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Abstract

We introduce and study a certain class of nonhomogeneous quadratic algebras
together with the distinguish set of mutually commuting elements inside of each,
the so-called Dunkl elements. We describe relations among the Dunkl elements.
This result is a further extension and generalization of analogous results obtained
in [10],[32] and [21]. As an application we describe explicitly the set of relations
among the Gaudin elements in the group ring of the symmetric group, cf [30].

Yet another objective of our paper is to describe several combinatorial prop-
erties of some special elements, the so-called Coxeter element and the longest
element, in the associative quasi-classical Yang–Baxter algebra. In the case of
Coxeter element we relate the corresponding reduced polynomials introduced in

[40], with the β-Grothendieck polynomials [11] for some special permutations π
(n)
k .

Moreover, we show that the specialization G
(β)

π
(n)
k

(1) of the β-Grothendieck poly-

nomial G
(β)

π
(n)
k

(Xn) counts the number of k-dissections of a convex (n+ k + 1)-gon

according to the number of diagonals involved. When the number of diagonals
in a k-dissection is the maximal possible, we recover the well-known fact that the
number of k-triangulations of a convex (n + k + 1)-gon is equal to the value of a
certain Catalan-Hankel determinant, see e.g. [36]. We also show that for a certain
5-parameters family of vexillary permutations, the specialization xi = 1, ∀i ≥ 1,

of the corresponding β-Schubert polynomials S
(β)
w (1) coincides with some Fuss-

Narayana polynomials and their generalizations. As an example we show that the
reduced polynomial corresponding to a monomial xn12 xm23 counts the number of
(n,m)-Delannoy paths according to the number of NE-steps, see Lemma 3.2.

We also point out on a conjectural connection between the sets of maximal
compatible sequences for the permutation σn,2n,2,0 and that σn,2n+1,2,0 from one
side, and the set of V SASM(n) and that of CSTCPP (n) correspondingly, from
the other, see Comments 3.6 for details. Finally, in Section 3 we introduce and
study a multiparameter generalization of reduced polynomials introduced in [40],
as well as that of the Catalan, Narayana and (small) Schröder numbers.

In the case of the longest element we relate the corresponding reduced polyno-
mial with the Ehrhart polynomial of the Chan–Robbins polytope.
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Introduction

The Dunkl operators have been introduced in the later part of 80’s of the last century
by Charles Dunkl [7], [8] as a powerful mean to study of harmonic and orthogonal
polynomials related with finite Coxeter groups. In the present paper we don’t need the
definition of Dunkl operators for arbitrary (finite) Coxeter groups, see e.g. [7], but only
for the special case of the symmetric group Sn.

Definition 0.1 Let Pn = C[x1, . . . , xn] be the ring of polynomials in variables x1, . . . , xn.
The type An−1 (additive) rational Dunkl operators D1, . . . , Dn are the differential-difference
operators of the following form

Di = λ
∂

∂xi
+
∑
j ̸=i

1− sij
xi − xj

, (0.1)

Here sij, 1 ≤ i < j ≤ n, denotes the exchange (or permutation) operator, namely,

sij(f)(x1, . . . , xi, . . . , xj, . . . , xn) = f(x1, . . . , xj, . . . , xi, . . . , xn);

∂
∂xi

stands for the derivative w.r.t. the variable xi; λ ∈ C is a parameter.

The key property of the Dunkl operators is the following result.

Theorem 0.1 ( C.Dunkl [7] ) For any finite Coxeter group (W,S), where S = {s1, . . . , sl}
denotes the set of simple reflections, the Dunkl operators Di := Dsi and Dj := Dsj com-
mute: Di Dj = Dj Di, 1 ≤ i, j ≤ l.

Another fundamental property of the Dunkl operators which finds a wide variety of
applications in the theory of integrable systems, see e.g. [15], is the following statement:

the operator
l∑

i=1

(Di)
2

“essentially” coincides with the Hamiltonian of the rational Calogero–Moser model re-
lated to the finite Coxeter group (W,S).

Definition 0.2 Truncated (additive) Dunkl operator (or the Dunkl operator at critical
level), denoted by Di, i = 1, . . . , l, is an operator of the form (0.1) with parameter λ = 0.

For example, the type An−1 rational truncated Dunkl operator has the following form

Di =
∑
j ̸=i

1− sij
xi − xj

.

Clearly the truncated Dunkl operators generate a commutative algebra.
The important property of the truncated Dunkl operators is the following result discov-
ered and proved by C.Dunkl [8]; see also [1] for a more recent proof.
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Theorem 0.2 (C.Dunkl [8], Y.Bazlov [1]) For any finite Coxeter group (W,S) the al-
gebra over Q generated by the truncated Dunkl operators D1, . . . ,Dl is canonically iso-
morphic to the coinvariant algebra of the Coxeter group (W,S).

Example 0.1 In the case when W = Sn is the symmetric group, Theorem 0.2 states
that the algebra overQ generated by the truncated Dunkl operatorsDi =

∑
j ̸=i

1−sij
xi−xj

, i =

1, . . . , n, is canonically isomorphic to the cohomology ring of the full flag variety F ln of
type An−1

Q[D1, . . . ,Dn] ∼= Q[x1, . . . , xn]/Jn, (0.2)

where Jn denotes the ideal generated by the elementary symmetric polynomials {ek(Xn),
1 ≤ k ≤ n}.

Recall that the elementary symmetric polynomials ei(Xn), i = 1, . . . , n, are defined
through the generating function

1 +
n∑

i=1

ei(Xn) t
i =

n∏
i=1

(1 + t xi),

where we set Xn := (x1, . . . , xn). It is well-known that in the case W = Sn, the
isomorphism (0.2) can be defined over the ring of integers Z.

Theorem 0.2 by C.Dunkl has raised a number of natural questions:
(A) What is the algebra generated by the truncated
• trigonometric,
• elliptic,
• super, matrix, . . .,
(a) additive Dunkl operators ?
(b) Ruijsenaars–Schneider–Macdonald operators ?
(c) Gaudin operators ?
(B) Describe commutative subalgebra generated by the Jucys–Murphy elements in
• the group ring of the symmetric group;
• the Hecke algebra ;
• the Brauer algebra, BMV algebra, . . ..
(C) Does there exist an analogue of Theorem 0.2 for
• Classical and quantum equivariant cohomology and equivariant K-theory rings of

the flag varieties ?
• Cohomology and K-theory rings of affine flag varieties ?
• Diagonal coinvariant algebras of finite Coxeter groups ?
• Complex reflection groups ?
The present paper is a short Introduction to a few items from Section 5 of [18].
The main purpose of my paper “On some quadratic algebras, II” is to give some

partial answers on the above questions in the case of the symmetric group Sn.
The purpose of the present paper is to draw attention to an interesting class of

nonhomogeneous quadratic algebras closely connected (still mysteriously !) with different
branches of Mathematics such as

Classical and Quantum Schubert and Grothendieck Calculi,
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Low dimensional Topology,
Classical, Basic and Elliptic Hypergeometric functions,
Algebraic Combinatorics and Graph Theory,
Integrable Systems,
. . . . . . . . . . . . . . . .

What we try to explain in [18] is that upon passing to a suitable representation of
the quadratic algebra in question, the subjects mentioned above, are a manifestation of
certain general properties of that quadratic algebra.

From this point of view, we treat the commutative subalgebra generated by the
additive (resp. multiplicative) truncated Dunkl elements in the algebra 3Tn(β), see
Definition 2.1, as universal cohomology (resp. universal K-theory) ring of the complete
flag variety F ln. The classical or quantum cohomology (resp. the classical or quantum
K-theory) rings of the flag variety F ln are certain quotients of the universal ring.

For example, in [20] we have computed relations among the (truncated) Dunkl el-
ements {θi, i = 1, . . . , n} in the elliptic representation of the algebra 3Tn(β = 0). We
expect that the commutative subalgebra obtained is isomorphic to (yet not defined, but
see [14]) the elliptic cohomology ring of the flag variety F ln.

Another example from [18]. Consider the algebra 3Tn(β = 0).
One can prove [18] the following identities in the algebra 3Tn(β = 0)

(A) Summation formula

n−1∑
j=1

( n−1∏
b=j+1

ub,b+1

)
u1,n

(j−1∏
b=1

ub,b+1

)
=

n−1∏
a=1

ua,a+1.

(B) Duality transformation formula Let m ≤ n, then

n−1∑
j=m

( n−1∏
b=j+1

ub,b+1

) [m−1∏
a=1

ua,a+n−1 ua,a+n

]
um,m+n−1

( j−1∏
b=m

ub,b+1

)
=

m∑
j=1

[m−j∏
a=1

ua,a+n ua+1,a+n

] (n−1∏
b=m

ub,b+1

) [j−1∏
a=1

ua,a+n−1 ua,a+n

]
−

m∑
j=2

[m−1∏
a=j

ua,a+n−1 ua,a+n

]
um,n+m−1

(n−1∏
b=m

ub,b+1

)
u1,n.

One can check that upon passing to the elliptic representation of the algebra 3Tn(β =
0), see [18], Section 5.1.7, or [20] for the definition of elliptic representation, the above
identities (A) and (B) finally end up correspondingly, to be a Summation formula and a
Duality transformation formula for multiple elliptic hypergeometric series (of type An−1),
see e.g. [16] for definition of the latter.
After passing to the so-called Fay representation [18], the identities (A) and (B) become
correspondingly to be the Summation formula and Duality transformation formula for
the Riemann theta functions of genus g > 0, [18]. These formulas in the case g ≥ 2
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seems to be new.

A few words about the content of the present paper.
In Section 1, see Definition 1.2, I introduce the so-called dynamical classical Yang–

Baxter algebra as “a natural quadratic algebra” in which the Dunkl elements form a
pair-wise commuting family. It is the study of the algebra generated by the (truncated)
Dunkl elements that is the main objective of our investigation in [18] and the present
paper.

In Section 2, see Definition 2.1, we introduce the algebra 3HTn(β), which seems to be
the most general (noncommutative) deformation of the (even) Orlik–Solomon algebra of
type An−1, such that it’s still possible to describe relations among the Dunkl elements,
see Theorem 2.1. As an application we describe explicitly a set of relations among the
(additive) Gaudin / Dunkl elements, cf [30].

▶▶ It should be stressed at this place, that we treat the Gaudin elements/operators
(either additive or multiplicative) as images of universal Dunkl elements/operators (ad-
ditive or multiplicative) in the Gaudin representation of the algebra 3HTn(0). There are
several other important representations of that algebra, for example, the Calogero–Moser,
Bruhat, Buchstaber–Felder–Veselov (elliptic), Fay trisecant (τ -functions), adjoint, and
so on, considered (among others) in [18]. Specific properties of a representation chosen
1 (e.g. Gaudin representation) imply some additional relations among the images of the
universal Dunkl elements (e.g. Gaudin elements) should to be unveiled. ◀◀

In Section 3 we describe several combinatorial properties of some special elements in

the associative quasi-classical Yang–Baxter algebra 2, denoted by ÂCY Bn. The main
results in that direction were motivated and obtained as a by-product, in the process of
the study of the the structure of the algebra 3HTn(β). More specifically, in the course
of “hunting for descendant relations” in the algebra mentioned, an important problem
to be solved to construct a basis in the nil-quotient algebra 3T

(0)
n . This problem is still

widely-open.
The results of Section 3.1, see Proposition 3.1, items (1)–(5), are more or less

well-known among the specialists in the subject, while those of the item (6) seem to be
new. Namely, we show that the polynomial Qn(xij = ti) from [40], (6.C8), (c), essen-
tially coincides with the β-deformation [11] of the Lascoux-Schützenberger Grothendieck
polynomial [25] for some particular permutation. The results of Proposition 3.1, (6),
point out on a deep connection between reduced forms of monomials in the algebra

1For example, in the cases of either Calogero–Moser or Bruhat representations one has an additional
constraint, namely, u2

ij = 0 for all i ̸= j. In the case of Gaudin representation one has an additional

constraint u2
ij = p2ij , where the (quantum) parameters {pij = 1

xi−xj
, i ̸= j}, satisfy simultaneously

the Arnold and Plücker relations, see Section 2, (II). Therefore, the (small) quantum cohomology ring
of the type An−1 full flag variety F ln and the Bethe subalgebra(s) (i.e. the subalgebra generated by
Gaudin elements in the algebra 3HTn(0)) correspond to different specializations of quantum parameters
{qij} of the universal cohomology ring (i.e. the subalgebra/ring in 3HTn(0) generated by (universal)
Dunkl elements. For more details and examples, see [18].

2 The algebra ÂCY Bn can be treated as “one-half” of the algebra 3Tn(β). It appears, see Lemma 3.1,
that the basic relations among the Dunkl elements, which do not mutually commute anymore, are still
valid.
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ÂCY Bn and the Schubert and Grothendieck Calculi. This observation was the starting
point for the study of some combinatorial properties of certain specializations of the
Schubert, β-Grothendieck [12] and double β-Grothendieck polynomials in Section 3.2
. One of the main results of Section 3.2 can be stated as follows.

Theorem 0.3
(1) Let w ∈ Sn be a permutation, consider the specialization x1 := q, xi = 1, ∀i ≥ 2,

of the β-Grothendieck polynomial G
(β)
w (Xn). Then

Rw(q, β + 1) := G(β)
w (x1 = q, xi = 1, ∀i ≥ 2) ∈ N[q, 1 + β].

In other words, the polynomial Rw(q, β) has non-negative integer coefficients 3.
For late use we define polynomials

Rw(q, β) := q1−w(1) Rw(q, β).

(2) Let w ∈ Sn be a permutation, consider the specialization xi := q, yi = t, ∀i ≥ 1, of

the double β-Grothendieck polynomial G
(β)
w (Xn, Yn). Then

G(β−1)
w (xi := q, yi := t, ∀i ≥ 1) ∈ N[q, t, β].

(3) Let w be a permutation, then

Rw(1, β) = R1×w(0, β).

Note that Rw(1, β) = Rw−1(1, β), but Rw(t, β) ̸= Rw−1(t, β), in the general case.

For the reader convenience we collect some basic definitions and results concerning the
β-Grothendieck polynomials in Appendix.

Let us observe that Rw(1, 1) = Sw(1), where Sw(1) denotes the specialization
xi := 1, ∀i ≥ 1, of the Schubert polynomial Sw(Xn) corresponding to permutation w.
Therefore, Rw(1, 1) is equal to the number of compatible sequences [4] (or pipe dreams,
see e.g. [36] ) corresponding to permutation w.

Problem 0.1
Let w ∈ Sn be a permutation and l := ℓ(w) be its length. Denote by CS(w) =

{a = (a1 ≤ a2 ≤ . . . ≤ al) ∈ Nl } the set of compatible sequences [4] corresponding to
permutation w.

• Define statistics r(a) on the set of all compatible sequences CSn :=
⨿

w∈Sn
CS(w)

in a such way that ∑
a∈CS(w)

qa1 βr(a) = Rw(q, β).

• Find and investigate a geometric interpretation, combinatorial and algebra-geometric

properties of polynomials S
(β)
w (Xn),

3For a more general result see Appendix, Corollary A2.
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where for a permutation w ∈ Sn we denoted by S
(β)
w (Xn) the β-Schubert polynomial

defined as follows

S(β)
w (Xn) =

∑
a∈CS(w)

βr(a)

l:=ℓ(w)∏
i=1

xai .

We expect that polynomial S
(β)
w (1) coincides with the Hilbert polynomial of a certain

graded commutative ring naturally associated to permutation w.

Remark 0.1 It should be mentioned that, in general, the principal specialization

G(β−1)
w (xi := qi−1, ∀i ≥ 1)

of the (β − 1)-Grothendieck polynomial may have negative coefficients.

Our main objective in Section 3.2 is to study the polynomials Rw(q, β) for a special
class of permutations in the symmetric group S∞. Namely, in Section 3.2 we study
some combinatorial properties of polynomials Rϖλ,ϕ

(q, β) for the five parameters family
of vexillary permutations {ϖλ,ϕ} which have the shape

λ := λn,p,b = (p(n− i+ 1) + b, i = 1, . . . , n+ 1) and flag
ϕ := ϕk,r = (k + r(i− 1), i = 1, . . . , n+ 1).
This class of permutations is notable for many reasons, including that the special-

ized value of the Schubert polynomial Sϖλ,ϕ
(1) admits a nice product formula 4 , see

Theorem 3.6. Moreover, we describe also some interesting connections of polynomials
Rϖλ,ϕ

(q, β) with plane partitions, the Fuss-Catalan numbers 5 and Fuss-Narayana poly-
nomials, k-triangulations and k-dissections of a convex polygon, as well as a connection
with two families of ASM. For example, let λ = (bn) and ϕ = (kn) be rectangular
shape partitions, then the polynomial Rϖλ,ϕ

(q, β) defines a (q, β)-deformation of the
number of (ordinary) plane partitions 6 sitting in the box b× k × n. It seems an inter-
esting problem to find an algebra-geometric interpretation of polynomials Rw(q, β) in
the general case.

We expect that the reduced polynomials corresponding to the higher-order powers
of the Coxeter elements also admit an interesting combinatorial interpretation(s). Some
preliminary results in this direction are discussed in Comments 3.5.

4One can prove a product formula for the principal specialization Sϖλ,ϕ
(xi := qi−1, ∀i ≥ 1) of the

corresponding Schubert polynomial. We don’t need a such formula in the present paper.
5We define the (generalized) Fuss-Catalan numbers to be FC

(p)
n (b) := 1+b

1+b+(n−1)p

(
np+b
n

)
. Connection

of the Fuss-Catalan numbers with the p-ballot numbers Balp(m,n) := n−mp+1
n+m+1

(
n+m+1

m

)
and the Rothe

numbers Rn(a, b) :=
a

a+bn

(
a+bn
n

)
can be described as follows

FC(p)
n (b) = Rn(b+ 1, p) = Balp−1(n, (n− 1)p+ b).

6 Let λ be a partition. An ordinary plane partition (plane partition for short)bounded by d and
shape λ is a filling of the shape λ by the numbers from the set {0, 1, . . . , d} in such a way that the
numbers along columns and rows are weakly decreasing.
A reverse plane partition bounded by d and shape λ is a filling of the shape λ by the numbers from

the set {0, 1, . . . , d} in such a way that the numbers along columns and rows are weakly increasing.
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In Section 3.3 we give a partial answer on the question 6.C8(d) by R.Stanley [40].
Almost all results in Section 3 state that some two specific sets have the same number

of elements. Our proofs of these results are pure algebraic. It is an interesting problem
to find bijective proofs of results from Section 3 which generalize and extend the bijective
proofs presented in [44], [36], [41] to the case of β-Grothendieck polynomials, the (small)
Schröder numbers and k-dissections of a convex (n + k + 1)-gon. We are planning to
treat and present these bijections in (a) separate publication(s).

At the end of Introduction I want to add two remarks.
(a) After a suitable modification of the algebra 3HTn, see [22], and the case β ̸= 0 in

[18], one can compute the set of relations among the (additive) Dunkl elements (defined in
Section 1, (1.3)). In the case β = 0 and qij = qi δj−i,1, 1 ≤ i < j ≤ n, where δa,b is the
Kronecker delta symbol, the commutative algebra generated by additive Dunkl elements
(1.3) appears to be “almost” isomorphic to the equivariant quantum cohomology ring
of the flag variety F ln, see [22] for details. Using the multiplicative version of Dunkl
elements (1.3), one can extend the results from [22] to the case of equivariant quantum
K-theory of the flag variety F ln, see [18].

(b) In fact one can construct an analogue of the algebra 3HTn and a commutative
subalgebra inside it, for any graph Γ = (V,E) on n vertices, possibly with loops and

multiple edges, [18]. We denote this algebra by 3Tn(Γ), and denote by 3T
(0)
n (Γ) its nil-

quotient, which may be considered as a “classical limit of the algebra 3Tn(Γ)”.
The case of the complete graph Γ = Kn reproduces the results of the present paper
and those of [18], i.e. the case of the full flag variety F ln. The case of the complete
multipartite graph Γ = Kn1,...,nr reproduces the analogue of results stated in the present
paper for the full flag variety F ln, in the case of the partial flag variety Fn1,...,nr , see [18]
for details.
We expect that in the case of the complete graph with all edges having the same
multiplicity m, Γ = K

(m)
n , the commutative subalgebra generated by the Dunkl elements

in the algebra 3T
(0)
n (Γ) is related to the algebra of coinvariants of the diagonal action

of the symmetric group Sn on the ring of polynomials Q[X
(1)
n , . . . , X

(m)
n ], where we set

X
(i)
n = {x(i)1 , . . . , x

(i)
n }.

Example 0.2 Take Γ = K2,2. The algebra 3T (0)(Γ) is generated by four elements {a =
u13, b = u14, c = u23, d = u24} subject to the following set of (defining) relations

• a2 = b2 = c2 = d2 = 0, c b = b c, a d = d a,
• a b a+ b a b = 0 = a c a+ c a c, b d b+ d b d = 0 = c d c+ d c d,
a b d− b d c− c a b+ d c a = 0 = a c d− b a c− c d b+ d b a,
• a b c a+ a d b c+ b a d b+ b c a d+ c a d c+ d b c d = 0.
It is not difficult to see that 7

Hilb(3T (0)(K2,2), t) = [3]2t [4]2t , Hilb(3T (0)(K2,2)
ab, t) = (1, 4, 6, 3).

Here for any algebra A we denote by Aab its abelization.

7Hereinafter we shell use notation
(a0, a1, . . . , ak)t := a0 + a1t+ · · ·+ akt

k.
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The commutative subalgebra in 3T (0)(K2,2), which corresponds to the intersection
3T (0)(K2,2)

∩
Z[θ1, θ2, θ3, θ4], is generated by the elements c1 := θ1 + θ2 = (a + b + c +

d) and c2 := θ1 θ2 = (ac+ ca+ bd+ db+ ad+ bc). The elements c1 and c2 commute and
satisfy the following relations

c31 − 2 c1 c2 = 0, c22 − c21 c2 = 0.

The ring of polynomials Z[c1, c2] is isomorphic to the cohomology ring H∗(Gr(2, 4),Z)
of the Grassmannian variety Gr(2, 4).

This example is illustrative of the similar results valid for the graphs Kn1,...,nr , i.e. for

the partial flag varieties [18]. The meaning of the algebra 3T
(0)
n (Γ) and the corresponding

commutative subalgebra inside it for a general graph Γ, is still unclear.

Conjecture 1
Let Γ = (V,E) be a connected subgraph of the complete graph Kn on n vertices. Then

Hilb(3T (0)
n (Γ)ab, t) = t|V |−1 T (Γ; 1 + t−1, 0),

where for any graph Γ the symbol T (Γ;x, y) denotes the Tutte polynomial corre-
sponding to this graph.

Problem 0.2
Let Γn(∗) be a spanning star subgraph of the complete graph Kn.

Compute the Hilbert series of the algebra 3T
(0)
n (Γn(∗)).
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Bourgogne, France, October 2010;
• The School of Mathematics and Statistics University of Sydney, NSW 2006, Australia,
November 2010;
• The Institute of Advanced Studies at NTU, Singapore, 5th Asia– Pacific Workshop on

9



Quantum Information Science in conjunction with the Festschrift in honor of Vladimir
Korepin, May 2011;
• The Center for Quantum Geometry of Moduli Spaces, Faculty of Science, Aarhus
University, Denmark, August 2011;
• The Higher School of Economy (HES), and The Moscow State University, Russia,
November 2011;
• The Research Institute for Mathematical Sciences (RIMS), the Conference Combina-
torial representation theory, Japan, October 2011.

I would like to thank Professors Leon Takhtajan (Stony Brook), Jørgen E. Ander-
sen (CGM, Aarhus University), Vladimir Matveev (Université de Bourgogne), Vitaly
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1 Dunkl elements

LetAn be the free associative algebra over Z with the set of generators {uij, 1 ≤ i, j ≤ n}.
We set xi := uii, i = 1, . . . , n.

Definition 1.1 Define (additive) Dunkl elements θi, i = 1, . . . , n, in the algebra An to
be

θi = xi +
n∑

j=1
j ̸=i

uij. (1.3)

We are interested in to find “natural relations” among the generators {uij} such that
the Dunkl elements (1.3) are pair-wise commute. One natural condition which is the
commonly accepted in the theory of integrable systems, is

• (Locality condition)

[xi, xj] = 0, uij ukl = ukl uij, if {i, j} ∩ {k, l} = ∅. (1.4)

Lemma 1.1 Assume that elements {uij} satisfy the locality conditions (1.4). Then

[θi, θj] =
[
xi +

∑
k ̸=i,j

uik, uij + uji

]
+
[
uij,

n∑
k=1

xk

]
+

∑
k ̸=i,j

wijk,

where
wijk = [uij, uik + ujk] + [uik, ujk] + [xi, ujk] + [uik, xj] + [xk, uij]. (1.5)

Therefore in order to ensure that the Dunkl elements form a pair-wise commuting family,
it’s natural to assume that the following conditions hold
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• (Unitarity)

[uij + uji, ukl] = 0 = [uij + uji, xk] for all i, j, k, l, (1.6)

i.e. the elements uij + uji are central.
• (Crossing relations)

[
n∑

k=1

xk , uij] = 0 for all i, j. (1.7)

• (Dynamical classical Yang–Baxter relations )

[uij, uik + ujk] + [uik, ujk] + [xi, ujk] + [uik, xj] + [xk, uij] = 0, (1.8)

if i, j, k are pair-wise distinct.

Definition 1.2 We denote by DCY Bn the quotient of the algebra An by the two-sided
ideal generated by relations (1.4),(1.6),(1.7) and (1.8).

Clearly, the Dunkl elements (1.3) generate a commutative subalgebra inside the algebra
CDY Bn, and the sum

∑n
i=1 θi =

∑n
i=1 xi belongs to the center of the algebra DCY Bn.

Example 1.1 (A representation of the algebra DCY Bn, cf [9])
Given a set q1, . . . , qn−1 of mutually commuting parameters, define qij =

∏j−1
a=i qa, if

i < j and set qij = qji in the case i > j. Clearly, that if i < j < k, then qijqjk = qik.
Let z1, . . . , zn be a set of variables. Denote by Pn := Z[z1, . . . , zn] the corresponding

ring of polynomials. We consider the variable zi, i = 1, . . . , n, also as the operator acting
on the ring of polynomials Pn by multiplication on zi..

Let sij ∈ Sn be a transposition. We consider the transposition sij also as the operator
which acts on the ring Pn by interchanging zi and zj, and fixes all other variables. We
denote by

∂ij =
1− sij
zi − zj

, ∂i := ∂i,i+1,

the divided difference operators corresponding to the transposition sij and the simple
transposition si := si,i+1. Finally we define operator (cf [9] )

∂(ij) := ∂i · · · ∂j−1∂j∂j−1 · · · ∂i, if i < j.

The operators ∂(ij), 1 ≤ i < j ≤ n satisfy (among others) the following set of relations
(cf [9])

• [zj, ∂(ik)] = 0, if j /∈ [i, k], [∂(ij),
∑j

a=i za] = 0,
• [∂(ij), ∂(kl)] = δjk [zj, ∂(il)] + δil [∂(kj), zi], if i < j, k < l.
Therefore, if we set uij = qij ∂(ij), if i < j, and u(ij) = −u(ji), if i > j, then for

a triple i < j < k we will have

[uij, uik+ujk]+[uik, ujk]+[zi, ujk]+[uik, zj]+[zk, ujk] = qijqjk[∂(ij), ∂(jk)]+qik[∂(ik), zj] = 0.
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Thus the elements zi, i = 1, . . . , n and {uij, 1 ≤ i < j ≤ n} define a representation of the
algebra DCY Bn, and therefore the Dunkl elements

θi := zi +
∑
j ̸=i

uij = zi −
∑
j<i

qji∂(ji) +
∑
j>i

qij∂(ij)

form a pairwise commuting family of operators acting on the ring of polynomials
Z[q1, . . . , qn−1][z1, . . . , zn], cf [9].

Comments 1.1
(Non-unitary dynamical classical Yang–Baxter algebra) Let Ãn be the quotient of

the algebra An by the two-sided ideal generated by the relations (1.4), (1.7) and (1.8).
Consider elements

θi = xi +
∑
a ̸=i

uia, and θ̄j = −xj +
∑
b̸=j

ubj. 1 ≤ i < j ≤ n.

Then

[θi, θ̄j] = [
n∑

k=1

xk , uij] +
∑
k ̸=i,j

wikj.

Therefore the elements θi and θ̄j commute in the algebra Ãn.
In the case when xi = 0 for all i = 1, . . . , n, the relations wijk = 0, assuming

that i, j, k are all distinct, are well-known as the (non-unitary) classical Yang-Baxter
relations. Note that for a given triple (i, j, k) we have in fact 6 relations. These six
relations imply that [θi, θ̄j] = 0. However,

[θi, θj] =
[∑
k ̸=i,j

uik , uij + uji

]
̸= 0.

In order to ensure the commutativity relations among the Dunkl elements, i.e. [θi, θj] =
0 for all i, j, one needs to impose on the elements {uij, 1 ≤ i ̸= j ≤ n} the “twisted”
classical Yang–Baxter relations, namely

[uij + uik, ujk] + [uik,uji] = 0, if i, j, k are all distinct. (1.9)

Contrary to the case of non-unitary classical Yang–Baxter relations, it is easy to see that
in the case of twisted classical Yang–Baxter relations, for a given triple (i, j, k) one has
only 3 relations.

2 Algebra 3HTn

Consider the twisted classical Yang–Baxter relation

[uij + uia, uja] + [uia, uji] = 0, where i, j, k are distinct.
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Having in mind applications of the Dunkl elements, we split the above relation on two
relations

uij ujk = ujk uik − uik uji and ujk uij = uik ujk − uji uik,

and impose the unitarity constraints

uij + uji = β,

where β is a central element. Summarizing, we come to the following definition.

Definition 2.1 Define algebra 3Tn(β) to be the quotient of the free associative algebra
Z[β] ⟨ uij, 1 ≤ i < j ≤ n ⟩ by the set of relations

• (Locality) uij ukl = ukl uij, if {i, j} ∩ {k, l} = ∅,
• uij ujk = uik uij + ujk uik − β uik, ujk uij = uij uik + uik ujk − β uik,
if 1 ≤ i < j < k ≤ n.

It is clear that elements {uij, ujk, uik, 1 ≤ i < j < k ≤ n} satisfy the classical Yang–
Baxter relations, and therefore, the elements {θi :=

∑
j ̸=i uij, 1 = 1, . . . , n} form a

mutually commuting set of elements in the algebra 3HTn(β).

Definition 2.2 We will call θ1, . . . , θn by the (universal) additive Dunkl elements.

For each pair i < j, we define element qij := u2ij − β uij ∈ 3Tn(β).

Lemma 2.1
(1) The elements {qij, 1 ≤ i < j ≤ n} satisfy the Kohno– Drinfeld relations
( known also as the horizontal four term relations)

qij qkl = qkl qij, if {i, j} ∩ {k, l} = ∅,
[qij, qik + qjk] = 0, [qij + qik, qjk] = 0, if i < j < k.

(2) For a triple (i < j < k) define uijk := uij − uik + ujk. Then

u2ijk = β uijk + qij + qik + qjk.

(3) (Deviation from the Yang–Baxter and Coxeter relations)
uij uik ujk − ujk uik uij = [uik, qij] = [qjk, uik],
uij ujk uij − ujk uij ujk = qij uik − uik qjk.

Comments 2.1 It is easy to see that the horizontal 4-term relations listed in Lemma 2.1,
(1), are equivalent to the locality condition among the generators {qij}, together with
the commutativity conditions among the Jucys–Murphy elements

di :=
n∑

j=i+1

qij, i = 2, . . . , n,

namely, [di, dj] = 0. In [18] we describe some properties of a commutative subalgebra
generated by the Jucys-Murphy elements in the Kohno– Drinfeld algebra. It is well-
known that the Jucys–Murphy elements generate a maximal commutative subalgebra in
the group ring of the symmetric group Sn. It is an open problem to describe defining
relations among the Jucys–Murphy elements in the group ring Z[Sn].
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Finally we introduce the “Hecke quotient” of the algebra 3Tn(β), denoted by 3HTn.

Definition 2.3 Define algebra 3HTn to be the quotient of the algebra 3Tn(β) by the set
of relations

qij qkl = qkl qij, for all i, j, k, l.

In other words we assume that the all elements {qij, 1 ≤ i < j ≤ n} are central in
the algebra 3Tn(β). From Lemma 2.1 follows immediately that in the algebra 3HTn the
elements {uij} satisfy the multiplicative (or quantum) Yang–Baxter relations

uij uik ujk = ujk uik uij, if i < j < k. (2.10)

Therefore one can define multiplicative analogue Θi, 1 ≤ i ≤ n, of the Dunkl
elements θi. Namely, to start with, we define elements

hij := hij(t) = 1 + t uij, i ̸= j.

We consider hij(t) as an element of the algebra 3̃HTn := 3HTn ⊗ Z[[β, q±1
ij , t, x, y, . . .]],

where we assume that all parameters {β, qij, t, x, y, . . .} are central in the algebra 3̃HTn.

Lemma 2.2
(1a) hij(x) hij(y) = hij(x+ y + β xy) + qij xy,
(1b) hij(x) hji(y) = hij(x− y) + β y − qij x y, if i < j.
It follows from (1b) that hij(t) hji(t) = 1 + β t − t2 qij, if i < j, and therefore the

elements {hij} are invertible in the algebra 3̃HTn.
(2) hij(x) hjk(y) = hjk(y) hik(x) + hik(y) hij(x)− hik(x+ y + β xy).
(3) (Multiplicative Yang–Baxter relations)

hij hik hjk = hjk hik hij, if i < j < k.

(4) Define multiplicative Dunkl elements (in the algebra 3̃HTn) as follows

Θj := Θj(t) =
( 1∏

a=j−1

h−1
aj

) ( j+1∏
a=n

hja

)
, 1 ≤ j ≤ n. (2.11)

Then the multiplicative Dunkl elements pair-wise commute.

Clearly

n∏
j=1

Θj = 1, Θj = 1 + t θj + t2(. . .), and ΘI

∏
i/∈I,j∈I

i<j

(1 + tβ − t2 qij) ∈ 3HTn.

Here for a subset I ⊂ [1, n] we use notation ΘI =
∏

a∈I Θa,
Our main result of this Section is a description of relations among the multiplicative
Dunkl elements.
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Theorem 2.1
In the algebra 3HTn the following relations hold true∑

I⊂[1,n]
|I|=k

ΘI

∏
i/∈I,j∈J

i<j

(1 + t β − t2 qij) =

[
n
k

]
1+tβ

.

Here

[
n
k

]
q

denotes the q-Gaussian polynomial.

Corollary 2.1
Assume that qij ̸= 0 for all 1 ≤ i < j ≤ n. Then the all elements {uij} are invertible

and u−1
ij = q−1

ij (uij − β) Now define elements Φi ∈ 3̃HTn as follows

Φi =
{ 1∏

a=i−1

u−1
ai

} { i+1∏
a=n

uia

}
, i = 1, . . . , n.

Then we have
(1) (Relationship among Θj and Φj )

tn−2j+1 Θj(t
−1) |t=0 = (−1)j Φj.

(2) The elements {Φi, 1 ≤ i ≤ n, } generate a commutative subalgebra in the algebra

3̃HTn.
(3) For each k = 1, . . . , n, the following relation in the algebra 3HTn among the

elements {Φi} holds ∑
I⊂[1,n]
|I|=k

∏
i/∈I, j∈I

i<j

(−qij) ΦI = βk(n−k),

where ΦI :=
∏

a∈I Φa.

In fact the element Φi admits the following “reduced expression” which is useful for
proofs and applications

Φi =
{−→∏

j∈I

{−−→∏
i∈Ic+
i<j

u−1
ij

}} {−−→∏
j∈Ic+

{−→∏
i∈I
i<j

uij

}}
. (2.12)

Let us explain notations. For any (totally) ordered set I = (i1 < i2 < . . . < ik) we
denote by I+ the set I with the opposite order, i.e. I+ = (ik > ik−1 > . . . > i1); if

I ⊂ [1, n], then Ic = [1, n] \ I. For any (totally) ordered set I we denote by
−→∏
i∈I

the

ordered product according to the order of the set I.
Note that the total number of terms in the RHS of (2.12) is equal to k(n− k) >
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Finally, from the “reduced expression” (2.12) for the element Φi one can see that∏
i/∈I,j∈I

i<j

(−qij) ΦI =
{−→∏

j∈I

{−−→∏
i∈Ic+
i<j

(β − uij)
}} {−−→∏

j∈Ic+

{−→∏
i∈I
i<j

uij

}}
:= Φ̃I ∈ 3HTn.

Therefore the identity ∑
I⊂[1,n]
|I|=k

Φ̃I = βk(n−k)

is true in the algebra 3HTn for arbitrary set of parameters {qij}.

Comments 2.2
(I) In fact from our proof of Theorem 2.1 we can deduce more general statement,

namely, consider integers m and k such that 1 ≤ k ≤ m ≤ n. Then∑
I⊂[1,m]
|I|=k

ΘI

∏
i∈[1,m]\I,j∈J

i<j

(1 + t β − t2 qij) =

[
m
k

]
1+tβ

+
∑

A⊂[1,n],B⊂[1,n]
|A|=|B|=r

uA,B, (2.13)

where , by definition, for two sets A = (i1, . . . , ir) and B = (j1, . . . , jr) the symbol
uA,B is equal to the (ordered) product

∏r
a=1 uia,ja . Moreover, the elements of the sets

A and B have to satisfy the following conditions:
• for each a = 1, . . . , r one has 1 ≤ ia ≤ m < ja ≤ n, and k ≤ r ≤ k(n− k).

Even more, if r = k, then sets A and B have to satisfy the following additional conditions:
• B = (j1 ≤ j2 ≤ . . . ≤ jk) and the elements of the set A are pair-wise distinct.

In the case β = 0 and r = k, i.e. in the case of additive (truncated) Dunkl elements,
the above statement, also known as the quantum Pieri formula, has been stated as
Conjecture in [10], and has been proved later in [32].

Corollary 2.2 ([21])
In the case when β = 0 and qij = qi δj−i,1, the algebra over Z[q1, . . . , qn−1] generated

by the multiplicative Dunkl elements {Θi and Θ−1
i , 1 ≤ i ≤ n} is canonically isomorphic

to the quantum K-theory of the complete flag variety F ln of type An−1.

It is still an open problem to describe explicitly the set of monomials {uA,B} which
appear in the RHS of (2.13) when r > k.

(II) (Truncated Gaudin operators ) Let {pij 1 ≤ i ̸= j ≤ n} be a set of
mutually commuting parameters. We assume that parameters {pij} are invertible and
satisfy the Arnold relations

1

pik
=

1

pij
+

1

pjk
, i < j, k.

For example one can take pij = (zi − zj)
−1, where z = (z1, . . . , zn) ∈ (C\0)n.
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Definition 2.4 Truncated (rational) Gaudin operator corresponding to the set of param-
eters {pij}, is defined to be

Gi =
∑
j ̸=i

p−1
ij sij, 1 ≤ i ≤ n,

where sij denotes the exchange operator which switches variables xi and xj, and fixes
parameters {pij}.

We consider the Gaudin operator Gi as an element of the group ring Z[{p±1
ij }][Sn],

call this element Gi ∈ Z[{p±1
ij }][Sn], i = 1, . . . , n, by Gaudin element and denoted it by

θ
(n)
i .

It is easy to see that the elements uij := p−1
ij sij, 1 ≤ i ̸= j ≤ n, define a representation

of the algebra 3HTn with parameters β = 0 and qij = u2ij = p2ij.
Therefore one can consider the (truncated) Gaudin elements as a special case of

the (truncated) Dunkl elements. Now one can rewrite the relations among the Dunkl
elements, as well as the quantum Pieri formula [10] , [32], in terms of the Gaudin elements.

The key observation which allows to rewrite the quantum Pieri formula as a certain
relation among the Gaudin elements is the following one: parameters {p−1

ij } satisfy the
Plücker relations

1

pik pjl
=

1

pij pkl
+

1

pil pjk
, if i < j < k < l.

To describe relations among the Gaudin elements θ
(n)
i , i = 1, . . . , n, we need a bit of

notation. Let {pij} be a set of invertible parameters as before.
Define polynomials in the variables h = (h1, . . . , hn)

Gm,k,r(h, {pij}) =
∑

I⊂[1,n−1]

|I|=r

1∏
i∈I pin

∑
J⊂[1,n]

|I|+m=|J |+k

(
n− |I

∪
J |

n−m− |I|

)
h̃J , (2.14)

where
h̃J =

∑
K⊂J, L⊂J,

|K|=|L|, K
∩

L=∅

∏
j∈J\(K

∪
L)

hj
∏

ka∈K, la∈L

p2ka,la ,

and summation runs over subsets K = {k1, k2 < . . . < kr} ⊂ J, and L = {la ∈ J, a =
1, . . . , r}, such that ka < la, 1 ≤ a ≤ r, and l1, . . . , lr are pairwise distinct.

Theorem 2.2 (Relations among the Gaudin elements, [18], cf [30])
Under the assumption that elements {pij, 1 ≤ i < j ≤ n} are invertible, mutually
commute and satisfy the Arnold relations, one has

• Gm,k,r(θ
(n)
1 , . . . , θ(n)n , {pij}) = 0, if m > k, (2.15)

• G0,0,k(θ
(n)
1 , . . . , θ

(n)
n , {pij}) = ek(d2, . . . , dn), where d2, . . . , dn denote the Jucys–Murphy

elements in the group ring Z[Sn] of the symmetric group Sn.
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It is well-known that the elementary symmetric polynomials ek(d2, . . . , dn) := Ck, k =
1, . . . , n, generate the center of the group ring Z[p±1

ij ][Sn], whereas the Gaudin ele-

ments {θ(n)i , i = 1, . . . , n}, generate a maximal commutative subalgebra B(pij), the
so-called Bethe subalgebra, in Z[p±1

ij ][Sn]. It is well-known, see e.g. [30], that B(pij) =⊕
λ⊢n Bλ(pij), where Bλ(pij) is the λ−isotypic component of B(pij). On each λ−isotypic

component the value of the central element Ck is the explicitly known constant ck(λ).
It follows from [30] that the relations (2.15) together with relations

G0,0,k(θ
(n)
1 , . . . , θ(n)n , {pij}) = ck(λ),

are the defining relations for the algebra Bλ(pij).
Let us remark that in the definition of the Gaudin elements we can use any set of

mutually commuting, invertible elements {pij} which satisfies the Arnold conditions. For
example, we can take

pij :=
qj−2(1− q)

1− qj−i
, 1 ≤ i < j ≤ n.

It is not difficult to see that in this case

lim
q→0

θ
(n)
J

p1j
= −dj = −

j−1∑
a=1

saj,

where dj denotes the Jucys–Murphy element in the group ring Z[Sn] of the symmetric
group Sn. Basically from relations (2.15) one can deduce the relations among the Jucys–

Murphy elements d2, . . . , dn after plugging in (2.15) the values pij := qj−2(1−q)
1−qj−i and

passing to the limit q → 0. However the real computations are rather involved.
Finally we note that the multiplicative Dunkl / Gaudin elements {Θi, 1, . . . , n} also

generate a maximal commutative subalgebra in the group ring Z[p±1
ij ][Sn]. Some relations

among the elements {Θl} follow from Theorem 2.1, but we don’t know an analogue of
relations (2.13) for the multiplicative Gaudin elements, but see [30].

(III) Shifted Dunkl elements di and Di

As it was stated in Corollary 2.2, the truncated additive and multiplicative Dunkl
elements in the algebra 3HTn(0) generate over the ring of polynomials Z[q1, . . . , qn−1]
correspondingly the quantum cohomology and quantum K − theory rings of the full
flag variety F ln. In order to describe the corresponding equivariant theories, we will
introduce the shifted additive and multiplicative Dunkl elements. To start with we need
at first to introduce an extension of the algebra 3HTn(β).

Let {z1, . . . , zn} be a set of mutually commuting elements and {β, h, t, qij = qji, 1 ≤
i, j ≤ n} be a set of parameters.

Definition 2.5 Define algebra 3THn(β) to be the semi-direct product of the alge-
bra 3THn(β) and the ring of polynomials Z[h, t][z1, . . . , zn] with respect to the crossing
relations

(1) zi ukl = ukl zi if i /∈ {k, l},
(2) zi uij = uij zj + β zi + h, zj uij = uij zi − β zi − h, if 1 ≤ i < j < k ≤ n.

Now we set as before hij := hij(t) = 1 + t uij.
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Definition 2.6
• Define shifted additive Dunkl elements to be

di = zi −
∑
i<j

uij +
∑
i<j

uji.

• Define shifted multiplicative Dunkl elements to be

Di =
( 1∏
a=i−1

h−1
ai

)
(1 + zi)

( i+1∏
a=n

hia

)
.

Lemma 2.3
[di, dj] = 0, [Di,Dj] = 0 for all i, j.

Now we stated an analogue of Theorem 2.1. for shifted multiplicative Dunkl elements.
As a preliminary, for any subset I ⊂ [1, n] let us set DI =

∏
a∈I Da. It is clear that

DI

∏
i/∈I, j∈I

i<j

(1 + t β − t2 qij) ∈ 3HTn(β).

Theorem 2.3
In the algebra 3HTn(β) the following relations hold true∑

I⊂[1,n]
|I|=k

DI

∏
i/∈I,j∈J

i<j

(1 + t β − t2 qij) =

[
n
k

]
1+tβ

+

∑
I⊂[1,n]

I={i1,...,ik}

k∏
a=1

[
za(1 + βt)n−k + h

(1 + βt)n−k − (1 + βt)ia−a

β

]
.

In particular, if β = 0, we will have

Corollary 2.3 In the algebra 3HTn(0) the following relations hold

∑
I⊂[1,n]
|I|=k

DI

∏
i/∈I,j∈J

i<j

(1− t2 qij) =

(
n

k

)
+

∑
I⊂[1,n]

I={i1,...,ik}

k∏
a=1

n∏
a=1

(
za + t h (n− k − ia + a)

)
.

One of the main steps in our proof of Theorem 2.3. is the following explicit formula for
the elements DI .

Lemma 2.4 One has

D̃I := DI (1 + t β − t2 qij) =

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

) ↗∏
a∈I

(
(1 + za)

↘∏
b/∈I
a<b

hab

)
.
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Note that if a < b, then hba = 1 + βt− uab. Here we have used the symbol

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

)
to denote the following product. At first, for a given element b ∈ I let us define the
set I(b) := {a ∈ [1, n]\I, a < b} := (a

(b)
1 < . . . < a

(b)
p ) for some p (depending on b). If

I = (b1 < b2 . . . < bk), then we set

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

)
=

k∏
j=1

(
ubj ,as ubj ,as−1 · · ·ubj ,a1

)
.

For example, let us take n = 6 and I = (1, 3, 5). Then

D̃I = h32h54h52(1 + z1)h16h14h12(1 + z3)h36h34(1 + z5)h56.

3 Combinatorics of associative quasi-classical Yang–

Baxter algebras

Let β be a parameter.

Definition 3.1 ([18]) The associative quasi-classical Yang–Baxter algebra of weight β,

denoted by ÂCY Bn(β), is an associative algebra, over the ring of polynomials Z[β],
generated by the set of elements {xij, 1 ≤ i < j ≤ n}, subject to the set of relations

(a) xij xkl = xkl xij, if {i, j} ∩ {k, l} = ∅,
(b) xij xjk = xik xij + xjk xik + β xik, if 1 ≤ 1 < i < j ≤ n,

Comments 3.1 The algebra 3Tn(β), see Definition 2.1, is the quotient of the algebra

ÂCY Bn(−β), by the “dual relations”

xjkxij − xij xik − xik xjk + β xik = 0, i < j < k.

The (truncated) Dunkl elements θi =
∑

j ̸=i xij, i = 1, . . . , n, do not commute in the al-

gebra ÂCY Bn(β). However a certain version of noncommutative elementary polynomial
of degree k ≥ 1, still is equal to zero after the substitution of Dunkl elements instead of
variables, [18]. We state here the corresponding result only “in classical case”, i.e. if
β = 0 and qij = 0 for all i, j.

Lemma 3.1 ([18]) Define noncommutative elementary polynomial Lk(x1, . . . , xn) as
follows

Lk(x1, . . . , xn) =
∑

I=(i1<i2<...<ik)⊂[1,n]

xi1 xi2 · · · xik .

Then Lk(θ1, θ2, . . . , θn) = 0.
Moreover, if 1 ≤ k ≤ m ≤ n, then one can show that the value of the noncommutative

polynomial Lk(θ1, . . . , θm) in the algebra ÂCY Bn(β) is given by the Pieri formula, see
[10], [32].
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3.1 Combinatorics of Coxeter element

Consider the “Coxeter element” w ∈ ÂCY Bn(β) which is equal to the ordered product
of “simple generators”: w := wn =

∏n−1
a=1 xa,a+1. Let us bring the element w to the

reduced form in the algebra ÂCY Bn(β), that is, let us consecutively apply the defining
relations (a) and (b) to the element w in any order until unable to do so. Denote the
resulting (noncommutative) polynomial by P (xij; β). In principal, the polynomial itself
can depend on the order in which the relations (a) and (b) are applied.

Proposition 3.1 (Cf [40], 8.C5, (c); [28])
(1) Apart from applying the relation (a) (commutativity), the polynomial P (xij; β) does

not depend on the order in which relations (a) and (b) have been applied, and can be writ-
ten in a unique way as a linear combination:

Pn(xij; β) =
n−1∑
s=1

βn−s−1
∑
{ia}

s∏
a=1

xia,ja ,

where the second summation runs over all sequences of integers {ia}sa=1 such that
n − 1 ≥ i1 ≥ i2 ≥ . . . ≥ is = 1, and ia ≤ n − a for a = 1, . . . , s − 1; moreover, the
corresponding sequence {ja}n−1

a=1 can be defined uniquely by that {ia}n−1
a=1 .

• It is clear that the polynomial P (xij; β) also can be written in a unique way as a
linear combination of monomials

∏s
a=1 xia,ja such that j1 ≥ j2 . . . ≥ js.

(2) Denote by Tn(k, r) the number of degree k monomials in the polynomial P (xij; β)
which contain exactly r factors of the form x∗,n. (Note that 1 ≤ r ≤ k ≤ n− 1). Then

Tn(k, r) =
r

k

(
n+ k − r − 2

n− 2

) (
n− 2

k − 1

)
.

In particular, Tn(k, k) =
(
n−2
k−1

)
, and Tn(k, 1) = T (n− 2, k − 1), where

T (n, k) :=
1

k + 1

(
n+ k

k

) (
n

k

)
is equal to the number of Schröder paths (i.e. consisting of steps U = (1, 1), D =
(1,−1), H = (2, 0) and never going below the x-axis) from (0, 0) to (2n, 0), having k
U ’s, see [37], A088617.

Moreover, Tn(n− 1, r) = Tab(n− 2, r − 1), where

Tab(n, k) :=
k + 1

n+ 1

(
2n− k

n

)
= F

(2)
n−k(k)

is equal to the number of standard Young tableaux of the shape (n, n − k), see [37],

A009766. Recall that F
(p)
n (b) stands for the Fuss–Catalan number.
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(3) After the specialization xij −→ 1 the polynomial P (xij) is transformed to the
polynomial

Pn(β) :=
n−1∑
k=0

N(n, k) (1 + β)k,

where N(n, k) := 1
n

(
n
k

) (
n

k+1

)
, k = 0, . . . , n− 1, stand for the Narayana numbers.

Furthermore, Pn(β) =
∑n−1

d=0 sn(d) β
d, where

sn(d) =
1

n+ 1

(
2n− d

n

) (
n− 1

d

)
is the number of ways to draw n− 1− d diagonals in a convex (n+ 2)-gon, such that no
two diagonals intersect their interior.

Therefore, the number of (nonzero) terms in the polynomial P (xij; β) is equal to
the n-th little Schröder number sn :=

∑n−1
d=0 sn(d), also known as the n-th super-Catalan

number, see e.g. [37], A001003.

(4) Upon the specialization x1j −→ t, 1 ≤ j ≤ n, and that xij −→ 1, if 2 ≤ i < j ≤
n, the polynomial P (xij; β) is transformed to the polynomial

Pn(β, t) = t
n∑

k=1

(1 + β)n−k
∑
π

tp(π),

where the second summation runs over the set of Dick paths π of length 2n with exactly
k picks (UD-steps), and p(π) denotes the number of valleys (DU-steps) that touch upon
the line x = 0.

(5) The polynomial P (xij; β) is invariant under the action of anti-involution ϕ◦ τ,
see Section 5.1.1 [18] for definitions of ϕ and τ.

(6) Follow [40], 6.C8, (c), consider the specialization

xij −→ ti, 1 ≤ i < j ≤ n,

and define Pn(t1, . . . , tn−1; β) = Pn(xij = ti; β).
One can show, ibid , that

Pn(t1, . . . , tn−1; β) =
∑

βn−k ti1 · · · tik , (3.16)

where the sum runs over all pairs {(a1, . . . , ak), (i1, . . . , ik) ∈ Z≥1 × Z≥1} such that 1 ≤
a1 < a2 < . . . < ak, 1 ≤ i1 ≤ i2 . . . ≤ ik ≤ n and ij ≤ aj for all j.

Now we are ready to state our main result about polynomials Pn(t1, . . . , tn; β).

Let π ∈ Sn be the permutation π=

(
1 2 3 . . . n
1 n n− 1 . . . 2

)
. Then

Pn(t1, . . . , tn−1; β) =
(n−1∏

i=1

tn−i
i

)
G(β)

π (t−1
1 , . . . , t−1

n−1),
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where G
(β)
w (x1, . . . , xn−1) denotes the β-Grothendieck polynomial corresponding to a per-

mutation w ∈ Sn, [11], or Appendix.
In particular,

G(β)
π (x1 = 1, . . . , xn−1 = 1) =

n−1∑
k=0

N(n, k) (1 + β)k,

where N(n, k) denotes the Narayana numbers, see item (3) of Proposition 3.1.

• Note that if β = 0, then one has G
(β=0)
w (x1, . . . , xn−1) = Sw(x1, . . . , xn−1), that is the

β-Grothendieck polynomial at β = 0, is equal to the Schubert polynomial corresponding

to the same permutation w. Therefore, if π=

(
1 2 3 . . . n
1 n n− 1 . . . 2

)
, then

Sπ(x1 = 1, . . . , tn−1 = 1) = Cn−1, (3.17)

where Cm denotes the m-th Catalan number. Using the formula (3.16) it is not diffi-
cult to check that the following formula for the principal specialization of the Schubert
polynomial Sπ(Xn) is true

Sπ(1, q, . . . , q
n−1) = q(

n−1
3 ) Cn−1(q), (3.18)

where Cm(q) denotes the Carlitz - Riordan q-analogue of the Catalan numbers, see e.g.
[38]. The formula (3.17) has been proved in [13] using the observation that π is a vexillary
permutation, see [26] for the a definition of the latter. A combinatorial/bijective proof
of the formula (3.18) is is due to A.Woo [44].

Comments 3.2
The Grothendieck polynomials defined by A. Lascoux and M.-P. Schützenberger, see

e.g. [25], correspond to the case β = −1. In this case Pn(−1) = 1, if n ≥ 0, and therefore

the specialization G
(−1)
w (x1 = 1, . . . , xn−1 = 1) = 1 for all w ∈ Sn.

3.1.1 Multiparameter deformation of Catalan, Narayana and
Schröder numbers

Let b = (β1, . . . , βn−1) be a set of mutually commuting parameters. We define a multi-

parameter analogue of the associative quasi-classical Yang–Baxter algebra ̂MACY Bn(b)
as follows.

Definition 3.2 The multiparameter associative quasi-classical Yang–Baxter algebra of

weight b, denoted by ̂MACY Bn(b), is an associative algebra, over the ring of polyno-
mials Z[β1, . . . , βn−1], generated by the set of elements {xij, 1 ≤ i < j ≤ n}, subject to
the set of relations

(a) xij xkl = xkl xij, if {i, j} ∩ {k, l} = ∅,
(b) xij xjk = xik xij + xjk xik + βi xik, if 1 ≤ 1 < i < j ≤ n.
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Consider the “Coxeter element” wn ∈ ̂MACY Bn(b) which is equal to the ordered
product of “simple generators”:

wn :=
n−1∏
a=1

xa,a+1.

Now we can use the same method as in [40], 8.C5, (c) , see Section 3.1, to define the
reduced form of the Coxeter element wn. Namely, let us bring the element wn to the

reduced form in the algebra ̂MACY Bn(b), that is, let us consecutively apply the defining
relations (a) and (b) to the element wn in any order until unable to do so. Denote the
resulting (noncommutative) polynomial by P (xij; b). In principal, the polynomial itself
can depend on the order in which the relations (a) and (b) are applied.

Proposition 3.2 (Cf [40], 8.C5, (c); [28])
Apart from applying the relation (a) (commutativity), the polynomial P (xij; b) does

not depend on the order in which relations (a) and (b) have been applied.

To state our main result of this Subsection, let us define polynomials

Q(β1, . . . , βn−1) := P (xij = 1, ∀i, j ; β1 − 1, β2 − 1, . . . , βn−1 − 1).

Example 3.1
Q(β1, β2) = 1 + 2 β1 + β2 + β2

1 ,
Q(β1, β2, β3) = 1 + 3β1 + 2β2 + β3 + 3β2

1 + β1β2 + β1β3 + β2
2 + β3

1 ,
Q(β1, β2, β3, β4) = 1 + 4β1 + 3β2 + 2β3 + β4 + β1(6β1 + 3β2 + 3β3 + 2β4) + β2(3β2 +

β3 + β4) + β2
3+ β2

1 (4β1 + β2 + β3 + β4) + β1(β
2
2 + β2

3) + β3
2 + β4

1 .

Theorem 3.1
Polynomial Q(β1, . . . , βn−1) has non-negative integer coefficients.

It follows from [40] and Proposition 3.1, that

Q(β1, . . . , βn−1)
∣∣∣
β1=1,...,βn−1=1

= Catn.

Polynomials Q(β1, . . . , βn−1) and Q(β1 + 1, . . . , βn−1 + 1) can be considered as a multi-
parameter deformation of the Catalan and (small) Schröder numbers correspondingly,
and the homogeneous degree k part of Q(β1, . . . , βn−1) as a multiparameter analogue of
Narayana numbers.

3.2 Grothendieck and q-Schröder polynomials

3.2.1 Schröder paths and polynomials

Definition 3.3 A Schröder path of the length n is an over diagonal path from (0, 0) to
(n, n) with steps (1, 0), (0, 1) and steps D = (1, 1) without steps of type D on the diagonal
x = y.
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If p is a Schröder path, we denote by d(p) the number of the diagonal steps resting on
the path p, and by a(p) the number of unit squares located between the path p and
the diagonal x = y. For each (unit) diagonal step D of a path p we denote by i(D) the
x-coordinate of the column which contains the diagonal step D. Finally, define the index
i(p) of a path p as the some of the numbers i(D) for all diagonal steps of the path p.

Definition 3.4 Define q-Schröder polynomial Sn(q; β) as follows

Sn(q; β) =
∑
p

qa(p)+i(p) βd(p), (3.19)

where the sum runs over the set of all Schröder paths of length n.

Example 3.2
S1(q; β) = 1, S2(q; β) = 1+q+β q, S3(q; β) = 1+2 q+q2+q3+β (q+2q2+2q3)+β2 q3,
S4(q; β) = 1 + 3q + 3q2 + 3q3 + 2q4 + q5 + q6 + β(q + 3q2 + 5q3 + 6q4 + 3q5 + 3q6) +

β2(q3 + 2q4 + 3q5 + 3q6) + β3 q6.

Comments 3.3
The q-Schröder polynomials defined by the formula (3.19) are different from the

q-analogue of Schröder polynomials which has been considered in [5]. It seems that there
are no simple connections between the both.

Proposition 3.3 (Recurrence relations for q-Schröder polynomials)
The q-Schröder polynomials satisfy the following relations

Sn+1(q; β) = (1+qn+β qn) Sn(q; β)+
k=n−1∑
k=1

(qk+β qn−k) Sk(q; q
n−k β) Sn−k(q; β), (3.20)

and the initial condition S1(q; β) = 1.

Note that Pn(β) = Sn(1; β) and in particular, the polynomials Pn(β) satisfy the following
recurrence relations

Pn+1(β) = (2 + β) Pn(β) + (1 + β)
n−1∑
k=1

Pk(β) Pn−k(β). (3.21)

Theorem 3.2 ( Evaluation of the Schröder - Hankel Determinant )
Consider permutation

π
(n)
k =

(
1 2 . . . k k + 1 k + 2 . . . n
1 2 . . . k n n− 1 . . . k + 1

)
.

Let as before

Pn(β) =
n−1∑
j=0

N(n, j) (1 + β)j, n ≥ 1, (3.22)

denotes the Narayana-Schröder polynomials. Then

(1 + β)(
k
2) G

(β)

π
(n)
k

(x1 = 1, . . . , xn−k = 1) = Det |Pn+k−i−j(β) |1≤i,j≤k. (3.23)
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Proof is based on an observation that the permutation π
(n)
k is a vexillary one and the

recurrence relations (3.21).

Comments 3.4
(1) In the case β = 0, i.e. in the case of Schubert polynomials, Theorem 3.1 has

been proved in [13].
(2) In the cases when β = 1 and 0 ≤ n−k ≤ 2, the value of the determinant in the

RHS(3.22) is known, see e.g. [5], or M. Ichikawa talk Hankel determinants of Catalan,
Motzkin and Schröder numbers and its q-analogue, http:/denjoy.ms.u-tokyo.ac.jp. One
can check that in the all cases mentioned above, the formula (3.22) gives the same results.

(3) Grothendieck and Narayana polynomials
It follows from the expression (3.22) for the Narayana-Schröder polynomials that

Pn(β − 1) = Nn(β), where

Nn(β) :=
n−1∑
j=0

1

n

(
n

j

) (
n

j + 1

)
βj,

denotes the n-th Narayana polynomial. Therefore, Pn(β − 1) = Nn(β) is a symmet-
ric polynomial in β with non-negative integer coefficients. Moreover, the value of the
polynomial Pn(β − 1) at β = 1 is equal to the n-th Catalan number Cn := 1

n+1

(
2n
n

)
.

It is well-known, see e.g. [42], that the Narayana polynomial Nn(β) is equal to the
generating function of the statistics π(p) = (number of peaks of a Dick path p)− 1
on the set Dickn of Dick paths of the length 2n

Nn(β) =
∑
p

βπ(p).

Moreover, using the Lindström–Gessel–Viennot lemma see e.g.
http://en.wikipedia.org/wiki/Lindström–Gessel–Viennot lemma,
one can see that

Det |Nn+k−i−j(β)|1≤i,j≤k = β(
k
2)

∑
(p1,...,pk)

βπ(p1)+...+π(pk), (3.24)

where the sum runs over k-tuple of non-crossing Dick paths (p1, . . . , pk) such that the
path pi starts from the point (i− 1, 0) and has length 2(n− i+ 1), i = 1, . . . , k.

We denote the sum in the RHS(3.24) by N
(k)
n (β). Note that N

(k)
k−1(β) = 1 for all

k ≥ 2.
Thus, N

(k)
n (β) is a symmetric polynomial in β with non-negative integer coefficients,

and

N(k)
n (β = 1) = C(k)

n =
∏

1≤i<j≤n−k+2

2k + i+ j − 1

i+ j − 1
.

As a corollary we obtain the following statement

Proposition 3.4 Let n ≥ k, then

G
(β−1)

π
(n)
k

(x1 = 1, . . . , xn = 1) = N(k)
n (β).
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Summarizing, the specialization G
(β−1)

π
(n)
k

(x1 = 1, . . . , xn = 1) is a symmetric polynomial

in β with non-negative integer coefficients, and coincides with the generating function
of the statistics

∑k
i=1 π(pi) on the set k-Dickn of k-tuple of non-crossing Dick paths

(p1, . . . , pk).

Example 3.3 Take n = 5, k = 1.Then π
(5)
1 = (15432) and one has

G
(β)

π
(5)
1

(1, q, q2, q3) = q4(1, 3, 3, 3, 2, 1, 1) + q5 (1, 3, 5, 6, 3, 3) β + q7(1, 2, 3, 3)β2 + q10β3.

It is easy to compute the Carlitz-Riordan q-analogue of the Catalan number C5, namely,
C5(q) = (1, 3, 3, 3, 2, 1, 1).

(4) Grothendieck polynomials G
(β)

π
(n)
k

(x1, . . . , xn) and k-dissections

Let k ∈ N and n ≥ k − 1, be a integer, define a k-dissection of a convex (n+ k + 1)-
gon to be a collection E of diagonals in (n+ k + 1)-gon not containing (k + 1)-subset of
pairwise crossing diagonals and such that at least 2(k − 1) diagonals are coming from
each vertex of the (n+k+1)-gon in question. One can show that the number of diagonals
in any k-dissection E of a convex (n + k + 1)-gon contains at least (n + k + 1)(k − 1)
and at most n(2k − 1) − 1 diagonals. We define the index of a k-dissection E to be
i(E) =n(2k − 1)− 1−#|E|. Dnote by

T (k)
n (β) =

∑
E

βi(E)

the generating function for the number of k-dissections with a fixed index, where the
above sum runs over the set of all k-dissections of a convex (n+ k + 1)-gon.

Theorem 3.3
G

(β)

π
(n)
k

(x1 = 1, . . . , xn = 1) = T (k)
n (β).

A k-dissection of a convex (n + k + 1)-gon with the maximal number of diagonals
(which is equal to n(2k − 1) − 1), is called k-triangulation. It is well-known that
the number of k-triangulations of a convex (n + k + 1)-gon is equal to the Catalan-

Hankel number C
(k)
n−1. Explicit bijection between the set of k-triangulations of a convex

(n + k + 1)-gon and the set of k-tuple of non-crossing Dick paths (γ1, . . . , γk) such that
the Dick path γi connects points (i − 1, 0) and (2n − i − 1, 0), has been constructed in
[36], [41].

(5) Polynomials Fw(β), Hw(β), Hw(q, t; β) and Rw(q; β)

Let w ∈ Sn be a permutation and G
(β)
w (Xn) and G

(β)
w (Xn, Yn) be the coressponding

β-Grothendieck and double β-Grothendieck polynomials. We denote by G
(β)
w (1) and by

G
(β)
w (1; 1) the specializations Xn := (x1 = 1, . . . , xn = 1), Yn := (y1 = 1, . . . , yn = 1) of

the β-Grothendieck polynomials introduced above.

Theorem 3.4 Let w ∈ Sn be a permutation. Then

(i) The polynomials Fw(β) := G
(β−1)
w (1) and Hw(β) := G

(β−1)
w (1; 1)
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have both non-negative integer coefficients.
(ii) One has

Hw(β) = (1 + β)ℓ(w) Fw(β
2).

(iii) Let w ∈ Sn be a permutation, define polynomials

Hw(q, t; β) := G(β)
w (x1 = q, x2 = q, . . . , xn = q, y1 = t, y2 = t, . . . , yn = t)

to be the specialization {xi = q, yi = t, ∀i}, of the double β-Grothendieck polynomial

G
(β)
w (Xn, Yn). Then

Hw(q, t; β) = (q + t+ β q t)ℓ(w) Fw((1 + β q)(1 + β t)).

In particular, Hw(1, 1; β) = (2 + β)ℓ(w) Fw((1 + β)2).
(iv) Let w ∈ Sn be a permutation, define polynomial

Rw(q; β) := G(β−1)
w (x1 = q, x2 = 1, x3 = 1, . . .)

to be the specialization {x1 = q, xi = 1, ∀i ≥ 2}, of the (β−1)-Grothendieck polynomial

G
(β−1)
w (Xn). Then

Rw(q; β) = qw(1)−1 Rw(q; β),

where Rw(q; β) is a polynomial in q and β with non-negative integer coefficients, and
Rw(0; β = 0) = 1.

Remark 3.1
One can show, cf [26], p. 89, that if w ∈ Sn, then Rw(1, β) = Rw−1(1, β).

However, the equality Rw(q, β) = Rw−1(q, β) can be violated, and it seems that in
general, there are no simple connections between polynomials Rw(q, β) and Rw−1(q, β),
if so.

From this point we shell use the notation (a0, a1, . . . , ar)β :=
∑r

j=0 aj β
j, etc.

Example 3.4 Let us take w = [1, 3, 4, 6, 7, 9, 10, 2, 5, 8]. Then Rw(q, β) =
(1, 6, 21, 36, 51, 48, 26)β + qβ (6, 36, 126, 216, 306, 288, 156)β+
q2β3 (20, 125, 242, 403, 460, 289)β + q3β5 (6, 46, 114, 204, 170)β. Moreover,

Rw(q, 1) = (189, 1134, 1539, 540)q. On the other hand,
w−1 = [1, 8, 2, 3, 9, 4, 5, 10, 6, 7], and Rw−1(q, β) = (1, 6, 21, 36, 51, 48, 26)β+
qβ (1, 6, 31, 56, 96, 110, 78)β + q2β (1, 6, 27, 58, 92, 122, 120, 78)β+
q3β (1, 6, 24, 58, 92, 126, 132, 102, 26)β + q4β (1, 6, 22, 57, 92, 127, 134, 105, 44)β+
q5β (1, 6, 21, 56, 91, 126, 133, 104, 50)β + q6β (1, 6, 21, 56, 91, 126, 133, 104, 50)β.

Moreover, Rw−1(q, 1) = (189, 378, 504, 567, 588, 588, 588)q.
Notice that w = 1× u, where u = [2, 3, 5, 6, 8, 9, 1, 4, 7]. One can show that

Ru(q, β) = (1, 6, 11, 16, 11)β+qβ
2 (10, 20, 35, 34)β+q

2β4 (5, 14, 26)β. On the other hand,
u−1 = [7, 1, 2, 8, 3, 4, 9, 5, 6] and Ru−1(q, β) = (1, 6, 21, 36, 51, 48, 26)β = Ru(1, β).

[ Recall that by our definition (a0, a1, . . . , ar)β :=
∑r

j=0 aj β
j, etc.]
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Problems 3.1
(1) Define a bijection between monomials of the form

∏s
a=1 xia,ja involved in the

polynomial P (xij; β), and dissections of a convex (n + 2)-gon by s diagonals, such that
no two diagonals intersect their interior.

(2) Describe permutations w ∈ Sn such that the Grothendieck polynomial Gw(t1, . . . , tn)
is equal to the “reduced polynomial” for a some monomial in the associative qasi-classical

Yang–Baxter algebra ̂ACY Bn(β). ?
(3) Study “reduced polynomials” corresponding to the monomials
m1n := x12x23 · · · xn−1,nxn−2,n−1 · · · x23x12, (x12x23 · · · xn−1,n)

k.

in the algebra ÂCY Bn(β)
ab.

(4) Construct a bijection between the set of k-dissections of a convex (n+ k+1)-gon

and “ pipe dreams” corresponding to the Grothendieck polynomial G
(β)

π
(n)
k

(x1, . . . , xn). As

for a definition of “pipe greams” for Grothendieck polynomials, see [23]; see also [11].

Comments 3.5 We don’t know any “good” combinatorial interpretation of polyno-
mials which appear in Problem 3.1, (3) for general n and k. For example,
Pm13(xij = 1; β) = (3, 2), Pm14(xij = 1; β) = (26, 42, 19, 2),
Pm15(xij = 1; β) = (381, 988, 917, 362, 55, 2) and Pm15(xij = 1; 1) = 2705.
One can compare these formulae for polynomials Pmab

(xij = 1; β) with those for the
β-Grothendieck polinomials corresponding to transpositions (a, b), see Comments 3.6.

As for the powers of Coxeter elements, one has 8

P(x12 x23)2(β) = (6, 6, 1), P(x12 x23 x34)2(β) = (71, 142, 91, 20, 1) = (1, 16, 37, 16, 1)β+1,
P(x12x23x34)3(β) = (1301, 3903, 4407, 2309, 555, 51, 1) = (1, 45, 315, 579, 315, 45, 1)β+1,
P(x12 x23 x34 x45)2(β) = (1266, 3798, 4289, 2248, 541, 50, 1) = (1, 44, 306, 564, 306, 44, 1)β+1,
P(x12x23x34)3(β = 1) = 12527, P(x12 x23 x34 x45)2(β = 1) = 12193.

Lemma 3.2 One has

Pxn
12 xm

23
(β) =

min(n,m)∑
k=0

(
n+m− k

m

) (
m

k

)
βk =

min(n,m)∑
k=0

(
n

k

) (
m

k

)
(1 + β)k.

Moreover,
• polynomial P(x12x23···xn−1,n)m(β − 1) is a symmetric polynomial in β with non-negative
coefficients.
• polynomial Pxn

12 xm
23
(β) counts the number of (n,m)-Delannoy paths according to the

number of NE steps. 9

Conjecture 2 Let k1, . . . , kn−1 be a sequence of non-negative integer numbers, consider
monomial M := xk112x

k2
23 · · · x

kn−1

n−1,n. Then
• reduced polynomial PM(β − 1) is a polynomial in β with non-negative coefficients.

8To simplify notation we set Pw(β) := Pw(xij = 1;β).
9Recall that a (n,m)-Delannoy path is a lattice paths from (0, 0) to (n,m) with steps E = (1, 0),

N = (0, 1) and NE = (1, 1) only.
For the definition and examples of the Delannoy paths and numbers, see [37],A001850, A008288, and

http://mathworld.wolfram.com/DelannoyNumber.html.
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3.2.2 Principal specialization of Grothendieck polyno-

mials, and q-Schröder polynomials

Let π
(n)
k = 1k × w

(n−k)
0 ∈ Sn be the vexillary permutation as before, see Theorem 3.1.

Recall that

π
(n)
k =

(
1 2 . . . k k + 1 k + 2 . . . n
1 2 . . . k n n− 1 . . . k + 1

)
.

(A) Principal specialization of the Schubert polynomial S
π
(n)
k

Note that π
(n)
k is a vexillary permutation of the staircase shape λ = (n−k−1, . . . , 2, 1)

and has the staircase flag ϕ = (k+1, k+2, . . . , n−1). It is known, see e.g. [43], [26], that
for a vexillary permutation w ∈ Sn of the shape λ and flag ϕ = (ϕ1, . . . , ϕr), r = ℓ(λ),
the corresponding Schubert polynomial Sw(Xn) is equal to the multi-Schur polynomial
sλ(Xϕ), where Xϕ denotes the flagged set of variables , namely, Xϕ = (Xϕ1 , . . . , Xϕr)
and Xm = (x1, . . . , xm). Therefore we can write the folloing determinantal formula for
the principal specialization of the Schubert polynomial corresponding to the vexillary
permutation π

(n)
k

S
π
(n)
k
(1, q, , q2, . . .) = DET

([
n− i+ j − 1
k + i− 1

]
q

)
1≤i,j≤n−k

,

where

[
n
k

]
q

denotes the q-binomial coefficient.

Let us observe that the Carlitz–Riordan q-analogue Cn(q) of the Catalan number Cn

is equal to the value of the q-Schröder polynomial at β = 0, namely, Cn(q) = Sn(q, 0).

Lemma 3.3 Let k, n be integers and n > k, then

(1) DET
([

n− i+ j − 1
k + i− 1

]
q

)
1≤i,j≤n−k

= q(
n−k
3 ) C(k)

n (q),

(2) DET
(
Cn+k−i−j(q)

)
1≤i,j≤k

= qk(k−1)(6n−2k−5)/6 C(k)
n (q).

(B) Principal specialization of the Grothendieck polynomial G
(β)

π
(n)
k

Theorem 3.5

q(
n−k+1

3 )−(k−1)(n−k
2 ) DET |Sn+k−i−j(q; q

i−1β)|1≤i,j≤k =

qk(k−1)(4k+1)/6

k−1∏
a=1

(1 + qa−1β) G
π
(n)
k
(1, q, q2, . . .).

Corollary 3.1 (1) If k = n− 1, then

DET |S2n−1−i−j(q; q
i−1β)|1≤i,j≤n−1 = q(n−1)(n−2)(4n−3)/6

n−2∏
a=1

(1 + qa−1β)n−a−1,
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(2) If k = n− 2, then

qn−2 DET |S2n−2−i−j(q; q
i−1β)|1≤i,j≤n−2 =

q(n−2)(n−3)(4n−7)/6

n−3∏
a=1

(1 + qa−1β)n−a−2
{(1 + β)n−1 − 1

β

}
.

• Generalization
Let n = (n1, . . . , np) ∈ Np be a composition of n so that n = n1 + · · · + np. We set

n(j) = n1 + · · ·+ nj, j = 1, . . . , p, n(0) = 0.

Now consider the permutation w(n) = w
(n1)
0 × w

(n2)
0 × · · · × w

(np)
0 ∈ Sn,

where w
(m)
0 ∈ Sm denotes the longest permutation in the symmetric group Sm. In

other words,

w(n) =

(
1 2 . . . n1 n(2) . . . n1 + 1 . . . n(p−1) . . . n
n1 n1 − 1 . . . 1 n1 + 1 . . . n(2) . . . n . . . n(p−1) + 1

)
.

For the permutation w(n) defined above, one has the following factorization formula for
the Grothendieck polynomial corresponding to w(n), [26],

G
(β)

w(n) = G
(β)

w
(n1)
0

×G
(β)

1n1×w
(n2)
0

×G
(β)

1n1+n2×w
(n3)
0

× · · · ×G
(β)

1n1+...np−1×w
(np)
0

.

In particular, if

w(n) = w
(n1)
0 × w

(n2)
0 × · · · × w

(np)
0 ∈ Sn, (3.25)

then the principal specialization G
(β)

w(n) of the Grothendieck polynomial corresponding to
the permutation w, is the product of q-Schröder–Hankel polynomials. Finally, we observe
that from discussions in Section 3.4, Grothendieck and Narayana polynomials, one
can deduce that

G
(β−1)

w(n) (x1 = 1, . . . , xn = 1) =

p−1∏
j=1

N
(n(j))

n(j+1) (β).

In particular, the polynomial G
(β−1)

w(n) (x1, . . . , xn) is a symmetric polynomial in β with
non-negative integer coefficients.

Example 3.5
(1) Let us take (non vexillary) permutation w = 2143 = s1 s3. One can check that

G
(β)
w (1, 1, 1, 1) = 3+ 3 β + β2 = 1+ (β + 1) + (β + 1)2, and N4(β) = (1, 6, 6, 1), N3(β) =

(1, 3, 1), N2(β) = (1, 1). It is easy to see that

β G
(β)
w (1, 1, 1, 1) = DET

∣∣∣∣ N4(β) N3(β)
N3(β) N2(β)

∣∣∣∣ . On the other hand,

DET

∣∣∣∣ P4(β) P3(β)
P3(β) P2(β)

∣∣∣∣ = (3, 6, 4, 1) = (3 + 3β + β2) (1 + β). It is more involved to

check that

q5(1 + β) G(β)
w (1, q, q2, q3) = DET

∣∣∣∣ S4(q; β) S3(q; β)
S3(q; qβ) S2(q; qβ)

∣∣∣∣ .
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(2) Let us illustrate Theorem 3.3 by a few examples. For the sake of simplicity, we
consider the case β = 0, i.e. the case of Schubert polynomials. In this case Pn(q; β =
0) = Cn(q) is equal to the Carlitz–Riordan q-analogue of Catalan numbers. We are
reminded that the q-Catalan– Hankel polynomials are defined as follows

C(k)
n (q) = qk(1−k)(4k−1)/6 DET |Cn+k−i−j(q)|1≤i,j≤n.

In the case β = 0 the Theorem 3.3 states that if n = (n1, . . . , np) ∈ Np and the permu-
tation w(n) ∈ Sn is defined by the use of (3.25), then

Sw(n)(1, q, q2, . . .) = q
∑
(ni

3 ) C
(n1)
n1+n2

(q)× C
(n1+n2)
n1+n2+n3

(q)× C(n−np)
n (q).

Now let us consider a few examples for n = 6.
• n = (1, 5), =⇒ Sw(n)(1, q, . . .) = q10 C

(1)
6 (q) = C5(q).

• n = (2, 4), =⇒ Sw(n)(1, q, . . .) = q4 C
(2)
6 (q)=DET

∣∣∣∣ C6(q) C5(q)
C5(q) C4(q)

∣∣∣∣ .
Note that Sw(2,4)(1, q, . . .) = Sw(1,1,4)(1, q, . . .).

• n = (2, 2, 2) =⇒ Sw(n)(1, q, . . .) = C
(2)
4 (q) C

(4)
6 (q).

• n = (1, 1, 4) =⇒ Sw(n)(1, q, . . .) = q4 C
(1)
2 (q) C

(2)
4 (q) = q4 C

(2)
4 (q),

the last equality follows from that C
(k)
k+1(q) = 1 for all k ≥ 1.

• n = (1, 2, 3) =⇒ Sw(n)(1, q, . . .) = q C
(1)
3 (q) C

(3)
6 (q). On the other hand,

• n = (3, 2, 1) =⇒ Sw(n)(1, q, . . .) = q C
(3)
5 (q) C

(5)
6 (q) = q C

(3)
5 (q) = q(1, 1, 1, 1).

Note that C
(k)
k+2(q) =

[
k + 1
1

]
q

.

Exercise.
Let 1 ≤ k ≤ m ≤ n be integers, n ≥ 2k + 1. Consider permutation

w =

(
1 2 . . . k k + 1 . . . n
m m− 1 . . . m− k + 1 n . . . . . . 1

)
∈ Sn.

Show that
Sw(1, q, . . .) = qn(D(w)) C

(m)
n−m+k(q),

where for any permutation w, n(D(w)) =
∑(

di(w)
2

)
and di(w) denotes the number of

boxes in the i-th column of the (Rothe ) diagram D(w) of the permutation w, see [26].
p.8.

(C) A determinantal formula for the Grothendieck polynomials G
(β)

π
(n)
k

Define polynomials

Φ(m)
n (Xn) =

n∑
a=m

ea(Xn) β
a−m,

Ai,j(Xn+k−1) =
1

(i− j)!

( ∂

∂β

)j−1

Φ
(n+1−i)
k+n−i (Xk+n−i), if 1 ≤ i ≤ j ≤ n,
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and

Ai,j(Xk+n−1) =

i−j−1∑
a=0

en−i−a(Xn+k−i)

(
i− j − 1

a

)
, if 1 ≤ j < i ≤ n.

Theorem 3.6
DET |Ai,j|1≤i,j≤n = G

(β)

π
(k)
k+n

(Xk+n−1).

Comments 3.6 One can compute the Grothendieck polynomials for yet another inter-
esting family of permutations. namely, permutations σ

(n)
k =

σ
(n)
k =

(
1 2 . . . k − 1 k k + 1 k + 2 . . . n+ k
1 2 . . . k − 1 n+ k k k + 1 . . . n+ k − 1

)
=

sksk+1 . . . sn+k−1 ∈ Sn+k.

Then

G
(β)

σk
(n)(x1, . . . , xn+k) =

k−1∑
j=0

(
n+ j − 1

j

)
en+j(x1, . . . , xn+k) (1 + β)j.

In particular,

G
(β)

σk
(n)(x1 = 1, . . . , xn+k = 1) =

k∑
j=0

(
n+ j − 1

j

)
βj.

Problems 3.2
(1) Give a bijective prove of Theorem 3.3, i.e. construct a bijection between
• the set of k-tuple of mutually non-crossing Schröder paths (p1, . . . , pk) of lengths

(n, n− 1, . . . , n− k + 1) correspondingly, and
• the set of pairs (m, T ), where T is a k-dissection of a convex (n+ k+1)-gon, and

m is a upper triangle (0, 1)-matrix of size (k − 1)× (k − 1),
which is compatible with natural statistics on both sets.
(2) Let w ∈ Sn be a permutation, and CS(w) be the set of compatible sequences

corresponding to w, see e.g. [4].
Define statistics c(•) on the set CS(w) such that

G(β−1)
w (x1 = 1, x2 = 1, . . .) =

∑
a∈CS(w)

βc(a).

3.2.3 Specialization of Schubert polynomials

Let n, k, r be positive integers and p, b be non-negative integers such that r ≤
p+ 1. It is well-known [26] that in this case there exists a unique vexillary permutation
ϖ := ϖλ,ϕ ∈ S∞ which has the shape λ = (λ1, . . . , λn+1) and the flag ϕ = (ϕ1, . . . , ϕn+1),
where

λi = (n− i+ 1) p+ b, ϕi = k + 1 + r (i− 1), 1 ≤ i ≤ n+ 1.
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According to a theorem by M.Wachs [43], the Schubert polynomial Sϖ(X) admits the
following determinantal representation

Sϖ(X) = DET

(
hλi−i+j(Xϕi

)

)
1≤i,j≤n+1

.

Therefore we have Sϖ(1) := Sϖ(x1 = 1, x2 = 1, . . .) =

DET

((
(n− i+ 1)p+ b− i+ j + k + (i− 1)r

k + (i− 1)r

))
1≤i,j≤n+1

.

We denote the above determinant by D(n, k, r, b, p).

Theorem 3.7 D(n, k, r, b, p) =∏
(i,j)∈An,k,r

i+ b+ jp

i

∏
(i,j)∈Bn,k,r

(k − i+ 1)(p+ 1) + (i+ j − 1)r + r(b+ np)

k − i+ 1 + (i+ j − 1)r
,

where
An,k,r =

{
(i, j) ∈ Z2

≥0 | j ≤ n, j < i ≤ k + (r − 1)(n− j)
}
,

Bn,k,r =
{
(i, j) ∈ Z2

≥1 | i+ j ≤ n+ 1, i ̸= k + 1 + r s, s ∈ Z≥0

}
.

It is convenient to re-wright the above formula for D(n, k, r, b, p) in the following form

D(n, k, r, b, p) =

n+1∏
j=1

(
(n− j + 1)p+ b+ k + (j − 1)(r − 1)

)
! (n− j + 1)!(

k + (j − 1)r
)
!
(
(n− j + 1)(p+ 1) + b

)
!

×

∏
1≤i≤j≤n

(
(k − i+ 1)(p+ 1) + jr + (np+ b)r

)
.

(=⇒) The case r=1
We consider below some special cases of Theorem 3.5 in the case r = 1. To simplify

notation, we set D(n, k, b, p) := D(n, k, r = 1, b, p). Then we can rewrite the above
formula for D(n, k, r, b, p) as follows D(n, k, b, p) =

n+1∏
j=1

(
(n+ k − j + 1)(p+ 1) + b

)
!
(
(n− j + 1)p+ b+ k

)
! (j − 1)!(

(n− j + 1)(p+ 1) + b
)
!
(
(k + n− j + 1)p+ b+ k

)
! (k + j − 1)!

.

Corollary 3.2
(1) If k ≤ n+ 1, then D(n, k, b, p) =

k∏
j=1

(
(n+ k + 1− j)(p+ 1) + b

n− j + 1

) (
(k − j)p+ b+ k

j

)
j! (k − j)! (n− j + 1)!

(n+ k − j + 1)!
.
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In particular,
• If k = 1, then

D(n, 1, b, p) =
1 + b

1 + b+ (n+ 1)p

(
(p+ 1)(n+ 1) + b

n+ 1

)
:= F

(p+1)
n+1 (b),

where F p
n(b) :=

1+b
1+b+(p−1)n

(
pn+b
n

)
denotes the generalized Fuss-Catalan number.

• if k = 2, then

D(n, 2, b, p) =
(2 + b)(2 + b+ p)

(1 + b)(2 + b+ (n+ 1)p)(2 + b+ (n+ 2)p)
F

(p+1)
n+1 (b) F

(p+1)
n+2 (b).

(2) (R.A. Proctor [35]) Consider the Young diagram

λ := λn,p,b = {(i, j) ∈ Z≥1 × Z≥1 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ (n+ 1− i)p+ b}.

For each box (i, j) ∈ λ define the numbers c(i, j) := n+ 1− i+ j, and

l(i,j)(k) =

{
k+c(p,j)
c(i,j)

, if j ≤ (n+ 1− i)(p− 1) + b,
(p+1)k+c(i,j)

c(i,j)
, if (n+ 1− i)(p− 1) < j − b ≤ (n+ 1− i)p.

Then

D(n, k, b, p) =
∏

(i,j)∈λ

l(i,j)(k). (3.26)

Therefore, D(n, k, b, p) is a polynomial in k with rational coefficients.
(3) If p = 0, then

D(n, k, b, 0) = dim V
gl(b+k)

(n+1)k
=

n+k∏
j=1

(
j + b

j
)min(j,n+k+1−j),

where for any partition µ, ℓ(µ) ≤ m, V
gl(m)
µ denotes the irreducible gl(m)-module with

the highest weight µ. In particular,
• D(n, 2, b, 0) = 1

n+2+b

(
n+2+b

b

)(
n+2+b
b+1

)
is equal to the Narayana numberN(n+b+2, b);

• D(1, k, b, 0) =
(b+ k)! (b+ k + 1)!

k!b!(k + 1)!(b+ 1)!
:= N(b+ k + 1, k),

and therefore the number D(1, k, b, 0) counts the number of pairs of non-crossing lattice
paths inside a rectangular of size (b+1)×(k+1), which go from the point (1, 0) (resp. from
that (0, 1)) to the point (b+1, k) (resp. to that (b, k+1)), consisting of steps U = (1, 0)
and R = (0, 1), see [37], A001263, for some list of combinatorial interpretations of the
Narayana numbers.

(4) If p = b = 1, then

D(n, k, 1, 1) =
∏

1≤l<j≤n+2

2k + i+ j − 1

i+ j − 1
.
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(5) ( R.A. Proctor [33],[34] ) If p = 1 and b is odd integer, then D(n, k, b, 1)
is equal to the dimension of the irreducible representation of the symplectic Lie algebra
Sp(b+ 2n+ 1) with the highest wright kωn+1.

(6) ( Cf [13] ) Let ϖλ be a unique dominant permutation of shape λ := λn,p,b and

ℓ := ℓn,p,b =
1
2
(n+ 1)(np+ 2b) be its length. Then

∑
a∈R(ϖλ)

ℓ∏
i=1

(x+ ai) = ℓ! B(n, x, p, b).

Here for any permutation w of length l, we denote by R(w) the set {a = (a1, . . . , al)} of
all reduced decompositions of w.

Remark 3.2
It is well-known, see e.g. [35], or [38], vol.2, Exercise 7.101.b, that the number

D(n, k, b, p) is equal to the total number ppλn,p,b(k) of plane partitions 10 bounded by
k and contained in the shape λn,b,p. Finally we recall that the generalized Fuss-Catalan

number F
(p+1)
n+1 (b) counts the number of lattice paths from (0, 0) to (b + np, n) that do

not go above the line x = py, see e.g. [24].

Theorem 3.8 Let ϖn,k,p be a unique vexillary permutation of the shape λn.p := (n, n−
1, . . . , 2, 1)p and flag ϕn,k := (k + 1, k + 2, . . . , k + n− 1, k + n). Then

• G(β−1)
ϖn,1,p

(1) =
n+1∑
j=1

1

n+ 1

(
n+ 1

j

) (
(n+ 1)p

j − 1

)
βj−1.

• If k ≥ 2, then Gn,k,p(β) := G
(β−1)
ϖn,k,p(1) is a polynomial of degree nk in β, and

Coeff[βnk](Gn,k,p(β)) = D(n, k, 1, p− 1, 0).

The polynomial
∑n

j=1
1
n

(
n
j

) (
pn
j−1

)
tj−1 := FNn(t) is known as the Fuss-Narayana poly-

nomial and can be considered as a t-deformation of the Fuss-Catalan number FCp
n(0).

Recall that the number 1
n

(
n
j

) (
pn
j−1

)
counts paths from (0, 0) to (np, 0) in the first

quadrant, consisting of steps U = (1, 1) and D = (1,−p) and have j peaks (i.e. UD’s),
cf. [37], A108767.

For example, take n = 3, k = 2, p = 3, r = 1, b = 0. Then
ϖ3,2,3 = [1, 2, 12, 9, 6, 3, 4, 5, 7, 8, 10, 11] ∈ S12, and G3,2,3(β) =
(1, 18, 171, 747, 1767, 1995, 1001). Therefore, G3,2,3(1) = 5700 = D(3, 2, 3, 0) and
Coeff[β6](G3,2,3(β)) = 1001 = D(3, 2, 2, 0).

10 Let λ be a partition. A plane (ordinary) partition bounded by d and shape λ is a filling of the
shape λ by the numbers from the set {0, 1, . . . , d} in such a way that the numbers along columns and
rows are weakly decreasing.
A reverse plane partition bounded by d and shape λ is a filling of the shape λ by the numbers from

the set {0, 1, . . . , d} in such a way that the numbers along columns and rows are weakly increasing.
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Comments 3.7 (=⇒) The case r=0
It follows from Theorem 3.5 that in the case r = 0 and k ≥ n, one has

D(n, k, 0, p, b) = dim V
gl(k+1)
λn,p,b

= (1 + p)(
n+1
2 )

n+1∏
j=1

(
(n−j+1)p+b+k−j+1

k−j+1

)(
(n−j+1)(p+1)+b

n−j+1

) .

Now consider the conjugate ν := νn,p,b := ((n + 1)b, np, (n− 1)p, . . . , 1p) of the partition
λn,p,b, and a rectangular shape partition ψ = (k, . . . , k︸ ︷︷ ︸

np+b

). If k ≥ np+ b, then there exists

a unique grassmannian permutation σ := σn,k,p,b of the shape ν and the flag ψ, [26]. It
is easy to see from the above formula for D(n, k, 0, p, b), that

Sσn,k,p,b
(1) = dim V gl(k−1)

νn,p,b
=

(1 + p)(
n
2)

(
k + n− 1

b

) n∏
j=1

(p+ 1)(n− j + 1)

(n− j + 1)(p+ 1) + b

n∏
j=1

(
k+j−2

(n−j+1)p+b

)(
(n−j+1)(p+1)+b−1

n−j

) .
After the substitution k := np+ b+ 1 in the above formula we will have

Sσn,np+b+1,p,b
(1) = (1 + p)(

n
2)

n∏
j=1

(
np+b+j−1
(n−j+1)p

)(
j(p+1)−1

j−1

) .
In the case b = 0 some simplifications are happened, namely

Sσn,k,p,0
(1) = (1 + p)(

n
2)

n∏
j=1

(
k+j−2

(n−j+1)p

)(
(n−j+1)p+n−j

n−j

) .
Finally we observe that if k = np+ 1, then

n∏
j=1

(
np+j−1
(n−j+1)p

)(
(n−j+1)p+n−j

n−j

) =
n∏

j=2

(
np+j−1

(p+1)(j−1)

)(
j(p+1)−1

j−1

) =

∏p
i=1

∏n−1
j=0 ((p+ 1)j + i)∏n(p−1)−1

j=0 (n+ j)
:= A(p)

n ,

where the numbers A
(p)
n are integers that generalize the numbers of alternating sign

matrices (ASM) of size n× n, recovered in the case p = 2, see [31], [6] for details.

Examples 3.1
(1) Let us consider polynomials Gn(β) := G

(β−1)
σn,2n,2,0(1).

• If n = 2, then σ2,4,2,0 = 235614 ∈ S6, and G2(β) = (1, 2,3) := 1 + 2β + 3β2.
Moreover, Rσ2,4,2,0(q; β) = (1, 2)β + 3 qβ2.
• If n = 3, then σ3,6,2,0 = 235689147 ∈ S9, and G3(β) = (1, 6, 21, 36, 51, 48,26).
Moreover, Rσ3,6,2,0(q; β) = (1, 6, 11, 16,11)β +q β2(10, 20, 35, 34)β +q2β4(5, 14,26)β;
Rσ3,6,2,0(q; 1) = (45, 99, 45)q.
• If n = 4, then σ4,8,2,0 = [2, 3, 5, 6, 8, 9, 11, 12, 1, 4, 7, 10] ∈ S12, and G4(β) =
(1, 12, 78, 308, 903, 2016, 3528, 4944, 5886, 5696, 4320, 2280,646).
Moreover, Rσ4,8,2,0(q; β) = (1, 12, 57, 182, 392, 602, 763, 730, 493,170)β +
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qβ2(21, 126, 476, 1190, 1925, 2626, 2713, 2026, 804)β +
q2β4(35, 224, 833, 1534, 2446, 2974, 2607, 1254)β +q

3β6(7, 54, 234, 526, 909, 1026,646)β;
Rσ4,8,2,0(q; 1) = (3402, 11907, 11907, 3402)q = 1701 (2, 7, 7, 2)q.
• If n = 5, then σ5,10,2 = [2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 1, 4, 7, 10, 13] ∈ S15, and

G5(β) = (1, 20, 210, 1420, 7085, 27636, 87430, 230240, 516375, 997790, 1676587, 2466840,
3204065, 3695650, 3778095, 3371612, 2569795, 1610910, 782175, 262200,45885).
Moreover, Rσ5,10,2,0(q; β) = (1, 20, 174, 988, 4025, 12516, 31402, 64760, 111510, 162170,
202957, 220200, 202493, 153106, 89355, 35972,7429)β+
qβ2(36, 432, 2934, 13608, 45990, 123516, 269703, 487908, 738927, 956430, 1076265,
1028808, 813177, 499374, 213597, 47538)β +
q2β4(126, 1512, 9954, 40860, 127359, 314172, 627831, 1029726, 1421253, 1711728,
1753893, 1492974, 991809, 461322, 112860)β +
q3β6(84, 1104, 7794, 33408, 105840, 255492, 486324, 753984, 1019538, 1169520, 1112340,
825930, 428895, 117990)β +
q4β8(9, 132, 1032, 4992, 17730, 48024, 102132, 173772, 244620, 276120, 240420, 144210,
45885)β.
Rσ5,10,2,0(q; 1) = (1299078, 6318243, 10097379, 6318243, 1299078)q =
59049(22, 107, 171, 107, 22)q.[
We are reminded that over the paper we have used the notation (a0, a1, . . . , ar)β :=∑r

j=0 aj β
j, etc

]
.

One can show that deg[β]Gn(β) = n(n−1), deg[q]Rσn,2n,2,0(q, 1) = n−1, and looking
on the numbers 3, 26, 646, 45885 we made

Conjecture 3 Let a(n) := Coeff [βn(n−1)]
(
Gn(β)

)
. Then

a(n) = V SAM(n) = OSASM(n) =
n−1∏
j=1

(3j + 2)(6j + 3)! (2j + 1)!

(4j + 2)! (4j + 3)!
,

where
V SASM(n) is the number of alternating sign 2n+ 1× 2n+ 1 matrices symmetric

about the vertical axis;
OSASM(n) is the number of 2n × 2n off-diagonal symmetric alternating sign

matrices.
See [37], A005156, [31] and references therein, for details.

Conjecture 4
Polynomial Rσn,2n,2,0(q; 1) is symmetric and Rσn,2n,2,0(0; 1) = A20342(2n−1), see [37].

(2) Let us consider polynomials Fn(β) := G
(β−1)
σn,2n+1,2,0(1).

• If n = 1, then σ1,3,2,0 = 1342 ∈ S4, and F2(β) = (1,2) := 1 + 2β.
• If n = 2, then σ2,5,2,0 = 1346725 ∈ S7, and F3(β) = (1, 6, 11, 16,11).
Moreover, Rσ2,5,2,0(q; β) = (1, 2,3)β + qβ(4, 8, 12)β + q2β3(4,11)β.
• If n = 3, then σ3,7,2,0 = [1, 3, 4, 6, 7, 9, 10, 2, 5, 8] ∈ S10, and F4(β) =
(1, 12, 57, 182, 392, 602, 763, 730, 493,170).
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Moreover,
Rσ3,7,2,0(q; β) = (1, 6, 21, 36, 51, 48,26)β + q β (6, 36, 126, 216, 306, 288, 156)β
+ q2β3(20, 125, 242, 403, 460, 289)β + q3β5(6, 46, 114, 204,170)β;
Rσ3,7,2,0(q; 1) = (189, 1134, 1539, 540)q = 27 (7, 42, 57, 20)q.
• If n = 4, then σ4,9,2,0 = [1, 3, 4, 6, 7, 9, 10, 12, 13, 2, 5, 8, 11] ∈ S13, and F5(β) =
(1, 20, 174, 988, 4025, 12516, 31402, 64760, 111510, 162170, 202957, 220200, 202493,
153106, 89355, 35972,7429).
Moreover,
Rσ4,9,2,0(q; β) = (1, 12, 78, 308, 903, 2016, 3528, 4944, 5886, 5696, 4320, 2280,646)β+
qβ (8, 96, 624, 2464, 7224, 16128, 28224, 39552, 47088, 45568, 34560, 18240, 5168)β+
q2β3(56, 658, 3220, 11018, 27848, 53135, 78902, 100109, 103436, 84201, 47830, 14467)β+
q3β5(56, 728, 3736, 12820, 29788, 50236, 72652, 85444, 78868, 50876, 17204)β+
q4β7(8, 117, 696, 2724, 7272, 13962, 21240, 24012, 18768,7429)β;
Rσ4,9,2,0(q; 1) = (30618, 244944, 524880, 402408, 96228)q = 4374 (7, 56, 120, 92, 22)q.
One can show that Fn(β) is a polynomial in β of degree n2, and looking on the

numbers 2, 11, 170, 7429 we made

Conjecture 5 Let b(n) := Coeff[β(n−1)2 ]

(
Fn(β)

)
. Then

b(n) = CSTCPP (n). In other words, b(n) is equal to the number of cyclically
symmetric transpose complement plane partitions in an 2n × 2n × 2n box. This
number is known to be

n−1∏
j

(3j + 1)(6j)! (2j)!

(4j + 1)! (4j)!
,

see [37], A051255, [2], p.199.

It ease to see that polynomial Rσn,2n+1,2,0(q; 1) has degree n.

Conjecture 6

Coeff[βn]

(
Rσn,2n+1,2,0(q; 1)

)
= A20342(2n),

see [37];
Rσn,2n+1,2,0(0; 1) = 3n(n−1)/2 ASM(n), see [37], A059491.

Proposition 3.5 One has

Rσ4,2n+1,2,0(0; β) = Gn(β) = G(β−1)
σn,2n,2,0

(1), Rσn,2n,2,0(0, β) = Fn(β) = G(β−1)
σn,2n+1,2,0

(1).

Remarks 1 One can compute the principal specialization of the Schubert polynomial
corresponding to the transposition tk,n := (k, n− k) ∈ Sn that interchanges k and n− k,
and fixes all other elements of [1, n].

Proposition 3.6

q(n−1)(k−1) Stk,n−k
(1, q−1, q−2, q−3, . . .) =

k∑
j=1

(−1)j−1 q(
j
2)

[
n− 1
k − j

]
q

[
n− 2 + j
n− k − 1

]
q

.
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Exercises.
(1) Let n ≥ 1 be a positive integer, consider “zig-zag” permutation

w =

(
2 4 . . . 2k 2k + 2 . . . 2n
1 3 . . . 2k − 1 2k + 1 . . . . . . 2n− 1

)
∈ S2n.

Show that

Rw(q, β) =
n−1∏
k=0

(
1− β2k

1− β
+ qβ2k

)
.

(2) Let σk,n,m be grassmannian permutation with shape λ = (nm) and flag ϕ =
(k + 1)m, i.e.

σk,n,m =

(
1 2 . . . k k + 1 . . . k + n k + n+ 1 . . . k + n+m
1 2 . . . k k +m+ 1 . . . k +m+ n k + 1 . . . k +m

)
.

Clearly σk+1,n,m = 1× σk,n,m. Show that the coefficient

Coeffβm

(
Rσk,n,m

(1, β)

)
is equal to the Narayana number N(k + n+m, k).

(3) Show that∑
(a,b,c)∈Z3

a>0

[
a+ b− 1

b

]
q

[
a+ c− 1

c

]
q

[
b+ c
b

]
q

= 1 +
1

(q; q)3

(∑
k≥2

(−1)k
(
k

2

)
q(

k
2)
)
.

3.2.4 Specialization of Grothendieck polynomials

Let p, b, n and i, 2i < n be positive integers. Denote by T (i)
p,b,n the trapezoid, i.e. a

convex quadrangle having vertices at the points

(ip, i), (ip, n− i), (b+ ip, i) and (b+ (n− i)p, n− i).

Definition 3.5 Denote by FC
(i)
b,p,n the set of lattice path from the point (ip, i) to that

(b + (n − i)p, n − i) with east steps E = (0, 1) and north steps N = (1, 0), which are

located inside of the trapezoid T (i)
p,b,n.

If p ∈ FC
(i)
b,p,n is a path, we denote by p(p) the number of peaks, i.e.

p(p) = NE(p) + Ein(p) +Nend(p),

where NE(p) is equal to the number of steps NE resting on path p; Ein(p) is equal to
1, if the path p starts with step E and 0 otherwise; Nend(p) is equal to 1, if the path
p ends by the step N and 0 otherwise.

Note that the equality Nend(p) = 1 may happened only in the case b = 0.

Definition 3.6 Denote by FC
(k)
b,p,n the set of k-tuples P = (p1, . . . , pk) of non-crossing

lattice paths, where for each i = 1, . . . , k, pi ∈ FC
(i)
b,p,n.
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Let
FC

(k)
b,p,n(β) :=

∑
P∈FC

(k)
b,p,n

βp(P)

denotes the generating function of the statistics p(P) :=
∑k

i=1 p(pi) − k.

Theorem 3.9 The following equality holds

G(β)
ϱn,k,p,b

(x1 = 1, x2 = 1, . . .) = FC
(k)
p,b,n+k(β + 1).

3.3 The “longest element” and Chan–Robbins poly-

tope

Assume additionally, cf [40], 6.C8, (d), that the condition (a) in Definition 3.1 is
replaced by that

(a′) : xij and xkl commute for all i, j, k and l.

Consider the element w
(n)
0 :=

∏
1≤i<j≤n xij. Let us bring the element w

(n)
0 to the

reduced form, that is, let us consecutively apply the defining relations (a′) and (b) to

the element w
(n)
0 in any order until unable to do so. Denote the resulting polynomial by

Qn(xij; β). Note that the polynomial itself depends on the order in which the relations
(a′) and (b) are applied.

We denote by Qn(β) the specialization xij = 1 for all i and j, of the polynomial
Qn(xij; β).

Example 3.6
Q3(β) = (2, 1) = 1 + (β + 1), Q4(β) = (10, 13, 4) = 1 + 5(β + 1) + 4(β + 1)2,

Q5(β) = (140, 336, 280, 92, 9) = 1 + 16(β + 1) + 58(β + 1)2 + 56(β + 1)3 + 9(β + 1)4,
Q6(β) = 1+42(β+1)+448(β+1)2+1674(β+1)3+2364(β+1)4+1182(β+1)5+169(β+1)6.

What one can say about the polynomial Qn(β) := Qn(xij; β)|xij=1,∀i,j ?
It is known, [40], 6.C8, (d), that the constant term of the polynomial Qn(β) is equal

to the product of Catalan numbers
∏n−1

j=1 Cj. It is not difficult to see that if n ≥ 3, then

degβ(Qn(β)) = 2(n− 3) and Coeff[β+1](Qn(β)) = 2n − 1−
(
n+1
2

)
.

Theorem 3.10 One has

Qn(β − 1) =
(∑
m≥0

ι(CRn+1,m) βm
)
(1− β)(

n+2
2 )+1,

where CRm denotes the Chan–Robbins polytope [3], i.e. the convex polytope given by
the following conditions :

CRm = {(aij) ∈Matm×m(Z≥0)} such that
(1)

∑
i aij = 1,

∑
j aij = 1,

(2) aij = 0, if j > i+ 1.
Here for any integral convex polytope P ⊂ Zd, ι(P, n) denotes the number of integer

points in the set nP ∩ Zd.
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In particular, the polynomial Qn(β) does not depend on the order in which the relations
(a′) and (b) have been applied.

Now let us denote by Qn(β, t) the specialization xij = 1, if (i, j) ̸= (1, n), and x1,n = t,
of the (reduced) polynomial Qn(xij; β) obtained by applying the relations (a′) and (b) in
a certain order. The polynomial itself depends on the order selected.

Conjecture 7 (A) Let n ≥ 4 and write

Qn(β, t) :=
2n−6∑
k=0

(1 + β)k ck,n(t), then ck,n(t) ∈ Z≥0[t].

(B) All roots of the polynomial Qn(β) belong to the set R<0.

Comments 3.8
(2) We expect that for each integer n ≥ 2 the set

Ψn+1 := {w ∈ S2n−1 | Sw(1) =
n∏

j=1

Catj}

contains either one or two elements, whereas the set {w ∈ S2n−2 | Sw(1) =
∏n

j=1Catj} is
empty. For example, Ψ4 = { [1, 5, 3, 4, 2] }, Ψ5 = { [1, 5, 7, 3, 2, 6, 4], [1, 5, 4, 7, 2, 6, 3] },

Ψ6 = { w := [1, 3, 2, 8, 6, 9, 4, 5, 7], w−1 }, Ψ7 = {???}.
Question Does there exist a vexillary (grassmannian ?) permutation w ∈ S∞ such

that Sw(1) =
∏n

j=1Catj ?
For example, w = [1, 4, 5, 6, 8, 3, 5, 7] ∈ S8 is a grassmannian permutation such that
Sw(1) = 140, and Rw(1, β) = (1, 9, 27, 43, 38, 18, 4).

Remark 3.3 We expect that for n ≥ 5 there are no permutations w ∈ S∞ such that

Qn(β) = S
(β)
w (1).

(3) The numbers Cn :=
∏n

j=1Catj appear also as the values of the Kostant partition
function of the type An−1 on some special vectors. Namely,

Cn = KΦ(1n)(γn), where γn = (1, 2, 3, . . . , n− 1,−
(
n

2

)
),

see e.g. [40], 6.C10, and [17], 173–178. More generally [17], (7,18), (7.25),one has

KΦ(1n)(γn,d) = ppδn(d) Cn−1 =
n+d−2∏
j=d

1

2j + 1

(
n+ d+ j

2j

)
,

where γn,d = (d + 1, d + 2, . . . , d + n − 1,−n(2d + n − 1)/2), and ppδn(d) denotes
the set of reverse (weak) plane partitions bounded by d and contained in the shape
δn := (n − 1, n − 2, . . . , 1). Clearly, ppδn(1) =

∏
1≤i<j≤n

i+j+1
i+j−1

= Cn, where Cn is the n-th

Catalan number 11.
11 For example, if n = 3, there exist 5 reverse (weak) plane partitions of shape δ3 = (2, 1) bounded

by 1, namely reverse plane partitions

{(
0 0
0

)
,

(
0 1
0

)
,

(
0 1
0

)
,

(
0 1
1

)
,

(
1 1
1

)}
.
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Conjecture 8
For any permutation w ∈ Sn there exists a graph Γw = (V,E), possibly with multiple

edges, such that the reduced volume ṽol(FΓw) of the flow polytope FΓw , see e.g. [39] for
a definition of the former, is equal to Sw(1).

For a family of vexillary permutations wn,p of the shape λ = pδn+1 and flag ϕ =
(1, 2, . . . , n−1, n) the corresponding graphs Γn,p have been constructed in [29], Section 6.
In this case the reduced volume of the flow polytope FΓn,p is equal to the Fuss-Catalan

number 1
1+(n+1)p

(
(n+1)(p+1)

n+1

)
= Swn,p(1), cf Corollary 3.2

Problems 3.3
(1) Assume additionally to the conditions (a′) and (b) above that

x2ij = β xij + 1, if 1 ≤ i < j ≤ n.

What one can say about a reduced form of the element w0 in this case ?
(2) According to a result by S. Matsumoto and J. Novak [27], if π ∈ Sn is a per-

mutation of the cyclic type λ ⊢ n, then the total number of primitive factorizations (see
definition in [27]) of π into product of n−ℓ(λ) transpositions, denoted by Primn−ℓ(λ)(λ),
is equal to the product of Catalan numbers:

Primn−ℓ(λ)(λ) =

ℓ(λ)∏
i=1

Catλi−1.

Recall that the Catalan number Catn := Cn = 1
n

(
2n
n

)
. Now take λ = (2, 3, . . . , n + 1).

Then

Qn(1) =
n∏

a=1

Cata = Prim(n2)
(λ).

Does there exist “a natural” bijection between the primitive factorizations and monomials
which appear in the polynomial Qn(xij; β) ?

Appendix Grothendieck polynomials

Definition A1 Let β be a parameter. The Id-Coxeter algebra IdCn(β) is an asso-

ciative algebra over the ring of polynomials Z[β] generated by elements
⟨
e1, . . . , en−1

⟩
subject to the set of relations

• eiej = ejei, if
∣∣∣i− j

∣∣∣ ≥ 2,

• eiejei = ejeiej, if
∣∣∣i− j

∣∣∣ = 1,

• e2i = β ei, 1 ≤ i ≤ n− 1.
It is well-known that the elements {ew, w ∈ Sn} form a Z[β]-linear basis of the

algebra IdCn(β). Here for a permutation w ∈ Sn we denoted by ew the product
ei1ei2 · · · eiℓ ∈ IdCn(β), where (i1, i2, . . . , iℓ) is any reduced word for a permutation w, i.e.
w = si1si2 · · · siℓ and ℓ = ℓ(w) is the length of w.

43



Let x1, x2, . . . , xn−1, xn = y, xn+1 = z, . . . be a set of mutually commuting variables.
We assume that xi and ej commute for all values of i and j. Let us define

hi(x) = 1 + xei, and Ai(x) =
i∏

a=n−1

ha(x), i = 1, . . . , n− 1.

Lemma A1 One has
(1) (Addition formula)

hi(x) hi(y) = hi(x⊕ y),

where we set (x⊕ y) := x+ y + βxy;
(2) (Yang–Baxter relation)

hi(x)hi+1(x⊕ y)hi(y) = hi+1(y)hi(x⊕ y)hi+1(x).

Corollary A1
(1) [hi+1(x)hi(x), hi+1(y)hi(y)] = 0.
(2) [Ai(x), Ai(y)] = 0, i = 1, 2, . . . , n− 1.
The second equality follows from the first one by induction using the Addition for-

mula, whereas the fist equality follows directly from the Yang–Baxter relation.
Definition A2 (Grothendieck expression)

Gn(x1, . . . , xn−1) := A1(x1)A2(x2) · · ·An−1(xn−1).

Theorem A ([11]) The following identity

Gn(x1, . . . , xn−1) =
∑
w∈Sn

G(β)
w (Xn−1) ew

holds in the algebra IdCn ⊗ Z[x1, . . . , xn−1].

Definition A3 We will call polynomial G
(β)
w (Xn−1) as the β-Grothendieck polyno-

mial corresponding to a permutation w.
Corollary A2
(1) If β = −1, the polynomials G

(−1)
w (Xn−1) coincide with the Grothendieck poly-

nomials introduced by Lascoux and M.-P. Schützenberger [25].

(2) The β-Grothendieck polynomial G
(β)
w (Xn−1) is divisible by x

w(1)−1
1 .

(3) For any integer k ∈ [1, n− 1] the polynomial G
(β−1)
w (xk = q, xa = 1,∀a ̸= k) is a

polynomial in the variables q and β with non-negative integer coefficients.

Proof (Sketch) It is enough to show that the specialized Grothendieck expression
Gn(xk = q, xa = 1,∀a ̸= k) can be written in the algebra IdCn(β − 1) ⊗ Z[q, β] as
a linear combination of elements {ew}w∈Sn with coefficients which are polynomials in
the variables q and β with non-negative coefficients. Observe that one can rewrite the
relation e2k = (β − 1)ek in the following form ek(ek + 1) = β ek. Now, all possible
negative contributions to the expression Gn(xk = q, xa = 1, ∀a ̸= k) can appear only
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from products of a form ca(q) := (1 + qek)(1 + ek)
a. But using the Addition formula one

can see that (1 + qek)(1 + ek) = 1 + (1 + qβ)ek. It follows by induction on a that ca(q)
is a polynomial in the variables q and β with non-negative coefficients.

Definition A4
• The double β-Grothendieck expression Gn(Xn, Yn) is defined as follows

Gn(Xn, Yn) = Gn(Xn) Gn(−Yn)−1 ∈ IdCn(β)⊗ Z[Xn, Yn].

• The double β-Grothendieck polynomials {Gw(Xn, Yn)}w∈Sn are defined from the
decomposition

Gn(Xn, Yn) =
∑
w∈Sn

Gw(Xn, Yn) ew

of the double β-Grothendieck expression in the algebra IdCn(β).
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46



[27] S. Matsumoto and J. Novak, Primitive factorizations, Jucys–Murphy elements, and
matrix models, preprint arXiv:1005.0151.
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