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BOUNDARY HARNACK INEQUALITY
FOR MARKOV PROCESSES WITH JUMPS

KRZYSZTOF BOGDAN, TAKASHI KUMAGAI, AND MATEUSZ KWAŚNICKI

Abstract. We prove a boundary Harnack inequality for jump-type Markov processes
on metric measure state spaces, under comparability estimates of the jump kernel and
Urysohn-type property of the domain of the generator of the process. The result holds for
positive harmonic functions in arbitrary open sets. It applies, e.g., to many subordinate
Brownian motions, Lévy processes with and without continuous part, stable-like and
censored stable processes, jump processes on fractals, and rather general Schrödinger,
drift and jump perturbations of such processes.

1. Introduction

The boundary Harnack inequality (BHI) is a statement about nonnegative functions
which are harmonic on an open set and vanish outside the set near a part of its boundary.
BHI asserts that the functions have a common boundary decay rate. The property
requires proper assumptions on the set and the underlying Markov process, ones which
secure relatively good communication from near the boundary to the center of the set.
By this we mean that the process starting near the boundary visits the center of the set
at least as likely as creep far along the boundary before leaving the set.

BHI for harmonic functions of the Laplacian ∆ in Lipschitz domains was proved in
1977–78 by B. Dahlberg, A. Ancona and J.-M. Wu ([4, 37, 80]), after a pioneering at-
tempt of J. Kemper ([55, 56]). In 1989 R. Bass and K. Burdzy proposed an alternative
probabilistic proof based on elementary properties of the Brownian motion ([13]). The
resulting ‘box method’ was then applied to more general domains, including Hölder do-
mains of order r > 1/2, and to more general second order elliptic operators ([14, 15]). BHI
trivially fails for disconnected sets, and counterexamples for Hölder domains with r<1/2
are given in [15]. In 2001–09, H. Aikawa studied BHI for classical harmonic functions in
connection to the Carleson estimate and under exterior capacity conditions ([1, 2, 3]).

Moving on to nonlocal operators and jump-type Markov processes, in 1997 K. Bogdan
proved BHI for the fractional Laplacian ∆α/2 (and the isotropic α-stable Lévy process) for
0 < α < 2 and Lipschitz sets ([19]). In 1999 R. Song and J.-M. Wu extended the results
to the so-called fat sets ([73]), and in 2007 K. Bogdan, T. Kulczycki and M. Kwaśnicki
proved BHI for ∆α/2 in arbitrary, in particular disconnected, open sets ([26]). In 2008
P. Kim, R. Song and Z. Vondraček proved BHI for subordinate Brownian motions in
fat sets ([61]) and in 2011 extended it to a general class of isotropic Lévy processes and
arbitrary domains ([63]). Quite recently, BHI for ∆+∆α/2 was established by Z.-Q. Chen,
P. Kim, R. Song and Z. Vondraček [32]. We also like to mention BHI for censored [43]
by Q. Guan and fractal jump processes [53, 75] by K. Kaleta and M. Kwaśnicki.
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Generally speaking, BHI is more a topological issue for diffusion processes, and more
a measure-theoretic issue for jump-type Markov processes, which may transport from
near the boundary to the center of the set by direct jumps. However, direct jumps fully
explain the asymptotics of harmonic functions only at points where the set is rather thin,
and for other points a more complex interplay occurs between large jumps and gradual
‘excursions’ away from the boundary, see [19, 26] (the corresponding classification of the
boundary points seems to be of considerable importance).

We recall that BHI in particular applies to and may yield an approximate factorization
of the Green function. This line of research was completed for Lipschitz domains in
2000 by K. Bogdan ([20]) for ∆ and in 2002 by T. Jakubowski ([50]) for ∆α/2. It is
now a well-established technique ([46]) and extensions were proved, e.g., for subordinate
Brownian motions by P. Kim, R. Song and Z. Vondraček ([64]). We should note that so
far the technique is typically restricted to Lipschitz or fat sets. Furthermore, for smooth
sets, e.g. C1,1 sets, the approximate factorization is usually more explicit. This is so
because for smooth sets the decay rate in BHI can often be explicitly expressed in terms
of the distance to the boundary of the set. The first complete results in this direction
were given for ∆ in 1986 by Z. Zhao ([81]) and for ∆α/2 in 1997 by T. Kulczycki ([65])
and in 1998 by Z.-Q. Chen and R. Song ([35]). The estimates are now extended to
subordinate Brownian motions, and the renewal function of the subordinator is used in
the corresponding formulations ([64]). Accordingly, the Green function of smooth sets
enjoys approximate factorization for rather general isotropic Lévy processes ([29, 64]).
We expect further progress in this direction with applications to perturbation theory via
the so-called 3G theorems, and to nonlinear partial differential equations ([25, 46, 68]).
We should also mention estimates and approximate factorization of the Dirichlet heat
kernels, which are intensively studied at present. The estimates depend on BHI ([24]),
and reflect the fundamental decay rate in BHI ([31, 45]).

BHI tends to self-improve and may lead to the existence of the boundary limits of
ratios of nonnegative harmonic functions, thanks to oscillation reduction ([13, 19, 26,
52]). The oscillation reduction technique is rather straightforward for local operators.
It is more challenging for non-local operators, as it involves subtraction of harmonic
functions, which destroys global nonnegativity. The technique requires a certain scale
invariance, or uniformity of BHI, and works, e.g., for ∆ in Lipschitz domains ([13]) and for
∆α/2 in arbitrary domains ([26]). We should remark that Hölder continuity of harmonic
functions is a similar phenomenon, related to the usual Harnack inequality, and that BHI
extends the usual Harnack inequality if, e.g., constant functions are harmonic. Hölder
continuity of harmonic functions is crucial in the theory of partial differential equations
[6, 16], and the existence of limits of ratios of nonnegative harmonic functions leads to
the construction of the Martin kernel and to representation of nonnegative harmonic
functions ([5, 26]).

The above summary indicate further directions of research resulting from our develop-
ment. The main goal of this article is to study the following boundary Harnack inequality.
In Section 2 we specify notation and assumptions which validate the estimate.

(BHI) Let x0 ∈ X, 0 < r < R < R0, and let D ⊆ B(x0, R) be open. Suppose that
nonnegative functions f, g on X are regular harmonic in D with respect to the
process Xt, and vanish in B(x0, R) \D. There is c(1.1) = c(1.1)(x0, r, R) such that

f(x)g(y) ≤ c(1.1) f(y)g(x) , x, y ∈ B(x0, r). (1.1)
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Here Xt is a Hunt process, having a metric measure space X as the state space, and
R0 ∈ (0,∞] is a localization radius (discussed in Section 2). Also, a nonnegative function
f is said to be regular harmonic in D with respect to Xt if

f(x) = Exf(XτD), x ∈ D, (1.2)

where τD is the time of the first exit of Xt from D. To facilitate cross-referencing, in (1.1)
and later on we let c(i) denote the constant in the displayed formula (i). By c or ci we
denote secondary (temporary) constants in a lemma or a section, and c = c(a, . . . , z), or
simply c(a, . . . , z), means a constant c that may be so chosen to depend only on a, . . . , z.
Throughout the article, all constants are positive.

The present work started with an attempt to obtain bounded kernels which reproduce
harmonic functions. We were motivated by the so-called regularization of the Poisson
kernel for ∆α/2 ([22], [26, Lemma 6]), which is crucial for the Carleson estimate and BHI
for ∆α/2. In the present paper we construct kernels obtained by gradually stopping the
Markov process with a specific multiplicative functional before the process approaches the
boundary. The construction is the main technical ingredient of our work, and is presented
in Section 4. The argument is intrinsically probabilistic and relies on delicate analysis on
the path space. At the beginning of Section 4 the reader will also find a short informal
presentation of the construction. Section 2 gives assumptions and auxiliary results. The
boundary Harnack inequality (Theorem 3.5), and the so-called local supremum estimate
(Theorem 3.4) are presented in Section 3, but the proof of Theorem 3.4 is deferred to
Section 4. In Section 5 we verify in various settings the scale-invariance of BHI, discuss
the relevance of our main assumptions from Section 2, and present many applications,
including subordinate Brownian motions, Lévy processes with or without continuous
part, stable-like and censored processes, Schrödinger, gradient and jump perturbations,
processes on fractals and more.

2. Assumptions and Preliminaries

Let (X, d,m) be a metric measure space such that all bounded closed sets are compact
and m has full support. Let B(x, r) = {y ∈ X : d(x, y) < r}, where x ∈ X and r > 0.
All sets, functions and measures considered in this paper are Borel. Let R0 ∈ (0,∞] (the
localization radius) be such that X\B(x, 2r) 6= ∅ for all x ∈ X and all r < R0. Let X∪{∂}
be the one-point compactification of X (if X is compact, then we add ∂ as an isolated
point). Without much mention we extend functions f on X to X∪{∂} by letting f(∂) = 0.
In particular, we write f ∈ C0(X) if f is a continuous real-valued function on X ∪ {∂}
and f(∂) = 0. If furthermore f has compact support in X, then we write f ∈ Cc(X). For
a kernel k(x, dy) on X ([38]) we let kf(x) =

∫
f(y)k(x, dy), provided the integral makes

sense, i.e., f is (measurable and) either nonnegative or absolutely integrable. Similarly,
for a kernel density function k(x, y) ≥ 0, we let k(x,E) =

∫
E
k(x, y)m(dy) and k(E, y) =∫

E
k(x, y)m(dx) for E ⊆ X.
Let (Xt, ζ,Mt,Px) be a Hunt process with state space X (see, e.g., [18, I.9] or [39,

3.23]). Here Xt are the random variables, Mt is the usual right-continuous filtration,
Px is the distribution of the process starting from x ∈ X, and Ex is the corresponding
expectation. The random variable ζ ∈ (0,∞] is the lifetime of Xt, so that Xt = ∂ for
t ≥ ζ. This should be kept in mind when interpreting (1.2) above, (2.1) below, etc. The
transition operators of Xt are defined by

Ttf(x) = Exf(Xt), t ≥ 0, x ∈ X, (2.1)
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whenever the expectation makes sense. We assume that the semigroup Tt is Feller and
strong Feller, i.e., for t > 0, Tt maps bounded functions into continuous ones and C0(X)
into C0(X). The Feller generator A of Xt is defined on the set D(A) of all those f ∈ C0(X)
for which the limit

Af(x) = lim
t↘0

Ttf(x)− f(x)

t

exists uniformly in x ∈ X. The α-potential operator,

Uαf(x) = Ex

∫ ∞

0

f(Xt)e
−αtdt =

∫ ∞

0

e−αtTtf(x)dt, α ≥ 0, x ∈ X,

is defined whenever the expectation makes sense. We let U = U0, the potential operator.
The kernels of Tt, Uα and U are denoted by Tt(x, dy), Uα(x, dy) and U(x, dy), respectively.

Recall that a function f ≥ 0 is called α-excessive (with respect to Tt) if for all x ∈ X,
e−αtTtf(x) ≤ f(x) for t > 0, and e−αtTtf(x) → f(x) as t→ 0+. When α = 0, we simply
say that f is excessive.

We enforce a number of conditions, namely Assumptions A, B, C and D below. We
start with a duality assumption, which builds on our discussion of Xt.

Assumption A. There are Hunt processes Xt and X̂t which are dual with respect to
the measure m (see [18, VI.1] or [36, 13.1]). The transition semigroups of Xt and X̂t are
both Feller and strong Feller. Every semi-polar set of Xt is polar.

In what follows, objects pertaining to X̂t are distinguished in notation from those for
Xt by adding a hat over the corresponding symbol. For example, T̂t and Ûα denote the
transition and α-potential operators of X̂t. The first sentence of Assumption A means
that for all α > 0, there are functions Uα(x, y) = Ûα(y, x) such that

Uαf(x) =

∫
X

Uα(x, y)f(y)m(dy), Ûαf(x) =

∫
X

Ûα(x, y)f(y)m(dy)

for all f ≥ 0 and x ∈ X, and such that x 7→ Uα(x, y) is α-excessive with respect to Tt, and

y 7→ Uα(x, y) is α-excessive with respect to T̂t (that is, α-co-excessive). The α-potential
kernel Uα(x, y) is unique (see [36, Theorem 13.2] or remarks after [18, Proposition VI.1.3]).

The condition in Assumption A that semi-polar sets are polar is also known as Hunt’s
hypothesis (H). Most notably, it implies that the process Xt never hits irregular points,
see, e.g., [18, I.11 and II.3] or [36, Chapter 3]. The α-potential kernel is non-increasing in
α > 0, and hence the potential kernel U(x, y) = limt→0+ Uα(x, y) ∈ [0,∞] is well-defined.

We consider an open set D ⊂ X and the time of the first exit from D for Xt and X̂t,

τD = inf{t ≥ 0 : Xt /∈ D} and τ̂D = inf{t ≥ 0 : X̂t /∈ D}.

We define the processes killed at τD,

XD
t =

{
Xt, if t < τD,

∂, if t ≥ τD,
and X̂D

t =

{
X̂t, if t < τ̂D,

∂, if t ≥ τ̂D.

We let TDt (x, dy) and T̂Dt (x, dy) be their transition kernels. By [36, Remark 13.26], XD
t

and X̂D
t are dual processes with state space D. Indeed, for each x ∈ D, Px-a.s. the

process Xt only hits regular points of X \D when it exits D. In the nomenclature of [36,
13.6], this means that the left-entrance time and the hitting time of X \ D are equal
Px-a.s. for every x ∈ D. In particular, the potential kernel GD(x, y) of XD

t exists and is
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unique, although in general it may be infinite ([18, pp. 256–257]). GD(x, y) is called the
Green function for Xt on D, and it defines the Green operator GD,

GDf(x) =

∫
X

f(y)GD(x, y)m(dy) = Ex

∫ τD

0

f(Xt)dt, x ∈ X, f ≥ 0.

Note that U(x, y) = GX(x, y). When Xt is symmetric (self-dual) with respect to m, then
Assumption A is equivalent to the existence of the α-potential kernel Uα(x, y) for Xt,
since then Hunt’s hypothesis (H) is automatically satisfied, see [36].

The following regularity hypothesis plays a crucial role in our paper, providing enough
‘smooth’ functions on X to approximate indicator functions of compact sets.

Assumption B. There is a linear subspace D of D(A) ∩ D(Â) satisfying the following
condition. If K is compact, D is open, and K ⊆ D ⊆ X, then there is f ∈ D such that
f(x) = 1 for x ∈ K, f(x) = 0 for x ∈ X \D, 0 ≤ f(x) ≤ 1 for x ∈ X, and the boundary
of the set {x : f(x) > 0} has measure m zero. We let

%(K,D) = inf
f

sup
x∈X

max(Af(x), Âf(x)), (2.2)

where the infimum is taken over all such functions f .

Thus, nonnegative functions in D(A) ∩ D(Â) separate the compact set K from the
closed set X \D: there is a Urysohn (bump) function for K and X \D in the domains.

Note that constant functions are not in D(A) nor D(Â) unless X is compact. In the
Euclidean case X = Rd, D can often be taken as the class C∞c (Rd) of compactly supported
smooth functions. The existence of D is problematic if X is more general. However, for
the Sierpiński triangle and some other self-similar (p.c.f.) fractals, D can be constructed
by using the concept of splines on fractals ([53, 76]). Also, a class of smooth indicator
functions was recently constructed in [69] for heat kernels satisfying upper sub-Gaussian
estimates on X. Further discussion is given in Section 5 and Appendix A. Here we note
that Assumption B implies that the jumps of Xt are subject to the following identity,
which we call the Lévy system formula for Xt,

Ex

∑
s∈[0,t]

f(s,Xs−, Xs) = Ex

∫ t

0

∫
X

f(s,Xs−, z)ν(Xs−, dz)ds. (2.3)

Here f : [0,∞) × X × X → [0,∞], f(x, x) = 0 for all x ∈ X, and ν is a kernel on X
(satisfying ν(x, {x}) = 0 for all x ∈ X), called the Lévy kernel of Xt, see [17, 72, 78]. For
more general Markov processes, ds in (2.3) is superseded by the differential of a perfect,
continuous additive functional, and (2.3) defines ν(x, ·) only up to a set of zero potential,
that is, for m-almost every x ∈ X. By inspecting the construction in [17, 72], and using
Assumption B, one proves in a similar way as in [12, Section 5] that the Lévy kernel ν
satisfies

νf(x) = lim
t↘0

Ttf(x)

t
, f ∈ Cc(X), x ∈ X \ supp f. (2.4)

This formula, as opposed to (2.3), defines ν(x, dy) for all x ∈ X. With only one exception,
to be discussed momentarily, we use (2.4) and not (2.3), hence we take (2.4) as the
definition of ν. It is easy to see that (2.4) indeed defines ν(x, dy): if f ∈ D(A) and
x ∈ X \ supp f , then νf(x) = Af(x). By Assumption B, the mapping f 7→ νf(x) is a
densely defined, nonnegative linear functional on Cc(X \ {x}), hence it corresponds to a
nonnegative Radon measure ν(x, dy) on X \ {x}. As usual, we let ν(x, {x}) = 0. The
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Lévy kernel ν̂(y, dx) for X̂t is defined in a similar manner. By duality, ν(x, dy)m(dx) =
ν̂(y, dx)m(dy).

As an application of (2.3) we consider the martingale

t 7→
∑
s∈[0,t]

f(s,Xs−, Xs)−
∫ t

0

∫
X

f(s,Xs−, z)ν(Xs−, dz)ds,

where f(s, y, z) = 1A(s)1E(y)1F (z). We stop the martingale at τD and we see that

Px(τD ∈ dt,XτD− ∈ dy,XτD ∈ dz) = dt TDt (x, dy)ν(y, dz), (2.5)

on (0,∞)×D× (X\D). A similar result was first proved in [49]. For this reason we refer
to (2.5) as the Ikeda-Watanabe formula (see also (2.12) and (2.6) below). Integrating
(2.5) against dt and dy we obtain

Px(XτD− 6= XτD , XτD ∈ E) =

∫
D

GD(x, dy)ν(y, E), x ∈ D, E ⊂ X \D. (2.6)

For x0 ∈ X and 0 < r < R, we consider the open and closed balls B(x0, r) =
{x ∈ X : d(x0, x) < r} and B(x0, r) = {x ∈ X : d(x0, x) ≤ r}, and the annular regions
A(x0, r, R) = {x ∈ X : r < d(x0, x) < R} and A(x0, r, R) = {x ∈ X : r ≤ d(x0, x) ≤ R}.
Note that B(x0, r), the closure of B(x0, r), may be a proper subset of B(x0, r).

Recall that R0 denotes the localization radius of X. The following assumption is our
main condition for the boundary Harnack inequality. It asserts a relative constancy of
the density of the Lévy kernel. This is a natural condition, as seen in Example 5.14.

Assumption C. The Lévy kernels of the processesXt and X̂t have the form ν(x, y)m(dy)
and ν̂(x, y)m(dy) respectively, where ν(x, y) = ν̂(y, x) > 0 for all x, y ∈ X, x 6= y. For
every x0 ∈ X, 0 < r < R < R0, x ∈ B(x0, r) and y ∈ X \B(x0, R),

c−1
(2.7)ν(x0, y) ≤ ν(x, y) ≤ c(2.7)ν(x0, y), c−1

(2.7)ν̂(x0, y) ≤ ν̂(x, y) ≤ c(2.7)ν̂(x0, y), (2.7)

with c(2.7) = c(2.7)(x0, r, R).

It follows directly from Assumption C that for x0 ∈ X and 0 < r < R,

c(2.8)(x0, r, R) = inf
y∈A(x0,r,R)

min(ν(x0, y), ν̂(x0, y)) > 0 (2.8)

where A(x0, r, R) = {x ∈ X : r ≤ d(x0, x) ≤ R}. (Here we do not require that R < R0.)
Indeed, we may cover A(x0, r, R) by a finite family of balls B(yi, r/2), where yi ∈
A(x0, r, R). For y ∈ B(yi, r/2), ν(x0, y) is comparable with ν(x0, yi), and ν̂(x0, y) is
comparable with ν̂(x0, yi).

Proposition 2.1. If x0 ∈ X and 0 < r < R0, then

c(2.9)(x0, r) = sup
x∈B(x0,r)

max(ExτB(x0,r), Êxτ̂B(x0,r)) <∞. (2.9)

Proof. Let B = B(x0, r), R ∈ (r, R0), x, y ∈ B and F (t) = Px(τB > t). By the definition
of R0, m(X \ B(x0, R)) > 0. This and (2.7) yield ν(y,X \ B) ≥ ν(y,X \ B(x0, R)) ≥
c−1
(2.7)ν(x0,X\B(x0, R)) = c, where c = c(x0, r, R). By the Ikeda-Watanabe formula (2.5),

−F ′(t) =
Px(τB ∈ dt)

dt
≥ Px(τB ∈ dt,XτB− 6= XτB , XτB ∈ X \B)

dt

=

∫
X

ν(y,X \B)TBt (x, dy) ≥ c

∫
X

TBt (x, dy) = cF (t).

Hence Px(τB > t) ≤ e−ct. If follows that ExτB ≤ 1/c. Similarly, Êxτ̂B ≤ 1/c. �



BOUNDARY HARNACK INEQUALITY FOR MARKOV PROCESSES WITH JUMPS 7

In particular, if 0 < R < R0 and D ⊆ B(x0, R), then the Green function GD(x, y)
exists (see the discussion following Assumption A), and for each x ∈ X it is finite for all
y in X less a polar set. We need to assume slightly more. The following condition may
be viewed as a weak version of Harnack’s inequality.

Assumption D. If x0 ∈ X, 0 < r < p < R < R0 and B = B(x0, R), then

c(2.10)(x0, r, p, R) = sup
x∈B(x0,r)

sup
y∈X\B(x0,p)

max(GB(x, y), ĜB(x, y)) <∞. (2.10)

Assumptions A, B, C and D are tacitly assumed throughout the entire paper. We recall
them explicitly only in the statements of BHI and local maximum estimate.

When saying that a statement holds for almost every point of X, we refer to the measure
m. The following technical result is a simple generalization of [18, Proposition II.3.2].

Proposition 2.2. Suppose that Yt is a standard Markov process such that for every x ∈ X
and α > 0, the α-potential kernel Vα(x, dy) of Yt is absolutely continuous with respect to
m(dy). Suppose that function f is excessive for the transition semigroup of Yt, and f
is not identically infinite. If function g is continuous and f(x) ≤ g(x) for almost every
x ∈ B(x0, r), then f(x) ≤ g(x) for every x ∈ B(x0, r).

Proof. Let A = {x ∈ B(x0, r) : f(x) > g(x)}. Then m(A) = 0, so that A is of zero
potential for Y . Hence B(x0, r) \ A is finely dense in B(x0, r). Since f − g is finely
continuous, we have f(x) ≤ g(x) for all x ∈ B(x0, r), as desired. (See e.g. [18, 36] for the
notion of fine topology and fine continuity of excessive functions.) �

If Xt is transient, (2.10) often holds even when GB is replaced by GX = U . In the
recurrent case, we can use estimates of Uα, as follows.

Proposition 2.3. If x0 ∈ X, 0 < r < p < R < R0, α > 0,

c1(x0, r, p, α) = sup
x∈B(x0,r)

sup
y∈X\B(x0,p)

max(Uα(x, y), Ûα(x, y)) <∞,

and Tt(x, dy) ≤ c2(t)m(dy) for all x, y ∈ X, t > 0, then in (2.10) we may let

c(2.10)(x0, r, p, R) = inf
α,t>0

(
eαtc1(x0, r, p, α) + c2(t)c(2.9)(x0, R)

)
.

Proof. Denote B = B(x0, R). If x ∈ B(x0, r), t0 > 0 and E ⊆ B \B(x0, p), then

GB1E(x) =

∫ ∞

0

TBt 1E(x)dt

≤ eαt0
∫ t0

0

e−αtTBt 1E(x)dt+

∫ ∞

0

TBs (TBt0 1E)(x)ds

≤ eαt0
∫ ∞

0

e−αtTt1E(x)dt+

(
sup
y∈B

TBt0 1E(y)

)∫ ∞

0

TBs 1(y)ds

≤ eαt0Uα1E(x) +

(
sup
y∈B

Tt01E(y)

)
GB1(x)

≤ (eαt0c1 + c2GB1(x))|E|,

where c1 = c1(x0, r, p, α) and c2 = c2(t0). If y ∈ B \ B(x0, p), then by Proposition 2.2,
GB(x, y) ≤ eαt0c1 + c2GB1(x). By Proposition 2.1, GB1(x) = ExτB ≤ c(2.9)(x0, R). The

estimate of ĜB(x, y) is similar. �
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We use the standard notation Ex(Z;E) = Ex(Z1E). Recall that all functions f on X
are automatically extended to X∪ {∂} by letting f(∂) = 0. In particular, we understand
that Af(∂) = 0 for all f ∈ D(A), and ExAf(Xτ ) = Ex(Af(Xτ ); τ < ζ).

The following formula obtained by Dynkin (see [39, formula (5.8)]) plays an important
role. If τ is a Markov time, Exτ <∞ and f ∈ D(A), then

Exf(Xτ ) = f(x) + Ex

∫ τ

0

Af(Xt)dt, x ∈ X. (2.11)

If f ∈ D(A) is supported in X \D and Xt ∈ D Py-a.s. for t < τ and x ∈ X, then

Exf(Xτ ) = Ex

∫ τ

0

(∫
X

ν(Xt, y)f(y)m(dy)

)
dt

=

∫
X

Ex

(∫ τ

0

ν(Xt, y)dt

)
f(y)m(dy).

(2.12)

Recall that a function f ≥ 0 on X is regular harmonic in an open set D ⊆ X if
f(x) = Exf(X(τD)) for all x ∈ X. By the strong Markov property we then have
f(x) = Exf(X(τU)) for all open sets U ⊆ D. Accordingly, we call f ≥ 0 regular
subharmonic in D (for Xt), if f(x) ≤ Exf(X(τU)) for all open sets U ⊆ D and all x ∈ U .
We like to recall that f ≥ 0 is called harmonic in D, if f(x) = Exf(X(τU)) for all open
and bounded U such that U ⊆ D, and all x ∈ U . This condition is satisfied, e.g., by the
Green function GD(·, y) in D \ {y}, and it is weaker than regular harmonicity. In this
work however, only the notion of regular harmonicity is used.

3. Boundary Harnack inequality

Recall that Assumptions A, B, C and D are in force throughout the entire paper. Some
results, however, hold in greater generality. For example, the following Lemma 3.1 relies
solely on Assumption B and (2.9), and it remains true also when Xt is a diffusion process.
Also, Lemma 3.2 and Corollary 3.3 require Assumptions B and C but not A or D.

Lemma 3.1. If x0 ∈ X and 0 < r < R < R̃ <∞, then for all D ⊆ B(x0, R) we have

Px(XτD ∈ A(x0, R, R̃)) ≤ c(3.1)ExτD, x ∈ B(x0, r) ∩D, (3.1)

where c(3.1) = c(3.1)(x0, r, R, R̃) = inf r̃>R̃ %(A(x0, R, R̃), A(x0, r, r̃)).

Proof. We fix an auxiliary number r̃ > R̃ and x ∈ B(x0, r). Let f ∈ D be a bump
function from Assumption B for the compact set A(x0, R, R̃) and the open set A(x0, r, r̃).
Thus, f ∈ D(A), f(x) = 0, f(y) = 1 for y ∈ A(x0, R, R̃) and 0 ≤ f(y) ≤ 1 for all y ∈ X.
By Dynkin’s formula (2.11) we have

Px(XτD ∈ X \B(x0, R)) ≤ Ex(f(XτD))− f(x) = GD(Af)(x) ≤ GD1(x) sup
y∈X

Af(y).

Since GD1(x) = ExτD, the proof is complete. �

We write f ≈ cg if c−1g ≤ f ≤ cg. We will now clarify the relation between BHI and
local supremum estimate.

Lemma 3.2. The following conditions are equivalent:

(a) If x0 ∈ X, 0 < r < R < R0, D ⊆ B(x0, R) is open, f is nonnegative, regular
harmonic in D and vanishes in B(x0, R) \D, then

f(x) ≤ c(3.11)

∫
X\B(x0,r)

f(y)ν(x0, y)m(dy) (3.2)
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for x ∈ B(x0, r) ∩D, where c(3.11) = c(3.11)(x0, r, R).
(b) If x0 ∈ X, 0 < r < p < q < R < R0, D ⊆ B(x0, R) is open, f is nonnegative,

regular harmonic in D and vanishes in B(x0, R) \D, then

f(x) ≈ c(3.3)Ex(τD∩B(x0,p))

∫
X\B(x0,q)

f(y)ν(x0, y)m(dy) (3.3)

for x ∈ B(x0, r) ∩D, where c(3.3) = c(3.3)(x0, r, p, q, R).

In fact, if (a) holds, then we may let

c(3.3)(x0, r, p, q, R) = c(3.1)(x0, r, p, q)c(3.11)(x0, q, R) + c(2.7)(x0, p, q),

and if (b) holds, then we may let

c(3.11)(x0, r, R) = inf
p,q

r<p<q<R

c(3.3)(x0, r, p, q, R)c(2.9)(x0, R).

Proof. Since X \B(x0, q) ⊆ X \B(x0, r) and Ex(τD∩B(x0,p)) ≤ Ex(τB(x0,R)) ≤ c(2.9)(x0, R),
we see that (b) implies (a) with c(3.11) = c(3.3)(x0, r, p, q, R)c(2.9)(x0, R). Below we prove
the converse. Let (a) hold, and U = D ∩B(x0, p). We have

f(x) = Ex(f(XτU );XτU ∈ B(x0, q)) + Ex(f(XτU );XτU ∈ X \B(x0, q)). (3.4)

Denote the terms on the right hand side by I and J , respectively. By (3.1) and (3.2),

0 ≤ I ≤ Px(XτU ∈ A(x0, p, q)) sup
y∈B(x0,q)

f(y)

≤ c(3.1)c(3.11)ExτU

∫
X\B(x0,q)

f(y)ν(x0, y)m(dy),
(3.5)

with c(3.1)(x0, r, p, q) and c(3.11)(x0, q, R). For J , the Ikeda-Watanabe formula (2.12) yields

J =

∫
X\B(x0,q)

(∫
U

GU(x, z)ν(z, y)f(y)m(dz)

)
m(dy)

≈ c(2.7)

∫
X\B(x0,q)

(∫
U

GU(x, z)ν(x0, y)f(y)m(dz)

)
m(dy)

= c(2.7)ExτU

∫
X\B(x0,q)

ν(x0, y)f(y)m(dy),

(3.6)

with constant c(2.7)(x0, p, q). Formula (3.3) follows, as we have c(3.1)c(3.11) + c(2.7) in the
upper bound and 1/c(2.7) in the lower bound. �

We like to remark that BHI boils down to the approximate factorization (3.3) of f(x) =
Px(X(τD) ∈ E). We also note that Px(X(τD) ∈ E) ≈ ν(x0, E)ExτD, if E is far from
B(x0, R), since then ν(z, E) ≈ ν(x0, E) in (2.6). However, ν(z, E) in (2.6) is quite singular
and much larger than ν(x0, E) if both z and E are close to ∂B(x0, R). Our main task is to
prove that the contribution to (2.6) from such points z is compensated by the relatively
small time spent there by XD

t when starting at x ∈ D. In fact, we wish to control (2.6)
by an integral free from singularities (i.e. (3.2)), if x and E are not too close.

By substituting (3.3) into (1.1), we obtain the following result.

Corollary 3.3. The conditions (a), (b) of Lemma 3.2 imply (BHI) with

c(1.1)(x0, r, R) = inf
p,q

r<p<q<R

(c(3.3)(x0, r, p, q, R))4. �

The main technical result of the paper is the following local supremum estimate for sub-
harmonic functions, which is of independent interest. The result is proved in Section 4.
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Theorem 3.4. Suppose that Assumptions A, B, C and D hold true. Let x0 ∈ X and
0 < r < q < R < R0, where R0 is the localization radius from Assumptions C and D. Let
function f be nonnegative on X and subharmonic with respect to Xt in B(x0, R). Then

f(x) ≤
∫

X\B(x0,q)

f(y)πx0,r,q,R(y)m(dy), x ∈ B(x0, r), (3.7)

where

πx0,r,q,R(y) =

{
c(3.9)δ for y ∈ B(x0, R) \B(x0, q),

2c(3.9) min(δ, ν̂(y,B(x0, R))) for y ∈ X \B(x0, R),
(3.8)

δ = %(B(x0, q), B(x0, R)) (see Assumption B), and

c(3.9)(x0, r, q, R) = inf
p∈(r,q)

(
c(2.10)(x0, r, p, R) +

c(2.9)(x0, R)(c(2.7)(x0, p, q))
2

m(B(x0, p))

)
. (3.9)

Theorem 3.4 (to be proved in the next section) and Corollary 3.3 lead to BHI. We note
that no regularity of the open set D is assumed.

Theorem 3.5. If assumptions A, B, C and D are satisfied, then (BHI) holds true with

c(1.1)(x0, r, R) = inf
p,q,r̃

r<p<q<R<r̃

(
%(A(x0, p, q), A(x0, r, r̃))c(3.11)(x0, q, R) + c(2.7)(x0, p, q)

)4
, (3.10)

c(3.11)(x0, q, R) = inf
q̃,R̃

q<q̃<R<R̃

2c(3.9)(x0, q, q̃, R)×

×max

(
%(B(x0, q̃), B(x0, R))

c(2.8)(x0, q̃, R̃)
, c(2.7)(x0, R, R̃)m(B(x0, R))

)
.

(3.11)

Proof. We only need to prove condition (a) of Lemma 3.2. Let q, R̃ satisfy r < q < R < R̃.
By (3.7) and (3.8) of Theorem 3.4, it suffices to prove that πx0,r,q,R(y) ≤ c(3.11)ν(x0, y).

For y ∈ A(x0, q, R̃) we have

πx0,r,q,R(y) ≤ 2c(3.9)δ ≤
2c(3.9)δ

c(2.8)

ν(x0, y),

with c(2.8) = c(2.8)(x0, q, R̃). If y ∈ X \B(x0, R̃), then

πx0,r,q,R(y) ≤ 2c(3.9)ν̂(y,B(x0, R)) ≤ 2c(3.9)c(2.7)m(B(x0, R))ν(x0, y),

with c(2.7) = c(2.7)(x0, R, R̃). The proof is complete. �

Remark 3.6. (BHI) is said to be scale-invariant if c(1.1) may be so chosen to depend on
r and R only through the ratio r/R. In some applications, the property plays a crucial
role, see, e.g., [14, 26]. If Xt admits stable-like scaling, then c(1.1) given by (3.10) is
scale-invariant indeed, as explained in Section 5 (see Theorem 5.4).

Remark 3.7. The constant c(1.1) in Theorem 3.5 depends only on basic characteristics
of Xt. Accordingly, in Section 5 it is shown that BHI is stable under small perturbations.

Remark 3.8. BHI applies in particular to hitting probabilities: if 0 < r < R < R0,
x, y ∈ B(x0, r) ∩D and E1, E2 ⊆ X \B(x0, R), then

Px(XτD ∈ E1)Py(XτD ∈ E2) ≤ c(1.1) Py(XτD ∈ E1)Px(XτD ∈ E2).

Remark 3.9. BHI implies the usual Harnack inequality if, e.g., constants are harmonic.
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The approach to BHI via approximate factorization was applied to isotropic stable
processes in [26], to stable-like subordinate diffusion on the Sierpiński gasket in [53], and
to a wide class of isotropic Lévy processes in [63]. In all these papers, the taming of the
intensity of jumps near the boundary was a crucial step. This parallels the connection of
the Carleson estimate and BHI in the classical potential theory, see Section 1.

4. Regularization of the exit distribution

In this section we prove Theorem 3.4. The proof is rather technical, so we begin with
a few words of introduction and an intuitive description of the idea of the proof.

In [26, Lemma 6], an analogue of Theorem 3.4 was obtained for the isotropic α-stable
Lévy processes by averaging harmonic measure of the ball against the variable radius of
the ball. The procedure yields a kernel with no singularities and a mean value property
for harmonic functions. In the setting of [26] the boundedness of the kernel follows from
the explicit formula and bounds for the harmonic measure of a ball. A similar argument
is classical for harmonic functions of the Laplacian and the Brownian motion. For more
general processes Xt this approach is problematic: while the Ikeda-Watanabe formula
gives precise bounds for the harmonic measure far from the ball, satisfactory estimates
near the boundary of the ball require exact decay rate of the Green function, which is
generally unavailable. In fact, resolved cases indicate that sharp estimates of the Green
function are equivalent to BHI ([20]), hence not easier to obtain. Below we use a different
method to mollify the harmonic measure.

Recall that the harmonic measure of B is the distribution of X(τB). It may be inter-
preted as the mass lost by a particle moving along the trajectory of Xt, when it is killed
at the moment τB. In the present paper we let the particle lose the mass gradually before
time τB, with intensity ψ(Xt) for a suitable function ψ ≥ 0 sharply increasing at ∂B.
The resulting distribution of the lost mass defines a kernel with a mean value property
for harmonic functions, and it is less singular than the distribution of X(τB).

Throughout this section, we fix x0 ∈ X and four numbers 0 < r < p < q < R < R0,
where R0 is defined in Assumptions C and D. For the compact set B(x0, q) and the open
set B(x0, R) we consider the bump function ϕ provided by Assumption B. We let

δ = sup
x∈X

max(Aϕ(x), Âϕ(x)), (4.1)

and
V = {x ∈ X : ϕ(x) > 0} . (4.2)

We have V ⊆ B(x0, R), see Figure 1. By Assumption B, m(∂V ) = 0. Note that Aϕ(x) ≤
0 and Âϕ(x) ≤ 0 if x ∈ B(x0, q), and δ can be arbitrarily close to %(B(x0, q), B(x0, R)).

We consider a function ψ : X ∪ {∂} → [0,∞] continuous in the extended sense and
such that ψ(x) = ∞ for x ∈ (X \ V ) ∪ {∂}, and ψ(x) <∞ when x ∈ V . Let

At = lim
ε↘0

∫ t+ε

0

ψ(Xs)ds, t ≥ 0. (4.3)

We see that At is a right-continuous, strong Markov, nonnegative (possibly infinite)
additive functional, and At = ∞ for t ≥ ζ. We denote by Mt the right-continuous
multiplicative functional

Mt = e−At .

For a ∈ [0,∞], we let τa be the first time when At ≥ a. In particular, τ∞ is the time
when At becomes infinite. Note that At and Mt are continuous except perhaps at the
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Figure 1. Notation for Section 4.

single (random) moment τ∞ when At becomes infinite and the left limit A(τ∞−) is finite.
Since At is finite for t < τV , we have τ∞ ≥ τV . If ψ grows sufficiently fast near ∂V , then
in fact τ∞ = τV , as we shall see momentarily.

Lemma 4.1. If c1, c2 > 0 are such that ψ(x) ≥ c1(ϕ(x))−1 − c2 for all x ∈ V , then
A(τV ) = ∞ and M(τV ) = 0 Px-a.s. for every x ∈ X. In particular, τV = τ∞.

Proof. We first assume that x ∈ X\V . In this case it suffices to prove that A0 = ∞. Since
Aϕ(y) ≤ δ for all y ∈ X, and ϕ(x) = 0, from Dynkin’s formula for the (deterministic)
time s it follows that Ex(ϕ(Xs)) ≤ δs for all s > 0. By the Schwarz inequality,(∫ t

ε

1

s
ds

)2

≤
(∫ t

ε

ϕ(Xs)

s2
ds

)(∫ t

ε

1

ϕ(Xs)
ds

)
,

where 0 < ε < t. Here we use the conventions 1/0 = ∞ and 0 · ∞ = ∞. Thus,

Ex

(∫ t

ε

1

ϕ(Xs)
ds

)−1

≤
(∫ t

ε

1

s
ds

)−2

Ex

(∫ t

ε

ϕ(Xs)

s2
ds

)
≤
(∫ t

ε

1

s
ds

)−2 ∫ t

ε

δ

s
ds =

δ

log(t/ε)
,

with the convention 1/∞ = 0. Hence,

Ex

(
1

At + c2t

)
≤ Ex

(∫ t

ε

(ψ(Xs) + c2)ds

)−1

≤ Ex

(∫ t

ε

c1
ϕ(Xs)

ds

)−1

≤ δ

c1 log(t/ε)
.

(4.4)

By taking ε↘ 0, we obtain

Ex

(
1

At + c2t

)
= 0.

It follows that At = ∞ Px-a.s. We conclude that A0 = ∞ and M0 = 0 Px-a.s., as desired.



BOUNDARY HARNACK INEQUALITY FOR MARKOV PROCESSES WITH JUMPS 13

When x ∈ V , the result in the statement of the lemma follows from the strong Markov
property. If M(τV−) denotes the left limit of Mt at t = τV , then

ExMτV = Ex(MτV −EX(τV )(M0)) = 0,

by the first part of the proof,. The lemma is proved. �

From now on we only consider the case when the assumptions of Lemma 4.1 are sat-
isfied, and c1, c2 are reserved for the constants in the condition ψ(x) ≥ c1(ϕ(x))−1 − c2.
By the definition and right-continuity of paths of Xt, At and Mt are monotone right-
differentiable continuous functions of t on [0, τV ), with derivatives ψ(Xt) and −ψ(Xt)Mt,
respectively.

Let εa(·) be the Dirac measure at a. Lemma 4.1 yields the following result.

Corollary 4.2. We have −dMt = ψ(Xt)Mtdt+M(τV−)ετV (dt) Px-a.s. In particular,

−Ex

∫
[0,τ)

f(Xt)dMt = Ex

(∫ τ

0

f(Xt)ψ(Xt)Mtdt

)
+ Ex (MτV −f(XτV ); τ > τV ) (4.5)

for any measurable random time τ and nonnegative or bounded function f . �

We emphasize that if Mt has a jump at τ , in which case we must have τ = τV , then
the jump does not contribute to the Lebesgue-Stieltjes integral

∫
[0,τ)

f(Xt)dMt in (4.5).

The same remark applies to (4.6) below.
Recall that τa = inf {t ≥ 0 : At ≥ a}. Note that τa are Markov times for Xt, a 7→ τa is

the left-continuous inverse of t 7→ At, and the events {t < τa} and {At < a} are equal.
We have A(τa) = a unless τa = τV , and, clearly, τa ≤ τ∞ = τV .

The following may be considered as an extension of Dynkin’s formula.

Lemma 4.3. For f ∈ D(A), Markov time τ , and x ∈ V , we have

Ex

∫ τ

0

Af(Xt)Mtdt = Ex(f(Xτ )Mτ−)− f(x)− Ex

∫
[0,τ)

f(Xt)dMt. (4.6)

If g = (A− ψ)f and τ ≤ τV , then

Ex

∫ τ

0

g(Xt)Mtdt = Ex(f(Xτ )Mτ−)− f(x). (4.7)

In fact, (4.6) holds for every strong Markov right-continuous multiplicative functional Mt.

Proof. Since
∫∞
At
e−ada = Mt and {t < τa} = {At < a}, by Fubini,

Ex

∫ τ

0

Af(Xt)Mtdt = Ex

∫ τ

0

Af(Xt)

(∫ ∞

0

1(0,τa)(t)e
−ada

)
dt

=

∫ ∞

0

(
Ex

∫ min(τ,τa)

0

Af(Xt)dt

)
e−ada.

Since min(τ, τa) is a Markov time for Xt, we can apply Dynkin’s formula. It follows that

Ex

∫ min(τ,τa)

0

Af(Xt)Mtdt = Ex(f(Xmin(τ,τa)))− f(x).
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By Fubini and the substitution τa = t, a = At, e
−a = Mt,

Ex

∫ τ

0

Af(Xt)Mtdt =

∫ ∞

0

(
Ex(f(Xmin(τ,τa)))− f(x)

)
e−ada

= Ex

(∫ ∞

0

f(Xmin(τ,τa))e
−ada

)
− f(x)

= −Ex

(∫
[0,∞)

f(Xmin(τ,t))dMt

)
− f(x).

We emphasize that the last equality holds true also if τ = τV with positive probability.
We see that (4.6) holds. By (4.5) we obtain (4.7). �

The functional Mt is a Feynman-Kac functional, interpreted as the diminishing mass
of a particle started at x ∈ X. We shall estimate the kernel πψ(x, dy), defined as the
expected amount of mass left by the particle at dy. Namely, for any nonnegative or
bounded f we define

πψf(x) = −Ex

∫
[0,∞)

f(Xt)dMt, x ∈ X. (4.8)

Note that πψf(x) = f(x) for x ∈ X \ V . By the substitution τa = t, a = At, e
−a = Mt

and Fubini, we obtain that

πψf(x) = Ex

(∫ ∞

0

f(Xτa)e
−ada

)
=

∫ ∞

0

Ex(f(Xτa))e
−ada. (4.9)

The potential kernel Gψ(x, dy) of the functional Mt will play an important role. Namely,
for any nonnegative or bounded f we let

Gψf(x) = Ex

∫ ∞

0

f(Xt)Mtdt = Ex

∫ ∞

0

(∫ τa

0

f(Xt)dt

)
e−ada. (4.10)

In the second equality above, the identities Mt =
∫∞
At
e−ada and {t < τa} = {At < a}

were used together with Fubini, as in the proof of Lemma 4.3. We note that Gψ(x, dy)
measures the expected time spent by the process Xt at dy, weighted by the decreasing
mass of Xt (compare with the similar role of GV (x, y)m(dy)). There is a semigroup

of operators Tψt f(x) = Ex(f(Xt)Mt) associated with the multiplicative functional Mt.

Furthermore, Tψt are transition operators of a Markov process Xψ
t , the subprocess of Xt

corresponding to Mt. With the definitions of [18], Mt is a strong Markov right-continuous

multiplicative functional and V is the set of permanent points for Mt. Therefore, Xψ
t is a

standard Markov process with state space V , see [18, III.3.12, III.3.13 and the discussion
after III.3.17]. (From (4.4) and [18, Proposition III.5.9] it follows that Mt is an exact
multiplicative functional. Furthermore, since Mt can be discontinuous only at t = τV ,
the functional Mt is quasi-left continuous in the sense of [18, III.3.14], and therefore Xψ

t

is a Hunt process on V . However, we do not use these properties in our development.)

Informally, Xψ
t is obtained from Xt by terminating the paths of Xt with rate ψ(Xt)dt,

and πψ(x, dy) is the distribution of Xt stopped at the time when Xψ
t is killed. Further-

more, Gψ(x, dy) is the potential kernel of Xψ
t . To avoid technical difficulties related to

subprocesses and the domains of their generators, in what follows we rely mostly on the
formalism of additive and multiplicative functionals.

The dual multiplicative functional M̂t is defined just as Mt, but for the dual process X̂t.
We correspondingly define π̂ψ and Ĝψ. The subprocess X̂ψ

t of X̂t corresponding to the

multiplicative functional M̂t is the dual process of Xψ
t ; see [36, 13.6 and Remark 13.26].
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Hence, the potential kernel Gψ of Xψ
t admits a uniquely determined density function

Gψ(x, y) (x, y ∈ V ), which is excessive in x with respect to the transition semigroup Tψt of

Xψ
t , and excessive in y with respect to the transition semigroup T̂ψt of X̂ψ

t . Furthermore,

Ĝψ(x, y) = Gψ(y, x) is the density of the potential kernel of X̂ψ
t . Since Gψ(x, dy) is

concentrated on V , we let Gψ(x, y) = 0 if x ∈ X \ V or y ∈ X \ V . Clearly, Gψ(x, dy) is
dominated by GV (x, dy) for all x ∈ V , and therefore

Gψ(x, y) ≤ GV (x, y), x, y ∈ X.

There are important relations between πψ, Gψ, ψ and A. If f is nonnegative or bounded
and vanishes in X \ V , then by Corollary 4.2 we have

πψf(x) = Gψ(ψf)(x), x ∈ V. (4.11)

Considering τ = τV , we note that M(τV ) = 0, and so for bounded or nonnegative f∫
[0,τV ]

f(Xt)dMt =

∫
[0,τV )

f(Xt)dMt − f(XτV )MτV −.

If f ∈ D(A), then formula (4.6) gives

GψAf(x) = πψf(x)− f(x), x ∈ V. (4.12)

Furthermore, by (4.7), for f ∈ D(A) we have

Gψ(A− ψ)f(x) = Ex(f(XτV )MτV −)− f(x), x ∈ V.

In particular, if f ∈ D(A) vanishes outside of V , then we have

Gψ(A− ψ)f(x) = −f(x), x ∈ V (4.13)

(which also follows directly from (4.11) and (4.12)). Formula (4.13) means that the

generator of Xψ
t agrees with A− ψ on the intersection of the respective domains.

We now introduce the Green operators Gψ
U and harmonic measures πψU for Xψ

t . Let U
be an open subset of V . For nonnegative or bounded f and x ∈ V we let

πψUf(x) = Ex(f(XτU )MτU−), Gψ
Uf(x) = Ex

∫ τU

0

f(Xt)Mtdt.

We note that Gψ
V f = Gψf . Also, πψV f = πψf , if f vanishes in V . Furthermore, Gψ

U admits

a density function Gψ
U(x, y), and we have Gψ

U(x, y) ≤ GU(x, y), Gψ
U(x, y) ≤ Gψ(x, y). If

f vanishes outside of V , then we can replace M(τU−) by M(τU) in the definition of πψU .
By (4.7), for any f ∈ D(A) we have

πψUf(x) = Gψ
U(A− ψ)f(x) + f(x), x ∈ V. (4.14)

In particular, by an approximation argument,

πψU(x,E) =

∫
U

Gψ
U(x, y)ν(y, E)m(dy), x ∈ U, E ⊆ X \ U. (4.15)

Formulas (4.14) and (4.15) can be viewed correspondingly as Dynkin’s formula applied

to the first exit time, and the Ikeda-Watanabe formula for Xψ
t .

Recall that x0 ∈ X, 0 < r < p < q < R < R0, B(x0, q) ⊆ V ⊆ B(x0, R), see Figure 1,
ϕ ∈ D is positive in V and vanishes in X \ V , and ϕ(x) = 1 for x ∈ B(x0, q).

Lemma 4.4. Let U = V \B(x0, q). If (A− ψ)ϕ(x) ≤ 0 for x ∈ V , then

πψU(x, V \ U) ≤ ϕ(x), x ∈ U. (4.16)
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Proof. By (4.14), for x ∈ U we have

πψUϕ(x)− ϕ(x) = Gψ
U(A− ψ)ϕ(x) ≤ 0.

It remains to note that ϕ = 1 on V \ U . �

Essentially, we use here (and later on) superharmonicity of ϕ with respect to A− ψ.

Lemma 4.5. If (A− ψ)ϕ(x) ≤ 0 for x ∈ V , then

Gψ(x, y) ≤ c(4.17)ϕ(x), x ∈ V \B(x0, p), y ∈ B(x0, r), (4.17)

with c(4.17) = c(4.17)(x0, r, p, q, R).

Proof. Let U = V \ B(x0, q) and x ∈ U . Let f be a nonnegative function supported in
B(x0, r),

∫
f(y)m(dy) = 1 and g(z) = Gψf(z) (this is done to regularize Gψ(x, y)). Using

the definition of Gψ, the relation f(Xt) = 0 for t < τU and the strong Markov property,
we obtain that

g(x) = Ex

(∫ ∞

τU

f(Xt)Mtdt

)
= Ex(g(XτU )MτU ) = πψUg(x).

We split the last expectation into two parts, corresponding to the eventsX(τU) ∈ B(x0, p)
and X(τU) ∈ A(x0, p, q) respectively. By (2.10) and the inequality M(τU) ≤ 1, we have
g(z) ≤ c(2.10)(x0, r, p, R) for z ∈ A(x0, p, q). From (4.16) it follows that

πψU(g1A(x0,p,q)
)(x) ≤ c(2.10)π

ψ
U(x,B(x0, q)) ≤ c(2.10)ϕ(x). (4.18)

For the other part, we use (4.15) and (2.7),

πψU(g1B(x0,p))(x) =

∫
U

(∫
B(x0,p)

g(z)ν(y, z)m(dz)

)
Gψ
U(x, y)m(dy)

≤ c(2.7)

∫
U

ν(y, x0)G
ψ
U(x, y)m(dy) ·

∫
B(x0,p)

g(z)m(dz),

with constant c(2.7)(x0, p, q). Using again (2.7) and (4.15), and then (4.16), we obtain∫
U

ν(y, x0)G
ψ
U(x, y)m(dy) ≤

c(2.7)

m(B(x0, p))

∫
U

ν(y,B(x0, p))G
ψ
U(x, y)m(dy)

=
c(2.7)

m(B(x0, p))
πψU(x,B(x0, p)) ≤

c(2.7)ϕ(x)

m(B(x0, p))
.

By (2.9), we have∫
B(x0,p)

g(z)m(dz) ≤
∫
B(x0,r)

(∫
B(x0,p)

GV (z, y)m(dz)

)
f(y)m(dy)

≤
∫
B(x0,r)

Êy(τ̂V )f(y)m(dy) ≤ c(2.9),

with constant c(2.9)(x0, R). Hence,

πψU(g1B(x0,p))(x) ≤
(c(2.7))

2c(2.9)ϕ(x)

m(B(x0, p))
.

This and (4.18) yield that g(x) ≤ c(4.17)ϕ(x), where

c(4.17)(x0, r, p, q, R) = c(2.10)(x0, r, p, R) +
c(2.9)(x0, R)(c(2.7)(x0, p, q))

2

m(B(x0, p))
.
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Recall that g = Gψf , where f is an arbitrary nonnegative function vanishing outside
B(x0, r) with integral equal to 1. Hence, by approximation, for each x ∈ X \ B(x0, q),

formula (4.17) holds for almost every y ∈ B(x0, r). By Proposition 2.2 (applied to Xψ
t ),

(4.17) holds for every y ∈ B(x0, r).
For x ∈ A(x0, p, q), the result follows easily from (2.10). Indeed, we have Gψ(x, y) ≤

GV (x, y) ≤ c(2.10) = c(2.10)ϕ(x), with constant c(2.10)(x0, r, p, R). Hence, formula (4.17)

holds also for x ∈ A(x0, p, q), with the same constant. �

The above arguments can be repeated for the dual process X̂t. Hence, the dual versions
of Lemmas 4.4 and 4.5 hold true, with the same c(4.17).

We are very close to the estimate of πψ(x, dy) for x ∈ B(x0, r). Indeed, for y ∈ V
we have πψ(x, dy) = Gψ(x, y)ψ(y)m(dy) (see (4.11)). When y ∈ X \ V , then, at least

heuristically, πψ(x, dy) = ÂGx
ψ(y)m(dy), where Gx

ψ(y) = Gψ(x, y) vanishes outside of V
(see (4.12)). This will give satisfactory bounds when y ∈ X \ V . Before we proceed, we
first show that πψ(x, ∂V ) = 0.

Lemma 4.6. Suppose that for some c3, c4 > 0, we have ψ(x) ≥ c3 + (ϕ(x))−1Âϕ(x) and
ψ(x) ≤ c4/ϕ(x) for x ∈ V . Then for every nonnegative function f we have

c3

∫
V

πψf(x)ϕ(x)m(dx) ≤ c4

∫
V

f(x)m(dx) +

∫
X\V

f(x)Âϕ(x)m(dx). (4.19)

Proof. First, suppose that f ∈ D(A). Denote h(x) = −(Â − ψ)ϕ(x) for x ∈ V . Note
that h is nonnegative. Let g(x) = πψf(x) for x ∈ X; hence g(x) = f(x) for x ∈ X \ V ,
see (4.8). By (4.12), we have g(x) = f(x) +GψAf(x) for x ∈ V . Hence,∫

V

g(x)h(x)m(dx) =

∫
V

f(x)h(x)m(dx) +

∫
V

GψAf(x)h(x)m(dx).

For the second term, we have∫
V

GψAf(x)h(x)m(dx) =

∫
V

Af(x)Ĝψh(x)m(dx).

By (4.13) (dual version), Ĝψh(x) = −Ĝψ(Â − ψ)ϕ(x) = ϕ(x) for x ∈ V . Hence,∫
V

GψAf(x)h(x)m(dx) =

∫
V

Af(x)ϕ(x)m(dx) =

∫
X

f(x)Âϕ(x)m(dx).

In the last equality, we used the fact that ϕ(x) = 0 for x ∈ X \ V . It follows that∫
V

g(x)h(x)m(dx) =

∫
V

f(x)h(x)m(dx) +

∫
X

f(x)Âϕ(x)m(dx).

But h(x) = −(Â − ψ)ϕ(x), so that finally, after simplification,∫
V

g(x)h(x)m(dx) =

∫
V

f(x)ϕ(x)ψ(x)m(dx) +

∫
X\V

f(x)Âϕ(x)m(dx).

Using the inequalities ψ(x)ϕ(x) ≤ c4 for x ∈ V and h(x) = ψ(x)ϕ(x)− Âϕ(x) ≥ c3ϕ(x)
for x ∈ V , we obtain (4.19). The general case of nonnegative f (not necessarily in D(A))
follows by approximation. �

Lemma 4.7. Suppose that for some c3, c4 > 0, we have ψ(x) ≥ c3 + (ϕ(x))−1Âϕ(x) and
ψ(x) ≤ c4/ϕ(x) for x ∈ V . Then M(τV−)1∂V (X(τV )) = 0 Px-a.s. and πψ(x, ∂V ) = 0
for all x ∈ V .
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Proof. For x ∈ V define g(x) = πψ(x, ∂V ). By (4.19),
∫
V
g(x)ϕ(x)m(dx) = 0, so that g

vanishes almost everywhere in V . We claim that g is excessive for the transition semigroup
Tψt of Xψ

t . Indeed, we have g(x) = Ex(M(τV−);X(τV ) ∈ ∂V ), so that by the Markov
property, for any t > 0 and x ∈ V ,

Ex(Mtg(Xt)) = Ex(Mtg(Xt); t < τV ) = Ex(MτV −;XτV ∈ ∂V, t < τV ).

The right-hand side does not exceed g(x), and by monotone convergence, it converges to
g(x) as t ↘ 0. Hence g is an excessive function equal to zero almost everywhere in V .
By [18], Proposition II.3.2 (or by Proposition 2.2), g(x) = 0 for all x ∈ V . �

Recall that according to the remark following Lemma 4.1, we keep assuming that
ψ(x) ≥ c1(ϕ(x))−1− c2 for x ∈ V . Consider ψ̃(x) = c−1

1 δ(ψ(x) + c2) + c3 for some c3 > 0,
and let M̃t be the multiplicative functional defined in a similar manner as Mt, but with
ψ replaced by ψ̃. Clearly, for all t > 0 we have Mt = 0 if and only if M̃t = 0. Since
ψ̃(x) ≥ c3 + δ/ϕ(x), an application of Lemma 4.7 to ψ̃ yields the following result.

Corollary 4.8. Suppose that for some c > 0, we have ψ(x) ≤ c/ϕ(x) for x ∈ V . Then
M(τV−)1∂V (X(τV )) = 0 Px-a.s. for x ∈ V . In particular, πψ(x, ∂V ) = 0 for x ∈ V . �

Now we make the actual choice of ψ.

Lemma 4.9. Let δ be given by (4.1), and

ψ(x) =
max(Aϕ(x), Âϕ(x), δ(1− ϕ(x)))

ϕ(x)
, x ∈ X ∪ {∂} , (4.20)

where 1/0 = ∞. For all x ∈ B(x0, r) we have πψ(x, dy) ≤ π̃ψ(y)m(dy), where

π̃ψ(y) = c(4.17)

(
δ1V \B(x0,q)(y) + 2 min(δ, ν̂(y, V ))1X\V (y)

)
(4.21)

with c(4.17) = c(4.17)(x0, r, p, q, R) given in Lemma 4.5.

Proof. Note that ψ(x) ≥ δ(ϕ(x))−1 − δ, (A− ψ)ϕ(x) ≤ 0, (Â − ψ)ϕ(x) ≤ 0 and ψ(x) ≤
δ/ϕ(x) for x ∈ V . Hence, we may apply Lemmas 4.1, 4.4 and 4.5, Corollary 4.8, and
their dual versions. By Corollary 4.8, πψ(x, ∂V ) = 0 for all x ∈ V . Since Aϕ(x) ≤ 0

and Âϕ(x) ≤ 0 for x ∈ B(x0, q), we have ψ(x) = 0 for x ∈ B(x0, q), and therefore
πψ(x,B(x0, q)) = 0 for all x ∈ V .

Fix x ∈ B(x0, r). If f is nonnegative and vanishes in B(x0, q) and in X\V , then (4.11)
yields that

πψf(x) = Gψ(ψf)(x) =

∫
V \B(x,q)

Gψ(x, y)ψ(y)f(y)m(dy).

Using (4.17) for Ĝψ and the inequality ϕ(y)ψ(y) ≤ δ for y ∈ V , we have

πψf(x) ≤ c(4.17)

∫
V \B(x,q)

ϕ(y)ψ(y)f(y)m(dy) ≤ c(4.17)δ

∫
V \B(x,q)

f(y)m(dy), (4.22)

with constant c(4.17)(x0, r, p, q, R). Suppose now that f ∈ D(A) vanishes in V . By (4.12),

πψf(x) = GψAf =

∫
V

Gψ(x, y)

(∫
X\V

f(z)ν(y, z)m(dz)

)
m(dy)

=

∫
X\V

(∫
V

Gψ(x, y)ν(y, z)m(dy)

)
f(z)m(dz).
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We estimate the inner integral for z ∈ X \ V . Using (4.17) for Ĝψ, we have∫
V \B(x0,p)

Gψ(x, y)ν(y, z)m(dy) ≤ c(4.17)

∫
V \B(x0,p)

ϕ(y)ν(y, z)m(dy) = c(4.17)Âϕ(z).

The integral over B(x0, p) is estimated as in the proof of Lemma 4.5,∫
B(x0,p)

Gψ(x, y)ν(y, z)m(dy) ≤ c(2.7)ν(x0, z)

∫
B(x0,p)

GV (x, y)m(dy)

≤ c(2.7)ν(x0, z)ExτV ≤ c(2.7)c(2.9)ν(x0, z)

≤
c(2.9)(c(2.7))

2

m(B(x0, p))
ν̂(z, B(x0, p)) ≤ c(4.17)Âϕ(z),

with constants c(2.7)(x0, p, q), c(2.9)(x0, R) and c(4.17)(x0, r, p, q, R). Since Âϕ(z) ≤ δ and

Âϕ(z) ≤ ν̂(z, V ), we obtain that

πψf(x)≤ 2c(4.17)

∫
X\V

f(z)Âϕ(z)m(dz) ≤ 2c(4.17)

∫
X\V

f(z) min(δ, ν̂(z, V ))m(dz). (4.23)

By approximation, (4.23) holds for any nonnegative f vanishing in V . Formula (4.21) is
a combination of (4.22), (4.23), πψ(x, ∂V ) = 0 and πψ(x,B(x0, q)) = 0 for all x ∈ V . �

Lemma 4.10. If a nonnegative function f is regular subharmonic in B(x0, R), then
f(x) ≤ πψf(x) for x ∈ B(x0, r). If f is regular harmonic, then equality holds.

Proof. If f is regular subharmonic in V , then f(x) ≤ Ex(f(X(τa))) for all a ∈ [0,∞]
(see [18], Proposition II.2.8). If f is regular harmonic in V , then equality holds. The
result follows by (4.9). �

The local maximum estimate is now proved as follows.

Proof of Theorem 3.4. Fix p ∈ (r, q). Choose ε > 0 and ϕ as in the beginning of this

section, and so that δ = supx∈X max(Aϕ(x), Âϕ(x)) < %(B(x0, q), B(x0, R)) + ε. Define
ψ as in (4.20). By Lemmas 4.9 and 4.10, we have (3.7) with πx0,r,q,R(y) bounded from
above by πψ(y) defined in (4.21). Note that ν̂(y, V ) ≤ ν̂(y,B(x0, R)). Since ε > 0 and
p ∈ (r, q) are arbitrary, formulas (3.8) and (3.9) follow. �

We conclude this section with a result on diffusion processes. The above argument
remains valid when ν vanishes everywhere, i.e., Xt is a diffusion process. In this case (2.9)
is not a consequence of Assumption C, so we need to add (2.9) as an assumption. No
other changes in the argument are needed, and in fact the proof of Lemma 4.5 simplifies
significantly, since Xt exits U through the boundary of U , and therefore X(τU) is never
in B(x0, p). Therefore, we have proved the following result.

Theorem 4.11. Assume that Xt is a diffusion process satisfying Assumptions A, B
and D, and formula (2.9). Let x0 ∈ X and 0 < r < q < R < R0, where R0 is the
localization radius of 2.9 and Assumption D. Let f be a nonnegative function on B(x0, R),
subharmonic in B(x0, R) with respect to Xt. Then

f(x) ≤ c(4.24)

∫
A(x0,q,R)

f(y)m(dy), x ∈ B(x0, r). (4.24)

Here c(4.24) = c(4.24)(x0, r, q, R) = c(2.10)δ, where δ = %(B(x0, q), B(x0, R)) and c(2.10) =
c(2.10)(x0, r, q, R) are defined in Assumptions B and D.
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Remark 4.12. For diffusion processes, local supremum estimate (4.24) for subharmonic
functions is typically proved analytically, using Sobolev embeddings and Moser iteration,
see, e.g., [41]. Theorem 3.4 requires more regularity of the process Xt as compared to the
analytical approach because we assume the existence of bump functions in the domain of
the Feller generator (Assumption B), while Moser iteration is based on the energy form.
However, our approach does not depend on Sobolev embeddings, and so it applies also to
Sierpiński carpets and some other highly irregular state spaces X. It would be interesting
to find an analytical proof of the local supremum estimate for jump-type processes, which
would not require Assumption B. Related results have been recently studied when the
Lévy kernel ν(x, y) is comparable to (d(x, y))−d−α (see [54] and the references therein).
Further comments on this subject are given in Example 5.6 and Appendix A.

5. Extensions and examples

In this section we study several applications of our boundary Harnack inequality, and
discuss limitations of Theorem 3.5. We sketch the range of possible applications by
indicating rather general classes of processes satisfying the assumptions of Theorem 3.5,
without getting into technical details. Before that, however, we discuss an important
notion of scale-invariance introduced in Remark 3.6. This property can be proved in a
fairly general setting, which we call stable-like scaling.

Definition 5.1. The processXt is said to have stable-like scaling property with dimension
n > 0, index α > 0 and localization radius R0 ∈ (0,∞] (α-stable-like scaling in short), if
the following conditions are met:

(a) X is locally an Ahlfors regular n-space; that is, c−1rn ≤ m(B(x, r)) ≤ crn when
0 < r < R0 and x ∈ X;

(b) c(2.7)(x0, r, R) ≤ c(r/R) when 0 < r < R < R0, x0 ∈ X in the relative constancy
of the Lévy measure condition in Assumption C;

(c) c(2.8)(x0, r, R) ≥ c(r/R)R−n−α when 0 < r < R < R0, x0 ∈ X, that is, ν(x, y) ≥
c(d(x, y))−n−α when d(x, y) < R0;

(d) c(2.9)(x0, r) ≤ crα when 0 < r < R0, x0 ∈ X in the upper bound for mean exit
time from a ball;

(e) c(2.10)(x0, r, p, R) ≤ c(r/R, p/R)Rα−n when 0 < r < p < R < R0 and x0 ∈ X in
the off-diagonal upper bound for the Green function of a ball;

(f) %(B(x0, r), B(x0, R)) ≤ c(r/R)R−α when 0 < r < R < R0 and x0 ∈ X, and
%(A(x0, p, R), A(x0, r, r̃)) ≤ c(r/R, p/R,R/r̃)R−α when 0 < r < p < R < r̃ in
Assumption B.

Proposition 5.2. If the scaling property (a) is satisfied, then conditions (b), (c) and (d)
are consequences of:

(g) the Lévy kernel of Xt satisfies

c−1(d(x, y))−n−α exp(−qd(x, y)) ≤ ν(x, y) ≤ c(d(x, y))−n−α exp(−qd(x, y))

for some q ≥ 0 and for all x, y ∈ X.

Note that the same parameter q appears in the lower and the upper bound.

Proof. Conditions (b) and (c) follow directly from (g). Furthermore, by (a) and the
triangle inequality, there is R0 > 0 such that if x0 ∈ X and 0 < r < R0, then for some
y ∈ B(x0, c1r) \B(x0, r) where c1 > 2, the balls B(x0, r) and B(y, r) are disjoint. Hence,
for all x ∈ B(x0, r) we have by (a) and (g), ν(x,X \ B(x0, r)) ≥ ν(x,B(y, r)) ≥ c2r

−α.
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As in the proof of Proposition 2.1, it follows that Px(τB(x0,r) > t) ≤ exp(−c2r−αt), and
therefore Ex(τB(x0,r)) ≤ c−1

2 rα. �

We also have the following sufficient condition for scaling properties (d) and (e).

Proposition 5.3. Assume that scaling property (a) holds. Suppose that the transition
density Tt(x, y) of a Hunt process Xt exists, and that for some α > 0, r0 > 0,

1

c(5.1)

min

(
t−n/α,

t

(d(x, y))n+α

)
≤ Tt(x, y) ≤ c(5.1) min

(
t−n/α,

t

(d(x, y))n+α

)
(5.1)

for x, y ∈ X with d(x, y) < r0, and any t ∈ (0, rα0 ). Then Assumption D and scaling
conditions (d) and (e) hold. The constant c(2.10) and the localization radius R0 in (2.10)
depend only on the constants in (5.1) (including α and r0) and in the Ahlfors regularity
condition.

Proof. Both cases α > n and α < n are very similar (in fact, slightly simpler) to the
remaining case α = n. Hence we give a detailed argument only when α = n.

With no loss of generality we may assume that r0 < diamX. We choose k > 2 so
that m(B(x0, kr) \ B(x0, r)) ≥ rn for all x0 ∈ X and r < r0/k. Let r < r0/(1 + k)1+1/α,
x0 ∈ X, D = B(x0, r), and let TDt be the transition kernel of the killed process XD

t .
Recall that GD(x, y) =

∫∞
0
TDt (x, y)dt. Let x, y ∈ D and let t1 = (d(x, y))α, t2 = (2r)α.

Since d(x, y) < 2r < r0, we have∫ t1

0

TDt (x, y) ≤
c(5.1)

(d(x, y))n+α

∫ t1

0

tdt =
c(5.1)(d(x, y))

α−n

2
,

and ∫ t2

t1

TDt (x, y) ≤ c(5.1)

∫ t2

t1

t−n/αdt = αc(5.1) log
2r

d(x, y)
.

Note that for α > n or α < n, we simply have a different expression for the above integral.
When t ∈ [t2, 2t2], we have t < 2t2 < 21+αrα < rα0 , and hence TDt (x, y) ≤ c(5.1)t2

−n/α =
c(5.1) (2r)−n. Furthermore, since d(x, z) < (1 + k)r < r0 for z ∈ B(x0, kr),

TDt2 1(x) ≤ Tt21D(x) ≤ 1−
∫

X\D
Tt2(x, z)m(dz)

≤ 1− 1

c(5.1)

∫
B(x0,kr)\B(x0,r)

t2
(d(x, z))n+α

m(dz)

≤ 1− 2αm(B(x0, kr) \B(x0, r))

c(5.1) (k + 1)n+αrn
≤ 1− 2α

c(5.1) (k + 1)n+α
.

For s = jt2 + t, t ∈ [t2, 2t2], j ≥ 0, we have TDs = (TDt2 )jTDt . It follows that

TDs (x, y) ≤
(

1− 2α

c(5.1) (k + 1)n+α

)j c(5.1)

(2r)n
,

and therefore, by summing up a geometric series,∫ ∞

t2

TDt (x, y)dt ≤ 2−α(c(5.1))
2(k + 1)n+αt2(2r)

−n = 2−n(k + 1)n+α(c(5.1))
2rα−n.

We conclude that GD(x, y) ≤ (c(5.1)/2)+nc(5.1) log(2r/d(x, y))+2−n(k+1)2n(c(5.1))
2. This

gives Assumption D and property (e). Property (d) follows by simple integration. �
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If Xt has α-stable-like scaling, then, by a simple substitution, in Theorem 3.5 we have

c(3.9)(x0, r, q, R) ≤ c(r/R, q/R)Rα−d,

c(3.11)(x0, q, R) ≤ c(q/R)Rα,

c(1.1)(x0, r, R) ≤ c(r/R).

Hence the boundary Harnack inequality is uniform in all scales R ∈ (0, R0), or scale-
invariant, as claimed in Remark 3.6. We state this result as a separate theorem for
future reference.

Theorem 5.4. If the assumptions of Theorem 3.5 are satisfied, and the process Xt

has α-stable-like scaling, then the boundary Harnack inequality (BHI) is scale-invariant:
c(1.1)(x0, r, R) depends only on r/R.

In typical applications, one verifies (typically quite straightforward) conditions (a)
and (g), formula (5.1) (which has been proved for a fairly general class of processes), and
condition (f). When dealing with processes given the Lévy kernel ν(x, y), condition (f)
turns out to be the most restrictive one.

Example 5.5 (Lévy processes). Theorem 3.5 applies to a large class of Lévy processes.
In this case, the notion of processes in duality and properties of the Feller generator
simplify significantly, see [70].

Let Xt be a Lévy process in X = Rk (with the Euclidean distance d and Lebesgue
measure m). Then Xt is always Feller, and it is strong Feller if and only if the distribution
of Xt is absolutely continuous (with respect to the Lebesgue measure). If this is the
case, Assumption A is satisfied: the dual of Xt exists, and it is the reflected process,
X̂t − X̂0 = −(Xt −X0). Assumption B is always satisfied with D = C∞c (Rk). The Lévy
kernel of Xt is translation-invariant, ν(x,E) = ν(E−x), where ν(dz) is the Lévy measure
of Xt. Therefore, Assumption C can be restated as follows: the Lévy measure of Xt is
absolutely continuous, and its density function ν(z) satisfies

c−1
(2.7) ν(z0) ≤ ν(z) ≤ c(2.7) ν(z0), |z0| > R, |z − z0| < r, (5.2)

whenever 0 < r < R, with constant c(2.7)(0, r, R). If, e.g., ν(z) is isotropic and radially
decreasing, then (5.2) is equivalent to ν(z2) ≥ cν(z1) being valid whenever |z1| ≥ 1
and |z2| = |z1| + 1. Finally, Assumption D in many cases follows from estimates of the
potential kernel U(x, y) = U(y − x), or, in the recurrent case, the α-potential kernel
Uα(x, y) = Uα(y − x).

We conclude that boundary Harnack inequality holds for a Lévy process Xt, provided
that its Lévy measure satisfies (5.2), one-dimensional distributions of Xt are absolutely
continuous, and the Green functions of balls satisfy Assumption D. This class includes:

• subordinate Brownian motions which are not compound Poisson processes and
have non-zero Lévy measure density function satisfying ν(z2) ≥ cν(z1) if |z1| ≥ 1
and |z2| = |z1|+ 1 (for properties of these processes, see, e.g., [23, 62]);

• (possibly asymmetric) Lévy processes with non-degenerate Brownian part and
Lévy measure satisfying (5.2);

• (possibly asymmetric) strictly stable Lévy processes, whose Lévy measure is of
the form |z|−d−αf(z/|z|)dz for a function f bounded below and above by positive
constants.

Scale-invariance is a different question, which depends on more accurate estimates. We
list some examples.
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• For the class of strictly stable Lévy processes described above, scale-invariance
follows from the estimates of the transition density given in [79, Theorem 1.1] and
Proposition 5.3; see also [28] and the references therein for related estimates in
the symmetric (but anisotropic) case.

• Some Lévy processes for which Theorem 3.5 gives scale-invariant BHI are included
in Example 5.6 (stable-like Lévy processes) and Example 5.8 (mixtures of isotropic
stable processes, relativistic stable processes, etc.).

• A non-scale-invariant case (mixture of an isotropic stable process and the Brow-
nian motion) is discussed in Example 5.13.

• Using the results of the first part of [63], one can obtain scale-invariant BHI for
the class of Lévy processes considered therein (isotropic Lévy processes with Lévy
measure comparable to the Lévy measure of a sufficiently regular subordinate
Brownian motion), thus significantly simplifying the other part of that article.

• Also, the estimates given in [58], combined with Theorem 3.5, imply scale-invariant
BHI at least for sufficiently regular subordinate Brownian motions (other than
compound Poisson processes) with Lévy-Khintchine exponent slowly varying at∞.

Example 5.6 (Stable-like processes). Let X be a closed set in Rk, and let m be a measure
on X such that X, with the Euclidean distance, is an Ahlfors regular n-space for some
n > 0. For example, X can be entire Rk or the closure of an open set in Rk (with the
Lebesgue measure m; then n = k). On the other hand, X can be a fractal set, such as
Sierpiński gaskets (n = log(k + 1)/ log 2) or Sierpiński carpets (n = log(3k − 1)/ log 3)
in R2, equipped with an appropriate Hausdorff measure. By this assumption, scaling
property (a) is satisfied.

Let α ∈ (0, 2), and suppose that ν(x, y) = ν(y, x) and

c1|x− y|−n−α ≤ ν(x, y) ≤ c2|x− y|−n−α, x, y ∈ X. (5.3)

This immediately gives Assumption C with scaling property (g).
By [33, Theorem 1], there is a Feller, strong Feller, symmetric pure-jump Hunt process

Xt with Lévy kernel ν, and the continuous transition probability Tt(x, y) of Xt satis-
fies (5.1) for some r0. Assumption D and scaling property (e) follow by Proposition 5.3.
Since Xt is symmetric (self-dual) and has continuous transition densities, Assumption A
is also satisfied.

Finally, we assume that Assumption B holds with scaling property (f) (see below).
Under the above assumptions, scale-invariant boundary Harnack inequality holds with
some localization radius. When X is unbounded, α 6= n and scaling property (a) holds
for all r > 0, then (5.1) holds for all t > 0 and all x, y ∈ X, see [33], and therefore we can
take R0 = ∞.

We list some cases when Assumption B with scaling property (f) is known to hold true.

• When X = Rk and ν(x, y) is a function of x − y, then Xt is a symmetric Lévy
process and we can simply take D = C∞c (Rk).

• More generally, let X = Rk, and assume that ν(x, y) = κ(x, y)|y − x|−k−α for a
C∞b (Rk ×Rk) function κ. We claim that Assumption B with scaling property (f)
holds for D = C∞c (Rk). Indeed, for f ∈ C∞c (Rk) let

Ãf(x) =

∫
Rk

(
f(x+ z)− f(x)− z

1 + |z|2
· ∇f(x)

)
κ(x, x+ z)

|z|k+α
dz

+

(∫
Rk

z

1 + |z|2
κ(x, x+ z)− κ(x, x)

|z|k+α
dz

)
· ∇f(x).

(5.4)
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Then Ã is a symmetric pseudo-differential operator with appropriately smooth
symbol, and by [48, Theorem 5.7], the closure of Ã is the Feller generator of a
symmetric Hunt process X̃t (we omit the details). Since the pure-jump Feller
processes Xt and X̃t have equal Lévy kernels, they are in fact equal processes,
and hence the closure of Ã is the Feller generator of Xt. Assumption B with
D = C∞c (Rk) follows, and scaling property (f) is a simple consequence of (5.4).
See also [47, 77].

• When α ∈ (0, 1), X is the closure of an open Lipschitz set, and ν(x, y) =
c|x − y|−k−α, then the desired condition is satisfied by D = C∞c (Rk) (see [44,
Theorem 6.1(i)]).

• When α ∈ [1, 2), X is the closure of an open set with C1,β-smooth boundary for
some β > α−1, and ν(x, y) = c|x−y|−k−α, then one can take D to be the class of
C∞c (Rk) functions with normal derivative vanishing everywhere on the boundary
of X (see [44, Theorem 6.1(ii)]).

• For the case when Xt is a subordinate diffusion on X, see Example 5.7. In this
case, when X is a fractal set, one can even deal with α greater than 2.

Note that an analytical proof of Theorem 3.4 discussed in Remark 4.12 may lead to a
generalization of this example, which would not require Assumption B.

Example 5.7 (Stable-like subordinate diffusions in metric measure spaces). Suppose
that (X, d,m) is an Ahlfors regular n-space for some n > 0. Assume that the metric d is
uniformly equivalent to the shortest-path metric in X. Suppose that there is a diffusion
process Zt with a symmetric, continuous transition density TZt (x, y) satisfying the sub-
Gaussian bounds

c1
tn/dw

exp

(
−c2

(
d(x, y)dw

t

)1/(dw−1)
)
≤ TZt (x, y)

≤ c3
tn/dw

exp

(
−c4

(
d(x, y)dw

t

)1/(dw−1)
) (5.5)

for all x, y ∈ X and t ∈ (0, t0) (t0 = ∞ when X is unbounded). Here dw ≥ 2 is the
walk dimension of the space X. The existence of such a diffusion process Zt is well-
known when X is a Riemannian manifold (dw = 2; see [42]), the k-dimensional Sierpiński
gasket (dw = log(k + 3)/ log 2 > 2; see [11]), more general nested fractals [40, 66], or the
Sierpiński carpets [7, 8]; see [57] for more information.

Let α ∈ (0, dw) and let Xt be the stable-like process obtained by subordination of Zt
with the α/dw-stable subordinator ηt, Xt = Z(ηt). These processes were first studied
in [27, 67, 74]. By the subordination formula, the transition density estimate (5.1) holds
for some r0 (if X is unbounded, then it was proved in [27] that we can take r0 = ∞).

Since Xt is symmetric and has continuous transition densities, Assumption A is clearly
satisfied. The Lévy kernel ofXt satisfies c−1d(x, y)−n−α ≤ ν(x, y) ≤ cd(x, y)−n−α, see [27],
and Assumption C with scaling property (g) follows. Assumption D and scaling prop-
erty (e) follow from the transition density estimate (5.1) by Proposition 5.3; see also [27,
Lemmas 5.3 and 5.6]. Finally, Assumption B with scaling property (f) follows by the con-
struction of [69, Section 2]. Roughly speaking, the method of [69] yields smooth bump
functions in the domain of the generator of the diffusion Zt with appropriate scaling.
By the subordination formula, these bump functions are in the domain of A, and the
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constants scale appropriately. Since there are some nontrivial issues related to the con-
struction, we repeat the construction with all details in Appendix A. By Corollary A.4
there, Assumption B is satisfied with scaling property (f).

We conclude that scale-invariant boundary Harnack inequality for Xt holds in the full
range of α ∈ (0, dw). Noteworthy, we obtain a regularity result also for α ≥ 2, when
Lipshitz functions no longer belong to the domain of the Dirichlet form of Xt.

This example can be extended in various directions. Instead of taking ηt the α/dw-
stable subordinator, one can consider a subordinator ηt whose Laplace exponent ψ is a
complete Bernstein function regularly varying of order α/dw (α ∈ (0, dw)) at infinity.
Such subordinators have no drift, and the Lévy measure with completely monotone den-
sity function, regularly varying of order −1−α/dw at 0. Their potential kernel is regularly
varying of order −1 +α/dw at 0. We refer the reader to [23, 62, 71] for more information
about subordination, complete Bernstein functions and regular variation. By the subor-
dination formula, following the method applied for the Euclidean case X = Rk in [62, 63],
one can obtain two-sided estimates for the Lévy kernel ν(x, y) and the potential kernel
U(x, y) in terms of ψ, at least when X is unbounded and α < d. These estimates are
sufficient to prove the scale-invariant boundary Harnack inequality.

Similar methods should be applicable also when Xt is recurrent (that is, X is bounded,
or α ≥ d). In this case, estimates of U(x, y) need to be replaced by estimates of the
λ-potential kernel Uλ(x, y). Another interesting directions are the case of slowly varying
ψ, which corresponds to α = 0, and, on the other hand, the case of pure-jump processes
with ψ regularly varying of order 1 (that is, α = dw). Finally, one can perturb processes
considered above, in a similar way as in the next example.

Example 5.8 (Stability under small perturbations). Let X = Rx, d be the Euclidean
distance, m be the Lebesgue measure, and α ∈ (0, 2). Suppose that ν̃(x, y) is a Lévy
kernel of a Hunt process X̃t considered in Example 5.6, and Ã is the corresponding Feller
generator. For example, ν̃(x, y) can be any function of y − x satisfying (5.3). In this
example we consider a perturbation ν(x, y) of the kernel ν̃(x, y).

Although a more general construction is feasible, we are satisfied with the following
setting. Let ν(x, y) = ν̃(x, y) + n(x, y), where n(x, y) is chosen so that ν(x, y) satisfies
the scaling property (g), n(x, y) and n̂(x, y) = n(y, x) are kernels of bounded operators
on C0(R

k), and ∫
Rk

n(x, y)dy =

∫
Rk

n̂(x, y)dy, x ∈ Rk;

the last assumption guarantees that m is an excessive (in fact, invariant) measure for the
process Xt defined below.

The formula N f(x) =
∫
Rk(f(y)− f(x))n(x, y)dy defines a bounded linear operator on

C0(R
k), andA = Ã+N (defined on the domain of Ã) has the positive maximum property.

By a standard perturbation argument, A is the Feller generator of a Hunt process Xt, and
ν(x, y) is the Lévy kernel of Xt. The process X̂t and its Feller generator Â are constructed
in a similar manner, using the Feller generator of the dual of X̃t and the kernel n̂(x, y). It

is easy to see that
∫
Rk Af(x)g(x)dx =

∫
Rk f(x)Âg(x)dx for f, g ∈ C∞c (Rk), from which

it follows that X̂t is indeed the dual of Xt.
The transition density of X̃t satisfies (5.1) (see Example 5.6). The process Xt can

be constructed probabilistically using X̃t and Meyer’s method of adding and removing
jumps. Hence, by [9, Lemma 3.6] and [10, Lemma 3.1(c)], the transition density of Xt

exists and also satisfies (5.1) for smaller r0 (see also [30, Proposition 2.1]).
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It follows that Assumption A is satisfied. Assumption B holds with D = C∞c (Rk),
and scaling property (f) (with finite R0) follows from the α-stable-like scaling of Ã and
boundedness of N . Since we assumed that (g) holds true, Assumption C is satisfied with
scaling properties (b), (c). Assumption D and scaling properties (d), (e) follow from
transition density estimate (5.1) by Proposition 5.3. Hence, scale-invariant boundary
Harnack inequality holds true for Xt.

The above setting includes mixtures of isotropic stable processes (Lévy processes gen-
erated by A = −(−∆)α/2 − c(−∆)β/2 with 0 < β < α < 2 and c > 0) and relativistic
stable processes (Lévy processes generated by A = m − (−∆ + m2/α)α/2 with m > 0).
Also, the dependence of constants on the parameters c, β, m can be easily tracked. Since
the perturbation n(x, y) can be asymmetric, many non-symmetric processes are included.
Finally, this example can be adapted to the setting of Ahlfors-regular n-sets in Rk, as in
Example 5.6.

Example 5.9 (Processes killed by a Schödinger potential). Suppose that the assumptions
for the boundary Harnack inequality in Theorem 3.5 are satisfied. Let X′ be an open set
in X. Let Mt be a strong right-continuous multiplicative functional quasi-left continuous
on [0,∞), for which all points of X′ are permanent, and such that Mt = 0 for t ≥ τX′ .
Finally, let XM

t be the subprocess corresponding to Mt (in a similar way as in Section 4;
see [18] for definitions). Then XM

t is a Hunt process on X′, uniquely determined by the
relation PM

x (XM
t ∈ E) = Ex(Mt;Xt ∈ E) for any E ⊆ X′ and x ∈ X′.

Assume that Mt is a continuous function of t ∈ [0, τX′). We claim that in this case the
Lévy kernel νM(x, y) of XM

t is again given by ν(x, y), restricted to X′ × X′. Indeed, by
formula (4.6) of Lemma 4.3, for x ∈ X′ and f ∈ D(A) vanishing in a neighborhood of x,
we have

EM
x (f(XM

t ))− f(x) = Ex(f(Xt)Mt)− f(x)

= Ex

(∫ t

0

Af(Xt)Mtdt

)
+ Ex

(∫ t

0

f(Xt)dMt

)
.

When divided by t, this converges (for a fixed x) to Af(x) as t→ 0+. Hence, νMf(x) =
νf(x). By an approximation argument, this holds for any f ∈ Cc(X

′) vanishing in a
neighborhood of x, proving our claim. (Note that, however, in general, functions in D(A)
need not belong to the domain of the generator of XM

t , even if X′ = X.)
We remark that many such functionalsMt are related to Schrödinger potentials V : for a

nonnegative function V , we have Mt = exp(−
∫ t

0
V (Xs)ds) for t < τX′ , see [18]. A similar

construction was used in Section 4 for a particular choice of V . In some applications, the
potential V can take negative values, the case not covered by this example.

Let D ⊆ X be an open set. By the definition of a subharmonic function, a nonnegative
function f regular subharmonic on D ∩ X′ with respect to the process XM

t , extended by
f(x) = 0 for x ∈ X \X′, is also regular subharmonic in D with respect to Xt. Hence, the
hypothesis of Theorem 3.4 holds for XM

t with the same constant c(3.9). Of course, one
needs to replace the sets in the statement of Theorem 3.4 by their intersections with X′.

We claim that also Lemma 3.1 holds for XM
t with the same constant. Indeed, with the

definitions of the proof of Lemma 3.1 and D′ = D ∩ X′, for x ∈ B(x0, r) ∩ X′ we have

PM
x (XM

τD′
∈ X′ \B(x0, R)) = Ex(MτD ;XτD ∈ X \B(x0, R))

≤ Ex(f(XτD)MτD)− f(x).



BOUNDARY HARNACK INEQUALITY FOR MARKOV PROCESSES WITH JUMPS 27

By formula (4.6) of Lemma 4.3,

Ex(f(XτD)MτD)− f(x) = Ex

(∫ τD

0

Af(Xt)Mtdt

)
+ Ex

(∫
[0,τD+]

f(Xt)dMt

)
.

The second summand on the right hand side is nonpositive. It follows that,

PM
x (XM

τD
∈ X′ \B(x0, R)) ≤ Ex

(∫ τD

0

Mtdt

)
sup
y∈X

Af(y)

= EM
x (τD′) sup

y∈X
Af(y),

as desired.
In Lemma 3.2, only the estimates of the Lévy measure and mean exit time are used.

Therefore, also Lemma 3.2 holds for the process XM
t with unaltered constants. In a

similar way, the proof of Theorem 3.5 works for the process XM
t without modifications.

We conclude that the boundary Harnack inequality holds forXM
t with the same constants.

For convenience, we state this result as a separate theorem.

Theorem 5.10. Suppose that Assumptions A, B, C and D hold true. Let X′ be an
open subset of X, and let XM

t be a subprocess of Xt, with state space X′, corresponding
to a strong right-continuous multiplicative functional for Xt, continuous before Xt hits
X\X′, vanishing after that time, and quasi-left continuous on [0,∞). Then the boundary
Harnack inequality holds true for the process XM

t with the same constant c(1.1) given
by (3.10). More precisely, if x0 ∈ X, 0 < r < R < R0, D ⊆ B(x0, R) is open, f, g are
nonnegative regular harmonic functions in D ∩X′ (with respect to the process XM

t ), and
f, g vanish in (B(x0, R) \D) ∩ X′, then we have

f(x)g(y) ≤ c(1.1) g(x)f(y) , x, y ∈ B(x0, r) ∩D ∩ X′,

where c(1.1) = c(1.1)(x0, r, R) does not depend on Mt.

We remark that the continuity assumption for Mt is essential. If, for example, Mt is
equal to 1 until the first jump larger than 1, and then 0, the boundary Harnack inequality
typically does not hold, by an argument similar to one in Example 5.14 below.

Example 5.11 (Actively reflected and censored stable processes). Let X′ ⊆ Rk be open
and let X be the closure of X′ in Rk. Suppose that X satisfies property (a). Let ν(x, y) =
c|x− y|−n−α. As in Example 5.6, under suitable assumptions on X, there is a stable-like
process Xt with the Lévy kernel ν(x, y), and scale-invariant BHI holds for Xt. In [21],
the process Xt is called actively reflected α-stable process in X, and the process X ′

t,
obtained from Xt by killing it upon hitting X \X′, is named censored α-stable process in
X′ (see [21, Remark 2.1]). Clearly, the boundary Harnack inequality for X ′

t is the special
case of the boundary Harnack inequality for Xt, corresponding to open sets D contained
in X′. (Note that this is in fact a special case of Theorem 5.10, with Mt = 1 for t < τX′ .)
Hence, we have scale-invariant BHI for the actively reflected α-stable process Xt and the
censored α-stable process X ′

t, whenever X′ is a Lipschitz set in the case α ∈ (0, 1), and
X′ is an open set with C1,β-smooth boundary for some β > α − 1 in the case α ∈ [1, 2).
The above extends the results of [21, 43].

Example 5.12 (Gradient-type perturbations of stable processes). Let α ∈ (1, 2). If
b : Rk → Rk is bounded and differentiable, partial derivatives of b are bounded, and
div b = 0, then the process Xt generated by −(−∆)α/2 + b · ∇, and the process X̂t

generated by −(−∆)α/2 − b · ∇ are mutually dual. Such processes are considered in the

recent paper [51]. The Lévy kernels of Xt and X̂t are the same as that of the isotropic
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α-stable Lévy process generated by (−∆)α/2, see [25]. Furthermore, D = C∞c (Rk) is

contained in the domains of A and Â. Therefore, a scale-invariant (with finite R0)
boundary Harnack inequality holds for the process Xt.

We conclude this article with some negative or partially negative examples.

Example 5.13 (Lévy processes with Brownian component). Let X = Rk, d be the
Euclidean distance, m be the Lebesgue measure, and α ∈ (0, 2). Let Xt be the sum of
two independent processes, the Brownian motion and the isotropic α-stable Lévy process.
That is, Xt is the Lévy process with generator A = c1∆− c2(−∆)α/2.

Clearly, Xt is symmetric and has transition densities, so Assumption A is satisfied. Fur-
thermore, D(A) contains C∞c (Rk), and hence Assumption B is satisfied with 2-stable-like
scaling: the property (f) holds with α replaced by 2. On the other hand, Assumption C
clearly holds with α-stable-like scaling (g). Furthermore, detailed estimates for the tran-
sition density of Xt can be established ([34]), from which Assumption D follows as in
Proposition 5.3, with 2-stable scaling.

It follows that boundary Harnack inequality holds despite the diffusion component.
However, the constant c(1.1)(x0, r, R) is not bounded when, for example, R = 2r and
r → 0+. This is a typical behavior for processes comprising both jump and diffusion
part, and for general open sets one cannot expect a scale-invariant result: the boundary
Harnack inequality in the form given in (BHI) does not hold for the Brownian motion
without some regularity assumptions on the boundary of D, cf. [14]. On the other hand,
the scale-invariant boundary Harnack inequality for Xt in more smooth domains was
established in [32].

Example 5.14 (Truncated stable processes). This example shows why Assumption C
is essential for the boundary Harnack inequality in the form given in (BHI). Consider
the truncated isotropic α-stable Lévy process Xt in X = Rk, α ∈ (0, 2), n ≥ 1. This
is a pure-jump Lévy process with Lévy kernel ν(x, y) = c|x − y|−n−α1B(x,1)(y). Clearly,
Assumptions A, B and D, as well as formula (2.9), hold true with α-stable-like scaling
and R0 = 1, but Assumption C is violated.

We examine two specific harmonic functions. Let v be a vector in Rd with |v| = 2/3,
let r ∈ (0, 1/6) be a small number, and define B1 = B(x1, r) and B2 = B(x2, r), where
x1, x2 ∈ Rk are arbitrary points satisfying x1 − x2 = v. Let D = B1 ∪ B2, E1 = B1 + v,
E2 = B2− v, and let fj(x) = Px(X(τD) ∈ Ej). Suppose that x ∈ B1. By (2.12), we have

3−n−αc|E1|ExτB1 ≤ f1(x) ≤ 3n+αc|E1|ExτD.

When x ∈ B2, then, again by (2.12),

f1(x) ≤ Px(X(τB2) ∈ B1) · sup
y∈B1

f1(y)

≤ c3n+α|B1|ExτB2 · 3n+αc|E1| sup
y∈B2

EyτD.

Similar estimates hold true for f2. It follows that

f1(x2)f2(x1)

f1(x1)f2(x2)
≤ c2n,α(3

n+α)6|B1| |B2|
(

sup
y∈D

EyτD

)2

≤ c2n,α(3
n+α)6|B(0, 1)|2r2n

(
sup

y∈B(0,1)

EyτB(0,1)

)2

.

This ratio can be arbitrarily small when r → 0, and therefore (BHI) cannot hold for
truncated stable process uniformly with respect to the domain. We remark that by an
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appropriate modification of the above example, one can even construct a single domain
(an infinite union of balls) for which (BHI) is false. Also, modifications of the above
example for other truncated processes, or for processes with super-exponential decay of
the density of the Lévy measure can be given.

On the other hand, if the regular harmonic functions f and g (of the truncated α-
stable process Xt) vanish outside a unit ball, then clearly f and g are harmonic in D
also with respect to the standard (that is, non-truncated) isotropic α-stable process in
Rk. Therefore, the boundary Harnack inequality actually holds true for such functions. A
different version of boundary Harnack inequality was proved for Xt under some regularity
assumptions on the domain of harmonicity in [59, 60].

Appendix A. Smooth bump functions on metric measure spaces with
sub-Gaussian heat kernels

In this part we repeat the construction of smooth bump functions of [69]. We adopt
the setting of Example 5.7: Zt is a diffusion process on an Ahlfors-regular n-space X, the
transition semigroup TZt of Zt satisfies sub-Gaussian bounds (5.5), and Xt is defined to
be the process Zt subordinated by an independent α/dw-stable subordinator, α ∈ (0, dw).
The generator of Zt serves as the (Neumann) Laplacian ∆ on X, and TZt is the heat
semigroup.

Let h = TZt g for some t > 0 and g ∈ L2(X). One of the main results of [69], The-
orem 2.2, states that given any compact K and ε > 0, there is a function f such that
f ∈ D(∆l) for all l > 0, f(x) = h(x) on K and f(x) = 0 when dist(x,K) ≥ ε. There are
at least three issues when one tries to apply this result in our setting.

First, Theorem 2.2 in [69] is given under the assumption that the spectral gap of ∆ is
positive. However, this assumption is used only in the proof of Lemma 2.6, which contains
a flaw: positivity of the spectral gap λ does not imply the inequality ‖Ptf − f‖L2(X) ≤
λt‖f‖L2(X) (see line 3 on page 1769 and line 12 on page 1773 in [69]). This issue has been
resolved by the authors of [69] in an unpublished note, containing a corrected version of
the proof of Lemma 2.6. The new argument does not involve the condition on the spectral
gap, which therefore turns out to be superfluous. For future reference, we provide the
corrected version of the proof of Lemma 2.6 below.

Second, to get Assumption B, we need to apply the above theorem with h(x) = 1 for
x ∈ K, where h = TZt g. This condition is satisfied when g(x) = 1 for all x ∈ X. However,
such a function g is in L2(X) only when m is a finite measure, and the general case is not
covered by [69]. For that reason, we choose to repeat the construction of [69] in L∞(X)
(instead of L2(X)) setting.

Finally, for a scale-invariant boundary Harnack inequality, we need an upper bound
for ‖∆f‖L∞(X) with explicit dependence on scale, that is, explicit in ε and the size (e.g.
the diameter) of K. Such properties of the estimates are irrelevant in [69], but it turns
out that they can be obtained by carefully following the proof of Theorem 2.2 in [69].

For the above reasons, we decide to give a complete proof of an L∞(X) version of
Theorem 2.2 in [69]. However, it should be emphasized that method was completely
developed in [69]. Although we only need the result for g(x) = h(x) = 1 for all x ∈ X,
for future reference we consider the general case.

Theorem A.1 (a variant of [69, Theorem 2.2]). Suppose that K ⊆ X is a compact set,
ε, s > 0 and h = TZs g for some g ∈ L∞(X). Then there is a function f ∈ L∞(X) such
that f(x) = h(x) for x ∈ K, f(x) = 0 when dist(x,K) ≥ ε, and f ∈ D(∆l) for any l > 0.
Furthermore, the L∞(X) norm of f is bounded by the L∞(X) norm of g, f is nonnegative
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if g is nonnegative, and for all l > 0 we have∥∥∆lf
∥∥
L∞(X)

≤
c(A.1)(diamK + ε)n/2

εldw+n/2
‖g‖L∞(X) , (A.1)

where c(A.1) = c(A.1)(l, ε
dw/s, Zt).

Proof. We divide the argument into five steps. All constants in this proof may depend
not only on the parameters given in parentheses, but also on the space X and the process
Zt. Since we never refer to the semigroup of the subordinate process Xt, in this proof
for simplicity we write Tt = TZt . Furthermore, also in this proof only, we extend ∆ to
the L∞(X) generator of Tt (recall that originally ∆ was defined as the C0(X) generator),
and denote by ∆L2(X) the L2(X) generator of Tt, that is, the generator of the semigroup
of operators Tt acting on L2(X). Clearly, ∆f = ∆L2(X)f m-a.e. whenever f ∈ D(∆) ∩
D(∆L2(X)).

Step 1. We begin with some general estimates. By the spectral theorem and the
inequality λle−λt ≤ (le/t)l, for any f ∈ L2(X) and l ≥ 0, we have Ttf ∈ D((∆L2(X))

l), and∥∥(∆L2(X))
lTtf

∥∥
L2(X)

≤ (le/t)l ‖f‖L2(X) .

Furthermore, by sub-Gaussian estimates (5.5), ‖Tt(x, ·)‖L2(X) = (T2t(x, x))
1/2 ≤ c1t

−n/(2dw).
Hence,

‖Ttf‖L∞(X) ≤ c1t
−n/(2dw) ‖f‖L2(X) .

We find that ∥∥∥∥TsTtf − Ttf

s
−∆L2(X)Ttf

∥∥∥∥
L∞(X)

≤ c1
(t/2)n/(2dw)

∥∥∥∥TsTt/2f − Tt/2f

s
−∆L2(X)Tt/2f

∥∥∥∥
L2(X)

→ 0

as s→ 0+. It follows that Ttf ∈ D(∆), with ∆Ttf = ∆L2(X)Ttf . By a similar argument,
Ttf ∈ D(∆l) for any l ≥ 0, and∥∥∆lTtf

∥∥
L∞(X)

=
∥∥Tt/2∆lTt/2f

∥∥
L∞(X)

≤ c2
tn/(2dw)

∥∥∆lTt/2f
∥∥
L2(X)

≤ c3(l)

tl+n/(2dw)
‖f‖L2(X) .

Sub-Gaussian estimate (5.5) and Ahlfors regularity of X also give the following estimate:
for any set E ⊆ X, any ε > 0 and any f ∈ L∞(X) or f ∈ L1(X) vanishing in the
ε-neighborhood of E, we have

‖Ttf‖L∞(E) ≤ D(ε, t) ‖f‖L∞(X) , and ‖Ttf‖L1(E) ≤ D(ε, t) ‖f‖L1(X) ,

where

D(ε, t) = sup
x∈X

∫
X\B(x,ε)

Tt(x, y)m(dy) ≤ c4 exp(−c5(εdw/t)1/(dw−1)).

In particular, given any s > 0 and ε > 0 it is possible to choose a strictly increasing
sequence sj > 0 convergent to s, with s0 = 0, such that if tj = sj − sj−1 (j ≥ 1), then

lim
j→∞

D(2−jε, s− sj) = 0 and
∞∑
i=1

D(2−iε, ti)

tli+1

≤ c6(l, ε
dw/s)

εldw
<∞

for any ε > 0, l ≥ 0. For example, one can take sj = (1 − 4−dwj)s. Note, however, that
the above series would diverge if tj decreased either too slowly or too rapidly.
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Step 2. Let g ∈ L∞(X), ε, s > 0, and h(x) = Tsg(x), as in the statement of the
theorem. Following [69], for j ≥ 0 we define

Kj = {x ∈ X : dist(x,K) < 2−jε}, Lj = {x ∈ X : dist(x,K) > (1− 2−j)ε},

and Aj = X \ (Kj ∪ Lj). Furthermore, let sj and tj be chosen as in Step 1. For j ≥ 1 we
define

u0(x) = 0, uj(x) = 1Kj
(x)Tsj

g(x) + 1Aj
(x)Ttjuj−1(x).

Below we prove that Ts−sj
uj converges to a function f with the desired properties.

Step 3. By induction, ‖uj‖L∞(X) ≤ ‖g‖L∞(X) for any j ≥ 0. For j ≥ 1 we have
uj−1(x) = Tsj−1

g(x) for x ∈ Kj−1, and dist(Kj,X \Kj−1) ≥ 2−jε. Hence,∥∥uj − Ttjuj−1

∥∥
L∞(Kj)

=
∥∥Ttj(Tsj−1

g − uj−1)
∥∥
L∞(Kj)

≤ D(2−jε, tj)
∥∥Tsj−1

g − uj−1

∥∥
L∞(X)

≤ 2D(2−jε, tj) ‖g‖L∞(X) ,
(A.2)

where D(2−jε, tj) is as in Step 1 (cf. [69, Lemma 2.3]). Also, uj vanishes on Lj, uj−1

vanishes on Lj−1, and dist(Lj,X \ Lj−1) ≥ 2−jε, so that∥∥uj − Ttjuj−1

∥∥
L∞(Lj)

=
∥∥Ttjuj−1

∥∥
L∞(Lj)

≤ D(2−jε, tj) ‖uj−1‖L∞(X) ,

and (using X \ Lj−1 ⊆ K0)∥∥uj − Ttjuj−1

∥∥
L1(Lj)

=
∥∥Ttjuj−1

∥∥
L1(Lj)

≤ D(2−jε, tj) ‖uj−1‖L1(X) ≤ D(2−jε, tj)m(K0) ‖uj−1‖L∞(X) .

Hence, using also ‖uj−1‖L∞(X) ≤ ‖g‖L∞(X), we obtain (cf. [69, Lemma 2.5])∥∥uj − Ttjuj−1

∥∥
L2(Lj)

≤
√∥∥uj − Ttjuj−1

∥∥
L∞(Lj)

∥∥uj − Ttjuj−1

∥∥
L1(Lj)

≤ D(2−jε, tj)
√
m(K0) ‖g‖L∞(X) .

(A.3)

Step 4. We follow the corrected version of the proof of [69, Lemma 2.6]. Let l ≥ 0. For
j ≥ 1 we have

∆lTs−sj
uj =

j∑
i=1

∆lTs−si
(ui − Ttiui−1).

Observe that the results of Step 1 and the equality ui(x) = Ttiui−1(x) for x ∈ Ai give

∞∑
i=1

∥∥∆lTs−si
(ui − Ttiui−1)

∥∥
L∞(X)

≤
∞∑
i=1

c3(l)

(s− si)l+n/(2dw)
‖ui − Ttiui−1‖L2(X)

≤
∞∑
i=1

c3(l)

t
l+n/(2dw)
i+1

(
‖ui − Ttiui−1‖L2(Ki)

+ ‖ui − Ttiui−1‖L2(Li)

)
.

Hence, by (A.2) and (A.3),

∞∑
i=1

∥∥∆lTs−si
(ui − Ttiui−1)

∥∥
L∞(X)

≤ 3c3(l)
√
m(K0) ‖g‖L∞(X)

∞∑
i=1

D(2−iε, ti)

t
l+n/(2dw)
i+1

≤ 3c3(l)
√
m(K0) ‖g‖L∞(X)

c6(l + n/(2dw), εdw/s)

εldw+n/2
.
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It follows that the sequence ∆lTs−sj
uj converges in L∞(X) as j → ∞ for every l ≥ 0.

Therefore, if f(x) = limj→∞ Ts−sj
uj(x), then for all l ≥ 0 we have f ∈ D(∆l) and∥∥∆lf

∥∥
L∞(X)

≤
∞∑
i=1

∥∥∆lTs−si
(ui − Ttiui−1)

∥∥
L∞(X)

≤ c7(l, ε
dw/s)

εldw+n/2

√
m(K0) ‖g‖L∞(X) ,

as desired.
Step 5. By the definition of uj, for j ≥ 1 we have

Ts−sj
uj = Ts−sj

(1Kj
Tsj
g + 1Aj

Ttjuj−1)

= Tsg + Ts−sj
(1Aj

Ttjuj−1 − 1X\Kj
Tsj
g).

It follows that∥∥Ts−sj
uj − Tsg

∥∥
L∞(K)

=
∥∥Ts−sj

(1Aj
Ttjuj−1 − 1X\Kj

Tsj
g)
∥∥
L∞(K)

≤ D(2−jε, s− sj)
∥∥1Aj

Ttjuj−1 − 1X\Kj
Tsj
g
∥∥
L∞(X)

≤ 2D(2−jε, s− sj) ‖g‖L∞(X) .

The right hand side converges to 0 as j → ∞. Hence, f(x) = Tsg(x) = h(x) for x ∈ K.
Furthermore, ‖uj‖L∞(X) ≤ ‖g‖L∞(X), and therefore also ‖f‖L∞(X) ≤ ‖g‖L∞(X). Finally, if
g ≥ 0, then uj ≥ 0 for all j ≥ 1, and so f ≥ 0. �

By choosing g(x) = h(x) = 1 and s = εdw , we obtain the following result.

Corollary A.2. Suppose that K ⊆ X is a compact set and ε > 0. Then there is a
function f ∈ L∞(X) such that f(x) = 1 for x ∈ K, f(x) = 0 when dist(x,K) ≥ ε, and
f ∈ D(∆l) for any l > 0. Furthermore, 0 ≤ f(x) ≤ 1 for all x ∈ X, and for all l > 0 we
have ∥∥∆lf

∥∥
L∞(X)

≤
c(A.4)(diamK + ε)n/2

εldw+n/2
, (A.4)

where c(A.4) = c(A.4)(l, Zt). �

In general, the boundary of the set {x ∈ X : f(x) > 0} might be highly irregular.
However, when we relax the smoothness hypothesis on f , we can require f to be positive
on an arbitrary given open set.

Proposition A.3. Suppose that K ⊆ X is a compact set, ε > 0 and L > 0. Then there is
a function f ∈ L∞(X) such that f(x) = 1 for x ∈ K, f(x) = 0 when dist(x,K) ≥ ε, and
f ∈ D(∆l) for l = 1, 2, . . . , L. Furthermore, 0 ≤ f(x) ≤ 1 for all x ∈ X, the boundary of
the set {x ∈ X : f(x) > 0} has zero m measure, and for all l = 1, 2, . . . , L we have∥∥∆lf

∥∥
L∞(X)

≤
c(A.5)(diamK + ε)n/2

εldw+n/2
, (A.5)

where c(A.5) = c(A.5)(L,Zt).

Proof. Let f0 be the function constructed in Theorem A.1 for h(x) = g(x) = 1, and
denote by V an arbitrary open set with the following properties: {x ∈ X : f(x) >
0} ⊆ V ⊆ {x ∈ X : dist(x,K) < 2ε}, and m(∂V ) = 0. For example, one can take
V = {x ∈ X : dist(x,K) < r} for a suitable r ∈ (ε, 2ε).

Let Bj, j = 1, 2, . . ., be a family of balls contained in V ∩ {x ∈ X : f0(x) < 1/2} such
that twice smaller balls B′j form a countable covering of V ∩ {x ∈ X : f0(x) < 1/2}, and
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let fj be the function as in Corollary A.2, equal to 1 on B′j and vanishing on X \ Bj.
Finally, choose εj > 0 so that for l = 0, 1, . . . , L,

∞∑
i=1

εi
∥∥∆lfi

∥∥
L∞(X)

<
1

2

∥∥∆lf0

∥∥
L∞(X)

.

Then f = f0 +
∑∞

i=1 εifi has all the desired properties, with ε replaced by 2ε. �

Corollary A.4. Assumption B holds with α-stable scaling.

Proof. Given any compact subset K of an open set D ⊆ X, choose ε > 0 such that
dist(X \ D,K) ≥ ε. Since D(∆) ⊆ D(A), the function f given in Proposition A.3 (for
L = 1) satisfies all conditions of Assumption B. Furthermore, if νη(s)ds is the Lévy
measure of the subordinator ηt, then

‖Af‖L∞(X) =

∥∥∥∥∫ ∞

0

(TZs f − f)νη(s)ds

∥∥∥∥
L∞(X)

≤
∫ ∞

0

∥∥TZs f − f
∥∥
L∞(X)

νη(s)ds

≤
∫ ∞

0

min
(
s ‖∆f‖L∞(X) , 2 ‖f‖L∞(X)

)
νη(s)ds.

Note that ‖f‖L∞(X) = 1. Furthermore, min(λs, 2) ≤ c1(1−e−λs) (with c1 = 2e2/(e2−1)),
and ∫ ∞

0

(1− e−λs)νη(s)ds = λα/dw .

Therefore,

‖Af‖L∞(X) ≤ c1

(
‖∆f‖L∞(X)

)α/dw

.

Let 0 < r < R, and take K = B(x0, r), D = B(x0, R), ε = R− r. We see that

‖Af‖L∞(X) ≤ c1

(
c(A.5)(1, Zt)(2R)n/2

(R− r)dw+n/2

)α/dw

= c2(r/R,Zt)R
−α.

This gives half of the α-stable scaling property (f), and the other half is proved in a
similar manner. �
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