$\operatorname{RIMS-1743}$ 

# K3 SURFACES OF GENUS SIXTEEN

By

Shigeru MUKAI

February 2012



京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

# K3 SURFACES OF GENUS SIXTEEN

### SHIGERU MUKAI

ABSTRACT. The generic polarized K3 surface (S, h) of genus 16, that is,  $(h^2) = 30$ , is described in a certain compactified moduli space  $\mathcal{T}$  of twisted cubics in  $\mathbb{P}^3$ , as a complete intersection with respect to an almost homogeneous vector bundle of rank 10. As corollary we prove the unirationality of the moduli space  $\mathcal{F}_{16}$  of such K3 surfaces.

### 1. INTRODUCTION

Let  $\mathcal{F}_g$  be the moduli space of polarized K3 surface (S, h) of genus g, *i.e.*,  $(h^2) = 2g - 2$ .  $\mathcal{F}_g$  is an arithmetic quotient of the 19-dimensional bounded symmetric domain of type IV, and a quasi-projective variety. For  $g \leq 10$  and g = 12, 13, 18, 20, the generic (S, h) is a complete intersection in a suitable homogeneous space with respect to a suitable homogeneous vector bundle. As corollary the unirationality of  $\mathcal{F}_g$  is proved for those values of g in [5, 6, 7]. In this article we shall describe the generic member of  $\mathcal{F}_{16}$  using the EPS moduli space  $\mathcal{T} := G(2, 3; \mathbb{C}^4)$ of twisted cubics in  $\mathbb{P}^3$ .

The EPS moduli space  $\mathcal{T}$  is constructed by Ellingsrud-Piene-Strømme [2] as the GIT quotient of the tensor product  $\mathbb{C}^2 \otimes \mathbb{C}^3 \otimes V$ , V being a 4-dimensional vector space, by the obvious action of  $GL(2) \times GL(3)$ .  $\mathcal{T}$ is a smooth equivariant compactification of the 12-dimensional homogeneous space PGL(V)/PGL(2). A point  $t \in \mathcal{T}$  represents an equivalence class of  $2 \times 3$  matrices whose entries belong to V. Its three minors define a subscheme  $R_t$  of the projective space  $\mathbb{P}(V)$ .  $R_t$  is a cubic curve mostly and a plane with an embedded point in exceptional case. By construction there exists two natural vector bundles  $\mathcal{E}, \mathcal{F}$  of rank 3, 2, respectively, with det  $\mathcal{E} \simeq \det \mathcal{F}$ , and the tautological homomorphism

$$\mathcal{E} \otimes V^{\vee} \longrightarrow \mathcal{F}$$

on  $\mathcal{T}$ , which induces linear embeddings

(1) 
$$(S^2V)^{\vee} \hookrightarrow H^0(\mathcal{E}) \text{ and } (S^{2,1}V)^{\vee} \hookrightarrow H^0(\mathcal{F}).$$

Supported in part by the JSPS Grant-in-Aid for Scientific Research (B) 22340007, (S) 19104001, (A)22244003 and (S)22224001.

(See §2.) Here  $S^2V$  is the second symmetric tensor product, and

(2) 
$$S^{2,1}V = \ker[V \otimes S^2 V \to S^3 V]$$

is the space of linear syzygies among second symmetric tensors.

For two subspaces  $M \subset (S^2 V)^{\vee}$  and  $N \subset (S^{2,1}V)^{\vee}$ , we consider the common zero locus

(3) 
$$\bigcap_{s \in M} (s)_0 \cap \bigcap_{t \in N} (t)_0 \subset \mathcal{T}.$$

of global sections  $s \in M \subset H^0(\mathcal{E})$  and  $t \in N \subset H^0(\mathcal{F})$ . The case dim  $M = \dim N = 2$  is most interesting. We denote the common zero locus (3) by  $S_{M,N}$  in this case.

**Theorem 1.1.** If M and N are general, then  $S_{M,N}$  is a (smooth) K3 surface, and the restriction of  $H := c_1(\mathcal{E})$  is a polarization of genus 16.

For general M and N,  $S_{M,N}$  is a complete intersection in  $\mathcal{T}$  with respect to the vector bundle  $\mathcal{E}^{\oplus 2} \oplus \mathcal{F}^{\oplus 2}$  of rank 10. Furthermore the following converse also holds:

**Theorem 1.2.** Generic K3 surface of genus 16 is isomorphic to the complete intersection  $S_{M,N}$ .

A twisted cubic

(4) 
$$R: \operatorname{rank} \begin{pmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \end{pmatrix} \le 1, \quad f_{ij} \in V$$

in  $\mathbb{P}(V) = \mathbb{P}^3$  is apolar to M if all minors of the matrix are perpendicular to M. Similarly R is apolar to N if all linear syzygies among the three minors are perpendicular to N. The K3 surface  $S_{M,N}$  in Theorem 1.1 parametrizes all R which are apolar to both M and N.

The totality of  $S_{M,N}$  are parametrized by an open subset of a generic G(2, 12)-bundle  $\mathcal{P}$  over the 16-simensional Grassmannian  $G(2, (S^2V)^{\vee})$  which parametrizes M. By Theorem 1.1, we have the rational map

(5) 
$$\Psi_{16}: \mathcal{P} \cdots \to \mathcal{F}_{16}, \quad (M, N) \mapsto (S_{M,N}, H|_S),$$

whose dominance is Theorem 1.2. Therefore, as bi-product, we have

**Corollary** The moduli space  $\mathcal{F}_{16}$  of polarized K3 surface of genus 16 is unirational.

In order to prove the theorems, we we study a certain special case in detail. More explicitly, we consider the space  $M_0 \subset (S^2 V)^{\vee} \simeq S^2 (V^{\vee})$  spanned by two *reducible* quadratic forms  $q_1 = XY, q_2 = ZT$ , and study the common zero locus  $\mathcal{T}_{M_0} := (q_1)_0 \cap (q_2)_0$  of  $M_0$  in  $\mathcal{T}$ .  $\mathcal{T}_{M_0}$  parametrizes all twisted cubics whose defining quadratic forms do not

contain the term xy or zt, where (x : y : z : t) is a homogeneous coordinate  $\mathbb{P}^3$  and (Z : Y : Z : T) is the dual coordinate of  $\mathbb{P}^{3,*}$ .

If N is general, then  $S_{M_0,N}$  is a quartic surface in  $\mathbb{P}^3$  which contains two quintic elliptic curves  $E_1$  and  $E_2$  with  $(E_1.E_2) = 3$ . In particular we have Theorem 1.1. Moreover, the restriction of  $\mathcal{E}$  to  $S_{M_0,N}$  is an extension of three line bundles  $\mathcal{O}_S(E_1), \mathcal{O}_S(E_2)$  and  $\mathcal{O}_S(H - E_1)$ , and the restriction of  $\mathcal{F}$  contains  $\mathcal{O}_S(E_1)^{\oplus 2}$  as a subsheaf. These give us the following vanishing of higher cohomology groups which is the key of of the proof of Theorem 1.2.

**Proposition 1.3.** If both M and N are general, then the restriction of  $\mathcal{E}, \mathcal{F}$  to  $S := S_{M,N}$  are simple and satisfy

$$\operatorname{Ext}^{i}(\mathcal{E}|_{S},\mathcal{F}|_{S}) = H^{i}(S,\mathcal{E}|_{S}) = H^{i}(S,\mathcal{F}|_{S}) = 0, \text{ for all } i > 0.$$

After preparing some basic facts on the EPS moduli space  $\mathcal{T} = G(2,3;\mathbb{C}^4)$  in §2 in §2, we first study the locus  $\mathcal{T}_Q$  of twisted cubics apolar to one reducible quadric in §3. We next study the locus  $\mathcal{T}_{B_1,B_2}$ of twisted cubics which have two skew lines as their bisecants in §4 and the above  $\mathcal{T}_{M_0}$  in §5. We prove Theorem 1.1 in §6 and Theorem 1.2 in §7 using doubly octagonal K3 surfaces  $S_{M_0,N}$ .

Notations and convention All varieties are considered over the complex number field  $\mathbb{C}$ . The projective space  $\mathbb{P}(V)$  associated to a vector space V is that in Grothendieck's sense. The Grassmann variety of s-dimensional subspaces of V is denoted by G(s, V). The isomorphism class of G(s, V) is denoted by G(s, n) when dim V = n. The dual vector space and vector bundles are denoted by E is denoted by  $V^{\vee}$  and  $E^{\vee}$ . Twisted cubic is used in the generalized sense of [2]. But the locus where twisted cubics are not curve is of sufficiently large codimension, and hence is never crucial in our argument.

### 2. PAIR OF VECTOR BUNDLES WHOSE RANKS DIFFER BY ONE

Let (E, F) be a pair of vector bundles on a scheme S such that

(6) 
$$\det E \simeq \det F$$
,  $\operatorname{rank} E = \operatorname{rank} F + 1$ .

Let r be the rank of F. r homomorphisms  $f_1, \ldots, f_r \in \text{Hom}(E, F)$  gives rise the homomorphism

$$f_1 \wedge \dots \wedge f_r : \wedge^r E \to \wedge^r F \simeq \det F$$

which can be regarded as a global section of E by our assumption (6). Since  $f_1 \wedge \cdots \wedge f_r$  is symmetric with respect to  $f_1, \ldots, f_r$ , we have a liner map

(7) 
$$S^r \operatorname{Hom}(E, F) \to \operatorname{Hom}(\wedge^r E, \wedge^r F) \simeq H^0(E).$$

If  $g: E \to F$  is a homomorphism, then  $g(f_1 \wedge \cdots \wedge f_r)$  is a global section of F. Hence we have another linear map

 $S^{r}\operatorname{Hom}(E,F)\otimes\operatorname{Hom}(E,F) \to H^{0}(F), \quad ((f_{1},\ldots,f_{r}),g)\mapsto g(f_{1}\wedge\ldots\wedge f_{r}).$ Since  $S^{r+1}\operatorname{Hom}(E,F)$  lies in the kernel of this linear map, we have (8)  $S^{r,1}\operatorname{Hom}(E,F) \to H^{0}(F).$ 

Let V be a vector space and let G(r, r + 1; V) be the GIT quotient of the tensor product  $\mathbb{C}^r \otimes \mathbb{C}^{r+1} \otimes V$  by  $GL(r) \times GL(r+1)$ . There are two natural vector bundles  $\mathcal{E}, \mathcal{F}$  of rank r + 1, r, respectively, with det  $\mathcal{E} \simeq \det \mathcal{F}$ , and the tautological homomorphism

(9) 
$$\mathcal{E} \otimes V^{\vee} \to \mathcal{F}$$

on G(r, r+1; V). This has the following universal property.

(\*) If a homomorphism  $E \otimes V^{\vee} \to F$  satisfies (6) and if the induced linear map  $S^r V \to H^0(E)$  is surjective, then there exists a unique morphism  $\Phi : S \to G(r, r+1; V)$  such that  $E \otimes V^{\vee} \to F$  coincides with the pull-back of (9). This  $\Phi$  will be denoted by  $\Phi_{E,F,V^{\vee}} : S \to$ G(r, r+1; V), or  $\Phi_{E,F}$  if  $V^{\vee} = \operatorname{Hom}(E, F)$ .

**Remark 2.1.** If E, F are vector bundles of rank r + 1, r, respectively. Then, putting  $L = (\det E)^{-1} \otimes \det F$ , we have

 $\operatorname{Hom}(E,F) \simeq \operatorname{Hom}(E \otimes L, F \otimes L)$  and  $\det(E \otimes L) \simeq \det(F \otimes L)$ .

Hence, the assumption (6) is not restrictive.

In the sequel we apply the case r = 2, dim V = 4 to K3 surfaces of genus 16. G(2,3;V) is regarded as a subvariety of the Grassmannian  $G(3, S^2V)$  by  $R \mapsto H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}}(2-R))$ , where  $H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}}(2-R))$  is the 3dimensional space of quadratic forms vanishing on R. G(2,3;V) is also a subvariety of another Grassmannian  $G(2, S^{2,1}V)$  by  $R \mapsto Syz_R$ , where  $Syz_R$  is the 2-dimensional space of linear syzygies among  $H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}}(2-R))$ .

Let  $S_{M,N} \subset \mathcal{T} = G(2,3;V)$  be as in the introduction for general 2-dimensional subspaces M and N.

**Proposition 2.2.** 1)  $S_{M,N}$  is the disjoint union of K3 surfaces and abelian surfaces.

2) The degree of  $S_{M,N}$  with respect to  $H := c_1(\mathcal{E})$  is equal to 30.

3) The second Chern number of the restrictions of  $\mathcal{E}$  and  $\mathcal{F}$  to  $S_{M,N}$  are equal to 13 and 9, respectively.

*Proof.* 1) The vector bundles  $\mathcal{E}$  and  $\mathcal{F}$  are generated by the global sections. Hence by the Bertini type theorem ([6, Theorem 1.10]), the general complete intersection  $S_{M,N}$  is smooth of expected dimension,

4

which is equal to  $\dim \mathcal{T} - 2 \cdot \operatorname{rank} \mathcal{E} - 2 \cdot \operatorname{rank} \mathcal{F} = 2$ . The canonical bundle of  $S_{M,N}$  is trivial by the adjunction formula [6, (1.5)] since  $c_1(\mathcal{T}) = 4H$ .

2) The degree of  $S_{M,N}$  is equal to

$$(H^2.c_{\mathrm{top}}(\mathcal{E}^{\oplus 2}\oplus\mathcal{F}^{\oplus 2})) = (H^2.c_3(\mathcal{E})^2.c_2(\mathcal{F})^2),$$

which is equal to  $(c_1^2 c_3^2 d_2^2) = 30$  by [1, Table 1].

3) The Chern numbers are equal to

$$c_2(\mathcal{E}|_S) = (c_2 c_3^2 d_2^2) = 13$$
 and  $c_2(\mathcal{F}|_S) = (c_3^2 d_2^3) = 9$ ,

respectively, again by [1, Table 1].

**Remark 2.3.** A computation using the description of the tangent bundle of  $\mathcal{T}$  in [1, (4.4)] shows that the Euler number of  $S_{M,N}$  is equal to 24. This shows that a K3 surface appears in  $S_{M,N}$  and it is unique.

### 3. Twisted cubics apolar to a reducible quadric

We fix a line l in  $\mathbb{P}(V) = \mathbb{P}^3$  and consider the subvariety

 $\mathcal{T}_B := \{ R \,|\, \operatorname{length}(R \cap l) \ge 2 \} \subset \mathcal{T}$ 

consisting of twisted cubics which have l as a bisecant line.  $\mathcal{T}_B$  is a 10-dimensional variety. Assigning the intersection  $l \cap R$  to l, we obtain the rational map

(10) 
$$f_B: \mathcal{T}_B \cdots \to \mathbb{P}^2 = \operatorname{Sym}^2 l.$$

Let  $\mathcal{D}$  be the subvariety of  $\mathcal{T}$  consisting of reducible twisted cubics.  $\mathcal{D}$  is a divisor. Let  $\mathcal{D}_B$  be the intersection  $\mathcal{D} \cap \mathcal{T}_B$ .  $\mathcal{D}_B$  decomposes into the union of two irreducible components  $\mathcal{D}_{B,1}$  and  $\mathcal{D}_{B,2}$  according as the intersection of the conical part of R and l. Every general member R of  $\mathcal{D}_{B,2}$  is the union of a line and a conic which meets l at two points. Oppositely every general member R of  $\mathcal{D}_{B,1}$  is the union of a line and a conic both of which meet l.

The restriction of the syzygy bundle  $\mathcal{F}$  to  $\mathcal{T}_B$  is described using this former divisor  $\mathcal{D}_{B,2}$ .

**Proposition 3.1.** The restriction  $\mathcal{F}|_{\mathcal{T}_B}$  contains the rank 2 vector bundles  $f_B^* \mathcal{O}_{\mathbb{P}}(1)^{\oplus 2}$  as a subsheaf, and the quotient  $(\mathcal{F}|_{\mathcal{T}_B})/(f_B^* \mathcal{O}_{\mathbb{P}}(1)^{\oplus 2})$  is a line bundle on the divisor  $\mathcal{D}_{B,2}$ .

*Proof.* We take a homogeneous coordinate (x : y : z : t) of  $\mathbb{P}^3$  and assume that the line l is defined, say, by x = y = 0. We describe the syzygy space  $Syz_R$  of a twisted cubic R in  $\mathcal{T}_B$  using the two quadrics containing the union  $R \cup l$ .

If  $[R] \notin \mathcal{D}_{B,2}$ , then the union  $R \cup l$  is the intersection of two quadrics, say, cx - ay = 0 and dx - by = 0 with  $a, b, c, d \in V = \langle x, y, z, t \rangle_{\mathbb{C}}$ . The third quadrics containing R is defined by ad - bc = 0. Hence R is defined by the three minors of the matrix  $\begin{pmatrix} x & a & b \\ y & c & d \end{pmatrix}$ . Therefore, the syzygy space  $Syz_R$  of R is spanned by

(11) 
$$x \otimes (ad - bc) - a \otimes (dx - by) + b \otimes (cx - ay)$$

and

(12) 
$$y \otimes (ad - bc) - c \otimes (dx - by) + d \otimes (cx - ay).$$

When R runs over  $\mathcal{T}_B$ , these syzygies generate a subspace  $Syz_1 \subset S^{2,1}V$ of codimension 2. (Note that  $Syz_1$  does not contain  $z \otimes zt - t \otimes z^2$  or  $t \otimes zt - z \otimes t^2$ .) The syzygies

$$a \otimes by - b \otimes ay$$
,  $c \otimes dx - d \otimes cx$ ,  $a, b, c, d \in V$ 

are contained in the vector space  $Syz_1$ , and generate a subspace  $Syz_2$ isomorphic to  $(\bigwedge^2 V)^{\oplus 2}$ . The quotient  $Syz_1/Syz_2$  is canonically isomorphic to  $\langle x, y \rangle_{\mathbb{C}} \otimes S^2(V/\langle x, y \rangle_{\mathbb{C}})$ . Moreover, the residual classes of (11) and (12) are  $x \otimes \overline{ad - bc}$  and  $y \otimes \overline{ad - bc}$ , respectively. Since the quadric ad - bc = 0 cut the two points  $f_B(R)$  from  $l, \mathcal{F}|_{\mathcal{T}_B}$  is isomorphic to  $f_B^* \mathcal{O}_{\mathbb{P}}(1)^{\oplus 2}$  outside  $\mathcal{D}_{B,2}$ .

Assume that  $[R] \in \mathcal{D}_{B,2}$ . Then the intersection of two quadrics containing  $R \cup l$  is the union of a plane containing l, say x = 0, and a line. R is defined by the three minors of the matrix of the form  $\begin{pmatrix} x & a & b \\ 0 & c & d \end{pmatrix}$ , and  $Syz_R$  is spanned by

$$x \otimes (ad - bc) - a \otimes dx + b \otimes cx \notin Syz_2,$$

which is a specialization of (11), and  $-c \otimes dx + d \otimes cx \in Syz_2$ , a specialization of (12). Therefore, the cokernel of the induced homomorphism  $f_B^* \mathcal{O}_{\mathbb{P}}(1)^{\oplus 2} \hookrightarrow \mathcal{F}|_{\mathcal{T}_B}$  is a line bundle on  $\mathcal{D}_{B,2}$ .

Now we study the locus  $\mathcal{T}_q$  of twisted cubics which are apolar to qwhen q is of rank 2. The quadric defined by  $q \in (S^2V)^{\vee} \simeq S^2(V^{\vee})$  in the dual projective space  $\mathbb{P}^{3,*}$  is the union of two distinct planes  $P_1$  and  $P_2$ . Let l be the line joining the two points  $[P_1]$  and  $[P_2] \in \mathbb{P}^3 = (\mathbb{P}^{3,*})^*$ . q is the pull-back of a quadratic form  $\bar{q}$  on  $l \simeq l^* \simeq \mathbb{P}^1$  whose zero locus is  $[P_1] + [P_2]$ . A twisted cubic R is apolar to q if and only if the restriction of  $H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}}(2-R))$  to l is apolar to  $\bar{q}$ .

# Proposition 3.2. The following are equivalent to each other.

- 1) A twisted cubic  $R \subset \mathbb{P}^3$  is applar to q.
- 2) *l* is a bisecant line of *R* and the intersection  $R \cap l$  is a polar to  $\bar{q}$ .

*Proof.* 2)  $\implies$  1) If *l* is a bisecant of *R*, then the union  $R \cup l$  is contained in two distinct quadrics. Hence the restriction map

(13) 
$$H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}}(2-R)) \to H^0(l, \mathcal{O}_l(2))$$

is of rank  $\leq 1$ . Hence, if furthermore  $R \cap l$  is a polar to  $q|_l$ , then R is a polar to q.

1)  $\implies$  2) Let  $W \subset H^0(l, \mathcal{O}_l(2))$  be the space of quadratic forms apolar to  $\bar{q}$ . If R is apolar to q, then the image of the restriction map (13) is contained in W. Since dim W = 2, the linear map (13) is not injective, that is, the union  $R \cup l$  is contained in a quadric. Hence  $R \cap l$ is non-empty. Since the quadratic forms in W has no common zero, the rank of (13) is at most one, which shows (2).

By the proposition,  $\mathcal{T}_Q$  is contained in  $\mathcal{T}_B$ . More precisely, it coincides with the pull-back of a line by the rational map (10). In particular, we have the rational map

(14) 
$$f_Q: \mathcal{T}_Q \cdots \to \mathbb{P}^1 \subset \mathbb{P}^2 = \operatorname{Sym}^2 l, \quad R \mapsto R \cap l.$$

# 4. TWISTED CUBICS WITH TWO FIXED BISECANT LINES

We fix a pair of skew lines  $l_1$  and  $l_2$  in  $\mathbb{P}(V) = \mathbb{P}^3$  and consider the (8-dimensional) subvariety

$$\mathcal{T}_{B_1,B_2} := \{ R | \operatorname{length}(R \cap l_1) \ge 2, \ \operatorname{length}(R \cap l_2) \ge 2 \} \subset \mathcal{T}$$

consisting of twisted cubics which have both  $l_1$  and  $l_2$  as bisecant lines. Restricting (10) we have two rational maps

(15) 
$$f_{B_i}: \mathcal{T}_{B_1, B_2} \cdots \to \mathbb{P}^2 = \operatorname{Sym}^2 l_i, \quad i = 1, 2.$$

Now we consider the correspondence

(16) 
$$Y = \{(R,Q) \mid R \subset Q\} \subset \mathcal{T}_{B_1,B_2} \times \Lambda$$

between  $\mathcal{T}_{B_1,B_2}$  and the linear web  $\Lambda := |\mathcal{O}_{\mathbb{P}}(2 - l_1 - l_2)|$  of quadrics containing  $l_1$  and  $l_2$ . Assume that a twisted cubic R belongs to  $\mathcal{T}_{B_1,B_2}$ . As we saw in the proof of Poposition 3.2, the restriction map

$$H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}}(2-R)) \to H^0(l_i, \mathcal{O}_l(2)), \quad i = 1, 2$$

are of rank at most one. Hence there exists a quadric which contains  $R \cup l_1 \cup l_2$ . a member of contains R. Hence the first projection  $\pi : Y \to \mathcal{T}_{B_1,B_2}$  is surjective.  $\pi$  is not an isomorphism at [R] if and only if  $\dim |\mathcal{O}_{\mathbb{P}}(2-l_1-l_2-R)| > 0.$ 

**Proposition 4.1.** The following are equivalent for a twisted cubic [R] in  $\mathcal{T}_{B_1,B_2}$ .

1) dim 
$$|\mathcal{O}_{\mathbb{P}}(2-l_1-l_2-R)| > 0.$$
  
2)  $R \supset l_1$  or  $R \supset l_2.$ 

*Proof.* 1)  $\Rightarrow$  2) There exist two distinct quadrics  $Q_1$  and  $Q_2$  which contains  $C = l_1 \cup l_2 \cup R$ . If deg  $C \leq 4$  then 2) follows. Otherwise, we have deg  $C > \deg Q_1 \cdot \deg Q_2$ , and  $Q_1$  and  $Q_2$  have a common component. Therefore, the intersection  $Q_1 \cap Q_2$  is the union of plane and a line. Hence 2) holds.

2)  $\Rightarrow$  1) If R contains both  $l_1$  and  $l_2$ , then 1) is obvious. If  $R \supset l_1$ and  $R \not\supseteq l_2$ , then  $R \cup l_2$  is contained in two distinct quadrics. Hence 1) holds true. Similarly 1) holds in the case where  $R \supset l_2$  and  $R \not\supseteq l_1$ .  $\Box$ 

More explicitly we have the following whose proof is straightforward.

**Proposition 4.2.** If a twisted cubic  $[R] \in \mathcal{T}_{B_1,B_2}$  satisfies the equivalent conditions of the preceding proposition, then it satisfies one of the following:

(a) R is the union of  $l_1$  and a conic which have  $l_2$  as a bisecant line, or vice versa, or

(b) R is the union  $m_1 \cup m_2 \cup l_i$  of three lines, with i = 1 or 2, such that both  $m_1$  and  $m_2$  intersect  $l_1$  and  $l_2$ , or

(c) R is the union  $l_1 \cup l_2 \cup m$  of three lines such that m intersects both  $l_1$  and  $l_2$ .

The twisted cubics satisfying (a) are parametrized by open subsets of two  $\mathbb{P}^4$ -bundles  $A_1$  and  $A_2$  over  $\mathbb{P}^1$ . More precisely,  $A_1$  is a  $\mathbb{P}^4$ bundle over  $|\mathcal{O}_{\mathbb{P}}(1-l_1)| \simeq \mathbb{P}^1$ , the pencil of planes P containing  $l_1$ , and its fiber over [P] parametrizes the conics in P passing through the intersection point  $P \cap l_2$ . In particular, both  $A_1$  and  $A_2$  are of dimension 5. The twisted cubics satisfying (c) are parametrized by the intersection  $A_1 \cap A_2$ , which is isomorphic to  $l_1 \times l_2$ . The twisted cubics satisfying (b) are parametrized by two copies of  $\operatorname{Sym}^2(\mathbb{P}^1 \times \mathbb{P}^1)$ . In particular they are 4-dimensional families. Therefore, the first projection  $\pi : Y \to \mathcal{T}_{B_1,B_2}$ is birational and we have the rational map

$$\mathcal{T}_{B_1,B_2} \cdots \to \Lambda \simeq \mathbb{P}^3, \quad R \mapsto Q$$

assigning the unique quadric  $Q \in |\mathcal{O}_{\mathbb{P}}(2 - R - l_1 - l_2)|$  to R. The correspondence Y in (16) is nothing but the graph of this rational map.

**Proposition 4.3.** Y is an 8-dimensional irreducible variety, and a generic  $\mathbb{P}^5$ -bundle over  $\Lambda = |\mathcal{O}_{\mathbb{P}}(2 - l_1 - l_2)|$ .

Proof. We denote the second projection  $Y \to |\mathcal{O}_{\mathbb{P}}(2-l_1-l_2)|$  by g, and the locus of singular members of  $|\mathcal{O}_{\mathbb{P}}(2-l_1-l_2)|$  by  $\Lambda_0$ . Every member of  $\Lambda_0$  is the union of two distinct planes. If  $Q \notin \Lambda_0$ , the fiber of g over Q is  $|\mathcal{O}_{\mathbb{P}\times\mathbb{P}}(1,2)| \simeq \mathbb{P}^5$ . The fiber over  $Q \in \Lambda_0$  is reducible. But it is easily checked that it is also of dimension 5.  $\Box$  Assume that a smooth member  $Q \in |\mathcal{O}_{\mathbb{P}}(2 - l_1 - l_2)|$  is defined by xt - yz = 0 for a homogeneous coordinate (x; y; z; t) of  $\mathbb{P}^3$ . Then Q contains two 5-dimensional families of twisted cubics. They correspond to the matrices of the form

$$\begin{pmatrix} x & z & f \\ -y & -t & g \end{pmatrix}$$
 and  $\begin{pmatrix} x & y & f \\ -z & -t & g \end{pmatrix}$ ,

where f and g are linear forms. The former family is characterized by the property that the x = y = 0 is a bisecant line, and the latter family has x = z = 0 as a bisecant line.

#### 5. Twisted cubics apolar to two reducible quadrics

In this section we study the locus  $\mathcal{T}_{M_0}$  of twisted cubics apolar to  $M_0 \subset (S^2 V)^{\vee}$  when  $M_0$  is spanned by two quadratic forms  $q_1$  and  $q_2$  of rank 2.  $q_i$  is the pull-back of a quadratic form  $\bar{q}_1$  on a line  $l_i$  for i = 1, 2. We assume that two lines  $l_1$  and  $l_2$  are skew.  $\mathcal{T}_{M_0}$  is the pull-back of  $\mathbb{P}^1 \times \mathbb{P}^1$  by the rational map  $\mathcal{T}_{M_0} \cdots \to \mathbb{P}^2 \times \mathbb{P}^2$  defined by (15). We denote the restriction of (15) by

(17) 
$$f_i: \mathcal{T}_{M_0} \cdots \to \mathbb{P}^1 \subset \operatorname{Sym}^2 l_i, \quad i = 1, 2.$$

Similar to the previous section, we consider the correspondence

(18) 
$$X = \{ (R, Q) \mid R \subset Q \} \subset \mathcal{T}_{M_0} \times \Lambda$$

between  $T_{M_0}$  and  $\Lambda$ . We denote the second projection  $X \to \Lambda$  by g. When a quadric Q in  $\Lambda$  is smooth, the fiber of g over [Q] is a 3-dimensional projective subspace of  $|\mathcal{O}_{\mathbb{P}\times\mathbb{P}}(1,2)| \simeq \mathbb{P}^5$ . Similar to Proposition 4.3, X is irreducible of dimension 6, and a generic  $\mathbb{P}^3$ -bundle over  $\Lambda$ .

Proposition 4.1 holds for  $\mathcal{T}_{M_0}$  too, and we have the following by Proposition 4.2.

**Proposition 5.1.** If the first projection  $\pi : X \to \mathcal{T}_{Q_1,Q_2}$  is not an isomorphism at [R], then one of the following holds:

(a) R is the union of  $l_1$  and a conic which have  $l_2$  as a bisecant line, or vice versa, or

(b) R is the union  $m_1 \cup m_2 \cup l_i$  of three lines, with i = 1 or 2, such that both  $m_1$  and  $m_2$  intersect  $l_1$  and  $l_2$ , or

(c) R is the union  $l_1 \cup l_2 \cup m$  of three lines such that m intersects both  $l_1$  and  $l_2$ .

The twisted cubics satisfying (a) are parametrized by open subsets of  $A'_1$  and  $A'_2$  which are  $\mathbb{P}^3$ -bundles over  $\mathbb{P}^1$ . In particular, both  $A'_1$  and  $A'_2$  are of dimension 4. The twisted cubics satisfying (c) are parametrized

by the intersection  $A'_1 \cap A'_2 \simeq l_1 \times l_2$ . Since the twisted cubics satisfying (b) forms a 3-dimensional family, the second projection  $\pi$  is birational, and we obtain the rational map

$$\mathcal{T}_{M_0} \cdots o \Lambda \simeq \mathbb{P}^3$$

which assigns the unique quadric  $Q \in |\mathcal{O}_{\mathbb{P}}(2 - R - l_1 - l_2)|$  to R. The correspondence X in (18) is nothing but the graph of this rational map.  $\pi^{-1}(A'_1)$  is of dimension 5 and its image by g is  $\Lambda_0 \simeq l_2 \times l_1$ .

We need also the following information on the restriction of the syzygy bundle  $\mathcal{F}$  to a general fiber of the second projection  $q: X \to \Lambda$ .

**Lemma 5.2.** If Q in  $\Lambda$  is smooth, then the restriction of  $\mathcal{F}$  to  $g^{-1}[Q] \simeq \mathbb{P}^3$  is isomorphic to  $\mathcal{O}_{\mathbb{P}}(1)^{\oplus 2}$ .

*Proof.* We take a homogeneous coordinate (x : y : z : t) of  $\mathbb{P}^3$  such that

$$Q_1: XY = 0, \quad Q_2: ZT = 0, \quad Q: xt - yz = 0,$$

where (X : Y : Z : T) is the dual coordinate of  $\mathbb{P}^{3,*}$ . A twisted cubic in the fiber  $g^{-1}[Q]$  is defined by the three minors of the matrix  $\begin{pmatrix} x & z & by + b't \\ -y & -t & ax + a'z \end{pmatrix}$ , where a, a', b, b' are constants. (See the argument at the end of §4.) The syzygy space  $Syz_R$  of R is generated by

$$x \otimes \{(ax + a'z)z + (by + b't)t\} - z \otimes \{(ax + a'z)x + (by + b't)y\} + (by + b't) \otimes q$$

and

$$-y \otimes \{(ax+a'z)z+(by+b't)t\}+t \otimes \{(ax+a'z)x+(by+b't)y\}+(ax+a'z) \otimes q,$$
  
where we put  $q = xt - yz$ . Hence when  $R$  run over the fiber  $g^{-1}[Q]$ ,  
 $Syz_R$  generates the vector space of dimension 8 with the following basis:

$$\begin{aligned} x\otimes xz-z\otimes x^2, &x\otimes z^2-z\otimes xz, x\otimes yt-z\otimes y^2-y\otimes q, x\otimes t^2-z\otimes yt-t\otimes q, \\ -y\otimes xz+t\otimes x^2-x\otimes q, -y\otimes z^2-t\otimes xz-z\otimes q, y\otimes yt-t\otimes y^2, -y\otimes t^2-t\otimes yt. \end{aligned}$$

 $Syz_R$  has a 1-dimensional intersection with the vector space spanned by the first four syzygies, and so does with that spanned by the last four. Hence the fiber  $g^{-1}[Q]$  is the projective space with (a:a':b:b') as its homogeneous coordinate, and  $\mathcal{F}|_{g^{-1}[Q]}$  is isomorphic to  $\mathcal{O}_{\mathbb{P}}(1)^{\oplus 2}$ .  $\Box$ 

### 6. Doubly octagonal K3 surface of genus 16

Let  $S_{M_0,N} \subset T_{M_0}$  be the zero locus of the global section of  $\mathcal{F}^{\oplus 2}$  corresponding to a 2-dimensional subspace  $N \subset (S^{2,1}V)^{\vee}$ .

**Lemma 6.1.** If N is general, then  $S_{M_0,N}$  is disjoint from  $A'_1$  and  $A'_2$ , that is, a twisted cubic in  $S_{M_0,N}$  does not contain the line  $l_1$  or  $l_2$  as a component.

*Proof.* We may assume that  $q_1 = XY$  and  $q_2 = ZT$  for a homogeneous coordinate (x : y : z : t) of  $\mathbb{P}^3$ , where (X : Y : Z : T) is the dual coordinate of  $\mathbb{P}^{3,*}$ .

Since  $\mathcal{F}^{\oplus 2}$  is of rank 4 and generated by its global sections, it suffices to show that a twisted cubic satisfying (a) does not belong to  $S_{M_0,N}$ . Assume that such a cubic R satisfies the first half of the statement (a) of Proposition5.1. Then R is defined by three minors of a matrix of the form  $\begin{pmatrix} f & * & * \\ 0 & x & y \end{pmatrix}$  and has  $x \otimes yf - y \otimes xf$  as its syzygy, where f is a linear commination of x and y. When R runs over  $A'_1$  these syzygies span the 2-dimensional vector space  $\langle x \otimes yz - y \otimes xz, x \otimes yt - y \otimes xt \rangle_{\mathbb{C}}$ in  $S^{2,1}V$ . Since  $N \subset (S^{2,1}V)^{\vee}$  is a general 2-dimensional space, its intersection with  $N^{\perp}$  is zero. Hence  $A'_1$  is disjoint from  $S_{M_0,N}$ . The same holds for  $A'_2$ .

By the lemma, the morphism  $\pi: X \to \mathcal{T}_{M_0}$  is an isomorphism over  $S_{M_0,N}$ . Hence we denote its pull-back in X by the same symbol  $S_{M_0,N} \subset X$ . The restriction of the rational map  $f_i$  (i = 1, 2) to  $S_{M_0,N}$  is a morphism, which we also denote by the same symbol  $f_i: S_{M_0,N} \to \mathbb{P}^1 \subset \text{Sym}^2 l_i$ .

Now we study the intersection of divisor  $\mathcal{D}_{B,2}$  (§3) with  $S_{M_0,N}$ . Let  $\mathcal{D}_1$  be the locus of reducible twisted cubics R whose conical component has  $l_1$  as a bisecant line.

**Lemma 6.2.** If N is general, then the intersection  $Z := \mathcal{D}_1 \cap S$  is isomorphic to  $\mathbb{P}^1$ .

*Proof.* More precisely, we show that the restriction of  $f_2|_Z : Z \to \mathbb{P}^1 \subset$ Sym<sup>2</sup> $l_2$  is the double cover induced from  $\mathbb{P}^1 \times \mathbb{P}^1 \to$  Sym<sup>2</sup> $l_2$ .

Let  $(p_1, p_2)$  be an ordered pair of points of  $l_2$  which is apolar to ( or orthogonal with respect to)  $\bar{q}_2$ . It suffice to show that there exist a unique reducible twisted cubic  $R = C \cup l$  in  $S_{M_0,N} \cap \mathcal{D}_1$  whose linear part l passes through  $p_1$  and conical part C through  $p_2$ . Such a twisted cubic is the common zero locus of the matrix of the form  $\begin{pmatrix} f & f_1 & f_2 \\ 0 & g_1 & g_2 \end{pmatrix}$ , where f is the equation of the plane spanned by l and  $p_2$ , and  $g_1, g_2$  are linear forms vanishing at  $p_1$ . One syzygy of R is  $s(R) := g_1 \otimes fg_2 - g_2 \otimes fg_1$ which belongs to the space of syzygies

(19) 
$$\langle x \otimes fy - y \otimes fx, y \otimes fz - z \otimes fy, z \otimes fx - x \otimes z \rangle_{\mathbb{C}},$$

where  $\{x, y, z\}$  is a basis of linear forms vanishing at  $p_2$ . Since N is of dimension 2, s(R) belongs to  $N^{\perp}$  for suitable choice of  $g_1$  and  $g_2$ . Similarly another syzygy of R independent from s(R) belongs to  $N^{\perp}$ for suitable choice of  $f_1$  and  $f_2$ . This shows the existence of the required  $R = C \cup l.$ 

When an unordered pair  $\{p_1, p_2\}$  runs over  $\mathbb{P}^1 \subset \text{Sym}^2 l_2$ , the image of  $f_2$ , (19) is a 1-dimensional family of 3-dimensional subspaces. Hence the usual dimension count argument shows that the linear part l is unique for a given  $(p_1, p_2)$  if we choose N general enough. Similarly the conical part C is unique also if N is general.  $\square$ 

We now compute the intersection numbers of several divisor classes on S. We denote the restriction of  $H = c_1(\mathcal{E})$  to S by h, and the divisor class of a general fiber of  $f_i: S \to \mathbb{P}^1$  by  $a_i$  for i = 1, 2.

For every R in S,  $H^0(\mathcal{O}_{\mathbb{P}}(2-R))$  has 1-dimensional intersection with  $H^0(\mathcal{O}_{\mathbb{P}}(2-l_1-l_2))$  and 2-dimensional intersection with  $H^0(\mathcal{O}_{\mathbb{P}}(2-l_i))$ , i = 1, 2, by Proposition 4.1 and Lemma 6.1. Hence we have an exact sequence

(20) 
$$0 \to \mathcal{O}_S(a_1) \oplus \mathcal{O}_S(a_2) \to \mathcal{E}|_S \to \mathcal{O}_S(b) \to 0$$

on S, where we put  $b = h - a_1 - a_2$ .

**Lemma 6.3.** 1)  $(h.a_1) = (h.a_2) = 8$ . 2)  $(a_1.a_2) = 3.$ 

*Proof.* 1) A general fiber of the morphism (14) consists of all twisted cubics passing through two points  $p_1, p_2 \in l$ . Hence its fundamental cohomology class is  $(c_2 - d_2)^2$  by [1, Section 7]. Hence  $(h.a_1)$  and  $(h.a_2)$ are equal to the intersection number  $(c_1(c_2 - d_2)^2 d_2^2 c_3)$ , which is equal to  $82 - 2 \cdot 57 + 40 = 8$  by [1, Table 1].

2) By Proposition 2.2 and the exact sequence (20), we have  $c_2(\mathcal{E}|_S) =$  $(a_1.a_2) + (b.a_1 + a_2) = 13$ . Hence 2) follows from 1).  $\Box$ 

By the lemma, the  $a_1, a_2$  and b spans an integral sublattice of rank

3 in the Picard lattice of S with inner product  $\begin{pmatrix} 0 & 3 & 5 \\ 3 & 0 & 5 \\ 5 & 5 & 4 \end{pmatrix}$ . Since the

discriminant is equal to 14 and square free,  $\langle a_1, a_2, b \rangle_{\mathbb{Z}}$  is a primitive sublattice. Theorem 1.1 follows from Proposition 2.2 and the following

**Lemma 6.4.**  $S = S_{M_0,N}$ , for general N, is mapped to a quartic surface by the morphism  $g: \mathcal{T}_{M_0} \to \mathbb{P}^3$ .

*Proof.* The pull-back of the tautological line bundle of  $\mathbb{P}^3$  by g is  $\mathcal{O}_S(b)$ . By Lemma 6.3, we have  $(b^2) = (h - a_1 - a_2)^2 = 4$ . Hence the restricted morphism  $g|_S : S \to \mathbb{P}^3$  is of degree 4. By Lemma 5.2, every general

fiber of  $g|_S$  is a linear subspace of  $\mathbb{P}^3$ . Hence  $g|_S$  cannot be either a double cover of a quadric or a quartic cover of a plane. Hence  $g|_S$  is birational onto a quartic surface.

Since  $(a_1.a_2)$  and  $(a_1.b)$  are coprime, the divisor class  $a_1$  is primitive. Hence the fiber of  $f_1$  is connected. Therefore,  $f_1$  is an elliptic fibration of degree 8 of the polarized K3 surface  $(S_{M_0,N}, h)$ . The same holds for  $f_2$ . We call  $S_{M_0,N}$  doubly octagonal for this reason. The Mukai vectors of  $\mathcal{E}|_S$  and  $\mathcal{F}|_S$  are (3, h, 5) and (2, h, 8), respectively, by Proposition 2.2. Hence, we have  $\chi(\mathcal{E}|_S, \mathcal{F}|_S) = 4$ ,  $v(\mathcal{E}|_S)^2 = 0$  and  $v(\mathcal{F}|_S)^2 = -2$ .

# 7. Proof of Proposition 1.3 and Theorem 1.2

We prove Proposition 1.3 step by step. Let S be  $S_{M_0,N}$  for general N as in the previous section.

claim 1.  $H^i(S, \mathcal{E}|_S) = 0$  for all i > 0.

Proof. Since  $\mathcal{O}_S(b)$  is the pull-back of  $\mathcal{O}_{\mathbb{P}}(1)$  by  $g, H^i(S, \mathcal{O}_S(b)) = 0$  for all i > 0. Since  $|a_j|$  contains a smooth elliptic curve,  $H^i(S, \mathcal{O}_S(a_j)) = 0$ , for all i > 0 and j = 1, 2. Hence the claim follows from the exact sequence (20).

We need to investigate the restriction of the syzygy bundle  $\mathcal{F}$  to S. By Proposition 3.1, we have an exact sequence

(21) 
$$0 \to \mathcal{O}_S(a_1) \oplus \mathcal{O}_S(a_1) \to \mathcal{F}|_S \to j_*\gamma \to 0,$$

where  $j: Z = \mathcal{D}_1 \cap S \hookrightarrow S$  is a natural inclusion and  $\gamma$  is a line bundle on Z. We have deg  $\gamma = 5$  by and Proposition 2.2. Now the following is obvious from

claim 2.  $H^i(S, \mathcal{F}|_S) = 0$  for all i > 0.

*Proof.* Obvious from (21) and the vanishing  $H^1(Z, \gamma) = 0$  and  $H^i(S, \mathcal{O}_S(a_1)) = 0$  for i > 0.

claim 3.  $\operatorname{Ext}^{i}(\mathcal{E}|_{S}, \mathcal{F}|_{S}) = 0$  for all i > 0.

*Proof.* We denote  $\mathcal{E}|_S, \mathcal{F}|_S$  by E and F, respectively. Since  $\chi(E, F) = 4$ , it suffice to show dim Hom(E, F) = 4 and Hom(F, E) = 0. Since E is extension of three line bundles  $\mathcal{O}_S(a_1), \mathcal{O}_S(a_2), \mathcal{O}_S(b)$ , it suffice to show

$$h^{0}(F(-a_{1})) + h^{0}(F(-a_{2})) + h^{0}(F(-b)) \le 4.$$

The exact sequence (21) induces an exact sequence

(22) 
$$0 \to F(-a_2 - b) \to \mathcal{O}_S \oplus \mathcal{O}_S \to j_* \alpha \to 0,$$

where  $\alpha$  is a line bundle of degree 1 on Z. The induced linear map  $H^0(\mathcal{O}_S \oplus \mathcal{O}_S) \to H^0(\alpha)$  is an isomorphism. Tensoring with  $\mathcal{O}_S(a_2)$ , we have the exact sequence

$$0 \to F(-b) \to \mathcal{O}_S(a_2) \oplus \mathcal{O}_S(a_2) \to (j_*\alpha) \otimes \mathcal{O}_S(a_2) \to 0$$

The restriction of the linear system  $|a_2|$  to Z is of degree 2 and free. Hence

 $H^0(\mathcal{O}_S(a_2) \oplus \mathcal{O}_S(a_2)) \to H^0(j_*\alpha \otimes \mathcal{O}_S(a_2))$ 

is injective. Therefore, we have  $H^0(F(-b)) = 0$ .

The dual of the exact sequence (22) is

$$0 \to \mathcal{O}_S \oplus \mathcal{O}_S \to F(-a_1) \to j_*\beta \to 0.$$

for a line bundle  $\beta$  of degree -3. Hence we have  $h^0(F(-a_1)) = 2$ , and similarly  $h^0(F(-a_2)) = 2$ . This shows dim Hom(E, F) = 4.

Hom(F, E) = 0 follows from  $H^0(F(-a_1 - b)) = H^0(F(-a_2 - b)) = H^0(F(-a_1 - a_2)) = 0.$ 

claim 4. The natural linear map  $V = \mathbb{C}^4 \to \operatorname{Hom}(\mathcal{E}|_S, \mathcal{F}|_S)$  (via  $\operatorname{Hom}(\mathcal{E}, \mathcal{F})$ ) is an isomorphism.

*Proof.* It suffice to show the linear map is injective. Assume the contrary. Then there exists a point  $p \in \mathbb{P}^3$  such that every R belonging to S is the union of three lines passing through p. This is obviously impossible.

claim 5.  $\mathcal{F}|_S$  is simple.

*Proof.* By the exact sequence (22),  $\mathcal{F}|_S$  is the reflection of  $j_*\alpha$  (by the structure sheaf  $\mathcal{O}_S$  which is rigid). Since  $\alpha$  is simple so is  $\mathcal{F}|_S$ .  $\Box$ 

**Proof of Proposition 1.3.** We already proved it mostly in the above claims 1–5 taking  $S_{M_0,N}$  as S, except for the simpleness of  $\mathcal{E}|_S$ . We need an extra argument, since the restriction of  $\mathcal{E}$  on  $S_{M_0,N}$  is not simple. In fact, the 6-fold  $\mathcal{T}_{M_0}$  has an action of the 3-dimensional torus, and the restriction of  $\mathcal{E}$  to there is not simple.

By the exact sequence (20),  $\mathcal{E}|_S$  is an extension of the direct sum of two line bundles by the line bundle  $\mathcal{O}_S(b)$ . Now we replace the direct sum by nontrivial extension G of  $O_S(a_1)$  by  $\mathcal{O}_S(a_2)$ . This is possible since  $(a_1 - a_2)^2 = -6$ . Furthermore, we take a nontrivial extension E'of G by  $\mathcal{O}_S(b)$ . This is possible since  $(a_1 - b)^2 = (a_2 - b)^2 = -6$ . Since  $|b - a_i| = |a_i - b| = \emptyset$  for i = 1, 2 and since  $|a_1 - a_2| = |a_2 - a_1| = \emptyset$ , E' is simple. (The emptyness of linear systems follows easily since  $a_1, a_2$  and b are nef.) Since E' is a small deformation of  $\mathcal{E}|_S$ , the pair  $(E', \mathcal{F}|_S)$  reembeds S into  $\mathcal{T}$ , and the image of S is again a complete intersection with respect to  $\mathcal{E}^{\oplus 2} \oplus \mathcal{F}^{\oplus 2}$ , that is, isomorphic to  $S_{M',N'}$  for a pair

14

(M', N') of deformations of the pair  $(M_0, N)$ , by the claims 1–4. This K3 surface  $S_{M',N'}$  satisfies all the requirement of the proposition.  $\Box$ 

**Proof of Theorem 1.2.** We denote the non-empty open subset of  $\mathcal{P}$  (see Introduction) consisting of (M, N) such that the restriction of  $\mathcal{E}$  and  $\mathcal{F}$  to  $S_{M,N}$  satisfies the requirement of Proposition 1.3 by  $\mathcal{P}_0$ . Let (S,h) be a small deformation of  $(S_{M,N}, H|_{S_{M,N}})$  as polarized K3 surface. Then by Proposition 1.3 and the proposition below  $\mathcal{E}|_{S_{M,N}}$  and  $\mathcal{F}|_{S_{M,N}}$  deforms to vector bundles E and F, with det  $E \simeq \det F \simeq \mathcal{O}_S(h)$ , on S. Since (E, F) is a small deformation of  $(\mathcal{E}|_{S_{M,N}}, \mathcal{F}|_{S_{M,N}})$ , it embeds S into  $\mathcal{T}$  and the image of S is a complete intersection with respect to  $\mathcal{E}^{\oplus 2} \oplus \mathcal{F}^{\oplus 2}$ , again by Proposition 1.3. Therefore, the image of the classification morphism

$$\mathcal{P}_0 \to \mathcal{F}_{16}, \quad (M, N) \mapsto (S_{M,N}, \mathcal{O}_S(1)),$$

is open.

**Proposition 7.1.** [[6, Proposition 4.1]) Let E be a simple vector bundle on a K3 surface S and (S', L') be a small deformation of  $(S, \det L)$ . Then there is a deformation (S', E') of the pair (S, E) such that  $\det E' \simeq L'$ .

### References

- G. Ellingsrud, and S.A. Strømme, The number of twisted cubic curves on the general quintic threefold, Math. Scand. 76(1995), 5–34.
- [2] G. Ellingsrud, R. Piene, and S.A. Strømme, On the variety of nets of quadrics defining twisted cubic curves. In F. Ghione, C. Peskine and E. Sernesi, editors, *Space Curves*, Lecture Notes in Math. **1266** (1987), Springer-Verlag, pp. 84–96.
- [3] V.A. Gritsenko, K. Hulek and G.A. Sankaran, The Kodaira dimension of the moduli spaces of K3 surfaces, Invent. math. 169 (2007), 519–567.
- [4] S. Mukai: On the moduli space of bundles on K3 surfaces I, in Vector Bundles on Algebraic Varieties, Oxford University Press, 1987, pp.341-413.
- [5] S. Mukai: Curves, K3 surfaces and Fano 3-folds of genus ≤ 10, in 'Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata ', pp. 357– 377, Kinokuniya, Tokyo, 1988.
- [6] S. Mukai, Polarized K3 surfaces of genus 18 and 20, in *Complex Projective Geometry*, ed. G. Ellingsrud et. al., London Math. Soc. 1992, pp. 264–276.
- S. Mukai: Polarized K3 surfaces of genus thirteen, In S. Mukai et. al, editors, *Moduli spaces and Arithmetic Geometry (Kyoto, 2004)*, Adv. Stud. Pure Math. 45 (2006), Math. Soc. Japan and Amer. Math. Soc., pp. 315–326.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

*E-mail address*: mukai@kurims.kyoto-u.ac.jp