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Abstract

In this paper, we announce our recent results on the Borel summability

of 0-parameter solutions of second order nonlinear ordinary differential

equations with a large parameter. 0-parameter solutions are formal

power series solutions with respect to a large parameter, and we es-

tablish their Borel summability for a wide class of equations including

Painlevé equations. We also study the singularity structure of a 1-

form ω for the Painlevé equations, which plays an important role in

our analysis.

0 Introduction

The main purpose of this article is to announce the results of [KKo]

on the Borel summability of 0-parameter solutions of second order

nonlinear ordinary differential equations with a large parameter.

The exact WKB analysis was initiated by A. Voros. He discussed

WKB analysis of a Schrödinger equation

(0.1)
( d2

dx2
− η2Q(x)

)
ψ(x, η) = 0 (η : a large parameter)

using the Borel resummation method ([V]). To employ the exact WKB

analysis, it is important to know where the WKB solutions are Borel

summable. In [KoS1] and [KoS2], such a problem was studied by

considering a formal solution S(x, η) = ηS−1(x)+S0(x)+ η−1S1(x)+

· · · of the Riccati equation

(0.2)
dS

dx
+ S2 = η2Q(x)

associated with (0.1). (See also [CDK] and [DLS] for the Borel summa-

bility of WKB solutions.)

Following their results we will study in [KKo] the Borel summability
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of a formal solution

(0.3) λ(t, η) = λ0(t) + η−1λ1(t) + · · ·
of the second order nonlinear ordinary differential equations of the form

(0.4)
d2λ

dt2
= η2P (t, λ)

Q(t, λ)
+
R1(t, λ, λ̇)

R2(t, λ)
,

where P (t, λ), Q(t, λ), R2(t, λ) ∈ C[t, λ], R1(t, λ, λ̇) ∈ C[t, λ, λ̇] and

λ̇ = dλ/dt, and P,Q,R1, R2 satisfy some suitable conditions. Typical

examples of the above equation (0.4) are Painlevé equations with a

large parameter studied in [KT]. Therefore, following the usage in

[KT], we call (0.3) a 0-parameter solution of (0.4) in what follows. In

our study, a 1-form

(0.5) ω =

√(
∂λP

)
(t, λ0(t))

Q(t, λ0(t))
dt

plays a central role when we determine regions in which a 0-parameter

solution λ(t, η) is Borel summable: Indeed, the most important condi-

tion of the Borel summability of λ(t, η) at t = t0 is that there exists a

neighborhood V of t0 such that all of the integral curves of Imω = 0

which pass through V run into singular points of ω of order less than

or equal to −1.

This report consists of two sections: In §1, we explain core results

of [KKo]. In this report we mainly limit ourselves to the case R1 ≡ 0

in (0.4) to make our arguments clear. In §2, we study the singularity

structure of ω for the Painlevé equations, which is necessary to examine

the Borel summability of their 0-parameter solutions.
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and their students for the valuable discussions with them and their

suggestions.

3



1 0-parameter solutions and their properties

The main purpose of this section is to give the conditions for the Borel

summability of 0-parameter solutions of (0.4). For simplicity, we con-

sider the case where R1 ≡ 0, i.e.,

(1.1)
d2λ

dt2
= η2P (t, λ)

Q(t, λ)
.

To begin with, let us construct a 0-parameter solution. By multi-

plying (1.1) by Q(t, λ), we obtain

(1.2)
d2λ

dt2
Q(t, λ) = η2P (t, λ).

By substituting (0.3) into (1.2) and comparing both sides degree by

degree with respect to η, we find that the coefficients of η2 give

(1.3) P (t, λ0(t)) = 0.

Therefore we choose λ0(t) as a root of (1.3) and fix it in what follows.

Then the lower order terms λ1, λ2, · · · are recursively and uniquely

determined when

(1.4) ∂λP (t, λ0(t)) is not identically 0.

Indeed, by comparing the coefficients of η1 of (1.2), we find

(1.5)
(
∂λP

)
(t, λ0(t))λ1(t) = 0.

Hence we obtain from (1.4) that

(1.6) λ1(t) ≡ 0.

Next, by comparing the coefficients of η0 of (1.2), we find

(1.7)
d2λ0

dt2
Q(t, λ0) =

(
∂λP

)
(t, λ0)λ2(t).
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Therefore λ2(t) is given by

(1.8) λ2(t) =
Q(t, λ0)(
∂λP

)
(t, λ0)

d2λ0

dt2
.

Then, proceeding the discussion, we can inductively confirm that, by

comparing the coefficients of η−n (n = 1, 2, · · · ), λn+2(t) are uniquely

determined by λ0(t), · · · , λn+1(t) and satisfies

(1.9) λ2k+1(t) ≡ 0 (k = 1, 2, · · · ).

In this way, we can uniquely determine a 0-parameter solution of the

form

(1.10) λ(t, η) =

∞∑
k=0

η−2kλ2k(t)

for each root λ0(t) of (1.3).

Remark 1.1. We immediately find that, if λ2 ≡ 0, then λ2k ≡ 0

(k = 2, 3, · · · ). Therefore, in what follows, we assume that λ2 is not

identically 0.

Since we cannot expect that the 0-parameter solution (1.10) con-

verges, we consider its Borel sum

(1.11) λ0(t) +

∫ ∞

0

e−ηyλ̃B(t, y)dy

with respect to η (see, e.g., [B]). Here λ̃(t, η) = λ(t, η) − λ0(t) and

(1.12) λ̃B(t, y) :=

∞∑
k=1

y2k−1λ2k(t)

(2k)!

is the Borel transform of λ̃(t, η) with respect to η, and the path of

integration in (1.11) is the positive real axis as usual.

Our main theorem (Theorem 1.2 below) claims that, under suitable

conditions, the integral in (1.11) is well-defined, i.e., λ̃(t, η) is Borel
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summable. Therefore our main concern is to study the analytic prop-

erties of λ̃B(t, y) in y-plane. To see how our assumptions naturally

appear, let us see the outline of our argument before stating our main

theorem.

To study the analytic properties of λ̃B(t, y) we study the Borel tran-

soform of (1.2):(
Q(t, λ0(t))

∂2

∂t2
−

(
∂λP

)
(t, λ0(t))

∂2

∂y2

)
λ̃B(t, y)(1.13)

= −d
2λ0

dt2

∑
k≥1

1

k!

(
∂kλQ(t, λ0)

)
λ̃∗kB (t, y)

−
∑
k≥1

1

k!

(
∂kλQ(t, λ0)

)∂2λ̃B
∂t2

∗ λ̃∗kB (t, y)

+
∑
k≥2

1

k!

(
∂kλP (t, λ0)

) ∂2

∂y2
λ̃∗kB (t, y),

where · ∗ · is the convolution operator defined by

(1.14) λB ∗ λB =

∫ y

0

λB(t, y − y′)λB(t, y′)dy′

and

(1.15) λ∗nB =

n︷ ︸︸ ︷
λB ∗ · · · ∗ λB .

We also impose initial conditions which follows from (1.2):

(1.16) λ̃B(t, 0) = 0 and
∂λ̃B
∂y

(t, 0) = λ2(t).

Remark 1.2. We may regard the left-hand side of (1.13) as the principal

part in the following sense: when we define the weight of ∂/∂t and ∂/∂y

by 1 and that of · ∗ · by −1, then the left-hand side of (1.13) has the

weight 2 and the right-hand side has the weight less than 2.
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To simplify left-hand side of (1.13) we employ the Liouville trans-

formation, i.e., a coordinate transformation (t, y) 7→ (z, y) defined by

(1.17) z(t) =

∫ t

t0

ω,

where t0 ∈ C is a fixed point and

(1.18) ω =

√
∂λP (t, λ0(t))

Q(t, λ0(t))
dt.

We assume that ω is holomorphic and does not vanish in the region

where we consider. Then, in (z, y)-variable, (1.13) is rewritten as fol-

lows:

(1.19)
(
∂λP

)
(t, λ0)

( ∂2

∂z2
+

(dz
dt

)−1d2z

dt2
∂

∂z
− ∂2

∂y2

)
λ̃B(t(z), y).

Further, applying a gauge transformation

(1.20)
(
λ2(t)

)−1
λ̃B(t(z), y) =: λ̂B(z, y),

we find that λ̂B(z, y) satisfies( ∂2

∂z2
− ∂2

∂y2

)
λ̂B(z, y)(1.21)

= −Lλ̂B(z, y)

− 1(
∂λP

)
(t, λ0)

1

λ2

d2λ0

dt2

∑
k≥1

λk2
k!

(
∂kλQ(t, λ0)

)
λ̂∗kB (z, y)

− 1(
∂λP

)
(t, λ0)

(dz
dt

)2 ∑
k≥1

λk2
k!

(
∂kλQ(t, λ0)

)
×

(∂2λ̂B
∂z2

+ Lλ̂B(z, y)
)
∗ λ̂∗kB (z, y)

+
1(

∂λP
)
(t, λ0)

1

λ2

∑
k≥2

λk2
k!

(
∂kλP (t, λ0)

) ∂2

∂y2
λ̂∗kB (z, y),
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where

L =
{(dz

dt

)−2d2z

dt2
+ 2λ−1

2

dλ2

dz

} ∂

∂z
(1.22)

+
(dz
dt

)−2d2z

dt2
λ−1

2

dλ2

dz
+ λ−1

2

d2λ2

dz2
.

This λ̂B(z, y) also satisfies the initial conditions

(1.23) λ̂B(z, 0) = 0 and
∂λ̂B
∂y

(z, 0) = 1.

To study a solution of (1.21), we use

Proposition 1.1. Let λ̂B(z, y) satisfy

(1.24)
( ∂2

∂z2
− ∂2

∂y2

)
λ̂B(z, y) = Φ(z, y)

and initial conditions

(1.25) λ̂B(z, 0) = 0 and
∂λ̂B
∂y

(z, 0) = g(z),

where

Φ(z, y) =

m∑
k=1

f
(0)
k (z)λ̂∗kB (z, y) +

m∑
k=0

f
(1)
k (z)

∂λ̂B
∂z

∗ λ̂∗kB (z, y)

(1.26)

+

m∑
k=1

f
(2)
k (z)

∂2λ̂B
∂z2

∗ λ̂∗kB (z, y) +

m∑
k=2

f
(3)
k (z)

∂2

∂y2
λ̂∗kB (z, y)

and m is a positive integer, and assume that

(1.27) all f
(j)
k (z) and g(z) are holomorphic and bounded on

E1
r = {z ∈ C : |Im z| ≤ r}

for a positive constant r. Then λ̂B(z, y) is holomorphic on

(1.28) E2
r/2 = {(z, y) ∈ C2 : |Im z| ≤ r/2, |Im y| ≤ r/2}
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and satisfies the following estimates for positive constants C1 and

C2:

(1.29) |λ̂B(z, y)| ≤ C1 exp[C2|y|].

Indeed, we can rewrite the differential equation to the following in-

tegral equation:

(1.30) λ̂B(z, y) =
1

2

∫ z+y

z−y
g(z′)dz′ − 1

2

∫ y

0

∫ z+y−y′

z−y+y′
Φ(z′, y′)dz′dy′,

and, employing the iteration method, we can show the above proposi-

tion. (See [KKo] for the details.)

Now, our task is to examine the conditions for a 0-parameter solution

so that we can apply Proposition 1.1 to it. Our first assumption is

(1.31) there exists a neighborhood U of t = t0 and singular points

t = t± of ω of order smaller than −1 such that endpoints of

a curve Γť are t+ and t− for each point ť in U ,

where Γť denotes an integral curve of Imω = 0 that passes through a

point ť. This condition guarantees that z(t) extends to ±∞ along Γť
without encountering any singular point of it. Let Û denote

∪
ť∈U Γť.

Then we can take r > 0 so that E1
r ⊂ z(Û) and z(t) is locally biholo-

morphic on Û .

Our second assumption is

(1.32) Û does not contain t = ∞ in its interior.

(Cf. Remark 1.3 and Remark 1.7.)

Remark 1.3. When we take s = 1/t as a coordinate variable, (1.1) is

rewritten as follows:

(1.1′)
d2λ

ds2
= η2 P (s−1, λ)

s4Q(s−1, λ)
− 2

1

s

dλ

ds
.
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It does not have the form of (1.1). Therefore, when we restrict our

equation to the form (1.1′), we assume that the discussion is held on

C. On the other hand, since P (t, λ) and Q(t, λ) are polynomials, we

may regard that (1.1′) has the form of (0.4). Hence, as we will mention

in Remark 1.7, when we extend the following discussion to (0.4), we

do not have to pay special attention to the point ∞ ∈ P1.

By taking the form (1.8) of λ2 into account, it suffices to confirm the

holomorphy and the boundedness of the following terms on Û :(
∂kλP

)
(t, λ0)λ

k−1
2(

∂λP
)
(t, λ0)

and

(
∂kλQ

)
(t, λ0)λ

k
2

Q(t, λ0)
(k ≥ 1).(1.33)

Indeed, under the assumptions (1.31) and (1.32) (and modifying the

gauge transformation (1.20) if necessary), we may assume that the

coefficients of L are holomorphic and bounded on Û .

To guarantee the holomorphy of all terms in (1.33) on Û , we impose

the third assumption:

(1.34) the discriminant DiscP (t) of P (t, λ) and the resultant

Res(P,Q)(t) of P (t, λ) and Q(t, λ) do not vanish on Û .

Note that the condition (1.34) is violated at finitely many points on Û

if DiscP (t) and Res(P,Q)(t) are not identically equal to 0. However, if

the terms (1.33) are holomorphic there, then Theorem 1.1 below holds

even though (1.34) is violated.

To give the last assumption to ensure the boundedness of the terms

(1.33), we prepare some notations. Under the assumption (1.34), by

shrinking U if necessary, it suffices to show the boundedness of them

at the singular points t±. For simplicity, we assume that t+ ∈ C and

λ0(t) behaves as

(1.35) λ0(t) = β+(t− t+)α+ + o
(
(t− t+)α+

)
10



with α+ ∈ Q and β+ 6= 0 when t tends to t+. Let F (t, λ) = Fn(t)λ
n+

· · · + F0(t) ∈ C[t, λ] be a polynomial and assume that Fk(t) (k =

0, 1, · · · , n) behave as

(1.36) Fk(t) = F
(0)
k (t− t+)νk + o

(
(t− t+)νk

)
with F

(0)
k 6= 0 and νk ∈ Z≥0 = {0, 1, 2, · · · }. Then, we define an index

indt+λ0
(F ) (relevant to λ0(t)) by

(1.37) indt+λ0
(F ) = min

0≤k≤n

{
kα+ + νk

}
and a polynomial Dt+

F (λ) by

(1.38) Dt+
F (λ) =

∑
k

F
(0)
k λk,

where the sum is taken over k that give the minimum in (1.37), i.e.,

kα++νk = indt+λ0
(F ). In the same way, we can define an index indt−λ0

(F )

and a polynomial Dt−
F (λ) at t = t− for

(1.35′) λ0(t) = β−(t− t−)α− + o
(
(t− t−)α−

)
.

We note that the constant β+ in (1.35) (resp., β− in (1.35′)) is given

by one of the roots of Dt+
P (λ) = 0 (resp., Dt−

P (λ) = 0).

Our last assumption is

(1.39) Dt±
∂λP

(β±) 6= 0 and Dt±
Q (β±) 6= 0 hold.

This condition (1.39) entails that the order of ∂λP
(
t, λ0(t)

)
(resp.,

Q
(
t, λ0(t)

)
) at t = t± coincides with the index indt±λ0

(∂λP ) (resp.,

indt±λ0
(Q)). We also note that the first condition Dt±

∂λP
(β±) 6= 0 is

equivalent to that the leading term β±(t− t±)α± of λ0(t) at t = t± is

different from that of the other roots of P (t, λ) = 0. In this sense, if

(1.39) holds at t = t±, we call t = t± a nondegenerate singular point.

Further, we can derive the boundedness of the terms (1.33) at t = t±
from (1.31) and (1.39).
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Remark 1.4. When t+ = ∞, by taking s = t−1 as a coordinate variable,

we can define the index indt+λ0
(F ) and the polynomial Dt+

F (λ) in the

same manner as above.

Remark 1.5. If the order of the singular points t = t± of ω is strictly

less than −1, we can modify the condition (1.39). See [KKo] for details.

Now we state our main theorem:

Theorem 1.1. Let λ0(t) be a root of (1.3) and assume that (1.31),

(1.32), (1.34) and (1.39) hold. Then the 0-parameter solution λ(t, η)

of (1.1) that has λ0(t) as its initial part is Borel summable on

Û . More precisely, the Borel transform λ̃B(t, y) of λ(t, η) − λ0(t)

satisfies the following estimates on Û × {y ∈ C : |Imy| ≤ r} for

positive constants r, C1 and C2:

(1.40) |λ̃B(t, y)| ≤ C1

(
|λ2(t)| + 1

)
exp[C2|y|].

Remark 1.6. We give a remark here on our results of the Borel summa-

bility of 0-parameter solutions in the case when R1 6≡ 0 in (0.4). In

this case, λ2(t) is given by

(1.8′) λ2(t) =
Q(t, λ0)(
∂λP

)
(t, λ0)

(d2λ0

dt2
− R1(t, λ0, λ̇0)

R2(t, λ0)

)
.

In addition to the assumptions of Theorem 1.2, if the following terms

(1.41) and (1.42) are holomorphic and bounded on Û , we obtain the

same results as Theorem 1.2:

(1.41)

(
∂kλR2

)
(t, λ0)λ

k
2

R2(t, λ0)
and

Q(t, λ0)(
∂λP

)
(t, λ0)

d2λ0

dt2

(
∂kλR2

)
(t, λ0)λ

k−1
2

R2(t, λ0)

for k ≥ 0 and

(1.42)
Q(t, λ0)(
∂λP

)
(t, λ0)

(
∂k1
λ ∂

k2
λ̇
R1

)
(t, λ0, λ̇0)λ

k1−1
2 λ̇k2

2

R2(t, λ0)

for {k1, k2 ≥ 0} \ {k1 = k2 = 0}. (See [KKo] for details.)
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Remark 1.7. In parallel with Remark 1.3, when we take s = 1/t as a

coordinate variable, (0.4) is rewritten as follows:

(0.4′)
d2λ

ds2
= η2 P (s−1, λ)

s4Q(s−1, λ)
− 2

1

s

dλ

ds
+
R1(s

−1, λ,−s2dλ/ds)

s4R2(s−1, λ)
.

We may regard that (0.4′) has the form of (0.4). Therefore, when the

terms corresponding to (1.33), (1.41) and (1.42) for (0.4′) are holomor-

phic and bounded at s = 0, we can extend Theorem 1.1 to the case

where Û contains t = ∞ in its interior.

2 Singularity structure of ω for the Painlevé equations

In Section 1, we gave a condition for a 0-parameter solution of (0.4) to

be Borel summable. (Cf. Theorem 1.1 and Remark 1.6.) Taking the

results into account, we define a turning point and Stokes curves for a

0-parameter solution of (0.4).

Definition 2.1. We call t = t0 a turning point of a 0-parameter

solution of (0.4) when the order of a 1-form ω defined by (1.19) at

t = t0 is greater than −1, i.e., ω behaves as

(2.1) ω =

{(
C0(t− t0)

γ + o((t− t0)
γ)

)
dt(

C0t
−γ−2 + o(t−γ−2)

)
dt

at t = t0 ∈ C
at t = ∞

with C0 6= 0 and γ > −1. Especially, when

∂λP (t0, β0) = 0,(2.2)

∂2
λP (t0, β0) 6= 0,(2.3)

∂tP (t0, β0) 6= 0,(2.4)

Q(t0, β0) 6= 0(2.5)

hold for a root β0 of P (t0, β0) = 0, we call t = t0 a simple turn-

ing point of the corresponding 0-parameter solution. Further, the

13



integral curves of Im ω = 0 that emanate from turning points are

called Stokes curves.

Remark 2.1. In s-variable with s = t−1, the behavior (2.1) of ω at

t = ∞ is rewritten as follows:

(2.6) ω =
(
− C0s

γ + o(sγ)
)
ds at s = 0.

We remark here that the Borel summability of 0-parameter solutions

except on the Stokes curves does not automatically follow. We have to

take into account the effect of the lower order term R1/R2 and confirm

the nondegeneracy of singular points of ω. In this section, we study

the singularity structure of ω for the Painlevé equations with a large

parameter η. (Cf. [KT].)

Remark 2.2. In general, turning points of the Painlevé equations except

for t = 0 of PIII, t = 0 of PV and t = 0, 1,∞ of PVI are simple turning

points. However, when parameters of the Painlevé equations satisfy

some relations, these simple turning points become “double turning

points”. See [T2, Proposition 2.4] for precise conditions.

Example 2.1 (the first Painlevé equation). We consider the first

Painlevé equation:

(PI)
d2λ

dt2
= η2(6λ2 + t).

The 1-form ωI defined by (1.18) for (PI) is given by

(2.7) ωI =
√

12λ(t)dt,

and the roots of PI(t, λ) = 6λ2 + t are λ(l)(t) = (−1)l
√

−1/6 t1/2

(l = 1, 2). Since the discriminant DiscI(t) of PI(t, λ) is

(2.8) DiscI(t) = 144t,

we find that ωI is holomorphic and does not vanish except for t = 0

and ∞.
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First, we focus on the behavior of ωI at t = 0. Obviously, t = 0 is

a simple turning point of λ(l)(t) (l = 1, 2). Then, the index (1.37) for

∂λPI relevant to these λ(l)(t) at t = 0 and the polynomial (1.38) are

respectively given by

(2.9) ind0
λ(l)(∂λPI) =

1

2

and

(2.10) D
0,(l)
PI

(β) = 6β2 + 1 = 0 (l = 1, 2).

Since D
0,(l)
PI

(β) has no multiple root, D
0,(l)
∂λPI

(±
√

−1/6) 6= 0, and hence,

the order γ
(l)
0 of ωI for λ(l) (l = 1, 2) at t = 0 is given by

(2.11) γ
(l)
0 =

1

2
ind0

λ(l)(∂λPI) =
1

4
.

Second, let us consider the behavior of ωI at t = ∞. Since λ(l)(s) =

(−1)l
√

−1/6 s−1/2 with s = t−1, the index ind∞
λ(l)(∂λPI) at t = ∞ is

given by

(2.12) ind∞
λ(l)(∂λPI) = −1

2
(l = 1, 2).

Since ωI is represented as

(2.13) ωI = −
√

12λ(s)s−2ds

in s-variable, we find the order γ
(l)
∞ of ωI for λ(l) (l = 1, 2) at t = ∞ is

given by

(2.14) γ(l)
∞ =

1

2
ind∞

λ(l)(∂λPI) − 2 = −9

4
(l = 1, 2).
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l = 1 2

α(l) −1/2 −1/2

β(l) −
√
−1/6

√
−1/6

γ
(l)
∞ −9/4 −9/4

Table 1: The leading term β(l)t−α
(l)

of λ(l)(t) and the order

γ
(l)
∞ of ωI at t = ∞.

Remark 2.3. We find that the above discussion indicates the Borel

summability of 0-parameter solutions of (PI) except on the Stokes

curves emanating from t = 0, and hence, we can take the Borel sum

of them. On the other hand, as is discussed in [T1], t = 0 actually

behaves as a turning point and 0-parameter solutions of (PI) are not

Borel summable on these Stokes curves. Hence, when we consider the

analytic continuation of the Borel sum of a 0-parameter solution across

a Stokes curve, Stokes phenomena occur, and a so-called “1-parameter

solution” appears. We can also show the generalized Borel summability

of it. See [K] for the details. Here, we mention that a similar kind of

formal solutions called “transseries solutions” are studied in [C], which

are the formal exponential series solutions at an irregular singular point

of nonlinear ordinary differential equations. Further, the generalized

Borel summability of transseries solutions is discussed there.

Example 2.2 (the second Painlevé equation). Next, we consider the

second Painlevé equation

(PII)
d2λ

dt2
= η2(2λ3 + tλ + c).

We discuss on the singular points of

(2.15) ωII =
√

6λ2(t) + t dt

16



with a root λ(t) of PII(t, λ) = 2λ3 + tλ+ c. The discriminant DiscII(t)

of PII(t, λ) is given by

(2.16) DiscII(t) = 8(2t3 + 27c2).

Therefore, when c 6= 0, DiscII(t) = 0 has three distinct roots, i.e.,

t = tj := 3θj(c2/2)1/3 (j = 0, 1, 2) with θ = exp[2π
√
−1/3]. In what

follows, we assume that c 6= 0. We examine the behavior of the roots

of PII(t, λ) = 0 and ωII for the roots at t = tj. We first note that three

roots of PII(t, λ) = 0 behave as λ
(l)
j (t) = β

(l)
j + o(1) (l = 1, 2, 3) at

t = tj, where {β(l)
j }3

l=1 are the roots of

(2.17) D
tj ,(l)

PII
(β) = 2β3 + tjβ + c (l = 1, 2, 3).

Since DiscII(tj) = 0, two of them coincide. Let β
(1)
j = β

(2)
j be such

roots. Then, we immediately find that t = tj is a simple turning point

of λ
(l)
j (t) (l = 1, 2). Since ∂βD

tj ,(1)

PII
(β

(1)
j ) = 6(β

(1)
j )2 + tj = 0, the

Newton polygon of P̃II(t, λ̃) := PII(t, β
(1)
j + λ̃) = 2λ̃3 + 6β

(1)
j λ̃2 + (t−

tj)λ̃+ β
(1)
j (t− tj) at t = tj is given by Figure 1 below. Therefore, two

of the roots λ̃
(1)
j (t) and λ̃

(2)
j (t) of P̃II(t, λ̃) behave as

(2.18) λ̃
(l)
j (t) = β̃

(l)
j (t− tj)

1/2 + o((t− tj)
1/2) (l = 1, 2),

where β̃
(l)
j are the two distinct roots of

(2.19) D
tj ,(l)

P̃II
(β̃) = 6β̃2 + 1 = 0 (l = 1, 2),

and hence,

(2.20) ind
tj

λ̃
(l)
j

(∂λ̃P̃II) = min
{

1,
1

2
, 2 · 1

2

}
=

1

2
(l = 1, 2).

Therefore, the order γ
(l)
j of ωII for λ

(l)
j (t) (l = 1, 2) at t = tj is given

17
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Figure 1: Newton Polygon of P̃II(t, λ̃) at t = tj.

by

(2.21) γ
(l)
j =

1

2
ind

tj

λ̃
(l)
j

(∂λ̃P̃II) =
1

4
(l = 1, 2).

Remark 2.4. Since D
tj ,(1)

∂λPII
(β

(1)
j ) = ∂βD

tj ,(1)

PII
(β

(1)
j ) = 0, we find that

t = tj (j = 1, 2, 3) are degenerate singular points, and hence,

(2.22) γ
(l)
j >

1

2
ind

tj

λ
(1)
j

(∂λPII) = 0.

However, by considering λ̃
(l)
j (t) (l = 1, 2) and P̃II(t, λ̃) instead of λ

(l)
j (t)

(l = 1, 2) and PII(t, λ), we can reduce these singular points to nonde-

generate ones as above. Then, we can measure the order γ
(l)
j by the

index ind
tj

λ̃
(l)
j

(∂λ̃P̃II) as (2.21).

On the other hand, since ∂βD
tj ,(3)

PII
(β

(3)
j ) 6= 0, we find that the other

root λ
(3)
j (t) is holomorphic at t = tj, and hence, ωII for λ

(3)
j (t) is also

18



holomorphic and does not vanish there.

Now, let us focus on the singular points of ωII at t = ∞. We find

that three roots of P̃II(t, λ̃) behave as Table 2 below.

l = 1 2 3

α
(l)
∞ 1 −1/2 −1/2

β
(l)
∞ −c

√
−1/2 −

√
−1/2

γ
(l)
∞ −5/2 −5/2 −5/2

Table 2: The leading term β
(l)
∞ t−α

(l)
∞ of λ

(l)
∞(t) and the order

γ
(l)
∞ of ωII at t = ∞.

Table 2 indicates that D
∞,(l)
PII

(β) (l = 1, 2, 3) has no multiple root.

Hence, the order ord∞
λ

(l)
∞

(∂λPII) of ∂λPII(t, λ
(l)
∞(t)) at t = ∞ is given by

(2.23) ord∞
λ

(l)
∞

(∂λPII) = ind∞
λ̃

(l)
∞

(∂λPII) = min{2α(l)
∞ ,−1}.

Therefore, we find that the order γ
(1)
∞ of ωII for λ

(1)
∞ (t) at t = ∞ is

given by

(2.24) γ(1)
∞ =

1

2
ind∞

λ
(1)
∞

(∂λPII) − 2 = −5

2
.

On the other hand, the order γ
(l)
∞ of ωII for the other roots is given by

(2.25) γ(l)
∞ =

1

2
ind∞

λ
(l)
∞

(∂λPII) − 2 = −5

2
(l = 2, 3).

Example 2.3 (the third Painlevé equation). Let us consider the third

Painlevé equation

(PIII)
d2λ

dt2
=

1

λ

(dλ
dt

)2

− 1

t

dλ

dt
+ 8η2

[
2c∞λ

3 +
c′∞
t
λ2 − c′0

t
− 2

c0
λ

]
.

19



In what follows, we assume that c∞, c
′
∞, c

′
0 and c0 are not equal to 0.

Let ωIII be a 1-form defined by

(2.26) ωIII =

√
8
(
8c∞tλ3(t) + 3c′∞λ

2(t) − c′0
)

tλ(t)
dt

with a root λ(t) of PIII(t, λ) = 8
(
2c∞tλ

4 + c′∞λ
3 − c′0λ− 2c0t

)
. Since

the discriminant DiscIII(t) of PIII(t, λ) and the resultant ResIII(t) of

PIII(t, λ) and QIII(t, λ) = tλ are respectively given by

DiscIII(t) =N1c∞t
(
(c′∞)3(c′0)

3 − (27c2∞(c′0)
4 + 27(c′∞)4c20

(2.27)

− 6c∞(c′∞)2(c′0)
2c0)t

2 + 768c2∞c
′
∞c

′
0c

2
0t

4 − 4096c3∞c
3
0t

6
)

and

(2.28) ResIII(t) = N2c0t
5

with some integersN1 andN2, ωIII may have six singular points {tj}6
j=1

except for t = 0 and ∞ in general. Indeed, the discriminant of DiscIII(t)

is written as

(2.29) Nc25
∞(c′∞)9(c′0)

9c12
0

(
c∞(c′0)

2 − (c′∞)2c0
)8(

c∞(c′0)
2 + (c′∞)2c0

)4

with some integer N , and hence, DiscIII(t) has seven distinct roots

when it does not vanish. Since DiscIII(tj) = 0 (j = 1, 2, · · · , 6), two of

the roots β
(1)
j and β

(2)
j of PIII(tj, β) = 0 coincide. Then, we find that

t = tj are simple turning points and that two of the roots λ̃
(1)
j (t) and

λ̃
(2)
j (t) of P̃III(t, λ̃) := PIII(t, β

(1)
j + λ̃) behave as

(2.30) λ̃
(l)
j (t) = β̃

(l)
j (t− tj)

1/2 + o((t− tj)
1/2),

where β̃
(l)
j are the two distinct roots of

(2.31)

D
tj ,(l)

P̃III
(β̃) =

1

2
∂2
λPIII(tj, β

(1)
j )β̃2 + ∂tPIII(tj, β

(1)
j ) = 0 (l = 1, 2).

20



Indeed, ∂2
λPIII(tj, β

(1)
j ) and ∂tPIII(tj, β

(1)
j ) do not vanish when c∞(c′0)

2

−(c′∞)2c0 6= 0, and hence, we can read the behavior of λ̃
(l)
j (t) (l = 1, 2)

at t = tj from Figure 2.

�

�

��� ��

Figure 2: Newton Polygon of P̃III(t, λ̃) at t = tj.

Since ResIII(tj) 6= 0 (j = 1, 2, · · · , 6), the order of QIII(t, λ
(l)
j (t))

(l = 1, 2, 3, 4) at t = tj coincide with ind
tj

λ
(l)
j

(QIII) = 0. Therefore, the

order γ
(l)
j of ωIII for λ

(l)
j (t) (l = 1, 2) at t = tj is given by

(2.32) γ
(l)
j =

1

2

(
ind

tj

λ̃
(l)
j

(∂λ̃P̃III) − ind
tj

λ
(l)
j

(QIII)
)

=
1

4
(l = 1, 2).

On the other hand, we immediately see that the other roots λ
(l)
j (t)

(l = 3, 4) are holomorphic at t = tj and ωIII for these roots is also

holomorphic and does not vanish there when c∞(c′0)
2 + (c′∞)2c0 6= 0.

Otherwise, one more multiple root β
(3)
j (= β

(4)
j ) appears. However,

applying the same reasoning as above to the pair λ
(3)
j (t) and λ

(4)
j (t),
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we find that λ̃
(l)
j (t) = λ

(l)
j (t)− β

(l)
j behave as (2.30) and γ

(l)
j = 1/4 for

l = 3 and 4.

Now, we focus on the behavior of ωIII at t = 0. We find four roots

of PIII(t, λ) behave at t = 0 as Table 3 below.

l = 1 2 3 4

α
(l)
0 1 0 0 −1

β
(l)
0 −2c0/c

′
0

√
c′0/c

′
∞ −

√
c′0/c

′
∞ −c′∞/2c∞

γ
(l)
0 −1 −1/2 −1/2 −1

Table 3: The leading term β
(l)
0 t

α
(l)
0 of λ

(l)
0 (t) and the order

γ
(l)
0 of ωIII at t = 0.

Since Table 3 indicates that the leading terms of these four roots are

different, we immediately see that the orders of ∂λPIII(t, λ
(l)
0 (t)) and

QIII(t, λ
(l)
0 (t)) are simply given by

(2.33) ord0

λ
(l)
0

(∂λPIII) = ind0

λ
(l)
0

(∂λPIII) = min{1 + 3α
(l)
0 , 2α

(l)
0 , 0}

and

(2.34) ord0

λ
(l)
0

(QIII) = ind0

λ
(l)
0

(QIII) = 1 + α
(l)
0 .

Hence, the order γ
(l)
0 of ωIII for λ

(l)
j (t) (l = 1, 2, 3, 4) at t = 0 is given

by

(2.35) γ
(l)
0 =

1

2

(
ind0

λ
(l)
0

(∂λPIII) − ind0

λ
(l)
0

(QIII)
)
.

Finally, we study the behavior of ωIII at t = ∞. The behavior of

the roots of PIII(t, λ) at t = ∞ is given in Table 4 below.
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l = 1 2 3 4

α
(l)
∞ 0 0 0 0

β
(l)
∞

4
√
c0/c∞

√
−1 4

√
c0/c∞ − 4

√
c0/c∞ −

√
−1 4

√
c0/c∞

γ
(l)
∞ −2 −2 −2 −2

Table 4: The leading term β
(l)
∞ t−α

(l)
∞ of λ

(l)
∞(t) and the order

γ
(l)
∞ of ωIII at t = ∞.

Since the leading terms of these four roots are different, we find

(2.36) ord∞
λ

(l)
∞

(∂λPIII) = ind∞
λ

(l)
∞

(∂λPIII) = min{−1 + 3α(l)
∞ , 2α

(l)
∞ , 0},

(2.37) ord∞
λ

(l)
∞

(QIII) = ind∞
λ

(l)
∞

(QIII) = −1 + α(l)
∞

and

(2.38) γ(l)
∞ =

1

2

(
ind∞

λ
(l)
∞

(∂λPIII) − ind∞
λ

(l)
∞

(QIII)
)
− 2,

where γ
(l)
∞ (l = 1, 2, 3, 4) are the order of ωIII for λ

(l)
j (t) at t = ∞.

Example 2.4 (the fourth Painlevé equation). We consider the fourth

Painlevé equation

d2λ

dt2
=

1

2λ

(dλ
dt

)2

− 2

λ
(PIV)

+ 2η2
[3

4
λ3 + 2tλ2 + (t2 + 4c1)λ− 4c0

λ

]
.

In what follows, we assume that c0 6= 0. Let us study the singularity

structure of

(2.39) ωIV =

√
3λ3(t) + 6tλ2(t) + 2(t2 + 4c1)λ(t)

λ(t)
dt

with a root λ(t) of PIV(t, λ) =
(
3λ4 + 8tλ3 + 4(t2 + 4c1)λ

2 − 16c0
)
/4.

Since the discriminant DiscIV(t) of PIV(t, λ) is a polynomial of degree
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8 and the resultant ResIV(t) of PIV(t, λ) and QIV(t, λ) = λ are given

by ResIV(t) = Nc0 with some integers N , ωIV may have eight singular

points {tj}8
j=1 except for t = ∞ in general. Indeed, the discriminant

of DiscIV(t) is written as

(2.40) Nc19
0 (−4c21 + c0)

8(4c21 + 3c0)
2

with some integerN , and hence, DiscIV(t) has eight distinct roots when

it does not vanish. Since ∂2
λPIV(tj, βj) and ∂tPIV(tj, βj) do not vanish

when −4c21 + c0 6= 0 for a multiple root βj of PIV(tj, β) = 0, we find

that these singular points {tj}8
j=1 are simple turning points.

Now, we focus on the singular point of ωIV at t = ∞. The leading

term of the roots of PIV(t, λ) at t = ∞ is given in Table 5 below.

l = 1 2 3 4

α
(l)
∞ 1 1 −1 −1

β
(l)
∞

√
c0/2 −

√
c0/2 −2/3 −2

γ
(l)
∞ −3 −3 −3 −3

Table 5: The leading term β
(l)
∞ t−α

(l)
∞ of λ

(l)
∞(t) and the order

γ
(l)
∞ of ωIV at t = ∞.

Since the leading terms of these four roots are different, we find

ord∞
λ

(l)
∞

(∂λPIV) = ind∞
λ

(l)
∞

(∂λPIV)(2.41)

= min{3α(l)
∞ ,−1 + 2α(l)

∞ ,−2 + α(l)
∞},

(2.42) ord∞
λ

(l)
∞

(QIV) = ind∞
λ

(l)
∞

(QIV) = α(l)
∞ ,

and hence, we obtain the order γ
(l)
∞ of ωIV at t = ∞.

Example 2.5 (the fifth Painlevé equation). Let us consider the fifth
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Painlevé equation:

d2λ

dt2
=

( 1

2λ
+

1

λ− 1

)(dλ
dt

)2

−
(1

t

)dλ
dt

+
(λ− 1)2

t2

(
2λ− 1

2λ

)(PV)

+ η22λ(λ− 1)2

t2

[
(c0 + c∞) − c0

1

λ2
− c2

t

(λ− 1)2
− c1t

2 λ + 1

(λ− 1)3

]
.

In what follows, we assume that c̃∞ := c0 + c∞, c0, c1 and c2 are not

equal to 0. In general,

(2.43) ωV =

√
∂λPV(t, λ(t))

QV(t, λ(t))
dt

has nine singular points {tj}9
j=1 except for t = 0 and ∞, where

PV(t, λ) =2(c0 + c∞)λ2(λ− 1)3 − 2c0(λ− 1)3(2.44)

− 2c2tλ
2(λ− 1) − 2c1t

2λ2(λ + 1)

=2c̃∞λ
5 + 6c̃∞λ

4 + 2(2c0 + 3c∞ − c2t− c1t
2)λ3

+ 2(2c0 − c∞ + c2t− c1t
2)λ2 − 6c0λ + 2c0,

QV(t, λ) = t2λ(λ− 1) and λ(t) is a root of PV(t, λ). Further, we find

that {tj}9
j=1 are simple turning points.

Now, we focus on the singular points at t = 0 and ∞. We first note

that, at t = 0, PV(t, λ) is factorized as

(2.45) PV(0, β) = 2(β − 1)3((c∞ + c0)β
2 − c0).

Since PV(0, β) has a multiple root β = 1, we consider

P̃V(t, λ̃) :=PV(t, 1 + λ̃)(2.46)

=2c̃∞λ̃
5 + 4c̃∞λ̃

4 + 2(c∞ − c2t− c1t
2)λ̃3

− 4(c2t + 2c1t
2)λ̃2 − 2(c2t + 5c1t

2)λ̃− 4c1t
2

instead of PV(t, λ). When c∞ 6= 0, the leading term of the roots of

P̃V(t, λ̃) at t = 0 is given in Table 6 below.
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l = 1 2 3 4 5

α̃
(l)
0 1 1/2 1/2 0 0

β̃
(l)
0 −2c1/c2

√
c2/c∞ −

√
c2/c∞ −1 +

√
c0/c̃∞ −1 −

√
c0/c̃∞

γ
(l)
0 −1 −3/4 −3/4 −1 −1

Table 6: The leading term β̃
(l)
0 t

α̃
(l)
0 of λ̃

(l)
0 (t) and the order

γ
(l)
0 of ωV at t = 0.

Then, the order γ
(l)
0 of ωV at t = 0 immediately follows from the

following relations:

ord0

λ
(l)
0

(∂λPV) = ind0

λ̃
(l)
0

(∂λ̃P̃V)(2.47)

= min{4α̃(l)
0 , 3α̃

(l)
0 , 2α̃

(l)
0 , 1 + α̃

(l)
0 , 1},

(2.48) ord0

λ
(l)
0

(QV) = ind0

λ̃
(l)
0

(Q̃V) = min{2α̃(l)
0 , α̃

(l)
0 } + 2,

where Q̃V(t, λ̃) := QV(t, 1 + λ̃).

Finally, we display Table 7 below.

l = 1 2 3 4 5

α
(l)
∞ 1 1 0 −1 −1

β
(l)
∞

√
c0/c1 −

√
c0/c1 −1

√
c1/c̃∞ −

√
c1/c̃∞

γ
(l)
∞ −2 −2 −2 −2 −2

Table 7: The leading term β
(l)
∞ t−α

(l)
∞ of λ

(l)
∞(t) and the order

γ
(l)
∞ of ωV at t = ∞.

We can read the order γ
(l)
∞ of ωV at t = ∞ from the Table 7 and the

following relations:

ord∞
λ

(l)
∞

(∂λPV) = ind∞
λ

(l)
∞

(∂λPV)(2.49)
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= min{4α(l)
∞ , 3α

(l)
∞ ,−2 + 2α(l)

∞ ,−2 + α(l)
∞ , 0},

(2.50) ord∞
λ

(l)
∞

(QV) = ind∞
λ

(l)
∞

(QV) = min{2α(l)
∞ , α

(l)
∞} − 2.

Example 2.6 (the sixth Painlevé equation). Finally, we consider the

sixth Painlevé equation:

d2λ

dt2
=

1

2

(1

λ
+

1

λ− 1
+

1

λ− t

)(dλ
dt

)2

−
(1

t
+

1

t− 1
+

1

λ− t

)dλ
dt

(PVI)

+
2λ(λ− 1)(λ− t)

t2(t− 1)2

[
1 − λ2 − 2tλ + t

4λ2(λ− 1)2

+ η2
{

(c0 + c1 + ct + c∞) − c0
t

λ2
+ c1

t− 1

(λ− 1)2
− ct

t(t− 1)

(λ− t)2

}]
.

In what follows, we assume that c̃∞ := c0 + c1 + ct + c∞, c0, c1 and ct
are not equal to 0. In general,

(2.51) ωV =

√
∂λPV(t, λ(t))

QV(t, λ(t))
dt

has nine singular points {tj}9
j=1 except for t = 0, 1 and ∞, where

PVI(t, λ)

(2.52)

=2(c0 + c1 + ct + c∞)λ2(λ− 1)2(λ− t)2 − 2c0t(λ− 1)2(λ− t)2

+ 2c1(t− 1)λ2(λ− t)2 − 2ctt(t− 1)λ2(λ− 1)2

=2c̃∞λ
6 − 4c̃∞(1 + t)λ5

+ 2(−c1 + c̃∞ + (−c0 + c1 + ct + 4c̃∞)t + (−ct + c̃∞)t2)λ4

+ 4((c0 − c̃∞ + c1 − ct)t + (c0 − c1 + c2 − c̃∞)t2)λ3

+ 2((−c0 + ct)t + (−4c0 − c1 − ct + c̃∞)t2 + (−c0 + c1)t
3)λ2

+ 4c0(t
2 + t3)λ− 2c0t

3,
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QVI(t, λ) = t2(t − 1)2λ(λ − 1)(λ − t) and λ(t) is a root of PVI(t, λ).

Further, we find that {tj}9
j=1 are simple turning points. Since we can

discuss the singular points t = 1 and ∞ in a similar manner to t = 0

(e.g., by considering P (t̃, λ̃) := P (1+t̃, 1+λ̃) at t = 1), we focus on the

singular point at t = 0. Let us see Table 8 below, where {β(2l−)
0 , β

(2l)
0 }

(l = 1, 2, 3) respectively are two distinct roots of

(2.53) D
0,(1)
PVI

(β) = 2(−c0 + ct)β
2 + 4c0β − 2c0,

(2.54) D
0,(2)
PVI

(β) = 2(−c1 + c̃∞)β2 + 2(−c0 + ct)

and

(2.55) D
0,(3)
PVI

(β) = 2c̃∞β
2 − 4c̃∞β + 2(−c1 + c̃∞).

l = 1 2 3 4 5 6

α
(l)
0 1 1 1/2 1/2 0 0

β
(l)
0 β

(1)
0 β

(2)
0 β

(3)
0 β

(4)
0 β

(5)
0 β

(6)
0

γ
(l)
0 −1 −1 −3/4 −3/4 −1 −1

Table 8: The leading term β
(l)
0 t

α
(l)
0 of λ

(l)
0 (t) and the order

γ
(l)
0 of ωVI at t = 0.

Since β
(1)
0 , β

(2)
0 , β

(5)
0 and β

(6)
0 are not equal to 1, we find that the

following relations hold:

ord0

λ
(l)
0

(∂λPV) = ind0

λ
(l)
0

(∂λPVI)(2.56)

= min{5α(l)
0 , 4α

(l)
0 , 3α

(l)
0 , 1 + 2α

(l)
0 , 1 + α

(l)
0 , 2},

(2.57) ord0

λ
(l)
0

(QVI) = ind0

λ
(l)
0

(QVI) = min{3α(l)
0 , 2α

(l)
0 , 1 + α

(l)
0 } + 2.

Then, the order γ
(l)
0 of ωVI at t = 0 immediately follows.
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Liouville-Green expansions for second-order linear differential

equations, with an application to Bessel functions, Proc. Roy.

Soc. Lon, Ser. A, 440 (1993), 37–54.

[K] S. Kamimoto: in preparation.

[KKo] S. Kamimoto and T. Koike: in preparation.

[KT] T. Kawai and Y. Takei: WKB analysis of Painlevé transcen-
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30


	web-title
	0-para-pre

