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BAR CONSTRUCTION AND TANNAKIZATION
ISAMU IWANARI

ABSTRACT. We continue our study of tannakizations of symmetric monoidal stable
oo-categories, begun in [17]. The issue treated in this paper is the calculation of tan-
nakizations of examples of symmetric monoidal stable co-categories with fiber func-
tors. We consider the case of symmetric monoidal co-categories of perfect complexes
on perfect derived stacks. The first main result especially says that our tannakization
includes the bar construction for an augmented commutative ring spectrum and its
equivariant version as a special case. We apply it to the study of the tannakization
of the stable infinity-category of mixed Tate motives over a perfect field. We prove
that its tannakization can be obtained from the G,,-equivariant bar construction of a
commutative differential graded algebra equipped with G,,-action. Moreover, under
Beilinson-Soulé vanishing conjecture, we prove that the underlying group scheme of
the tannakization is the motivic Galois group for mixed Tate motives, constructed in
], [21], [22].

1. INTRODUCTION

In [17] we have constructed tannakizations of stable symmetric monoidal co-categories.
Let R be a commutative ring spectrum. Let C® be an R-linear small symmetric
monoidal stable idempotent-complete co-category, equipped with an R-linear symmet-
ric monoidal exact functor F' : C® — PMods where PMod} denotes the symmetric
monoidal co-category of compact R-spectra. (Despite we use the machinery of quasi-
categories in the text, by an co-category we informally mean an (oo, 1)-category in this
introduction.) In loc. cit., given F : C® — PMod$ we construct a derived affine group
scheme G over R, which is an analogue of an affine group scheme in derived algebraic
geometry [34], [25]. The derived affine group scheme G comes equipped with action on
F which is universal among all actions of derived affine group schemes. We call it the
tannakization of F': C® — PMod$%. This construction was applied to the co-category
of mixed motives to obtain derived motivic Galois group.

The purpose of this paper is to calculate tannakizations of some examples of F' :
C® — PMod%; our principal interest here is the case when C® is the symmetric
monoidal co-category PMod$ of perfect complexes on a derived stack Y and F' is
induced by Spec R — Y. We will study the tannakization under the assumption of
perfectness on derived stacks, introduced in [1], which particularly includes two cases:

(i) Y is an affine derived scheme over R, that is, Y = Spec A over Spec R with A a
commutative ring spectrum,

(i) Y is the quotient stack [X/G] where X is an affine derived scheme X = Spec A
and G is an algebraic group in characteristic zero.

The author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the
Promotion of Science.
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We note that for our purpose the assumption of affineness on Y in (i) and X in (ii) is
not essential since PMody — PMod% depends only on a Zariski neighborhood of the
image of Spec R — Y. Also, we remark that A in (i) and (ii) can be nonconnective.
Our result may be expressed as follows (cf. Theorem 4.9, Corollary 4.10):

Theorem 1. LetY be a derived stack over R and Spec R — 'Y a section of the struc-
ture map Y — Spec R. Let PMody — PMod% be the associated pullback symmetric
monoidal functor. Suppose that'Y is perfect (the cases (i) and (ii) satisfy this prop-
erty). Let G be the derived affine group scheme arising from Cech nerve associated

to Spec R — Y. Then the tannakization of the R-linear symmetric monoidal functor
PMod$ — PMod$, is equivalent to G.

Bar construction and equivariant bar construction. One of our motivations of this pa-
per arises from comparison between derived group schemes obtained by tannakization
and bar constructions and its variants. Bar construction has been an important device
in various contexts of homotopy theory, mixed Tate motives and non-abelian Hodge
theory, etc. In the case (i), Cech nerve in Affy associated to Spec R — Y = Spec A,
which we can regard as a derived affine group scheme over R, is known as the bar
construction of an augmented commutative ring spectrum (or commutative differen-
tial graded algebra) whose explicit construction can be given by bar resolutions. In
the case (ii), we can think of the Cech nerve as the G-equivariant version of the bar
construction. As a matter of fact, our actual aim is to study a relationship between
our tannakization and bar constructions and its equivariant versions; Theorem 1 es-
pecially means that our method of tannakizations includes bar constructions and the
equivariant versions as a special case. This allows one to link bar constructions and
the variants to more general method of tannakizations.

Mixed Tate motives. It would be worth mentioning that the equivariant versions
are also important to applications to the motivic contexts: for instance, in order to
take weight structures into account, one often uses G,,-equivariant version of bar con-
struction. Our results fit very naturally in with the structure of mixed Tate mo-
tives. In Section 6 and 7, we will study the applications to mixed Tate motives.
Let DM® := DM®(k) be the symmetric monoidal stable oco-category of mixed mo-
tives over a base scheme Speck, where k is a perfect field (see Section 6.1 for our
convention). We work with coefficients of a field K of characteristic zero; all stable co-
categories are HK-linear, where HK denotes the Eilenberg-MacLane spectrum. Let
DTMZ C DM?® be the small symmetric monoidal stable co-category of mixed Tate
motives which admit duals (see Section 6.2). For a mixed Weil cohomology theory
(such as étale cohomology, de Rham cohomology), there exists a homological realiza-
tion functor Ry : DTMY — PMod%, that is a HK-linear symmetric monoidal exact
functor (the field of coefficients K depends on the choice of a mixed Weil cohomology
theory). By applying the above theorem, we deduce Theorem 6.11 which informally
says:

Theorem 2. Let MTG = Spec B be the tannakization of Ry : DTMY — PMod§ k.
(Here B is a commutative differential graded K-algebra.) Then MTG is obtained from
the G,,-equivariant bar construction of a commutative differential graded K-algebra @)

equipped with Gy,-action. Namely, it is the Cech nerve of a morphism of derived stacks
Spec HK — [Spec Q/G,,,].
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We remark that the underlying complex @ can be described in terms of Bloch’s
cycle complexes. The proof of Theorem 2 consists of two keys; one is Theorem 1, and
another is to identify Ry : DTM® — PMod$, with a certain pullback functor between
oo-categories of perfect complexes on derived stacks, which makes use of the module-
theoretic (i.e. Morita-theoretic) presentation theorem of the stable co-category DTM?,
see [31].

If Beilinson-Soulé vanishing conjecture holds for the base field k (e.g. k is a number
field), there is a traditional line passing to a group scheme. Under the vanishing
conjecture, one can define the motivic ¢-structure on DTM,,. The heart of this ¢-
structure is a neutral Tannakian category (cf. [30], [9]), and we can extract an affine
group scheme MT'G over K from it. The so-called motivic Galois group for mixed Tate
motives MTG is constructed notably by Bloch-Kriz, Kriz-May, Levine [4], [21], [22].
The vanishing conjecture does not imply that the stable oco-category of complexes of
the heart recovers the original oo-category DTM,,. However, we can describe a quite
nice relation between MTG and MTG:

Theorem 3. Suppose that Beilinson-Soulé vanishing conjecture holds for k. Then the
group scheme MTG is the underlying group scheme (cf. Definition 7.14) of MTG.

This result is proved in the final Section; Theorem 7.15. Roughly speaking, the
underlying group scheme of MTG is obtained by truncating higher homotopy groups
of valued points of MTG. In view of Theorem 2 and 3, we can say that the derived
motivic Galois group constructed from DM® in [17] is a natural generalization of MTG
to the whole mixed motives.

This paper is organized as follows: In Section 2, we will review some of notions and
notation which we need in this paper. In Section 3, after preparing an appropriate
setup we clarify the meaning of action of a derived affine group scheme on a symmetric
monoidal functor F : C® — PMod%. More precisely, we show that giving an extension
of F to C® — PMody, is equivalent to giving an action of G on F', where PModg is
the symmetric monoidal co-category of perfect representations of G defined in Section
3. Section 4 contains the proof of Theorem 1. In Section 5, we give a brief exposition
of bar constructions from our viewpoint. Sections 6 and 7 are devoted to the study of
the tannakization of stable co-category of mixed Tate motives; we prove Theorem 2
and 3.

2. NOTATION AND CONVENTION

We fix notation and convention.

oo-categories. In this paper, we use theory of quasi-categories as in [17]. A quasi-
category is a simplicial set which satisfies the weak Kan condition of Boardman-Vogt:
A quasi-category S is a simplicial set such that for any 0 < ¢ < n and any diagram

l A
A"

of solid arrows, there exists a dotted arrow filling the diagram. Here A} is the i-th horn
and A" is the standard n-simplex. Following [23] we shall refer to quasi-categories as
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oo-categories. Our main references are [23] and [24] (see also [18], [25]). We often refer
to a map S — T of oco-categories as a functor. We call a vertex in an oo-category
S (resp. an edge) an object (resp. a morphism). For the rapid introduction to oo-
categories, we refer to [23, Chapter 1], [12], [11, Section 2|. For the quick survey on
various approaches to (oo, 1)-categories and their relations, we refer to [2].

e A: the category of linearly ordered finite sets (consisting of [0],[1],...,[n] =
{0,...,n},...)

e A": the standard n-simplex

e N: the simplicial nerve functor (cf. [23, 1.1.5])

e C°: the opposite oo-category of an oco-category C

e Let C be an oco-category and suppose that we are given an object c¢. Then C.; and
C/. denote the undercategory and overcategory respectively (cf. [23, 1.2.9]).

e Cato,: the co-category of small co-categories in a fixed universe (cf. [23, 3.0.0.1])

) 6a\too: oo-category of oo-categories

e S: oco-category of small spaces (cf. [23, 1.2.16])

e h(C): homotopy category of an co-category (cf. [23, 1.2.3.1])

e Fun(A, B): the function complex for simplicial sets A and B

e Func (A4, B): the simplicial subset of Fun(A, B) classifying maps which are com-
patible with given projections A — C' and B — C.

e Map(A, B): the largest Kan complex of Fun(A, B) when A and B are oo-categories,

e Map.(C,C"): the mapping space from an object C' € C to C’ € C where C is an
oo-category. We usually view it as an object in S (cf. [23, 1.2.2]).

Stable co-categories, symmetric monoidal oco-categories and spectra. For the defini-
tions of (symmetric) monoidal co-categories and oo-operads, their algebra objects, we
shall refer to [24]. The theory of stable co-categories is developed in [24, Chapter 1].
We list some of notation.

e S: the sphere spectrum

e Sp: oo-category of spectra, we denote the smash product by ®

e PSp the full subcategory of Sp spanned by compact spectra

e Mod,: oo-category of A-module spectra for a commutative ring spectrum A

e PMod,: the full subcategory of Mod 4 spanned by compact objects (in Mod 4, an
object is compact if and only if it is dualizable, see [1]) . We refer to objects in
PMod,4 as perfect A-module (spectra).

e Fin,: the category of pointed finite sets (0), = {*}, (1), = {1,%},...,(n), =
{1...,n,%},.... A morphism is a map f : (n), — (m), such that f(x) = x.
Note that f is not assumed to be order-preserving.

e Let M® — O% be a fibration of co-operads. We denote by Alg,ne(M®) the
oo-category of algebra objects (cf. [24, 2.1.3.1]). We often write Alg(M®) or
Alg(M) for Algpe(M®). Suppose that P — O is a map of oo-operads.
Algpe 0e (M®): oo-category of P-algebra objects.

e CAlg(M?®): oco-category of commutative algebra objects in a symmetric monoidal
oo-category M® — N(Fin,).

e CAlgp: oo-category of commutative algebra objects in the symmetric monoidal

oo-category Mod% where R is a commutative ring spectrum. When R = S, we
set CAlg = CAlgg.
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e Mod%(M®) — N(Fin,): symmetric monoidal co-category of A-module objects,
where M® is a symmetric monoidal co-category such that (1) the underlying co-
category admits a colimit for any simplicial diagram, and (2) its tensor product
functor M x M — M preserves colimits of simplicial diagrams separately in each
variable. Here A belongs to CAlg(M®). cf. [24, 3.3.3, 4.4.2].

Let C® be the symmetric monoidal oco-category. We usually denote, dropping the
subscript ®, by C its underlying oo-category. We say that an object X in C is dualizable
if there exist an object XV and two morphisms e : X @ XV - landc:1 - X ® XV
with 1 a unit such that the composition

X'E8 X @ XY o X EY X
is equivalent to the identity, and
XV XV g x @ xS xv

is equivalent to the identity. The symmetric monoidal structure of C induces that of
the homotopy category h(C). If we consider X to be an object also in h(C), then X
is dualizable in C if and only if X is dualizable in h(C). For example, for R € CAlg,
compact and dualizable objects coincide in the symmetric monoidal co-category Mod%
(cf. [1]). L

Let us recall the symmetric monoidal co-categories Cato(;S and Cat® (see [17, Sec-

—~—Lst —
tion 3.2], [1], [24] for details). Let Cat., be the subcategory of Cat., spanned by
stable presentable oo-categories, in which morphisms are functors which preserves

small colimits. For C,D € (Ta\tijt, Fun"(C,D) is defined to be the full subcate-
gory of Fun(C, D) spanned by functors which preserves small colimits. Then 6&751;51;
b 6a\tijt — 6&»\131;51; such that for
C,D,e @ZSt, there exists a functor C x D — C ® D, which induces an equivalence

Fun“(C® D, &) ~ Fun'(C x D, ) for every £ € (Ta\ti’ft, where the right hand side indi-
cates the full subcategory of Fun(C x D, £) spanned by functors which preserves small
colimits separately in each variable. A unit is equivalent to Sp. Let Cat®’ denote the
subcategory of Cat,, which consists of small stable idempotent-complete co-categories.
Morphisms in Cat®’ are functors that preserve finite colimits, that is, exact functors.
There is a symmetric monoidal structure on Cat®’. For C,D € Cat® the tensor product
C ®D has the following universality: There is a functor C x D — C ® D which preserves
finite colimits separately in each variable, such that if £ € Cat®, and Fun;.(C x D, &)
denotes the full subcategory of Fun(C x D, £) spanned by functors which preserve fi-
nite colimits separately in each variable, then the composition induces a categorical
equivalence

has a symmetric monoidal structure ® : 63\1300

Fun™(C ® D, ) — Funy.(C x D, €)
where Fun®™(C ® D, £) is the full subcategory of Fun(C ® D, £) spanned by exact func-

——L,st

tors. A unit is equivalent to PSp. An object (resp. a morphism) in CAlg(Cat_ )
can be regarded as a symmetric monoidal stable presentable oco-category whose ten-
sor operation preserves small colimits separately in each variable (resp. a symmet-
ric monoidal functor which preserves small colimits). Similarly, an object (resp. a
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morphism) in CAlg(Cat®) can be regarded as a symmetric monoidal small stable
idempotent-complete co-category whose tensor opearation preserves finite colimits sep-
arately in each variable (resp. a symmetric monoidal functor which preserves finite
colimits). See [17, Section 3.2]. If R is a commutative ring spectrum, we refer to

——L,s
an Object in CAlg(Catoo t)Mod%/ (resp- CAIg(CatSt)PMOd%/) Slmply as an R_linear

symmetric monoidal stable presentable co-category (resp. an R-linear symmetric
monoidal small stable idempotent-complete co-category) . We refer to morphisms in

——Lgs
CAlg(Cat t)MOd% ; (or CAlg(CatSt)PMod% ;) as R-linear symmetric monoidal functors.

3. DERIVED GROUP SCHEMES AND THE 00-CATEGORIES OF REPRESENTATIONS

In this Section we first recall the definitions of co-categories of representations of
derived affine group schemes and the tannakization of symmetric monoidal stable
idempotent-complete co-categories. The aim of this Section is to prove Proposition 3.4
and Corollary 3.7.

3.1. Derived affine group scheme G and oo-categories Mods; and PModg. We
refer to [17, Appendix, Section 3.1] for the basic definitions concerning derived group
schemes. Let R be a commutative ring spectrum. Let G be a derived affine group
scheme over R. This can be viewed as a group object ¢ : N(A)®? — Affp := (CAlgg)?
(see [17, Definition A.2]). In this paper, we refer to an object in Affg as an affine
(derived) scheme over R and call Affp the co-category of affine (derived) schemes over
R. From Grothendick’s viewpoint of “functor of points”, a derived affine group scheme
over R is a functor (Affg)®” — Grp(S) such that the composite (Affg)? — S with
the forgetful functor Grp(S) — S is represented by an affine scheme, where Grp(S) is
the oo-category of group objects in S. We will recall the definition of the symmetric
monoidal co-category Mod$. Set G = Spec B so that B is a commutative Hopf ring
spectrum over R which is described by a cosimplicial object ¢ := 17 : N(A) — CAlgy,.
We here abuse notation and B indicates also the the underlying object ¢([1]) in CAlgp.
Let

——L,st

© : CAlg — CAlg(Cat,, )

be a functor which carries A € CAlg to the symmetric monoidal oco-category Mod 4
and sends a map A — A’ in CAlg to a colimit-preserving symmetric monoidal base
change functor Mody — Mod/, : M — M ®4 A’ (see [17, section 3.3]). This functor
induces

——L,st

Op : CAlgp ~ CAlgg, — CAlg(Cat,, )Mod%/.

——L,st
Consider the composition N(A) 4 CAlgy o CAlg(Cat, )Mod% /- We define Mod$
to be a limit of this composition. We call it the oco-category of representations of
G. The underlying oo-category is stable and presentable. Since the forgetful func-

/\L7St - . . . . .
tor CAlg(Cat,, )Mod% ; — Cato is limit-preserving, we see that the underlying oco-
category of Mod§, which we denote by Modg, is a limit of the composition N(A) Orog

——L,st —_ . . :
CAlg(Cat,, )yoq® ; — Catoo. There is the natural symmetric monoidal functor Modg, —
oo /Mody, / G
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Mod$ and we let PModg, the inverse image of the full subcategory PMod%. Alterna-
tively, there is a natural categorical equivalence PModg ~ limp,jea PModg(,)) and
PModg is a symmetric monoidal full subcategory of Mod$ spanned by dualizable ob-
jects. We call it the oo-category of perfect representations of G.

3.2. co-categories of modules over presheaves. Let (CAlg,)” — Fun(CAlg, S)
be Yoneda embedding, where S denotes the oo-category of (not necessarily small)
spaces, i.e. Kan complexes. We shall refer to objects in Fun(CAlgR,§ ) as presheaves
on CAlg, or simply functors. By left Kan extension of © g, we have a colimit-preserving
functor

Or : Fun(CAlg, ) — (CAlg(Catus) o2 )

Let N(A)oP i (CAlgg)? < Fun(CAlgy,, S) be the composition and let BG denote
the colimit. Remember Og(BG) = Modg, ~ Mod$ (we hope that our notation give
rise to no confusion). Note that the notation BG conflicts with the notation BG in

[17]. In [17], we define BG to be the étale sheafification of the colimit of N(A)°P o
(CAlg)” — Fun(CAlgy,S). However, this confliction induces no difference on the
images of ©x: By the flat descent theory of modules on CAlg (cf. [25, VII Section 6,
VIII 2.7.14]), if P — P’ is a fpqc (or étale) sheafification of P € Fun(CAlgy, S) then
Or(P) — Or(P) is an equivalence.

Let X € Fun(CAlgp, S ). Let PMod% denote the symmetric monoidal full subcate-
gory of the underlying symmetric monoidal co-category © spanned by dualizable ob-
jects. Suppose that PMod$ is a small stable idempotent-complete symmetric monoidal
oo-category whose tensor operation ® : PMody x PModyxy — PModx preserves finite
colimits separately in each variable. Since symmetric monoidal functors carry du-
alizable objects to dualizable objects, the composition PMod% < Mod%s — Mod%
factors through PMod% C Mod%, where Mod¥, is the underlying symmetric monoidal
oo-category of O and Mod% — Mod% is the R-linear structure map. Hence we can
naturally regard PMod$% as an object in CAIg(Catffo)PMod% /- We refer to PMod¥, as the
symmetric monoidal co-category of perfect complexes on Y. We here call presheaves
enjoying this condition admissible presheaves (functors). For example, affine derived
schemes and BG with G a derived affine group scheme are admissible. Indeed, BG
is described as the colimit of a simplicial affine derived schemes a : N(A)”? — Affp
and Cat® < Caty preserves small limits. It follows that PModgg ~ PModg ~
limy,,) PMod,) is stable and idempotent-complete where limp,jcA PModpn)) the limit

of the cosimplicial diagram of co-categories. Let Fun(CAlgp, S )24m be the full subcat-

egory of Fun(CAlg R,;S’) spanned by admissible presheaves. Applying ©y and taking
full subcategories of ©r(X) spanned by dualizable objects we have the functor

fr : Fun(CAlgg, 8)*™ — (CAlg(Cati )pyouz /)

which carries X to PMod% endowed with the R-linear structure map PMod$ —
PMod%. We remark that by [23, 3.3.3.2, 5.1.2.2] P in PModx = limgpec a_x PMod4
(Spec A — X run over (Affg),x) is a finite colimit of a (finite) diagram I — PModx
if and only if for each Spec A — X the image of P in PMod4 is a finite colimit of the
induced diagram.
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3.3. Tannakization. Let CHopfj be the co-category of commutative Hopf ring spec-
tra over R, that is the full subcategory of Fun(N(A), CAlgy), spanned by objects sat-
isfying a certain condition (see [17, Appendix|): The opposite oo-category of CHopfp
is equivalent to the oo-category of the derived affine group schemes over R. Thus we
set AAffGppg := (CHopf z)°, which we shall refer to as the co-category of derived affine
group schemes over R. Then there is a natural functor

@ : (dAffGpg)? — CAlg(Cat3 )™ = (CAlg(Catig)PModg/)/PModg

which carries G to PMod§ equipped with natural functors PMod% — PMod§, (induced
by BG — Spec R) and PMod§, — PMod$ (induced by the natural projection Spec R —
BG). In this paper, we do not need the detail construction of ® and thus we refer to
[17] for the details. We recall the result of [17].

Theorem 3.1. The functor ® has a left adjoint functor ¥, that is, there is an adjunc-
tion

U : CAlg(Cat®t )®2s = (dAffGpg)™ : ®.

If £ is an object of CAlg(Catst)f2ue then we refer to ¥(£) as the tannakization of
€. (For this kind of construction for ordinary categories, see [19], [27].)

3.4. Automorphisms. Let C® denote an R-linear symmetric monoidal small stable
idempotent-complete oco-category, that is, an object in CAlg(CatsoE))PMod% /- Namely,
if we write C for the underlying oo-category, C is a small stable idempotent-complete
oo-category and the underlying symmetric monoidal co-category C® is endowed with
a symmetric monoidal functor PMod$ — C® which preserves finite colimits. For ease
of notation, we usually omit PMod% — C®.

We regard Affy as the full subcategory of Fun(CAlgy, S). Let (Affg)/g¢ be the full
subcategory of Fun(CAlgp, S )/BG spanned by objects X — BG such that X are affine
schemes, that is, objects which belong to the essential image of Yoneda embedding
Aff; — Fun(CAlgy, S). There is the natural projection (Affr)/Bc — Affg, that is a
right fibration. Let 7 : Spec R — BG be the natural projection. This determines a

map between right fibrations
AHR = (AHR)/SpecR (AHR)/BG
" Affp.

Let (Affg)/se — S be a functor which assigns Map$(C®, PMod%) to Spec 4 in
(Affg)/BG. Here Map%(—, —) indicates the mapping space in CAIg(Catffo)PMod% /- More
precisely, let

¢ : (Affg) o — Fun(CAlgp, )™ 7 (CAlg(Cat:h)pyrogs ) — S

be the composition where the first functor is the natural projection, and the third is the
image of C® by Yoneda embedding (CAIg(CatSOZ)PMOd% )P = Fun(CAlg(CatSOto)PMod% 5 S)
By the unstraightening functor [23, 3.2] together with [23, 4.2.4.4] the composition
(Affg) g — S gives rise to a right fibration p : M — (Affg) g¢-



BAR CONSTRUCTION AND TANNAKIZATION 9

For two objects C7’, €3’ in CAlg(Cats)pyoqs /» We denote by Mapy(CY,C5) the
mapping space. The mapping space Map%(C®, PModg,,) is homotopy equivalent to
the limit of spaces

: ®(P® 7
spechAH—1>BG Map%(C®, 8r(Spec A))
where Spec A — BG run over (Affg)/pe and PModg, =~ limgpeaec Or(Spec A).
Thus according to [23, 3.3.3.2] if we denote by Map(sgy) . ((Affr)/8c, M) the sim-
plicial set of the sections of p : M — (Affg) /e (namely, the set of n-simplexes of
Map(AHR)/BG((AffR)/Bg,M) is the set of (Affg)/pe X A" — M over (Affg)/s¢), then
we see that

Lemma 3.2. There is a categorical equivalence
Map% (C®, PModg) ~ Funagy) o ((Affr) 8a; M).

The base change ¢ : N := M X (AfR) 5 Affp 28 Aff; is also a right fibration since
Cartesian fibrations are stable under base changes. Note that this right fibration ¢ :
N — Affg corresponds to the composition ¢’ : Affg — (Affg) /g — S°. Moreover, c:
(Affg) /B — S factors through ¢’ : Affp — S°?. Therefore we have a Cartesian equiv-
alence M ~ N X ag, (Affg) e over (Affg) sg. Note that Map$(C®, PMod}) is homo-
topy equivalent to limgpec 4sspec 8 Map(C®, PMod%) where Spec A — Spec R run over
Affg. As above, Maps (C®, PMod$%) is homotopy equivalent to Mapag ) 5o (Affg, M).

Moreover, consider the functor Map%(C®, PModg,) — Map (C®, PMod%) induced by
the composition with the forgetful functor PModg, — PMod%. Then it can be viewed
as the functor

f i Mapagp) o (AffR)BG, M) = Map(ag ) o (AffR, M) = Map,g,, (Affg, NV)

induced by the functor Affr — (Affg)/sc.

We fix a map F : C® — PMod% in CAlg(Caty,)pyoag ;- This is equivalent to giving
a vertex of Map,g, (Affg, N). Let o, : CAlgp, — S be the functor corresponding
to the identity right fibration Affr — Affy via the straightening functor. We may
and will assume that a, is the constant functor whose value is the contractible space.
Let ayp : CAlg, — S be the functor corresponding to the right fibration N — Aff.
The functor F' determines a natural transformation a, — ay. Thus through the
categorical equivalence Fun(CAlgg, S),., =~ Fun(CAlgg, S,), we regard a, — oy as
an object in Fun(CAlgg, S.) where S, = Sao,. We define o), : CAlgp — S so that for
any A € CAlgy, oy(A) is the connected component of ay(A) on which the image of
a, — ay lie. We also regard a,, — o, as an object Fun(CAlgy, S.). Let S, >1 be the
full subcategory of S, spanned by pointed spaces A? — S such that S is connected.
Notice that o/ represents the functor

5 : CAIgR — 8*721
which assigns A to the pointed connected component of Map%(C®, PMod%) which

corresponds to the composition C® ER PMod% — PMod%. Recall that Grp(S) is
the oo-category of group objects in S, and the equivalence S, >; ~ Grp(S) which
carries any pointed space S € S, >; to the (based) loop space .S € Grp(S) (see [17,
Appendix]).
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Definition 3.3. We write Aut(F') for £ : CAlg, — S, >1 ~ Grp(S) and refer to it as
the automorphism functor of F.

Consider the diagram in CAlg(Cat,,)®2"8
c® PMod$,,

PMod% .
The purpose of this subsection is to prove the following result.

Proposition 3.4. There is an equivalence

MapCAlg(Catgg)RvaUg(C®’ PMOd(I?G) = MapFun(CAlg R,Grp(S))(G7 Aut(F))
in S. This equivalence is functorial in the following sense: Let L : dAAfftGpg — S be
the functor which assigns G to Mape ajg(catst yr.aus (C2, PModgg). Let M : dAffGpr —
S be the functor which assigns G to Mapp,calg,,crp(s)) (G Aut(F)). (See the proof

below for the formulations of L and M.) Then there exists a natural equivalence from
L to M.

Remark 3.5. We would like to remark the intuitive meaning of Proposition 3.4. In
the above equivalence, the right hand side is the space (co-groupoid) of actions of G
on F. The left hand side is the space of extensions of F to C® — PModg,. Hence
we can informally say that extending F to C® — PModg,, is equivalent to giving an
action of G on F.

Remark 3.6. The proof below shows that if we replace PModg,, by Modg,, the similar
assertion also holds. Namely, there is a functorial equivalence

Map Lt (C®, Modg,,) ~ Mapy,,(calgp, Grp(@) (G Aut(F))

((CAlg(Caty, )Mod%/)/Mod%

in S, where C® belongs to (CAlg((Ta\t;St)Mod%/)/Mod% Here F' : C® — Mod% and
Aut(F) is defined in a similar way.

Corollary 3.7. Suppose that Aut(F) is represented by a derived affine group scheme.
Then Aut(F) is equivalent to the tannakization of F : C® — PMod$%.

Proof of Proposition 3.4. In order to make our proof readable we first show the first
assertion without defining L and M. The mapping space Mapc ajq(catst yr.2: (C%, PModg,,)
is the homotopy limit (i.e. the limit in S)

Map (C¥, PModg,;) X MapZ (C®,PMod?) {F}

where {F} = A® — Map%(C®, PMod%) is determined by F. The fiber product of Kan
complexes

P = Map(AHR)/BG((AﬁR)/BG’M) X Map

is a homotopy limit since Affr — (Affr) B¢ is a monomorphism (that is, a cofibration
in the Cartesian simplicial model category of marked simplicial sets (Set}) J(AfER) jpg > SE€
23, 3.1.3.7]) and thus f is a Kan fibration. Here A® = {F} — Mapsg,,) .. (Affr, M)

Afp ) L}

AfTR) /BG

/BG
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is determined by F. Using the Cartesian equivalence N X ag, (Affg) /BG =~ M over
(Affr) /B¢ we have homotopy equivalences

Map(AHR)/BG((AﬁR)/BG’ M) =~ Mapg . ((Affr)/Ba, N)
and
Mapagy) o (Affr, M) ~ Map,g,, (Affp, V).
Thus P is homotopy equivalent to the fiber product
Q = Mapag,(Affr)/Be, N) Xsap,g, (aftp) {7}

which is also a homotopy limit, where A = {F'} — Map, g (Affg, ) is determined by
the section Affg — A corresponding to F : C® — PMod%. We let agg : CAlgy, — S
correspoindig to the right fibration (Affg)gs — Affr via the straightening functor.
There is the natural transformation ., — age determined by Affr — (Affg) /BG, Which
we consider to be a functor CAlgp — S, >1. Observe that Mappy,,caig,s.)(@Ba; an) is

homotopy equivalent to ). By composition with S, >1 ~ Grp(S) we have G : CAlg, B¢
S.>1 ~ Grp(8S) (that is, the composition is the original derived group scheme G). Then
we obtain

Q = MapFun(CAlgR,S*) (OéBg, Oé/\/)
~  MaPpun(calgs,s. »1) (@B Xy)
= MapFun(CAlgR,Grp(S)) (G’ Aut(F))

Next to see (and formulate) the latter assertion, we will define L and M. Since a
derived affine group scheme is a group object in the Cartesian symmetric monoidal co-
category of Aff g, thus dAffGpg, is naturally embedded into Fun(N(A), Fun(CAlgg, S))
as a full subcategory. Let Fun(N(A)°, Fun(CAlgg,S)) — Fun(CAlgg, S) be the

functor taking each simplicial object N(A)®? — Fun(CAlgg,S) to its colimit. Let
p : dAffGpr — Fun(CAlgy, S) be the composition. Note that G maps to BG. By the
straightening and unstraightening functors [23, 3.2] together with [23, 4.2.4.4], we have

the categorical equivalence Fun(CAlg, @oo) ~ N(((S/(;:Z)/AER)Cf) where (S/&Z)/AHR
is the category of (not necessarily small) marked simplicial sets, which is endowed
with the Cartesian model structure in [23, 3.1.3.7] and (—)% indicates full simpli-
cial subcategory of cofibrant-fibrant objects. In particular, there is the fully faithful

-~

functor Fun(CAlgg,S) — N(((S/&Z)/AHR)#) which carries BG to (Affg)/gc — Affg.
Composing all these functors we have the composition

dAfiGpg % Fun(CAlgs, S) — N(((Seta), amy))-
Since dAffGpr ~ (dAffGpg)spec r/, the composition is extended to u : dAffGpr —
N(((Sf&z) s atin) ) afty . Through Yoneda embedding

N(((Seta), arn))amn, — Fun((N((Seta), ans) )tz /)% S)

we define I : (N(((S/(;:Z)/AHR)Cf)AHR/)"p — & to be the functor corresponding to A" —

Aff g equipped with the section F'. Composing I with dAfGpr — N(((S/&Z)/AER)#)AHR/
we have L : dAffGpr — S°. To define M, consider the functor Fun(CAlg,, Grp(S)) —
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S°? determined by Aut(F) via Yoneda embedding. Then we define M to be the com-
position

dAffGpg — Fun(CAlgy, Grp(S)) — 8.

To obtain L ~ M, note that the unstraightening functor induces a fully faithful
2 ~+
functor Fun(CAlgg, S.) C N(((Setp);afy))as, - Let N : CAlgp — S, be a functor
corresponding to N — Affp equippeAd with the section F', that is, N corresponds to
a, — ay. Let Fun(CAlgg,S.) — S be the functor determined by N via Yoneda
embedding. The functor L is equivalent to

U o <Vl c co
dAffGpr — Fun(CAlgg, S.) C N(((Seta) amrn))agsn, — S.

Since the essential image of AAffGpg in Fun(CAlgg, S.) is contained in Fun(CAlgg, Si >1),
for our purpose we may and will replace ar by oy (in the construction of N) and as-
sume that N belongs to Fun(CAlgp, S, >1). Then we see that L is equivalent to

dAffGpg — Fun(CAlgy, S, »1) ~ Fun(CAlgy, Grp(S)) — 8

where the first functor is induced by u and the third functor is determined by Aut(F')
via Yoneda embedding. Now the last composition is equivalent to M. O

4. AUTOMORPHISM OF FIBER FUNCTORS

Let Y be a derived stack over R (we fix our convention below) and PMod$ the
oo-category of perfect complexes on Y (Section 3.2), which we regard as an object in
CAIg(CatZg)PMOd% ;- Let Spec R — Y be a section of the structure morphism YV —

Spec R. There is the pullback functor PMody — PModj in CAlg(Caty )pyroqs - In

this Section, we study the automorphisms of this functor. Our goal is Theorem 4.9
and Corollary 4.10.

We start with our setup of derived stacks. A functor Y : CAlg, — S is said to be a
derived stack (over R) if two condition hold:

(i) there exists a groupoid object N(A)? — Affgp (cf. [17, A.2]) such that Y is
equivalent to the colimit of the composite N(A)? — Aff < Fun(CAlgy, S),

(ii) Y has affine diagonal, that is, for any two morphisms Spec A — Y and Spec B —
Y, the fiber product Spec A xy Spec B belongs to Affp C Fun(CAlgp, §)

In this paper, despite Y in the above definition is usually called a pre-stack, we will
not equip CAlgy, with Grothendieck topology such as flat, étale topologies since the
sheafification Y’ of Y by such topologies does induce a categorical equivalence Mody: —
Mody by the flat descent theory. In addition, such topologies are irrelevantA for our
argument below. (Conversely, for our purpose one can replace Fun(CAlgg, S) in the
above definition by the full subcategory of sheaves with respect to flat topology (see
e.g. [34], [25, VII, 5.4] for flat morphisms)). At any rate, we remark that our definition
of derived stacks is not standard (compare [34], [25]). We note that our derived stacks
are admissible functors.

Example 4.1. We present quotient stacks arising from the action of a derived affine
group scheme on an affine scheme as examples of derived stacks. Let F' : N(A)? —
Affg be a groupoid object, which we regard as a derived stack. Let G : N(A)? — Affy
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be a group object, that is, a derived affine group scheme. Let F' — G be a morphism
(i.e., natural transformation) which induces a cartesian diagram

F([n]) — F([m])
)

(
G([n]) —= G([m]

in Affp for each [m| — [n]. If we write X for F([0]), then we can think that the
morphism F — G with the above property means an action of G on X. In this

situation, we say that G acts on X and denote by [X/G] the colimit of N(A)°P £

~

Affp < Fun(CAlgg, S). We refer to [X/G] as the quotient stack. We can think of BG
as the quotient stack [Spec R/G] where G acts trivially on Spec R.

Let 7 : Spec R — Y denote the fixed section and 7* : Mod$ — Mod% the associated
symmetric monoidal functor which preserves small colimits. Since Mody and Modg
are presentable, by adjoint functor theorem (see [23, 5.5.2.9]) there is a right adjoint
functor 7, : Modg — Mody. Moreover, according to [24, 8.3.2.6] the right adjoint
functor is extended to a right adjoint functor to relative to N(Fin,) (see [24, 8.3.2.2])

Mod$% Mod$

N(Fin,).

It yields a right adjoint functor
CAlg(Mod%) — CAlg(Mod$)

of the functor CAlg(Mod$) — CAlg(Mod%) determined by 7*.
Let ¢ : N(A) — CAlgy be a cosimplicial diagram such that the colimit of compo-

sition N(A)oP Aty — Fun(CAlgR,g) is equivalent to Y. Recall from Section 2.1
the functor ©f : CAlg, — CAlg(@zSt)Mod% /- Note that by definition Mod{ is a

/\L’s /\L,S
limit of the composition ¢” : N(A) 4 CAlgp o CAlg(Cat_, t)MOd%/ — CAlg(Cat_, t)
where the last functor is the forgetful functor. Let p : My — N(A) be the coCartesian

fibration corresponding to the composition ¢’ : N(A) it CAlg(aa\tI;:t) — Caty where
the last functor is the forgetful functor. We denote by Funy,)(N(A), M) the full
subcategory of Funya)(N(A), M) spanned by sections N(A) — M, which carries
all edges of N(A) to p-coCartesian edges. Then by [23, 3.3.3.2] Mody is equivalent to
Funy ) (N(A), M) as oo-categories. Consider the base change of N(A)*” P Affy

~

Fun(CAlgg, S), where the second functor is Yoneda embedding, by 7 : Spec R — Y.
Let Y, = ¢®([n]) € Affg for each [n] € A. The n-th term of this base change

7 : N(A)? — Fun(CAlgg,S) is equivalent to Y,, Xy Spec R and in particular, it

factors through Affy C Fun(CAlgg,S). Taking the opposite categories we have
¥ : N(A) — CAlgy. Note that SpecR is a colimit of 7 since in the oo-topos

Fun(CAlgg, S) colimits are universal (see [23, Chapter 6]). Thus the natural trans-
formation Y — ¢ induces 7w : Spec R — Y, and we can informally indicates our
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situation as follows:

-+ ==Y Xy Spec R =Y, Xy Spec R —— Spec R

| | X

Yy Yo Y

(here ¥ ¢°P : N(A)? — Affr). We define ¢’ : N(A) — Cato, in the same way that
we define ¢, and we let ¢ : My — N(A) the coCartesian fibration corresponding to
1'. The natural transformation ¢ — 1 corresponds to a map between coCartesian
fibrations My — M,y over N(A), which carries coCartesian edges to coCartesian
edges. Again by [24, 8.3.2.6] there is a right adjoint functor My — My of My —
M,y relative to N(A). Let us observe the following:

Lemma 4.2. The map My — My of coCartesian fibrations over N(A) carries q-
coCartesian edges to p-coCartesian edges.

Proof. It suffices to show that if for any map r : [m| — [n| in A we describe the
diagram induced by " — ¢°P as

Y, Xy Spec R —=Y,, Xy Spec R

] |

Y, ‘ Yon,
then the natural base change morphism d* o ¢, — b, o a* is an equivalence. It follows
from [1, Lemma 3.14]. O
Let

a: Fun{\r(A)(N(A)a My) = FUH{\I(A)(N(A%MW) LB

be functors induced by the adjunction My = My, where Funy ) (N(A), My ) is the
full subcategory of Funya)(N(A), My ), spanned by sections which carries all edges
to coCartesian edges and we define Funy,)(N(A), My ) in a similar way. Note that
by [23, 3.3.3.2]

Funy ) (N(A), My) ~ Mody and Funy ) (N(A), My) ~ Modg,
and Funy ) (N(A), My) — Funya)(N(A), M) is equivalent to 7 : Mody — Modg
as functors. Then observe that the pair (o, 3) forms adjunction. Namely,
Mabpuny , (N(2) M) (a(a),b) =~ [}jfeﬂA Map ) ((an), bn)
— [}jlenA Mapy ) (B(e(axn)), B(bn))

% lim Map,, s B(bn
[n}IeHA apy ([n])(a’ B(bn))
~ Mapmn&(A)(N(A)7M¢,)(a,ﬁ(b))
is equivalence in S, where a,, (resp. b,) is the projection of a (resp. b) to ¢'([n]) (resp.
¢'([n])) and x is induced by the unit map of the adjunction My = M,,. (The fiber
of the adjunction My = My over each object of N(A) forms adjunction.) Notice
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that Funna)(N(A), My ) = Funya)(N(A), My ) is equivalent to 7, : Modp — Mody
as functors. Consequently, we have
Lemma 4.3. Let
Y,, Xy Spec R Spec R
.
Y

be the pullback diagram induced by °P([n]) — ¢°P([n]). Then the natural base change
morphism (t,)* om, — (7).« 0 (sp)* is an equivalence of functors from Modg to Mody, .

Corollary 4.4. We abuse notation and we write (t,)* o m, — (m,)« © (8,)* for the
natural base change morphism from CAlg(Mod§,) to CAlg(Mod§ ) which is determined
by adjunctions (7*,m,) and ((7,)*, (7,)«) relative to N(Fin,). Then (t,)*om, — (m,)«0
(sn)* is an equivalence of functors.

Let 1 be a unit of Modg which we here regard as an object in CAlg, = CAlg(Modg).
Then there is a lax symmetric monoidal functor Modf — Mod? ; (Mody) of sym-
metric monoidal co-categories induced by 7, by the construction of the co-operad of

module objects [24, 3.3.3.8]. For the notation Mod? ; (Mod$), see Section 2.

T«1R
Lemma 4.5. The functor Mody — Mody
alence.

Proof.

We first obeserve that Modj; — Mody, ; (Mody) is symmteric monoidal. Since it
is lax symmetric monoidal, combined with Lemma 4.3 we are reduced to showing the
following obvious claim: for a morphism x : Spec A — Spec B of affine derived schemes
and M, N € Mody, the natural map z,.(M)®42.(N) — z.(M &4 N) is an equivalence
where x, : Mod4 — Mods(Mod$) is the natural pushforward functor.

We now adopt notation similar to Lemma 4.3. Since the natural equivalence (¢,)* o
Telr >~ (m,)« 0 (8,)*1R by the above result, we have

(71-”)* . Modd)([n}) = MOdYanSpeCR ~ MOd(ﬂ'n)*O(Sn)*lR(MOdf([n])) ~ MOd(tn)*ow*lR(MOdf([n]))
for each n. Then we identify Modg — Mod,, 1, (Mod$) with the limit

. ~ . ~ . ®
Jim Mody(n) = lim Mody, xy spec s = lim Modg,)-or,1,(Modg,)

(Mod}) is a symmetric monoidal equiv-

which is an equivalence in Catoo. It follows that Modj — Mod? ; ,(Mody) is a sym-

metric monoidal equivalence. O

~

Let Aut(7*) : CAlgp — Grp(S) be the automorphism functor of 7* (defined as in the
previous Section, see Remark 3.6), which carries A € CAlgy to the automorphisms of
composition Mody — Mod% — Mod? in CAlg((Ta\tI;St)Mod% , where the second functor

is the base change by R — A.
Let A, be the category of finite (possibly empty) linearly ordered sets and we write
[—1] for the empty set. Let ¢ : A’ — N(A,) be a map which carries {0} and {1} to

[—1] and [0] respectively. It is a fully faithful functor. Let (A')? — Fun(CAlgg, S)
be a map corresponding to 7 : Spec R — Y. Let p : N(A,)” — Fun(CAlgg, S) be
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a right Kan extension along t® : (A')® — N(A, ) which is called Cech nerve (cf.
[23, 6.1.2.11]). By our assumption, for each n > 0, p([n]) belongs to Affr and the
restriction of p to N(A) is a derived affine group scheme which we denote by G,. By
the definition of G, and Modg_, we see that 7* : Mody — Mod}, factors through the
forgetful functor Modg  — Mod§. It follows from Remark 3.6 that there exists the
natural morphism G, — Aut(7*). (Alternatively, we may think that the derived group
scheme G : (Affg)®? — Grp(S) represents the automorphism group of 7 : Spec R — Y
and thus we have the natural morphism G, ~ Aut(mr) — Aut(7*).)

Proposition 4.6. The natural morphism G, — Aut(n*) is an equivalence, that is,
Aut(7*) is represented by G.

Proof. For simplicity, let G := G,. Let Gy : CAlg, — S and (resp. Aut(r*);)
be the composite of G : CAlg, — Grp(S) (resp. Aut(r*)) and the forgetful functor
Grp(g) — 8. For each A € CAlgp, it will suffice to show that the induced map
G1(A) = Aut(n*)1(A) is equivalence in S.

For A € CAlgy, let m4 : Spec A — Spec R — Y denote the composition. Let 14 be
the unit of Mod 4 which we here think of as an object of CAlg(Mod%). Applying [24,
6.3.5.18] together with Lemma 4.5 and adjunction we deduce

MapCAlg(@;st)M d®/(M0d§, Mod%) =~ MapCAlg(Modg)((wA)*lA, (m4)124)
ody

= MaPCAlg(ModA)((WA)*(WA)*lA,1A)~
Unwinding the definitions we have
MaPCAlg(ModA)((WA)*(WA)*lA, 1y) =~ Map(Aﬁ)/SpecA(Spec A,Spec A xy Spec A)
~ Map(Aﬁ)/specA(Spec A,Gy Xr A xR A)
~ MapAH/Y(Spec A,Spec A)
where Gy is Spec R xy Spec R ~ p([1]), and G xp A xgp A — Spec A € (Aff) /gpec 4 is

the second projection. Note that through natural equivalences a morphism Spec A —
Spec A over Y, which we regard as an object of MapAﬁ/Y(Spec A, Spec A), induces a

symmetric monoidal functor Mod% — Mod% under Mod$ which we think of as an

——L,st
object of CAlg(Caty, )yjoas /-
Next using the natural equivalence

Mapchlg(/\L’st (MOdizlj: MOd%) o~ MapAH/y (Spec A, Spec A)

Catoo )Mod?;/
we consider the automorphisms of 7*. To this end let T4 be the fiber product
MapAH/Y (Spec A7 Spec A) X Map p g(Spec A,Spec A) {IdSpec A}

in § where the diagram is induced by the forgetful functor Map,g (Spec A, Spec A) —
Map,g(Spec A, Spec A). Similarly, we define S4 to be th fiber product

® ®
MaPCAlg(@I;“)MO ® /(MOdA’ Mody) KMap it (Mod$ ModS) {Id}
Y oo
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inS , which is equivalent to T)4. There are natural equivalences
Ty o~ Map'(Aﬁ)/SpecA(Spec A Gy xpr AXgrA)
~ Mapag) g, (Spec A, Gy xg A)
~ Map,g(Spec 4, Gy)

in S where Map’(Aﬁ) Spec A,G1 Xr A X A) is the fiber product

/SpecA(
Map(Aff)/specA(SpeC A7 Gl XR A XR A) ><MapAﬂ(Spec A,Spec A) {IdSpecA}

in § where the diagram is induced by the projection pr3 : G; xg A xg A — Spec A.
Thus we have an equivalence Map,g(Spec A, Gy) ~ S4. When Y = Spec R and we
define S’ and 77 in the same way that S, and T4 are defined, then the assignment
A — S ~ T is the functor CAlg — S represented by Spec R. Consequently, for
A € CAlgg, Aut(n*)1(A) and G1(A) are equivalent to the homotopy fiber products
Saxg, {A} and T x 7, {A} respectively (here { A} means that the vertex corresponding
to Spec A — Spec R). Hence we have the required equivalence G1(A) ~ Aut(7*);(A).

O

Let C®, D% € CAIg(@;St). Suppose that C is compactly generated, that is, the
natural colimit-preserving functor Ind(C,) — C is a categorical equivalence, and ® :
C x C — C induces C, x C, — C,, which makes C, a symmetric monoidal co-category,
where C, is the full subcategory of compact objects in C and Ind(—) indicates the Ind-
category (see [23, 5.3.5]). Note that under this assumption, a unit object is compact.

Proposition 4.7. Let Map®"(C®, D®) be MapCAlg(éa\tL,st) (C®,D®). Let Map®**(C®, D%)

be the full subcategory of Map Alg@w)(cg@, D®) spanned by symmetirc monoidal func-
tors which preserves finite colimits. The natural inclusion C& — C® induces an equiv-
alence

Map®*(C®, D®) — Map®**(C%, D%)
Lemma 4.8. Let C*" and D*™ be the n-fold product and the m-fold product respec-
tively. Let Fun'(C*™, D*™) be the full subcategory of Fun'(C*", D*™) spanned by func-
tors which preserves small colimits separately in each variable of C*". Funl (CX™, D*™)
be the full subcategory of Fun(CX™, D*™) spanned by functors which preserves finite

colimits separately in each variable of CX™. Then the natural fully faithful functor
CX™ — C*™ induces a categorical equivalence Fun'(C*"™, D*™) — Fun, (CX", D*™).

Proof. Clearly, we are reduced to the case m = 1. Thus we will assume that
m = 1. We first consider the case n = 1. This case is well-known. We show this case
for the reader’s convenience. By left Kan extension [23, 5.3.5.10] we have a categorical
equivalence Fung,,(C, D) — Fun(C,, D) induced by C, C C where Fungy,(C, D) is the
full subcategory spanned by functors which preserves filtered colimits. The argument of
the second paragraph of the proof of [24, 1.1.3.6] says that if C, — D preserves cokernels
and kernels, then the corresponding left Kan extension (via the above equivalence)
C — D preserves cokernels and kernels, and in particular C — D preserves small
colimits by [24, 1.1.4.1] and [23, 4.4.2.7]. Since C, — C preserves finite colimits, we
have a categorical equivalence Fun'(C, D) ~ Fun,(C,, D), as desired.
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Next we consider the case n = 2. In this case
Fun'(Ind(C,) x Ind(C,),DP) =~ Fun'(Ind(C,),Fun’(Ind(C,), D))

~ Fun!(C,, Fun,(C,, D))
~ Fun(C, x C,, D),

2

where all equivalence follows from the case of n = 1 and the fact that Fun'(Ind(C,), D)
is presentable [23, 5.5.3.8]. The proof in the case of n > 3 is similar to n = 2 (use
induction on n). O

Proof of Proposition 4.7. In virtue of straightening [23, 3.2.0.1, 3.2.5] there exists

a map z : Fin, — (Seta)?/ such that its unstraightening is (coCartesian equivalent
to) the symmetric monoidal co-category C® — N(Fin,) and z((n).) is an oco-category
for each n > 0. Here S/e\tA is the simplicial category of (not necessarily small) oo-
categories (cf. [23, Chapter 3]). For each n > 0, set C" := z((n).). Let C? be the
full subcategory (simplicial subset) spanned by compact objects. Then the restric-
tion to C” induces z, : Fin, — (S/\etA)Cf which carries (n), to C”. Also, there is a
natural transformation z, — z of functors (taking account of [23, 5.3.4.10] and the
fact that C has a final object we see that C™ coincides with the full subcategory of
compact objects in C*™). Similarly, there exists 2’ : Fin, — (S/&A)cf such that its
unstraightening is (coCartesian equivalent to) a coCartesian fibration D® — N(Fin,)
and D" := 2/({n),) is an oo-category for each n > 0. Then a natural transforma-
tion N(z) — N(2’) of functors from N(Fin,) to N((S/e\tA)cf) — Cate, corresponds to a
symmetric monoidal functor C® — D®. More precisely, there is a homotopy equiva-
lence Mapy, . (pin, ) Gat) (N(2), N(2')) = Map®(C®, D), where Map®(C®, D?) is the
mapping space of symmetric monoidal functors.

Suppose that & is either C or D. Let a,,; : (n), — (1). be the map which sends ¢
to 1 and sends others to *. Let p; : £&® — E! be the map of simplicial sets determined
by ani. Let ¢ : (E)*™ — E™ be a quasi-inverse of the categorical equivalence p; X

e X pp s EM = (EY)*™. Let r; ¢ (EN)*™ — &' be the i-th projection. For e =
(€1, ,€i1,€i11,---,€,) € (EN™ 1 we let ¢;(e) be the inclusion &' — (£')*™ which
is informally given by e — (e1,... ,€;1,€,€41,...,€,). We define Fun*(C", £™) to be
the full subcategory (simplicial subset) of Fun(C", ™) by the following condition. A
functor f : C" — €™ belongs to Fun*(C™, £™) if and only if the following two conditions
hold:

e fog":(C)*" — C" — E™ preserves small colimits separately in each variable,
e forany 1 <k <mnandc=(c,...,Ch1,Chi1,--- ,Cn) € (C)"!, there is at most
one 1 < i < m such that r;0 (p; X +++ X p) o foq®ou(c) : Ct — E! is not
equivalent (as functors) to a constant functor.
Replacing C by D in the above condition we define the full subcategory Fun*(D", £™)
of Fun(D", &™) in a similar way.
Let Fun}(CZ,&™) be the full subcategory (simplicial subset) of Fun(CY,&™), de-

fined as follows. If we use notation similar to above, f € Fun(C!,&™) belongs to
Fun(CZ, ™) if and only if the followings hold:

o fog": (Cly* — C* — E™ preserves finite colimits separately in each variable,
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o if f/:(CH)*" ~(C" — £™ is an extension of f determined by Lemma 4.8 and the
first condition, then f’ belongs to Fun*(C",&™).

Let S be a simplicial category (that is, a category enriched over the monoidal cate-
gory of simplicial sets) defined as follows: objects are C" with n > 0 and D" with n > 0.
Let Map*(C™,C™) be the largest Kan complex of Fun*(C",C™). The hom simplicial set
Mapg(C™,C™) is defined to be the full subcategory of Map*(C™, C™) spanned by functors
which sends C? to C*, and Mapg(C™, D™) is the largest Kan complex of Fun*(C™, D™).
The simlicial set Mapg (D™, D™) is the largest Kan complex of Fun*(D", D™) for any
n and m. The simlicial set Mapg(D™,C™) is the empty set for any n and m. These
data constitute a simplicial category S. Let S’ = N(S5).

Let T be a simplicial category defined as follows: objects are CI' with n > 0 and
D™ with n > 0. We define subcategory T which satisfies the following properties:
let MapZ(CZ2,C™) be the largest Kan complex of Fun}(CZ?, C2*). The mapping space
Map,(CZ,C™) is defined to be Map;(C?,C*), and Map,(C?, D™) is the largest Kan
complex of Fun’(C?, D™). The simlicial set Map, (D", D™) is the largest Kan complex
of Fun*(D",D™) for any n and m. The simplicial set Map;(D",C) is the empty set
for any n and m. Let 7" = N(T).

Then there is a natural simplicial functor S — 7" which sends C" and D" to C? and
D" respectively. The maps of hom simplicial sets

Mapg(C",C™) — Map4(Cy', Cl")
and
Mapg(C",D™) — Mapr(C;', D™)

are induced by the restriction C C C™, and in other case, maps of hom simplicial sets
are identities. Then by Lemma 4.8 we deduce that the induced functor S’ — T" is a
categorical equivalence.

Let Map{;un N(z),N(2')) be the full subcategory of

(N(Fin*),@m)(
Map Fun(N(Fin*),@oo)(N(z)’ N(Z,))
= Map(A', Fun(N(Fin,), Cat.)) X Map(9A!,Fun(N(Fin.),Catec)) (N(2), N(z"))

((N(2),N(2")) = A°) that corresponds to Map®"(C®, D®). The both functors N(z)

and N(2) factor through S’ C Cat,. Moreover by the definition of S, we have a
categorical equivalence

MapFun(N(Fin*),S’)(N('z)a N(Z,)) = Map]I;‘un(N(Fin*)’@oo)(N(z)a N(Z,))
Similarly, we have
MapF‘un(N(Fin*),T’)(N(zO)> N(z')) ~ MapeF’;n(N(Fin*)’@m)(N(Zo), N(z")).

where Map®™ (N(25),N(2)) is the full subcategory of
Fun

(N(Fin.),Catoo)
MapF\m(N(Fin*),C/}a\to@) (N(2),N(2"))

that corresponds to Map®**(C®, D?) through the equivalence

MapF\m(N(Fin*),@cm)(N(zo)a N(z')) ~ Map®(CZ, D%).

Now the desired equivalence follows from the categorical equivalence S’ — T". O
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Let us recall the definition of perfectness of stacks introduced by Ben-Zvi, Francis,
and Nadler in their work on derived Morita theory [1] (this notion is also important
to our previous paper [11]). We say that a derived stack Y is perfect if the natural
functor Ind(PMody ) — Mody is a categorical equivalence. As a corollary of results of
this Section, we have:

Theorem 4.9. LetY be a perfect derived stack over R and 7 : Spec R — Y is a section
of the structure morphism Y — Spec R. Let 7 : Mody — Mod% be the morphism in

CAIg(@I;:t)MOd%/ induced by 7 : Spec R — Y, and let ¢ : PMody — PMod$% denote

its restriction which belongs to CAIg(CatZZ)PMOd%/. Let Aut(r}) : CAlgy — Grp(S) be
the automorphism functor of w*. Then the restriction induces an equivalence of functors
Aut(m*) — Aut(n?). In particular, the tannakization of 7 : PMody — PMod% is
equivalent to G. (see the setup before Proposition 4.6 for the notation G.)

Proof. Combine Corollary 3.7, Proposition 4.6 and 4.7. O

Corollary 4.10. LetY be a derived stack over R equipped with w: Spec R — Y as in
Theorem 4.9. Suppose either one of followings:

(1) a derived stack'Y over R belongs to Affg,
(i) let G be an affine group scheme of finite type over a field k of characteristic zero,

which we regard as a derived affine group scheme over R = Hk. Suppose that G
acts on X € Affg and let Y = [X/G] be the quotient stack (see Example 4.1).

Then the tannakization of w} : PMody — PMod% is equivalent to G.

Proof. According to Proposition 4.6 and Corollary 3.7 and Theorem 4.9, it will
suffices to show that Y is perfect, that is, the natural functor Ind(PMody) — Mody
is a categorical equivalence. Then our claim follows from [1, 3.19, 3.22]. O

Remark 4.11. By this Theorem, for example, we can prove that the tannakization
of the oo-category Art(k)® of Artin motives endowed with a homological realization
functor Art(k)® — PMod%g (cf. [17, Section 6.3]) is equivalent to the absolute Galois
group Gal(k/k) which we regard as the limit of constant finite derived group schemes
over HK.

5. BAR CONSTRUCTIONS

This Section contains no new result. In this Section, we review the relation between
bar constructions and the case (i) of Corollary 4.10. Let A € CAlg, and let s : R — A
be the natural morphism in CAlg, (note R is an initial object in CAlgg). Suppose
that ¢t : A — R is a cosection of s, that is, tos is equivalent to the identity of R. Recall
that A, is the category of finite (possibly empty) linearly ordered sets and we write
[—1] for the empty set. Let ¢ : A — N(A,) be a map which carries {0} and {1} to
[—1] and [0] respectively. It is a fully faithful functor. Let f : A! — CAlgy be the
map corresponding to A — R. Since CAlg, admits small colimits, there is a left Kan
extension

g:N(A;) — CAlgy,

of f along t. We refer to g : N(A,)” — Affp as the Cech nerve of f : (A1)? —
Affg. This construction is called the bar construction for ¢ : A — R. The underlying
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simplicial object N(A)? — N(A,)® — Affg is a group object (see [17, Appendix]
or [23, 7.2.2.1] for the definition of group objects). Let G be a derived affine group
scheme corresponding to the simplicial object.

Let t : PMod% — PMod% be the morphism in CAIg(Catf;)PMOd%/. The case (i) of

Corollary 4.10 says:

Theorem 5.1. Aut(t}) is represented by G. In particular, by Corollary 3.7 the tan-
nakization of t: : PMod% — PMod$, is equivalent to G.

Remark 5.2. For the readers who are familiar with commutative differential graded
algebras (dg-algebras for short), we relate the bar construction of commutative dg-
algberas with G. Let k be a field of characteristic zero. Let dga, be the category
of commutative dg-algebras over k (cf. [14]). A morphism P* — Q° in dga, is a
weak equivalence (resp. fibration) if it induces a bijection H"(P*) — H"(Q*®) for
each n € Z (resp. P"™ — Q" is a surjective morphism of k-vector spaces for each
n € Z). There is a model category structure on dga, whose weak equivalences and
fibrations are defined in this way (see [14, 2.2.1]). Let N(dga}). be the oco-category
obtained from the full subcategory dga; spanned by cofibrant objects by inverting
weak equivalences (see [24, 1.3.4.15]). According to [24, 8.1.4.11], there is a categorical
equivalence N(dgaj) ~ CAlgy,. Let R = Hk and let ¢ : A — k be an augmentation
in dga,. We abuse notation and we denote by ¢t : A — R the induced morphism in
CAlgp. The underlying derived scheme of G is the fiber product Spec R X gpec 4 Spec R
in Affg. By this equivalence, the pushout R®4 R in CAlgy corresponds to a homotopy
pushout £ ®Y k in the model category dga,, which is weak equivalent to a homotopy
pushout A ®%, 4k of

t®t

AR A— Lk
A

where m is the multiplication. We will review the construction of the concrete model
of a homotopy pushout A ®£®k 4 k in dga,,, which is known as the bar construction of
a commutative dg-algebra (see for example [28], [33]). Consider the adjoint pair

T :dgag o) < dgag ag,a, : U

where U is the forgetful functor induced by A - A®; A, z — z® 1, and T is given
by formula M — M ®4 (A®x A). Let a: Id — UT and (: TU — Id be the unit map
and counit map respectively. To an object C' € dga, 4, 4, One associates a simplicial
diagram (7', U).(C) in dga,, 4, as follows: Define
(T.U)a(C) = (TU)™D(C) = (TU) o -+ o (TU)(C)
where the right hand side is the (n + 1)-fold composition. For 0 <i <n+1,
di: (T,0)ns1(C) = (TU)" o (TU)o (TU)*"9(C)
— (TU)* o 1o (TUY™1-0(C) = (T,U),(C)
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is induced by  in the middle term. For 0 < i < n,
si: (T,U)(C) = (TU)*oToldoU o (TU)* ™) (C)
— (TU)*oT o (UT)oU o (TU)*"™ (C) = (T,U)ns1(C)

is induced by « : Id — (UT) in the middle term. Let us consider A to be an object
in dgay g, 4, via m : A®; A — A. Then by the above construction we obtain the
simplicial object (T, U)e(A)® g, 4k in dga,. The totalization tot((T',U)e(A)Rag,ak) €
dga,, which we call the bar complex, represents the homotopy pushout A ®£®k a k.

6. MIXED TATE MOTIVES

In this Section, as an application of the results we have proved; in particular Theo-
rem 4.9 and Corollary 4.10, we will describe the tannakization of the stable co-category
of mixed Tate motives equipped with the realization functor as the G,,-equivariant
bar construction of a commutative dg-algebra. The main goal of this Section is The-
orem 6.11. We emphasize that this section works without assuming Beilinson-Soulé
vanishing conjecture. In what follows we often use model categories. Our references
for them are [16] and [23, Appendix].

6.1. Review of oco-category of mixed motives. Let K be a field of characteristic
zero. Let A be the abelian category of K-vector spaces. We equip the category of
complexes of K-vector spaces, denoted by Comp(.A), with the projective model struc-
ture, in which weak equivalences are quasi-isomorphisms, and fibrations are degreewise
surjective maps (cf. e.g. [16, Section 2.3], 23, Appendix], [5]).

Let k be a perfect field. Let DM®//(k) be the category of complexes of A-valued
Nisnevich sheaves with transfers (the indroductory references of this notion include
[26] and [7]). For a smooth scheme X separated of finite type over k, we denote by
L(X) the A-valued Nisnevich sheaves with transfers which is represented by X (cf.
26, page.15]). We equip DM®// (k) with the symmetric monoidal model structure in
[5, Example 4.12]. The triangulated subcategory of the homotopy category of this
model category DM®//(k), spanned by right bounded complexes, is equivalent to the
triangulated category DM?VHZ?;(IC, K) constructed in [26, Lecture 14].

The pointed algebraic torus Spec(k) — G,, over k induces a split monomorphism
L(Spec(k)) — L(G,,) in DM®/ (k). Then we define K(1) to be

Coker(L(Spec(k)) — L(G,,))[—1].

Let DM(k) be the category of symmetric K(1)-spectra in (DM¢/7/(k))® (cf. [5, Section
7]) which is endowed with the symmetric monoidal model structure in [5, Example
7.15] (see loc. cit. for details). Then we have a sequence of left Quillen symmetric
monoidal functors

Comp(A) — DM/ (k) == DM(k),

where the first functor sends the unit to L(Spec(k)), and the second functor is the
infinite suspension functor.

Recall the localization method in [24, 1.3.4.1, 1.3.1.15, 4.1.3.4] (see also [10], [17,
Section 6] and [17, Proposition 6.8]); it associates to any (symmetric monoidal) model
category M a (symmetric monoidal) oo-category N(M¢).,. Here M is the full subcate-
gory spanned by cofibrant objects (this restriction is due to the technical reason for the
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construction of symmetric monoidal co-categories). We shall refer to the associated
(symmetric monoidal) co-category as the (symmetric monoidal) co-category obtained
from the model category M by inverting weak equivalences. Applying this localization,
we obtain a symmetric monoidal functors of symmetric monoidal co-categories

Mod$ g =~ N(Comp(A))e — N(DM*7(£)%)oe — N(DM(E)%) so.

where the first equivalence follows from [24, 8.1.2.13]. Here HK denotes the Eilenberg-

MacLane spectrum. We shall write DM and DM/ for N(DM(k)¢), and N(DM®// (k)¢) o
respectively. When we indicate that DM is the symmetric monoidal co-category, we

denote it by DM®. In [17, Section 6] we have constructed another symmetric monoidal

stable presentable oo-category Sp%,..(HK) by using the recipe in [6] and [29]. We do

not review the construction; but there is an equivalence DM® ~ Sp% . (HK) (cf. [24,

Remark 6.6]).

It should be emphasized that there are several (quite different but equivalent) con-
structions of the category of mixed motives as differential-graded categories and model
categories. One can obtain oco-categories from differential-graded categories and model
categories. In our work, it is important to treat “the category of mixed motives” as
a symmetric monoidal co-category, and therefore we choose the symmeric monoidal
model category DM(k) constructed by Cisinski-Déglise.

6.2. oco-category of mixed Tate motives. Let us recall the stable oco-category of
mixed Tate motives. We also denote by K(1) its image of K(1) € DM®//(k) in DM(k).
It is a cofibrant object and K(1) can be regard as an object in the oco-category DM.
There exists the dual object of K(1) in DM, which we will denote by K(—1). Let DTM
be the presentable stable subcategory generated by K(1)®" = K(n) for n € Z, where
K(1)®" is the n-fold tensor product in DM®. Namely, DTM is the smallest stable
subcategory in DM, which admits coproducts (thus all small colimits) and consists
of K(n) for all n € Z. The tensor product functor ® : DM x DM — DM preserves
small colimits and translations (suspensions and loops) separately in each variable,
and thus the symmetric monoidal structure of DM induces a symmetric monoidal
structure on DTM. We denote by DTM® the resulting symmetric monoidal stable
presentable oco-category. Note that the inclusion DTM < DM preserves small colimits.
Let DTM,,, be the smallest stable subcategory consisting of K(n) for n € Z. Since
K(n) is compact in DM for every n € Z, every object in DTM,, is compact in DM. Let
Ind(DTM,,,,) = DTM be a (colimit-preserving) left Kan extension of DTM,,, = DTM,
which is fully faithful by [23, 5.3.5.11]. Hence it identifies Ind(DTM,,,,) with DTM.
The symmetric monoidal functor Mod$, — DM® factors through DTM® C DM®
since DTM® — DM® preserves small colimits, and DTM contains the unit of DM. The

factorization Mod5g — DTM® < DM? is regarded as a map in CAlg((Ta\tZSt)Mod%K /
which we also denote by DTM® «— DM®,

Lemma 6.1. Let DTM,, be the full subcategory of DTM® spanned by dualizable objects.
Let DTM, be the full subcategory of DTM spanned by compact objects. Then DTM, =
DTM,,.

Proof.  Observe that every object in DTM,, is compact in DTM. To this end, it is
enough to show that the unit object of DTM® is compact (cf. [6, 2.5.1]). This is implied
by [6, Theorem 2.7.10]. For any n € Z, K(n) belongs to DTM,.. Therefore DTM,,, C
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DTM,, C DTM,. Notice that DTM,,, C DTM, can be viewed as an idempotent-
completion (see e.g. [3, Lemma 2.14]). Moreover DTM is idempotent-complete by [23,
4.4.5.16]. It will suffice to prove that the inclusion DTM, C DTM is closed under
retracts. It easily follows from the definition of dualizable objects. O

Let [[¢ DM be a product of the category DM, indexed by a small set S. There is a
combinatorial model structure on [[4 DM, called projective model structure (cf. [23,
A. 2.8.2]), in which weak equivalences (resp. fibrations) are termwise weak equivalences
(resp. termwise fibrations) in DM. Notice that cofibrations in [][¢ DM are termwise
cofibrations. When S = N, [[DM has a symmetric monoidal structure defined as
follows: Let (M;);en and (N;)jen be two objects in [[y DM. Then (M;)ien ® (Nj)jen
is defined to be (®i4j—rM; @ N;)ken.

Lemma 6.2. With the above symmetric monoidal structure, [[ DM is a symmetric
monoidal model category in the sense of [23, A 3.1.2].

Proof.  We must prove that cofibrations « : (M;) = (M,;)ien — (M;) = (M])ien and
B (N;) = (Ny)ien = (N;) = (N/)sen induce a cofibration
anB:(M)e () ] (M) (1) — (M) @ (N)),
(M;)®(N;)
and moreover if either a or 3 is a trivial cofibration, then a A (3 is also a trivial
cofibration. Unwinding the definition, we are reduced to showing that

@ (M; ® N} ]_[ M| ® N;)— @ M| ® N}
i+j=k M;®N; i+j=k

is a cofibration in DM, and moreover it is a trivial cofibration if either o or 3 is a
trivial cofibration. This is implied by the left lifting property of (trivial) cofibrations
and the fact that DM is a symmetric monoidal model category. O

Consider the symmetric monoidal functor £ : [[, DM — DM, which carries (M;) to
®;M; ® K(—i). Here K(—1) is a cofibrant “model” of the dual of K(1), and K(—i) is
i-fold tensor product of K(—1) in the symmetric monoidal category DM. Since K(—1)
is cofibrant, we see that £ is a left Quillen adjoint functor. By the localization, we
obtain a symmetric monoidal left adjoint functor

f:=N() : DM := N((J[ DM)*)oc — N(DM)5, = DM?.

By the relative version of adjoint functor theorem [24, 8.3.2.6] (see also [25, VIII
3.2.1]), f has a lax symmetric monoidal right adjoint functor which we denote by
g : DM® — DMY. Tt yields g : CAlg(DM®) — CAlg(DM). We set A := g(1pm) in
CAlg(DMY), where 1py is a unit in DM®. The adjoint pair
f:DMy&=DM:g
induces the adjoint pair
f:h(DMy) = h(DM) : g

of homotopy categories. Let Hom(N, —) denote the internal Hom object given by the
right adjoint of (—=) ® N : DM — DM. Then g is given by M — (Hom(K(—i), M));en.
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Thus the underlying object A in h(DM) is (K(7));en, that is, the i-th term is K(7).
Moreover, by the straightforward calculation of adjunction maps, we see that the com-
mutative algebra structure of A in the symmetric monoidal homotopy category h(DM)
is given by

(K(4))ien ® (K(5))jen = (®irj=eK(2) @ K(j))renw = (K(k))ren

where the second map is induced by the identity maps K(i) @ K(j) ~ K(k) — K(k).

Now recall from [31] the notion of “periodic” commutative ring object (in loc. cit.
the notion of “periodizable” is introduced, and we use this notion in a slightly modified
form). Let [ [, DM be the product of DM indexed by Z, which is a combinatorial model
category defined as above. By the tensor product (M;)icz ® (N;)jez = (BiyjmeM; ®
N;)kez, | [, DM is a symmetric monoidal model category in the same way that [ [, DM
is so. Let DM3 be the symmetric monoidal co-category obtained from (][], DM)¢ by
inverting weak equivalences. A commutative algebra object X in DM is said to be
periodic if the underlying object is of the form

(..., K(-1),K(0),K(1),...),

that is, K(7) sits in the i-th degree, and the commutative algebra structure of X in
h(DM%) induced by that in DM$ is determined by the identity maps K(i) ® K(j) —
K(i+ 7).

A periodic commutative algebra object actually exists. To construct it, we let 7 :
DM{ — DMJ be the symmetric monoidal functor informally given by (M,)ey —
(...,0,0, My, My, ...). Namely, it is determined by inserting 0 in each negative degree.
Then P, := i(A) belongs to CAlg(DMZ). According to [31, Proposition 4.2] and its
proof, we have:

Proposition 6.3 ([31]). There exists a morphism P, — P in CAlg(DMZ) such that
P is periodic.

Remark 6.4. Let K(1); be the object of the form (... ,0,K(1),0,...) where K(1)
sits in the 1-st degree. Let Symp,_: Modp, (DM7) — CAlg(Modg, (DM7)) be the left
adjoint of the forgetful functor. Let

CAlg(Mod, (DMS)) = CAlg(Mod, (DMZ)) [Sym, (x) ]

be the localization adjoint pair (cf. [23, 5.2.7.2, 5.5.4]) which inverts Sym}, (), where
k:K(1); ® Py — P, in Modp, (DMZ) induced by the natural embedding K(1); — P,
in the 1-st degree. The morphism P, — P is obtained as the unit map of this adjoint
pair.

Let [, Comp(.A) be the product of the category Comp(.A), that is endowed with
the projective model structure. As in Lemma 6.2, we see that [ [, Comp(.A) is a sym-
metric monoidal model category, whose tensor product is given by (4;);cz ® (B}) ez =
(Bitj=kA; ® Bj)rez. Then the natural left Quillen adjoint symmetric monoidal functor
Comp(A) — DM naturally extends to a left Quillen adjoint symmetric monoidal func-
tor [ : [[, Comp(A) — [[, DM. It gives rise to the symmetric monoidal left adjoint
functor of oo-categories

I : Modfg 4 == N(H Comp(A)%)2 — DM3.
z
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According to the relative version of adjoint functor theorem [24, 8.3.2.6] (see also [25,
VIII 3.2.1]), { has a lax symmetric monoidal right adjoint functor r. Let @ :=r(P) €
CAlg(Modf ;). Let DM — [], DMy, be the left Quillen symmetric monoidal functor
which carries M to (M;) where My = M and M; = 0 if i # 0. Thus we have a
symmetric monoidal functor DM — DMy, and again by the relative version of adjoint
functor theorem we obtain a lax symmetric monoidal functor s : DMz — DM as the
right adjoint. Therefore there exists a diagram of symmetric monoidal co-categories:

sot
!

MOdHK,Z

such that

olisa symmetric monoidal functor induced by [,

e u is the symmetric monoidal base change functor induced by the counit map
Q) =1(r(P)) = P,

e ¢ is the forgetful monoidal functor which is a lax symmetric monoidal functor,

e a is the base change functor, and b is the forgetful functor.

Let z := sotowuol. We recall the theorem by Spitzweck [31, Theorem 4.3] (see also
its proof):

Theorem 6.5 ([31]). The composite z : Modg(Modfg ;) — DM gives an equivalence
Modg(Modjk z) =~ DTM as symmetric monoidal oo-categories.

Furthermore, we can see that z gives an equivalence of them as HK-linear symmetric
monoidal oco-categories. To see this, it is enough to show that z is promoted to a
HK-linear symmetric monoidal functor. To treat problems of this type, the following
Lemma is useful.

Lemma 6.6. Let C® be in CAIg(@ZSt). We denote by C the underlying oo-category.
Suppose that a unit 1 of C® is compact in C. Let C; C C be the smallest stable
subcategory which admits small colimits and contains 1. The oo-category C1 admits a
symmetric monoidal structure induced by that of C®. Then there exist A in CAlg and
an equivalence Mod?% ~ C® of symmetric monoidal co-categories. Moreover, if R is
a commutative ring spectrum and p : Mody — C® is a symmetric monoidal colimit-
preserving functor, then p factors through CY C C® and there exists a morphism R — A
in CAlg, up to the contractible space of choice, which induces Mody — CY ~ Mod$
(as the base change).

Proof. The first assertion follows from [24, 8.1.2.7]; the characterization of symmet-
ric monoidal stable oco-categories of module spectra. Since p preserves small colimits,
p factors through CY C C®. The last assertion is implied by [24, 6.3.5.18]. O
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Remark 6.7. Under the assumption of Lemma 6.6, A is considered to be the “endo-
morphism algebra” of the unit, and we can say that giving a R-linear structure, that is,
a symmetric monoidal colimit-preserving functor Mod% — C® is equivalent to giving
a morphism R — A in CAlg.

Return to the case of HK-linear symmetric monoidal co-category DTM®. The en-
domorphism algebra of the unit of DTM® is HK (i.e. K), and its HK-linear structure
is determined by the identity HK — HK. Thus, to promote z to a HK-linear sym-
metric monoidal functor, it is enough to show that foaogq: Mod5, — DTM? induces
the identity morphism of endomorphism algebras of units HK — HK, where ¢ is the
inclusion Mod$ — Mod?}KZ into the degree zero part. This claim is clear from our
construction.

6.3. Realization functor and augmentation. Let F be a mixed Weil theory with
K-coefficients (cf. [6, Definition 2.1]). A mixed Weil theory is a presheaf of commu-
tative dg K-algebras on the category of smooth affine schemes over k, which satisfies
Nisnevich descent property, A'-homotopy, Kiinneth formula and axioms of dimensions,
etc (for the precise definition see [6, 2.1.4]). For example, algebraic de Rham coho-
mology determines a mixed Weil theory with K = k; to any smooth affine scheme
X we associates a commutative dg k-algebra I'(X, Q% /k) where % /1, 18 the algebraic

de Rham complex arising from the exterior Oy-algebra generated by Q% Ik Another

example is [-adic étale cohomology with K = Q; (see [6, Section 3]). To a mixed Weil
theory E' we can associate

R: DM® — Mod%«

a morphism in CAlg(éz;cZSt)Mod%K , which we call the homological realization functor
with respect to E (see [17, Section 6.1, 6.2], [6, 2.6]). Then according to [6, 2.7.14]
when F is the mixed Weil theory associated to algebraic de Rham cohomology, for any
smooth affine scheme X the image R(h(X)) in Mod gk is equivalent to the dual complex
of the derived global section RI'(X, Q% ;) where by [17, 6.8] we identify Modyk with
the oo-category of unbounded complexes of K-vector spaces. We denote by Ry the
composition

DTM® — DM® — Mod%

which we call the homological realization of Tate motives (with respect to E). By the
restrictions, it gives rise to the morphism DTM® — PMod% in CAlg(CatSoE))PMOd%K y
which we denote also by Rr.

Combined with Theorem 6.5 we have the sequence of symmetric monoidal colimit-
preserving functors

Mod$  — Mod$(Modpx z) ~ DTM® =% Mod$y .

By the relative version of adjoint functor theorem, the composition admits a lax sym-
metric monoidal right adjoint functor £. In particular, if we set R = {(1yk) with 1k
the unit of Modfk, then R belongs to CAlg(Modfk ;). By the functoriality and the

construction of @, we have the natural morphism @ — R in CAlg(Modfg ;). There



28 ISAMU IWANARI

is a commutative diagram (up to homotopy) of symmetric monoidal co-categories

Modg(Modjg z) — DTM® = Mod$

| | |

ModF (Modfk 7) — Mod ) (DTM®) — Modg_ ) (Modjk)

R

where Z and Ry are induced by z and Ry respectively, the left and central vertical arrows
are base change functors, and the right vertical arrow is the counit map Rr(z(R)) —
HK in CAlg(Mod% ). Note that all functors in the diagram are HK-linear symmetric
monoidal functors. The commutativity of the right square follows from the observation
that the counit map Rr(z(R)) — HK is an augmentation of the structure map HK —

Rr(z(R)).

Lemma 6.8. The composite h : C® := Modj(Modfjg ;) — D¥ := Modjk in the
above diagram gives an equivalence of HK-linear symmetric monoidal oo-categories.

Proof. 1t will suffice to show that the underlying functor is a categorical equivalence.

The symmetric monoidal functor h is HK-linear. Thus A is essentially surjective.

Next we will show that h is fully faithful. Let K, := (...0,K,0...) be the object
in Modgk z such that K sits in the n-th degree. Let R(n) be the image of K,, by the
base change functor Modpk z — Modg(Modjk ;). (For any n € Z, h(R(n)) ~ HK.)
It is enough to prove that

Mape(R(i), R(j)) = Mapp (h(R(i)), h(R(j)))

is an equivalence in S. Indeed, C is generated by the sets {R(i)}icz under finite
(co)limits, translations, and filtered colimits. Since R(:) and h(R(7)) is compact for
each ¢+ € Z and h is colimit-preserving, we are reduced to showing that the above
map is an equivalence in S. (Assuming it to hold, note first that Map,(R(i), N) —
Mapp (h(R(7)), h(IN)) is an equivalence in S for N being in the smallest stable subcate-
gory C' generated by { R(7) }icz. Then since R(i) and h(R(7)) are compact, Ind(C") ~ C,
and h preserves small colimits, thus for any N € C, Map(R(7), N) — Mapp(h(R(7)), h(N))
is an equivalence. Since C is generated by {R(i)};cz under finite colimits, trans-
lations and filtered colimits, we conclude that for any M, N € C, Map.(M,N) —
Mapp(h(M),h(N)) is an equivalence.) Note that Map.(R(i), R(j)) ~ Map.(R(i —
j), R), and therefore we may and will assume that j = 0. Then by using adjunctions
we can identify Map,(R(7), R) — Mapp(h(R(7)), h(R)) with the composition

Mapc(R(i), R) — MapMon(Modgx,Z)(Q(i%R)

Mapyioa, (Rr(2(Q(0)), HK)
Mapyjoq,, (HK, HK).

le e

This proves our Lemma. O

Proposition 6.9. There exists a HK-linear symmetric monoidal equivalence

® ®
ModHKZ — ModB(Gm
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Proof. We will construct a symmetric monoidal functor Modj‘?}KZ — Modfme,
which preserves colimits.

For this purpose, we will construct Mod%’(@m in a somewhat explicit way. Regard
the group scheme G,, over K as the simplicial scheme, denoted by G, such that G;
is the i-fold product G!. This corresponds to the cosimplicial K-algebra I'(G)*® such
that ['(G)’ ~ K[tF,... ,tF]. The cosimplicial K-algebra ['(G)* naturally induces the
cosimplicial diagram p : N(A) — Caty, such that p([i]) = N(Comp(T'(G)")¢). Here
Comp(T'(G)?) denotes the category of chain complexes of I'(G)*-modules which is en-
dowed with the projective model structure, and Comp(T'(G)?)¢ is its full subcategoy of
cofibrant objects. Each category Comp(I'(G)")¢ has the (natural) symmetric monoidal
structure, and thus p is promoted to p : N(A) — CAlg(éz;cm), where CAIg(@m) is
the oo-category of symmetric monoidal co-categories (i.e., commutative algebra objects
in the Cartesian symmetric monoidal co-category @OO). The symmetric monoidal cat-
egory Comp(I'(G)")¢ admits the subset of edges of weak equivalences. Inverting weak
equivalences in Comp(T'(G)")¢, we have p/ : N(A) — CAlg(@oo) and the natural
transformation p — p'. such that p/([i]) is a symmetric monoidal co-category obtained
from Comp(T'(G)*)¢ by inverting weak equivalences.

Through the explicit unstraightening functor [23, 3.2.5.2], the maps p,p’ : N(A) =

CAlg(@oo) gives rise to coCartesian fibrations C¢, — N(Fin,) x N(A) and C® —

pre
N(Fin,) x N(A). The natural transformation p — p’ induces a map of coCartesian
fibrations

C® Z c®

pre

N(Fin,) x N(A)

which preserves coCartesian edges. Note that for each [i] € A, the fiber p~!([i]) —
N(Fin,) x {[{]} = N(Fin,) is the symmetric monoidal co-category associated to the
diagram of Comp(I'(G)*)*’s. The fiber (p')~!([i]) — N(Fin,) is the symmetric monoidal
oo-category obtained from Comp(I'(G)")¢ by inverting weak equivalences.

Next we define a map of simplicial sets Sec(Cy,.) — N(Fin,) as follows. For any

a : T — N(Fin,), giving a map T — Sec(C®,) over N(Fin,) amounts to giving

pre

¢ : T x N(A) = C2, which commutes with @ x Id : T" x N(A) — N(Fin,) x N(A)

pre

and C%_ — N(Fin,) x N(A). Let Sec(C®,) be the largest subcomplex of Sec(C2,),

pre pre pre

which consists of the following vertexes: a vertex v € Sec(C3,) lying over (i) be-

longs to Sec(C%,) exactly when v : {(i)} x N(A) — C2_ carries all edges in {(i)} X

pre pre

N(A) to coCartesian edges in C%_. We define Sec(C®) — N(Fin,) and Sec(C®) —

pre’

N(Fin,) in a similar way. According to [23, 3.1.2.1 (1)], we see that Sec(C%.) —

pre

N(Fin,) and Sec(C®) — N(Fin,) are coCartesian fibrations (notice that Sec(C®.) =

pre

N(Fin,) X pun(n(a),N(Fin ) xn(a)) Fun(N(A), €2, )) where N(Fin, ) — Fun(N(A), N(Fin,) x

» Ypre
N(A)) is induced by the identity N(Fin,) x N(A) — N(Fin,) x N(A)). Moreover, by
23, 3.1.2.1 (2)] we deduce that Sec(C%,.) — N(Fin,) and Sec(C®) — N(Fin,) are co-

pre

Cartesian fibrations. By construction, furthermore Sec(Cg.) — N(Fin,) is a symmetric

monoidal oco-category. Since the procedure of inverting weak equivalences commutes
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with finite products [24, 4.1.3.2], we see that Sec(C®) — N(Fin,) is also a symmetric
monoidal co-category. We will abuse notation and denote by Sec(Cg..) and Sec(C®)
the underlying oo-categories. Note that o (which preserves coCartesian edges) induces
a symmetric monoidal functor Sec(Cf..) — Sec(C®).

Observe that the symmetric monoidal co-category Sec(C®) — N(Fin,) is equivalent
to the symmetric monoidal co-category Modg, . By [23, 3.3.3.2] and [24, 3.2.2.4],
the symmetric monoidal oco-category Sec(C®) is a limit of the diagram p' : N(A) —

CAlg(Cats). Note that by [24, 8.1.2.13] p/([i]) is equivalent to Modf?(c),-. Beside,

——L,s
the functor © : CAlg — CAlg(Catoot) which carries A to Mod% (see Section 3.1) is
fully faithful [24, 6.3.5.18]. For a symmetric monoidal functor ¢ : Mod% — Mod% in

CAIg(ﬁa\tI;St), one can recover f : A — B with ©(f) ~ ¢ as the induced morphism from
the endomorphism spectrum of a unit of Mod% to that of the unit in Mod%. Therefore
from the construction of p' (and p) and the definition of Modgg , we conclude that
Sec(C®) — N(Fin,) is equivalent to Modg, .

Therefore, to construct Modjyk ; — Modgg, , it will suffice to construct a symmetric
monoidal functor from [[, Comp(A)¢ to Sec(C%,) which carries weak equivalences in

[, Comp(A)¢ to edges in Sec(Cp..) whose imgges in Sec(C®) are equivalences (note
the universality of Modjg 5 [24, 4.1.3.4]). Let K, in J], Comp(A) be the K which
sits in the n-th degree with respect to [[,. To K, we attach the weight n represen-
tation of G, on K. The weight n representation gives rise to an object of Sec(Cy. )
in the obvious way, which we denote by K/,. For (M,);cz € [], Comp(A)¢, we at-
tach @®;ezM; ® K,. Here we consider M, to be an object in Sec(Cf,ie), that is the
complex endowed with the trivial action of G,,. This naturally induces a symmet-
ric monoidal functor having the desired property. To prove that the induced functor
Modgk 7z — Modgg,, preserves small colimits, it is enough to show that the compos-
ite Modyk z — Modgg,, — Modpk, where the second functor is forgetful, preserves
small colimits since the forgetful functor is conservative and preserves small colimits
(an exact functor p : K — L between stable co-categories is said to be conservative
if for any K € K, p(K) ~ 0 implies that K ~ 0). The composite carries (M;);cz to
@iczM; and thus we conclude that the composite preserves small colimits. To prove
that Mod?}K’Z — Modg(Gm is promoted to a HK-linear symmetric monoidal func-
tor, according to Lemma 6.6 (see also the discussion at the end of 6.3), it suffices to
observe that Modfjg ; — Modg; ~induces the identity morphism HK — HK of endo-
morphism algebras of units. To see this, we are reduced to showing that the composite
Modfk ;, — Modgs, — Modfy, where the second functor is the forgetful functor,
induces the identity morphism HK — HK of endomorphism algebras of units. This
is clear.

We have constructed a symmetric monoidal colimit-preserving functor Modf , —
Modgg; =~ with the (lax symmetric monoidal) right adjoint functor (the existence is as-
sured by the relative version of adjoint functor theorem). To see that Mod?}KZ —
Mod%’(@m is an equivalence of symmetric monoidal co-categories, it is enough to show
that it induces a categorical equivalence Modyk 7z — Modgg,, of underlying oo-
categories. Moreover, by [17, Lemma 4.11], it suffices to check that it induces an
equivalence h(Modgpk z) — h(Modgg,,) of their homotopy categories. The desired
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equivalence now follows from [32, Section 8, Theorem 8.5] (see also the strictification
theorem [15, 18.7]). O

Proposition 6.10. Let A be an object in CAIg(Modg’Gm). Let A denote the image of
A in CAlg(Mod%k) (via the pullback of Spec HK — BG,, ). With the notation in the
proof of Proposition 6.9, there is the natural augmented simplicial diagram G, — BG,,.
This induces the natural functor CAlg(Modgg,,) — limpea CAlg(Modgrg):). We
denote the image of A in limyea CAlg(Modgrg):) by A®. It gives rise to the quotient
stack [Spec A/G,,] (see Ezample 4.1). Then there exists a natural equivalence

Mod% (Modgg ) =~ Mod%peCZ/Gm] .

Proof. We first construct a symmetric monoidal colimit-preserving functor
Mod% (Modg ) — Mod?,

[SpecZ/Gm] :
L & ®

Let 7* : Modgg, — MOd[spec_Z/Gm]

natural morphism = : [Spec A/G,,,] — BG,,. By the relative version of adjoint functor
theorem, there is a lax symmetric monoidal right adjoint fucntor m, : Modgpeca/G,,) =
pec /G ]’ by the definition of [Spec A/G,,] and
the base-change formula, 7. (1g,c./6,,)) is equivalent to A in CAlg(Modgg ). Thus
we have the composition of symmetric monoidal colimit-preserving functors

b : Mod§ (Modg;, ) — Mod(4)(Mod? - Mod? 7

be the symmetric monoidal functor induced by the

Modgg,, If 1jg . 7/6,, 18 @ unit of Mod%

pecZ/Gm])
where the second functor is induced by the counit map 7*(A4) ~ 7 (mu(Ljgpec7/6,,))) —
Ligpec/G,,]- Note that the composite is naturally a HK-linear symmetric monoidal
functor.

Next we will show that h gives an equivalence of symmetric monoidal co-categories.
It will suffice to prove that the underlying functor of co-categories is a categorical
equivalence. We first show that A is fully faithful. Let 1gg,, (i) € Modgg be the object
corresponding to K, in the proof of Lemma 6.8. Let A(i) be the image of 1gg,, (¢) under
the natural functor Modgg,, — Mod4(Modg; ). Unwinding the definition of h and
using adjunctions, we see that

Moyt vioag, (A, AG) = Mabygoae —  (B(A()), B(A()

can be identified with
MapModA(ModgGm)(A(i)> A(f)) =~ MapModA(Modg’Gm)(A(i —3j),A)
= MapModB@m (1sg,, (i —j), A)
~ Mapyq (7" (1gg,, (2 — 7)), 1[specZ/Gm])

[Spec A/Gm)]

= MapMOd[specK/Gm] (1[Specz/Gm} (Z)7 1[SpecZ/Gm} (]))
Note that A(i) and h(A(7)) are compact for each i, and h preserves small colimits.
The stable presentable co-category Mod 4(Modgg, ) is generated by {A(i)}icz, that is,
Mod% (Modg; ) is the smallest stable subcategory which contains the set {A(7)};ez of
objects and admits filtered colimits. Therefore for any N € Mod A(Mod%?@m),

MapModA(ModgGm)(A(i)v N) = MapModfipe _ (h(A(z)), h(N))

cA/Gm]
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is an equivalence in S. Furthermore, it follows from the fact that A is colimit-preserving
that for any M, N € Mod,(Modgg, ),

MapModA(Modg’Gm) (M,N) — MapMod%peJ/Gm] (h(M), h(N))
is an equivalence in §. It remains to show that h is essentially surjective. To this end,
note that Modg .. 7/, =~ Ind(€) where £ is the smallest stable subcategory which
contains {1ig .. 7/c,,(?) }icz- To see this, since 1 .7/, (i) are compact, thus (by [1,
Definition 3.7]) it is enough to observe that the right orthogonal of {1/ ..7/g,.1(?) }iez
is zero, where 1g .. 7/c,.(1) = 7" (1gg,, (7). The condition that

MapMOd[specZ/Gm] (1[SpecZ/Gm} (7’)7 N) = MapModBGm (1B(Gm (Z), W*(N)) =0

for any i € Z implies that 7, (N) = 0. Then since m, is conservative we deduce
that N = 0, as desired. Since the set {lig .. 7/¢,(?)}icz of compact objects gen-
erates Mod(g .. 1/g,, (in the above sense), thus Ind(h(D)) ~ Mod(g,..a/q,, (see [23,
5.3.5.11]) where D is the smallest stable subcategory in Mod 4(Modg; ) which contains

{A(i)}icz- It follows that h is essentially surjective, noting that A is colimit-preserving
and fully faithful. O

6.4. Tannakization and Derived stack of mixed Tate motives. Proposition 6.9,
6.10 and Lemma 6.8 allow us to identify the realization functor Ry : DTM® — Mod 5«
with

®
pec G/Gm] - MOd[Spec E/(Gm]

induced by the morphism of derived stacks p : [Spec R/G,,] — [Spec Q/G,,]. Here R
is the image of R in CAlg(Mod%).

Observe that [Spec R/G,,] ~ Spec HK. To see this, note that by the property of
the realization functor the composite of left adjoint functors

MOdBGm — MOdHK’Z — MOdQ(MOd?}KZ) ~DTM — MOdHK

is equivalent to the forgetful functor (since Modgg,, — Modgk is HK-linear, the
restriction to the full subcategory of the degree zero part of Modpk 7z is equivalent
to the identity functor, and moreover for any i € Z the restriction to the degree ¢
part is equivalent to the identity Modgx — Modgk). And its right adjoint functor
sends 1yk to the object R of the form (... ,1yk,1lpk,1lyk,...) which belongs to
CAlg(Mod%). By using adjunction maps and the fact that the above composite is
symmetric monoidal, we easily see that R can be viewed as the coordinate ring of G,,
endowed with the action of G,,, determined by the multiplication G,, x G,, = G,,.
Hence [Spec R/G,,] ~ Spec HK.

We refer to [SpecQ/G,,] and p : Spec HK — [Spec Q/G,,] as the derived stack
of mixed Tate motives and the point determined by the mixed Weil cohomology E
respectively.

Theorem 6.11. Let MTG be the derived affine group scheme over HK which is the
tannakization of Ry : DTMY — PMod%g. Then MTG is equivalent to the derwed
affine group scheme arising from the Cech nerve of p : Spec HK — [Spec Q/G,,].

* ®
p .Mod[S

Proof. Apply Corollary 4.10 to p. O



BAR CONSTRUCTION AND TANNAKIZATION 33

6.5. Cycle complex and ). We describe the (Z-graded) complex @ in terms of
Bloch’s cycle complexes. We here regard () as the object in the co-category Modpk 7.

For this purpose, we need an explicit right adjoint functor r : DMy — Modyk 7z of
[ : Modyk 7z — DMy. To this end, recall the Quillen adjoit pair

1® () : Comp(A) = DM“/ (k) : T

where the right-hand side is the model category in [5, Example 4.12] (cf. Section 6.1)
and the left adjoint functor carries a complex M to the tensor product 1 ® M with the
(cofibrant) unit 1 of DM®// (k). Here the tensor product 1 ® M is considered to be a
complex of sheaves with transfers U — L(Speck)(U) ®k M. The right adjoint functor
sends a complex of Nisnevich sheaves with transfers P to the complex I'(P) of sections
at Speck. Let F be a Nisnevich sheaf with transfers. Let A® be the cosimplicial
scheme where A™ = Speck[zy, ... ,7,]/(X"z; = 0) and the j-th face A™ — A"+!
is determined by xz; = 0 (see e.g. [26]). We then have the Suslin complex C.(F') in
DM¢//(k), that is the complex of sheaves with transfers, defined by X — F(A® x; X)
(take the Moore complex).

Lemma 6.12. Let F' be a Nisnevich sheaf with transfers. Let F' be the fibrant replace-
ment of F'. Then I'(F') is quasi-isomorphic to C.(F)(Speck).

Proof. Fibrant objects in DM/ (k) are characterized by Nisnevich fibrant com-
plexes whose cohomology sheaves are homotopy invariant (see [5, 4.12] for terminology).
Moreover, the canonical morphism F — C,(F) is a weak equivalence in DM/ (k), and
cohomology sheaves of C,(F') are homotopy invariant. The Zariski and Nisnevich hy-
percohomology of C, (F) coincide, by [26, 13.10]. Therefore, taking the Zariski topology
of Spec k into account, we deduce that I'(F") is quasi-isomorphic to C,(F)(Speck). O

For a equidimensional scheme X over k, we denote by z"(X, %) the Bloch’s cycle
complex of X (cf. e.g. [26, Lecture 17]).

Corollary 6.13. Let n > 0. The total right Quillen derived functor RI' sends K(n)
to a complex which is quasi-isomorphic to z"(Speck, *)[—2n)].

Proof. The comparison theorems [26, 16.7, 19.8] imply that RI'(K(n)) is quasi-
isomorphic to z" (A", *)[—2n], where A" is the n-dimensional affine space. The homo-
topy invariance of higher Chow groups (see e.g. [26, 17.4 (4)]) shows that 2" (A", *)[—2n]
is quasi-isomorphic to 2" (Spec k, *)[—2n)]. O

Remark 6.14. Let n be a negative integer. Then every morphism from K to K(n)]i]
in DM is null-homotopic for any ¢ € Z. Thus by adjunction, the right adjoint functor
of the canonical functor Modykx — DM carries K(n) to zero in Modyk.

Proposition 6.15. Let (), in Modyk denote the complex of the n-th degree of Q) €
Modgk z (it is not the homological degree). Then @, is equivalent to z™(Spec k, *)[—2n]
for anyn >0, and Q,, >~ 0 for n <O0.
Proof. Recall that @) is the image of
K(x):= (... ,K(-1),K(0),K(1),...)
by 7 : DMz — Modgk z (we adopt the notation in Section 6.2). The natural functor
¥ : DM/ — DM is fully faithful by the cancellation theorem, and thus the right
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adjoint Q% : DM — DM/ sends K (i) to K(i) for i > 0. Now our claim follows from
Corollary 6.13 and Remark 6.14. O

7. MiXED TATE MOTIVES ASSUMING BEILINSON-SOULE VANISHING CONJECTURE

In this Section, we adopt the notation in Section 6. Contrary to the previous Section,
in this Section we will assume Beilinson-Soulé vanishing conjecture for the base field
k; the motivic cohomology

H™"(Speck, K)

is zero for n < 0, i > 0. Here H™!(Speck, K) denotes the motivic cohomology (fol-
lowing the notation in [26, Definition 3.4]). What we need is that this condition and

Proposition 6.15 imply that @ is cohomologically connective, that is, m,(Q) = 0 for
n > 0, and m(Q) = K. For example, Beilinson-Soulé vanishing conjecture holds when
k is a number field. The goal of this Section is to prove Theorem 7.15 which relates
our tannakization MTG of DTMY with the Galois group of mixed Tate motives con-
structed by Bloch-Kriz [4], Kriz-May [21], Levine [22] (each group scheme is known to

be equivalent to one another) under this vanishing conjecture.

7.1. Motivic t-structure on DTM. Under Beilinson-Soulé vanishing conjecture, one
can define motivic ¢-structure on DTM, as proved by Levine [22] and Kriz-May [21].
We will construct a t-structure in our setting (we do not claim any originality).

We fix our convention on t-structures. Let C be a stable oo-category. A t-structure
on C is a t-structure on the triangulated category h(C) (the homotopy category is
naturally endowed with the structure of triangulated category, see [24, Chapter 1]).
That is to say, a pair of full subcategories (C>¢,C<o) of C such that

(] CZO[]'] C CZO and Cgo[—l] C CS07
e for X € C5p and Y € C<p, the hom group Homy,)(X, Y [—1]) is zero,
e for X € C, there exists a distinguished triangle

X —X—X
in h(C) such that X’ € C5¢ and X" € C<o[—1].

We here assume that full subcategories are stable under equivalences. We use homo-
logical indexing. Our reference on t-structure is [24] and [20]. We shall write C»,, and
C<n, for Csg[n| and C<g[n] respectively. We denote by 7, the right adjoint to C>, C C.
Similarly, we denote by 7<,, the left adjoint to C<,, C C.

Let Ry : DTM — Modgk be the realization functor of a fixed mixed Weil theory
E. Let (Modpk >0, Modyk <o) be the standard t-structure of Modyk such that X
belongs to Modgk >0 (resp. Modpk <o) exactly when the homotopy group m,(X) of
the underlying spectra is zero for n < 0 (resp. n > 0).

Proposition 7.1. Let
DTM\/,ZO = R;l(MOdHIQZ()) N DTMV and DTMV,SO = R;l(MOdHKygo) N DTM\/

Then the pair (DTMy >0, DTMy <o) is a bounded t-structure on DTM,. (Of course, the
realization functor is t-exact.)
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Proof. Since Ry is exact, DTMy >o[1] C DTM, ¢ and DTM, <o[—1] C DTM,, <.

We next claim that the realization functor induces a conservative functor DTM, —
Modyk. (Recall again that an exact functor p : K — L between stable co-categories
is said to be conservative if for any K € K, p(K) ~ 0 implies that K ~ 0.) Note that

the realization functor DTM =~ Modg,..g/g,,] LN Mod gk is induced by p : Spec HK —

[Spec Q/G,,] (see Section 6.4). The morphism p extends to p : Spec HK — Spec Q.
Thus the realization functor is decomposed into

ﬁ*

By the definition, the pullback of the projection Modg,..5/¢,,] = Modg,.. g is conser-
vative. The stable co-category Modg admits a t-structure (Modg -4, Modg <) such
that X in Modg belongs to Modg . if and only if 7,(X) = 0 for n > 0 (see, [25,
VIII, 4.5.4]). According to [25, VIII, 4.1.11], the composite | J,,., Modg ,, — Modmk
is conservative. Observe that every object X € PModg lies in Unez Modg .,,- To
see this, note that PModg is the smallest stable subcategory which contains Q@ and
is closed under retracts. Since @ belongs to |,y Modg ., and |,z Modg ., is
closed under retracts, we see that PModg C Unez Modg .,,. Therefore the composite
DTMy >~ PModg,e.5/6,,] = Modux is conservative. By using this fact, we verify the
second condition of the definition of ¢-structure.

It remains to show the third condition of t-structure. For this purpose, note first
that if Z C Mod,..5/c,, denotes the inverse image of J, ., Modg ., and f : Z —
Modgk denotes the restriction of the realization functor, we have f~!(PModgk) =
PModg,..g/c, - Clearly, f~'(PModgk) D PModg,..g/q,. since the realization func-
tor is symmetric monoidal. An object in Modg,..5/g,,] s dualizable if and only if its
image in Modg is dualizable. Thus it is enough to show that g~'(PModyk) = PModg
where g : (J,c;, Modg -, — Modgk. According to [24, VIII 4.5.2 (7)], we have the
natural symmetric monoidal fully faithful functor (J,., Modg ., — limg_,zModg
where B run over connective commutative ring spectra under Q. An object M €
limg ,  Modp belongs to its essential image if and only if the image M(HK) of M in
Modgk under the natural projection has trivial homotopy groups m,,(M(HK)) = 0
for sufficiently large m >> 0. Note that every morphism @ — B factors through
Q — HK since Q is cohomologically connected. Consequently, we deduce that
g ' (PModyxk) ~ limg_, ; PModg. Thus all objects in g 1(PModyk) are dualizable.
It follows that g~ (PModyk) = PModg. Next consider

Mod(gpec5/6,1,20 = MOd[gpec5/6,,] X Modg Modg g -

Then this category is presentable, by [23, 5.5.3.13]. Define Modg,ec5/G,.],<0 Py replac-
ing > 0 on the right-hand side by < 0. Then the comonad of Modg,..5/¢,,) = Modg
is given by M — M ®pkx HK[t*] (it is checked by using the right adjointability;
Lemma 4.3). Therefore we can apply [25, VII 6.20] to deduce that

(Modgpecq/6,1,500 MOdispec 5/6,01,<0)

is a t-structure. Note that since Modg — Modyk is t-exact (it follows from [25,
VIIL, 4.1.10, 4.5.4 (2)]), Modg,ecg/c,,) — Modpx is also t-exact. We now claim that
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PModgpe.g/c,, 18 stable under the truncations 7>9,7<o. Let M € PModg,..5/6,.-
Then 7>9M and 7<oM are contained in Z. Thus, to prove that 7>¢M and 7<(M
belong to PModg,..5/g,,» it Will suffice to prove that g(r>9M) and g(r<oM) belong
to PModgk. Let H; = 7>; 0 7<; = 7T<; © T>; (this notation slightly differs from the
standard one). Using t-exactness, we have

Hi(g(t>0M)) = g(HioTs0M)
= g(1<io 7> 0150 M)
= g(H;(M))

for ¢ > 0. It follows that H;(g(7>0M))[—i] is equivalent to a finite dimensional K-vector
space, and the set

{i € Z| Hi(9(1=0M))[—i] # 0}

is finite. This implies that g(7>oM) lies in PModyk. Similarly, g(7<¢M) lies in
PModpk. Therefore for any M € PModg,..5/¢,,) We have the distinguished trian-
gle (in the level of homotopy category)

TZOM — M — Tg_lM

such that Ry (msoM) € Modyk >0 and Ry(7<_1 M) € Modyk <o[—1], as desired.
Finally, this ¢-structure is clearly bounded. O

Remark 7.2. The definition of t-structure in Proposition 7.1 is compatible with the
definition of motivic t-structure on the triangulated category of (all) mixed motives
developed by Hanamura [13] (up to an anti-equivalence). In loc. cit., the expected
motivic ¢-structure is constructed using Grothendieck’s standard conjectures, Murre
conjecture and Beilinson-Soulé vanishing conjecture for smooth projective varieties.
In Proposition 7.1, by the extension of coefficients ) — K we can replace K by Q.

We refer to (DTMy >, DTM,, <) as motivic ¢-structure on DTM,,. We let DTM$ =
DTMy >0 N DTMy <o be the heart. At first sight, it depends on the choice of our

realization functor. But the mapping space Map(Spec HK, Spec Q) is connected since

() is cohomologically connected (cf. [25, VIII, 4.1.7]). Therefore p* : MOd%pec@ e

Mod% is unique up to equivalence.
As a by-product of the proof, we have

Corollary 7.3. Adopt the notation used in the proof of Proposition 7.1. The real-
ization functor induces a conservative functor f : U, ez Modig,ec5/6,.),<n — Modmxk.

In particular, DTM,, — PModgk is conservative. Moreover, f~(PModgxk) coincides
with DTM,, .

Recall that DTM is compactly generated. Namely, we have the natural equivalence
Ind(DTM,) ~ Ind(DTM,,) ~ DTM.

Corollary 7.4. Let DTMsq := Ind(DTM, >¢) and DTM<y := Ind(DTMy <¢). Then
(DTM>o,DTM<y) is an accessible right complete t-structure on DTM.
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Proof. It follows from Proposition 7.1, [25, VIII, 5.4.1] and [24, 1.4.4.13]. O

Let (Modl?[K)® be the symmetric monoidal abelian category such that the underly-
ing category is Mod gk, >0 N Mod gk <o and its symmetric monoidal structure is induced
by that of Mod%. It is (the nerve of) the symmetric monoidal category of K-vector
spaces. For an affine group scheme G over K (which can be viewed as a derived affine
group scheme over HK), we let Rep(G)® be the symmetric monoidal full subcategory
2z H((Modjk)®) of Modg, where z : Mod3, — Mod$ is the natural projection de-
termined by Spec HK — BG. We denote by Rep(G)¥ the symmetric monoidal full
subcategory of Rep(G)® which consists of dualizable objects. Apply the classical Tan-
naka duality by Saavedra, Deligne-Milne, Deligne [30], [9], [8] to the faithful symmetric
monoidal exact functor of abelain categories (DTM{)® — (Modj)® induced by the
realization functor, we have

Corollary 7.5. There exist an affine group scheme MTG over K and an equivalence
(DTMY)® 5 Rep(MTG)® of symmetric monoidal oo-categories.

We here give a symmetric monoidal equivalence between the abelian category DTI\/IQVQ
and the abelian category TMj which is constructed via the axiomatic formulation in
[22]. Let ¢ be an integer. Let W5,DTM,,, C DTM,, (resp. W<,DTM,,,, C DTM,,
be the smallest stable subcategory generated by K(n) for —2n > i (resp. K(n) for
—2n < 7). Then according to [22, Lemma 1.2], the pair (Ws;DTM,,,, W<;,DTM,,,)
is a t-structure. Let Gr!V : DTM,,, — W;DTM,,, := W+,DTM,,,, N W<;,DTM,,, be
the functor Hy with respect to this t-structure. When ¢ is even, the oo-category
W;DTM,,, is equivalent to the full subcategory h(PModgk) of h(Modpk) spanned
by bounded complexes of K-vector spaces whose (co)homology are finite dimensional.
This equivalence is given by the exact functor h(PModyk) — W;DTMg,, which car-
ries K[r] to K(—i/2)[r]. If i is odd, W;DTM,, is zero. It gives rise to a natural
symmetric monoidal exact functor Gr : h(DTM,,,) — h(Modgyk z), which sends X
to {GrlV(X)}icz, of homotopy categories (which are furthermore triangulated cate-
gories). The triangulated category h(Modpk z) ~ IIzh(Modpk) has the standard
t-structure determined by the product of pair (Modgk >0, Modgk <o). We denote
it by (h(MOdHK,Z)ZOah(MOdHK,Z)SO)- Let DTMgm720 = Gr_l(h(MOdHKyz)Zo) and
DTM,. <0 := Gr ' (h(Modgxk z)<o). Then by [22, Theorem 1.4], we have:

Lemma 7.6 ([22]). The pair (DTMy,;, >0, DTMy,, <o) is a bounded t-structure, and Gr
15 t-exact and conservative.

Let TM,, be its heart.

Lemma 7.7. The realization functor Ry, : DTM,, — Modgk (induced by Rr :
DTM — Modgk ) is t-ezact.

Proof. 'We will show that the essential image of DTMy,, <¢ is contained in Mod gk <.
The dual case is similar. Let X € DTM,,, <. Let m be the cardinal of the set of inte-
gers 7 such that H;(X)[—i] is not zero (recall our (nonstandard) notation H; = 7<;07>;).
We proceed by induction on m. If m = 0, we conclude that X ~ 0 (since the ¢-structure
on DTMy,, is bounded). Hence this case is clear. By [22, Theorem 1.4 (iii)] we see that
the essential image of TIM,, is contained in Mode. Hence the case m = 1 follows.
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Suppose that our claim holds for m < n. To prove the case when m = n + 1, consider
the distinguished triangle

Hl(X) —- X = Tgi—lX

where i is the largest number such that H;(X)[—i] # 0. Note that the functor
DTM,,, — Modpyk is exact, and the images of H;(X) and 7<;_1 X is contained in
Modyk <o. Thus we conclude that the image of X is also contained in Modgk <o. O

Lemma 7.8. The full subcategory DTMy,, 5o (resp. DTMy,, <o) is the inverse image
of Modyk >0 (resp. Modpk <o) under Ry, : DTM,,, — Modyk.

Proof. 'We will treat the case DTMy,, <o. Another case is similar. We have already
prove that R, is t-exact in the previous Lemma. It will suffice to show that if X does
not belong to DTMy,, <o, then R, (X) does not lies in Modpk <o. For such X, there
exists ¢ > 1 such that H;(X) # 0. According to Corollary 7.3, R, is conservative.
Combined with the t-exactness, we deduce that H;(Ry,(X))[—i] # 0. This implies
that Ry, (X) is not in Mod gk, <o, as required. O

By Lemma 7.8, we have a t-exact fully faithful functor DTMy,, — DTM,, and it
induces a natural fully faithful functor TM;, — DTMY between (nerves of) symmetric
monoidal abelian categories.

Proposition 7.9. The natural inclusion TM; — DTI\/IS 18 an equivalence.

Proof. Since TMy, is (the nerve of) an abelian category, and in particular it is
idempotent-complete, thus it is enough to prove that TM,;, — DTMS is an idempotent-
completion. Recall that DTMy,, — DTM, is an idempotent-completion. Let X €
TM,. The direct summand of X (which automatically belongs to DTM,) lies in
DTMY by the definition of t-structure of DTM,. Conversely, if Y € DTMY, then
there exists X € DTM,,, such that Y is equivalent to a direct summand of X. Then
Y is a direct summand of Hy(X) € TM; (note that we here use the t-exactness of
DTM,,,, = DTM, ). Consequently, TM,, — DTMQVQ is an idempotent-completion. O

Corollary 7.10. The Tannaka dual of TMy, (endowed with the realization functor) is
equivalent to MTG.

Warning 7.10.1. In [22], one works over rational coefficients. In this paper, we work
over K. Therefore MTG 1is the base change of the Tannaka dual of the abelian category
of mized Tate motives in [22] over Q to K.

7.2. Completion and locally dimensional co-category. Let DTM® — DTM” be
the left completion of DTM® with respect to the t-structure (DTMsg, DTM<g) (we refer
the reader to [24, 1.2.1.17] and [25, VIII, 4.6.17] for the notions of left completeness
and left completion). It is symmetric monoidal, t-exact and colimit-preserving. Here,
the oo-category DTM is the limit of the diagram indexed by 7Z
. = DTMepyy = DTM., 5" DM, 5"

of co-categories. Note that according to [23, 3.3.3] the co-category DTM can be iden-
tified with the full subcategory of Fun(N(Z),DTM) spanned by functors ¢ : N(Z) —
DTM such that



BAR CONSTRUCTION AND TANNAKIZATION 39

e for any n € Z, ¢(|n]) belongs to DTM<_,,,
e for any m < n € Z, the associated map ¢(|m]) — ¢([n]) gives an equivalence
T<n¢([m]) = ¢([n]).
Let DTMsg (resp. DTM<g) be the full subcategory of DTM spanned by ¢ : N(Z) —
DTM such that ¢([n]) belongs to DTMs( (resp. DTM<y) for each n € Z. The functor
DTM — DTM induces an equivalence DTMy — DTM<g. The pair (DTMsq, DTM<)

is an accessible, left complete and right complete ¢t-structure of DTM.

Proposition 7.11. The followings hold.
(i) DTM<q s closed under filtered colimits.

(ii) The unit 1 belongs to the heart DTM = DTM>o N DTM<.

(iii) DTMsq and DTM<, are closed under the tensor product DTM x DTM — DTM.
)
)

(iv) The unit 1 is compact in DTM<,, for each n > 0.
(v) There ezists a full subcategory DTMZ of DTM " such that every object in Wz
has the dual in WZ, and Wz generates DTM " under filtered colimats.
(vi) mo(Mapgw(1,1)) = K.
(vii) For any X € WE, the composite

1 - XX =1

of the coevaluation map and the evaluation map corresponds to a monnegative
integer dim(X) € Z C K.

Proof. By our construction and DTM<, = DTMy, (i) is clear. Since the unit of
DTM lies in DTMY := DTMx N DTMx, (ii) follows.

Next we will prove (iii). By Corollary 7.3 the realization functor induces a conser-
vative functor DTM<; = DTM<; — Modyk <; for each i € Z (observe that DTM,, <; C
Modig,ecg/c,.<i)- If X € DTM is not in DTM, there exists 7 > 1 such that H,(X)

is not zero. Thus the inverse image of Modpk <o in DTM under the t-exact functor
DTM — Modyk induced by DTM — Mod gk is WSO. Notice that mzo is the full
subcategory, spanned by objects X such that 7«1 X ~ 0 where 7<_; : DTM — DTM,
that is, H;(X)[—i] is zero for i < —1 (since DTM is right ¢-complete). The condition
H;(X)[—1] is zero for i < —1 is equivalent to the condition that X maps to an object
in Modyk >0, again by conservativeness; Corollary 7.3. Namely, the inverse image
of Modgk >0 is Wzo- The full subcategories Modpk >o and Modyk <o are closed
under tensor product, and DTM — Modyk is a symmetric monoidal functor, thus
DTM.y and DTMs are closed under tensor product.

The unit 1 is compact in DTM, and so is in DTMg,, for any n € Z. Noting that
DTM.,, = DTM.,,, we have (iv).

To prove (v), note first that DTM — DTM induces equivalences |J, ., DTM, —

Unez DTM<,, and DTM® — DTM . In particular, DTM,, — DTM is fully faithful.

Let X € DTM~ = DTM®. Then X is the filtered colimit of a diagram I — DTM,
in DTM (or in DTM); colimye; Xy ~ X. Note that Rp(Ho(X))) ~ Ho(Rr(X))) by
t-exactness, and it is a dualizable object in Modgk, that is, a finite dimensional vec-
tor space. It follows from Corollary 7.3 that Hy(X)) is dualizable, that is, it belongs
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to DTMY, := DTM, N DTMP. It is obvious that the dual of Hy(X,) lies in DTM .
Recall that the realization functor Ry : DTM — Modyk preserves small colimit,
which is also t-exact, and H, preserves filtered colimits in Modgk. Using these facts,
we see that the natural map colimyHy(X,) — Hp(colimyX),) gives an equivalence
Ry(colimyHy(X))) — Rr(Hp(colimyX))). The heart DTMY is closed under filtered
colimits and thus colimyHy(X) is contained in the heart. Hence by Corollary 7.3,
colimy Hy(X,) — Ho(colimyX,) ~ X is an equivalence. This shows that DTME1 gen-
erates DTMY = W” under filtered colimits.

We remark that H%°(Spec k, K) = K. Hence (vi) holds. Finally, we will prove (vii).
For any X € WZ, the element in K corresponding to the composite 1 - X®@XV — 1
is equal to the element in K corresponding to Ry(1) — Ry(X) ® Rp(X)Y — Ry(1).
The latter element is nothing but the dimension of Ry (X)), which lies in Z. O

Corollary 7.12. The symmetric monoidal co-category DTM® endowed with the t-
structure (DTMso, DTM<y) is a locally dimensional oo-category in the sense of [25,
VIII, 5.6].

To state the next result, we prepare some notation. We say that a commutative
ring spectrum S is discrete if m;(S) = 0 for ¢ # 0. This property is equivalent to
the property that there exists a (usual) commutative ring R such that HR ~ S in
CAlg. Let CAlg®™ be the co-category of discrete commutative ring spectra. The co-
category CAlg®™ is equivalent to the nerve of the category of (usual) commutative rings
(via Eilenberg-MacLane spectra). Let & : CAlg™ — S be the functor which carries

A € CAlg™ to the space Map CAlg (@_‘L,st)(DTM@, Mod%) (which can be constructed by

© in Section 3.1 and Yoneda embedding). Let ¢ : CAlg®™ — S be the functor which
carries A € CAlg®™ to the space Map CAlg /\igst)(MOd%K, Mod%). Since there exists a

(Cat
natural equivalence

MapCAlg(@i‘jt) (MOd?IK7 MOd%) = MapCAlg(HKa A)

(cf. [11, Section 5], [24, 6.3.5.18]), £ is corepresented by HK. We here write Spec HK
for £. There is a sequence of functors Mod$, — DTM® — Mod% whose composite
is equivalent to the identity. Therefore we have Spec HK % & — Spec HK whose
composite is the identity. Let V : CAlg® — S be a functor equipped with V' —
Spec HK. To f : HK — A in CAlgs, = (CAlgdiS)HK/ we associate {f} Xspec HK(4)
V(A). It yields the functor Vy : CAlgds. — S. The morphism 7 : Spec HK — &
induces 7y : (Spec HK)g — Sp. Note that (Spec HK)y is equivalent to the constant
functor taking the value A that is, the final object.

The following result is proved by Lurie in the theory of locally dimensional oo-
categories (see [25, VIII, 5.2.12, 5.6.1, 5.6.19 and their proofs]). We here state only the
version in view of Corollary 7.12, which fits in with our need.

Proposition 7.13 ([25]). Let Grp™ be the nerve of the category of (usual) groups.
Consider the functor m (Gg,mo) : CAlghs — Grp® which is given by A — 1 (So(A), no).
Then 71 (&g,m0) is represented by MTG, that is, the Tannaka dual of (DTMY)®.
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7.3. Comparison theorem.

Definition 7.14. Let G : CAlgykx — Grp(S) be a derived group scheme over HK.
Let mp : Grp(S) — Grp®® be the truncation functor given by G — mo(G). If the
composition

CAlgds. — CAlgyx = Grp(S) B Grp®®

is represented by a group scheme G over K, we say that G, is the underlying group
scheme of G.

Theorem 7.15. Let MTG denote the tannakization of Ry : DTM® — PModg (cf.
Theorem 6.11). Then MTG is the underlying group scheme of MTG.

Proof. For A € CAlg®™, we set Mody >0 = {X € Mod, | m(X) =0 for i < 0} and
Moda <o = {X € Mody | m(X) = 0 for ¢ > 0}. Then the pair (Mod >¢, Mod4 <o) is
an accessible, left and right complete t-structure. Thus we have

Map™™ 1. (DTI\/I ,Mod%) =~ Map™ e (DTI\/|® Mod%)

CAlg(Cat, CAl g(Ca
= Mapgy, (DTM@,MOd%)

éaw)

where Map™ indicates the full subcategory spanned by right ¢t-exact functors, and the
second arrow is fully faithful by Proposition 4.7 and the construction of t-structure
on DTM. (The essential image consists of symmetric monoidal exact functors which
are right t-exact.) Note that Ry : DTM® — Mod5y is t-exact, and it belongs to

Mapéezl LG (DTM® Mod$%).

Consider the automorphism functor Aut(Ry) : CAlgyx — Grp(S) of Ry : DTME —
PMod% g in CAlg(CatSOZ)PMOngK ;» cf. Definition 3.3 (we abuse notation for Rr). Ac—
cording to Theorem 4.10 and 6.11, Aut(Rr) is represented by MTG. On the other hand,
using the above equivalence and unfolding the definition of (&g, n9) and Aut(Rr),
we see that the composite

Aut RT

CAlgse < CAlgyx  — Grp(S) =8 Grp®
is equivalent to 71 (&g, 19). Combined with Proposition 7.13 we complete the proof. O
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