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Abstract We propose a new verification method to enclose solutions for initial value prob-
lems of systems of first-order nonlinear ordinary differential equations (ODEs) using a lin-
earized inverse operator. The proposed approach can verify the existence and local unique-
ness of the exact solution independent of the choice of the approximation scheme, while
the existing methods usually depend on the numerical scheme for the approximate solution.
In contrast, most of the well-known verification methods to enclose solutions for nonlinear
ODEs work only on the specified approximate solution. Namely, in the existing verification
methods the numerical scheme for computing an approximate solution is essentially limited
to the Taylor method . Therefore, one of our purposes is to develop a verification method
that can obtain guaranteed error bounds independent of the approximation scheme. We will
present numerical examples of the proposed verification method that obtain rigorous er-
ror bounds of the approximate solutions obtained by the Euler method or the second-order
Runge-Kutta method.
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1 Introduction

In this paper, we consider a numerical verification method for the existence and the local
uniqueness of solutions for the following system of first-order nonlinear ordinary differential
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equations (ODEs): {
Au′ = f (t,u), in J, (1a)

u(0) = u0, (1b)

where u :=(u1, . . . ,un)
T is an n-dimensional vector function. Here, J :=(0,T )⊂R, (T <∞)

is a bounded interval, n is a positive integer, A is a symmetric positive-definite matrix in
Rn×n, u0 is an arbitrary initial vector in a given initial-value set U0 ⊂Rn, and f is a nonlinear
operator from J×Lp(J)n to L2(J)n, (2 ≤ p ≤ ∞). In addition, we assume that f is Fréchet
differentiable at an arbitrary v ∈ H1(J)n and the derivative f ′(v) belongs to L∞(J)n×n. We
denote that the solution u(t) of (1a) and (1b) as u(t;u0). An orbit of (1a) starting at u0 is
given by the set γ(u0) :=

{
u(t;u0) ∈ Rn ; t ∈ J

}
, where J := [0,T ] means the closure of J.

Moreover, we define the family of the orbit of (1a) and (1b) as the union of the orbits for all
initial values, i.e., γ(U0) := ∪u0∈U0 γ(u0).

Many methods have been developed for the same purpose. The Lohner method [6] and
the Taylor model developed by Berz and Makino [1] are especially well known. Moreover,
various software packages exist, including AWA by Lohner [7] and COSY INFINITY by
Makino [8]. RiOT and ACETAF by Eble [2] are also available. A technique combining the
Taylor model [1] and Nakao’s method was proposed by Yamamoto and Komori [11]. All of
these existing works are verification methods for the orbits of nonlinear ODEs that use the
Taylor series. Therefore, the nonlinear operator f must be smooth enough for t and u.

In contrast, our method is based on functional analysis, and it does not need the higher-
order derivatives of f . Moreover, we only need an approximate solution, which can be cal-
culated by any algorithm. Therefore, our method can be applied to a much wider range of
mathematical problems than those for which previous methods are appropriate. Also, some
of the numerical results in Section 8 show that the present approach gives better accuracy
than the existing method.

2 Notation and function spaces

In this section, we introduce the function spaces and the projections onto finite-dimensional
subspaces that will be used in this paper. Let L2(J) be the set of square integrable func-
tions on J, which is a real Hilbert space with inner product (u,v)L2(J) :=

∫
J u(t)v(t)dt. For

arbitrary 1 ≤ q < ∞, let Lq(J) be a Banach space with norm ‖u‖Lq(J) := (
∫

J |u(t)|
q dt)

1
q .

Similarly, let L∞(J) be a Banach space with norm ‖u‖L∞(J) := ess sup t∈J |u(t)|. For each

u ∈ Lq(J)n, we define Nq(u) ∈ Rn as Nq(u) :=
(
‖u1‖Lq(J) , . . . ,‖un‖Lq(J)

)T
.

Let H1(J) be a Sobolev space defined by H1(J) :=
{

u ∈ L2(J) ; u′ ∈ L2(J)
}

, which is
a Hilbert space with inner product (u,v)H1(J) := (u,v)L2(J) + (u′,v′)L2(J). Let V 1(J) be a
subspace of H1(J) defined by V 1(J) :=

{
u ∈ H1(J) ; u(0) = 0

}
. Then, V 1(J) is a Hilbert

space with inner product (u,v)V 1(J) := (u′,v′)L2(J).
For a Banach space X and a positive integer n, we define the n-dimensional Banach space

Xn by Xn := X×·· ·×X with norm ‖u‖Xn :=
√

∑n
i=1 ‖ui‖2

X . Similarly, let Xn×n be an n-by-n

matrix Banach space. We denote the L∞(J)n×n norm by ‖B‖L∞(J)n×n := ess sup t∈J max
√

σ
(
B(t)T B(t)

)
,

where σ
(
B(t)T B(t)

)
⊂ R are the set of eigenvalues for BT B.

For arbitrary 1 ≤ q < ∞, we define the `q norm for x ∈ Rn by ‖x‖`q := (∑n
i=1 |xi|q)

1
q .

Moreover, we define the `∞ norm for x ∈ Rn by ‖x‖`∞ := max{|x1| , . . . , |xn|}.
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Let H1
k (J)

n be a finite-dimensional subspace of H1(J)n where k > 0 is the discretization
parameter.

We denote the set of floating-point numbers by F. For the nonsingular floating-point
number matrix M ∈ Fn×n, the interval vector [ξ ]⊂Rn, which includes 0, and the translation
vector ζ ∈ Fn, we define the initial-value set U0 ⊂Rn as U0 = ζ +M[ξ ]. Namely, we assume
that the initial-value set is represented by an affine map in our verification method.

3 Numerical solutions

From the definition of U0, ζ is an element of U0. Therefore, we define uk ∈ H1
k (J)

n as the
approximate solution of (1a) and (1b) that approximately satisfies the following nonlinear
ODEs: {

Au′k = f (t,uk), in J, (2a)

uk(0) = ζ . (2b)

Namely, it is sufficient to satisfy the equality of (2a) in the approximate sense, but we as-
sume that the equality (2b) is rigorously satisfied. Moreover, we can use any algorithm to
solve (2a) numerically. Namely, the calculation to obtain uk could be done by floating-point
number operations, and we do not need any rigorous computations that would yield the exact
solution of (2a). However, uk has to be an element of H1

k (J)
n.

For example, when (2a) and (2b) are solved by the finite difference method, no round-
ing errors are generated in the calculation of uk(0) = ζ because ζ ∈ Fn. Therefore, we can
consider that the equality (2b) strictly holds. Since the finite difference method provides in-
formation only at discrete points of the approximate solution, one has to use some suitable
interpolation method to connect between these discrete points. It might be appropriate to
choose H1

k (J)
n as a Lagrange-type finite-element space that has the same order of conver-

gence as the finite difference method.

4 Numerical fundamental matrix of solutions

From the definition of the initial-value set U0, for an arbitrary initial value u0 ∈ U0 there
exists ξ ∈ [ξ ] such that u0 = ζ +Mξ . Here, ζ is the center of U0, and Mξ is the error for the
initial value u0. In Section 3, we defined the time evolution of ζ in our verification method.
In this section, we will define the time evolution for Mξ .

Since ξ is the “error”, it cannot be strictly expressed in a computer. Therefore, we con-
sider the time evolution of M. Note that ξ is an element of Rn and is not an interval of Rn.
The interval vectors are notated by square brackets, [ · ], throughout this paper.

Let Ek ∈H1
k (J)

n×n be the approximate fundamental matrix of solutions that satisfies the
following linear ODEs: {

AE ′k− f ′(uk)Ek = 0 in J, (3a)

Ek(0) = M. (3b)

Notice that, similar to the case of uk, it is sufficient to approximately satisfy the equality
(3a). However, the equality (3b) must be rigorously satisfied. In order to compute Ek, it is
usually appropriate to apply the same numerical method as for uk.

We now define the time evolution of Mξ by Ek(t)ξ . Therefore, we can obtain the en-
closure of this for any ξ ∈ [ξ ] by Ek(t)[ξ ], where Ek(t)[ξ ] denotes the multiplication of a
matrix and an interval vector.
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5 Norm estimates for numerical solutions

In this section, we consider the estimates of Ek. For any 1 ≤ q ≤ ∞ and i ∈ {1, . . . ,n}, we
define Nq(Ek,i) ∈Rn by the vector whose elements consist of the Lq(J) norm of the i-th row
of Ek, i.e.,

Nq(Ek,i) :=
(∥∥Ek,i,1

∥∥
Lq(J) , . . . ,

∥∥Ek,i,n
∥∥

Lq(J)

)T
.

Lemma 5.1 For any 1≤ q≤ ∞ and i ∈ {1, . . . ,n}, the following estimate holds:

sup
ξ∈[ξ ]

∥∥(Ekξ
)

i

∥∥
Lq(J) ≤

∥∥Nq(Ek,i)
∥∥
`q sup

ξ∈[ξ ]
‖ξ‖

`
q

q−1
. (4)

Proof. —— For arbitrary ξ ∈ [ξ ], we set us(t;ξ ) := Ek(t)ξ . Then, the i-th component of us
is written by us,i(t;ξ ) = ∑n

j=1 Ek,i, j(t)ξ j.
First, we consider the case of 1 < q < ∞. From the Hölder inequality, we have

‖us,i( · ;ξ )‖q
Lq(J) =

∫
J

∣∣∣∣∣ n

∑
j=1

Ek,i, j(t)ξ j

∣∣∣∣∣
q

dt

≤
∫

J

(
n

∑
j=1

∣∣Ek,i, j(t)
∣∣q)( n

∑
j=1

∣∣ξ j
∣∣ q

q−1

)q−1

dt

=

(
n

∑
j=1

∥∥Ek,i, j
∥∥q

Lq(J)

)(
n

∑
j=1

∣∣ξ j
∣∣ q

q−1

)q−1

‖us,i( · ;ξ )‖Lq(J) ≤
∥∥Nq(Ek,i)

∥∥
`q ‖ξ‖

`
q

q−1
.

Next, in the case of q = 1, we have

‖us,i( · ;ξ )‖L1(J) =
∫

J

∣∣∣∣∣ n

∑
j=1

Ek,i, j(t)ξ j

∣∣∣∣∣ dt

≤

(
n

∑
j=1

∥∥Ek,i, j
∥∥

L1(J)

)
max{|ξ1| , . . . , |ξn|}

=
∥∥N1(Ek,i)

∥∥
`1 ‖ξ‖`∞ .

Finally, in the case of q = ∞, we have

‖us,i( · ;ξ )‖L∞(J) = ess sup
t∈J

∣∣∣∣∣ n

∑
j=1

Ek,i, j(t)ξ j

∣∣∣∣∣
≤max

{∥∥Ek,i,1
∥∥

L∞(J) , . . . ,
∥∥Ek,i,n

∥∥
L∞(J)

} n

∑
j=1

∣∣ξ j
∣∣

=
∥∥N∞(Ek,i)

∥∥
`∞ ‖ξ‖`1 .

Therefore, this proof is completed. �
The upper bounds of supξ∈[ξ ] ‖ξ‖

`
q

q−1
in the right-hand side of (4) can be computed by

interval arithmetic. Note that Ek is approximately computed, but the upper bounds of the
norm of Ek must be rigorously computed.

Similarly, the residual norm of Ekξ is obtained as follows.
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Lemma 5.2 For any 1≤ q≤ ∞ and i ∈ {1, . . . ,n}, the following estimate holds:

sup
ξ∈[ξ ]

∥∥((AE ′k− f ′(uk)Ek
)
ξ
)

i

∥∥
Lq(J) ≤

∥∥Nq
((

AE ′k− f ′(uk)Ek
)

i

)∥∥
`q sup

ξ∈[ξ ]
‖ξ‖

`
q

q−1
. (5)

The proof is almost the same as that for Lemma 5.1, so we have omitted it.
Since the left-hand side of (5) is the residual norm of Ekξ , we expect that it has a conver-

gence order with respect to the discretization parameter k. However, if we directly compute
it by interval arithmetic, the convergence order may not be observed. This phenomenon is
considered to be due to the cancellation of significant digits. On the other hand, the estimate
of the right-hand side of (5) is separated into the interval [ξ ] and the residual norm of Ek,
which is independent of [ξ ]. It plays an essential role in attaining the desired convergence
order with respect to the discretization parameter k.

6 Verification conditions of solutions for the residual equation

We defined the approximate solution and the approximate fundamental matrix of solutions
in Section 3 and Section 4, respectively. However, the discretization error, the truncation
error, and the rounding error of (2a) and (3a) were not considered. We will discuss these
errors in the present section using the residual equation.

Let ξ be an arbitrary element of [ξ ]. Then, the residual equation for ξ is defined by{
Aw′− f ′(uk)w = f

(
t,uk +Ekξ +w

)
− f ′(uk)w−Au′k−AE ′kξ , in J, (6a)

w(0) = 0. (6b)

From now on, we will denote the right-hand side of (6a) by gξ (w) := f
(
t,uk +Ekξ +w

)
−

f ′(uk)w− Au′k − AE ′kξ . Moreover, we will denote the solution w(t) of (6a) and (6b) by
w(t;ξ ). Then, the existence and the local uniqueness of the solution u( · ;u0) for (1a) and
(1b) are equivalent to the existence and the local uniqueness of the solution w( · ;ξ ) for (6a)
and (6b). If we put u(t;u0) := uk(t) +Ek(t)ξ +w(t;ξ ), then u( · ;u0) satisfies (1a). Also,
from (2b) and (3b), we obtain the following equality:

u(0;u0) = uk(0)+Ek(0)ξ +w(0;ξ ) = ζ +Mξ ∈U0.

Therefore, in what follows, we consider the existence and the local uniqueness of the solu-
tion w( · ;ξ ) for (6a) and (6b).

Let Lt :V 1(J)n→ L2(J)n be the linear ordinary differential operator of the left-hand side
of (6a), i.e., Lt := A d

dt − f ′(uk). Then, the residual equations (6a) and (6b) are equivalent to
the following fixed-point problem:

w( · ;ξ ) = L −1
t gξ

(
w( · ;ξ )

)
. (7)

We denote the nonlinear integral operator of the right-hand side of (7) by Fξ := L −1
t gξ .

Then, from the Sobolev embedding theorem, Fξ is a compact operator from Lp(J)n to
Lp(J)n. Therefore, we can use the Schauder fixed-point theorem to show the existence of
a fixed point of (7).

For a suitable positive constant α ∈ R, which is independent of ξ but which is deter-
mined to be dependent on the interval vector [ξ ], we define the candidate set Wα ⊂ Lp(J)n

as follows:
Wα :=

{
w ∈ Lp(J)n ; ‖w‖Lp(J)n ≤ α

}
.
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If Wα satisfies Fξ (Wα)⊂Wα , then at least one fixed point of (7) exists in Wα by the Schauder
fixed-point theorem. Therefore, the sufficient condition of Fξ (Wα) ⊂Wα becomes a verifi-
cation condition for the existence of a solution.

We assume that we can obtain the positive constant CL2,Lp that satisfies the following
estimates: ∥∥L −1

t
∥∥

L
(

L2(J)n,Lp(J)n
) ≤CL2,Lp . (8)

For example, a computational method to get CL2,Lp is given in [5]. Then, we have the fol-
lowing estimates:∥∥Fξ (Wα)

∥∥
Lp(J)n = sup

w∈Wα

∥∥L −1
t gξ (w)

∥∥
Lp(J)n

≤
∥∥L −1

t
∥∥

L
(

L2(J)n,Lp(J)n
) sup

w∈Wα

∥∥gξ (w)
∥∥

L2(J)n

≤CL2,Lp sup
w∈Wα

∥∥gξ (w)
∥∥

L2(J)n .

Therefore, Fξ -invariance of Wα is written as the the following inequality:

CL2,Lp sup
w∈Wα

∥∥gξ (w)
∥∥

L2(J)n ≤ α. (9)

Since the parameter ξ is an arbitrary element of [ξ ], we have the sufficient condition of
(9) by

CL2,Lp sup
ξ∈[ξ ]

sup
w∈Wα

∥∥gξ (w)
∥∥

L2(J)n ≤ α. (10)

The rigorous upper bounds of supremum for ξ in (10) can be computed by interval arith-
metic. Thus, we can obtain the verification condition of the existence for the family of solu-
tions with all initial data in [ξ ].

Similarly, we can obtain the verification condition of the local uniqueness for solutions
of the residual equation. Let ξ be an arbitrary element of [ξ ] ⊂ Rn. For a suitable positive
constant γ ∈R, if Wγ has Fξ -contractility, then the fixed point of Fξ is unique in Wγ . Namely,
we show that there exists a constant 0≤CFξ < 1 satisfying∥∥Fξ (w)−Fξ (w̃)

∥∥
Lp(J)n ≤CFξ ‖w− w̃‖Lp(J)n , ∀w, w̃ ∈Wγ . (11)

Since the parameter ξ is an arbitrary element of [ξ ], we have the verification condition,
0 ≤ supξ∈[ξ ]CFξ < 1, for the local uniqueness of the solution of the residual equation for
arbitrary initial data in [ξ ].

Remark 6.1 From the fact that the matrix A is symmetric and positive definite, it is seen that
the initial value problems (1a) and u′ = A−1 f (t,u) are equivalent. Therefore, without loss of
generality, we may assume that A is an identity matrix. However, from our experience on the
estimates of the linearized inverse operator [5], the estimates of the inverse of A d

dt − f ′(uk)

are usually easier than the estimates of the inverse of d
dt −A−1 f ′(uk). This is because in the

estimates for the inverse of A d
dt − f ′(uk), it is sufficient to get a lower bound of the minimum

eigenvalue of A, while we need the square of the minimum eigenvalue of A for the estimate
of the inverse of d

dt −A−1 f ′(uk).
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7 A posteriori estimates

After verifying the existence of a fixed point of (7), we calculate the a posteriori (error)
estimates for the fixed point (i.e., the solution of (6a) and (6b)).

Theorem 7.1 Let α be a positive constant satisfying (10). For an arbitrary initial value
u0 ∈U0, we denote the solution of (1a) and (1b) by u( · ;u0)∈H1(J)n. Then, for any 1≤ q≤
∞ and i ∈ {1, . . . ,n}, we have the following error estimate:

sup
u0∈U0

∥∥ui( · ;u0)−uk,i
∥∥

Lq(J)n ≤CL2,LqC−1
L2,Lp α +

∥∥Nq(Ek,i)
∥∥
`q sup

ξ∈[ξ ]
‖ξ‖

`
q

q−1
. (12)

Proof. —— From the definition of U0, there exists ξ ∈ [ξ ] such that u0 = ζ +Mξ . Moreover,
w( · ;ξ ) exists in Wα , which is the fixed point of (7) for ξ by assumption (10). Therefore,
calculating Lq norm for (7), we have

‖wi( · ;ξ )‖Lq(J) ≤ ‖w( · ;ξ )‖Lq(J)n

=
∥∥L −1

t gξ
(
w( · ;ξ )

)∥∥
Lq(J)n

≤CL2,Lq

∥∥gξ
(
w( · ;ξ )

)∥∥
L2(J)n

≤CL2,Lq sup
ξ∈[ξ ]

sup
w∈Wα

∥∥gξ (w)
∥∥

L2(J)n

≤CL2,LqC−1
L2,Lp α.

From the fact that u(t;u0) = uk(t)+Ek(t)ξ +w(t;ξ ), we have∥∥ui( · ;u0)−uk,i
∥∥

Lq(J) ≤ ‖(Ekξ )i‖Lq(J)+‖wi( · ;ξ )‖Lq(J)

≤CL2,LqC−1
L2,Lp α +

∥∥Nq(Ek,i)
∥∥
`q sup

ξ∈[ξ ]
‖ξ‖

`
q

q−1
,

where we used Lemma 5.1. �
From the result in Theorem 7.1 with q = ∞, we obtain the enclosure of the family of the

orbit of (1a) and (1b) as follows:

γ(U0)⊂

{
uk(t)+ c ∈ Rn ; t ∈ J, |ci| ≤CL2,L∞C−1

L2,Lp α +
∥∥N∞(Ek,i)

∥∥
`∞ sup

ξ∈[ξ ]
‖ξ‖`1

}
. (13)

In order to verify solutions for the initial value problem step-by-step in time, it is very
important to obtain the enclosure of the range of the family of solutions at T , i.e., the
set {u(T ;u0) ∈ Rn ; u0 ∈U0}. This enclosure is immediately obtained from (13). However,
the L∞ estimates like (13) often cause so-called overestimates. Therefore, the enclosure of
u(T ;u0) is computed using a different estimate from the result in Theorem 7.1.

Lemma 7.2 Let α be a positive constant satisfying (10). For arbitrary initial data ξ ∈ [ξ ],
we denote the fixed point of (7) by w( · ;ξ ) ∈Wα . Then, for each i ∈ {1, . . . ,n}, we have the
following estimate:

∣∣(Aw(T ;ξ )
)

i

∣∣≤(∥∥ f ′i (uk)
∥∥

L
p

p−1 (J)n
+
√
|J|C−1

L2,Lp

)
α. (14)
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Proof. —— From the assumption, the fixed point w( · ;ξ ) satisies (6a) and (6b). Therefore,
from (6a) and (6b), we have

Aw(T ;ξ ) =
∫ T

0

d
dt

Aw(t;ξ )dt

=
∫ T

0

(
f ′(uk)w(t;ξ )+gξ

(
w(t;ξ )

))
dt.

Therefore, we obtain the estimates of the i-th component as follows:

(
Aw(T ;ξ )

)
i =

n

∑
j=1

∫ T

0
f ′i, j(uk)w j(t;ξ )dt +

∫ T

0
gξ ,i
(
w(t;ξ )

)
dt

∣∣(Aw(T ;ξ )
)

i

∣∣≤ n

∑
j=1

∫ T

0

∣∣ f ′i, j(uk)w j(t;ξ )
∣∣ dt +

∫ T

0

∣∣gξ ,i
(
w(t;ξ )

)∣∣ dt.

From the Hölder inequality and the Schwarz inequality, we have

∣∣(Aw(T ;ξ )
)

i

∣∣≤ n

∑
j=1

∥∥ f ′i, j(uk)
∥∥

L
p

p−1 (J)

∥∥w j( · ;ξ )
∥∥

Lp(J)+
√
|J|
∥∥gξ ,i

(
w( · ;ξ )

)∥∥
L2(J)

≤
∥∥ f ′i (uk)

∥∥
L

p
p−1 (J)n

‖w( · ;ξ )‖Lp(J)n +
√
|J|
∥∥gξ
(
w( · ;ξ )

)∥∥
L2(J)n .

Here, ‖w( · ;ξ )‖Lp(J)n ≤ α follows from w( · ;ξ ) ∈Wα . Moreover, from (10), we have∥∥gξ
(
w( · ;ξ )

)∥∥
L2(J)n ≤ sup

ξ∈[ξ ]
sup

w∈Wα

∥∥gξ (w)
∥∥

L2(J)n ≤C−1
L2,Lp α.

Therefore, we obtain∣∣(Aw(T ;ξ )
)

i

∣∣≤ ∥∥ f ′i (uk)
∥∥

L
p

p−1 (J)n
α +

√
|J|C−1

L2,Lp α,

which completes the proof. �
Let [rW ]⊂ Rn be an interval vector such that each component is defined by

[rW,i] :=
[
−
∥∥ f ′i (uk)

∥∥
L

p
p−1 (J)n

−
√
|J|C−1

L2,Lp ,
∥∥ f ′i (uk)

∥∥
L

p
p−1 (J)n

+
√
|J|C−1

L2,Lp

]
α.

Then, the results of Lemma 7.2 show that the range of Aw(T ; ·) is included in [rW ], i.e.,∪
ξ∈[ξ ] Aw(T ;ξ )⊂ [rW ]. Let [η ] be an interval vector in Rn defined by

[η ] := [ξ ]+Ek(T )−1A−1[rW ]. (15)

We have an enclosure of the range of u using [η ] as follows.

Theorem 7.3 Under the same assumptions as in Theorem 7.1, we have the following enclo-
sure: ∪

u0∈U0

u(T ;u0)⊂ uk(T )+Ek(T )[η ]. (16)
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Proof. —— From the assumptions, for arbitrary u0 ∈ U0 there exists ξ ∈ [ξ ] such that
u0 = ζ +Mξ and u(t;u0) = uk(t)+Ek(t)ξ +w(t;ξ ). From Lemma 7.2, we have

u(T ;u0) = uk(T )+Ek(T )ξ +w(T ;ξ )

= uk(T )+Ek(T )
(
ξ +Ek(T )−1A−1Aw(T ;ξ )

)
∈ uk(T )+Ek(T )

(
[ξ ]+Ek(T )−1A−1[rW ]

)
.

Therefore, this proof is completed. �

Remark 7.4 (Wrapping effect) When we verify a family of the orbits of the initial value
problems step-by-step in time, the so-called wrapping effect appears. The effect is that the
validated set exponentially increases with the time variable in the verification process un-
less a counterplan is considered. Usually, this effect is generated by the interval arithmetic
during the multiplication of matrices and vectors. In our verification method, the wrapping
effect is mainly generated in the computation of [η ]. Therefore, it is necessary to carry out
the computation of [η ] using a sufficiently careful technique.

Lohner proposed a computation technique to reduce the wrapping effect in his method
[6]. Note that, for a nonsingular matrix B ∈ Rn×n, (15) can be rewritten as:

[η ] = B
(

B−1[ξ ]+B−1(AEk(T )
)−1

[rW ]
)
. (17)

Lohner choose B as an approximate orthogonal matrix that appears in the QR decomposi-
tion of

(
AEk(T )

)−1. The following algorithm shows the computational sequence of (17) by
Lohner.

Lohner’s algorithm [6]
1. B← Q factor for numerical QR decomposition of

(
AEk(T )

)−1

2. [R]← [B−1]
[(

AEk(T )
)−1]

3. [η̃ ]← [B−1][ξ ]+ [R][rW ]
4. [η ]← B[η̃ ]

From Theorem 7.3, we obtain the set that includes the range of solutions of (1a) and
(1b). Moreover, notice that the set of the right-hand side of (16) is given by an affine map.
Since the initial value for the next time step is taken as uk(T )+Ek(T )[η ], our verification of
the solution continues in a step-by-step fashion.

8 Verification results

In this section, we show some results by our verification method for the same problems
treated by Yamamoto and Komori [11].

Let A be the identity matrix in R2×2. We define the initial ζ by ζ = (0,4)T ∈ F2 and the
initial M as the identity matrix in R2×2. We take [ξ ]⊂R2 as a point vector ([0,0], [0,0])T or
an interval vector ([−0.05,0.05], [−0.05,0.05])T . Let J be an open interval in R satisfying
|J| = 0.01, and we try to verify this, step-by-step with step size |J|, up to the desired time.
In order to solve (2a) and (3a) numerically, we used the Euler method or the second-order
Runge-Kutta method (RK2). Note that, in the present case, the equalities of (2b) and (3b)
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are strictly satisfied. Corresponding to the Euler method, i.e., first-order accuracy, we used
the P1 finite-element space as H1

k (J)
2. Similarly, since RK2 has second-order accuracy, we

used the P2 finite-element space in that case. We used a uniform time step with k = 0.005
or k = 0.0005.

8.1 Linear problem

Now we present the verification results for the solution u(t;u0) =
(
u1(t;u0),u2(t;u0)

)T of
the following linear ODEs with an ending time of 6.28:{

u′1 = u2, (18a)

u′2 =−u1. (18b)

Fig. 1 Graph of uk,1 and uk,2 Fig. 2 Phase portrait

Figure 1 shows the approximate solution uk. The horizontal and vertical axes corre-
spond to time and uk(t), respectively. Moreover, the black and gray lines show uk,1 and uk,2,
respectively. Figure 2 is the phase plane of uk.

In this problem, since n = 2 and f (u) = (u2,−u1)
T is a linear operator, we adopted

L2(J)2 as the basic function space for verification, i.e., we choose p = 2. The Fréchet deriva-
tive of f at the approximate solution uk ∈ H1

k (J)
2 is given by

f ′(uk) =

(
0 1
−1 0

)
.

On the other hand, us ∈ H1
k (J)

2 is defined by us := Ekξ . Then, the residuals for uk and us
are given by re :=−u′k + f (uk) and se :=−u′s + f ′(uk)us, respectively. Therefore gξ , which
is the right-hand side of the residual equation (6a), is given by

gξ (w) =
(

uk,2 +us,2 +w2−w2−u′k,1−u′s,1
−(uk,1 +us,1 +w1)+w1−u′k,2−u′s,2

)
=

(
re,1 + se,1
re,2 + se,2

)
.

Next, we consider the sufficient condition of (10). From the linearity of the problem,
observe that

CL2,L2 sup
ξ∈[ξ ]

sup
w∈Wα

∥∥gξ (w)
∥∥

L2(J)2 =CL2,L2 sup
ξ∈[ξ ]
‖re + se‖L2(J)2

≤CL2,L2 sup
ξ∈[ξ ]

√(
‖re,1‖L2(J)+‖se,1‖L2(J)

)2
+
(
‖re,2‖L2(J)+‖se,2‖L2(J)

)2
.
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Therefore, if the positive constant α is taken as

α :=CL2,L2

√√√√(‖re,1‖L2(J)+ sup
ξ∈[ξ ]
‖se,1‖L2(J)

)2

+

(
‖re,2‖L2(J)+ sup

ξ∈[ξ ]
‖se,2‖L2(J)

)2

,

then the Fξ -invariance of Wα is satisfied.

Example 8.1-1: P1 element with [ξ ] = ([0,0], [0,0])T

Fig. 3 k = 0.005 Fig. 4 k = 0.0005

Figure 3 and Fig. 4 show the upper bounds of errors for the approximate solution
for the P1 element (Euler method) with uniform step size k = 0.005 and k = 0.0005, re-
spectively. The horizontal axis is the time and the vertical axis corresponds to the error
er := supu0∈U0

|u(t;u0)−uk(t)|. Moreover, the black and gray lines show er,1 and er,2, re-
spectively. However, these two lines seem to be almost overlapping in this case.

From the above results, it seems that the errors are increasing in time with order approx-
imately O(t). These results mean that there is no wrapping effect that causes an exponential
increase in the validated region. Moreover, the magnitude of errors in Fig. 4 is approximately
1
10 in Fig. 3. Therefore, we may deduce that our verification algorithm has a convergence
order O(k), which seems to be a reasonable result for using the P1 element (Euler method).

Example 8.1-2: P1 element with [ξ ] = ([−0.05,0.05], [−0.05,0.05])T

Fig. 5 k = 0.005 Fig. 6 k = 0.0005

Figure 5 and Fig. 6 are the verification results from starting with interval initial data. The
increase in the validated region still remains approximately O(t) even if the initial-value set
is fairly big.
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Example 8.1-3: P2 element with [ξ ] = ([0,0], [0,0])T

Fig. 7 k = 0.005 Fig. 8 k = 0.0005

Figure 7 and Fig. 8 are the verification results with the P2 element (RK2) and a point
initial value. These graphs are also increasing by approximately O(t) in time. Moreover, it
seems that our verification algorithm has an accuracy of O(k2), which is also a quite natural
result for the P2 element.

In the present case, since the exact solution of this problem is u(t;ζ ) = 4(sin t,cos t)T ,
we can directly compute the difference between u and uk. Table 1 shows the actual errors at
nodal points and our verification results. As shown in Table 1, the accuracy of our verifica-
tion results is at most twice the exact error.

Table 1 Exact errors and validated range at nodal points

k max
1≤ j≤2,0≤ti≤6.28

∣∣u j(ti;ζ )−uk, j(ti)
∣∣ max

1≤ j≤2,0≤ti≤6.28
er, j(ti)

0.005 1.049910E-04 2.2736E-04
0.0005 1.049858E-06 2.2734E-06

Example 8.1-4: P2 element with [ξ ] = ([−0.05,0.05], [−0.05,0.05])T

Fig. 9 k = 0.005 Fig. 10 k = 0.0005

Figure 9 and Fig. 10 are the verification results of using the P2 element (RK2) with
interval initial data. In this case, it seems that the behavior of the bounds of the validated
region is almost independent of the time, for the error bounds are relatively small compared
with the width of the interval initial data. The enlargement is at most 10−3 for the validated
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region in Fig. 9. It is also seen that every graph for this problem repeats the pattern of
increasing and decreasing. This phenomenon is due to the fact that the box of the initial-
value set leads to a set of closed orbits in the phase space. The length of the diagonal of this
box, i.e., 0.05

√
2≈ 0.07071, is the maximum value of Fig. 9.

8.2 Nonlinear problem

In this subsection, we show some verification results for the solutions u(t;u0)=
(
u1(t;u0),u2(t;u0)

)T

of the following nonlinear ODEs introduced by Yamomoto and Komori [11]:{
u′1 = u2, (19a)

u′2 = u1−u3
1. (19b)

We now show the results until an ending time of 3.3 so that it is the same length as shown
by Yamamoto and Komori [11].

Fig. 11 Graph of uk,1 and uk,2 Fig. 12 Phase portrait

Figure 11 is the graph showing the approximate solution uk. The black and gray lines
correspond to uk,1 and uk,2, respectively. Figure 12 is the phase plane of uk.

In this problem, due to the fact that n = 2 and f (u) =
(
u2,u1− u3

1
)T has cubic nonlin-

earity, we used the space L6(J)2, i.e., we choose p = 6. The Fréchet derivative of f at the
approximate solution uk ∈ H1

k (J)
2 is given by

f ′(uk) =

(
0 1

1−3u2
k,1 0

)
.

We define us ∈H1
k (J)

2 by us := Ekξ , as before. Also, the residuals for uk and us are defined
by re := −u′k + f (uk) and se := −u′s + f ′(uk)us, respectively. Then, gξ in (6a) is given as
follows,

gξ (w) =
(

uk,2 +us,2 +w2−w2−u′k,1−u′s,1
uk,1 +us,1 +w1− (uk,1 +us,1 +w1)

3− (1−3u2
k,1)w1−u′k,2−u′s,2

)
=

(
re,1 + se,1

−(3uk,1 +us,1 +w1)(us,1 +w1)
2 + re,2 + se,2

)
.

Next, we consider the condition of (10). Since gξ ,1 is not dependent on w, we have∥∥gξ ,1(w)
∥∥

L2(J) ≤ ‖re,1‖L2(J)+‖se,1‖L2(J) .
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On the other hand, for an arbitrary w ∈Wα , we get∥∥gξ ,2(w)
∥∥

L2(J) ≤ ‖re,2‖L2(J)+‖se,2‖L2(J)+
∥∥∥(3uk,1 +us,1 +w1

)(
us,1 +w1

)2
∥∥∥

L2(J)
.

Using the Hölder inequality, the third term of the right-hand side is estimated as∥∥∥(3uk,1 +us,1 +w1
)(

us,1 +w1
)2
∥∥∥

L2(J)
≤
∥∥3uk,1 +us,1 +w1

∥∥
L6(J) ‖us,1 +w1‖2

L6(J)

≤
(
3
∥∥uk,1

∥∥
L6 +‖us,1‖L6 +α

)(
‖us,1‖L6 +α

)2
.

Therefore, we have

sup
ξ∈[ξ ]

sup
w∈Wα

∥∥gξ (w)
∥∥

L2(J)2 = sup
ξ∈[ξ ]

sup
w∈Wα

√∥∥gξ ,1(w)
∥∥2

L2(J)+
∥∥gξ ,2(w)

∥∥2
L2(J)

≤ sup
ξ∈[ξ ]

√(∥∥re,1
∥∥

L2 +
∥∥se,1

∥∥
L2

)2
+
(∥∥re,2

∥∥
L2 +

∥∥se,2
∥∥

L2 +
(
α +

∥∥us,1
∥∥

L6 +3
∥∥uk,1

∥∥
L6

)(
α +

∥∥us,1
∥∥

L6

)2
)2

.

From the above, we obtain a sufficient condition for (10), which leads to a sixth-order alge-
braic inequality in α . Therefore, if we find a positive constant α satisfying this inequality,
then it implies the Fξ -invariance of Wα .

Example 8.2-1: P1 element with [ξ ] = ([0,0], [0,0])T

Fig. 13 k = 0.005
Fig. 14 k = 0.0005

Figure 13 and Fig. 14 show the upper bounds of the errors for the approximate solu-
tion for the P1 element (Euler method) with uniform step size k = 0.005 and k = 0.0005,
respectively. The horizontal and vertical axes correspond to the time and the error er :=
supu0∈U0

|u(t;u0)−uk(t)|, respectively. Moreover, the black and gray lines show er,1 and
er,2, respectively.

As shown in Fig. 13, in the case of k = 0.005, our verification was unsuccessful before
T = 3.3. On the other hand, by the use of a smaller step size, i.e., k = 0.0005, we successfully
verified until the desired time. However, as shown in Fig. 14, the verified accuracy seems to
be coarse.

Example 8.2-2: P1 element with [ξ ] = ([−0.05,0.05], [−0.05,0.05])T

Figure 15 and Fig. 16 are the verification results with interval initial data. In this case,
the verifications were not quickly successful.
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Fig. 15 k = 0.005 Fig. 16 k = 0.0005

Fig. 17 k = 0.005 Fig. 18 k = 0.0005

Example 8.2-3: P2 element with [ξ ] = ([0,0], [0,0])T

Figure 17 and Fig. 18 show the verification results when we used the P2 element (RK2).
These results suggest that the accuracy of our verification algorithm is of the order O(k2).

Example 8.2-4: P2 element with [ξ ] = ([−0.05,0.05], [−0.05,0.05])T

Fig. 19 k = 0.005 Fig. 20 k = 0.0005

Figure 19 and Fig. 20 are the verification results from using the P2 element (RK2) with
interval initial data. The validated computations are successful until the desired time T = 3.3,
but the relative error is not very good.

From these verification results, we can expect that our verification method has the same
accuracy as the magnitude of the residual norms ‖re‖ and ‖se‖. When an initial value is
the point interval, the order of the validated accuracy seems to be O(k) and O(k2) with step
size k for the P1 and P2 elements, respectively. As a consequence, it is seen that, compared
with the numerical examples of Yamamoto and Komori [11], our results are more accurate
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in the case of the P2 element but worse for the P1 element. Therefore, in order to attain
high-accuracy verification when using our method, we should choose a numerical algorithm
that results in a small residual norm.

Remark 8.1 (Computer environment) All computations were carried out on an Intel Core
i7 860, 16GB of DDR3 memory (OS: Windows 7) using INTLAB version 6.0, a toolbox in
MATLAB 2010b developed by Rump [10] for self-validating algorithms. Therefore, all nu-
merical values in these tables are verified data in the sense of strict rounding-error control.

9 Conclusions

We proposed a new verification method to enclose solutions of initial value problems for
systems of first-order nonlinear ODEs using a linearized inverse operator. We proved that
the wrapping effect could be satisfactorily reduced using an affine map to the initial-value
set. If we use the approximate solution with sufficient accuracy, the exponential enlargement
of the validated region could be avoided in the verification results. Moreover, the validated
accuracy of the proposed method is essentially dependent on the residual norm of the ap-
proximate solutions. Therefore, in order to obtain high-accuracy verification, we should
choose the numerical algorithm that yields the smallest possible residual norm.
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