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BAR CONSTRUCTION AND TANNAKIZATION

ISAMU IWANARI

Abstract. We continue our study of tannakizations of symmetric monoidal stable
∞-categories, begun in [17]. The issue treated in this paper is the calculation of tan-
nakizations of examples of symmetric monoidal stable ∞-categories with fiber func-
tors. We consider the case of symmetric monoidal ∞-categories of perfect complexes
on perfect derived stacks. The first main result especially says that our tannakization
includes the bar construction for an augmented commutative ring spectrum and its
equivariant version as a special case. We apply it to the study of the tannakization
of the stable infinity-category of mixed Tate motives over a perfect field. We prove
that its tannakization can be obtained from the Gm-equivariant bar construction of a
commutative differential graded algebra equipped with Gm-action. Moreover, under
Beilinson-Soulé vanishing conjecture, we prove that the underlying group scheme of
the tannakization is the motivic Galois group for mixed Tate motives, constructed in
[4], [21], [22].

1. Introduction

In [17] we have constructed tannakizations of stable symmetric monoidal∞-categories.
Let R be a commutative ring spectrum. Let C⊗ be an R-linear small symmetric
monoidal stable idempotent-complete ∞-category, equipped with an R-linear symmet-
ric monoidal exact functor F : C⊗ → PMod⊗R where PMod⊗R denotes the symmetric
monoidal ∞-category of compact R-spectra. (Despite we use the machinery of quasi-
categories in the text, by an ∞-category we informally mean an (∞, 1)-category in this
introduction.) In loc. cit., given F : C⊗ → PMod⊗R we construct a derived affine group
scheme G over R, which is an analogue of an affine group scheme in derived algebraic
geometry [34], [25]. The derived affine group scheme G comes equipped with action on
F which is universal among all actions of derived affine group schemes. We call it the
tannakization of F : C⊗ → PMod⊗R. This construction was applied to the ∞-category
of mixed motives to obtain derived motivic Galois group.

The purpose of this paper is to calculate tannakizations of some examples of F :
C⊗ → PMod⊗R; our principal interest here is the case when C⊗ is the symmetric
monoidal ∞-category PMod⊗Y of perfect complexes on a derived stack Y and F is
induced by SpecR → Y . We will study the tannakization under the assumption of
perfectness on derived stacks, introduced in [1], which particularly includes two cases:

(i) Y is an affine derived scheme over R, that is, Y = SpecA over SpecR with A a
commutative ring spectrum,

(ii) Y is the quotient stack [X/G] where X is an affine derived scheme X = SpecA
and G is an algebraic group in characteristic zero.

The author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the
Promotion of Science.
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We note that for our purpose the assumption of affineness on Y in (i) and X in (ii) is
not essential since PMod⊗Y → PMod⊗R depends only on a Zariski neighborhood of the
image of SpecR → Y . Also, we remark that A in (i) and (ii) can be nonconnective.
Our result may be expressed as follows (cf. Theorem 4.9, Corollary 4.10):

Theorem 1. Let Y be a derived stack over R and SpecR→ Y a section of the struc-
ture map Y → SpecR. Let PMod⊗Y → PMod⊗R be the associated pullback symmetric
monoidal functor. Suppose that Y is perfect (the cases (i) and (ii) satisfy this prop-
erty). Let G be the derived affine group scheme arising from Čech nerve associated
to SpecR → Y . Then the tannakization of the R-linear symmetric monoidal functor
PMod⊗Y → PMod⊗R is equivalent to G.

Bar construction and equivariant bar construction. One of our motivations of this pa-
per arises from comparison between derived group schemes obtained by tannakization
and bar constructions and its variants. Bar construction has been an important device
in various contexts of homotopy theory, mixed Tate motives and non-abelian Hodge
theory, etc. In the case (i), Čech nerve in AffR associated to SpecR → Y = SpecA,
which we can regard as a derived affine group scheme over R, is known as the bar
construction of an augmented commutative ring spectrum (or commutative differen-
tial graded algebra) whose explicit construction can be given by bar resolutions. In
the case (ii), we can think of the Čech nerve as the G-equivariant version of the bar
construction. As a matter of fact, our actual aim is to study a relationship between
our tannakization and bar constructions and its equivariant versions; Theorem 1 es-
pecially means that our method of tannakizations includes bar constructions and the
equivariant versions as a special case. This allows one to link bar constructions and
the variants to more general method of tannakizations.

Mixed Tate motives. It would be worth mentioning that the equivariant versions
are also important to applications to the motivic contexts: for instance, in order to
take weight structures into account, one often uses Gm-equivariant version of bar con-
struction. Our results fit very naturally in with the structure of mixed Tate mo-
tives. In Section 6 and 7, we will study the applications to mixed Tate motives.
Let DM⊗ := DM⊗(k) be the symmetric monoidal stable ∞-category of mixed mo-
tives over a base scheme Spec k, where k is a perfect field (see Section 6.1 for our
convention). We work with coefficients of a field K of characteristic zero; all stable ∞-
categories are HK-linear, where HK denotes the Eilenberg-MacLane spectrum. Let
DTM⊗

∨ ⊂ DM⊗ be the small symmetric monoidal stable ∞-category of mixed Tate
motives which admit duals (see Section 6.2). For a mixed Weil cohomology theory
(such as étale cohomology, de Rham cohomology), there exists a homological realiza-
tion functor RT : DTM⊗

∨ → PMod⊗HK, that is a HK-linear symmetric monoidal exact
functor (the field of coefficients K depends on the choice of a mixed Weil cohomology
theory). By applying the above theorem, we deduce Theorem 6.11 which informally
says:

Theorem 2. Let MTG = SpecB be the tannakization of RT : DTM⊗
∨ → PMod⊗HK.

(Here B is a commutative differential graded K-algebra.) Then MTG is obtained from
the Gm-equivariant bar construction of a commutative differential graded K-algebra Q
equipped with Gm-action. Namely, it is the Čech nerve of a morphism of derived stacks
SpecHK→ [SpecQ/Gm].
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We remark that the underlying complex Q can be described in terms of Bloch’s
cycle complexes. The proof of Theorem 2 consists of two keys; one is Theorem 1, and
another is to identify RT : DTM⊗

∨ → PMod⊗HK with a certain pullback functor between
∞-categories of perfect complexes on derived stacks, which makes use of the module-
theoretic (i.e. Morita-theoretic) presentation theorem of the stable∞-category DTM⊗

∨ ,
see [31].

If Beilinson-Soulé vanishing conjecture holds for the base field k (e.g. k is a number
field), there is a traditional line passing to a group scheme. Under the vanishing
conjecture, one can define the motivic t-structure on DTM∨. The heart of this t-
structure is a neutral Tannakian category (cf. [30], [9]), and we can extract an affine
group scheme MTG over K from it. The so-called motivic Galois group for mixed Tate
motives MTG is constructed notably by Bloch-Kriz, Kriz-May, Levine [4], [21], [22].
The vanishing conjecture does not imply that the stable ∞-category of complexes of
the heart recovers the original ∞-category DTM∨. However, we can describe a quite
nice relation between MTG and MTG:

Theorem 3. Suppose that Beilinson-Soulé vanishing conjecture holds for k. Then the
group scheme MTG is the underlying group scheme (cf. Definition 7.14) of MTG.

This result is proved in the final Section; Theorem 7.15. Roughly speaking, the
underlying group scheme of MTG is obtained by truncating higher homotopy groups
of valued points of MTG. In view of Theorem 2 and 3, we can say that the derived
motivic Galois group constructed from DM⊗ in [17] is a natural generalization of MTG
to the whole mixed motives.

This paper is organized as follows: In Section 2, we will review some of notions and
notation which we need in this paper. In Section 3, after preparing an appropriate
setup we clarify the meaning of action of a derived affine group scheme on a symmetric
monoidal functor F : C⊗ → PMod⊗R. More precisely, we show that giving an extension
of F to C⊗ → PMod⊗G is equivalent to giving an action of G on F , where PMod⊗G is
the symmetric monoidal ∞-category of perfect representations of G defined in Section
3. Section 4 contains the proof of Theorem 1. In Section 5, we give a brief exposition
of bar constructions from our viewpoint. Sections 6 and 7 are devoted to the study of
the tannakization of stable ∞-category of mixed Tate motives; we prove Theorem 2
and 3.

2. Notation and Convention

We fix notation and convention.
∞-categories. In this paper, we use theory of quasi-categories as in [17]. A quasi-

category is a simplicial set which satisfies the weak Kan condition of Boardman-Vogt:
A quasi-category S is a simplicial set such that for any 0 < i < n and any diagram

Λn
i S

∆n

of solid arrows, there exists a dotted arrow filling the diagram. Here Λn
i is the i-th horn

and ∆n is the standard n-simplex. Following [23] we shall refer to quasi-categories as
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∞-categories. Our main references are [23] and [24] (see also [18], [25]). We often refer
to a map S → T of ∞-categories as a functor. We call a vertex in an ∞-category
S (resp. an edge) an object (resp. a morphism). For the rapid introduction to ∞-
categories, we refer to [23, Chapter 1], [12], [11, Section 2]. For the quick survey on
various approaches to (∞, 1)-categories and their relations, we refer to [2].

• ∆: the category of linearly ordered finite sets (consisting of [0], [1], . . . , [n] =
{0, . . . , n}, . . . )

• ∆n: the standard n-simplex
• N: the simplicial nerve functor (cf. [23, 1.1.5])
• Cop: the opposite ∞-category of an ∞-category C
• Let C be an ∞-category and suppose that we are given an object c. Then Cc/ and
C/c denote the undercategory and overcategory respectively (cf. [23, 1.2.9]).

• Cat∞: the ∞-category of small ∞-categories in a fixed universe (cf. [23, 3.0.0.1])

• �Cat∞: ∞-category of ∞-categories
• S: ∞-category of small spaces (cf. [23, 1.2.16])
• h(C): homotopy category of an ∞-category (cf. [23, 1.2.3.1])
• Fun(A,B): the function complex for simplicial sets A and B
• FunC(A,B): the simplicial subset of Fun(A,B) classifying maps which are com-

patible with given projections A→ C and B → C.
• Map(A,B): the largest Kan complex of Fun(A,B) when A and B are∞-categories,
• MapC(C,C ′): the mapping space from an object C ∈ C to C ′ ∈ C where C is an
∞-category. We usually view it as an object in S (cf. [23, 1.2.2]).

Stable ∞-categories, symmetric monoidal ∞-categories and spectra. For the defini-
tions of (symmetric) monoidal ∞-categories and ∞-operads, their algebra objects, we
shall refer to [24]. The theory of stable ∞-categories is developed in [24, Chapter 1].
We list some of notation.

• S: the sphere spectrum
• Sp: ∞-category of spectra, we denote the smash product by ⊗
• PSp the full subcategory of Sp spanned by compact spectra
• ModA: ∞-category of A-module spectra for a commutative ring spectrum A
• PModA: the full subcategory of ModA spanned by compact objects (in ModA, an

object is compact if and only if it is dualizable, see [1]) . We refer to objects in
PModA as perfect A-module (spectra).

• Fin∗: the category of pointed finite sets �0�∗ = {∗}, �1�∗ = {1, ∗}, . . . , �n�∗ =
{1 . . . , n, ∗}, . . . . A morphism is a map f : �n�∗ → �m�∗ such that f(∗) = ∗.
Note that f is not assumed to be order-preserving.

• Let M⊗ → O⊗ be a fibration of ∞-operads. We denote by Alg/O⊗(M⊗) the
∞-category of algebra objects (cf. [24, 2.1.3.1]). We often write Alg(M⊗) or
Alg(M) for Alg/O⊗(M⊗). Suppose that P⊗ → O⊗ is a map of ∞-operads.
AlgP⊗/O⊗(M⊗): ∞-category of P-algebra objects.

• CAlg(M⊗): ∞-category of commutative algebra objects in a symmetric monoidal
∞-category M⊗ → N(Fin∗).

• CAlgR: ∞-category of commutative algebra objects in the symmetric monoidal
∞-category Mod⊗R where R is a commutative ring spectrum. When R = S, we
set CAlg = CAlg

S
.
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• Mod⊗A(M⊗) → N(Fin∗): symmetric monoidal ∞-category of A-module objects,
where M⊗ is a symmetric monoidal ∞-category such that (1) the underlying ∞-
category admits a colimit for any simplicial diagram, and (2) its tensor product
functor M×M→M preserves colimits of simplicial diagrams separately in each
variable. Here A belongs to CAlg(M⊗). cf. [24, 3.3.3, 4.4.2].

Let C⊗ be the symmetric monoidal ∞-category. We usually denote, dropping the
subscript⊗, by C its underlying∞-category. We say that an object X in C is dualizable
if there exist an object X∨ and two morphisms e : X ⊗X∨ → 1 and c : 1→ X ⊗X∨

with 1 a unit such that the composition

X
IdX⊗c
−→ X ⊗X∨ ⊗X

e⊗IdX−→ X

is equivalent to the identity, and

X∨ c⊗IdX∨−→ X∨ ⊗X ⊗X∨ IdX∨⊗e
−→ X∨

is equivalent to the identity. The symmetric monoidal structure of C induces that of
the homotopy category h(C). If we consider X to be an object also in h(C), then X
is dualizable in C if and only if X is dualizable in h(C). For example, for R ∈ CAlg,
compact and dualizable objects coincide in the symmetric monoidal ∞-category Mod⊗R
(cf. [1]).

Let us recall the symmetric monoidal ∞-categories �Cat
L,st

∞ and Catst
∞ (see [17, Sec-

tion 3.2], [1], [24] for details). Let �Cat
L,st

∞ be the subcategory of �Cat∞ spanned by
stable presentable ∞-categories, in which morphisms are functors which preserves

small colimits. For C,D ∈ �Cat
L,st

∞ , FunL(C,D) is defined to be the full subcate-

gory of Fun(C,D) spanned by functors which preserves small colimits. Then �Cat
L,st

∞

has a symmetric monoidal structure ⊗ : �Cat
L,st

∞ × �Cat
L,st

∞ → �Cat
L,st

∞ such that for

C,D,∈ �Cat
L,st

∞ , there exists a functor C × D → C ⊗ D, which induces an equivalence

FunL(C ⊗D, E) ≃ Fun′(C ×D, E) for every E ∈�Cat
L,st

∞ , where the right hand side indi-
cates the full subcategory of Fun(C ×D, E) spanned by functors which preserves small
colimits separately in each variable. A unit is equivalent to Sp. Let Catst

∞ denote the
subcategory of Cat∞ which consists of small stable idempotent-complete ∞-categories.
Morphisms in Catst

∞ are functors that preserve finite colimits, that is, exact functors.
There is a symmetric monoidal structure on Catst

∞. For C,D ∈ Catst
∞ the tensor product

C⊗D has the following universality: There is a functor C×D → C⊗D which preserves
finite colimits separately in each variable, such that if E ∈ Catst

∞ and Funfc(C × D, E)
denotes the full subcategory of Fun(C × D, E) spanned by functors which preserve fi-
nite colimits separately in each variable, then the composition induces a categorical
equivalence

Funex(C ⊗ D, E) → Funfc(C × D, E)

where Funex(C ⊗D, E) is the full subcategory of Fun(C ⊗D, E) spanned by exact func-

tors. A unit is equivalent to PSp. An object (resp. a morphism) in CAlg(�Cat
L,st

∞ )
can be regarded as a symmetric monoidal stable presentable ∞-category whose ten-
sor operation preserves small colimits separately in each variable (resp. a symmet-
ric monoidal functor which preserves small colimits). Similarly, an object (resp. a
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morphism) in CAlg(Catst
∞) can be regarded as a symmetric monoidal small stable

idempotent-complete∞-category whose tensor opearation preserves finite colimits sep-
arately in each variable (resp. a symmetric monoidal functor which preserves finite
colimits). See [17, Section 3.2]. If R is a commutative ring spectrum, we refer to

an object in CAlg(�Cat
L,st

∞ )Mod⊗R / (resp. CAlg(Catst)PMod⊗R /) simply as an R-linear

symmetric monoidal stable presentable ∞-category (resp. an R-linear symmetric
monoidal small stable idempotent-complete ∞-category) . We refer to morphisms in

CAlg(�Cat
L,st

∞ )Mod⊗R / (or CAlg(Catst)PMod⊗R /) as R-linear symmetric monoidal functors.

3. Derived group schemes and the ∞-categories of representations

In this Section we first recall the definitions of ∞-categories of representations of
derived affine group schemes and the tannakization of symmetric monoidal stable
idempotent-complete ∞-categories. The aim of this Section is to prove Proposition 3.4
and Corollary 3.7.

3.1. Derived affine group scheme G and ∞-categories ModG and PModG. We
refer to [17, Appendix, Section 3.1] for the basic definitions concerning derived group
schemes. Let R be a commutative ring spectrum. Let G be a derived affine group
scheme over R. This can be viewed as a group object ψ : N(∆)op → AffR := (CAlgR)op

(see [17, Definition A.2]). In this paper, we refer to an object in AffR as an affine
(derived) scheme over R and call AffR the ∞-category of affine (derived) schemes over
R. From Grothendick’s viewpoint of “functor of points”, a derived affine group scheme
over R is a functor (AffR)op → Grp(S) such that the composite (AffR)op → S with
the forgetful functor Grp(S) → S is represented by an affine scheme, where Grp(S) is
the ∞-category of group objects in S. We will recall the definition of the symmetric
monoidal ∞-category Mod⊗G. Set G = SpecB so that B is a commutative Hopf ring
spectrum over R which is described by a cosimplicial object φ := ψop : N(∆) → CAlgR.
We here abuse notation and B indicates also the the underlying object φ([1]) in CAlgR.
Let

Θ : CAlg −→ CAlg(�Cat
L,st

∞ )

be a functor which carries A ∈ CAlg to the symmetric monoidal ∞-category ModA

and sends a map A → A′ in CAlg to a colimit-preserving symmetric monoidal base
change functor ModA → Mod′A : M �→ M ⊗A A′ (see [17, section 3.3]). This functor
induces

ΘR : CAlgR ≃ CAlgR/ −→ CAlg(�Cat
L,st

∞ )Mod⊗R /.

Consider the composition N(∆)
φ
→ CAlgR

ΘR→ CAlg(�Cat
L,st

∞ )Mod⊗R /. We define Mod⊗G
to be a limit of this composition. We call it the ∞-category of representations of
G. The underlying ∞-category is stable and presentable. Since the forgetful func-

tor CAlg(�Cat
L,st

∞ )Mod⊗R / →
�Cat∞ is limit-preserving, we see that the underlying ∞-

category of Mod⊗G, which we denote by ModG, is a limit of the composition N(∆)
ΘR◦φ−→

CAlg(�Cat
L,st

∞ )Mod⊗R / →
�Cat∞. There is the natural symmetric monoidal functor Mod⊗G →
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Mod⊗R and we let PMod⊗G the inverse image of the full subcategory PMod⊗R. Alterna-
tively, there is a natural categorical equivalence PModG ≃ lim[n]∈∆ PModφ([n]) and
PMod⊗G is a symmetric monoidal full subcategory of Mod⊗G spanned by dualizable ob-
jects. We call it the ∞-category of perfect representations of G.

3.2. ∞-categories of modules over presheaves. Let (CAlgR)op →֒ Fun(CAlgR, �S)

be Yoneda embedding, where �S denotes the ∞-category of (not necessarily small)

spaces, i.e. Kan complexes. We shall refer to objects in Fun(CAlgR, �S) as presheaves
on CAlgR or simply functors. By left Kan extension of ΘR, we have a colimit-preserving
functor

ΘR : Fun(CAlgR, �S) → (CAlg(�Cat∞)Mod⊗R /)
op.

Let N(∆)op
φop

→ (CAlgR)op →֒ Fun(CAlgR, �S) be the composition and let BG denote
the colimit. Remember ΘR(BG) = Mod⊗

BG ≃ Mod⊗G (we hope that our notation give
rise to no confusion). Note that the notation BG conflicts with the notation BG in

[17]. In [17], we define BG to be the étale sheafification of the colimit of N(∆)op
φop

→

(CAlgR)op →֒ Fun(CAlgR, �S). However, this confliction induces no difference on the
images of ΘR: By the flat descent theory of modules on CAlg (cf. [25, VII Section 6,

VIII 2.7.14]), if P → P ′ is a fpqc (or étale) sheafification of P ∈ Fun(CAlgR, �S) then
ΘR(P ) → ΘR(P ′) is an equivalence.

Let X ∈ Fun(CAlgR, �S). Let PMod⊗X denote the symmetric monoidal full subcate-
gory of the underlying symmetric monoidal ∞-category ΘR spanned by dualizable ob-
jects. Suppose that PMod⊗X is a small stable idempotent-complete symmetric monoidal
∞-category whose tensor operation ⊗ : PModX ×PModX → PModX preserves finite
colimits separately in each variable. Since symmetric monoidal functors carry du-
alizable objects to dualizable objects, the composition PMod⊗R →֒ Mod⊗R → Mod⊗X
factors through PMod⊗X ⊂ Mod⊗X , where Mod⊗X is the underlying symmetric monoidal
∞-category of ΘR and Mod⊗R → Mod⊗X is the R-linear structure map. Hence we can
naturally regard PMod⊗X as an object in CAlg(Catst

∞)PMod⊗R /. We refer to PMod⊗X as the

symmetric monoidal ∞-category of perfect complexes on Y . We here call presheaves
enjoying this condition admissible presheaves (functors). For example, affine derived
schemes and BG with G a derived affine group scheme are admissible. Indeed, BG
is described as the colimit of a simplicial affine derived schemes a : N(∆)op → AffR

and Catst
∞ →֒ Cat∞ preserves small limits. It follows that PModBG ≃ PModG ≃

lim[n] PModa([n]) is stable and idempotent-complete where lim[n]∈∆ PModa([n]) the limit

of the cosimplicial diagram of ∞-categories. Let Fun(CAlgR, �S)adm be the full subcat-

egory of Fun(CAlgR, �S) spanned by admissible presheaves. Applying ΘR and taking
full subcategories of ΘR(X) spanned by dualizable objects we have the functor

θR : Fun(CAlgR, �S)adm → (CAlg(Catst
∞)PMod⊗R /)

op

which carries X to PMod⊗X endowed with the R-linear structure map PMod⊗R →
PMod⊗X . We remark that by [23, 3.3.3.2, 5.1.2.2] P in PModX ≃ limSpec A→X PModA

(SpecA → X run over (AffR)/X) is a finite colimit of a (finite) diagram I → PModX

if and only if for each SpecA→ X the image of P in PModA is a finite colimit of the
induced diagram.
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3.3. Tannakization. Let CHopfR be the ∞-category of commutative Hopf ring spec-
tra over R, that is the full subcategory of Fun(N(∆),CAlgR), spanned by objects sat-
isfying a certain condition (see [17, Appendix]): The opposite ∞-category of CHopfR
is equivalent to the ∞-category of the derived affine group schemes over R. Thus we
set dAffGpR := (CHopfR)op, which we shall refer to as the ∞-category of derived affine
group schemes over R. Then there is a natural functor

Φ : (dAffGpR)op −→ CAlg(Catst
∞)R,aug := (CAlg(Catst

∞)PMod⊗R /)/ PMod⊗R

which carries G to PMod⊗G equipped with natural functors PMod⊗R → PMod⊗G (induced
by BG→ SpecR) and PMod⊗G → PMod⊗R (induced by the natural projection SpecR→
BG). In this paper, we do not need the detail construction of Φ and thus we refer to
[17] for the details. We recall the result of [17].

Theorem 3.1. The functor Φ has a left adjoint functor Ψ, that is, there is an adjunc-
tion

Ψ : CAlg(Catst
∞)R,aug

⇄ (dAffGpR)op : Φ.

If E is an object of CAlg(Catst
∞)R,aug, then we refer to Ψ(E) as the tannakization of

E . (For this kind of construction for ordinary categories, see [19], [27].)

3.4. Automorphisms. Let C⊗ denote an R-linear symmetric monoidal small stable
idempotent-complete ∞-category, that is, an object in CAlg(Catst

∞)PMod⊗R /. Namely,

if we write C for the underlying ∞-category, C is a small stable idempotent-complete
∞-category and the underlying symmetric monoidal ∞-category C⊗ is endowed with
a symmetric monoidal functor PMod⊗R → C⊗ which preserves finite colimits. For ease
of notation, we usually omit PMod⊗R → C⊗.

We regard AffR as the full subcategory of Fun(CAlgR, �S). Let (AffR)/BG be the full

subcategory of Fun(CAlgR, �S)/BG spanned by objects X → BG such that X are affine
schemes, that is, objects which belong to the essential image of Yoneda embedding
AffR →֒ Fun(CAlgR, �S). There is the natural projection (AffR)/BG → AffR, that is a
right fibration. Let π : SpecR → BG be the natural projection. This determines a
map between right fibrations

AffR = (AffR)/ Spec R (AffR)/BG

AffR .

Let (AffR)/BG → Sop be a functor which assigns Map⊗R(C⊗,PMod⊗A) to SpecA in
(AffR)/BG. Here Map⊗R(−,−) indicates the mapping space in CAlg(Catst

∞)PMod⊗R /. More

precisely, let

c : (AffR)/BG → Fun(CAlgR, �S)adm θR→ (CAlg(Catst
∞)PMod⊗R /)

op → Sop

be the composition where the first functor is the natural projection, and the third is the
image of C⊗ by Yoneda embedding (CAlg(Catst

∞)PMod⊗R /)
op → Fun(CAlg(Catst

∞)PMod⊗R /,
�S).

By the unstraightening functor [23, 3.2] together with [23, 4.2.4.4] the composition
(AffR)/BG → Sop gives rise to a right fibration p : M→ (AffR)/BG.
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For two objects C⊗1 , C⊗2 in CAlg(Catst
∞)PMod⊗R /, we denote by Map⊗R(C⊗1 , C⊗2 ) the

mapping space. The mapping space Map⊗R(C⊗,PMod⊗
BG) is homotopy equivalent to

the limit of spaces

lim
Spec A→BG

Map⊗R(C⊗, θR(SpecA))

where SpecA → BG run over (AffR)/BG and PMod⊗
BG ≃ limSpec A→BG θR(SpecA).

Thus according to [23, 3.3.3.2] if we denote by Map(AffR)/BG
((AffR)/BG,M) the sim-

plicial set of the sections of p : M → (AffR)/BG (namely, the set of n-simplexes of
Map(AffR)/BG

((AffR)/BG,M) is the set of (AffR)/BG ×∆n → M over (AffR)/BG), then

we see that

Lemma 3.2. There is a categorical equivalence

Map⊗R(C⊗,PMod⊗
BG) ≃ Fun(AffR)/BG((AffR)/BG,M).

The base change q : N := M×(AffR)/BG AffR
pr2
→ AffR is also a right fibration since

Cartesian fibrations are stable under base changes. Note that this right fibration q :
N → AffR corresponds to the composition c′ : AffR → (AffR)/BG → Sop. Moreover, c :
(AffR)/BG → Sop factors through c′ : AffR → Sop. Therefore we have a Cartesian equiv-
alence M≃ N ×AffR (AffR)/BG over (AffR)/BG. Note that Map⊗R(C⊗,PMod⊗R) is homo-
topy equivalent to limSpec A→Spec R Map(C⊗,PMod⊗A) where SpecA → SpecR run over
AffR. As above, Map⊗R(C⊗,PMod⊗R) is homotopy equivalent to Map(AffR)/BG

(AffR,M).

Moreover, consider the functor Map⊗R(C⊗,PMod⊗
BG) → Map⊗R(C⊗,PMod⊗R) induced by

the composition with the forgetful functor PMod⊗
BG → PMod⊗R. Then it can be viewed

as the functor

f : Map(AffR)/BG
((AffR)/BG,M) → Map(AffR)/BG

(AffR,M) = MapAffR
(AffR,N )

induced by the functor AffR → (AffR)/BG.
We fix a map F : C⊗ → PMod⊗R in CAlg(Catst

∞)PMod⊗R /. This is equivalent to giving

a vertex of MapAffR
(AffR,N ). Let α∗ : CAlgR → S be the functor corresponding

to the identity right fibration AffR → AffR via the straightening functor. We may
and will assume that α∗ is the constant functor whose value is the contractible space.
Let αN : CAlgR → S be the functor corresponding to the right fibration N → AffR.
The functor F determines a natural transformation α∗ → αN . Thus through the
categorical equivalence Fun(CAlgR,S)α∗/ ≃ Fun(CAlgR,S∗), we regard α∗ → αN as
an object in Fun(CAlgR,S∗) where S∗ = S∆0/. We define α′N : CAlgR → S so that for
any A ∈ CAlgR, α′N (A) is the connected component of αN (A) on which the image of
α∗ → αN lie. We also regard α∗ → α′N as an object Fun(CAlgR,S∗). Let S∗,≥1 be the
full subcategory of S∗ spanned by pointed spaces ∆0 → S such that S is connected.
Notice that α′N represents the functor

ξ : CAlgR → S∗,≥1

which assigns A to the pointed connected component of Map⊗R(C⊗,PMod⊗A) which

corresponds to the composition C⊗
F
→ PMod⊗R → PMod⊗A. Recall that Grp(S) is

the ∞-category of group objects in S, and the equivalence S∗,≥1 ≃ Grp(S) which
carries any pointed space S ∈ S∗,≥1 to the (based) loop space Ω∗S ∈ Grp(S) (see [17,
Appendix]).
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Definition 3.3. We write Aut(F ) for ξ : CAlgR → S∗,≥1 ≃ Grp(S) and refer to it as
the automorphism functor of F .

Consider the diagram in CAlg(Cat∞)R,aug

C⊗ PMod⊗
BG

PMod⊗R .

The purpose of this subsection is to prove the following result.

Proposition 3.4. There is an equivalence

MapCAlg(Catst∞)R,aug(C
⊗,PMod⊗

BG) ≃ MapFun(CAlgR,Grp(S))(G,Aut(F ))

in S. This equivalence is functorial in the following sense: Let L : dAffGpR → Sop be
the functor which assigns G to MapCAlg(Catst∞)R,aug(C

⊗,PMod⊗
BG). Let M : dAffGpR →

Sop be the functor which assigns G to MapFun(CAlgR,Grp(S))(G,Aut(F )). (See the proof
below for the formulations of L and M .) Then there exists a natural equivalence from
L to M .

Remark 3.5. We would like to remark the intuitive meaning of Proposition 3.4. In
the above equivalence, the right hand side is the space (∞-groupoid) of actions of G
on F . The left hand side is the space of extensions of F to C⊗ → PMod⊗

BG. Hence
we can informally say that extending F to C⊗ → PMod⊗

BG is equivalent to giving an
action of G on F .

Remark 3.6. The proof below shows that if we replace PMod⊗
BG by Mod⊗

BG the similar
assertion also holds. Namely, there is a functorial equivalence

Map
((CAlg(�Cat

L,st

∞ )
Mod⊗

R
/
)
/Mod⊗

R

(C⊗,Mod⊗
BG) ≃ MapFun(CAlgR,Grp( �S))(G,Aut(F ))

in �S, where C⊗ belongs to (CAlg(�Cat
L,st

∞ )Mod⊗R /)/ Mod⊗R
. Here F : C⊗ → Mod⊗R and

Aut(F ) is defined in a similar way.

Corollary 3.7. Suppose that Aut(F ) is represented by a derived affine group scheme.
Then Aut(F ) is equivalent to the tannakization of F : C⊗ → PMod⊗R.

Proof of Proposition 3.4. In order to make our proof readable we first show the first
assertion without defining L and M . The mapping space MapCAlg(Catst∞)R,aug(C

⊗,PMod⊗
BG)

is the homotopy limit (i.e. the limit in S)

Map⊗R(C⊗,PMod⊗
BG)×Map⊗R(C⊗,PMod⊗R) {F}

where {F} = ∆0 → Map⊗R(C⊗,PMod⊗R) is determined by F . The fiber product of Kan
complexes

P = Map(AffR)/BG
((AffR)/BG,M)×Map(AffR)/BG

(AffR,M) {F}

is a homotopy limit since AffR → (AffR)/BG is a monomorphism (that is, a cofibration
in the Cartesian simplicial model category of marked simplicial sets (Set+

∆)/(AffR)/BG , see

[23, 3.1.3.7]) and thus f is a Kan fibration. Here ∆0 = {F} → Map(AffR)/BG
(AffR,M)



BAR CONSTRUCTION AND TANNAKIZATION 11

is determined by F . Using the Cartesian equivalence N ×AffR (AffR)/BG ≃ M over
(AffR)/BG we have homotopy equivalences

Map(AffR)/BG
((AffR)/BG,M) ≃ MapAffR

((AffR)/BG,N )

and

Map(AffR)/BG
(AffR,M) ≃ MapAffR

(AffR,N ).

Thus P is homotopy equivalent to the fiber product

Q = MapAffR
((AffR)/BG,N )×MapAffR

(AffR,N ) {F}

which is also a homotopy limit, where ∆0 = {F} → MapAffR
(AffR,N ) is determined by

the section AffR → N corresponding to F : C⊗ → PMod⊗R. We let αBG : CAlgR → S
correspoindig to the right fibration (AffR)/BG → AffR via the straightening functor.
There is the natural transformation α∗ → αBG determined by AffR → (AffR)/BG, which
we consider to be a functor CAlgR → S∗,≥1. Observe that MapFun(CAlg,S∗)(αBG, αN ) is

homotopy equivalent to Q. By composition with S∗,≥1 ≃ Grp(S) we have G : CAlgR
BG
→

S∗,≥1 ≃ Grp(S) (that is, the composition is the original derived group scheme G). Then
we obtain

Q ≃ MapFun(CAlgR,S∗)(αBG, αN )

≃ MapFun(CAlgR,S∗,≥1)(αBG, α
′
N )

≃ MapFun(CAlgR,Grp(S))(G,Aut(F )).

Next to see (and formulate) the latter assertion, we will define L and M . Since a
derived affine group scheme is a group object in the Cartesian symmetric monoidal ∞-
category of AffR, thus dAffGpR is naturally embedded into Fun(N(∆)op,Fun(CAlgR,S))
as a full subcategory. Let Fun(N(∆)op,Fun(CAlgR,S)) → Fun(CAlgR,S) be the

functor taking each simplicial object N(∆)op → Fun(CAlgR, �S) to its colimit. Let
ρ : dAffGpR → Fun(CAlgR,S) be the composition. Note that G maps to BG. By the
straightening and unstraightening functors [23, 3.2] together with [23, 4.2.4.4], we have

the categorical equivalence Fun(CAlgR,�Cat∞) ≃ N(((�Set
+

∆)/ AffR)cf) where (�Set
+

∆)/ AffR

is the category of (not necessarily small) marked simplicial sets, which is endowed
with the Cartesian model structure in [23, 3.1.3.7] and (−)cf indicates full simpli-
cial subcategory of cofibrant-fibrant objects. In particular, there is the fully faithful

functor Fun(CAlgR, �S) → N(((�Set
+

∆)/ AffR)cf ) which carries BG to (AffR)/BG → AffR.
Composing all these functors we have the composition

dAffGpR
ρ
→ Fun(CAlgR,S) → N(((�Set

+

∆)/ AffR)cf).

Since dAffGpR ≃ (dAffGpR)Spec R/, the composition is extended to u : dAffGpR →

N(((�Set
+

∆)/ AffR)cf)AffR /. Through Yoneda embedding

N(((�Set
+

∆)/ AffR)cf )AffR / → Fun((N(((�Set
+

∆)/ AffR)cf)AffR /)
op, �S)

we define I : (N(((�Set
+

∆)/ AffR)cf)AffR /)
op → �S to be the functor corresponding to N →

AffR equipped with the section F . Composing Iop with dAffGpR → N(((�Set
+

∆)/ AffR)cf)AffR /

we have L : dAffGpR → �Sop. To define M , consider the functor Fun(CAlgR,Grp(S)) →
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�Sop determined by Aut(F ) via Yoneda embedding. Then we define M to be the com-
position

dAffGpR →֒ Fun(CAlgR,Grp(S)) → �Sop.

To obtain L ≃ M , note that the unstraightening functor induces a fully faithful

functor Fun(CAlgR, �S∗) ⊂ N(((�Set
+

∆)/ AffR)cf)AffR /. Let N : CAlgR → S∗ be a functor
corresponding to N → AffR equipped with the section F , that is, N corresponds to
α∗ → αN . Let Fun(CAlgR,S∗) → �Sop be the functor determined by N via Yoneda
embedding. The functor L is equivalent to

dAffGpR
u
→ Fun(CAlgR, �S∗) ⊂ N(((�Set

+

∆)/ AffR)cf)AffR / → �Sop.

Since the essential image of dAffGpR in Fun(CAlgR,S∗) is contained in Fun(CAlgR,S∗,≥1),
for our purpose we may and will replace αN by α′N (in the construction of N) and as-
sume that N belongs to Fun(CAlgR,S∗,≥1). Then we see that L is equivalent to

dAffGpR → Fun(CAlgR,S∗,≥1) ≃ Fun(CAlgR,Grp(S)) → �Sop

where the first functor is induced by u and the third functor is determined by Aut(F )
via Yoneda embedding. Now the last composition is equivalent to M .

4. Automorphism of fiber functors

Let Y be a derived stack over R (we fix our convention below) and PMod⊗Y the
∞-category of perfect complexes on Y (Section 3.2), which we regard as an object in
CAlg(Catst

∞)PMod⊗R /. Let SpecR → Y be a section of the structure morphism Y →

SpecR. There is the pullback functor PMod⊗Y → PMod⊗R in CAlg(Catst
∞)PMod⊗R /. In

this Section, we study the automorphisms of this functor. Our goal is Theorem 4.9
and Corollary 4.10.

We start with our setup of derived stacks. A functor Y : CAlgR → �S is said to be a
derived stack (over R) if two condition hold:

(i) there exists a groupoid object N(∆)op → AffR (cf. [17, A.2]) such that Y is

equivalent to the colimit of the composite N(∆)op → AffR →֒ Fun(CAlgR, �S),
(ii) Y has affine diagonal, that is, for any two morphisms SpecA→ Y and SpecB →

Y , the fiber product SpecA×Y SpecB belongs to AffR ⊂ Fun(CAlgR, �S).

In this paper, despite Y in the above definition is usually called a pre-stack, we will
not equip CAlgR with Grothendieck topology such as flat, étale topologies since the
sheafification Y ′ of Y by such topologies does induce a categorical equivalence ModY ′ →
ModY by the flat descent theory. In addition, such topologies are irrelevant for our
argument below. (Conversely, for our purpose one can replace Fun(CAlgR, �S) in the
above definition by the full subcategory of sheaves with respect to flat topology (see
e.g. [34], [25, VII, 5.4] for flat morphisms)). At any rate, we remark that our definition
of derived stacks is not standard (compare [34], [25]). We note that our derived stacks
are admissible functors.

Example 4.1. We present quotient stacks arising from the action of a derived affine
group scheme on an affine scheme as examples of derived stacks. Let F : N(∆)op →
AffR be a groupoid object, which we regard as a derived stack. Let G : N(∆)op → AffR
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be a group object, that is, a derived affine group scheme. Let F → G be a morphism
(i.e., natural transformation) which induces a cartesian diagram

F ([n]) F ([m])

G([n]) G([m])

in AffR for each [m] → [n]. If we write X for F ([0]), then we can think that the
morphism F → G with the above property means an action of G on X. In this

situation, we say that G acts on X and denote by [X/G] the colimit of N(∆)op
F
→

AffR →֒ Fun(CAlgR, �S). We refer to [X/G] as the quotient stack. We can think of BG
as the quotient stack [SpecR/G] where G acts trivially on SpecR.

Let π : SpecR→ Y denote the fixed section and π∗ : Mod⊗Y → Mod⊗R the associated
symmetric monoidal functor which preserves small colimits. Since ModY and ModR

are presentable, by adjoint functor theorem (see [23, 5.5.2.9]) there is a right adjoint
functor π∗ : ModR → ModY . Moreover, according to [24, 8.3.2.6] the right adjoint
functor is extended to a right adjoint functor to relative to N(Fin∗) (see [24, 8.3.2.2])

Mod⊗R Mod⊗Y

N(Fin∗).

It yields a right adjoint functor

CAlg(Mod⊗R) → CAlg(Mod⊗Y )

of the functor CAlg(Mod⊗Y ) → CAlg(Mod⊗R) determined by π∗.
Let φ : N(∆) → CAlgR be a cosimplicial diagram such that the colimit of compo-

sition N(∆)op
φop

→ AffR →֒ Fun(CAlgR, �S) is equivalent to Y . Recall from Section 2.1

the functor ΘR : CAlgR → CAlg(�Cat
L,st

∞ )Mod⊗R /. Note that by definition Mod⊗Y is a

limit of the composition φ′′ : N(∆)
φ
→ CAlgR

ΘR→ CAlg(�Cat
L,st

∞ )Mod⊗R / → CAlg(�Cat
L,st

∞ )

where the last functor is the forgetful functor. Let p : Mφ′ → N(∆) be the coCartesian

fibration corresponding to the composition φ′ : N(∆)
φ′′

→ CAlg(�Cat
L,st

∞ ) →�Cat∞ where
the last functor is the forgetful functor. We denote by Fun′N(∆)(N(∆),Mφ′) the full
subcategory of FunN(∆)(N(∆),Mφ′) spanned by sections N(∆) → Mφ′ which carries
all edges of N(∆) to p-coCartesian edges. Then by [23, 3.3.3.2] ModY is equivalent to

Fun′N(∆)(N(∆),Mφ′) as ∞-categories. Consider the base change of N(∆)op
φop

→ AffR →֒

Fun(CAlgR, �S), where the second functor is Yoneda embedding, by π : SpecR → Y .
Let Yn = φop([n]) ∈ AffR for each [n] ∈ ∆. The n-th term of this base change

τ : N(∆)op → Fun(CAlgR, �S) is equivalent to Yn ×Y SpecR and in particular, it

factors through AffR ⊂ Fun(CAlgR, �S). Taking the opposite categories we have
ψ : N(∆) → CAlgR. Note that SpecR is a colimit of τ since in the ∞-topos

Fun(CAlgR, �S) colimits are universal (see [23, Chapter 6]). Thus the natural trans-
formation ψop → φop induces π : SpecR → Y , and we can informally indicates our
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situation as follows:

· · · Y1 ×Y SpecR Y0 ×Y SpecR SpecR

π

· · · Y1 Y0 Y

(here ψop, φop : N(∆)op → AffR). We define ψ′ : N(∆) →�Cat∞ in the same way that
we define φ′, and we let q : Mψ′ → N(∆) the coCartesian fibration corresponding to
ψ′. The natural transformation φ → ψ corresponds to a map between coCartesian
fibrations Mφ′ → Mψ′ over N(∆), which carries coCartesian edges to coCartesian
edges. Again by [24, 8.3.2.6] there is a right adjoint functor Mψ′ → Mφ′ of Mφ′ →
Mψ′ relative to N(∆). Let us observe the following:

Lemma 4.2. The map Mψ′ → Mφ′ of coCartesian fibrations over N(∆) carries q-
coCartesian edges to p-coCartesian edges.

Proof. It suffices to show that if for any map r : [m] → [n] in ∆ we describe the
diagram induced by ψop → φop as

Yn ×Y SpecR
a

b

Ym ×Y SpecR

c

Yn
d

Ym,

then the natural base change morphism d∗ ◦ c∗ → b∗ ◦ a∗ is an equivalence. It follows
from [1, Lemma 3.14].

Let

α : Fun′N(∆)(N(∆),Mφ′) ⇄ Fun′N(∆)(N(∆),Mψ′) : β

be functors induced by the adjunction Mφ′ ⇄Mψ′, where Fun′N(∆)(N(∆),Mφ′) is the
full subcategory of FunN(∆)(N(∆),Mφ′), spanned by sections which carries all edges
to coCartesian edges and we define Fun′N(∆)(N(∆),Mφ′) in a similar way. Note that
by [23, 3.3.3.2]

Fun′N(∆)(N(∆),Mφ′) ≃ ModY and Fun′N(∆)(N(∆),Mψ′) ≃ ModR,

and Fun′N(∆)(N(∆),Mφ′) → Fun′N(∆)(N(∆),Mψ′) is equivalent to π∗ : ModY → ModR

as functors. Then observe that the pair (α, β) forms adjunction. Namely,

MapFun′N(∆)(N(∆),Mψ′ )
(α(a), b) ≃ lim

[n]∈∆
Mapψ′([n])(α(an), bn)

→ lim
[n]∈∆

Mapφ′([n])(β(α(an)), β(bn))

x
→ lim

[n]∈∆
Mapφ′([n])(an, β(bn))

≃ MapFun′N(∆)(N(∆),Mφ′)
(a, β(b))

is equivalence in S, where an (resp. bn) is the projection of a (resp. b) to φ′([n]) (resp.
ψ′([n])) and x is induced by the unit map of the adjunction Mφ′ ⇄Mψ′. (The fiber
of the adjunction Mφ′ ⇄ Mψ′ over each object of N(∆) forms adjunction.) Notice
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that FunN(∆)(N(∆),Mψ′) → FunN(∆)(N(∆),Mφ′) is equivalent to π∗ : ModR → ModY

as functors. Consequently, we have

Lemma 4.3. Let

Yn ×Y SpecR
sn

πn

SpecR

π

Yn
tn

Y

be the pullback diagram induced by ψop([n]) → φop([n]). Then the natural base change
morphism (tn)∗ ◦π∗ → (πn)∗ ◦ (sn)∗ is an equivalence of functors from ModR to ModYn.

Corollary 4.4. We abuse notation and we write (tn)∗ ◦ π∗ → (πn)∗ ◦ (sn)∗ for the
natural base change morphism from CAlg(Mod⊗R) to CAlg(Mod⊗Yn) which is determined
by adjunctions (π∗, π∗) and ((πn)∗, (πn)∗) relative to N(Fin∗). Then (tn)∗◦π∗ → (πn)∗◦
(sn)∗ is an equivalence of functors.

Let 1R be a unit of ModR which we here regard as an object in CAlgR = CAlg(ModR).
Then there is a lax symmetric monoidal functor Mod⊗R → Mod⊗π∗1R(Mod⊗Y ) of sym-
metric monoidal ∞-categories induced by π∗ by the construction of the ∞-operad of
module objects [24, 3.3.3.8]. For the notation Mod⊗π∗1R(Mod⊗Y ), see Section 2.

Lemma 4.5. The functor Mod⊗R → Mod⊗π∗1R(Mod⊗Y ) is a symmetric monoidal equiv-
alence.

Proof.

We first obeserve that Mod⊗R → Mod⊗π∗1R(Mod⊗Y ) is symmteric monoidal. Since it
is lax symmetric monoidal, combined with Lemma 4.3 we are reduced to showing the
following obvious claim: for a morphism x : SpecA→ SpecB of affine derived schemes
and M,N ∈ ModA, the natural map x∗(M)⊗Ax∗(N) → x∗(M⊗AN) is an equivalence
where x∗ : ModA → ModA(Mod⊗B) is the natural pushforward functor.

We now adopt notation similar to Lemma 4.3. Since the natural equivalence (tn)∗ ◦
π∗1R ≃ (πn)∗ ◦ (sn)∗1R by the above result, we have

(πn)∗ : Modψ([n]) = ModYn×Y Spec R ≃ Mod(πn)∗◦(sn)∗1R(Mod⊗φ([n])) ≃ Mod(tn)∗◦π∗1R(Mod⊗φ([n]))

for each n. Then we identify ModR → Modπ∗1R(Mod⊗Y ) with the limit

lim
[n]∈∆

Modψ([n]) ≃ lim
[n]∈∆

ModYn×Y Spec R ≃ lim
[n]∈∆

Mod(tn)∗◦π∗1R(Mod⊗φ([n]))

which is an equivalence in �Cat∞. It follows that Mod⊗R → Mod⊗π∗1R(Mod⊗Y ) is a sym-
metric monoidal equivalence.

Let Aut(π∗) : CAlgR → Grp( �S) be the automorphism functor of π∗ (defined as in the
previous Section, see Remark 3.6), which carries A ∈ CAlgR to the automorphisms of

composition Mod⊗Y → Mod⊗R → Mod⊗A in CAlg(�Cat
L,st

∞ )Mod⊗R / where the second functor

is the base change by R→ A.
Let ∆+ be the category of finite (possibly empty) linearly ordered sets and we write

[−1] for the empty set. Let ι : ∆1 → N(∆+) be a map which carries {0} and {1} to

[−1] and [0] respectively. It is a fully faithful functor. Let (∆1)op → Fun(CAlgR, �S)

be a map corresponding to π : SpecR → Y . Let ρ : N(∆+)op → Fun(CAlgR, �S) be
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a right Kan extension along ιop : (∆1)op → N(∆+)op which is called Čech nerve (cf.
[23, 6.1.2.11]). By our assumption, for each n ≥ 0, ρ([n]) belongs to AffR and the
restriction of ρ to N(∆)op is a derived affine group scheme which we denote by Gπ. By
the definition of Gπ and Mod⊗Gπ

, we see that π∗ : Mod⊗Y → Mod⊗R factors through the
forgetful functor Mod⊗Gπ

→ Mod⊗R. It follows from Remark 3.6 that there exists the
natural morphism Gπ → Aut(π∗). (Alternatively, we may think that the derived group
scheme Gπ : (AffR)op → Grp(S) represents the automorphism group of π : SpecR→ Y
and thus we have the natural morphism Gπ ≃ Aut(π) → Aut(π∗).)

Proposition 4.6. The natural morphism Gπ → Aut(π∗) is an equivalence, that is,
Aut(π∗) is represented by Gπ.

Proof. For simplicity, let G := Gπ. Let G1 : CAlgR → �S and (resp. Aut(π∗)1)

be the composite of G : CAlgR → Grp( �S) (resp. Aut(π∗)) and the forgetful functor

Grp( �S) → �S. For each A ∈ CAlgR, it will suffice to show that the induced map

G1(A) → Aut(π∗)1(A) is equivalence in �S.
For A ∈ CAlgR, let πA : SpecA→ SpecR → Y denote the composition. Let 1A be

the unit of ModA which we here think of as an object of CAlg(Mod⊗A). Applying [24,
6.3.5.18] together with Lemma 4.5 and adjunction we deduce

Map
CAlg(�Cat

L,st

∞ )
Mod⊗

Y
/

(Mod⊗A,Mod⊗A) ≃ MapCAlg(Mod⊗Y )((πA)∗1A, (πA)∗1A)

≃ MapCAlg(ModA)((πA)∗(πA)∗1A,1A).

Unwinding the definitions we have

MapCAlg(ModA)((πA)∗(πA)∗1A,1A) ≃ Map(Aff)/ SpecA
(SpecA,SpecA×Y SpecA)

≃ Map(Aff)/ SpecA
(SpecA,G1 ×R A×R A)

≃ MapAff/Y
(SpecA, SpecA)

where G1 is SpecR×Y SpecR ≃ ρ([1]), and G1 ×R A×R A→ SpecA ∈ (Aff)/ Spec A is
the second projection. Note that through natural equivalences a morphism SpecA→
SpecA over Y , which we regard as an object of MapAff/Y

(SpecA, SpecA), induces a

symmetric monoidal functor Mod⊗A → Mod⊗A under Mod⊗Y which we think of as an

object of CAlg(�Cat
L,st

∞ )Mod⊗Y /.

Next using the natural equivalence

Map
CAlg(�Cat

L,st

∞ )
Mod⊗

Y
/

(Mod⊗A,Mod⊗A) ≃ MapAff/Y
(SpecA, SpecA)

we consider the automorphisms of π∗. To this end let TA be the fiber product

MapAff/Y
(SpecA, SpecA)×MapAff(Spec A,Spec A) {IdSpec A}

in S where the diagram is induced by the forgetful functor MapAff/Y
(SpecA, SpecA) →

MapAff(SpecA, SpecA). Similarly, we define SA to be th fiber product

Map
CAlg(�Cat

L,st
∞ )

Mod⊗
Y
/

(Mod⊗A,Mod⊗A)×Map
CAlg(�Cat

L,st
∞ )

(Mod⊗A ,Mod⊗A) {Id}
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in �S, which is equivalent to TA. There are natural equivalences

TA ≃ Map′(Aff)/ SpecA
(SpecA,G1 ×R A×R A)

≃ Map(Aff)/ SpecA
(SpecA,G1 ×R A)

≃ MapAff(SpecA,G1)

in �S where Map′(Aff)/ SpecA
(SpecA,G1 ×R A×R A) is the fiber product

Map(Aff)/ SpecA
(SpecA,G1 ×R A×R A)×MapAff (Spec A,Spec A) {IdSpec A}

in S where the diagram is induced by the projection pr3 : G1 ×R A ×R A → SpecA.
Thus we have an equivalence MapAff(SpecA,G1) ≃ SA. When Y = SpecR and we
define S′A and T ′A in the same way that SA and TA are defined, then the assignment
A �→ S ′A ≃ T ′A is the functor CAlg → S represented by SpecR. Consequently, for
A ∈ CAlgR, Aut(π∗)1(A) and G1(A) are equivalent to the homotopy fiber products
SA×S′A

{A} and TA×T ′A
{A} respectively (here {A}means that the vertex corresponding

to SpecA→ SpecR). Hence we have the required equivalence G1(A) ≃ Aut(π∗)1(A).

Let C⊗,D⊗ ∈ CAlg(�Cat
L,st

∞ ). Suppose that C is compactly generated, that is, the
natural colimit-preserving functor Ind(C◦) → C is a categorical equivalence, and ⊗ :
C × C → C induces C◦ × C◦ → C◦, which makes C◦ a symmetric monoidal ∞-category,
where C◦ is the full subcategory of compact objects in C and Ind(−) indicates the Ind-
category (see [23, 5.3.5]). Note that under this assumption, a unit object is compact.

Proposition 4.7. Let Map⊗,L(C⊗,D⊗) be Map
CAlg(�Cat

L,st
∞ )

(C⊗,D⊗). Let Map⊗,ex(C⊗◦ ,D
⊗)

be the full subcategory of MapCAlg(�Cat∞)(C
⊗
◦ ,D

⊗) spanned by symmetirc monoidal func-

tors which preserves finite colimits. The natural inclusion C⊗◦ → C⊗ induces an equiv-
alence

Map⊗,L(C⊗,D⊗) → Map⊗,ex(C⊗◦ ,D
⊗)

in �S.
Lemma 4.8. Let C×n and D×m be the n-fold product and the m-fold product respec-
tively. Let Fun′(C×n,D×m) be the full subcategory of Fun′(C×n,D×m) spanned by func-
tors which preserves small colimits separately in each variable of C×n. Fun′◦(C

×n
◦ ,D×m)

be the full subcategory of Fun(C×n
◦ ,D×m) spanned by functors which preserves finite

colimits separately in each variable of C×n
◦ . Then the natural fully faithful functor

C×n
◦ → C×n induces a categorical equivalence Fun′(C×n,D×m) → Fun′◦(C

×n
◦ ,D×m).

Proof. Clearly, we are reduced to the case m = 1. Thus we will assume that
m = 1. We first consider the case n = 1. This case is well-known. We show this case
for the reader’s convenience. By left Kan extension [23, 5.3.5.10] we have a categorical
equivalence Funcont(C,D) → Fun(C◦,D) induced by C◦ ⊂ C where Funcont(C,D) is the
full subcategory spanned by functors which preserves filtered colimits. The argument of
the second paragraph of the proof of [24, 1.1.3.6] says that if C◦ → D preserves cokernels
and kernels, then the corresponding left Kan extension (via the above equivalence)
C → D preserves cokernels and kernels, and in particular C → D preserves small
colimits by [24, 1.1.4.1] and [23, 4.4.2.7]. Since C◦ →֒ C preserves finite colimits, we
have a categorical equivalence Fun′(C,D) ≃ Fun′◦(C◦,D), as desired.
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Next we consider the case n = 2. In this case

Fun′(Ind(C◦)× Ind(C◦),D) ≃ Fun′(Ind(C◦),Fun′(Ind(C◦),D))

≃ Fun′◦(C◦,Fun′◦(C◦,D))

≃ Fun′◦(C◦ × C◦,D),

where all equivalence follows from the case of n = 1 and the fact that Fun′(Ind(C◦),D)
is presentable [23, 5.5.3.8]. The proof in the case of n ≥ 3 is similar to n = 2 (use
induction on n).

Proof of Proposition 4.7. In virtue of straightening [23, 3.2.0.1, 3.2.5] there exists

a map z : Fin∗ → (�Set∆)cf such that its unstraightening is (coCartesian equivalent
to) the symmetric monoidal ∞-category C⊗ → N(Fin∗) and z(�n�∗) is an ∞-category

for each n ≥ 0. Here �Set∆ is the simplicial category of (not necessarily small) ∞-
categories (cf. [23, Chapter 3]). For each n ≥ 0, set Cn := z(�n�∗). Let Cn

◦ be the
full subcategory (simplicial subset) spanned by compact objects. Then the restric-

tion to Cn
◦ induces z◦ : Fin∗ → (�Set∆)cf which carries �n�∗ to Cn

◦ . Also, there is a
natural transformation z◦ → z of functors (taking account of [23, 5.3.4.10] and the
fact that C has a final object we see that C×n

◦ coincides with the full subcategory of

compact objects in C×n). Similarly, there exists z′ : Fin∗ → (�Set∆)cf such that its
unstraightening is (coCartesian equivalent to) a coCartesian fibration D⊗ → N(Fin∗)
and Dn := z′(�n�∗) is an ∞-category for each n ≥ 0. Then a natural transforma-

tion N(z) → N(z′) of functors from N(Fin∗) to N((�Set∆)cf) = �Cat∞ corresponds to a
symmetric monoidal functor C⊗ → D⊗. More precisely, there is a homotopy equiva-
lence MapFun(N(Fin∗),�Cat∞)(N(z),N(z′)) ≃ Map⊗(C⊗,D⊗), where Map⊗(C⊗,D⊗) is the

mapping space of symmetric monoidal functors.
Suppose that E is either C or D. Let αn,i : �n�∗ → �1�∗ be the map which sends i

to 1 and sends others to ∗. Let pi : En → E1 be the map of simplicial sets determined
by αn,i. Let qn : (E1)×n → En be a quasi-inverse of the categorical equivalence p1 ×
· · · × pn : En → (E1)×n. Let ri : (E1)×n → E1 be the i-th projection. For e =
(e1, . . . , ei−1, ei+1, . . . , en) ∈ (E1)n−1 we let ιi(e) be the inclusion E1 → (E1)×n which
is informally given by e �→ (e1, . . . , ei−1, e, ei+1, . . . , en). We define Fun∗(Cn, Em) to be
the full subcategory (simplicial subset) of Fun(Cn, Em) by the following condition. A
functor f : Cn → Em belongs to Fun∗(Cn, Em) if and only if the following two conditions
hold:

• f ◦ qn : (C1)×n → Cn → Em preserves small colimits separately in each variable,
• for any 1 ≤ k ≤ n and c = (c1, . . . , ck−1, ck+1, . . . , cn) ∈ (C1)n−1, there is at most

one 1 ≤ i ≤ m such that ri ◦ (p1 × · · · × pm) ◦ f ◦ qn ◦ ιk(c) : C1 → E1 is not
equivalent (as functors) to a constant functor.

Replacing C by D in the above condition we define the full subcategory Fun∗(Dn, Em)
of Fun(Dn, Em) in a similar way.

Let Fun∗◦(C
n
◦ , E

m) be the full subcategory (simplicial subset) of Fun(Cn
◦ , E

m), de-
fined as follows. If we use notation similar to above, f ∈ Fun(Cn

◦ , E
m) belongs to

Fun∗◦(C
n
◦ , E

m) if and only if the followings hold:

• f ◦ qn : (C1
◦)
×n → Cn

◦ → Em preserves finite colimits separately in each variable,
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• if f ′ : (C1)×n ≃ Cn → Em is an extension of f determined by Lemma 4.8 and the
first condition, then f ′ belongs to Fun∗(Cn, Em).

Let S be a simplicial category (that is, a category enriched over the monoidal cate-
gory of simplicial sets) defined as follows: objects are Cn with n ≥ 0 and Dn with n ≥ 0.
Let Map∗(Cn, Cm) be the largest Kan complex of Fun∗(Cn, Cm). The hom simplicial set
MapS(Cn, Cm) is defined to be the full subcategory of Map∗(Cn, Cm) spanned by functors
which sends Cn

◦ to Cm
◦ , and MapS(Cn,Dm) is the largest Kan complex of Fun∗(Cn,Dm).

The simlicial set MapS(Dn,Dm) is the largest Kan complex of Fun∗(Dn,Dm) for any
n and m. The simlicial set MapS(Dn, Cm) is the empty set for any n and m. These
data constitute a simplicial category S. Let S ′ = N(S).

Let T be a simplicial category defined as follows: objects are Cn
◦ with n ≥ 0 and

Dn with n ≥ 0. We define subcategory T which satisfies the following properties:
let Map∗◦(C

n
◦ , C

m
◦ ) be the largest Kan complex of Fun∗◦(C

n
◦ , C

m
◦ ). The mapping space

MapT (Cn
◦ , C

m
◦ ) is defined to be Map∗◦(C

n
◦ , C

m
◦ ), and MapT (Cn

◦ ,D
m) is the largest Kan

complex of Fun∗◦(C
n
◦ ,D

m). The simlicial set MapT (Dn,Dm) is the largest Kan complex
of Fun∗(Dn,Dm) for any n and m. The simplicial set MapT (Dn, Cm

◦ ) is the empty set
for any n and m. Let T ′ = N(T ).

Then there is a natural simplicial functor S → T which sends Cn and Dn to Cn
◦ and

Dn respectively. The maps of hom simplicial sets

MapS(Cn, Cm) → MapT (Cn
◦ , C

m
◦ )

and

MapS(Cn,Dm) → MapT (Cn
◦ ,D

m)

are induced by the restriction Cn
◦ ⊂ C

n, and in other case, maps of hom simplicial sets
are identities. Then by Lemma 4.8 we deduce that the induced functor S ′ → T ′ is a
categorical equivalence.

Let MapL

Fun(N(Fin∗),�Cat∞)
(N(z),N(z′)) be the full subcategory of

Map Fun(N(Fin∗),�Cat∞)(N(z),N(z′))

= Map(∆1,Fun(N(Fin∗),�Cat∞))×Map(∂∆1,Fun(N(Fin∗),�Cat∞)) (N(z),N(z′))

((N(z),N(z′)) = ∆0) that corresponds to Map⊗,L(C⊗,D⊗). The both functors N(z)

and N(z′) factor through S′ ⊂ �Cat∞. Moreover by the definition of S, we have a
categorical equivalence

MapFun(N(Fin∗),S′)(N(z),N(z′)) ≃ MapL

Fun(N(Fin∗),�Cat∞)
(N(z),N(z′)).

Similarly, we have

MapFun(N(Fin∗),T ′)(N(z◦),N(z′)) ≃ Mapex

Fun(N(Fin∗),�Cat∞)
(N(z◦),N(z′)).

where Mapex

Fun(N(Fin∗),�Cat∞)
(N(z◦),N(z′)) is the full subcategory of

MapFun(N(Fin∗),�Cat∞)(N(z◦),N(z′))

that corresponds to Map⊗,ex(C⊗◦ ,D
⊗) through the equivalence

MapFun(N(Fin∗),�Cat∞)(N(z◦),N(z′)) ≃ Map⊗(C⊗◦ ,D
⊗).

Now the desired equivalence follows from the categorical equivalence S ′ → T ′.
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Let us recall the definition of perfectness of stacks introduced by Ben-Zvi, Francis,
and Nadler in their work on derived Morita theory [1] (this notion is also important
to our previous paper [11]). We say that a derived stack Y is perfect if the natural
functor Ind(PModY ) → ModY is a categorical equivalence. As a corollary of results of
this Section, we have:

Theorem 4.9. Let Y be a perfect derived stack over R and π : SpecR→ Y is a section
of the structure morphism Y → SpecR. Let π∗ : Mod⊗Y → Mod⊗R be the morphism in

CAlg(�Cat
L,st

∞ )Mod⊗R / induced by π : SpecR→ Y , and let π∗◦ : PMod⊗Y → PMod⊗R denote

its restriction which belongs to CAlg(Catst
∞)PMod⊗R /. Let Aut(π∗◦) : CAlgR → Grp(S) be

the automorphism functor of π∗◦. Then the restriction induces an equivalence of functors
Aut(π∗) → Aut(π∗◦). In particular, the tannakization of π∗◦ : PMod⊗Y → PMod⊗R is
equivalent to Gπ. (see the setup before Proposition 4.6 for the notation Gπ.)

Proof. Combine Corollary 3.7, Proposition 4.6 and 4.7.

Corollary 4.10. Let Y be a derived stack over R equipped with π : SpecR→ Y as in
Theorem 4.9. Suppose either one of followings:

(i) a derived stack Y over R belongs to AffR,
(ii) let G be an affine group scheme of finite type over a field k of characteristic zero,

which we regard as a derived affine group scheme over R = Hk. Suppose that G
acts on X ∈ AffR and let Y = [X/G] be the quotient stack (see Example 4.1).

Then the tannakization of π∗◦ : PMod⊗Y → PMod⊗R is equivalent to Gπ.

Proof. According to Proposition 4.6 and Corollary 3.7 and Theorem 4.9, it will
suffices to show that Y is perfect, that is, the natural functor Ind(PModY ) → ModY

is a categorical equivalence. Then our claim follows from [1, 3.19, 3.22].

Remark 4.11. By this Theorem, for example, we can prove that the tannakization
of the ∞-category Art(k)⊗ of Artin motives endowed with a homological realization
functor Art(k)⊗ → PMod⊗HK (cf. [17, Section 6.3]) is equivalent to the absolute Galois
group Gal(k̄/k) which we regard as the limit of constant finite derived group schemes
over HK.

5. Bar constructions

This Section contains no new result. In this Section, we review the relation between
bar constructions and the case (i) of Corollary 4.10. Let A ∈ CAlgR and let s : R→ A
be the natural morphism in CAlgR (note R is an initial object in CAlgR). Suppose
that t : A→ R is a cosection of s, that is, t◦s is equivalent to the identity of R. Recall
that ∆+ is the category of finite (possibly empty) linearly ordered sets and we write
[−1] for the empty set. Let ι : ∆1 → N(∆+) be a map which carries {0} and {1} to
[−1] and [0] respectively. It is a fully faithful functor. Let f : ∆1 → CAlgR be the
map corresponding to A→ R. Since CAlgR admits small colimits, there is a left Kan
extension

g : N(∆+) → CAlgR

of f along ι. We refer to gop : N(∆+)op → AffR as the Čech nerve of fop : (∆1)op →
AffR. This construction is called the bar construction for t : A → R. The underlying
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simplicial object N(∆)op → N(∆+)op → AffR is a group object (see [17, Appendix]
or [23, 7.2.2.1] for the definition of group objects). Let G be a derived affine group
scheme corresponding to the simplicial object.

Let t∗◦ : PMod⊗A → PMod⊗R be the morphism in CAlg(Catst
∞)PMod⊗R /. The case (i) of

Corollary 4.10 says:

Theorem 5.1. Aut(t∗◦) is represented by G. In particular, by Corollary 3.7 the tan-
nakization of t∗◦ : PMod⊗A → PMod⊗R is equivalent to G.

Remark 5.2. For the readers who are familiar with commutative differential graded
algebras (dg-algebras for short), we relate the bar construction of commutative dg-
algberas with G. Let k be a field of characteristic zero. Let dgak be the category
of commutative dg-algebras over k (cf. [14]). A morphism P • → Q• in dgak is a
weak equivalence (resp. fibration) if it induces a bijection Hn(P •) → Hn(Q•) for
each n ∈ Z (resp. P n → Qn is a surjective morphism of k-vector spaces for each
n ∈ Z). There is a model category structure on dgak whose weak equivalences and
fibrations are defined in this way (see [14, 2.2.1]). Let N(dgack)∞ be the ∞-category
obtained from the full subcategory dgack spanned by cofibrant objects by inverting
weak equivalences (see [24, 1.3.4.15]). According to [24, 8.1.4.11], there is a categorical
equivalence N(dgack)∞ ≃ CAlgHk. Let R = Hk and let t : A→ k be an augmentation
in dgak. We abuse notation and we denote by t : A → R the induced morphism in
CAlgR. The underlying derived scheme of G is the fiber product SpecR×Spec A SpecR
in AffR. By this equivalence, the pushout R⊗AR in CAlgR corresponds to a homotopy
pushout k ⊗LA k in the model category dgak, which is weak equivalent to a homotopy
pushout A⊗LA⊗kA k of

A⊗k A
t⊗t

m

k

A

where m is the multiplication. We will review the construction of the concrete model
of a homotopy pushout A⊗LA⊗kA k in dgak, which is known as the bar construction of
a commutative dg-algebra (see for example [28], [33]). Consider the adjoint pair

T : dgak,A/ ⇄ dgak,A⊗kA/ : U

where U is the forgetful functor induced by A → A⊗k A, x �→ x ⊗ 1, and T is given
by formula M �→M ⊗A (A⊗k A). Let α : Id → UT and β : TU → Id be the unit map
and counit map respectively. To an object C ∈ dgak,A⊗kA/ one associates a simplicial
diagram (T,U)•(C) in dgak,A/ as follows: Define

(T, U)n(C) = (TU)◦(n+1)(C) = (TU) ◦ · · · ◦ (TU)(C)

where the right hand side is the (n + 1)-fold composition. For 0 ≤ i ≤ n + 1,

di : (T, U)n+1(C) = (TU)◦i ◦ (TU) ◦ (TU)◦(n+1−i)(C)

→ (TU)◦i ◦ Id ◦ (TU)◦(n+1−i)(C) = (T, U)n(C)
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is induced by β in the middle term. For 0 ≤ i ≤ n,

si : (T, U)n(C) = (TU)◦i ◦ T ◦ Id ◦ U ◦ (TU)◦(n−i)(C)

→ (TU)◦i ◦ T ◦ (UT ) ◦ U ◦ (TU)◦(n−i)(C) = (T, U)n+1(C)

is induced by α : Id → (UT ) in the middle term. Let us consider A to be an object
in dgak,A⊗kA/ via m : A ⊗k A → A. Then by the above construction we obtain the
simplicial object (T, U)•(A)⊗A⊗kAk in dgak. The totalization tot((T, U)•(A)⊗A⊗kAk) ∈
dgak, which we call the bar complex, represents the homotopy pushout A⊗LA⊗kA k.

6. Mixed Tate motives

In this Section, as an application of the results we have proved; in particular Theo-
rem 4.9 and Corollary 4.10, we will describe the tannakization of the stable∞-category
of mixed Tate motives equipped with the realization functor as the Gm-equivariant
bar construction of a commutative dg-algebra. The main goal of this Section is The-
orem 6.11. We emphasize that this section works without assuming Beilinson-Soulé
vanishing conjecture. In what follows we often use model categories. Our references
for them are [16] and [23, Appendix].

6.1. Review of ∞-category of mixed motives. Let K be a field of characteristic
zero. Let A be the abelian category of K-vector spaces. We equip the category of
complexes of K-vector spaces, denoted by Comp(A), with the projective model struc-
ture, in which weak equivalences are quasi-isomorphisms, and fibrations are degreewise
surjective maps (cf. e.g. [16, Section 2.3], [23, Appendix], [5]).

Let k be a perfect field. Let DMeff (k) be the category of complexes of A-valued
Nisnevich sheaves with transfers (the indroductory references of this notion include
[26] and [7]). For a smooth scheme X separated of finite type over k, we denote by
L(X) the A-valued Nisnevich sheaves with transfers which is represented by X (cf.
[26, page.15]). We equip DMeff(k) with the symmetric monoidal model structure in
[5, Example 4.12]. The triangulated subcategory of the homotopy category of this
model category DMeff(k), spanned by right bounded complexes, is equivalent to the

triangulated category DM
eff,−
Nis (k,K) constructed in [26, Lecture 14].

The pointed algebraic torus Spec(k) → Gm over k induces a split monomorphism
L(Spec(k)) → L(Gm) in DMeff (k). Then we define K(1) to be

Coker(L(Spec(k)) → L(Gm))[−1].

Let DM(k) be the category of symmetric K(1)-spectra in (DMeff (k))S (cf. [5, Section
7]) which is endowed with the symmetric monoidal model structure in [5, Example
7.15] (see loc. cit. for details). Then we have a sequence of left Quillen symmetric
monoidal functors

Comp(A) −→ DMeff (k)
Σ∞
−→ DM(k),

where the first functor sends the unit to L(Spec(k)), and the second functor is the
infinite suspension functor.

Recall the localization method in [24, 1.3.4.1, 1.3.1.15, 4.1.3.4] (see also [10], [17,
Section 6] and [17, Proposition 6.8]); it associates to any (symmetric monoidal) model
category M a (symmetric monoidal) ∞-category N(Mc)∞. Here Mc is the full subcate-
gory spanned by cofibrant objects (this restriction is due to the technical reason for the
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construction of symmetric monoidal ∞-categories). We shall refer to the associated
(symmetric monoidal) ∞-category as the (symmetric monoidal) ∞-category obtained
from the model category M by inverting weak equivalences. Applying this localization,
we obtain a symmetric monoidal functors of symmetric monoidal ∞-categories

Mod⊗HK ≃ N(Comp(A)c)∞ → N(DMeff (k)c)∞ → N(DM(k)c)∞.

where the first equivalence follows from [24, 8.1.2.13]. Here HK denotes the Eilenberg-
MacLane spectrum. We shall write DM and DMeff for N(DM(k)c)∞ and N(DMeff(k)c)∞
respectively. When we indicate that DM is the symmetric monoidal ∞-category, we
denote it by DM⊗. In [17, Section 6] we have constructed another symmetric monoidal
stable presentable ∞-category Sp⊗Tate(HK) by using the recipe in [6] and [29]. We do
not review the construction; but there is an equivalence DM⊗ ≃ Sp⊗Tate(HK) (cf. [24,
Remark 6.6]).

It should be emphasized that there are several (quite different but equivalent) con-
structions of the category of mixed motives as differential-graded categories and model
categories. One can obtain ∞-categories from differential-graded categories and model
categories. In our work, it is important to treat “the category of mixed motives” as
a symmetric monoidal ∞-category, and therefore we choose the symmeric monoidal
model category DM(k) constructed by Cisinski-Déglise.

6.2. ∞-category of mixed Tate motives. Let us recall the stable ∞-category of
mixed Tate motives. We also denote by K(1) its image of K(1) ∈ DMeff(k) in DM(k).
It is a cofibrant object and K(1) can be regard as an object in the ∞-category DM.
There exists the dual object of K(1) in DM, which we will denote by K(−1). Let DTM
be the presentable stable subcategory generated by K(1)⊗n = K(n) for n ∈ Z, where
K(1)⊗n is the n-fold tensor product in DM⊗. Namely, DTM is the smallest stable
subcategory in DM, which admits coproducts (thus all small colimits) and consists
of K(n) for all n ∈ Z. The tensor product functor ⊗ : DM × DM → DM preserves
small colimits and translations (suspensions and loops) separately in each variable,
and thus the symmetric monoidal structure of DM induces a symmetric monoidal
structure on DTM. We denote by DTM⊗ the resulting symmetric monoidal stable
presentable ∞-category. Note that the inclusion DTM →֒ DM preserves small colimits.
Let DTMgm be the smallest stable subcategory consisting of K(n) for n ∈ Z. Since
K(n) is compact in DM for every n ∈ Z, every object in DTMgm is compact in DM. Let
Ind(DTMgm) → DTM be a (colimit-preserving) left Kan extension of DTMgm → DTM,
which is fully faithful by [23, 5.3.5.11]. Hence it identifies Ind(DTMgm) with DTM.
The symmetric monoidal functor Mod⊗HK → DM⊗ factors through DTM⊗ ⊂ DM⊗

since DTM⊗ →֒ DM⊗ preserves small colimits, and DTM contains the unit of DM. The

factorization Mod⊗HK → DTM⊗ →֒ DM⊗ is regarded as a map in CAlg(�Cat
L,st

∞ )Mod⊗HK /

which we also denote by DTM⊗ →֒ DM⊗.

Lemma 6.1. Let DTM∨ be the full subcategory of DTM⊗ spanned by dualizable objects.
Let DTM◦ be the full subcategory of DTM spanned by compact objects. Then DTM◦ =
DTM∨.

Proof. Observe that every object in DTM∨ is compact in DTM. To this end, it is
enough to show that the unit object of DTM⊗ is compact (cf. [6, 2.5.1]). This is implied
by [6, Theorem 2.7.10]. For any n ∈ Z, K(n) belongs to DTM∨. Therefore DTMgm ⊂
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DTM∨ ⊂ DTM◦. Notice that DTMgm ⊂ DTM◦ can be viewed as an idempotent-
completion (see e.g. [3, Lemma 2.14]). Moreover DTM is idempotent-complete by [23,
4.4.5.16]. It will suffice to prove that the inclusion DTM∨ ⊂ DTM is closed under
retracts. It easily follows from the definition of dualizable objects.

Let
�

S DM be a product of the category DM, indexed by a small set S. There is a
combinatorial model structure on

�
S DM, called projective model structure (cf. [23,

A. 2.8.2]), in which weak equivalences (resp. fibrations) are termwise weak equivalences
(resp. termwise fibrations) in DM. Notice that cofibrations in

�
S DM are termwise

cofibrations. When S = N,
�
N

DM has a symmetric monoidal structure defined as
follows: Let (Mi)i∈N and (Nj)j∈N be two objects in

�
N

DM. Then (Mi)i∈N ⊗ (Nj)j∈N
is defined to be (⊕i+j=kMi ⊗Nj)k∈N.

Lemma 6.2. With the above symmetric monoidal structure,
�
N

DM is a symmetric
monoidal model category in the sense of [23, A 3.1.2].

Proof. We must prove that cofibrations α : (Mi) = (Mi)i∈N → (Mi) = (M ′
i)i∈N and

β : (Ni) = (Ni)i∈N → (Ni) = (N ′
i)i∈N induce a cofibration

α ∧ β : (Mi)⊗ (N ′
i)

�

(Mi)⊗(Ni)

(M ′
i)⊗ (Ni) → (M ′

i)⊗ (N ′
i),

and moreover if either α or β is a trivial cofibration, then α ∧ β is also a trivial
cofibration. Unwinding the definition, we are reduced to showing that

�

i+j=k

�
Mi ⊗N ′

j

�

Mi⊗Nj

M ′
i ⊗Nj

�
→

�

i+j=k

M ′
i ⊗N ′

j

is a cofibration in DM, and moreover it is a trivial cofibration if either α or β is a
trivial cofibration. This is implied by the left lifting property of (trivial) cofibrations
and the fact that DM is a symmetric monoidal model category.

Consider the symmetric monoidal functor ξ :
�
N

DM → DM, which carries (Mi) to
⊕iMi ⊗K(−i). Here K(−1) is a cofibrant “model” of the dual of K(1), and K(−i) is
i-fold tensor product of K(−1) in the symmetric monoidal category DM. Since K(−i)
is cofibrant, we see that ξ is a left Quillen adjoint functor. By the localization, we
obtain a symmetric monoidal left adjoint functor

f := N(ξ) : DM⊗
N

:= N((
	

N

DM)c)∞ → N(DMc)∞ = DM⊗.

By the relative version of adjoint functor theorem [24, 8.3.2.6] (see also [25, VIII
3.2.1]), f has a lax symmetric monoidal right adjoint functor which we denote by
g : DM⊗ → DM⊗

N
. It yields g : CAlg(DM⊗) → CAlg(DM⊗

N
). We set A := g(1DM) in

CAlg(DM⊗
N

), where 1DM is a unit in DM⊗. The adjoint pair

f : DMN ⇄ DM : g

induces the adjoint pair

f : h(DMN) ⇄ h(DM) : g

of homotopy categories. Let Hom(N,−) denote the internal Hom object given by the
right adjoint of (−)⊗N : DM→ DM. Then g is given by M �→ (Hom(K(−i),M))i∈N.
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Thus the underlying object A in h(DM) is (K(i))i∈N, that is, the i-th term is K(i).
Moreover, by the straightforward calculation of adjunction maps, we see that the com-
mutative algebra structure of A in the symmetric monoidal homotopy category h(DM)
is given by

(K(i))i∈N ⊗ (K(j))j∈N = (⊕i+j=kK(i)⊗K(j))k∈N → (K(k))k∈N

where the second map is induced by the identity maps K(i)⊗K(j) ≃ K(k) → K(k).
Now recall from [31] the notion of “periodic” commutative ring object (in loc. cit.

the notion of “periodizable” is introduced, and we use this notion in a slightly modified
form). Let

�
Z

DM be the product of DM indexed by Z, which is a combinatorial model
category defined as above. By the tensor product (Mi)i∈Z ⊗ (Nj)j∈Z = (⊕i+j=kMi ⊗
Nj)k∈Z,

�
Z

DM is a symmetric monoidal model category in the same way that
�
N

DM
is so. Let DM⊗

Z
be the symmetric monoidal ∞-category obtained from (

�
Z

DM)c by
inverting weak equivalences. A commutative algebra object X in DM⊗

Z
is said to be

periodic if the underlying object is of the form

(. . . ,K(−1),K(0),K(1), . . . ),

that is, K(i) sits in the i-th degree, and the commutative algebra structure of X in
h(DM⊗

Z
) induced by that in DM⊗

Z
is determined by the identity maps K(i) ⊗K(j) →

K(i + j).
A periodic commutative algebra object actually exists. To construct it, we let i :

DM⊗
N
→ DM⊗

Z
be the symmetric monoidal functor informally given by (Mi)i∈N �→

(. . . , 0, 0,M0,M1, . . . ). Namely, it is determined by inserting 0 in each negative degree.
Then P+ := i(A) belongs to CAlg(DM⊗

Z
). According to [31, Proposition 4.2] and its

proof, we have:

Proposition 6.3 ([31]). There exists a morphism P+ → P in CAlg(DM⊗
Z

) such that
P is periodic.

Remark 6.4. Let K(1)1 be the object of the form (. . . , 0,K(1), 0, . . . ) where K(1)
sits in the 1-st degree. Let Sym∗

P+
: ModP+(DM⊗

Z
) → CAlg(Mod⊗P+(DM⊗

Z
)) be the left

adjoint of the forgetful functor. Let

CAlg(Mod⊗P+(DM⊗
Z

)) ⇄ CAlg(Mod⊗P+(DM⊗
Z

))[Sym∗
P+

(κ)−1]

be the localization adjoint pair (cf. [23, 5.2.7.2, 5.5.4]) which inverts Sym∗
P+

(κ), where

κ : K(1)1⊗P+ → P+ in ModP+(DM⊗
Z

) induced by the natural embedding K(1)1 → P+

in the 1-st degree. The morphism P+ → P is obtained as the unit map of this adjoint
pair.

Let
�
Z

Comp(A) be the product of the category Comp(A), that is endowed with
the projective model structure. As in Lemma 6.2, we see that

�
Z

Comp(A) is a sym-
metric monoidal model category, whose tensor product is given by (Ai)i∈Z⊗ (Bj)j∈Z =
(⊕i+j=kAi⊗Bj)k∈Z. Then the natural left Quillen adjoint symmetric monoidal functor
Comp(A) → DM naturally extends to a left Quillen adjoint symmetric monoidal func-
tor l :

�
Z

Comp(A) →
�
Z

DM. It gives rise to the symmetric monoidal left adjoint
functor of ∞-categories

l : Mod⊗HK,Z := N(
	

Z

Comp(A)c)⊗∞ → DM⊗
Z
.
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According to the relative version of adjoint functor theorem [24, 8.3.2.6] (see also [25,
VIII 3.2.1]), l has a lax symmetric monoidal right adjoint functor r. Let Q := r(P ) ∈
CAlg(Mod⊗HK,Z). Let DM →

�
Z

DMZ be the left Quillen symmetric monoidal functor
which carries M to (Mi) where M0 = M and Mi = 0 if i �= 0. Thus we have a
symmetric monoidal functor DM→ DMZ, and again by the relative version of adjoint
functor theorem we obtain a lax symmetric monoidal functor s : DMZ → DM as the
right adjoint. Therefore there exists a diagram of symmetric monoidal ∞-categories:

Modl(Q)(DM
⊗
Z

)

u

ModQ(Mod⊗HK,Z)

l̃

u◦l̃

b

ModP (DM⊗
Z

)

t
s◦t

ModHK,Z

l

a

DMZ
r

s
DM

such that

• l̃ is a symmetric monoidal functor induced by l,
• u is the symmetric monoidal base change functor induced by the counit map

l(Q) = l(r(P )) → P ,
• t is the forgetful monoidal functor which is a lax symmetric monoidal functor,
• a is the base change functor, and b is the forgetful functor.

Let z := s ◦ t ◦ u ◦ l̃. We recall the theorem by Spitzweck [31, Theorem 4.3] (see also
its proof):

Theorem 6.5 ([31]). The composite z : ModQ(Mod⊗HK,Z) → DM gives an equivalence

ModQ(Mod⊗HK,Z) ≃ DTM as symmetric monoidal ∞-categories.

Furthermore, we can see that z gives an equivalence of them as HK-linear symmetric
monoidal ∞-categories. To see this, it is enough to show that z is promoted to a
HK-linear symmetric monoidal functor. To treat problems of this type, the following
Lemma is useful.

Lemma 6.6. Let C⊗ be in CAlg(�Cat
L,st

∞ ). We denote by C the underlying ∞-category.
Suppose that a unit 1 of C⊗ is compact in C. Let C1 ⊂ C be the smallest stable
subcategory which admits small colimits and contains 1. The ∞-category C1 admits a
symmetric monoidal structure induced by that of C⊗. Then there exist A in CAlg and
an equivalence Mod⊗A ≃ C⊗ of symmetric monoidal ∞-categories. Moreover, if R is
a commutative ring spectrum and p : Mod⊗R → C⊗ is a symmetric monoidal colimit-
preserving functor, then p factors through C⊗

1
⊂ C⊗ and there exists a morphism R→ A

in CAlg, up to the contractible space of choice, which induces Mod⊗R → C⊗
1
≃ Mod⊗A

(as the base change).

Proof. The first assertion follows from [24, 8.1.2.7]; the characterization of symmet-
ric monoidal stable ∞-categories of module spectra. Since p preserves small colimits,
p factors through C⊗

1
⊂ C⊗. The last assertion is implied by [24, 6.3.5.18].
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Remark 6.7. Under the assumption of Lemma 6.6, A is considered to be the “endo-
morphism algebra” of the unit, and we can say that giving a R-linear structure, that is,
a symmetric monoidal colimit-preserving functor Mod⊗R → C⊗ is equivalent to giving
a morphism R→ A in CAlg.

Return to the case of HK-linear symmetric monoidal ∞-category DTM⊗. The en-
domorphism algebra of the unit of DTM⊗ is HK (i.e. K), and its HK-linear structure
is determined by the identity HK → HK. Thus, to promote z to a HK-linear sym-
metric monoidal functor, it is enough to show that f ◦a◦q : Mod⊗HK → DTM⊗ induces
the identity morphism of endomorphism algebras of units HK→ HK, where q is the
inclusion Mod⊗HK → Mod⊗HK,Z into the degree zero part. This claim is clear from our
construction.

6.3. Realization functor and augmentation. Let E be a mixed Weil theory with
K-coefficients (cf. [6, Definition 2.1]). A mixed Weil theory is a presheaf of commu-
tative dg K-algebras on the category of smooth affine schemes over k, which satisfies
Nisnevich descent property, A1-homotopy, Künneth formula and axioms of dimensions,
etc (for the precise definition see [6, 2.1.4]). For example, algebraic de Rham coho-
mology determines a mixed Weil theory with K = k; to any smooth affine scheme
X we associates a commutative dg k-algebra Γ(X,Ω∗

X/k) where Ω∗
X/k is the algebraic

de Rham complex arising from the exterior OX-algebra generated by Ω1
X/k. Another

example is l-adic étale cohomology with K = Ql (see [6, Section 3]). To a mixed Weil
theory E we can associate

R : DM⊗ → Mod⊗HK

a morphism in CAlg(�Cat
L,st

∞ )Mod⊗HK / which we call the homological realization functor

with respect to E (see [17, Section 6.1, 6.2], [6, 2.6]). Then according to [6, 2.7.14]
when E is the mixed Weil theory associated to algebraic de Rham cohomology, for any
smooth affine scheme X the image R(h(X)) in ModHK is equivalent to the dual complex
of the derived global section RΓ(X,Ω∗

X/k) where by [17, 6.8] we identify ModHK with
the ∞-category of unbounded complexes of K-vector spaces. We denote by RT the
composition

DTM⊗ →֒ DM⊗ → Mod⊗HK

which we call the homological realization of Tate motives (with respect to E). By the
restrictions, it gives rise to the morphism DTM⊗

∨ → PMod⊗HK in CAlg(Catst
∞)PMod⊗HK /

which we denote also by RT .
Combined with Theorem 6.5 we have the sequence of symmetric monoidal colimit-

preserving functors

Mod⊗HK,Z
a
−→ Mod⊗Q(ModHK,Z) ≃ DTM⊗ RT−→ Mod⊗HK .

By the relative version of adjoint functor theorem, the composition admits a lax sym-
metric monoidal right adjoint functor ξ. In particular, if we set R = ξ(1HK) with 1HK
the unit of Mod⊗HK, then R belongs to CAlg(Mod⊗HK,Z). By the functoriality and the

construction of Q, we have the natural morphism Q → R in CAlg(Mod⊗HK,Z). There
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is a commutative diagram (up to homotopy) of symmetric monoidal ∞-categories

Mod⊗Q(Mod⊗HK,Z)
∼

z DTM⊗
RT

Mod⊗HK

Mod⊗R(Mod⊗HK,Z)
z̃

Mod⊗f(R)(DTM
⊗)

R̃T

Mod⊗
RT (z(R))(Mod⊗HK)

where z̃ and R̃T are induced by z and RT respectively, the left and central vertical arrows
are base change functors, and the right vertical arrow is the counit map RT (z(R)) →
HK in CAlg(Mod⊗HK). Note that all functors in the diagram are HK-linear symmetric
monoidal functors. The commutativity of the right square follows from the observation
that the counit map RT (z(R)) → HK is an augmentation of the structure map HK→
RT (z(R)).

Lemma 6.8. The composite h : C⊗ := Mod⊗R(Mod⊗HK,Z) → D⊗ := Mod⊗HK in the
above diagram gives an equivalence of HK-linear symmetric monoidal ∞-categories.

Proof. It will suffice to show that the underlying functor is a categorical equivalence.
The symmetric monoidal functor h is HK-linear. Thus h is essentially surjective.
Next we will show that h is fully faithful. Let Kn := (. . . 0,K, 0 . . . ) be the object

in ModHK,Z such that K sits in the n-th degree. Let R(n) be the image of Kn by the
base change functor ModHK,Z → ModR(Mod⊗HK,Z). (For any n ∈ Z, h(R(n)) ≃ HK.)
It is enough to prove that

MapC(R(i), R(j)) → MapD(h(R(i)), h(R(j)))

is an equivalence in S. Indeed, C is generated by the sets {R(i)}i∈Z under finite
(co)limits, translations, and filtered colimits. Since R(i) and h(R(i)) is compact for
each i ∈ Z and h is colimit-preserving, we are reduced to showing that the above
map is an equivalence in S. (Assuming it to hold, note first that MapC(R(i), N) →
MapD(h(R(i)), h(N)) is an equivalence in S for N being in the smallest stable subcate-
gory C′ generated by {R(i)}i∈Z. Then since R(i) and h(R(i)) are compact, Ind(C′) ≃ C,
and h preserves small colimits, thus for any N ∈ C, MapC(R(i), N) → MapD(h(R(i)), h(N))
is an equivalence. Since C is generated by {R(i)}i∈Z under finite colimits, trans-
lations and filtered colimits, we conclude that for any M,N ∈ C, MapC(M,N) →
MapD(h(M), h(N)) is an equivalence.) Note that MapC(R(i), R(j)) ≃ MapC(R(i −
j), R), and therefore we may and will assume that j = 0. Then by using adjunctions
we can identify MapC(R(i), R) → MapD(h(R(i)), h(R)) with the composition

MapC(R(i), R)
∼
→ MapModQ(Mod⊗HK,Z)(Q(i), R)

∼
→ MapModHK

(RT (z(Q(i))), HK)
∼
→ MapModHK

(HK, HK).

This proves our Lemma.

Proposition 6.9. There exists a HK-linear symmetric monoidal equivalence

Mod⊗HK,Z → Mod⊗
BGm

.
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Proof. We will construct a symmetric monoidal functor Mod⊗HK,Z → Mod⊗
BGm

,
which preserves colimits.

For this purpose, we will construct Mod⊗
BGm

in a somewhat explicit way. Regard
the group scheme Gm over K as the simplicial scheme, denoted by G• such that Gi

is the i-fold product G×i
m . This corresponds to the cosimplicial K-algebra Γ(G)• such

that Γ(G)i ≃ K[t±1 , . . . , t±i ]. The cosimplicial K-algebra Γ(G)• naturally induces the

cosimplicial diagram ρ : N(∆) → �Cat∞ such that ρ([i]) = N(Comp(Γ(G)i)c). Here
Comp(Γ(G)i) denotes the category of chain complexes of Γ(G)i-modules which is en-
dowed with the projective model structure, and Comp(Γ(G)i)c is its full subcategoy of
cofibrant objects. Each category Comp(Γ(G)i)c has the (natural) symmetric monoidal

structure, and thus ρ is promoted to ρ : N(∆) → CAlg(�Cat∞), where CAlg(�Cat∞) is
the∞-category of symmetric monoidal∞-categories (i.e., commutative algebra objects

in the Cartesian symmetric monoidal∞-category �Cat∞). The symmetric monoidal cat-
egory Comp(Γ(G)i)c admits the subset of edges of weak equivalences. Inverting weak

equivalences in Comp(Γ(G)i)c, we have ρ′ : N(∆) → CAlg(�Cat∞) and the natural
transformation ρ→ ρ′. such that ρ′([i]) is a symmetric monoidal ∞-category obtained
from Comp(Γ(G)i)c by inverting weak equivalences.

Through the explicit unstraightening functor [23, 3.2.5.2], the maps ρ, ρ′ : N(∆) ⇒

CAlg(�Cat∞) gives rise to coCartesian fibrations C⊗pre → N(Fin∗) × N(∆) and C⊗ →
N(Fin∗) × N(∆). The natural transformation ρ → ρ′ induces a map of coCartesian
fibrations

C⊗pre
σ

C⊗

N(Fin∗)× N(∆)

which preserves coCartesian edges. Note that for each [i] ∈ ∆, the fiber ρ−1([i]) →
N(Fin∗) × {[i]} ∼= N(Fin∗) is the symmetric monoidal ∞-category associated to the
diagram of Comp(Γ(G)i)c’s. The fiber (ρ′)−1([i]) → N(Fin∗) is the symmetric monoidal
∞-category obtained from Comp(Γ(G)i)c by inverting weak equivalences.

Next we define a map of simplicial sets Sec(C⊗pre) → N(Fin∗) as follows. For any

a : T → N(Fin∗), giving a map T → Sec(C⊗pre) over N(Fin∗) amounts to giving
φ : T × N(∆) → C⊗pre which commutes with a × Id : T × N(∆) → N(Fin∗) × N(∆)

and C⊗pre → N(Fin∗) × N(∆). Let Sec(C⊗pre) be the largest subcomplex of Sec(C⊗pre),

which consists of the following vertexes: a vertex v ∈ Sec(C⊗pre) lying over �i� be-
longs to Sec(C⊗pre) exactly when v : {�i�} × N(∆) → C⊗pre carries all edges in {�i�} ×

N(∆) to coCartesian edges in C⊗pre. We define Sec(C⊗) → N(Fin∗) and Sec(C⊗) →

N(Fin∗) in a similar way. According to [23, 3.1.2.1 (1)], we see that Sec(C⊗pre) →

N(Fin∗) and Sec(C⊗) → N(Fin∗) are coCartesian fibrations (notice that Sec(C⊗pre) =
N(Fin∗)×Fun(N(∆),N(Fin∗)×N(∆)) Fun(N(∆), C⊗pre)) where N(Fin∗) → Fun(N(∆),N(Fin∗)×
N(∆)) is induced by the identity N(Fin∗)× N(∆) → N(Fin∗) × N(∆)). Moreover, by
[23, 3.1.2.1 (2)] we deduce that Sec(C⊗pre) → N(Fin∗) and Sec(C⊗) → N(Fin∗) are co-
Cartesian fibrations. By construction, furthermore Sec(C⊗pre) → N(Fin∗) is a symmetric
monoidal ∞-category. Since the procedure of inverting weak equivalences commutes
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with finite products [24, 4.1.3.2], we see that Sec(C⊗) → N(Fin∗) is also a symmetric
monoidal ∞-category. We will abuse notation and denote by Sec(C⊗pre) and Sec(C⊗)
the underlying ∞-categories. Note that σ (which preserves coCartesian edges) induces
a symmetric monoidal functor Sec(C⊗pre) → Sec(C⊗).

Observe that the symmetric monoidal ∞-category Sec(C⊗) → N(Fin∗) is equivalent
to the symmetric monoidal ∞-category Mod⊗

BGm
. By [23, 3.3.3.2] and [24, 3.2.2.4],

the symmetric monoidal ∞-category Sec(C⊗) is a limit of the diagram ρ′ : N(∆) →

CAlg(�Cat∞). Note that by [24, 8.1.2.13] ρ′([i]) is equivalent to Mod⊗Γ(G)i . Beside,

the functor Θ : CAlg → CAlg(�Cat
L,st

∞ ) which carries A to Mod⊗A (see Section 3.1) is
fully faithful [24, 6.3.5.18]. For a symmetric monoidal functor φ : Mod⊗A → Mod⊗B in

CAlg(�Cat
L,st

∞ ), one can recover f : A→ B with Θ(f) ≃ φ as the induced morphism from
the endomorphism spectrum of a unit of Mod⊗A to that of the unit in Mod⊗B . Therefore
from the construction of ρ′ (and ρ) and the definition of Mod⊗

BGm
, we conclude that

Sec(C⊗) → N(Fin∗) is equivalent to Mod⊗
BGm

.

Therefore, to construct Mod⊗HK,Z → Mod⊗
BGm

, it will suffice to construct a symmetric
monoidal functor from

�
Z

Comp(A)c to Sec(C⊗pre) which carries weak equivalences in�
Z

Comp(A)c to edges in Sec(C⊗pre) whose images in Sec(C⊗) are equivalences (note

the universality of Mod⊗HK,Z [24, 4.1.3.4]). Let Kn in
�
Z

Comp(A)c be the K which
sits in the n-th degree with respect to

�
Z
. To Kn we attach the weight n represen-

tation of Gm on K. The weight n representation gives rise to an object of Sec(C⊗pre)
in the obvious way, which we denote by K′

n. For (Mi)i∈Z ∈
�
Z

Comp(A)c, we at-
tach ⊕i∈ZMi ⊗ K′

i. Here we consider Mi to be an object in Sec(C⊗pre), that is the
complex endowed with the trivial action of Gm. This naturally induces a symmet-
ric monoidal functor having the desired property. To prove that the induced functor
ModHK,Z → ModBGm preserves small colimits, it is enough to show that the compos-
ite ModHK,Z → ModBGm → ModHK, where the second functor is forgetful, preserves
small colimits since the forgetful functor is conservative and preserves small colimits
(an exact functor p : K → L between stable ∞-categories is said to be conservative
if for any K ∈ K, p(K) ≃ 0 implies that K ≃ 0). The composite carries (Mi)i∈Z to
⊕i∈ZMi and thus we conclude that the composite preserves small colimits. To prove
that Mod⊗HK,Z → Mod⊗

BGm
is promoted to a HK-linear symmetric monoidal func-

tor, according to Lemma 6.6 (see also the discussion at the end of 6.3), it suffices to
observe that Mod⊗HK,Z → Mod⊗

BGm
induces the identity morphism HK→ HK of endo-

morphism algebras of units. To see this, we are reduced to showing that the composite
Mod⊗HK,Z → Mod⊗

BGm
→ Mod⊗HK, where the second functor is the forgetful functor,

induces the identity morphism HK → HK of endomorphism algebras of units. This
is clear.

We have constructed a symmetric monoidal colimit-preserving functor Mod⊗HK,Z →

Mod⊗
BGm

with the (lax symmetric monoidal) right adjoint functor (the existence is as-
sured by the relative version of adjoint functor theorem). To see that Mod⊗HK,Z →

Mod⊗
BGm

is an equivalence of symmetric monoidal ∞-categories, it is enough to show
that it induces a categorical equivalence ModHK,Z → ModBGm of underlying ∞-
categories. Moreover, by [17, Lemma 4.11], it suffices to check that it induces an
equivalence h(ModHK,Z) → h(ModBGm) of their homotopy categories. The desired
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equivalence now follows from [32, Section 8, Theorem 8.5] (see also the strictification
theorem [15, 18.7]).

Proposition 6.10. Let A be an object in CAlg(Mod⊗
BGm

). Let A denote the image of
A in CAlg(Mod⊗HK) (via the pullback of SpecHK→ BGm). With the notation in the
proof of Proposition 6.9, there is the natural augmented simplicial diagram G• → BGm.
This induces the natural functor CAlg(ModBGm) → lim[i]∈∆ CAlg(ModHΓ(G)i). We
denote the image of A in lim[i]∈∆ CAlg(ModHΓ(G)i) by A•. It gives rise to the quotient

stack [SpecA/Gm] (see Example 4.1). Then there exists a natural equivalence

Mod⊗A(Mod⊗
BGm

) ≃ Mod⊗
[Spec A/Gm]

.

Proof. We first construct a symmetric monoidal colimit-preserving functor

Mod⊗A(Mod⊗
BGm

) −→ Mod⊗
[Spec A/Gm]

.

Let π∗ : Mod⊗
BGm

→ Mod⊗
[Spec A/Gm]

be the symmetric monoidal functor induced by the

natural morphism π : [SpecA/Gm] → BGm. By the relative version of adjoint functor
theorem, there is a lax symmetric monoidal right adjoint fucntor π∗ : Mod[Spec A/Gm] →

ModBGm . If 1[Spec A/Gm] is a unit of Mod⊗
[Spec A/Gm]

, by the definition of [SpecA/Gm] and

the base-change formula, π∗(1[Spec A/Gm]) is equivalent to A in CAlg(Mod⊗
BGm

). Thus
we have the composition of symmetric monoidal colimit-preserving functors

h : Mod⊗A(Mod⊗
BGm

) → Modπ∗(A)(Mod⊗
[Spec A/Gm]

) → Mod⊗
[Spec A/Gm]

where the second functor is induced by the counit map π∗(A) ≃ π∗(π∗(1[Spec A/Gm])) →
1[Spec A/Gm]. Note that the composite is naturally a HK-linear symmetric monoidal
functor.

Next we will show that h gives an equivalence of symmetric monoidal ∞-categories.
It will suffice to prove that the underlying functor of ∞-categories is a categorical
equivalence. We first show that h is fully faithful. Let 1BGm(i) ∈ Mod⊗

BGm
be the object

corresponding to Kn in the proof of Lemma 6.8. Let A(i) be the image of 1BGm(i) under
the natural functor ModBGm → ModA(Mod⊗

BGm
). Unwinding the definition of h and

using adjunctions, we see that

MapMod⊗A(Mod⊗
BGm

)(A(i), A(j)) → MapMod⊗
[SpecA/Gm]

(h(A(i)), h(A(j)))

can be identified with

MapModA(Mod⊗
BGm

)(A(i), A(j)) ≃ MapModA(Mod⊗
BGm

)(A(i− j), A)

≃ MapModBGm
(1BGm(i− j), A)

≃ MapMod[SpecA/Gm]
(π∗(1BGm(i− j)), 1[Spec A/Gm])

≃ MapMod[SpecA/Gm]
(1[Spec A/Gm](i), 1[Spec A/Gm](j)).

Note that A(i) and h(A(i)) are compact for each i, and h preserves small colimits.
The stable presentable ∞-category ModA(Mod⊗

BGm
) is generated by {A(i)}i∈Z, that is,

Mod⊗A(Mod⊗
BGm

) is the smallest stable subcategory which contains the set {A(i)}i∈Z of

objects and admits filtered colimits. Therefore for any N ∈ ModA(Mod⊗
BGm

),

MapModA(Mod⊗
BGm

)(A(i), N) → MapMod⊗
[SpecA/Gm]

(h(A(i)), h(N))
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is an equivalence in S. Furthermore, it follows from the fact that h is colimit-preserving
that for any M,N ∈ ModA(Mod⊗

BGm
),

MapModA(Mod⊗
BGm

)(M,N) → MapMod⊗
[SpecA/Gm]

(h(M), h(N))

is an equivalence in S. It remains to show that h is essentially surjective. To this end,
note that Mod[Spec A/Gm] ≃ Ind(E) where E is the smallest stable subcategory which

contains {1[Spec A/Gm](i)}i∈Z. To see this, since 1[Spec A/Gm](i) are compact, thus (by [1,

Definition 3.7]) it is enough to observe that the right orthogonal of {1[Spec A/Gm](i)}i∈Z
is zero, where 1[Spec A/Gm](i) = π∗(1BGm(i)). The condition that

MapMod[SpecA/Gm]
(1[Spec A/Gm](i), N) ≃ MapModBGm

(1BGm(i), π∗(N)) = 0

for any i ∈ Z implies that π∗(N) = 0. Then since π∗ is conservative we deduce
that N = 0, as desired. Since the set {1[Spec A/Gm](i)}i∈Z of compact objects gen-
erates Mod[Spec A/Gm] (in the above sense), thus Ind(h(D)) ≃ Mod[Spec A/Gm] (see [23,

5.3.5.11]) where D is the smallest stable subcategory in ModA(Mod⊗
BGm

) which contains
{A(i)}i∈Z. It follows that h is essentially surjective, noting that h is colimit-preserving
and fully faithful.

6.4. Tannakization and Derived stack of mixed Tate motives. Proposition 6.9,
6.10 and Lemma 6.8 allow us to identify the realization functor RT : DTM⊗ → Mod⊗HK
with

ρ∗ : Mod⊗
[Spec Q/Gm]

→ Mod⊗
[Spec R/Gm]

induced by the morphism of derived stacks ρ : [SpecR/Gm] → [SpecQ/Gm]. Here R
is the image of R in CAlg(Mod⊗HK).

Observe that [SpecR/Gm] ≃ SpecHK. To see this, note that by the property of
the realization functor the composite of left adjoint functors

ModBGm → ModHK,Z → ModQ(Mod⊗HK,Z) ≃ DTM→ ModHK

is equivalent to the forgetful functor (since ModBGm → ModHK is HK-linear, the
restriction to the full subcategory of the degree zero part of ModHK,Z is equivalent
to the identity functor, and moreover for any i ∈ Z the restriction to the degree i
part is equivalent to the identity ModHK → ModHK). And its right adjoint functor
sends 1HK to the object R of the form (. . . ,1HK,1HK,1HK, . . . ) which belongs to
CAlg(Mod⊗HK). By using adjunction maps and the fact that the above composite is
symmetric monoidal, we easily see that R can be viewed as the coordinate ring of Gm

endowed with the action of Gm, determined by the multiplication Gm × Gm → Gm.
Hence [SpecR/Gm] ≃ SpecHK.

We refer to [SpecQ/Gm] and ρ : SpecHK → [SpecQ/Gm] as the derived stack
of mixed Tate motives and the point determined by the mixed Weil cohomology E
respectively.

Theorem 6.11. Let MTG be the derived affine group scheme over HK which is the
tannakization of RT : DTM⊗

∨ → PMod⊗HK. Then MTG is equivalent to the derived
affine group scheme arising from the Čech nerve of ρ : SpecHK→ [SpecQ/Gm].

Proof. Apply Corollary 4.10 to ρ.
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6.5. Cycle complex and Q. We describe the (Z-graded) complex Q in terms of
Bloch’s cycle complexes. We here regard Q as the object in the ∞-category ModHK,Z.

For this purpose, we need an explicit right adjoint functor r : DMZ → ModHK,Z of
l : ModHK,Z → DMZ. To this end, recall the Quillen adjoit pair

1⊗ (−) : Comp(A) ⇄ DMeff(k) : Γ

where the right-hand side is the model category in [5, Example 4.12] (cf. Section 6.1)
and the left adjoint functor carries a complex M to the tensor product 1⊗M with the
(cofibrant) unit 1 of DMeff (k). Here the tensor product 1 ⊗M is considered to be a
complex of sheaves with transfers U �→ L(Spec k)(U)⊗KM . The right adjoint functor
sends a complex of Nisnevich sheaves with transfers P to the complex Γ(P ) of sections
at Spec k. Let F be a Nisnevich sheaf with transfers. Let ∆• be the cosimplicial
scheme where ∆n = Spec k[x0, . . . , xn]/(Σn

i=0xi = 0) and the j-th face ∆n →֒ ∆n+1

is determined by xj = 0 (see e.g. [26]). We then have the Suslin complex C∗(F ) in
DMeff(k), that is the complex of sheaves with transfers, defined by X �→ F (∆•×k X)
(take the Moore complex).

Lemma 6.12. Let F be a Nisnevich sheaf with transfers. Let F ′ be the fibrant replace-
ment of F . Then Γ(F ′) is quasi-isomorphic to C∗(F )(Spec k).

Proof. Fibrant objects in DMeff(k) are characterized by Nisnevich fibrant com-
plexes whose cohomology sheaves are homotopy invariant (see [5, 4.12] for terminology).
Moreover, the canonical morphism F → C∗(F ) is a weak equivalence in DMeff (k), and
cohomology sheaves of C∗(F ) are homotopy invariant. The Zariski and Nisnevich hy-
percohomology of C∗(F ) coincide, by [26, 13.10]. Therefore, taking the Zariski topology
of Spec k into account, we deduce that Γ(F ′) is quasi-isomorphic to C∗(F )(Spec k).

For a equidimensional scheme X over k, we denote by zn(X, ∗) the Bloch’s cycle
complex of X (cf. e.g. [26, Lecture 17]).

Corollary 6.13. Let n ≥ 0. The total right Quillen derived functor RΓ sends K(n)
to a complex which is quasi-isomorphic to zn(Spec k, ∗)[−2n].

Proof. The comparison theorems [26, 16.7, 19.8] imply that RΓ(K(n)) is quasi-
isomorphic to zn(An, ∗)[−2n], where An is the n-dimensional affine space. The homo-
topy invariance of higher Chow groups (see e.g. [26, 17.4 (4)]) shows that zn(An, ∗)[−2n]
is quasi-isomorphic to zn(Spec k, ∗)[−2n].

Remark 6.14. Let n be a negative integer. Then every morphism from K to K(n)[i]
in DM is null-homotopic for any i ∈ Z. Thus by adjunction, the right adjoint functor
of the canonical functor ModHK → DM carries K(n) to zero in ModHK.

Proposition 6.15. Let Qn in ModHK denote the complex of the n-th degree of Q ∈
ModHK,Z (it is not the homological degree). Then Qn is equivalent to zn(Spec k, ∗)[−2n]
for any n ≥ 0, and Qn ≃ 0 for n < 0.

Proof. Recall that Q is the image of

K(∗) := (. . . ,K(−1),K(0),K(1), . . . )

by r : DMZ → ModHK,Z (we adopt the notation in Section 6.2). The natural functor
Σ∞ : DMeff → DM is fully faithful by the cancellation theorem, and thus the right
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adjoint Ω∞ : DM→ DMeff sends K(i) to K(i) for i ≥ 0. Now our claim follows from
Corollary 6.13 and Remark 6.14.

7. Mixed Tate motives assuming Beilinson-Soulé vanishing conjecture

In this Section, we adopt the notation in Section 6. Contrary to the previous Section,
in this Section we will assume Beilinson-Soulé vanishing conjecture for the base field
k; the motivic cohomology

Hn,i(Spec k,K)

is zero for n ≤ 0, i > 0. Here Hn,i(Spec k,K) denotes the motivic cohomology (fol-
lowing the notation in [26, Definition 3.4]). What we need is that this condition and
Proposition 6.15 imply that Q is cohomologically connective, that is, πn(Q) = 0 for
n > 0, and π0(Q) = K. For example, Beilinson-Soulé vanishing conjecture holds when
k is a number field. The goal of this Section is to prove Theorem 7.15 which relates
our tannakization MTG of DTM⊗

∨ with the Galois group of mixed Tate motives con-
structed by Bloch-Kriz [4], Kriz-May [21], Levine [22] (each group scheme is known to
be equivalent to one another) under this vanishing conjecture.

7.1. Motivic t-structure on DTM. Under Beilinson-Soulé vanishing conjecture, one
can define motivic t-structure on DTM, as proved by Levine [22] and Kriz-May [21].
We will construct a t-structure in our setting (we do not claim any originality).

We fix our convention on t-structures. Let C be a stable ∞-category. A t-structure
on C is a t-structure on the triangulated category h(C) (the homotopy category is
naturally endowed with the structure of triangulated category, see [24, Chapter 1]).
That is to say, a pair of full subcategories (C≥0, C≤0) of C such that

• C≥0[1] ⊂ C≥0 and C≤0[−1] ⊂ C≤0,
• for X ∈ C≥0 and Y ∈ C≤0, the hom group Homh(C)(X,Y [−1]) is zero,
• for X ∈ C, there exists a distinguished triangle

X ′ −→ X −→ X ′′

in h(C) such that X ′ ∈ C≥0 and X ′′ ∈ C≤0[−1].

We here assume that full subcategories are stable under equivalences. We use homo-
logical indexing. Our reference on t-structure is [24] and [20]. We shall write C≥n and
C≤n for C≥0[n] and C≤0[n] respectively. We denote by τ≥n the right adjoint to C≥n ⊂ C.
Similarly, we denote by τ≤n the left adjoint to C≤n ⊂ C.

Let RT : DTM → ModHK be the realization functor of a fixed mixed Weil theory
E. Let (ModHK,≥0,ModHK,≤0) be the standard t-structure of ModHK such that X
belongs to ModHK,≥0 (resp. ModHK,≤0) exactly when the homotopy group πn(X) of
the underlying spectra is zero for n < 0 (resp. n > 0).

Proposition 7.1. Let

DTM∨,≥0 := R−1
T (ModHK,≥0) ∩ DTM∨ and DTM∨,≤0 := R−1

T (ModHK,≤0) ∩ DTM∨.

Then the pair (DTM∨,≥0,DTM∨,≤0) is a bounded t-structure on DTM∨. (Of course, the
realization functor is t-exact.)
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Proof. Since RT is exact, DTM∨,≥0[1] ⊂ DTM∨,≥0 and DTM∨,≤0[−1] ⊂ DTM∨,≤0.
We next claim that the realization functor induces a conservative functor DTM∨ →

ModHK. (Recall again that an exact functor p : K → L between stable ∞-categories
is said to be conservative if for any K ∈ K, p(K) ≃ 0 implies that K ≃ 0.) Note that

the realization functor DTM ≃ Mod[Spec Q/Gm]

ρ∗

→ ModHK is induced by ρ : SpecHK→

[SpecQ/Gm] (see Section 6.4). The morphism ρ extends to ρ : SpecHK → SpecQ.
Thus the realization functor is decomposed into

DTM ≃ Mod[Spec Q/Gm] → ModSpec Q

ρ∗

→ ModHK .

By the definition, the pullback of the projection Mod[Spec Q/Gm] → ModSpec Q is conser-

vative. The stable ∞-category ModQ admits a t-structure (ModQ,≥0,ModQ,≤0) such
that X in ModQ belongs to ModQ,≤0 if and only if πn(X) = 0 for n > 0 (see, [25,
VIII, 4.5.4]). According to [25, VIII, 4.1.11], the composite



n∈Z ModQ,≤n → ModHK

is conservative. Observe that every object X ∈ PModQ lies in



n∈Z ModQ,≤n. To

see this, note that PModQ is the smallest stable subcategory which contains Q and

is closed under retracts. Since Q belongs to



n∈Z ModQ,≤n and



n∈Z ModQ,≤n is
closed under retracts, we see that PModQ ⊂



n∈Z ModQ,≤n. Therefore the composite

DTM∨ ≃ PMod[Spec Q/Gm] → ModHK is conservative. By using this fact, we verify the
second condition of the definition of t-structure.

It remains to show the third condition of t-structure. For this purpose, note first
that if Z ⊂ Mod[Spec Q/Gm] denotes the inverse image of



n∈Z ModQ,≤n and f : Z →

ModHK denotes the restriction of the realization functor, we have f−1(PModHK) =
PMod[Spec Q/Gm]. Clearly, f−1(PModHK) ⊃ PMod[Spec Q/Gm] since the realization func-
tor is symmetric monoidal. An object in Mod[Spec Q/Gm] is dualizable if and only if its

image in ModQ is dualizable. Thus it is enough to show that g−1(PModHK) = PModQ

where g :



n∈Z ModQ,≥n → ModHK. According to [24, VIII 4.5.2 (7)], we have the
natural symmetric monoidal fully faithful functor



n∈Z ModQ,≤n → limQ→B ModB

where B run over connective commutative ring spectra under Q. An object M ∈
limQ→B ModB belongs to its essential image if and only if the image M(HK) of M in
ModHK under the natural projection has trivial homotopy groups πm(M(HK)) = 0
for sufficiently large m >> 0. Note that every morphism Q → B factors through
Q → HK since Q is cohomologically connected. Consequently, we deduce that
g−1(PModHK) ≃ limQ→B PModB . Thus all objects in g−1(PModHK) are dualizable.

It follows that g−1(PModHK) = PModQ. Next consider

Mod[Spec Q/Gm],≥0 := Mod[Spec Q/Gm]×ModQ
ModQ,≥0 .

Then this category is presentable, by [23, 5.5.3.13]. Define Mod[Spec Q/Gm],≤0 by replac-
ing ≥ 0 on the right-hand side by ≤ 0. Then the comonad of Mod[Spec Q/Gm] ⇄ ModQ

is given by M �→ M ⊗HK HK[t±] (it is checked by using the right adjointability;
Lemma 4.3). Therefore we can apply [25, VII 6.20] to deduce that

(Mod[Spec Q/Gm],≥0,Mod[Spec Q/Gm],≤0)

is a t-structure. Note that since ModQ → ModHK is t-exact (it follows from [25,
VIII, 4.1.10, 4.5.4 (2)]), Mod[Spec Q/Gm] → ModHK is also t-exact. We now claim that
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PMod[Spec Q/Gm] is stable under the truncations τ≥0, τ≤0. Let M ∈ PMod[Spec Q/Gm].
Then τ≥0M and τ≤0M are contained in Z. Thus, to prove that τ≥0M and τ≤0M
belong to PMod[Spec Q/Gm], it will suffice to prove that g(τ≥0M) and g(τ≤0M) belong

to PModHK. Let Hi = τ≥i ◦ τ≤i = τ≤i ◦ τ≥i (this notation slightly differs from the
standard one). Using t-exactness, we have

Hi(g(τ≥0M)) = g(Hi ◦ τ≥0M)

= g(τ≤i ◦ τ≥i ◦ τ≥0M)

= g(Hi(M))

= Hi(g(M))

for i ≥ 0. It follows that Hi(g(τ≥0M))[−i] is equivalent to a finite dimensional K-vector
space, and the set

{i ∈ Z| Hi(g(τ≥0M))[−i] �= 0}

is finite. This implies that g(τ≥0M) lies in PModHK. Similarly, g(τ≤0M) lies in
PModHK. Therefore for any M ∈ PMod[Spec Q/Gm] we have the distinguished trian-
gle (in the level of homotopy category)

τ≥0M −→M −→ τ≤−1M

such that RT (τ≥0M) ∈ ModHK,≥0 and RT (τ≤−1M) ∈ ModHK,≤0[−1], as desired.
Finally, this t-structure is clearly bounded.

Remark 7.2. The definition of t-structure in Proposition 7.1 is compatible with the
definition of motivic t-structure on the triangulated category of (all) mixed motives
developed by Hanamura [13] (up to an anti-equivalence). In loc. cit., the expected
motivic t-structure is constructed using Grothendieck’s standard conjectures, Murre
conjecture and Beilinson-Soulé vanishing conjecture for smooth projective varieties.

In Proposition 7.1, by the extension of coefficients Q→ K we can replace K by Q.

We refer to (DTM∨,≥0,DTM∨,≤0) as motivic t-structure on DTM∨. We let DTM♥
∨ :=

DTM∨,≥0 ∩ DTM∨,≤0 be the heart. At first sight, it depends on the choice of our
realization functor. But the mapping space Map(SpecHK, SpecQ) is connected since
Q is cohomologically connected (cf. [25, VIII, 4.1.7]). Therefore ρ∗ : Mod⊗

[Spec Q/Gm]
→

Mod⊗HK is unique up to equivalence.

As a by-product of the proof, we have

Corollary 7.3. Adopt the notation used in the proof of Proposition 7.1. The real-
ization functor induces a conservative functor f :



n∈Z Mod[Spec Q/Gm],≤n → ModHK.

In particular, DTM∨ → PModHK is conservative. Moreover, f−1(PModHK) coincides
with DTM∨.

Recall that DTM is compactly generated. Namely, we have the natural equivalence
Ind(DTM◦) ≃ Ind(DTM∨) ≃ DTM.

Corollary 7.4. Let DTM≥0 := Ind(DTM∨,≥0) and DTM≤0 := Ind(DTM∨,≤0). Then
(DTM≥0,DTM≤0) is an accessible right complete t-structure on DTM.
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Proof. It follows from Proposition 7.1, [25, VIII, 5.4.1] and [24, 1.4.4.13].

Let (Mod♥HK)⊗ be the symmetric monoidal abelian category such that the underly-
ing category is ModHK,≥0 ∩ModHK,≤0 and its symmetric monoidal structure is induced
by that of Mod⊗HK. It is (the nerve of) the symmetric monoidal category of K-vector
spaces. For an affine group scheme G over K (which can be viewed as a derived affine
group scheme over HK), we let Rep(G)⊗ be the symmetric monoidal full subcategory
z−1((Mod♥HK)⊗) of Mod⊗

BG where z : Mod⊗
BG → Mod⊗HK is the natural projection de-

termined by SpecHK → BG. We denote by Rep(G)⊗∨ the symmetric monoidal full
subcategory of Rep(G)⊗ which consists of dualizable objects. Apply the classical Tan-
naka duality by Saavedra, Deligne-Milne, Deligne [30], [9], [8] to the faithful symmetric
monoidal exact functor of abelain categories (DTM♥

∨ )⊗ → (Mod♥HK)⊗ induced by the
realization functor, we have

Corollary 7.5. There exist an affine group scheme MTG over K and an equivalence
(DTM♥

∨ )⊗
∼
→ Rep(MTG)⊗∨ of symmetric monoidal ∞-categories.

We here give a symmetric monoidal equivalence between the abelian category DTM♥
∨

and the abelian category TMk which is constructed via the axiomatic formulation in
[22]. Let i be an integer. Let W≥iDTMgm ⊂ DTMgm (resp. W≤iDTMgm ⊂ DTMgm

be the smallest stable subcategory generated by K(n) for −2n ≥ i (resp. K(n) for
−2n ≤ i). Then according to [22, Lemma 1.2], the pair (W≥iDTMgm,W≤iDTMgm)
is a t-structure. Let GrWi : DTMgm → WiDTMgm := W≥iDTMgm ∩ W≤iDTMgm be
the functor H0 with respect to this t-structure. When i is even, the ∞-category
WiDTMgm is equivalent to the full subcategory h(PModHK) of h(ModHK) spanned
by bounded complexes of K-vector spaces whose (co)homology are finite dimensional.
This equivalence is given by the exact functor h(PModHK) → WiDTMgm which car-
ries K[r] to K(−i/2)[r]. If i is odd, WiDTMgm is zero. It gives rise to a natural
symmetric monoidal exact functor Gr : h(DTMgm) → h(ModHK,Z), which sends X
to {GrWi (X)}i∈Z, of homotopy categories (which are furthermore triangulated cate-
gories). The triangulated category h(ModHK,Z) ≃ ΠZh(ModHK) has the standard
t-structure determined by the product of pair (ModHK,≥0,ModHK,≤0). We denote
it by (h(ModHK,Z)≥0, h(ModHK,Z)≤0). Let DTMgm,≥0 := Gr−1(h(ModHK,Z)≥0) and
DTMgm,≤0 := Gr−1(h(ModHK,Z)≤0). Then by [22, Theorem 1.4], we have:

Lemma 7.6 ([22]). The pair (DTMgm,≥0,DTMgm,≤0) is a bounded t-structure, and Gr
is t-exact and conservative.

Let TMk be its heart.

Lemma 7.7. The realization functor Rgm : DTMgm → ModHK (induced by RT :
DTM→ ModHK) is t-exact.

Proof. We will show that the essential image of DTMgm,≤0 is contained in ModHK,≤0.
The dual case is similar. Let X ∈ DTMgm,≤0. Let m be the cardinal of the set of inte-
gers i such that Hi(X)[−i] is not zero (recall our (nonstandard) notation Hi = τ≤i◦τ≥i).
We proceed by induction on m. If m = 0, we conclude that X ≃ 0 (since the t-structure
on DTMgm is bounded). Hence this case is clear. By [22, Theorem 1.4 (iii)] we see that
the essential image of TMk is contained in Mod♥HK. Hence the case m = 1 follows.
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Suppose that our claim holds for m ≤ n. To prove the case when m = n + 1, consider
the distinguished triangle

Hi(X) → X → τ≤i−1X

where i is the largest number such that Hi(X)[−i] �= 0. Note that the functor
DTMgm → ModHK is exact, and the images of Hi(X) and τ≤i−1X is contained in
ModHK,≤0. Thus we conclude that the image of X is also contained in ModHK,≤0.

Lemma 7.8. The full subcategory DTMgm,≥0 (resp. DTMgm,≤0) is the inverse image
of ModHK,≥0 (resp. ModHK,≤0) under Rgm : DTMgm → ModHK.

Proof. We will treat the case DTMgm,≤0. Another case is similar. We have already
prove that Rgm is t-exact in the previous Lemma. It will suffice to show that if X does
not belong to DTMgm,≤0, then Rgm(X) does not lies in ModHK,≤0. For such X, there
exists i ≥ 1 such that Hi(X) �= 0. According to Corollary 7.3, Rgm is conservative.
Combined with the t-exactness, we deduce that Hi(Rgm(X))[−i] �= 0. This implies
that Rgm(X) is not in ModHK,≤0, as required.

By Lemma 7.8, we have a t-exact fully faithful functor DTMgm → DTM∨, and it
induces a natural fully faithful functor TMk → DTM♥

∨ between (nerves of) symmetric
monoidal abelian categories.

Proposition 7.9. The natural inclusion TMk → DTM♥
∨ is an equivalence.

Proof. Since TMk is (the nerve of) an abelian category, and in particular it is
idempotent-complete, thus it is enough to prove that TMk → DTM♥

∨ is an idempotent-
completion. Recall that DTMgm → DTM∨ is an idempotent-completion. Let X ∈
TMk. The direct summand of X (which automatically belongs to DTM∨) lies in
DTM♥

∨ by the definition of t-structure of DTM∨. Conversely, if Y ∈ DTM♥
∨ , then

there exists X ∈ DTMgm such that Y is equivalent to a direct summand of X. Then
Y is a direct summand of H0(X) ∈ TMk (note that we here use the t-exactness of
DTMgm → DTM∨). Consequently, TMk → DTM♥

∨ is an idempotent-completion.

Corollary 7.10. The Tannaka dual of TMk (endowed with the realization functor) is
equivalent to MTG.

Warning 7.10.1. In [22], one works over rational coefficients. In this paper, we work
over K. Therefore MTG is the base change of the Tannaka dual of the abelian category
of mixed Tate motives in [22] over Q to K.

7.2. Completion and locally dimensional ∞-category. Let DTM⊗ → DTM
⊗

be
the left completion of DTM⊗ with respect to the t-structure (DTM≥0,DTM≤0) (we refer
the reader to [24, 1.2.1.17] and [25, VIII, 4.6.17] for the notions of left completeness
and left completion). It is symmetric monoidal, t-exact and colimit-preserving. Here,
the ∞-category DTM is the limit of the diagram indexed by Z

· · · → DTM≤n+1

τ≤n
→ DTM≤n

τ≤n−1
→ DTM≤n−1

τ≤n−2
→ · · ·

of ∞-categories. Note that according to [23, 3.3.3] the ∞-category DTM can be iden-
tified with the full subcategory of Fun(N(Z),DTM) spanned by functors φ : N(Z) →
DTM such that



BAR CONSTRUCTION AND TANNAKIZATION 39

• for any n ∈ Z, φ([n]) belongs to DTM≤−n,
• for any m ≤ n ∈ Z, the associated map φ([m]) → φ([n]) gives an equivalence

τ≤−nφ([m]) → φ([n]).

Let DTM≥0 (resp. DTM≤0) be the full subcategory of DTM spanned by φ : N(Z) →
DTM such that φ([n]) belongs to DTM≥0 (resp. DTM≤0) for each n ∈ Z. The functor
DTM→ DTM induces an equivalence DTM≤0 → DTM≤0. The pair (DTM≥0,DTM≤0)
is an accessible, left complete and right complete t-structure of DTM.

Proposition 7.11. The followings hold.

(i) DTM≤0 is closed under filtered colimits.

(ii) The unit 1 belongs to the heart DTM
♥

:= DTM≥0 ∩ DTM≤0.
(iii) DTM≥0 and DTM≤0 are closed under the tensor product DTM× DTM→ DTM.
(iv) The unit 1 is compact in DTM≤n for each n ≥ 0.

(v) There exists a full subcategory DTM
♥

fd of DTM
♥

such that every object in DTM
♥

fd

has the dual in DTM
♥

fd, and DTM
♥

fd generates DTM
♥

under filtered colimits.
(vi) π0(Map

DTM
(1, 1)) = K.

(vii) For any X ∈ DTM
♥

fd, the composite

1→ X ⊗X∨ → 1

of the coevaluation map and the evaluation map corresponds to a nonnegative
integer dim(X) ∈ Z ⊂ K.

Proof. By our construction and DTM≤0 = DTM≤0, (i) is clear. Since the unit of
DTM lies in DTM♥ := DTM≥0 ∩ DTM≤0, (ii) follows.

Next we will prove (iii). By Corollary 7.3 the realization functor induces a conser-
vative functor DTM≤i = DTM≤i → ModHK,≤i for each i ∈ Z (observe that DTM∨,≤i ⊂
Mod[Spec Q/Gm],≤i). If X ∈ DTM is not in DTM≤0, there exists n ≥ 1 such that Hn(X)

is not zero. Thus the inverse image of ModHK,≤0 in DTM under the t-exact functor

DTM→ ModHK induced by DTM→ ModHK is DTM≤0. Notice that DTM≥0 is the full
subcategory, spanned by objects X such that τ≤−1X ≃ 0 where τ≤−1 : DTM→ DTM,
that is, Hi(X)[−i] is zero for i ≤ −1 (since DTM is right t-complete). The condition
Hi(X)[−i] is zero for i ≤ −1 is equivalent to the condition that X maps to an object
in ModHK,≥0, again by conservativeness; Corollary 7.3. Namely, the inverse image
of ModHK,≥0 is DTM≥0. The full subcategories ModHK,≥0 and ModHK,≤0 are closed

under tensor product, and DTM → ModHK is a symmetric monoidal functor, thus
DTM≤0 and DTM≥0 are closed under tensor product.

The unit 1 is compact in DTM, and so is in DTM≤n for any n ∈ Z. Noting that
DTM≤n = DTM≤n, we have (iv).

To prove (v), note first that DTM → DTM induces equivalences



n∈ZDTM≤n →

n∈ZDTM≤n and DTM♥ → DTM

♥
. In particular, DTM∨ → DTM is fully faithful.

Let X ∈ DTM
♥

= DTM♥. Then X is the filtered colimit of a diagram I → DTM∨

in DTM (or in DTM); colimλ∈IXλ ≃ X. Note that RT (H0(Xλ)) ≃ H0(RT (Xλ)) by
t-exactness, and it is a dualizable object in ModHK, that is, a finite dimensional vec-
tor space. It follows from Corollary 7.3 that H0(Xλ) is dualizable, that is, it belongs
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to DTM♥
fd := DTM∨ ∩ DTM

♥. It is obvious that the dual of H0(Xλ) lies in DTM
♥

.
Recall that the realization functor RT : DTM → ModHK preserves small colimit,
which is also t-exact, and H0 preserves filtered colimits in ModHK. Using these facts,
we see that the natural map colimλH0(Xλ) → H0(colimλXλ) gives an equivalence
RT (colimλH0(Xλ)) → RT (H0(colimλXλ)). The heart DTM♥ is closed under filtered
colimits and thus colimλH0(Xλ) is contained in the heart. Hence by Corollary 7.3,
colimλH0(Xλ) → H0(colimλXλ) ≃ X is an equivalence. This shows that DTM♥

fd gen-

erates DTM♥ = DTM
♥

under filtered colimits.
We remark that H0,0(Spec k,K) = K. Hence (vi) holds. Finally, we will prove (vii).

For any X ∈ DTM
♥

fd, the element in K corresponding to the composite 1→ X⊗X∨ → 1

is equal to the element in K corresponding to RT (1) → RT (X) ⊗ RT (X)∨ → RT (1).
The latter element is nothing but the dimension of RT (X), which lies in Z.

Corollary 7.12. The symmetric monoidal ∞-category DTM
⊗

endowed with the t-
structure (DTM≥0,DTM≤0) is a locally dimensional ∞-category in the sense of [25,
VIII, 5.6].

To state the next result, we prepare some notation. We say that a commutative
ring spectrum S is discrete if πi(S) = 0 for i �= 0. This property is equivalent to
the property that there exists a (usual) commutative ring R such that HR ≃ S in
CAlg. Let CAlgdis be the ∞-category of discrete commutative ring spectra. The ∞-
category CAlgdis is equivalent to the nerve of the category of (usual) commutative rings

(via Eilenberg-MacLane spectra). Let S : CAlgdis → �S be the functor which carries

A ∈ CAlgdis to the space Map
CAlg(�Cat

L,st
∞ )

(DTM
⊗
,Mod⊗A) (which can be constructed by

Θ in Section 3.1 and Yoneda embedding). Let ξ : CAlgdis → �S be the functor which
carries A ∈ CAlgdis to the space Map

CAlg(�Cat
L,st
∞ )

(Mod⊗HK,Mod⊗A). Since there exists a

natural equivalence

Map
CAlg(�Cat

L,st

∞ )
(Mod⊗HK,Mod⊗A) ≃ MapCAlg(HK, A)

(cf. [11, Section 5], [24, 6.3.5.18]), ξ is corepresented by HK. We here write SpecHK

for ξ. There is a sequence of functors Mod⊗HK → DTM
⊗
→ Mod⊗HK whose composite

is equivalent to the identity. Therefore we have SpecHK
η
→ S → SpecHK whose

composite is the identity. Let V : CAlgdis → �S be a functor equipped with V →
SpecHK. To f : HK → A in CAlgdis

HK := (CAlgdis)HK/ we associate {f} ×Spec HK(A)

V (A). It yields the functor V0 : CAlgdis
HK → �S. The morphism η : SpecHK → S

induces η0 : (SpecHK)0 → S0. Note that (SpecHK)0 is equivalent to the constant
functor taking the value ∆0, that is, the final object.

The following result is proved by Lurie in the theory of locally dimensional ∞-
categories (see [25, VIII, 5.2.12, 5.6.1, 5.6.19 and their proofs]). We here state only the
version in view of Corollary 7.12, which fits in with our need.

Proposition 7.13 ([25]). Let Grpdis be the nerve of the category of (usual) groups.
Consider the functor π1(S0, η0) : CAlgdis

HK → Grpdis which is given by A �→ π1(S0(A), η0).
Then π1(S0, η0) is represented by MTG, that is, the Tannaka dual of (DTM♥

∨ )⊗.
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7.3. Comparison theorem.

Definition 7.14. Let G : CAlgHK → Grp(S) be a derived group scheme over HK.
Let π0 : Grp(S) → Grpdis be the truncation functor given by G �→ π0(G). If the
composition

CAlgdis
HK →֒ CAlgHK

G
→ Grp(S)

π0→ Grpdis

is represented by a group scheme G0 over K, we say that G0 is the underlying group
scheme of G.

Theorem 7.15. Let MTG denote the tannakization of RT : DTM⊗
∨ → PMod⊗HK (cf.

Theorem 6.11). Then MTG is the underlying group scheme of MTG.

Proof. For A ∈ CAlgdis, we set ModA,≥0 = {X ∈ ModA | πi(X) = 0 for i < 0} and
ModA,≤0 = {X ∈ ModA | πi(X) = 0 for i > 0}. Then the pair (ModA,≥0,ModA,≤0) is
an accessible, left and right complete t-structure. Thus we have

Maprex

CAlg(�Cat
L,st

∞ )
(DTM

⊗
,Mod⊗A) ≃ Maprex

CAlg(�Cat
L,st

∞ )
(DTM⊗,Mod⊗A)

→֒ MapCAlg(�Cat∞)(DTM
⊗
∨ ,Mod⊗A)

where Maprex indicates the full subcategory spanned by right t-exact functors, and the
second arrow is fully faithful by Proposition 4.7 and the construction of t-structure
on DTM. (The essential image consists of symmetric monoidal exact functors which
are right t-exact.) Note that RT : DTM⊗ → Mod⊗HK is t-exact, and it belongs to
Maprex

CAlg(�Cat
L,st
∞ )

(DTM⊗,Mod⊗A).

Consider the automorphism functor Aut(RT ) : CAlgHK → Grp(S) of RT : DTM⊗
∨ →

PMod⊗HK in CAlg(Catst
∞)PMod⊗HK /, cf. Definition 3.3 (we abuse notation for RT ). Ac-

cording to Theorem 4.10 and 6.11, Aut(RT ) is represented byMTG. On the other hand,
using the above equivalence and unfolding the definition of π1(S0, η0) and Aut(RT ),
we see that the composite

CAlgdis
HK →֒ CAlgHK

Aut(RT )
−→ Grp(S)

π0→ Grpdis

is equivalent to π1(S0, η0). Combined with Proposition 7.13 we complete the proof.
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