows immediately from a similar argument to the argument
applied in the proof of Theorem 4.1 in the case where s is a locally
geometric pro-C Galois section that, to verify Theorem 4.1 in the case
where s is a pro-C birational Galois section, by replacing ΠC

k(X)/k by an
open subgroup of ΠC

k(X)/k containing the image of s, we may assume
without loss of generality that X is of genus ≥ 2; moreover, it fol-
lows from the equivalence (1) ⇔ (3) of Lemma 1.5 that, to verify the
implication (2) ⇒ (1), by applying the conclusion to various open
subgroups of ΠC

k(X)/k containg the image of s, it suffices to verify
that X(k) 6= ∅. On the other hand, since X is of genus ≥ 2, in light
of Proposition 2.11, by applying Theorem 4.1 in the case where s is
a locally geometric pro-C Galois section to the pro-C Galois section of
X/k naturally determined by s, we conclude that X(k) 6= ∅. This
completes the proof of the implication (2) ⇒ (1), hence also of Theo-
rem 4.1 in the case where s is a pro-C birational Galois section. ¤
Corollary 4.2. Let C be a full formation that contains all finite solvable
groups, k a number field [where we refer to the discussion entitled “Num-
bers” in §0 concerning the term “number field”], and X a projective
smooth curve (respectively, hyperbolic curve) over k [where we refer
to the discussion entitled “Curves” in §0 concerning the term “smooth
curve” (respectively, “hyperbolic curve”)]. Suppose that there exist an
abelian variety A over k and a nonconstant morphism X → A over
k such that both the Mordell-Weil group and the Shafarevich-Tate group of
A/k are finite. Then any pro-C birational Galois section (respectively,
any locally geometric pro-C Galois section) of X/k [cf. Definition 1.2
(respectively, Definitions 1.2; 2.1)] is geometric [cf. Definition 1.3].

Proof. Write

Ŝel
f
(A/k)

def
= lim←−

n

Ker
(
H1(k,A(k)[n]) →

∏
p∈Pf

k

H1(kp, A(k))
)
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— where the projective limit is over all positive integers n, and A(k)[n]

is the subgroup of A(k) consisting of elements of A(k) that are an-
nihilated by n. Then the well-known natural Gk-equivariant iso-
morphism A(k)[n]

∼→ ∆Primes
A/k /n∆Primes

A/k induces a natural injection

Ŝel
f
(A/k) ↪→ H1(k, ∆Primes

A/k ); moreover, it follows immediately from
the various definitions involved that the pro-Primes Kummer ho-
momorphism A(k) → H1(k, ∆Primes

A/k ) associated to A [cf., e.g., [6],

Remark 1.1.4, (iii)] factors through Ŝel
f
(A/k) ⊆ H1(k, ∆Primes

A/k ), which

thus implies that we have a natural injection A(k) ↪→ Ŝel
f
(A/k). [Here,

this injectivity is a formal consequence of the well-known fact that
there is no nontrivial divisible element of A(k).] On the other hand,
since the Shafarevich-Tate group of A/k is finite, in light of the fact
that the absolute Galois group of the completion of k at an archimedean
prime is either ' Z/2Z or ' {1}, one verifies easily that, for each pos-
itive integer n, the cokernel of the natural homomorphism

A(k)/nA(k) −→ Ker
(
H1(k,A(k)[n]) →

∏
p∈Pf

k

H1(kp, A(k))
)

is annihilated by a positive integer which does not depend on n. Thus,
since the Mordell-Weil group of A/k is finite, it follows immediately

that the resulting injection A(k) ↪→ Ŝel
f
(A/k) is an isomorphism.

Let s be a pro-C birational Galois section (respectively, locally geo-
metric pro-C Galois section) of X/k. Write sA for the pro-Primes Ga-
lois section of A/k obtained as the composite

Gk
s−→ ΠC

k(X)/k −→ ΠC
X/k −→ ΠC

A/k = ΠPrimes
A/k

(respectively, Gk
s−→ ΠC

X/k −→ ΠC
A/k = ΠPrimes

A/k )

— where the third (respectively, second) arrow is the homomorphism
over Gk induced by the nonconstant morphism X → A over k. Then
sA naturally determines an element of H1(k, ∆Primes

A/k ) [cf., e.g., [6],
Remark 1.1.4, (ii)]; moreover, it follows immediately from Propo-
sition 2.9 (respectively, our assumption that s is locally geometric),
together with the various definitions involved, that this element is

contained in A(k)
∼→ Ŝel

f
(A/k) ⊆ H1(k, ∆Primes

A/k ). In particular, since
X → A is nonconstant, and the Mordell-Weil group A(k) is finite, it
follows immediately from the injectivity of the pro-Primes Kummer
homomorphism associated to A ⊗k kp [that is a formal consequence
of the well-known fact that there is no nontrivial divisible element of
A(kp)], together with [6], Remark 1.1.4, (iii), that s satisfies condition
(2) of Theorem 4.1. Thus, it follows from the implication (2) ⇒ (1)
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of Theorem 4.1 that s is geometric. This completes the proof of Corol-
lary 4.2. ¤
Remark 4.2.1. As in the case of [4], Theorem 17, one may apply
Corollary 4.2 to obtain some examples of projective smooth curves
over number fields for which any prosolvable birational Galois section
[i.e., any pro-C birational Galois section in the case where C consists
of all finite solvable groups] is geometric [cf., e.g., the discussions in
[4], Remark 18, (1); [14], Example 8.7; [14], Corollary 8.8].

Remark 4.2.2. The observation given in the proof of Corollary 4.2
was related to the author by A. Tamagawa and S. Yasuda.

Definition 4.3. Suppose that X is a hyperbolic curve over [the number
field] k. Let s be a pro-C Galois section of X/k [cf. Definition 1.2].

(i) We shall say that s is cuspidal if the image of s is contained in a
decomposition subgroup of ΠC

X/k associated to a cusp of X/k.
(ii) We shall say that s is unramified almost everywhere if the com-

posite
Gk

s−→ ΠC
X/k −→ Aut(∆C

X/k)

— where the second arrow is the action of ΠC
X/k on ∆C

X/k ob-
tained by conjugation — is unramified for all but finitely many
p ∈ Pf

k .

Remark 4.3.1. In the notation of Definition 4.3, it is immediate that
if s is cuspidal [cf. Definition 4.3, (i)], then s is geometric [cf. Defini-
tion 1.3].

Proposition 4.4. Suppose that Σ is finite. Then any geometric [cf. Def-
inition 1.3] pro-Σ Galois section [cf. Definition 1.2] of a hyperbolic curve
over a number field is either cuspidal [cf. Definition 4.3, (i)] or unrami-
fied almost everywhere [cf. Definition 4.3, (ii)].

Proof. This follows immediately from Proposition A.7. ¤
Next, we prove the main result of the present paper.

Theorem 4.5. Let C be a full formation, k either the field of rational
numbers or an imaginary quadratic field, X a projective smooth
curve over k [where we refer to the discussion entitled “Curves” in §0
concerning the term “smooth curve”], and s a pro-C birational Galois
section of X/k [cf. Definition 1.2]. Write ok for the ring of integers of k

and Pf
k for the set of nonarchimedean primes of k. For each p ∈ Pf

k , write
kp for the p-adic completion of k and op for the ring of integers of kp. Write,
moreover, Af

k for the finite part of the adele ring of k, i.e.,

Af
k

def
=

{
(ap)p∈Pf

k
∈

∏
p∈Pf

k

kp

∣∣∣ ap ∈ op for all but finitely many p
}

.

Suppose that the following three conditions are satisfied:
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(a) The pro-C birational Galois section s is locally geometric [cf. Def-
inition 2.5].

(b) Σ(C) [where we refer to the discussion entitled “Profinite groups” in
§0 concerning the set Σ(C)] is cofinite, i.e., Primes \ Σ(C) [where
we refer to the discussion entitled “Numbers” in §0 concerning the
set Primes] is finite.

(c) Pic(ok)
def
= Pic(Spec ok) is annihilated by a Σ(C)-integer [where

we refer to the discussion entitled “Numbers” in §0 concerning the
term “Σ(C)-integer”].

[Note that it follows from Proposition 2.9 that if Σ(C) = Primes, or, equiv-
alently [cf. the discussion entitled “Profinite groups” in §0], C contains all
finite solvable groups, then the above three conditions are satisfied.] Then
the following conditions are equivalent:

(1) The pro-C birational Galois section s is geometric [cf. Defini-
tion 1.3].

(2) The following two conditions are satisfied:
(2-i) There exist a finite morphism φ : X → P1

k over k and, for each
p ∈ Pf

k , a kp-valued point xp of X associated to s [cf. Defini-
tion 2.6; condition (a)] [note that if the residue characteristic
of p is ∈ Σ(C), then the kp-valued point xp of X associated
to s is uniquely determined — cf. Lemma 2.7] such that the
composite

Spec kp
xp−→ X

φ−→ P1
k

determines a kp-valued point of P1
k \ {0, 1,∞}.

(2-ii) For each open subscheme U ⊆ X of X which is a hyper-
bolic curve over k [where we refer to the discussion entitled
“Curves” in §0 concerning the term “hyperbolic curve”], there
exists a prime number lU ∈ Σ(C) contained in Σ(C) such that
the pro-lU Galois section of U/k [cf. Definition 1.2] naturally
determined by s is either cuspidal [cf. Definition 4.3, (i)] or
unramified almost everywhere [cf. Definition 4.3, (ii)].

(3) There exist a finite morphism φ : X → P1
k over k and an Af

k-valued
point xA of X associated to s [cf. Definition 2.6; condition (a)]

[note that if Σ(C) = Primes, then the Af
k-valued point xA of X

associated to s is uniquely determined — cf. Lemma 2.7] such that
the composite

Spec Af
k

xA−→ X
φ−→ P1

k

determines an Af
k-valued point of P1

k \ {0, 1,∞} ⊆ P1
k.

(4) There exist a finite subset T ⊆ Pf
k of Pf

k and a closed subscheme
Z ⊆ X of X which is finite over k such that, for each p ∈ Pf

k \ T
whose residue characteristic is ∈ Σ(C), the [image of the uniquely
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determined — cf. Lemma 2.7] kp-valued point xp of X associated to
s [cf. Definition 2.6; condition (a)] is contained in Z ⊆ X .

Proof. The implication (1) ⇒ (2) follows immediately from Proposi-
tion 4.4, together with Remark 2.6.1. Next, we verify the implication
(2) ⇒ (3). Suppose that condition (2) is satisfied. Then, by condition
(2-i), for each p ∈ Pf

k , the composite

Spec kp
xp−→ X

φ−→ P1
k

determines a kp-valued point of P1
k \ {0, 1,∞}. Thus, to verify the

implication (2) ⇒ (3), it suffices to verify that the above kp-valued
point of P1

k \{0, 1,∞} obtained as the composite φ◦xp determines an
op-valued point of P1

op
\ {0, 1,∞} for all but finitely many p ∈ Pf

k . Write
U ⊆ X for the open subscheme of X obtained as the inverse image
of P1

k \ {0, 1,∞} ⊆ P1
k by φ. Then, by condition (2-ii), there exists

a prime number lU ∈ Σ(C) contained in Σ(C) such that the pro-lU
Galois section sU of U/k obtained as the composite

Gk
s−→ ΠC

k(X)/k −→ Π
{lU}
U/k

is either cuspidal or unramified almost everywhere. Write sP for the pro-
lU Galois section of P1

k \ {0, 1,∞} obtained as the composite

Gk
s−→ ΠC

k(X)/k −→ Π
{lU}
U/k −→ Π

{lU}
(P1

k\{0,1,∞})/k

— where the third arrow is the homomorphism over Gk induced by
φ. Then since the morphism U → P1

k \{0, 1,∞} induced by φ is finite,
one verifies easily that the homomorphism Π

{lU}
U/k → Π

{lU}
(P1

k\{0,1,∞})/k

maps injectively any cuspidal decomposition subgroup of Π
{lU}
U/k as-

sociated to a cusp of U/k to a cuspidal decomposition subgroup of
Π

{lU}
(P1

k\{0,1,∞})/k
associated to a cusp of P1

k \ {0, 1,∞}. Thus, it follows
immediately that if sU is cuspidal, then sP is cuspidal. On the other
hand, by applying Lemma 1.4 [to “φ ◦ xp” for p ∈ Pf

k whose residue
characteristic is = lU ], it follows immediately from condition (2-i)
that sP is not cuspidal. Thus, we conclude that sU is not cuspidal,
hence also [by condition (2-ii)] unramified almost everywhere. In par-
ticular, it follows Proposition A.10, (ii), that sP is unramified almost
everywhere. Therefore, it follows immediately from Proposition A.7,
together with condition (2-i), that the kp-valued point of P1

k obtained
as the composite φ◦xp determines an op-valued point of P1

op
\{0, 1,∞}

for all but finitely many p ∈ Pf
k . This completes the proof of the impli-

cation (2) ⇒ (3).
Next, we verify the implication (3) ⇒ (4). Suppose that condition

(3) is satisfied. Write sG for the pro-Σ(C) Galois section of Gm,k
def
=
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P1
k \ {0,∞} over k obtained as the composite

Gk
s→ ΠC

k(X)/k → ΠC
k(P1

k)/k ³ ΠC
Gm,k/k = Π

Σ(C)
Gm,k/k

— where the second arrow is the homomorphism over Gk induced
by φ — and tG for the pro-Σ(C) Galois section of Gm,k over k obtained
as the composite

Gk
s→ ΠC

k(X)/k → ΠC
k(P1

k)/k

∼→ ΠC
k(P1

k)/k ³ ΠC
Gm,k/k = Π

Σ(C)
Gm,k/k

— where the second arrow is the homomorphism over Gk induced
by φ, and the third arrow is the automorphism over Gk induced
by the automorphism of P1

k over k given by “u 7→ 1 − u”. Then
it follows immediately from condition (3) that there exists an ele-
ment (ap)p∈Pf

k
∈ (Ãf

k)
× such that (ap)p∈Pf

k
, (1 − ap)p∈Pf

k
∈ (Af

k)
× '

Gm,k(Af
k), and, moreover, the respective images of the pro-Σ(C) Ga-

lois sections sG, tG ∈ GSΣ(C)(Gm,k/k) ' k×[Σ(C)] [cf. Lemma 3.2,
(i)] in the set

∏
p∈Pf

k
GSΣ(C)(Gm,kp/kp) '

∏
p∈Pf

k
(k×

p [Σ(C)]) [cf. the di-
agrams of Lemma 3.2, (iii)] coincide with the respective images of
the elements (ap)p∈Pf

k
, (1 − ap)p∈Pf

k
∈ (Af

k)
× ' Gm,k(Af

k) in the set∏
p∈Pf

k
(k×

p [Σ(C)]) '
∏

p∈Pf
k
GSΣ(C)(Gm,kp/kp). Thus, it follows from

Lemma 3.4, (ii), (iii); together with condition (c), that

(∗): there exist ãs, ãt ∈ k× such that, for p ∈ Pf
k , if we

write up
def
= ap · ã−1

s , vp
def
= (1 − ap) · ã−1

t ∈ k×
p , and the

residue characteristic of p is ∈ Σ(C), then up, vp are roots
of unity of kp whose orders are (Primes\Σ(C))-integers.

Now let us observe that, for p ∈ Pf
k , the pair (up, vp) satisfies the

equation
1 = ãs · up + ãt · vp .

Thus, it follows immediately from [2], Theorem 1.1, together with
condition (b), that the set {(up, vp)}p∈Pf

k
, hence also the set {up}p∈Pf

k
,

is finite. In particular, since ap = ãs · up [cf. (∗)], it follows immedi-
ately that the pro-C birational Galois section of P1

k/k obtained as the
composite

Gk
s−→ ΠC

k(X)/k −→ ΠC
k(P1

k)/k

— where the second arrow is the homomorphism over Gk induced
by φ — satisfies condition (4). Therefore, since φ is finite, one verifies
easily that the pro-C birational Galois section s satisfies condition (4).
This completes the proof of the implication (3) ⇒ (4).

Finally, we verify the implication (4) ⇒ (1). Suppose that condi-
tion (4) is satisfied. Let us fix an element p0 ∈ Pf

k \ T of Pf
k \ T such

that the residue characteristic of p0 is ∈ Σ(C) [note that, by condi-
tion (b), such a p0 always exists] and write r(p0) for the cardinality of
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the set of roots of unity of kp0 . Now observe that, for any open sub-
group H ⊆ ΠC

k(X)/k of ΠC
k(X)/k containing the image of s, if we write

Y for the normalization of X in the finite extension of k(X) corre-
sponding to H ⊆ ΠC

k(X)/k [thus, ΠC
k(Y )/k = H ⊆ ΠC

k(X)/k], then since
the morphism Y → X is finite, the pro-C birational Galois section
of Y/k determined by s satisfies condition (4) relative to the finite
subset “T” ⊆ Pf

k appearing in condition (4). Thus, it follows from
the equivalence (1) ⇔ (3) of Lemma 1.5 that, to verify condition (1),
by applying the conclusion to various such H’s, it suffices to verify
that X admits a k(ζr(p0))-valued point — where we use the notation
ζr(p0) ∈ k to denote a primitive r(p0)-th root of unity.

For each p ∈ Pf
k , let us fix a kp-valued point xp of X associated to s

[cf. condition (a)]. Now since X is projective, there exists a closed im-
mersion X ↪→ PN

k over k for some positive integer N . Then it follows
immediately from condition (4) that there exists a hyperplane H ⊆
PN

k defined over k such that, for any p ∈ Pf
k , [the image of] the fixed

kp-valued point xp of X is contained in X \ (X ∩H) ⊆ PN
k \H ' AN

k .
Moreover, again by condition (4) — by considering a suitable auto-
morphism of A1

k over k — we may assume without loss of generality
that, for each i ∈ {1, · · · , N} and p ∈ Pf

k , the kp-valued point of A1
k

obtained as the composite

Spec kp
xp→ X \ (X ∩ H) ↪→ PN

k \ H ' AN
k

pri→ A1
k

factors through Gm,k
def
= A1

k \ {0} ⊆ A1
k. Therefore, we conclude that

there exist an open subscheme U ⊆ X of X and a closed immersion
U ↪→ Gm,k ×k · · · ×k Gm,k over k such that the Ãf

k-valued point xA
def
=

(xp)p∈Pf
k

of X determined by the fixed kp-valued points xp lies on U .
On the other hand, again by condition (4), one verifies easily that,
for each i ∈ {1, · · · , N}, the Ãf

k-valued point of Gm,k obtained as the
composite

Spec Ãf
k

xA→ U ↪→ Gm,k ×k · · · ×k Gm,k
pri→ Gm,k

determines an Af
k-valued point of Gm,k. Thus, it follows immediately

from Lemma 3.4, (ii), (iii); condition (c), that, for each i ∈ {1, · · · , N},
the kp0-valued point of Gm,k obtained as the composite

Spec kp0

xp0→ U ↪→ Gm,k ×k · · · ×k Gm,k
pri→ Gm,k

determines a k(ζr(p0))-valued point of Gm,k. In particular, since U ↪→
Gm,k ×k · · · ×k Gm,k is a closed immersion, one verifies easily that the
kp0-valued point xp0 of U , hence also X , determines a k(ζr(p0))-valued
point. This completes the proof of the implication (4) ⇒ (1), hence
also of Theorem 4.5. ¤
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Remark 4.5.1.

(i) Theorem 4.5 is a result without any assumption on the finiteness
of a Shafarevich-Tate group.

(ii) The equivalence (1) ⇔ (3) of Theorem 4.5 may be regarded
as a tripod analogue of [4], Theorem 17. The condition that k
is either the field of rational numbers or an imaginary qua-
dratic field [i.e., the assumption that o×k is finite] in the state-
ment of Theorem 4.5 may be regarded as an analogue of the
finiteness condition on the Mordell-Weil group in the state-
ment of [4], Theorem 17; the condition that Pic(ok) is annihi-
lated by a Σ(C)-integer in the statement of Theorem 4.5 may
be regarded as an analogue of the finiteness condition on the
Shafarevich-Tate group in the statement of [4], Theorem 17.
On the other hand, since any abelian variety is proper, in the
case of [4], Theorem 17, the condition corresponding to our
condition that the birational Galois section determines [not
only an Ãf

k-valued point but also] an Af
k-valued point of the

tripod P1
k \ {0, 1,∞} in Theorem 4.5 is automatically satisfied.

(iii) If C contains all finite solvable groups, then Theorem 4.1 im-
plies the equivalence (1) ⇔ (4) of Theorem 4.5.

(iv) One verifies easily that the equivalence (1) ⇔ (4) of Theo-
rem 4.5 gives us an alternative proof of Corollary 4.2 in the case
where s is a pro-C birational Galois section, and k is either the
field of rational numbers or an imaginary quadratic field.

Corollary 4.6. Let k be either the field of rational numbers or an imag-
inary quadratic field and k an algebraic closure of k. Write Gk

def
=

Gal(k/k) and Pf
k for the set of nonarchimedean primes of k. For each

p ∈ Pf
k , write kp for the p-adic completion of k. Then the following as-

sertions are equivalent:

(1) Any pro-Primes birational Galois section [cf. Definition 1.2] of any
projective smooth curve over k [where we refer to the discussion
entitled “Curves” in §0 concerning the term “smooth curve”] is
geometric [cf. Definition 1.3].

(2) Any pro-Primes birational Galois section of P1
k/k is geometric.

(3) Any pro-Primes birational Galois section s of P1
k/k satisfies the

following two conditions:
(3-i) There exist three distinct elements a, b, c ∈ P1

k(k) of P1
k(k)

such that, for any nonarchimedean prime p of k, the [uniquely
determined — cf. Lemma 2.7] kp-valued point of P1

k associ-
ated to s [cf. Definition 2.6; Proposition 2.9] is 6∈ {a, b, c} ⊆
(P1

k(k) ⊆) P1
k(kp).

(3-ii) There exists a prime number l such that the pro-l Galois section
of P1

k \ {0, 1,∞} [cf. Definition 1.2] naturally determined by
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s is either cuspidal [cf. Definition 4.3, (i)] or unramified
almost everywhere [cf. Definition 4.3, (ii)].

(4) Any pro-Primes birational Galois section s of P1
k/k satisfies the

following two conditions:
(4-i) There exist three distinct elements a, b, c ∈ P1

k(k) of P1
k(k)

such that, for any nonarchimedean prime p of k, the [uniquely
determined — cf. Lemma 2.7] kp-valued point of P1

k associ-
ated to s [cf. Definition 2.6; Proposition 2.9] is 6∈ {a, b, c} ⊆
(P1

k(k) ⊆) P1
k(kp).

(4-ii) Write sP for the pro-Primes Galois section of P1
k \ {0, 1,∞}

naturally determined by s. Then it holds either that sP is cus-
pidal, or that there exists a prime number l such that the l-adic
Galois representation

Gk
sP
−→ ΠPrimes

(P1
k\{0,1,∞})/k

−→ GL2(Zl)

— where we refer to Definition 1.1, (ii), concerning the profi-
nite group ΠPrimes

(P1
k\{0,1,∞})/k

; the second arrow ΠPrimes

(P1
k\{0,1,∞})/k

→
GL2(Zl) is the l-adic representation determined by the Le-
gendre family of elliptic curves over P1

k \ {0, 1,∞}, i.e.,
the elliptic curve over P1

k \ {0, 1,∞} = Spec k[u±1, (1−u)−1]
determined by the equation “y2 = x(x − 1)(x − u)” — is
unramified at all but finitely many p ∈ Pf

k .

Proof. The implications (1) ⇒ (2) ⇒ (4) are immediate [cf. also Re-
mark 2.6.1]. On the other hand, the implication (2) ⇒ (1) follows
immediately from the fact that any projective smooth curve over k
may be obtained as the normalization of P1

k in the finite extension of
k(P1

k) corresponding to an open subgroup of ΠPrimes

k(P1
k)/k

. Moreover, let
us observe that it follows immediately from Proposition 4.4, together
with Remark 2.6.1, that the implications (2) ⇒ (3) holds.

Finally, we verify the implication (3) ⇒ (2) (respectively, (4) ⇒
(2)). Suppose that assertion (3) (respectively, assertion (4)) holds. Let
s be a pro-Primes birational Galois section of P1

k/k. For each nonar-
chimedean prime p of k, write xp for the [uniquely determined] kp-
valued point of P1

k associated to s. Then it follows from condition
(3-i) (respectively, condition (4-i)) that, by considering a suitable au-
tomorphism of P1

k over k, we may assume without loss of generality
that, for any p ∈ Pf

k , xp ∈ P1
k(kp) is 6∈ {0, 1,∞} ⊆ P1

k(kp). Thus, for
any prime number l, by applying Lemma 1.4 [to “xp” for p ∈ Pf

k

whose residue characteristic is = l], it follows immediately that the
pro-l Galois section sP,{l} of P1

k \ {0, 1,∞} obtained as the composite

Gk
s−→ ΠPrimes

k(P1
k)/k

−→ Π
{l}
(P1

k\{0,1,∞})/k
,
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hence also the pro-Primes Galois section sP of P1
k \{0, 1,∞} obtained

as the composite

Gk
s−→ ΠPrimes

k(P1
k)/k

−→ ΠPrimes

(P1
k\{0,1,∞})/k

,

is not cuspidal. Thus, by condition (3-ii) (respectively, condition (4-
ii)), we conclude that there exists a prime number l0 such that sP,{l0}

is unramified almost everywhere (respectively, the l0-adic Galois repre-
sentation obtained as the displayed composite of condition (4-ii) is
unramified at all but finitely many p ∈ Pf

k). Thus, since [we have as-
sumed that] for any p ∈ Pf

k , xp ∈ P1
k(kp) is 6∈ {0, 1,∞} ⊆ P1

k(kp),
it follows immediately from Proposition A.7 (respectively, [13], The-
orem 1) that the birational pro-Primes Galois section s of P1

k/k sat-
isfies condition (3) of Theorem 4.5, hence also [by the equivalence
(1) ⇔ (3) of Theorem 4.5] that s is geometric. This completes the
proof of the implication (3) ⇒ (2) (respectively, (4) ⇒ (2)), hence
also of Corollary 4.6. ¤

APPENDIX A. RAMIFICATION OF GALOIS SECTIONS

In the present §A, we discuss the ramification of Galois sections of
hyperbolic curves over p-adic local fields. In the present §A, let
Σ ⊆ Primes be a nonempty subset of Primes [where we refer to the
discussion entitled “Numbers” in §0 concerning the set Primes], k a
p-adic local field for some prime number p [where we refer to the dis-
cussion entitled “Numbers” in §0 concerning the term “p-adic local
field”], k an algebraic closure of k, and X a hyperbolic curve over k
[where we refer to the discussion entitled “Curves” in §0 concerning
the term “hyperbolic curve”]. For a finite extension k′ (⊆ k) of k,
write

Gk′
def
= Gal(k/k′) ,

Ik′ ⊆ Gk′

for the inertia subgroup of Gk′ , and

ok′ ⊆ k′

for the ring of integers of k′. Write, moreover,

Xcpt

for the [uniquely determined] smooth compactification of X over k;

∆Σ
X/k

for the pro-Σ geometric fundamental group of X , i.e., the maximal pro-Σ
quotient of π1(X ⊗k k);

ΠΣ
X/k

for the geometrically pro-Σ fundamental group of X , i.e., the quotient
of π1(X) by the kernel of the natural surjection π1(X ⊗k k) ³ ∆Σ

X/k.
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Thus, we have an exact sequence of profinite groups [cf. [3], Exposé
IX, Théorème 6.1]

1 −→ ∆Σ
X/k −→ ΠΣ

X/k −→ Gk −→ 1 .

Let s be a pro-Σ Galois section of X/k [cf. [6], Definition 1.1, (i)], i.e.,
a section of the above exact sequence of profinite groups.

Definition A.1. We shall say that s is unramified (respectively, poten-
tially unramified) if the image of the composite

Ik −→ Gk
s−→ ΠΣ

X/k −→ Aut(∆Σ
X/k)

— where the third arrow is the action of ΠΣ
X/k on ∆Σ

X/k obtained by
conjugation — is trivial (respectively, finite).

Proposition A.2. The following hold:
(i) If p ∈ Σ, then any pro-Σ Galois section of X/k [cf. [6], Definition

1.1, (i)] is not potentially unramified, hence also not unrami-
fied [cf. Definition A.1].

(ii) If X does not admit good reduction over ok [where we refer to
the discussion entitled “Curves” in §0 concerning the term “good
reduction”], then any pro-Σ Galois section of X/k is not unrami-
fied.

Proof. Let s be a pro-Σ Galois section of X/k. Now one verifies eas-
ily that there exists a characteristic open subgroup H ⊆ ∆Σ

X/k of ∆Σ
X/k

such that the connected finite étale covering of X corresponding to
the open subgroup H · Im(s) of ΠΣ

X/k topologically generated by H

and Im(s) is of genus ≥ 1. On the other hand, since H ⊆ ∆Σ
X/k is char-

acteristic, and ∆Σ
X/k is slim [where we refer to the discussion entitled

“Profinite groups” in §0 concerning the term “slim”], it follows from
[7], Lemma 5, that we have a natural injection Aut(∆Σ

X/k) ↪→ Aut(H).
Thus, to verify Proposition A.2, by replacing ΠΣ

X/k by the open sub-
group H · Im(s), we may assume without loss of generality that X is
of genus ≥ 1.

Now we verify assertion (i). As is well-known, if p ∈ Σ, then there
exist Gk-equivariant isomorphisms

H2(∆Σ
Xcpt/k, Zp) ' H2(Xcpt ⊗k k, Zp) ' Zp(1)

— where “(1)” denotes a Tate twist. In particular, [the restriction to Ik

of] the p-adic cyclotomic representation χp : Ik → Aut(Zp(1)) factors
through the displayed composite of Definition A.1. On the other
hand, one may verify easily that the image of χp is infinite. Thus, s is
not potentially unramified. This completes the proof of assertion (i).

Next, we verify assertion (ii). Suppose that X does not admit good
reduction over ok. Now it follows from assertion (i) that, to verify
assertion (ii), by replacing Σ by Σ\(Σ∩{p}), we may assume without
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loss of generality that p 6∈ Σ. Then it follows immediately from [15],
Theorem 0.8, that the image of the composite

Ik −→ Aut(∆Σ
X/k) −→ Out(∆Σ

X/k)

— where the first arrow is the displayed composite of Definition A.1
— is nontrivial, hence that s is not unramified. This completes the
proof of assertion (ii). ¤
Definition A.3. If X admits good reduction X over ok, then we shall
write

(π1(X) ³ ΠΣ
X/k ³) ΠΣ-ét

X/k

for the quotient of π1(X) by the normal closed subgroup topolog-
ically normally generated by the kernels of the natural surjections
π1(X) ³ ΠΣ

X/k, π1(X) ³ π1(X ). Thus, the natural surjection ΠΣ
X/k ³

Gk determines a surjection ΠΣ-ét
X/k ³ Gk/Ik. We shall write

∆Σ-ét
X/k

for the kernel of the surjection ΠΣ-ét
X/k ³ Gk/Ik. Thus, we have a com-

mutative diagram of profinite groups

1 −−−→ ∆Σ
X/k −−−→ ΠΣ

X/k −−−→ Gk −−−→ 1y y y
1 −−−→ ∆Σ-ét

X/k −−−→ ΠΣ-ét
X/k −−−→ Gk/Ik −−−→ 1

— where the horizontal sequences are exact.

Remark A.3.1. In the notation of Definition A.3, as is well-known, if
p 6∈ Σ, then the left-hand vertical arrow ∆Σ

X/k → ∆Σ-ét
X/k of the com-

mutative diagram of Definition A.3 is an isomorphism; in particular,
the right-hand upper horizontal arrow ΠΣ

X/k → Gk induces an iso-
morphism Ker(ΠΣ

X/k ³ ΠΣ-ét
X/k)

∼→ Ik.

Proposition A.4. The following conditions are equivalent:
(1) s is unramified [cf. Definition A.1].
(2) p 6∈ Σ, X admits good reduction over ok, and the image of the

composite
Ik ↪→ Gk

s→ ΠΣ
X/k ³ ΠΣ-ét

X/k

[cf. Definition A.3] is trivial.
(3) p 6∈ Σ, X admits good reduction over ok, and the composite

Ik ↪→ Gk
s→ ΠΣ

X/k

determines an isomorphism

Ik
∼−→ Ker(ΠΣ

X/k ³ ΠΣ-ét
X/k) .
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(4) p 6∈ Σ, and, for any open subgroup H ⊆ ΠΣ
X/k of ΠΣ

X/k containing
the image of s, the connected finite étale covering of X correspond-
ing to H ⊆ ΠΣ

X/k admits good reduction over ok.

Proof. First, we verify the equivalence (1) ⇔ (2). It follows immedi-
ately from Proposition A.2 that both (1) and (2) imply that p 6∈ Σ, and
that X admits good reduction over ok. Thus, suppose that these condi-
tions are satisfied. Write J for the image of the displayed composite
of condition (2). Then it follows immediately from the existence of
the commutative diagram of Definition A.3 that J ⊆ ∆Σ-ét

X/k ⊆ ΠΣ-ét
X/k.

Thus, it follows immediately from Remark A.3.1 that the displayed
composite Ik → Aut(∆Σ

X/k) of Definition A.1 factors as

Ik ³ J ↪→ ∆Σ-ét
X/k → Aut(∆Σ-ét

X/k)
∼← Aut(∆Σ

X/k)

— where the third arrow is the action of ∆Σ-ét
X/k on ∆Σ-ét

X/k obtained by
conjugation. Now since, as is well-known, ∆Σ

X/k

∼→ ∆Σ-ét
X/k is center-

free, the third arrow of this composite is injective. Therefore, it follows
immediately that the condition that s is unramified is equivalent to the
condition that J = {1}. This completes the proof of the equivalence
(1) ⇔ (2).

The equivalence (2) ⇔ (3) follows immediately from Remark A.3.1.
Next, we verify the implication (3) ⇒ (4). Suppose that condition
(3) is satisfied. Then it is immediate that if an open subgroup of ΠΣ

X/k

contains the image of s, then it arises from an open subgroup of ΠΣ-ét
X/k;

thus, it follows immediately from the various definitions involved
that the corresponding connected finite étale covering of X admits
good reduction over ok. This completes the proof of the implication
(3) ⇒ (4).

Finally, we verify the implication (4) ⇒ (3). Suppose that condi-
tion (4) is satisfied. Let H ⊆ ΠΣ

X/k be an open subgroup of ΠΣ
X/k con-

taining the image of s. Write Y → X for the connected finite étale
covering of X corresponding to H ⊆ ΠΣ

X/k; thus, ΠΣ
Y/k = H ⊆ ΠΣ

X/k.
Then it follows from condition (4) that Y admits good reduction over
ok. Thus, since p 6∈ Σ, it follows from [15], Lemma 5.5, that the con-
nected finite étale covering Y → X extends to a connected finite étale
covering of the [uniquely determined] smooth model of X over ok.
In particular, it follows immediately from the various definitions in-
volved that H ⊆ ΠΣ

X/k arises from an open subgroup of ΠΣ-ét
X/k, i.e.,

Ker(ΠΣ
X/k ³ ΠΣ-ét

X/k) ⊆ H . Therefore, by considering the intersection
of such H’s, we obtain that Ker(ΠΣ

X/k ³ ΠΣ-ét
X/k) ⊆ Im(s). Thus, by Re-

mark A.3.1, we conclude that condition (3) holds. This completes the
proof of the implication (4) ⇒ (3), hence also of Proposition A.4. ¤
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Lemma A.5. Suppose that p 6∈ Σ, and that X admits good reduction
over ok. Let Π ⊆ ΠΣ-ét

X/k be an open subgroup of ΠΣ-ét
X/k. Write so for the com-

posite Gk
s→ ΠX/k ³ ΠΣ-ét

X/k, k′ (⊆ k) for the [necessarily unramified] finite
extension of k corresponding to the image of the composite Π ↪→ ΠΣ-ét

X/k ³
Gk/Ik, Y → X for the connected finite étale covering of X corresponding
to the open subgroup Π ⊆ ΠΣ-ét

X/k, and Y cpt for the [uniquely determined]

smooth compactification of Y over k′. [Here, it follows immediately from
the various definitions involved that Y is a hyperbolic curve over k′; Y ,
hence also Y cpt, admits good reduction over ok′ ; ΠΣ-ét

Y/k′ = Π ⊆ ΠΣ-ét
X/k.]

Suppose, moreover, that Y is of genus ≥ 2. Then the image of the compos-
ite

so(Ik) ∩ ∆Σ-ét
Y/k′ ↪→ ∆Σ-ét

Y/k′ ³ ∆Σ-ét
Y cpt/k′ ³ (∆Σ-ét

Y cpt/k′)ab

— where the second arrow is the surjection induced by the open immersion
Y ↪→ Y cpt, and we refer to the discussion entitled “Profinite groups” in §0
concerning (∆Σ-ét

Y cpt/k′)ab — is trivial.

Proof. Write Ycpt for the smooth model of Y cpt over ok′ . Then, to ver-
ify Lemma A.5, by replacing k′ by a finite unramified extension of k′,
we may assume without loss of generality that Ycpt(ok′) 6= ∅. More-
over, since, as is well-known [cf. also Remark A.3.1], (∆Σ-ét

Y cpt/k′)ab is
a free ẐΣ-module, in light of the existence of the commutative dia-
gram of Definition A.3, to verify Lemma A.5, by replacing k by a
finite extension of k, we may assume without loss of generality that
so(Ik′) ⊆ ∆Σ-ét

Y/k′ ; thus, to verify Lemma A.5, it suffices to verify that
the image of the composite

so(Ik′) ↪→ ∆Σ-ét
Y/k′ ³ ∆Σ-ét

Y cpt/k′ ³ (∆Σ-ét
Y cpt/k′)ab

is trivial. Write J for the Jacobian variety of Y cpt over k′ and J for
the smooth model of J over ok′ . Then, as is well-known, the closed
immersion Ycpt ↪→ J over ok′ determined by an ok′-rational point of
Ycpt induces an isomorphism

ΠΣ-ét
Y cpt/k′/[∆Σ-ét

Y cpt/k′ , ∆Σ-ét
Y cpt/k′ ]

∼−→ ΠΣ-ét
J/k′

— where we write ΠΣ-ét
J/k′ for the quotient of π1(J) by the normal

closed subgroup topologically normally generated by the kernels of
the natural surjections π1(J) ³ ΠΣ

J/k′ , π1(J) ³ π1(J ) — over Gk′/Ik′ .
In particular, it follows immediately from the various definitions in-
volved that, to verify Lemma A.5, it suffices to verify that the image
of the homomorphism Ik′ → ∆Σ-ét

J/k′ — where we write ∆Σ-ét
J/k′ for the

kernel of the natural surjection ΠΣ-ét
J/k′ ³ Gk′/Ik′ , which is, as is well-

known, naturally isomorphic to ∆Σ
J/k′ — determined by the compos-

ite
Ik′

so→ ΠΣ-ét
Y/k′ ³ ΠΣ-ét

J/k′
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is trivial. On the other hand, one verifies easily that this homomor-
phism Ik′ → ∆Σ-ét

J/k′ is compatible with the respective natural outer ac-
tions of Gk′/Ik′ ; moreover, since ∆Σ-ét

J/k′ is pro-Σ, this homomorphism
Ik′ → ∆Σ-ét

J/k′ factors through the maximal pro-Σ quotient IΣ
k′ (' ẐΣ(1)

— where “(1)” denotes a Tate twist) of Ik′ . Therefore, by compar-
ing the weights of the actions of the Frobenius element in Gk′/Ik′ on
IΣ
k′ (' ẐΣ(1)) [which is of weight 2] and ∆Σ-ét

J/k′ [which is of weight 1

— cf., e.g., [11], §21, Theorem 4], it follows immediately from the
well-known fact that ∆Σ-ét

J/k′ is a free ẐΣ-module that the image of the
homomorphism IΣ

k′ → ∆Σ-ét
J/k′ is trivial. This completes the proof of

Lemma A.5. ¤
Proposition A.6. Suppose that p 6∈ Σ, and that X admits good reduc-
tion over ok. Then the following conditions are equivalent:

(1) s is ramified, i.e., not unramified [cf. Definition A.1].
(2) The image of the composite

Ik ↪→ Gk
s→ ΠΣ

X/k ³ ΠΣ-ét
X/k

is a nontrivial closed subgroup of a cuspidal inertia sub-
group of ΠΣ-ét

X/k associated to a cusp of X/k.
(3) The image of the composite

Ik ↪→ Gk
s→ ΠΣ

X/k ³ ΦΣ
X/k

— where ΦΣ
X/k is the quotient of ΠΣ

X/k defined in [7], Definition
1, (iv), i.e., the quotient of ΠΣ

X/k by the kernel ZΠΣ
X/k

(∆Σ
X/k) of the

homomorphism ΠΣ
X/k → Aut(∆Σ

X/k) obtained by conjugation — is
a nontrivial closed subgroup of a cuspidal inertia subgroup
of ΦΣ

X/k associated to a cusp of X/k.
(4) There exists an element l ∈ Σ of Σ such that the pro-l Galois section

of X/k [cf. [6], Definition 1.1, (i)] naturally determined by s is
ramified.

Proof. First, we verify the equivalence (1) ⇔ (2). It follows from the
equivalence (1) ⇔ (2) of Lemma A.4 that s is ramified if and only
if the image of the composite of condition (2) is nontrivial. On the
other hand, it follows immediately from the existence of the com-
mutative diagram of Definition A.3, together with Remark A.3.1,
that the composite of condition (2) factors through the maximal pro-
Σ quotient of Ik, which is, as is well-known, procyclic. Thus, it fol-
lows immediately from Lemma A.5, together with [5], Lemma 1.6,
that the equivalence (1) ⇔ (2) holds. This completes the proof of
the equivalence (1) ⇔ (2). Next, let us observe that the implica-
tion (3) ⇒ (1) follows immediately from the various definitions
involved [cf. also the definition of the quotient ΦΣ

X/k]. Next, we
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verify the implication (2) ⇒ (3). Since, as is well-known, ∆Σ
X/k is

slim [where we refer to the discussion entitled “Profinite groups” in
§0 concerning the term “slim”], it follows from [7], Proposition 6,
(ii), together with Remark A.3.1, that we have a sequence of nat-
ural surjections ΠΣ

X/k ³ ΠΣ-ét
X/k ³ ΦΣ

X/k, which induces an injection
∆Σ

X/k

∼→ ∆Σ-ét
X/k ↪→ ΦΣ

X/k. Thus, one verifies easily that the implica-
tion (2) ⇒ (3) holds. This completes the proof of the implication
(2) ⇒ (3). Finally, we verify the equivalence (1) ⇔ (4). For each
nonempty subset Σ′ ⊆ Σ of Σ, write JΣ′ for the image of the compos-
ite

Ik ↪→ Gk
s→ ΠΣ

X/k ³ ΠΣ′

X/k ³ ΠΣ′-ét
X/k .

Then it follows immediately from the verified equivalence (1) ⇔ (2),
together with well-known structure of the maximal pro-Σ quotient
of the fundamental group of a smooth curve over an algebraically
closed field of characteristic 6∈ Σ, that, for each nonempty subset Σ′ ⊆
Σ of Σ, the image JΣ′ is procyclic, and, moreover, JΣ′ is the maximal
pro-Σ′ quotient of JΣ [relative to the natural surjection JΣ ³ JΣ′]. In
particular, we conclude that JΣ = {1} if and only if J{l} = {1} for any
l ∈ Σ, i.e., the equivalence (1) ⇔ (4) holds. This completes the proof
of the equivalence (1) ⇔ (4), hence also of Proposition A.6. ¤
Proposition A.7. Suppose that p 6∈ Σ, and that s is geometric [cf. [6],
Definition 1.1, (iii)]. Let x ∈ Xcpt(k) be a k-rational point of Xcpt such
that a decomposition subgroup of ΠΣ

X/k associated to x contains the image
of s. Consider the following three conditions:

(1) s is unramified [cf. Definition A.1].
(2) x ∈ X(k), and the hyperbolic curve X \ {x}, hence also the hyper-

bolic curve X , over k admits good reduction over ok.
(3) x 6∈ X(k).

Then we have implications

(2) =⇒ (1) =⇒ either (2) or (3) .

In particular, if x ∈ X(k), then we have an equivalence

(1) ⇐⇒ (2) .

Proof. To verify Proposition A.7, it is immediate that it suffices to ver-
ify that if x ∈ X(k), then condition (1) is equivalent to condition (2).
Thus, suppose that x ∈ X(k). Now let us observe that it follows
immediately from Proposition A.2, (ii), that both (1) and (2) imply
that X admits good reduction over ok. Thus, we may assume without
loss of generality that X admits good reduction over ok. Moreover,
observe that it follows immediately from the equivalence (1) ⇔ (4)
of Proposition A.6 that, to verify the equivalence (1) ⇔ (2), by con-
sidering the pro-l Galois section of X/k naturally determined by s —
where l ranges over elements of Σ — we may assume without loss of
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generality that Σ is of cardinality 1. On the other hand, since Σ is of
cardinality 1, it follows immediately from [7], Proposition 19, (ii), that
the kernel of the composite Gk

s→ ΠΣ
X/k → Aut(∆Σ

X/k) coincides with
the kernel of the pro-Σ outer Galois representation associated to the
hyperbolic curve X \{x} over k. Thus, the equivalence (1) ⇔ (2) fol-
lows immediately from [15], Theorem 0.8. This completes the proof
of Proposition A.7. ¤
Proposition A.8. Suppose that p 6∈ Σ, that X admits good reduction
over ok, and that X is proper over k. Then any pro-Σ Galois section of
X/k [cf. [6], Definition 1.1, (i)] is unramified [cf. Definition A.1].

Proof. This follows immediately from the equivalence (1) ⇔ (2) of
Proposition A.6. ¤
Proposition A.9. Suppose that p 6∈ Σ, and that X admits good reduc-
tion over ok. Then s is unramified if and only if s is potentially unram-
ified [cf. Definition A.1].

Proof. This follows immediately from the equivalence (1) ⇔ (2) of
Proposition A.6, together with the well-known fact that any cuspidal
inertia subgroup of ΠΣ-ét

X/k associated to a cusp of X/k is isomorphic
to ẐΣ as an abstract profinite group. ¤
Proposition A.10. Let Y be a hyperbolic curve over k and X → Y a
dominant morphism over k. Write sY for the pro-Σ Galois section of Y/k
[cf. [6], Definition 1.1, (i)] determined by s, i.e., the composite

Gk
s−→ ΠΣ

X/k −→ ΠΣ
Y/k .

Then the following hold:
(i) Write ΦΣ

X/k, ΦΣ
Y/k for the respective quotients of ΠΣ

X/k, ΠΣ
Y/k defined

in [7], Definition 1, (iv) [cf. also the statement of condition (3) of
Proposition A.6]. Then the natural homomorphism ΠΣ

X/k → ΠΣ
Y/k

induces a homomorphism ΦΣ
X/k → ΦΣ

Y/k.
(ii) If s is unramified (respectively, potentially unramified) [cf. Def-

inition A.1], then sY is unramified (respectively, potentially un-
ramified).

(iii) Suppose that X → Y is finite, and that X and Y admit good
reduction over ok. Then s is unramified if and only if sY is un-
ramified.

Proof. First, we verify assertion (i). Now since, as is well-known,
the profinite group ∆Σ

Y/k is slim [where we refer to the discussion
entitled “Profinite groups” in §0 concerning the term “slim”], for
any open subgroup H ⊆ ∆Σ

Y/k of ∆Σ
Y/k, it follows immediately from

[7], Lemma 5, that NΠΣ
Y/k

(H) ∩ ZΠΣ
Y/k

(∆Σ
Y/k) = ZΠΣ

Y/k
(H). Thus, it

follows immediately from the fact that the natural homomorphism
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ΠΣ
X/k → ΠΣ

Y/k is open that the natural homomorphism ΠΣ
X/k → ΠΣ

Y/k

induces a homomorphism ΦΣ
X/k → ΦΣ

Y/k. This completes the proof
of assertion (i). Assertion (ii) follows immediately from the various
definitions involved, together with assertion (i) [cf. also the defini-
tions of the quotients ΦΣ

X/k, ΦΣ
Y/k]. Finally, we verify assertion (iii).

It follows from Proposition A.2, (i), that both the condition that s is
unramified and the condition that sY is unramified imply that p 6∈ Σ.
Thus, suppose that p 6∈ Σ. On the other hand, since X → Y is finite,
one verifies easily that the restriction of the natural homomorphism
∆Σ

X/k → ∆Σ
Y/k to any cuspidal inertia subgroup of ΠΣ

X/k associated
to a cusp of X/k is injective. Thus, assertion (iii) follows immedi-
ately from assertions (i), (ii); the equivalence (1) ⇔ (3) of Proposi-
tion A.6, together with the fact that the sequences of natural surjec-
tions ΠΣ

X/k ³ ΠΣ-ét
X/k ³ ΦΣ

X/k, ΠΣ
Y/k ³ ΠΣ-ét

Y/k ³ ΦΣ
Y/k induce injections

∆Σ
X/k

∼→ ∆Σ-ét
X/k ↪→ ΦΣ

X/k, ∆Σ
Y/k

∼→ ∆Σ-ét
Y/k ↪→ ΦΣ

Y/k, respectively [cf. the
proof of the implication (2) ⇒ (3) of Proposition A.6]. This com-
pletes the proof of assertion (iii). ¤
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