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Abstract

We consider the set M(n,R)× of all square matrices of size n ∈ Z≥1 with non-zero
determinants and coefficients in a principal ideal domain R. It forms a cancellative
monoid with the matrix product. We develop an elementary theory of divisions
by irreducible elements in M(n,R)×, and show that any finite set of irreducible
elements of M(n,R)× has the right/left least common multiple up to a unit factor.

As an application, we calculate the growth function PM(n,R)×,deg(t) and the

skew growth function NM(n,R)×,deg(t) of the monoid M(n,R)×. We get expressions
PM(n,R)×,deg(exp(−s))= ζR(s)ζR(s−1)· · ·ζR(s−n+1) and NM(n,R)×,deg(exp(−s))=∏

p∈{primes}(1−N(p)s)(1−N(p)s−1) · · · (1−N(p)s−n+1), where ζR(s) is Dedekind zeta-

function and N is the absolute norm on R. The structure of least common multi-
ples in the monoid M(n,R)× studied above gives an elementary and direct proof
of these decompositions, that is distinct from proofs by classical machinary.
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1. Introduction

Let R be a principal ideal domain. We study the division theory on the monoid
M(n,R)× of all square matrices of size n ∈ Z>0 with coefficients in R, non-zero
determinants and the unit 1n. When the size n of the matrix is equal to 1, then
we obtain the classical theory of prime decompositions in the domain R, whose
analytic counterpart is the study of the Dedekind zeta-function ζR(s). If the size
n is at least 2, then the monoid is non-commutative. Even though the standard
concepts of prime elements and prime decompositions lose their meaning, the con-
cepts of left or right (least) common multiples make senses. However, such theory
and its analytic counterpart have not been systematically studied. Motivated by a
study of certain thermo-dynamical limit functions over cancellative monoids [S1,3],
in the present paper, we study an elementary theory of left divisions by irreducible
elements in M(n,R)×. Using this division theory, we describe the growth and the
skew-growth function for the monoid M(n,R)× as their analytic counterparts.

12000 Mathematics Subject Classification: Primary AL; Secondary GR.
2Acknowledgement: The author is grateful to professors Akio Fujii, Satoshi Kondo and

Masatoshi Suzuki for discussions and for informing the author about some literatures. He also
expresses his gratitude to Scott Carnahan for the careful reading of the manuscript.
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Let us explain this more precisely. For two elements A,B ∈ M(n,R)×, we
say, as usual, A divides B from the left or B is a right-multiple of A (denoted
by A|lB) if there exists C ∈ M(n,R)× such that AC = B. The division relation
A|lB depends only on the right equivalence classes [A], [B] in M(n,R)×/GL(n,R).
Thus, a poset structure on M(n,R)×/GL(n,R) is defined as [A]≤ [B] ⇔def A|lB.
An element X in M(n,R)× is called irreducible if its class [X] is minimal in the
poset minus the lowest class [1n]. Actually, irreduciblity of X is characterized by
the fact that its determinant is a prime element, say p, in R (§2 Lemma2.1). We
call such X a p-irreducible element. Then in §4, we formulate the key result of
the division theory by irreducible elements in M(n,R)× in the following form.3

Theorem 3. Let I0,p be the set of right equivalence classes of all p-irreducible ele-
ments of the monoid M(n,R)×. Then, for any element Z of the monoid M(n,R)×,
there exists a map σZ : I0,p ∪ {1n} → I0,p ∪ {1n} such that for any X ∈ I0 ∪ {1n}
and for any element Y ∈ M(n,R)×, we have the following equivalence:

X |l ZY ⇐⇒ σZ(X) |l Y.
Applying this result recursively, we see immediately in §5 that there exists

a unique, up to right equivalence, minimal common right-multiple, denoted by
LCM(J), for any finite set J of irreducible elements. However, the behavior of the
least common multiples among irreducible elements having the same determinant
p is an intricate arithmetic process, caused by a phenomenon, called bridging4.

If #R/(m)<∞ for all m∈R\{0} (e.g. R=Z, see §6), using the absolute norm
N : R \ {0} → Z>0,m 7→ N(m) := #R/(m), we introduce the degree map by

X ∈ M(n,R)× 7→ deg(X) := log(N(det(X))) ∈ R≥0.

Actually, deg(X) depends only on the class [X] of X. Then, in §6 we introduce
the growth function and the skew-growth function ([S3]), respectively, by

PM(n,R)×,deg(t) :=
∑

[X]∈M(n,R)×/GL(n,R) t
deg([X])

NM(n,R)×,deg(t) :=
∑

J : finite subset of I0
(−1)#J tdeg(LCM(J))

Then, by the change of variable t = exp(−s) to s, we get the expressions

PM(n,R)×,deg(exp(−s)) = ζR(s) ζR(s− 1) · · · ζR(s− n+ 1)
NM(n,R)×,deg(exp(−s)) =

∏
p: primes of R

(1−N(p)s)(1−N(p)s−1)· · ·(1−N(p)s−n+1),

where ζR(s) is the Dedekind zeta-function of R. The proofs of these formulae
can be reduced to classical results (c.f. [Si][K]), however, we give direct elemen-
tary proofs, using the monoid structure on M(n,R)× studied above. Namely, n
factors of the growth and the skew-growth functions corresponds to n levels on
the monoid. However, in order to show the factorization of the skew-growth func-
tion NM(n,R)×(t), we need to show a big cancellation of terms (§6, 7)), and this
cancellation is achieved by bridging among p-irreducible elements studied in §5.

3The formulation of Theorem 3 here is, in its spirit, parallel to [B-S, Lemma3.1] of division
theory in Artin monoids. Namely, we can make a dictionary: X ∈ I0,p ↔ a ∈ I ={generators},
σZ(X)↔ b, Z ↔C, Y ↔D between them. However, they are not completely parallel, namely,
Theorem 3 states an equivalence but Lemma 3.1 states only one implication a|lCD ⇒ b|lD. This
was caused by the fact that the Artin braid relations may have length≥ 2.

4In §3, we introduce level of an irreducible element form 1 to n. If X and Z are p-irreducible
elements of the same level i, then σZ(X) is a p-irreducible element of level strictly lower than i.
We call this phenomenon bridging of level (see §4 Proof of Theorem 1, 5.Case ii) and §6 Part II).
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2. Monoid M(n,R)× and its irreducible elements

Let R be a principal ideal domain. For any given positive integer n ∈ Z>0,
consider the set of all square matrices of size n with non-zero determinant:

M(n,R)× := {X ∈ M(n,R) | det(X) ̸= 0}.
The set M(n,R)× forms a monoid (i.e. a semi-group with the unit 1n) with respect
to the matrix product. Since M(n,R)× is embedded into the group GL(n,F(R))
for F(R) =the fractional field of R, the monoid is cancellative, that is, AXB =
AY B implies X=Y for all A,B,X, Y ∈ M(n,R)×.

The set of all invertible elements in M(n,R)× is given by

GL(n,R) := {X ∈ M(n,R) | det(X) ∈ E},
where E is the unit group of R. An element X ∈ M(n,R)× is called irreducible if
X = Y Z for Y, Z ∈ M(n,R)× implies either Y or Z belongs to GL(n,R).

Let us show an elementary basic fact:

Lemma 1. An element X∈M(n,R)× is irreducible if and only if det(X)∈R is
irreducible, or, equivalent to say, prime in R.

Proof. Suppose det(X) is irreducible in R. IfX=Y Z then det(X)=det(Y ) det(Z)
and hence, either det(Y ) or det(Z) belongs to E , and either Y or Z belongs to
GL(n,R). Conversely assume that X is irreducible. Since, for a principal ideal
domain R, any double coset in GL(n,R)\M(n,R)/GL(n,R) can be presented by
a diagonal matrix, we may assume that X is diagonal. Then, except that one
diagonal entry is an irreducible element in R, all the other diagonal entries of X
are units in E . Hence, det(X) is irreducible. □
Definition. Let p be an irreducible element of R. An element X ∈ M(n,R)× is
called p-irreducible if det(X) is equal to p up to a unit factor.

Remark. We do not study irreducible decompositions of elements of M(n,R)×,
but study the division relation between two right cosets in M(n,R)×/GL(n,R),
where, still, the concept of irreducible elements plays a crucial role (see §3,4).

We denote X|lY for X,Y ∈M(n,R)×, if there exists Z ∈ M(n,R)× such that
XZ=Y , and we say that X divides Y from the left or Y is a right multiple of X.

We define equivalences X∼l Y ⇔def X|lY & Y |lX. Then, due to the cancella-
tivity of M(n,R)×, we have the coset expressions:

M(n,R)×/∼l = M(n,R)×/GL(n,R),

where RHS is the quotient set by the right action of GL(n,R). We sometimes
denote by [X]l or by [X] the left-equivalence class of an element X ∈ M(n,R)×.
Since the left-equivalence preserves the left-division relation (i.e.X ∼l X

′, Y ∼l Y
′

and X|lY implies X ′|lY ′), the quotient set M(n,R)×/∼l naturally carries poset
structure induced from the left-division relation: [X]l ≤l [Y ]l ⇔def X|lY . Using
the poset structures, irreducible elements are characterized as follows.

Fact. An element X ∈ M(n,R)× is irreducible if and only if [X]l is a minimal
element in M(n,R)×/∼l \{[1n]l} with respect to ≤l,

Remark. Similar to the above, we can introduce the right division relation, the
right equivalence relation on M(n,R)× and the poset structure on M(n,R)×/∼r=
GL(nR)\M(n,R)×. One has a poset isomorphism: M(n,R)×/∼r≡ M(n,R)×/∼l

, [X] 7→ [tX], and we study only M(n,R)×/∼l.
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3. Normal form for the classes of M(n,R)/∼l

We give normal forms for elements of the posets M(n,R)/∼l for all n ∈ Z≥1.
To this end, we fix once and forall a subset M ⊂ R \ {0} and subsets Rm ⊂ R for
all m ∈ M , for which the following natural projections are bijections:

M ≃ (R \ {0})/E and Rm ≃ R/(m) for m ∈ M,

where (m) is the principal ideal in R generated by m. Without a loss of generality,
we assume that 1) the set M is multiplicative (i.e. the set M is closed under the
products among its elements), and 2) the class (m)∈R/(m) is presented by 0∈Rm.

Depending on the choices of M and Rm, we introduce a subset of M(n,R)×:

Mn :=




m1 0 0 · · · 0
d21 m2 0 · · · 0
d31 d32 m3 · · · 0
∗ ∗ ∗ · · · 0
dn1 dn2 dn3 · · · mn


m1,m2, · · · ,mn ∈ M,

di1, di2, · · · , di(i−1) ∈ Rmi

for i = 2, · · · , n


Lemma 2. Every right GL(n,R)-orbit in M(n,R)× intersects with the set Mn

at a single element. That is, the restriction to the subset Mn of the projection
M(n,R)× → M(n,R)×/GL(n,R) induces a bijection

Mn ≃ M(n,R)×/∼l .

Proof. This is shown by an induction on n ∈ Z>0.
Case n=1 is shown by M(1, R)×/∼=(R\{0})/E ≃M=M1. Let n>1 and assume

Lemma for n−1. We first show that the projection from Mn is surjective. Let
X ∈M(n,R)× and let x=(x1, · · · , xn) ∈ Rn be its first row vector, which is non-
zero by the determinant condition det(X) ̸=0. Then, there exists m1∈M , which
generates the ideal (x1, · · · , xn), and A ∈ GL(n,R) such that xA=(m1, 0, · · · , 0).

Hence, we may choose a representative of the class [X]l to be of the form:

[
m1 0
∗ X ′

]
for X′ ∈M(n−1,Z)×. By our induction hypothesis, there exists A′∈GL(n−1, R)

such that

[
m1 0
∗ X ′

] [
1 0
0 A′

]
=

[
m1 0
∗ X ′′

]
where X ′′ is an element of Mn−1 whose

diagonal is (mj)
n
j=2 ∈ Mn−1. Then we find a column vector [∗′] ∈ Rn−1 such that

[∗]+X ′′[∗′] =: [d′] is a vector in
∏n

i=2 Rmi
. Applying a matrix of the form

[
1 0
∗′ 1n−1

]
from the right, we get the normal form

[
m1 0
∗ X ′′

] [
1 0
∗′ 1n−1

]
=

[
m1 0
d′ X ′′

]
.

Next we show the injectivity of the correspondence. Let X,Y ∈ Mn such that
X ∼l Y . Then U := X−1Y is a lower triangular matrix in GL(n,R), whose
diagonal entries are of Z. Since m−1m′ ∈ Z for m,m′ ∈M implies m−1m′ = 1,
diagonals of U are 1. This proves, in particular, the case for n=1.

For n>1, restricting the equality XU=Y to the two (n−1)× (n−1) principal
sub-matrices forgetting either the first column and low or the last column and low,
respectively, we see that parts of X and Y are left-equivalent. By the induction
hypothesis, the corresponding (n−1)×(n−1) principal sub-matrices of U are equal
to the identity matrix. Thus, U is equal to the identity matrix 1n of size n up to
the (n, 1)-entry un1. Then the equality XU = Y implies xn1+un1mn = yn1. Since
we have the normalization xn1, yn1 ∈ Rmn , we get xn1 = yn1 and un1 = 0. □
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Definition. For an equivalence class [X] ∈ M(n,R)×/∼l, we call the element
[X] ∩Mn ∈Mn the normal form of [X]. We often identify the class [X] with its
normal form, when there is no possibility of confusion. By the diagonal part of
the class [X], denoted by diag([X]), we mean the diagonal of the normal form of
[X], i.e. diag([X]∩Mn)= the ordered sequence (m1,· · ·,mn)∈Mn, where each mi

(1 ≤ i ≤ n) is called the diagonal entry of [X] of ith level.

Notation For a row vector x∈Rn and an integer 1 ≤ i ≤ n, we set

M(i : x) := the matrix obtained by substituting the
ith row of the identity matrix 1n by x.

Definition. If M(i : x) ∈Mn, i.e. x= (d1,· · ·, di−1,m, 0,· · ·, 0) for some m ∈M
and dj∈Rm (1≤j<i), we call it a normal form of level i with diagonal m.

If, further, the diagonal m of M(i : x) is an irreducible element, say p, in R, we
call M(i : x) a p-irreducible normal form of level i.

It is clear that any irreducible element of M(n,R)× is right equivalent to a
unique irreducible normal form for a certain level i (1 ≤ i ≤ n). We call i the
level of the irreducible element. Thus, for any irreducible element p ∈ R, the set
of right equivalence classes of all p-irreducible elements is naturally bijective to

I0,p :=

n⊔
i=1

{M(i : (d1, · · · , di−1, p, 0, · · · , 0)) | (d1, · · · , di−1) ∈ (Rp)
i−1}.

4. Left division theory

We develop, in a style similar to the division theory for Artin monoids [BS,§3],
a division theory of an element M(n,R)× by an irreducible element from left.

Theorem 3. Let p be a prime of R, and let I0,p be the set of right equivalence
classes of all p-irreducible elements of M(n,R)×. Then, for any element Z ∈
M(n,R)×, there exists a map σZ from {1n} ⊔ I0,p to itself such that for any X ∈
{1n} ⊔ I0,p and Y ∈ M(n,R)×, one has the equivalence

(∗) X |l ZY ⇐⇒ σZ(X) |l Y

Proof. The proof is divided into the following six steps 1. - 6. i)-iv).

1. For a given pair of a p-irreducible element X and an element Z ∈ M(n,R),
if there exists σZ(X) ∈ Mn satisfying condition (∗), then it is unique.

Proof. Suppose that there are two elements σ, σ′ ∈ M(n,R) such that σ|lY ⇔ σ′|lY
for any Y ∈ M(n,R). Then, by choosing Y to be σ and σ′, we get σ′|lσ and σ|lσ′.
That is, σ and σ′ are right equivalent, i.e. [σ] = [σ′]. □

2. Suppose that there exists σZ for a given Z ∈ M(n,R) satisfying the condition
(∗). Then, for any E ∈ GL(n,R), there exists σZE and

σZE = E−1σZ ,

where E−1 is a self-map of {1n}⊔ I0,p induced from the left multiplication of E−1.

Proof. We have: X |l ZEY ⇔ σZ(X) |l EY ⇔ E−1σZ(X) |l Y . □
Corollary. In order to show the existence of σZ for all Z ∈ M(n,R)×, it is
sufficient to show its existence only for Z ∈ Mn.
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3. Suppose that there exist σZ1 and σZ2 for Z1 and Z2 ∈ M(n,R) satisfying
the condition (∗), respectively. Then, there exists σZ2Z1 and

σZ2Z1 = σZ1 ◦ σZ2 .

Proof. We have: X |l Z2Z1Y ⇔ σZ2(X) |l Z1Y ⇔ σZ1(σZ2(X)) |l Y . □
Corollary. In order to show the existence of σZ for all Z ∈ Mn, it is sufficient to
show the existence of σZ only for irreducible normal forms Z.

Proof. In §7, we shall see that any Z ∈ Mn admits a decomposition Z = Z1 ·
Z2 · · ·Zk into irreducible normal forms. Then, in view of the formula 3., we have
σZ = σZk

◦ · · · ◦ σZ2 ◦ σZ1 . □
5. Let Y ∈ M(n,R) be a lower triangular matrix. Then, Y is divisible by a

p-irreducible normal form X of level 1≤ i≤n, i.e. X |l Y , if and only if

p | v and y ≡ dY ′ mod p.

where X = M(i : (d, p,o)) for d ∈ (Rp)
i−1 and the i-principal sub-matrix of Y is

of the form =

[
Y ′ 0
y v

]
∈ R)× with Y ′ ∈ M(i−1, R), y∈Ri−1 and v∈R.

Proof. Since X−1=M(i : (−d
p ,

1
p ,0)), we have X−1Y is equal to Y except for the

ith low, where the ith low is given by (1p(y−dY ′), vp ,0). □

6. Let X be a p-irreducible element of level i and Z be a q-irreducible element
of level j for primes p, q ∈ M and 1 ≤ i, j ≤ n. Then, there exists σZ(X) satisfying
condition (∗).
Proof. The proof is divided into 4 cases.
Case i) i < j.

Since Z is of level j, ZY is a lower triangular matrix, which coincides with Y
from 1 to j−1 rows. On the other hand, the divisibility of ZY (resp. Y) by X
from the left is determined by the low vectors of ZY (resp. Y ) from 1 to ith. That
is, we have the equivalence X|lZY ⇔ X|lY . That is, we have

σZ(X) = X.
This completes the proof for the case when i < j. □
Case ii) i = j and p = q.

This is the hardest and the most intricate case.

If X = Z, we put σZ(X) = 1n. Suppose X ̸= Z, and let X = M(i : (d, p,0))
and Z = M(i : (e, p,0)) for d, e ∈ (Rp)

i−1 with d − e ̸= 0. Let the i-principal

sub-matrix of Y is of the form =

[
Y ′ 0
y v

]
∈ R)× with Y ′ ∈ M(i−1, R), y∈Ri−1 and

v∈R. Then, the i-principal sub-matrix of ZY is of the form

[
Y ′ 0

eY ′+py pv

]
∈ R)×

with Y ′ ∈ M(i−1, R), y∈Ri−1 and v∈R. Then the criterion in 5. says that

X|lZY ⇔ p|pv and eY ′+py ≡ dY ′ mod p
⇔ (e− d)Y ′ ≡ 0 mod p

Let us give one particular solution W of a p-irreducible element, satisfying
X|lZW . Namely, put v = 1 and y = 0. By the assumption, there is some
1 ≤ k < i such that ek − dk ̸≡ 0 mod p. Let k be the largest such k. Then,
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we consider a p-irreducible element W := M(k : (f , p,0)) with 0 ∈ Rn−k, where
f ∈ (Rp)

k−1 is defined as follows. For 1 ≤ l < k, we solve the following equation

el − dl + fl(ek − dk) ≡ 0 mod p

on fl. This is solvable since ek − dk is prime to p in R. Clearly, if we substitute
Y by W , then Y ′ is a (i − 1, i − 1) matrix of the form M(k : (f , p,0)) with
0 ∈ Ri−1−k and satisfies the equation (e−d)M(k : (f , p,0)) ≡ 0 mod p. Thus, we
have X|lZW . Therefore, any Y with W |lY satisfies X|lZW |lZY .

On the other hand, let us consider any upper triangle matrix Y satisfying
X|lZY . We want to show W |lY , where, according to 5., W |lY if and only if

p | v′′ and y′′ ≡ fY ′′ mod p,

where the k-principal sub-matrix of Y is of the form

[
Y ′′ 0
y′′ v′′

]
∈ M(k,R)×. Since

em − dm ≡ 0 mod p for m with k < m < i − 1, the condition X|lZY on Y , i.e.

(e−d)Y ′ ≡ 0 mod p on Y can be rewritten as (e′′−d′′)

[
Y ′′ 0
y′′ v′′

]
≡ 0 mod p, where

(e′′−d′′) is the low vector consisting of the first k entries of (e−d). Since, by the
definition of f , we have (e′′ − d′′) ≡ (ek − dk)(−f , 1) mod p. Then the condition

X|lZY on Y can be further rewritten as (ek − dk)(−f , 1)

[
Y ′′ 0
y′′ v′′

]
≡ 0 mod p.

Since by the choice of k, ek−dk is prime to p so that we can divide the equality by
dk − ek. Then, this condition exactly implies p | v′′ and y′′ ≡ fY ′′ mod p. That
is, the condition X|lZY implies the condition W |lY (in fact, they are equivalent).
Then, we may put

σZ(X) := W = M(k : (f , p,0)).

This completes the proof for the case when p = q and i = j. □

Remark. We have shown that if X and Z are p-irreducible elements of the same
level i, then σZ(X) is also a p-irreducible element whose level k := max{1 ≤ k ≤
n | dk − ek ̸≡ 0 mod p} is strictly smaller than the level i of X and Z. We shall
call this phenomenon the bridging of levels of p-irreducible elements.

Case iii) i = j and p ̸= q.

Let X = M(i : (d, p,0)) and Z = M(i : (e, q,0)) for d ∈ (Rp)
i−1 and e ∈

(Rq)
i−1. Let the i-principal sub-matrix of Y is of the form

[
Y ′ 0
y v

]
∈ R)× with

Y ′ ∈ M(i−1, R), y∈Ri−1 and v∈R. Then, the i-principal sub-matrix of ZY is of

the form =

[
Y ′ 0

eY ′+qy qv

]
∈ R)× with Y ′ ∈ M(i−1, R), y∈Ri−1 and v∈R. Then

the criterion in 5. says that

X|lZY ⇔ p|qv and eY ′+qy ≡ dY ′ mod p
⇔ p|v and (e− d)Y ′ + qy ≡ 0 mod p

Let us give one particular solution W = M(i : (f , p,0)), satisfying X|lZW .
Namely, we put v = p and Y ′ = Ii−1, then, since p and q are prime, the equation
qy ≡ d − e mod p on y has a unique solution f ∈ (Rp)

i−1. Then, obviously for
any Y ∈ M(n,R)× with W |lY , we get X|lZW |lZY .
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On the other hand, let us consider any upper-triangular matrix Y satisfying
X|lZY . We want to show W |lY , where, according to 5., W |lY if and only if

p | v and y ≡ fY ′ mod p,

where the first condition p|v is already satisfied. Furthermore, substituting the
relation e − d = −qf in the condition X|lZY , we obtain −qfY ′ + qy ≡ 0 mod p.
Since q is prime to p, we can divide this equality by q, and we obtain the condition
for W |lY . That is, the condition X|lZY implies the condition W |lY (in fact, they
are equivalent). Then, we may put

σZ(X) := W = M(i : (f , p,0)).

This complete the proof for the case when p ̸= q and i = j. □
Case iv) i > j.

Let X = M(i : (d, p,0)) and Z = M(j : (e, q,0)) for d ∈ (Rp)
i−1 and e ∈

(Rq)
j−1, where p may or may not be equal to q. Let Y ∈ M(n,R)× be any lower

triangular matrix, whose i-principal sub-matrix is of the form

[
Y ′ 0
y v

]
∈ R)× with

Y ′ ∈ M(i−1, R), y∈Ri−1 and v∈R. Then, the i-principal sub-matrix of ZY is of

the form

Ii +

 0
(e, q − 1,0)

0

[
Y ′ 0
y v

]
= (Y +

 0
(e, q − 1,0)Y

0

), where
1) (e, q − 1,0) is a row vector located in the jth row. Since i > j, the size j of

the vector (e, q − 1) is strictly smaller than the size i of the matrix.
2) 0’s are zero matrices or zero vectors whose size depends on the place where

they are located. In particular, due to the inequality i > j, the 0’s in the bottom
row are non-empty. This implies that the ith row vector of ZY is equal to that of
Y and is (y, v,0).

Then the criterion in 5. says that

X|lZY ⇔ p|v and y ≡ (d+ dj(e, q − 1,0))Y ′ mod p

Reversing the criterion 5., the last condition is equivalent to that Y is divisible by
W := M(i : (d+ dj(e, q− 1,0), p,0)). Clearly, W is a p-irreducible element (even
if it is not yet normalized because of the term dj(e,0)),

Thus, by normalizing W , we put

σZ(X) := [W ] = [M(i : (d+ dj(e, q − 1,0), p,0))].

This completes the proof of the case i > j and that of Theorem 3. □

Combining 6. i)-iv) of proof with irreducible decompositions of normal forms
in Appendix, we can determine σZ(X) algorithmically. The following criterion
on divisibility by irreducible elements is a consequence of Theorem 3.

Corollary 4. An element Z ∈ M(n,R)× is left-divisible by (an equivalence class
of) an irreducible element X if and only if σZ(X) = 1n.

Proof. This follows from the equivalence: X|lZ⇔σZ(X)|l1n⇔σZ(X)=1n. □

Remark. Using above Corollary, we rewrite Theorem 3 into following Theorem
3’, which may make it evident that an irreducible element in M(n,R)× is a non-
commutative analogue, in a suitable sense, of a prime element.
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Theorem 3’. Let X be a p-irreducible element in M(n,R)×. Then for any two
elements Z, Y ∈ M(n,R)×, the following 1) and 2) are equivalent:

1) ZY is divisible by X from the left, 2) either Z is divisible by X from the left,
or Y is divisible by a p-irreducible element σZ(X) from the left.

5. Least common multiples

Definition. An element Z ∈M(n,R)× is called a least common multiple of J ⊂
M(n,R)×, if 1) X |l Z ∀X ∈ J and 2) if X |l Z ′ ∀X ∈ J for some Z ′ ∈M(n,R)×

then Z |l Z ′. Any element left equivalent to Z is again a least common multiple
of J . Thus least common multiples of J form a left equivalence class (if it exists),
whose normal form, denoted by LCM(J), is called the least common multiple of J .

A consequence of the division theory in the previous section is the following.

Theorem 5. Any finite set J of irreducible elements of M(n,R)× admits the
least common multiple LCM(J).

Proof. In the following, we give two different Proofs 1 and 2 of Theorem 5.
Proof 1. We apply recursively Theorem 3 on the cardinality of J , where the
case #J = 1 is trivial. Let #J > 1 and put J = J ′ ⊔ {X}. By our induction
hypothesis, there exists LCM(J ′). Then, LCM(J ′)·σLCM(J ′)(X) is a least common
multiple of the set J , since 1) it is divisible by any X ′ ∈ J ′, and divisible by X
(⇔ σZ·σZ(X)(X) = σσZ(X)(σZ(X)) = 1n), and 2) if an element Z ∈ M(n,R)× is
divisible by the elements of J ′ ⊔ {X} then Z should be divisible by LCM(J ′) and
by X, implying that Z is divisible by LCM(J ′)σLCM(J ′)(X). □

We give an alternative Proof 2 of Theorem 5, which give some insights on least
common multiples, and which we shall use in a later application in §6.
Proof 2. This proof is divided in two parts.

Part 1. We consider least common multiples for a pair of elements in M(n,R)×

whose normal forms have relatively prime diagonals.

Lemma 6. Let X,Y ∈ M(n,R)× with diag([X]) = (l1, · · · , ln) and diag([Y ]) =
(m1, · · · ,mn). Assume that li and mi are relatively prime in R for i = 1,· · ·, n.
Then, there exists the least common multiple LCM(X,Y ) ∈ Mn such that diag(
LCM(X,Y ))=(l1m1,· · ·, lnmn). In particular, det(X) det(Y )=det(LCM(X,Y )).

Proof. We perform an induction on n ∈ Z≥1. The case n=1 is trivial. Assume

n≥2. We may assume that X and Y are in Mn: X=

[
X ′ 0
x ln

]
and Y =

[
Y ′ 0
y mn

]
for X ′, Y ′ ∈ Mn−1, x,y ∈ Rn−1 and ln,mn ∈ R. By our induction hypothesis,
we have the least common multiple Z ′ ∈Mn−1 of X ′ and Y ′. Let us consider a

matrix Z =

[
Z ′ 0
z lnmn

]
for some z∈ (Rlnmn)

n−1. Then, we calculate as X−1Z =[
X ′−1 0

−l−1
n xX ′−1 l−1

n

] [
Z ′ 0
z lnmn

]
=

[
X ′−1Z ′ 0

l−1n (z−xX ′−1Z ′) mn

]
, where X ′−1Z ′ ∈ M(n−

1, R)× by the assumption on Z ′. Thus, we have X|lZ ⇔ z ≡ xX ′−1Z ′ mod ln.
Similarly, we have Y |lZ ⇔ z ≡ yY ′−1Z ′ mod mn. Since ln and mn are relatively
prime in R, we have the unique solution z ∈ (Rlnmn)

n−1 to these two constraints.
Let us show that the Z which we just constructed is the least common multiple of

X and Y . Suppose Z ∈ Mn is a common multiple of X and Y . Then, by induction
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hypothesis, Z up to a unit factor from the right has the form Z =

[
Z ′U ′ 0
z lnmnv

]
for some U ′∈M(n−1, R)×, z∈ (Rlnmnv)

n−1 and v∈R. The left-divisibility by X
and Y of Z, as in the previous paragraph, imply z≡xX ′−1Z ′U ′ mod ln and z≡
yY ′−1Z ′U ′mod mn. On the other hand, in the construction of Z, we already have
some z ∈ Rn−1 satisfying z ≡ xX ′−1Z ′mod ln and z≡yY ′−1Z ′mod mn. So, we
also have zU ′ ≡ xX ′−1Z ′U ′mod ln and zU ′ ≡ yY ′−1Z ′U ′mod mn. Consequently,
we have z≡ zU ′ mod ln and z≡ zU ′mod mn. Then, by the assumption that ln
and mn are relatively prime, we finally get z≡zU ′mod lnmn.

On the other hand, since Z−1Z =

[
Z ′−1 0

−(lnmn)
−1zZ ′−1 (lnmn)

−1

] [
Z ′U ′ 0
z lnmnv

]
=

[
U ′ 0

(lnmn)
−1(z− zU ′) v

]
, we see that the divisibility condition Z|lZ ′ ⇔ z ≡

zU ′ mod lnmn is already shown in the above calculation. That is, Z is the minimal
element among all common multiples of X and Y .

This completes the proof of Lemma 6. □

Part II. Next, we consider least common multiples of a set of p-irreducible ele-
ments for a fixed irreducible p ∈ R. In this case, as we shall see below, the data
of levels of the input J alone cannot determine the diagonals of LCM(J). Such
jumping (down) of the levels shall be called bridging, which plays a role when we
calculate skew-growth function of the monoid M(n,R)× in the next section.

Lemma 7. Let X=M(n,x) and Y =M(n,y) be two p-irreducible normal forms
of level n. Set k :=max{k | kth entry of x−y is not equal to zero}. Then

LCM(X,Y ) = M(k,u)M(n,v),

where M(k,u) and M(n,v) are mutually commutative p-irreducible normal forms
of level k and n, where the raw vectors u = (ui) and v = (vi) are given as follows.

ui ≡ (xi − yi)/(xk − yk) mod p for 1≤ i<k, uk = p, ui = 0 for k < i ≤ n
vi ≡ (xiyk−yixk)/(xk−yk) mod p for 1 ≤ i<k, vk = 0, vi=xi=yi for k<i≤n.

Here we use the bijection R/(p) ≃ Rp for the reason given in the following 5).

Proof. Recall the proof of Theorem 3. 6.Case ii). Details are left to the reader. □

We refer to the descend of the level n → k the bridging of levels.

Corollary. Any finite set of p-irreducible elements has the least common multiple.

Proof. Let J = J ′ ⊔ Jn where J ′ consists of p-primes of level < n and Jn consists
of p-primes of level n. We perform the proof by induction on n and #(Jn), where
the case n = 1 is trivial. Suppose n > 1 and Jn ̸= ∅.

Case 1: Jn consists of a single element, say X. By induction hypothesis, there
exists LCM(J ′) such that the pair X and Y := LCM(J ′) satisfies the condition of
Lemma 6 so that LCM(J) = LCM(X,LCM(J ′)) exists.

Case 2: Jn=J”⊔{X,Y } for distinct p-irreducibles X,Y of level n. According
to Lemma 7, LCM(X,Y ) decomposes into a product of mutually commuting p-

irreducibles of level k and n with k<n. Then, put J̃=J ′∪J”∪{M(k,u),M(n,v)}
so that 1) new J̃ satisfies the induction hypothesis, 2) LCM(J) = LCM(J̃). □

We characterize elements which are least common multiples of some p-irreducibles.
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Lemma 8. The following conditions i) - v) on X ∈ Mn are equivalent.
i) There exists a set of p-irreducibles such that X = LCM(J).
ii) X divides p1n.
iii) X satisfies the following 1) and 2).

1) Diagonal entries of X are either equal to 1 or to p.
2) If the ith diagonal entry of X is equal to 1, then the (i, j)-entry of X for all

1 ≤ j < i is equal to 0. If jth diagonal entry of X is equal to p, then the
(i, j)-entry of X for all j < i ≤ n is equal to 0.

iv) Let xi be the ith row-vectors of X (1≤ i≤n), and set J(X) := {M(i,xi)}ni=1.
Then, 1) J(X) consists of mutually commutative p-irreduciblles and possibly 1n,

2) X = LCM(J(X)) =
∏

i∈{1,··· ,n}M(i,xi).

v) X is a product of mutually commutative p-irreducible normal forms.

Proof. i)⇒ ii). For a p-irreducible elementX, det(X)=εp (ε∈E) impliesX |l p1n.
Then, any least common multiple of p-irreducible elements should divides p1n.

ii) ⇒ iii). 1) follows since p · LCM(J)−1 is integral. The first half of 2) follows
from the fact R1 = {0}. The latter half follows by induction on i− j from the fact
that p · LCM(J)−1 is integral (details are left to the reader).

iii) ⇒ iv). Since the diagonals of X are either 1or p, J(X) consists of identity
matrices 1n and some p-irreducible normal forms of different levels The commu-
tativity of the elements of J(X) follows from a general fact that two normal
forms M(i,x) and M(j,y) of levels i and j, respectively, for i < j are com-
mutative if and only if ith entry of y is equal to 0. The commutativity im-
plies LCM(J(X))

∣∣
l

∏n
i=1M(i,xi). On the other hand, Lemma 6 implies that

det(LCM(J(X))) is equal to pk = det(
∏n

i=1M(i,xi)) = det(X) where k := # of
ps in the diagonal of X. Thus, the equalities are shown.

iv) ⇒ v). Clear. v) ⇒ i). Clear. □
Note. The ”commutativity” used in iv) and v) are not a property of the classes
M(n,R)×/ ∼l but a property of the matrices themselves.

Example. 1. A matrix like

[
p 0
1 p

]
, which violate the condition iii), cannot be a

least common multiple of some irreducible elements.

2. If A:=

p 0 0
0 1 0
0 0 1

, B:=

1 0 0
0 1 0
i k p

, C:=
1 0 0
0 1 0
j k p

 for i̸=j, k∈Rp, then LCM(B,C)=

p 0 0
0 1 0
0 k p


is divisible byA. Then we have: LCM(A,B)=LCM(B,C)=LCM(C,A)=LCM(A,B,C).

Finally, we give a useful criterion to be divisible by a p-irreducible element.

Lemma 9. A p-irreducible element X ∈ M(n,R)× divides an element Y ∈
M(n,R)× from the left, i.e. X |l Y , if and only if the mod p reduction of X
divides that of Y in M(n,R/(p)), i.e. (X mod p) |l (Y mod p) in M(n,R/(p)),
where ”division relation |l” in M(n,R/(p)) is used here in the sense given in the
proof since det(X)≡0 mod p (equivalently det(X mod p)=0.

Proof. The ”only if” part is trivial. Suppose the converse, i.e. there exists Z ′ ∈
M(n,R/(p)) such that (Y mod p) = (X mod p)Z ′. Let Z∈M(n,R) be any lifting
of Z ′. Then, there exists W ∈ M(n,R) such that XZ = Y + pW . Using Step
1., we get the expression X(Z − ε−1X∗W ) = Y . Since det(Y ) ̸= 0, we get
det(Z − ε−1X∗W ) ̸= 0, and hence X |l Y in M(n,R)×. □
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6. Growth function and skew-growth function

As an application of the division theory on the monoid M(n,R)× developed in
§2 - 5, we determine its growth function and skew-growth function (c.f. [S3]). For
this purpose, we first recall a discrete degree map. A map:

deg : M(n,R)× −→ R≥0

is called a discrete degree map if it satisfies
i) deg(X) = 0 if and only if X ∈ GL(n,R),
ii) deg(XY ) = deg(X) + deg(Y ) for all X,Y ∈ M(n,R)×,
iii) #({X ∈ Mn | deg(X) ≤ r}) < ∞ for all r ∈ R>0.

For a given discrete degree map, the growth function PM(n,R)×,deg(t) and the

skew growth function NM(n,r)×,deg(t) are defined as formal Dirichlet series: 5

PM(n,R)×,deg(t) :=
∑

[X]∈M(n,R)×/GL(n,R) t
deg([X]),

NM(n,R)×,deg(t) :=
∑

J : finite subset of I0
(−1)#J

∑
tdeg(LCM(J)),

where I0 := ⊔p:primes of RI0,p is the set of all right equivalence classes of irreducible
elements of M(n,R)×. As formal series, they satisfy the inversion formula ([S3,§5])

PM(n,R)×,deg(t) NM(n,R)×,deg(t) = 1.

If #(R/mR)<∞ for all m∈R\{0} and #({(m)⊂R | #R/(m)≤ r})<∞ for all
r ∈ R>0,

6 then we can define a discrete degree map deg on M(n,R)× from the
absolute norm N : R \ {0} → Z≥1,m 7→ #(R/mR) by the composition:

deg := log ◦N ◦ det : M(n,R)× −→ R≥0

where log is the logarithmic function taking the branch: R≥1 → R≥0.

Formulae. Let R be as above. Then, by a change t = exp(−s) of variables from
t to s, the associated growth and skew-growth functions are absolutely convergent
on some right half plane and are given as analytic functions as follows.

1) PM(n,R)×,deg(exp(−s)) = ζR(s) ζR(s− 1) · · · ζR(s− n+ 1)

2) NM(n,R)×,deg(exp(−s)) =
∏

p∈{primes of R}/E

(1−N(p)−s)(1−N(p)−s+1) · · · (1−N(p)−s+n−1)

where ζR(s) :=
∑

a∈(R\{0})/E N(a)−s is the Dedekind zeta-function, which is well-

known to be absolutely convergent on the region ℜ(s) > σa and has the Euler
product expression on

∏
p∈{primes of R}/E(1−N(p)−s)−1 on the same domain.

Proof. 1) By the change of the variable, we rewrite the growth function
PM(n,R)×,deg(exp(−s)) =

∑
[X]∈M(n,R)×/GL(n,R)N(det(X))−s.

This can be regarded as a generalized Epstein zeta function ζn(1n, s) for the
quadratic form X ∈ M(n,R) 7→ det(tX1nX)=det(X)2 (up to a factor of 2) (K.L.
Siegel [Si] and M. Koecher [K]), and then the formula 1) follows. We give here an
elementary proof of 1) using the normal forms Mn of M(n, r)×/∼ studied in §3.

5The original definition of the skew-growth function [S3, §4] using towers of common multiple
sets is much complicated than the present one. Due to the existence of the minimal common
multiples for the monoid M(n,R)× (§5 Theorem 5), we employ the present simple formulation.

6This condition is satisfied by 1) the principal order R of an algebraic number field of class
number 1, e.g. R=Z, and 2) the coordinate ring of a smooth affine curve over a finite field.
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Let X ∈ Mn be a normal form (§3) with diag(X) = (m1, · · · ,mn). Then

tdeg(X) = tlog(N(m1))+···+log(N(mn)) = N(m1)
log(t) · · ·N(mn)

log(t).

Then, due to Lemma 2 and in view of N(m)=#(Rm) for m∈M , we have

PM(n,R)×,deg(t) =
∑

X∈Mn
tdeg(X)

=
(∑

m1∈M N(m1)
log(t)

)
×
(∑

m2∈M
(∑

d21∈Rm2
N(m2)

log(t)
))

· · ·
×
(∑

mn∈M
(∑

dn1∈Rmn
· · ·

∑
dn,n−1∈Rmn

N(mn)
log(t)

))
=

∑
m1∈MN(m1)

log(t)
∑

m2∈MN(m2)
log(t)+1· · ·

∑
mn∈MN(mn)

log(t)+n−1.

Recalling the fact M ≃ (R \{0})/E so that
∑

m∈M N(m)log(t) = ζR(− log(t)), and
the fact #(Rm) = N(m), we obtain the formula 1).

2) There are two proofs of the formula 2).
The first proof is to rewrite the formula 1) by the Euler product formula of the

Dedekind zeta-function, and, then, we apply the inversion formula.
The second proof, which we present below, is a direct elementary proof using

the structure of common multiples in M(n,R)× studied in §5.
We, first, describe a partial Euler product expansion of skew-growth functions.

Assertion 1. For any subset J ⊂ I0, one has an addition formula:

3) deg
(
LCM(J)

)
=

∑
p:primes of R deg

(
LCM(J ∩ I0,p)

)
.

Then the skew growth function decomposes as

4) NM,deg(t) =
∏

p:primes of R

(∑
J⊂I0,p

(−1)#(J) tdeg(LCM(J))
)
.

Proof. Lemma 1 and Lemma 6 imply the addition formula 3). Then the partial
factorization 4) is an immediate consequence of 3). □

It remains to show a decomposition

5)
∑

J⊂I0,p
(−1)#(J) tdeg(LCM(J)) =

∏n
i=1(1−N(p)−s+i−1)

for each prime p of R, where −s=log(t).

Set I0,p = ⊔n
i=1I

(i)
0,p where I

(i)
0,p := {X ∈ I0,p | X is of level i} and J (i) :=J∩I(i)0,p

for J ⊂ I0. We decompose the summation index set of 5) as 2I0,p=A⊔B, where

A := {J ⊂ I0,p | #(J (i))≤ 1 (1≤∀i≤n)} and B := 2I0,p \ A. Then the proof of the
formula 5) is achieved if we show the following two formulae.

6)
∑

J∈A(−1)#(J) tdeg(LCM(J)) =
∏n

i=1(1−N(p)−s+i−1),

7)
∑

J∈B(−1)#(J) tdeg(LCM(J)) = 0.

Proof of 6). Since for any J ∈A, elements in J consist of p-irreducibles elements
of different levels, we can apply Lemma 6 repeatedly. Then, we get

3′) deg
(
LCM(J)

)
= deg

(
p#(J)

)
= log(N(p)#(J)).

so that, similarly to the formula 4), we get

4′)
∑

J∈A(−1)#(J)tdeg(LCM(J))

=
∏n

i=1(1−
∑

X∈I(i)0,p

N(p)−s) =
∏n

i=1(1−N(p)−s+i−1),
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where, in the last step, we use the fact #(I
(i)
0,p) = #((Rp)

i−1) = N(p)i−1.

Proof of 7). It is sufficient to show an existence of an involution map σ : B → B
satisfying the conditions:

i) LCM(J)= LCM(σ(J)) and ii) #(J) + #(σ(J)) ≡ 1 mod 2 for all J ∈ B,
since then

2
∑
J∈B

(−1)#(J)tdeg(LCM(J))=
∑
J∈B

(
(−1)#(J)tdeg(LCM(J))+(−1)#(σ(J))tdeg(LCM(σ(J)))

)
=0.

If n = 1, then B = ∅. Assume n ≥ 2. We construct the involution σ by a use
of the bridging (§5 Part II). For J ∈ B, set m :=max{2≤m≤n | #(J (m))≥ 2}.
According to §5 Part II. Lemma 7 and 8, we have a decomposition LCM(J (m))=∏

i∈{1,··· ,r}M(ki,xki), where M(ki,xki) (1 ≤ i ≤ r) are mutually commutative p-

irreducible normal forms of level ki. By the bridging phenomenon, we know that
r ≥ 2 and 1≤k1 < · · · < kr = m, and, in particular, k1 < m. Then we define

σ(J) :=

{
J ⊔ {M(k1,xk1)} if M(k1,xk1) ̸∈ J

J \ {M(k1,xk1)} if M(k1,xk1) ∈ J.

It is clear that σ defines an involution of B and satisfies the properties i) and ii).

This completes the proof of the formula 7) and, hence, of the formula 2). □

7. Appendix (irreducible decomposition)

We show the following irreducible decomposition of elements in Mn.

Lemma 10. Let X be a normal form in Mn with diag(X) = (m1, · · · ,mn).

Let us fix an ordered irreducible decomposition mi =
∏ki

k=1 pi,k for each mi (i =

1,· · ·, n). Then, there exist a unique system ∪n
i=1 ∪

ki
k=1 {Pi,k} where Pi,k is a pi,k-

irreducible normal form of level i such that X =
∏n

i=1

∏ki
k=1 Pi,k where the product

order is the lexicographic order order of the running index i and k.

Proof. Let xi (1 ≤ i ≤ n) be the ith row vector of X, i.e. X = t
[
tx1,

tx2, · · · ,txn

]
.

Then, X decomposes into a product of pure normal forms of level 1 to n.

(∗) M(1 : x1) ·M(2 : x2) · · ·M(n : xn).

In order to show the decomposition M(i,xi) =
∏

k Pi,k, we prepare a lemma.

Lemma 11. For a positive integer 1 ≤ i ≤ n and w ∈ M , we set
Mn(i;w) := { all normal forms pure of level i with the diagonal w}.

1) For any u, v ∈ M and 1 ≤ i ≤ n, the natural product of matrices:
Mn(i;u)×Mn(i; v) → Mn(i;uv) induces a bijection.

2) For any u, v ∈ M and 1 ≤ i < j ≤ n, the natural product of matrices:
Mn(i;u)×Mn(j; v) → Mn is commutative.

Proof. Let M(i : x) ∈ Mn(i;u) and M(i : y) ∈ Mn(i; v) for row vectors x =
(x1, · · ·, xi−1, u,0) and y=(y1, · · ·, yi−1, v,0). Then, their product M(i :x)M(i :y)
has the formM(i :z) for z=(z1, · · ·, zi−1, uv,0) such that zj=uyj+xj (1≤j<i≤n).
Since 0≤xj <u and 0≤yj <v, we have 0≤zj ≤ uv so that the product is a pure
normal form of the diagonal entry uv and of level i. More precisely, the corre-
spondence (xj , yj) ∈ (Z∩[0, u[)×(Z∩[0, v[) 7→ zj∈Z∩[0, uv[ is a bijection. □
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Applying Lemma 11 (k − 1)-times repeatedly, we obtain a bijection

(∗∗) Mn(i; p1)×Mn(i; p2)× · · · ×Mn(i; pk) −→ Mn(i; p1p2 · · · pk).
The uniqueness of the decomposition in Lemma 10 is a consequence of the

uniqueness of the decomposition (∗) and the bijectivity of (∗∗).
This completes a proof of Lemma 10. □

Remark. The product decomposition in Lemma 10 is not commutative, in the
sense that the natural transposition Mn(i;u) × Mn(i; v) ≃ Mn(i; v) × Mn(i;u)
may not commute with the matrix product maps to Mn(i;uv) = Mn(i; vu). That
is, in Lemma 10, if we change the order of the irreducible decomposition of mi, or
if we mix up the levels of irreducible normal forms, we obtain different irreducible
decompositions (in the latter case, with a possible GL(n,R) factor from right).

Here are some examples of different irreducible normal forms decomposition.[
1 0
1 6

]
=

[
1 0
1 3

] [
1 0
0 2

]
=

[
1 0
1 2

] [
1 0
0 3

]
,

[
1 0
4 6

]
=

[
1 0
1 3

] [
1 0
1 2

]
=

[
1 0
0 2

] [
1 0
2 3

]
We remark further that if X is a normal form which is not of pure level, then,

associated to the decompositions mi = uivi (1≤ i≤ n) of its diagonal diag(X) =
(m1,· · ·,mn), the decomposition X∼U·V by normal forms U and V with diag(U)=
(u1,· · ·, un) and diag(V ) = (v1,· · ·, vn) may either exist non-uniquely or not exist
at all (that is, an analogy of the bijection in Lemma 11 does not hold). Here we

have an example of multiple solutions:

[
2a 0
2c 2b

]
=

[
a 0
0 2

] [
2 0
c b

]
=

[
a 0
1 2

] [
2 0

c−1 b

]
.

However, if we replace 2c in the (2, 1)-entry of the matrix in LHS by an odd
number, then there does not exists its decomposition into a product (up to a unit
factor from right) of two normal forms whose diagonals are (a, 2) and (2, b).
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