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Abstract. In the present paper, which is the third in a series of
four papers, we study the theory surrounding the log-theta-lattice, a highly non-
commutative two-dimensional diagram of “miniature models of conventional scheme
theory”, called Θ±ellNF-Hodge theaters, that were associated, in the first paper of

the series, to certain data, called initial Θ-data, that includes an elliptic curve EF

over a number field F , together with a prime number l ≥ 5. The horizontal arrows
of the log-theta-lattice are defined as certain versions of the “Θ-link” that was con-
structed, in the second paper of the series, by applying the theory of Hodge-Arakelov-

theoretic evaluation — i.e., evaluation in the style of the scheme-theoretic Hodge-
Arakelov theory established by the author in previous papers — of the [reciprocal
of the l-th root of the] theta function at l-torsion points. In the present pa-
per, we study the theory surrounding the log-link between Θ±ellNF-Hodge theaters.

The log-link is obtained, roughly speaking, by applying, at each [say, for simplicity,
nonarchimedean] valuation of the number field under consideration, the local p-adic
logarithm. The significance of the log-link lies in the fact it allows one to construct

log-shells, i.e., roughly speaking, slightly adjusted forms of the image of the local
units at the valuation under consideration via the local p-adic logarithm. The theory
of log-shells was studied extensively in a previous paper of the author. The vertical
arrows of the log-theta-lattice are given by the log-link. Consideration of various

properties of the log-theta-lattice leads naturally to the establishment of multiradial
algorithms for constructing “splitting monoids of logarithmic Gaussian pro-
cession monoids”. Here, we recall that “multiradial algorithms” are algorithms
that make sense from the point of view of an “alien arithmetic holomorphic

structure”, i.e., the ring/scheme structure of a Θ±ellNF-Hodge theater related to
a given Θ±ellNF-Hodge theater by means of a non-ring/scheme-theoretic horizontal
arrow of the log-theta-lattice. These logarithmic Gaussian procession monoids, or
LGP-monoids, for short, may be thought of as the log-shell-theoretic versions of

the Gaussian monoids that were studied in the second paper of the series. Finally,
by applying these multiradial algorithms for splitting monoids of LGP-monoids, we
obtain estimates for the log-volume of these LGP-monoids. These estimates will

be applied to verify various diophantine results in the fourth paper of the series.
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Introduction

In the following discussion, we shall continue to use the notation of the In-
troduction to the first paper of the present series of papers [cf. [IUTchI], §I1]. In
particular, we assume that are given an elliptic curve EF over a number field F ,
together with a prime number l ≥ 5. In the first paper of the series, we introduced
and studied the basic properties of Θ±ellNF-Hodge theaters, which may be thought
of as miniature models of the conventional scheme theory surrounding the given
elliptic curve EF over the number field F . In the present paper, which forms the
third paper of the series, we study the theory surrounding the log-link between
Θ±ellNF-Hodge theaters. The log-link induces an isomorphism between the under-
lying D-Θ±ellNF-Hodge theaters and, roughly speaking, is obtained by applying, at
each [say, for simplicity, nonarchimedean] valuation v ∈ V, the local pv-adic loga-
rithm to the local units [cf. Proposition 1.3, (i)]. The significance of the log-link lies
in the fact it allows one to construct log-shells, i.e., roughly speaking, slightly ad-
justed forms of the image of the local units at v ∈ V via the local pv-adic logarithm.
The theory of log-shells was studied extensively in [AbsTopIII]. The introduction
of log-shells leads naturally to the construction of new versions — namely, the
Θ×μ

LGP-/Θ
×μ
lgp -links [cf. Definition 3.8, (ii)] — of the Θ-/Θ×μ-/Θ×μ

gau-links studied

in [IUTchI], [IUTchII]. The resulting [highly non-commutative!] diagram of iterates

of the log- [i.e., the vertical arrows] and Θ-/Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -links [i.e., the

horizontal arrows] — which we refer to as the log-theta-lattice [cf. Definitions

1.4; 3.8, (iii), as well as Fig. I.1 below, in the case of the Θ×μ
LGP-link] — plays a

central role in theory of the present series of papers.

...
...�⏐⏐log

�⏐⏐log

. . .
Θ×μ

LGP−→ n,m+1HT Θ±ellNF Θ×μ
LGP−→ n+1,m+1HT Θ±ellNF Θ×μ

LGP−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ×μ

LGP−→ n,mHT Θ±ellNF Θ×μ
LGP−→ n+1,mHT Θ±ellNF Θ×μ

LGP−→ . . .�⏐⏐log

�⏐⏐log

...
...

Fig. I.1: The [LGP-Gaussian] log-theta-lattice

Consideration of various properties of the log-theta-lattice leads naturally to
the establishment ofmultiradial algorithms for constructing “splitting monoids
of logarithmic Gaussian procession monoids” [cf. Theorem A below]. Here,
we recall that “multiradial algorithms” [cf. the discussion of [IUTchII], Introduc-
tion] are algorithms that make sense from the point of view of an “alien arithmetic
holomorphic structure”, i.e., the ring/scheme structure of a Θ±ellNF-Hodge
theater related to a given Θ±ellNF-Hodge theater by means of a non-ring/scheme-

theoretic Θ-/Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -link. These logarithmic Gaussian procession



INTER-UNIVERSAL TEICHMÜLLER THEORY III 3

monoids, or LGP-monoids, for short, may be thought of as the log-shell-theoretic
versions of the Gaussian monoids that were studied in [IUTchII]. Finally, by apply-
ing these multiradial algorithms for splitting monoids of LGP-monoids, we obtain
estimates for the log-volume of these LGP-monoids [cf. Theorem B below].
These estimates will be applied to verify various diophantine results in [IUTchIV].

Recall [cf. [IUTchI], §I1] the notion of an F-prime-strip. An F-prime-strip
consists of data indexed by the valuations v ∈ V; roughly speaking, the data at
each v consists of a Frobenioid, i.e., in essence, a system of monoids over a base
category. For instance, at v ∈ V

bad, this data may be thought of as an isomorphic
copy of the monoid with Galois action

Πv � O�
Fv

— where we recall that O�
Fv

denotes the multiplicative monoid of nonzero integral

elements of the completion of an algebraic closure F of F at a valuation lying over
v [cf. [IUTchI], §I1, for more details]. The pv-adic logarithm logv : O×

Fv
→ F v at v

then defines a natural Πv-equivariant isomorphism of topological modules

(O×μ

Fv
⊗ Q

∼→ ) O×
Fv
⊗ Q

∼→ F v

—where we recall the notation “O×μ

F v
= O×

Fv
/Oμ

Fv
” from the discussion of [IUTchI],

§1 — which allows one to equip O×
F v
⊗ Q with the field structure arising from the

field structure of F v. The portion at v of the log-link associated to an F-prime-strip
[cf. Definition 1.1, (iii); Proposition 1.2] may be thought of as the correspondence{

Πv � O�
Fv

}
log−→

{
Πv � O�

Fv

}
in which one thinks of the copy of “O�

Fv
” on the right as obtained from the field

structure induced by the pv-adic logarithm on the tensor product with Q of the

copy of the units “O×
Fv
⊆ O�

F v
” on the left. Since this correspondence induces an

isomorphism of topological groups between the copies of Πv on either side, one may
think of Πv as “immune to”/“neutral with respect to” — or, in the terminology
of the present series of papers, “coric” with respect to — the transformation
constituted by the log-link. This situation is studied in detail in [AbsTopIII], §3,
and reviewed in Proposition 1.2 of the present paper.

By applying various results from absolute anabelian geometry, one may
algorithmically reconstruct a copy of the data “Πv � O�

F v
” from Πv. Moreover,

by applying Kummer theory, one obtains natural isomorphisms between this “coric
version” of the data “Πv � O�

F v
” and the copies of this data that appear on

either side of the log-link. On the other hand, one verifies immediately that these
Kummer isomorphisms are not compatible with the coricity of the copy of the
data “Πv � O�

Fv
” algorithmically constructed from Πv. This phenomenon is, in

some sense, the central theme of the theory of [AbsTopIII], §3, and is reviewed in
Proposition 1.2, (iv), of the present paper.
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The introduction of the log-link leads naturally to the construction of log-
shells at each v ∈ V. If, for simplicity, v ∈ V

bad, then the log-shell at v is given,
roughly speaking, by the compact additive module

Iv def
= p−1

v · logv(O×
Kv

) ⊆ Kv ⊆ F v

[cf. Definition 1.1, (i), (ii); Remark 1.2.2, (i), (ii)]. One has natural functorial algo-
rithms for constructing various versions — i.e., mono-analytic/holomorphic and
étale-like/Frobenius-like — from D�-/D-/F�-/F-prime-strips [cf. Proposition
1.2, (v), (vi), (vii), (viii), (ix)]. Although, as discussed above, the relevant Kummer
isomorphisms are not compatible with the log-link “at the level of elements”, the
log-shell Iv at v satisfies the important property

O�
Kv
⊆ Iv; logv(O×

Kv
) ⊆ Iv

— i.e., it contains the images of the Kummer isomorphisms associated to both the
domain and the codomain of the log-link [cf. Proposition 1.2, (v); Remark 1.2.2, (i),
(ii)]. In light of the compatibility of the log-link with log-volumes [cf. Propositions
1.2, (iii); 3.9, (iv)], this property will ultimately lead to upper bounds — i.e., as
opposed to “precise equalities” — in the computation of log-volumes in Corollary
3.12 [cf. Theorem B below]. Put another way, although iterates of the log-link
fail to be compatible with the various Kummer isomorphisms that arise, one may
nevertheless consider the entire diagram that results from considering such iterates
of the log-link and related Kummer isomorphisms [cf. Proposition 1.2, (x)]. We
shall refer to such diagrams

. . . → • → • → • → . . .

. . . ↘ ↓ ↙ . . .

◦

— i.e., where the horizontal arrows correspond to the log-links [that is to say, to
the vertical arrows of the log-theta-lattice!]; the “•’s” correspond to the Frobenioid-
theoretic data within a Θ±ellNF-Hodge theater; the “◦” corresponds to the coric
version of this data [that is to say, in the terminology discussed below, verti-
cally coric data of the log-theta-lattice]; the vertical/diagonal arrows correspond
to the various Kummer isomorphisms — as log-Kummer correspondences [cf.
Theorem 3.11, (ii); Theorem A, (ii), below]. Then the inclusions of the above
display may be interpreted as a sort of “upper semi-commutativity” of such
diagrams [cf. Remark 1.2.2, (iii)], which we shall also refer to as the “upper semi-
compatibility” of the log-link with the relevant Kummer isomorphisms — cf. the
discussion of the “indeterminacy” (Ind3) in Theorem 3.11, (ii).

By considering the log-links associated to the various F-prime-strips that occur
in a Θ±ellNF-Hodge theater, one obtains the notion of a log-link between Θ±ellNF-
Hodge theaters

†HT Θ±ellNF log−→ ‡HT Θ±ellNF

[cf. Proposition 1.3, (i)]. As discussed above, by considering the iterates of the log-

[i.e., the vertical arrows] and Θ-/Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -links [i.e., the horizontal
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arrows], one obtains a diagram which we refer to as the log-theta-lattice [cf.

Definitions 1.4; 3.8, (iii), as well as Fig. I.1, in the case of the Θ×μ
LGP-link]. As

discussed above, this diagram is highly noncommutative, since the definition of
the log-link depends, in an essential way, on both the additive and the multiplicative
structures — i.e., on the ring structure — of the various local rings at v ∈ V,
structures which are not preserved by the Θ-/Θ×μ-/Θ×μ

gau-/Θ
×μ
LGP-/Θ

×μ
lgp -links [cf.

Remark 1.4.1, (i)]. So far, in the Introductions to [IUTchI], [IUTchII], as well as
in the present Introduction, we have discussed various “coricity” properties — i.e.,
properties of invariance with respect to various types of “transformations” — in the
context of Θ-/Θ×μ-/Θ×μ

gau-/Θ
×μ
LGP-/Θ

×μ
lgp -links, as well as in the context of log-links.

In the context of the log-theta-lattice, it becomes necessary to distinguish between
various types of coricity. That is to say, coricity with respect to log-links [i.e.,
the vertical arrows of the log-theta-lattice] will be referred to as vertical coricity,

while coricity with respect to Θ-/Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -links [i.e., the horizontal

arrows of the log-theta-lattice] will be referred to as horizontal coricity. On the
other hand, coricity properties that hold with respect to all of the arrows of the
log-theta-lattice will be referred to as bi-coricity properties.

Relative to the analogy between the theory of the present series of papers and
p-adic Teichmüller theory [cf. [IUTchI], §I4], we recall that a Θ±ellNF-Hodge the-
ater, which may be thought of as a miniature model of the conventional scheme
theory surrounding the given elliptic curve EF over the number field F , corresponds
to the positive characteristic scheme theory surrounding a hyperbolic curve over a
positive characteristic perfect field that is equipped with a nilpotent ordinary in-
digenous bundle [cf. Fig. I.2 below]. Then the rotation, or “juggling”, effected
by the log-link of the additive and multiplicative structures of the conventional
scheme theory represented by a Θ±ellNF-Hodge theater may be thought of as corre-
sponding to the Frobenius morphism in positive characteristic [cf. the discussion
of [AbsTopIII], §I3, §I5]. Thus, just as the Frobenius morphism is completely well-
defined in positive characteristic, the log-link may be thought of as a phenomenon
that occurs within a single arithmetic holomorphic structure, i.e., a vertical
line of the log-theta-lattice. By contrast, the essentially non-ring/scheme-theoretic
relationship between Θ±ellNF-Hodge theaters constituted by the Θ-/Θ×μ-/Θ×μ

gau-

/Θ×μ
LGP-/Θ

×μ
lgp -links corresponds to the relationship between the “mod pn” and “mod

pn+1” portions of the ring of Witt vectors, in the context of a canonical lifting of the
original positive characteristic data [cf. the discussion of Remark 1.4.1, (iii); Fig.
I.2 below]. Thus, the log-theta-lattice, taken as a whole, may be thought of as
corresponding to the canonical lifting of the original positive characteristic data,
equipped with a corresponding canonical Frobenius action/lifting [cf. Fig. I.2
below]. Finally, the non-commutativity of the log-theta-lattice may be thought
of as corresponding to the complicated “intertwining” that occurs in the theory
of Witt vectors and canonical liftings between the Frobenius morphism in positive
characteristic and the mixed characteristic nature of the ring of Witt vectors [cf.
the discussion of Remark 1.4.1, (ii), (iii)].

One important consequence of this “noncommutative intertwining” of the two
dimensions of the log-theta-lattice is the following. Since each horizontal arrow
of the log-theta-lattice [i.e., the Θ-/Θ×μ-/Θ×μ

gau-/Θ
×μ
LGP-/Θ

×μ
lgp -link] may only be

used to relate — i.e., via various Frobenioids — the multiplicative portions of the
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ring structures in the domain and codomain of the arrow, one natural approach
to relating the additive portions of these ring structures is to apply the theory
of log-shells. That is to say, since each horizontal arrow is compatible with the
canonical splittings [up to roots of unity] discussed in [IUTchII], Introduction, of
the theta/Gaussian monoids in the domain of the horizontal arrow into unit group
and value group portions, it is natural to attempt to relate the ring structures on
either side of the horizontal arrow by applying the canonical splittings to

· relate themultiplicative structures on either side of the horizontal arrow
by means of the value group portions of the theta/Gaussian monoids;

· relate the additive structures on either side of the horizontal arrow by
means of the unit group portions of the theta/Gaussian monoids, shifted
once via a vertical arrow, i.e., the log-link, so as to “render additive” the
[a priori] multiplicative structure of these unit group portions.

Indeed, this is the approach that will ultimately be taken in Theorem 3.11 [cf.
Theorem A below] to relating the ring structures on either side of a horizontal
arrow. On the other hand, in order to actually implement this approach, it will be
necessary to overcome numerous technical obstacles. Perhaps the most immediately
obvious such obstacle lies in the observation [cf. the discussion of Remark 1.4.1,
(ii)] that, precisely because of the “noncommutative intertwining” nature of the
log-theta-lattice,

any sort of algorithmic construction concerning objects lying in the do-
main of a horizontal arrow that involves vertical shifts [e.g., such as the
approach to relating additive structures in the fashion described above]
cannot be “translated” in any immediate sense into an algorithm that
makes sense from the point of view of the codomain of the horizontal
arrow.

In a word, our approach to overcoming this technical obstacle consists of working
with objects in the vertical line of the log-theta-lattice that contains the domain of
the horizontal arrow under consideration that satisfy the crucial property of being

invariant with respect to vertical shifts

— i.e., shifts via iterates of the log-link [cf. the discussion of Remarks 1.2.2; 1.4.1,
(ii)]. For instance, étale-like objects that are vertically coric satisfy this invariance
property. On the other hand, as discussed in the beginning of [IUTchII], Introduc-
tion, in the theory of the present series of papers, it is of crucial importance to be
able to relate corresponding Frobenius-like and étale-like structures to one another
via Kummer theory. In particular, in order to obtain structures that are invariant
with respect to vertical shifts, it is necessary to consider log-Kummer corre-
spondences, as discussed above. Moreover, in the context of such log-Kummer
correspondences, typically, one may only obtain structures that are invariant with
respect to vertical shifts if one is willing to admit some sort of indeterminacy,
e.g., such as the “upper semi-compatibility” [cf. the discussion of the “indeter-
minacy” (Ind3) in Theorem 3.11, (ii)] discussed above.
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Inter-universal Teichmüller theory p-adic Teichmüller theory

number field hyperbolic curve C over a
F positive characteristic perfect field

[once-punctured] nilpotent ordinary
elliptic curve indigenous bundle

X over F P over C

Θ-link arrows of the mixed characteristic extension
log-theta-lattice structure of a ring of Witt vectors

log-link arrows of the the Frobenius morphism
log-theta-lattice in positive characteristic

the resulting canonical lifting
the entire + canonical Frobenius action;

log-theta-lattice canonical Frobenius lifting
over the ordinary locus

relatively straightforward relatively straightforward
original construction of original construction of

Θ×μ
LGP-link canonical liftings

highly nontrivial highly nontrivial
description of alien arithmetic absolute anabelian

holomorphic structure reconstruction of
via absolute anabelian geometry canonical liftings

Fig. I.2: Correspondence between inter-universal Teichmüller theory and
p-adic Teichmüller theory

One important property of the log-link, and hence, in particular, of the con-
struction of log-shells, is its compatibility with the F�±

l -symmetry discussed in
the Introductions to [IUTchI], [IUTchII] — cf. Remark 1.3.2. Here, we recall from
the discussion of [IUTchII], Introduction, that the F�±

l -symmetry allows one to
relate the various F-prime-strips — i.e., more concretely, the various copies of the
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data “Πv � O�
F v

” at v ∈ V
bad [and their analogues for v ∈ V

good] — associated

to the various labels ∈ Fl that appear in the Hodge-Arakelov-theoretic evaluation
of [IUTchII] in a fashion that is compatible with

· the distinct nature of distinct labels ∈ Fl;

· the Kummer isomorphisms used to relate Frobenius-like and étale-
like versions of the F-prime-strips appear, i.e., more concretely, the various
copies of the data “Πv � O�

Fv
” at v ∈ V

bad [and their analogues for

v ∈ V
good];

· the structure of the underlying D-prime-strips that appear, i.e., more
concretely, the various copies of the [arithmetic] tempered fundamental

group “Πv” at v ∈ V
bad [and their analogues for v ∈ V

good]

— cf. the discussion of [IUTchII], Introduction; Remark 1.5.1, Step (vii) of the proof
of Corollary 3.12 of the present paper. This compatibility with the F�±

l -symmetry
gives rise to the construction of

· “arithmetically holomorphic” F�×μ-prime strips, log-shells which
are vertically coric;

· mono-analytic F�×μ-prime strips, log-shells which are bi-coric

— cf. Theorem 1.5. These bi-coric mono-analytic log-shells play a central role in
the theory of the present paper.

One notable aspect of the compatibility of the log-link with the F�±
l -symmetry

in the context of the theory of Hodge-Arakelov-theoretic evaluation developed in
[IUTchII] is the following. One important property of mono-theta environments is
the property of “isomorphism class compatibility”, i.e., in the terminology of
[EtTh], “compatibility with the topology of the tempered fundamental group”
[cf. the discussion of Remark 2.1.1]. This “isomorphism class compatibility” allows
one to apply the Kummer theory of mono-theta environments [i.e., the theory of
[EtTh]] relative to the ring-theoretic basepoints that occur on either side of the
log-link [cf. Remark 2.1.1, (ii); [IUTchII], Remark 3.6.4, (i)], for instance, in the
context of the log-Kummer correspondences discussed above. Here, we recall that
the significance of working with such “ring-theoretic basepoints” lies in the fact that
the full ring structure of the local rings involved [i.e., as opposed to, say, just the
multiplicative portion of this ring structure] is necessary in order to construct the
log-link. That is to say, it is precisely by establishing the conjugate synchronization
arising from the F�±

l -symmetry relative to these basepoints that occur on either
side of the log-link that one is able to conclude the crucial compatibility of this
conjugate synchronization with the log-link discussed in Remark 1.3.2. Thus, in
summary, one important consequence of the “isomorphism class compatibility” of
mono-theta environments is the simultaneous compatibility of

· the Kummer theory of mono-theta environments;
· the conjugate synchronization arising from the F�±

l -symmetry;
· the construction of the log-link.
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This simultaneous compatibility is necessary in order to perform the construction
of the [crucial!] splitting monoids of LGP-monoids referred to above — cf. the
discussion of Step (vi) of the proof of Corollary 3.12.

In §2 of the present paper, we continue our preparation for the multiradial con-
struction of splitting monoids of LGP-monoids given in §3 [of the present paper]

by presenting a global formulation of the essentially local theory at v ∈ V
bad [cf.

[IUTchII], §1, §2, §3] concerning the interpretation, via the notion of multiradial-
ity, of various ridigity properties of mono-theta environments. That is to say,
although much of the [essentially routine!] task of formulating the local theory of
[IUTchII], §1, §2, §3, in global terms was accomplished in [IUTchII], §4, the [again
essentially routine!] task of formulating the portion of this local theory that con-
cerns multiradiality was not addressed in the theory of [IUTchII], §4. One reason for
this lies in the fact that, from the point of view of the theory to be developed in §3 of
the present paper, this global formulation of multiradiality properties of the mono-
theta environment may be presented most naturally in the framework developed in
§1 of the present paper, involving the log-theta-lattice [cf. Theorem 2.2; Corollary
2.3]. Indeed, the étale-like versions of the mono-theta environment, as well as the
various objects constructed from the mono-theta environment, may be interpreted,
from the point of view of the log-theta-lattice, as vertically coric structures,
and are Kummer-theoretically related to their Frobenius-like [i.e., Frobenioid-
theoretic] counterparts, which arise from the [Frobenioid-theoretic portions of the]
various Θ±ellNF-Hodge theaters in a vertical line of the log-theta-lattice [cf. Theo-
rem 2.2, (ii); Corollary 2.3, (ii), (iii), (iv)]. Moreover, it is precisely the horizontal

arrows of the log-theta-lattice that give rise to the Ẑ×-indeterminacies acting
on copies of “O×μ” that play a prominent role in the local multiradiality theory de-
veloped in [IUTchII] [cf. the discussion of [IUTchII], Introduction]. In this context,
it is useful to recall from the discussion of [IUTchII], Introduction [cf. also Remark
2.2.1 of the present paper], that the essential content of this local multiradiality the-
ory consists of the observation [cf. Fig. I.3 below] that, since mono-theta-theoretic
cyclotomic and constant multiple rigidity only require the use of the portion of O×

F v
,

for v ∈ V
bad, given by the torsion subgroup Oμ

Fv
⊆ O×

Fv
[i.e., the roots of unity],

the triviality of the composite of natural morphisms

Oμ

Fv
↪→ O×

F v
� O×μ

F v

has the effect of insulating the Kummer theory of the étale theta function
— i.e., via the theory of the mono-theta environments developed in [EtTh] — from

the Ẑ×-indeterminacies that act on the copies of “O×μ” that arise in the F�×μ-
prime-strips that appear in the Θ-/Θ×μ-/Θ×μ

gau-/Θ
×μ
LGP-/Θ

×μ
lgp -link.

id � Ẑ× �

Oμ

F v
→ O×μ

Fv

Fig. I.3: Insulation from Ẑ×-indeterminacies in the context of
mono-theta-theoretic cyclotomic, constant multiple rigidity
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In §3 of the present paper, which, in some sense, constitutes the conclusion
of the theory developed thus far in the present series of papers, we present the
construction of the [splitting monoids of] LGP-monoids, which may be thought
of as a multiradial version of the [splitting monoids of] Gaussian monoids that
were constructed via the theory of Hodge-Arakelov-theoretic evaluation developed
in [IUTchII]. In order to achieve this multiradiality, it is necessary to “multiradi-
alize” the various components of the construction of the Gaussian monoids given
in [IUTchII]. The first step in this process of “multiradialization” concerns the
labels j ∈ F�

l that occur in the Hodge-Arakelov-theoretic evaluation performed
in [IUTchII]. That is to say, the construction of these labels, together with the
closely related theory of F�

l -symmetry, depend, in an essential way, on the full

arithmetic tempered fundamental groups “Πv” at v ∈ V
bad, i.e., on the portion

of the arithmetic holomorphic structure within a Θ±ellNF-Hodge theater which is
not shared by an alien arithmetic holomorphic structure [i.e., an arithmetic holo-
morphic structure related to the original arithmetic holomorphic structure via a
horizontal arrow of the log-theta-lattice]. One naive approach to remedying this
state of affairs is to simply consider the underlying set, of cardinality l�, associated
to F�

l , which we regard as being equipped with the full set of symmetries given
by arbitrary permutation automorphisms of this underlying set. The problem with
this approach is that it yields a situation in which, for each label j ∈ F�

l , one must
contend with an indeterminacy of l� possibilities for the element of this underlying
set that corresponds to j [cf. [IUTchI], Propositions 4.11, (i); 6.9, (i)]. From the
point of view of the log-volume computations to be performed in [IUTchIV], this
degree of indeterminacy gives rise to log-volumes which are “too large”, i.e., to esti-
mates that are not sufficient for deriving the various diophantine results obtained in
[IUTchIV]. Thus, we consider the following alternative approach, via processions
[cf. [IUTchI], Propositions, 4.11, 6.9]. Instead of working just with the underlying
set associated to F�

l , we consider the diagram of inclusions of finite sets

S±1 ↪→ S±1+1=2 ↪→ . . . ↪→ S±j+1 ↪→ . . . ↪→ S±1+l�=l±

— where we write S±j+1
def
= {0, 1, . . . , j}, for j = 0, . . . , l�, and we think of each of

these finite sets as being subject to arbitrary permutation automorphisms. That
is to say, we think of the set Sj+1 as a container for the labels 0, 1, . . . , j. Thus,
for each j, one need only contend with an indeterminacy of j + 1 possibilities for
the element of this container that corresponds to j. In particular, if one allows
j = 0, . . . , l� to vary, then this approach allows one to reduce the resulting label

indeterminacy from a total of (l±)l
±

possibilities [where we write l± = 1 + l� =

(l + 1)/2] to a total of l±! [i.e., ≈
√
(l±)l± ] possibilities. It turns out that this

reduction will yield just the right estimates in the log-volume computations to be
performed in [IUTchIV]. Moreover, this approach satisfies the important property
of insulating the “core label 0” from the various label indeterminacies that occur.

Each element of each of the containers Sj+1 may be thought of as parametrizing
an F- or D-prime-strip that occurs in the Hodge-Arakelov-theoretic evaluation of
[IUTchII]. In order to render the construction multiradial, it is necessary to replace
such holomorphic F-/D-prime-strips by mono-analytic F�-/D�-prime-strips. In
particular, as discussed above, one may construct, for each such F�-/D�-prime-
strip, a collection of log-shells associated to the various v ∈ V. Write VQ for
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the set of valuations of Q. Then, in order to obtain objects that are immune to
the various label indeterminacies discussed above, we consider, for each element
∗ ∈ Sj+1, and for each [say, for simplicity, nonarchimedean] vQ ∈ VQ,

· the direct sum of the log-shells associated to the prime-strip labeled by
the given element ∗ ∈ Sj+1 at the v ∈ V that lie over vQ;

we then form

· the tensor product, over the elements ∗ ∈ Sj+1, of these direct sums.

This collection of tensor products associated to vQ ∈ VQ will be referred to as the
tensor packet associated to the collection of prime-strips indexed by elements of
Sj+1. One may carry out this construction of the tensor packet either for holomor-
phic F-/D-prime-strips [cf. Proposition 3.1] or for mono-analytic F�-/D�-prime-
strips [cf. Proposition 3.2].

The tensor packets associated to D�-prime-strips will play a crucial role in
the theory of §3, as “multiradial mono-analytic containers” for the principal
objects of interest [cf. the discussion of Remark 3.12.2, (ii)], namely,

· the action of the splitting monoids of the LGP-monoids — i.e., the

monoids generated by the theta values {qj2
v
}j=1,... ,l� — on the portion of

the tensor packets just defined at v ∈ V
bad [cf. Fig. I.4 below; Propositions

3.4, 3.5; the discussion of [IUTchII], Introduction];

· the action of copies “(F×
mod)j” of [the multiplicative monoid of nonzero

elements of] the number field Fmod labeled by j = 1, . . . , l� on the
product, over vQ ∈ VQ, of the portion of the tensor packets just defined
at vQ [cf. Fig. I.5 below; Propositions 3.3, 3.7, 3.10].

q1 � qj
2

� q(l
�)2 �

/± ↪→ /±/± ↪→ . . . ↪→ /±/± . . . /± ↪→ . . . ↪→ /±/± . . . . . . /±

S±1 S±1+1=2 S±j+1 S±1+l�=l±

Fig. I.4: Splitting monoids of LGP-monoids acting on tensor packets

(F×
mod)1 � (F×

mod)j � (F×
mod)l� �

/± ↪→ /±/± ↪→ . . . ↪→ /±/± . . . /± ↪→ . . . ↪→ /±/± . . . . . . /±

S±1 S±1+1=2 S±j+1 S±1+l�=l±

Fig. I.5: Copies of F×
mod acting on tensor packets
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Indeed, these [splitting monoids of] LGP-monoids and copies “(F×
mod)j” of [the

multiplicative monoid of nonzero elements of] the number field Fmod admit nat-
ural embeddings into/actions on the various tensor packets associated to labeled F-
prime-strips in each Θ±ellNF-Hodge theater n,mHT Θ±ellNF of the log-theta-lattice.
One then obtains vertically coric versions of these splitting monoids of LGP-
monoids and labeled copies “(F×

mod)j” of [the multiplicative monoid of nonzero
elements of] the number field Fmod by applying appropriate Kummer isomor-
phisms between

· log-shells/tensor packets associated to [labeled] F-prime-strips and
· log-shells/tensor packets associated to [labeled] D-prime-strips.

Finally, by passing to the

· log-shells/tensor packets associated to [labeled] D�-prime-strips

— i.e., by forgetting the arithmetic holomorphic structure associated to a
specific vertical line of the log-theta-lattice — one obtains the desired multiradial
representation, i.e., description in terms that make sense from the point of view
of an alien arithmetic holomorphic structure, of the splitting monoids of LGP-
monoids and labeled copies of the number field Fmod discussed above. This
passage to the multiradial representation is obtained by admitting the following
three types of indeterminacy:

(Ind1): This is the indeterminacy that arises from the automorphisms of proces-
sions of D�-prime-strips that appear in the multiradial representation
— i.e., more concretely, from permutation automorphisms of the label sets
Sj+1 that appear in the processions discussed above, as well as from the
automorphisms of the D�-prime-strips that appear in these processions.

(Ind2): This is the indeterminacy that arises from the automorphisms of the

F�×μ-prime-strips that appear in the Θ-/Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -link

— i.e., in particular, at [for simplicity] v ∈ V
non, the Ẑ×-indeterminacies

acting on local copies of “O×μ” [cf. the above discussion].

(Ind3): This is the indeterminacy that arises from the upper semi-compatibility
of the log-Kummer correspondences associated to the specific vertical line
of the log-theta-lattice under consideration [cf. the above discussion].

A detailed description of this multiradial representation, together with the indeter-
minacies (Ind1), (Ind2) is given in Theorem 3.11, (i) [and summarized in Theorem
A, (i), below; cf. also Fig. I.6 below].

One important property of the multiradial representation discussed above con-
cerns the relationship between the three main components — i.e., roughly speaking,
log-shells, splitting monoids of LGP-monoids, and number fields — of this multira-
dial representation and the log-Kummer correspondence of the specific vertical
line of the log-theta-lattice under consideration. This property — which may be
thought of as a sort of “non-interference”, or “mutual compatibility”, prop-
erty — asserts that the multiplicative monoids constituted by the splitting monoids
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of LGP-monoids and copies of F×
mod “do not interfere”, relative to the various ar-

rows that occur in the log-Kummer correspondence, with the local integers at v ∈ V,
hence, in particular, with the local units at v ∈ V, that give rise to the log-shells.
In the case of splitting monoids of LGP-monoids, this non-interference/mutual
compatibility property is, in essence, a formal consequence of the existence of the
canonical splittings [up to roots of unity] discussed in [IUTchII], Introduction, of
the theta/Gaussian monoids that appear into unit group and value group portions.
Here, we recall that, in the case of the theta monoids, these canonical splittings
are, in essence, a formal consequence of the constant multiple rigidity property
of mono-theta environments reviewed above. In the case of copies of Fmod, this
non-interference/mutual compatibility property is, in essence, a formal consequence
of the well-known fact in elementary algebraic number theory that any nonzero
element of a number field that is integral at every valuation of the number field is
necessarily a root of unity. These mutual compatibility properties are described
in detail in Theorem 3.11, (ii), and summarized in Theorem A, (ii), below.

Another important property of the multiradial representation discussed above
concerns the relationship between the three main components — i.e., roughly speak-
ing, log-shells, splitting monoids of LGP-monoids, and number fields — of this
multiradial representation and the Θ×μ

LGP-links, i.e., the horizontal arrows of the
log-theta-lattice under consideration. This property — which may be thought of
as a property of compatibility with the Θ×μ

LGP-link — asserts that the cyclotomic
rigidity isomorphisms that appear in the Kummer theory concerning the splitting

monoids of LGP-monoids and copies of F×
mod are immune to the Ẑ×-indeterminacies

that act on the copies of “O×μ” that arise in the F�×μ-prime-strips that appear
in the Θ×μ

LGP-link. In the case of splitting monoids of LGP-monoids, this prop-
erty amounts precisely to the multiradiality theory developed in §2 [cf. the above
discussion], i.e., in essence, to the mono-theta-theoretic cyclotomic rigidity
property reviewed in the above discussion. In the case of copies of F×

mod, this prop-
erty follows from the theory surrounding the construction of the cyclotomic rigidity
isomorphism discussed in [IUTchI], Example 5.1, (v), together with the well-known
fact in elementary algebraic number theory that any nonzero element of a number
field that is integral at every valuation of the number field is necessarily a root
of unity. These compatibility properties are described in detail in Theorem 3.11,
(iii), and summarized in Theorem A, (iii), below.

q1

qj
2

q(l
�)2

�

/± ↪→
/±/± ↪→

. . . ↪→
/±/± . . . /± ↪→
. . . ↪→
/±/± . . . . . . /±

�

(F×
mod)1

(F×
mod)j

(F×
mod)l�

Fig. I.6: The full multiradial representation

At this point, we pause to observe that although considerable attention has
been devoted so far in the present series of papers, especially in [IUTchII], to
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the theory of Gaussian monoids, not so much attention has been devoted [i.e.,
outside of [IUTchI], §5; [IUTchII], Corollaries 4.7, 4.8] to [the multiplicative monoids
constituted by] copies of F×

mod. These copies of F×
mod enter into the theory of the

multiradial representation discussed above in the form of various types of global
Frobenioids in the following way. If one starts from the number field Fmod, one
natural Frobenioid that can be associated to Fmod is the Frobenioid F�

mod of [stack-
theoretic] arithmetic line bundles on [the spectrum of the ring of integers of] Fmod

discussed in [IUTchI], Example 5.1, (iii) [cf. also Example 3.6 of the present paper].
From the point of view of the theory surrounding the multiradial representation
discussed above, there are two natural ways to approach the construction of “F�

mod”:

(�MOD) (Rational Function Torsor Version): This approach consists of con-
sidering the category F�

MOD of F×
mod-torsors equipped with trivializations

at each v ∈ V [cf. Example 3.6, (i), for more details].

(�mod) (Local Fractional Ideal Version): This approach consists of consid-
ering the category F�

mod of collections of integral structures on the various
completions Kv at v ∈ V and morphisms between such collections of in-

tegral structures that arise from multiplication by elements of F×
mod [cf.

Example 3.6, (ii), for more details].

Then one has natural isomorphisms of Frobenioids

F�
mod

∼→ F�
MOD

∼→ F�
mod

that induce the respective identity morphisms F×
mod → F×

mod → F×
mod on the asso-

ciated rational function monoids [cf. [FrdI], Corollary 4.10]. In particular, at first
glance, F�

MOD and F�
mod appear to be “essentially equivalent” objects.

On the other hand, when regarded from the point of view of the multiradial
representations discussed above, these two constructions exhibit a number of signif-
icant differences — cf. Fig. I.7 below; the discussion of Remarks 3.6.2, 3.10.2. For
instance, whereas the construction of (�MOD) depends only on the multiplica-
tive structure of F×

mod, the construction of (�mod) involves the module, i.e., the

additive, structure of the localizations Kv. The global portion of the Θ×μ
LGP-link

(respectively, the Θ×μ
lgp -link) is, by definition [cf. Definition 3.8, (ii)], constructed

by means of the realification of the Frobenioid that appears in the construction of
(�MOD) (respectively, (�mod)). This means that the construction of the global por-

tion of the Θ×μ
LGP-link — which is the version of the Θ-link that is in fact ultimately

used in the theory of the multiradial representation — depends only on the multi-
plicative monoid structure of a copy of F×

mod, together with the various valuation

homomorphisms F×
mod → R associated to v ∈ V. Thus, the mutual compatibility

[discussed above] of copies of F×
mod with the log-Kummer correspondence implies

that one may perform this construction of the global portion of the Θ×μ
LGP-link in

a fashion that is immune to the “upper semi-compatibility” indeterminacy (Ind3)
[discussed above]. By contrast, the construction of (�mod) involves integral struc-
tures on the underlying local additive modules “Kv”, i.e., from the point of view of
the multiradial representation, integral structures on log-shells and tensor packets
of log-shells, which are subject to the “upper semi-compatibility” indeterminacy
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(Ind3) [discussed above]. In particular, the log-Kummer correspondence subjects
the construction of (�mod) to “substantial distortion”. On the other hand, the es-
sential role played by local integral structures in the construction of (�mod) enables
one to compute the global arithmetic degree of the arithmetic line bundles consti-
tuted by objects of the category “F�

mod” in terms of log-volumes on log-shells
and tensor packets of log-shells [cf. Proposition 3.9, (iii)]. This property of the
construction of (�mod) will play a crucial role in deriving the explicit estimates
for such log-volumes that are obtained in Corollary 3.12 [cf. Theorem B below].

F�
MOD F�

mod

biased toward biased toward
multiplicative structures additive structures

easily related to easily related to unit group/coric

value group/non-coric portion portion “(−)�×μ” of Θ×μ
LGP-/Θ

×μ
lgp -link,

“(−)��” of Θ×μ
LGP-link i.e., mono-analytic log-shells

admits only admits
precise log-Kummer “upper semi-compatible”

correspondence log-Kummer correspondence

rigid, but not suited subject to substantial distortion,
to explicit computation but suited to explicit estimates

Fig. I.7: F�
MOD versus F�

mod

Thus, in summary, the natural isomorphism F�
MOD

∼→ F�
mod discussed above plays

the important role, in the context of the multiradial representation discussed above,
of relating

· the multiplicative structure of the global number field Fmod to the
additive structure of Fmod;

· the unit group/coric portion “(−)�×μ” of the Θ×μ
LGP-link to the value

group/non-coric portion “(−)��” of the Θ×μ
LGP-link.

Finally, in Corollary 3.12 [cf. also Theorem B below], we apply the multiradial
representation discussed above to estimate certain log-volumes as follows. We begin
by introducing some terminology [cf. Definition 3.8, (i)]. We shall refer to the object
that arises in any of the versions [including realifications] of the global Frobenioid
“F�

mod” discussed above — such as, for instance, the realified global Frobenioid
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that occurs in the codomain of the Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -link — by considering the

arithmetic divisor determined by the zero locus of the elements “q
v
” at v ∈ V

bad

as a q-pilot object. The log-volume of the q-pilot object will be denoted by

− |log(q)| ∈ R

— so |log(q)| > 0 [cf. Corollary 3.12; Theorem B]. In a similar vein, we shall refer

to the object that arises in the realified global Frobenioid that occurs in the domain
of the Θ×μ

gau-/Θ
×μ
LGP-/Θ

×μ
lgp -link by considering the arithmetic divisor determined by

the zero locus of the collection of theta values “{qj2
v
}j=1,... ,l�” at v ∈ V

bad as a

Θ-pilot object. The log-volume of the union of the collection of possible images
of the Θ-pilot object in the multiradial representation — i.e., where we recall
that these “possible images” are subject to the indeterminacies (Ind1), (Ind2),
(Ind3) — will be denoted by

− |log(Θ)| ∈ R
⋃
{+∞}

[cf. Corollary 3.12; Theorem B]. Then the content of Corollary 3.12, Theorem
B may be summarized, roughly speaking [cf. Remark 3.12.1, (ii)], as a result
concerning the

negativity of the Θ-pilot log-volume |log(Θ)|.

Relative to the analogy between the theory of the present series of papers and
complex/p-adic Teichmüller theory [cf. [IUTchI], §I4], this result may be thought
of as a statement to the effect that

“the pair consisting of a number field equipped with an elliptic curve is
metrically hyperbolic, i.e., has negative curvature”.

That is to say, it may be thought of as a sort of analogue of the inequality

χS = −
∫
S

dμS < 0

arising from the classical Gauss-Bonnet formula on a hyperbolic Riemann sur-
face of finite type S [where we write χS for the Euler characteristic of S and dμS for
the Kähler metric on S determined by the Poincaré metric on the upper half-plane
— cf. the discussion of Remark 3.12.3], or, alternatively, of the inequality

(1− p)(2gX − 2) ≤ 0

that arises by computing global degrees of line bundles in the context of the Hasse
invariant that arises in p-adic Teichmüller theory [where X is a smooth, proper
hyperbolic curve of genus gX over the ring of Witt vectors of a perfect field of
characteristic p which is canonical in the sense of p-adic Teichmüller theory — cf.
the discussion of Remark 3.12.4, (v)].

The proof of Corollary 3.12 [i.e., Theorem B] is based on the following funda-
mental observation: the multiradial representation discussed above yields
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two tautologically equivalent ways to compute
the q-pilot log-volume − |log(q)|

— cf. Fig. I.8 below; Step (xi) of the proof of Corollary 3.12. That is to say,
suppose that one starts with the q-pilot object in the Θ±ellNF-Hodge theater
1,0HT Θ±ellNF at (1, 0), which we think of as being represented, via the approach

of (�mod), by means of the action of the various q
v
, for v ∈ V

bad, on the log-

shells that arise, via the log-link 1,−1HT Θ±ellNF log−→ 1,0HT Θ±ellNF, from the

various local “O×μ’s” in the Θ±ellNF-Hodge theater 1,−1HT Θ±ellNF at (1,−1).
Thus, if one considers the value group “(−)��” and unit group “(−)�×μ” portions

of the codomain of the Θ×μ
LGP-link

0,0HT Θ±ellNF Θ×μ
LGP−→ 1,0HT Θ±ellNF in the con-

text of the arithmetic holomorphic structure of the vertical line (1, ◦), this action
on log-shells may be thought of as a somewhat intricate “intertwining” between
these value group and unit group portions. On the other hand, the Θ×μ

LGP-link

0,0HT Θ±ellNF Θ×μ
LGP−→ 1,0HT Θ±ellNF constitutes a sort of gluing isomorphism be-

tween the arithmetic holomorphic structures associated to the vertical lines (0, ◦)
and (1, ◦) that is based on

forgetting this intricate intertwining, i.e., by working solely with
abstract isomorphisms of F��×μ-prime-strips.

Thus, in order to relate the arithmetic holomorphic structures, say, at (0, 0) and
(1, 0), one must apply the multiradial representation discussed above. That is to
say, one starts by applying the theory of bi-coric mono-analytic log-shells given
in Theorem 1.5. One then applies the Kummer theory surrounding the split-
ting monoids of theta/Gaussian monoids and copies of the number field
Fmod, which allows one to pass from the Frobenius-like versions of various ob-
jects that appear in — i.e., that are necessary in order to consider — the Θ×μ

LGP-link
to the corresponding étale-like versions of these objects that appear in the multira-
dial representation. This passage from Frobenius-like versions to étale-like versions
is referred to as the operation of Kummer-detachment [cf. Fig. I.8; Remark
1.5.4, (i)]. As discussed above, this operation of Kummer-detachment is possible
precisely as a consequence of the compatibility of the multiradial representation
with the Θ×μ

LGP-link, i.e., with the indeterminacy (Ind2). Moreover, since the log-
theta-lattice is, as discussed above, far from commutative, in order to represent
the various “log-link-conjugates” at (0,m) [for m ∈ Z] in terms that may be un-
derstood from the point of view of the arithmetic holomorphic structure at (1, 0),
one must work [not only with the Kummer isomorphisms at a single (0,m), but
rather with] the entire log-Kummer correspondence. In particular, one must
take into account the indeterminacy (Ind3). Once one completes the operation of
Kummer-detachment so as to obtain vertically coric versions of objects on the ver-
tical line (0, ◦), one then passes to multiradial objects, i.e., to the “final form” of the
multiradial representation, by introducing the indeterminacy (Ind1), i.e., that arises
from working with [mono-analytic!] D�- [as opposed to D-!] prime-strips. Finally,
one computes the log-volume of this “final form” multiradial representation of the
Θ-pilot object — i.e., subject to the indeterminacies (Ind1), (Ind2), (Ind3)! — and
concludes the desired estimates from the tautological observation that
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the log-theta-lattice, and, in particular, the “gluing isomorphism”
constituted by the Θ×μ

LGP-link, were constructed precisely in such a way
as to assure that this computation of |log(Θ)|, i.e., of possible log-volumes

of the Θ-pilot object, necessarily contains |log(q)| [i.e., as a “possible

log-volume of the Θ-pilot object”]

— cf. Fig. I.8 below; Step (xi) of the proof of Corollary 3.12. That is to say,

the “gluing isomorphism” constituted by the Θ×μ
LGP-link relates two distinct “arith-

metic holomorphic structures”, i.e., two distinct copies of conventional ring/scheme
theory, that are glued together precisely by means of a relation that identifies the
Θ-pilot object in the domain of the Θ×μ

LGP-link with the q-pilot object in the codomain

of the Θ×μ
LGP-link. Thus, once one sets up such an apparatus, the computation of

the log-volume of the Θ-pilot object in the domain of the Θ×μ
LGP-link in terms of

the q-pilot object in the codomain of the Θ×μ
LGP-link amounts — tautologically! —

to the computation of the log-volume of the q-pilot object [in the codomain of the

Θ×μ
LGP-link] in terms of itself, i.e., to a computation that reflects certain intrinsic

properties of this q-pilot object. This is the content of Corollary 3.12 [i.e., Theorem
B]. As discussed above, this sort of “computation of intrinsic properties” in the
present context of a number field equipped with an elliptic curve may be regarded
as analogous to the “computations of intrinsic properties” reviewed above in the
classical complex and p-adic cases.

multiradial
representation
at 0-column (0, ◦)

permutation
symmetry of

≈
étale-picture

multiradial
representation
at 1-column (1, ◦)

Kummer-
detach-
ment
via
log-

Kummer

⇑

com-
pati-
bly
with

Θ×μ
LGP-
link

com-
pari-
son
via

⇓ log-
vol.

Θ-pilot object in
Θ±ellNF-Hodge
theater at (0, 0)

(−)��-portion,
(−)�×μ-portion

≈
of Θ×μ

LGP-link

q-pilot object in
Θ±ellNF-Hodge
theater at (1, 0)

Fig. I.8: Two tautologically equivalent ways to compute
the log-volume of the q-pilot object at (1, 0)

We conclude the present Introduction with the following summaries of the
main results of the present paper.



INTER-UNIVERSAL TEICHMÜLLER THEORY III 19

Theorem A. (Multiradial Algorithms for Logarithmic Gaussian Pro-
cession Monoids) Fix a collection of initial Θ-data (F/F, XF , l, CK , V, ε)
as in [IUTchI], Definition 3.1. Let

{n,mHT Θ±ellNF}n,m∈Z

be a collection of distinct Θ±ellNF-Hodge theaters [relative to the given initial
Θ-data] — which we think of as arising from a LGP-Gaussian log-theta-lattice
[cf. Definition 3.8, (iii)]. For each n ∈ Z, write

n,◦HT D-Θ±ellNF

for the D-Θ±ellNF-Hodge theater determined, up to isomorphism, by the various
n,mHT Θ±ellNF, where m ∈ Z, via the vertical coricity of Theorem 1.5, (i) [cf.
Remark 3.8.2].

(i) (Multiradial Representation) Write

n,◦RLGP

for the collection of data consisting of

(a) tensor packets of log-shells;

(b) splitting monoids of LGP-monoids acting on the tensor packets of
(a);

(c) copies, labeled by j ∈ F�
l , of [the multiplicative monoid of nonzero ele-

ments of ] the number field Fmod acting on the tensor packets of (a)

[cf. Theorem 3.11, (i), (a), (b), (c), for more details] regarded up to indetermi-
nacies of the following two types:

(Ind1) the indetermacies induced by the automorphisms of the procession
of D�-prime-strips Prc(n,◦D�

T ) that gives rise to the tensor packets of
(a);

(Ind2) the indeterminacies that arise from the automorphisms of the F�×μ-

prime-strips that appear in the Θ×μ
LGP-link, i.e., in particular, at [for

simplicity] v ∈ V
non, the Ẑ×-indeterminacies acting on local copies of

“O×μ”

— cf. Theorem 3.11, (i), for more details. Then n,◦RLGP may be constructed via an
algorithm in the procession of D�-prime-strips Prc(n,◦D�

T ), which is functorial
with respect to isomorphisms of processions of D�-prime-strips. For n, n′ ∈ Z, the
permutation symmetries of the étale-picture discussed in [IUTchI], Corollary
6.10, (iii); [IUTchII], Corollary 4.11, (ii), (iii) [cf. also Corollary 2.3, (ii); Remark
3.8.2, of the present paper], induce compatible poly-isomorphisms

Prc(n,◦D�
T )

∼→ Prc(n
′,◦D�

T );
n,◦RLGP ∼→ n′,◦RLGP
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which are, moreover, compatible with the bi-coricity poly-isomorphisms

n,◦D�
0

∼→ n′,◦D�
0

of Theorem 1.5, (iii) [cf. also [IUTchII], Corollaries 4.10, (iv); 4.11, (i)].

(ii) (log-Kummer Correspondence) For n,m ∈ Z, the inverses of the
Kummer isomorphisms associated to the various F-prime-strips and NF-

bridges that appear in the Θ±ellNF-Hodge theater n,mHT Θ±ellNF induce “inverse
Kummer” isomorphisms between the vertically coric data (a), (b), (c) of (i)
and the corresponding Frobenioid-theoretic data arising from each Θ±ellNF-

Hodge theater n,mHT Θ±ellNF [cf. Theorem 3.11, (ii), (a), (b), (c), for more de-
tails]. Moreover, as one varies m ∈ Z, the corresponding Kummer isomor-
phisms [i.e., inverses of “inverse Kummer” isomorphisms] of splitting monoids
of LGP-monoids [cf. (i), (b)] and labeled copies of the number field Fmod [cf.
(i), (c)] are mutually compatible, relative to the log-links of the n-th column of
the LGP-Gaussian log-theta-lattice under consideration, in the sense that the only
portions of the [Frobenioid-theoretic] domains of these Kummer isomorphisms that
are related to one another via the log-links consist of roots of unity [multiplication
by which corresponds, via the log-link, to an “addition by zero” indeterminacy,
i.e., to no indeterminacy!] — cf. Proposition 3.5, (ii), (c); Proposition 3.10,
(ii); Theorem 3.11, (ii), for more details. On the other hand, the Kummer iso-
morphisms of tensor packets of log-shells [cf. (i), (a)] are subject to a certain
“indeterminacy” as follows:

(Ind3) as one varies m ∈ Z, these Kummer isomorphisms of tensor packets of
log-shells are “upper semi-compatible”, relative to the log-links of the
n-th column of the LGP-Gaussian log-theta-lattice under consideration, in
a sense that involves certain natural inclusions “⊆” at vQ ∈ Vnon

Q and
certain natural surjections “�” at vQ ∈ Varc

Q — cf. Proposition 3.5,
(ii), (a), (b); Theorem 3.11, (ii), for more details.

Finally, as one varies m ∈ Z, these Kummer isomorphisms of tensor packets of
log-shells are [precisely!] compatible, relative to the log-links of the n-th column
of the LGP-Gaussian log-theta-lattice under consideration, with the respective log-
volumes [cf. Proposition 3.9, (iv)].

(iii) (Θ×μ
LGP-Link Compatibility) The various Kummer isomorphisms of (ii)

satisfy compatibility properties with the various horizontal arrows — i.e., Θ×μ
LGP-

links — of the LGP-Gaussian log-theta-lattice under consideration as follows: The
tensor packets of log-shells [cf. (i), (a)] are compatible, relative to the relevant

Kummer isomorphisms, with [the unit group portion “(−)�×μ” of] the Θ×μ
LGP-link

[cf. the indeterminacy “(Ind2)” of (i)]; we refer to Theorem 3.11, (iii), (a), (b),
for more details. The identity automorphism on the objects that appear in the
construction of the splitting monoids of LGP-monoids via mono-theta envi-
ronments [cf. (i), (b)] is compatible, relative to the relevant Kummer isomorphisms

and isomorphisms of mono-theta environments, with the Θ×μ
LGP-link [cf. the inde-

terminacy “(Ind2)” of (i)]; we refer to Theorem 3.11, (iii), (c), for more details.
The identity automorphism on the objects that appear in the construction of the
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labeled copies of the number field Fmod [cf. (i), (c)] is compatible, relative to
the relevant Kummer isomorphisms and cyclotomic rigidity isomorphisms [cf. the
discussion of Remark 3.10.1, (ii); the construction of [IUTchI], Example 5.1, (v)],

with the Θ×μ
LGP-link [cf. the indeterminacy “(Ind2)” of (i)]; we refer to Theorem

3.11, (iii), (d), for more details.

Theorem B. (Log-volume Estimates for Multiradially Represented Split-
ting Monoids of Logarithmic Gaussian Procession Monoids) Suppose that
we are in the situation of Theorem A. Write

− |log(Θ)| ∈ R
⋃
{+∞}

for the procession-normalized mono-analytic log-volume [where the average
is taken over j ∈ F�

l — cf. Remark 3.1.1, (ii); Proposition 3.9, (i), (ii); Theorem
3.11, (i), (a), for more details] of the union of the possible images of a Θ-pilot
object [cf. Definition 3.8, (i)], relative to the relevant Kummer isomorphisms
[cf. Theorems A, (ii); 3.11, (ii)], in the multiradial representation of Theorems
A, (i); 3.11, (i), which we regard as subject to the indeterminacies (Ind1),
(Ind2), (Ind3) described in Theorems A, (i), (ii); 3.11, (i), (ii). Write

− |log(q)| ∈ R

for the procession-normalized mono-analytic log-volume of the image of a
q-pilot object [cf. Definition 3.8, (i)], relative to the relevant Kummer isomor-
phisms [cf. Theorems A, (ii); 3.11, (ii)], in the multiradial representation of
Theorems A, (i); 3.11, (i), which we do not regard as subject to the indetermina-
cies (Ind1), (Ind2), (Ind3) described in Theorems A, (i), (ii); 3.11, (i), (ii). Here,
we recall the definition of the symbol “�” as the result of identifying the labels

“0” and “〈F�
l 〉”

[cf. [IUTchII], Corollary 4.10, (i)]. In particular, |log(q)| > 0 is easily computed

in terms of the various q-parameters of the elliptic curve EF [cf. [IUTchI],

Definition 3.1, (b)] at v ∈ V
bad ( �= ∅). Then it holds that

CΘ ≥ −1
for any real number CΘ ∈ R such that

− |log(Θ)| ≤ CΘ · |log(q)| (∗CΘ)

[i.e., − |log(Θ)| ∈ R ⊆ R
⋃ {+∞} and satisfies the inequality (∗CΘ)].

Acknowledgements:

I would like to thank Fumiharu Kato and Akio Tamagawa for many helpful
discussions concerning the material presented in this paper.

Notations and Conventions:

We shall continue to use the “Notations and Conventions” of [IUTchI], §0.
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Section 1: The Log-theta-lattice

In the present §1, we discuss various enhancements to the theory of log-shells,
as developed in [AbsTopIII]. In particular, we develop the theory of the log-link [cf.
Definition 1.1; Propositions 1.2, 1.3], which, together with the Θ×μ- and Θ×μ

gau-links
of [IUTchII], Corollary 4.10, (iii), leads naturally to the construction of the log-
theta-lattice, an apparatus that is central to the theory of the present series of
papers. We conclude the present §1 with a discussion of various coric structures
associated to the log-theta-lattice [cf. Theorem 1.5].

In the following discussion, we assume that we have been given initial Θ-data
as in [IUTchI], Definition 3.1. We begin by reviewing various aspects of the theory
of log-shells developed in [AbsTopIII].

Definition 1.1. Let
†F = {†Fv}v∈V

be an F-prime-strip [relative to the given initial Θ-data — cf. [IUTchI], Definition
5.2, (i)]. Write

†F� = {†F�
v }v∈V;

†F�×μ = {†F�×μ
v }v∈V

for the associated F�-, F�×μ-prime-strips [cf. [IUTchI], Remark 5.2.1, (ii); [IUTchII],
Definition 4.9, (vi), (vii)]. Recall the functorial algorithm of [IUTchII], Corollary
4.6, (i), in the F-prime-strip †F for constructing the assignment Ψcns(

†F) given by

V
non � v �→ Ψcns(

†F)v
def
=

{
Gv(

†Πv) � Ψ†Fv

}
V

arc � v �→ Ψcns(
†F)v

def
= Ψ†Fv

— where the data in brackets “{−}” is to be regarded as being well-defined only
up to a †Πv-conjugacy indeterminacy [cf. [IUTchII], Corollary 4.6, (i), for more
details]. In the following, we shall write

(−)gp def
= (−)gp

⋃
{0}

for the formal union with {0} of the groupification (−)gp of a monoid “(−)”. Thus,
by setting the product of all elements of (−)gp with 0 to be equal to 0, one obtains
a natural monoid structure on (−)gp.

(i) Let v ∈ V
non. Write

(Ψ†Fv
⊇ Ψ×

†Fv
→) Ψ∼

†Fv

def
= (Ψ×

†Fv
)pf

for the perfection (Ψ×
†Fv

)pf of the submonoid of units Ψ×
†Fv

of Ψ†Fv
. Now let us

recall from the theory of [AbsTopIII] [cf. [AbsTopIII], Definition 3.1, (iv); [Ab-
sTopIII], Proposition 3.2, (iii), (v)] that the natural, algorithmically constructible

topological field structure on Ψ
gp
†Fv

allows one to define a pv-adic logarithm on Ψ∼
†Fv

,
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which, in turn, yields a functorial algorithm in the Frobenioid †Fv for constructing
a topological field structure on Ψ∼

†Fv
. Write

Ψlog(†Fv) ⊆ Ψ∼
†Fv

for the resulting multiplicative monoid of nonzero integers. Here, we observe that
the resulting diagram

Ψ†Fv
⊇ Ψ×

†Fv
→ Ψ∼

†Fv
= Ψ

gp

log(†Fv)

is compatible with the various natural actions of †Πv � Gv(
†Πv) on each of the [four]

“Ψ’s” appearing in this diagram. The pair {†Πv � Ψlog(†Fv)} now determines a

Frobenioid
log(†Fv)

[cf. [AbsTopIII], Remark 3.1.1; [IUTchI], Remark 3.3.2] — which is, in fact, nat-
urally isomorphic to the Frobenioid †Fv, but which we wish to think of as being

related to †Fv via the above diagram. We shall denote this diagram by means of
the notation

†Fv
log−→ log(†Fv)

and refer to this relationship between †Fv and log(†Fv) as the tautological log-

link associated to †Fv [or, when †F is fixed, at v]. If log(†Fv)
∼→ ‡Fv is any

[poly-]isomorphism of Frobenioids, then we shall write

†Fv
log−→ ‡Fv

for the diagram obtained by post-composing the tautological log-link associated
to †Fv with the given [poly-]isomorphism log(†Fv)

∼→ ‡Fv and refer to this re-

lationship between †Fv and ‡Fv as a log-link from †Fv to ‡Fv; when the given

[poly-]isomorphism log(†Fv)
∼→ ‡Fv is the full poly-isomorphism, then we shall re-

fer to the resulting log-link as the full log-link from †Fv to ‡Fv. Finally, we recall
from [AbsTopIII], Definition 3.1, (iv), that the image in Ψ∼

†Fv
of the submonoid

of Gv(
†Πv)-invariants of Ψ×

†Fv
constitutes a compact topological module, which we

shall refer to as the pre-log-shell. Write p∗v
def
= pv when pv is odd and p∗v

def
= p2v when

pv is even. Then we shall refer to the result of multiplying the pre-log-shell by the

factor (p∗v)
−1 as the log-shell

I†Fv
⊆ Ψ∼

†Fv
= Ψ

gp

log(†Fv)

[cf. [AbsTopIII], Definition 5.4, (iii)]. In particular, by applying the natural, algo-

rithmically constructible topological field structure on Ψ
gp

log(†Fv)
[cf. [AbsTopIII],

Proposition 3.2, (iii)], it thus follows that one may think of this log-shell as an ob-
ject associated to the codomain of any [that is to say, not necessarily tautological!]
log-link

†Fv
log−→ ‡Fv
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— i.e., an object that is determined by the image of a certain portion [namely, the
Gv(

†Πv)-invariants of Ψ
×
†Fv

] of the domain of this log-link.

(ii) Let v ∈ V
arc. For N ∈ N≥1, write Ψ

μN
†Fv
⊆ Ψ×

†Fv
⊆ Ψgp

†Fv
for the subgroup

of N -th roots of unity and Ψ∼
†Fv

� Ψgp
†Fv

for the [pointed] universal covering of the

topological group determined by the groupification Ψgp
†Fv

of the topological monoid

Ψ†Fv
. Then one verifies immediately that one may think of the composite covering

of topological groups

Ψ∼
†Fv

� Ψgp
†Fv

� Ψgp
†Fv

/ΨμN
†Fv

— where the second “�” is the natural surjection — as a [pointed] universal cov-
ering of Ψgp

†Fv
/ΨμN

†Fv
. That is to say, one may think of Ψ∼

†Fv
as an object constructed

from Ψgp
†Fv

/ΨμN
†Fv

[cf. also Remark 1.2.1 below]. Now let us recall from the theory

of [AbsTopIII] [cf. [AbsTopIII], Definition 4.1, (iv); [AbsTopIII], Proposition 4.2,
(i), (ii)] that the natural, algorithmically constructible topological field structure

on Ψ
gp
†Fv

allows one to define a [complex archimedean] logarithm on Ψ∼
†Fv

, which,

in turn, yields a functorial algorithm in the collection of data †Fv [cf. [IUTchI],
Definition 5.2, (i), (b)] for constructing a topological field structure on Ψ∼

†Fv
, to-

gether with a Ψ∼
†Fv

-Kummer structure on †Uv [cf. [AbsTopIII], Definition 4.1, (iv);

[IUTchII], Proposition 4.4, (i)]. Write

Ψlog(†Fv) ⊆ Ψ∼
†Fv

for the resulting multiplicative monoid of nonzero integers. Here, we observe that
the resulting diagram

Ψ†Fv
⊆ Ψgp

†Fv
� Ψ∼

†Fv
= Ψ

gp

log(†Fv)

is compatible [cf. the discussion of [AbsTopIII], Definition 4.1, (iv)] with the

co-holomorphicizations determined by the natural Ψ
gp
†Fv

-Kummer [cf. [IUTchII],

Proposition 4.4, (i)] and Ψ∼
†Fv

-Kummer [cf. the above discussion] structures on
†Uv. The triple of data consisting of the topological monoid Ψlog(†Fv), the Aut-

holomorphic space †Uv, and the Ψ∼
†Fv

-Kummer structure on †Uv discussed above

determines a collection of data [i.e., as in [IUTchI], Definition 5.2, (i), (b)]

log(†Fv)

which is, in fact, naturally isomorphic to the collection of data †Fv, but which we

wish to think of as being related to †Fv via the above diagram. We shall denote
this diagram by means of the notation

†Fv
log−→ log(†Fv)

and refer to this relationship between †Fv and log(†Fv) as the tautological log-

link associated to †Fv [or, when †F is fixed, at v]. If log(†Fv)
∼→ ‡Fv is any
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[poly-]isomorphism of collections of data [i.e., as in [IUTchI], Definition 5.2, (i),
(b)], then we shall write

†Fv
log−→ ‡Fv

for the diagram obtained by post-composing the tautological log-link associated
to †Fv with the given [poly-]isomorphism log(†Fv)

∼→ ‡Fv and refer to this re-

lationship between †Fv and ‡Fv as a log-link from †Fv to ‡Fv; when the given

[poly-]isomorphism log(†Fv)
∼→ ‡Fv is the full poly-isomorphism, then we shall re-

fer to the resulting log-link as the full log-link from †Fv to ‡Fv. Finally, we recall

from [AbsTopIII], Definition 4.1, (iv), that the submonoid of units Ψ×
†Fv
⊆ Ψ†Fv

determines a compact topological subquotient of Ψ∼
†Fv

, which we shall refer to as

the pre-log-shell. We shall refer to the Ψ×
log(†Fv)

-orbit of the [uniquely determined]

closed line segment of Ψ∼
†Fv

which is preserved by multiplication by ±1 and whose

endpoints differ by a generator of the kernel of the natural surjection Ψ∼
†Fv

� Ψgp
†Fv

— or, equivalently, the Ψ×
log(†Fv)

-orbit of the result ofmultiplying by N the [uniquely

determined] closed line segment of Ψ∼
†Fv

which is preserved by multiplication by ±1
and whose endpoints differ by a generator of the kernel of the natural surjection
Ψ∼

†Fv
� Ψgp

†Fv
/ΨμN

†Fv
— as the log-shell

I†Fv
⊆ Ψ∼

†Fv
= Ψ

gp

log(†Fv)

[cf. [AbsTopIII], Definition 5.4, (v)]. Thus, one may think of the log-shell as an
object constructed from Ψgp

†Fv
/ΨμN

†Fv
. Moreover, by applying the natural, algorithmi-

cally constructible topological field structure on Ψ
gp

log(†Fv)
(= Ψ∼

†Fv
), it thus follows

that one may think of this log-shell as an object associated to the codomain of any
[that is to say, not necessarily tautological!] log-link

†Fv
log−→ ‡Fv

— i.e., an object that is determined by the image of a certain portion [namely, the
subquotient Ψ×

†Fv
of Ψ∼

†Fv
] of the domain of this log-link.

(iii) Write

log(†F) def
=

{
log(†Fv)

def
= Ψ∼

†Fv

}
v∈V

for the collection of topological modules constructed in (i), (ii) above indexed by
v ∈ V — where the group structure arises from the additive portion of the field
structures on Ψ∼

†Fv
discussed in (i), (ii); for v ∈ V

non, we regard Ψ∼
†Fv

as equipped

with its natural Gv(
†Πv)-action. Write

log(†F) def
= {log(†Fv)}v∈V

for the F-prime-strip determined by the data log(†Fv) constructed in (i), (ii) for
v ∈ V. We shall denote by

†F
log−→ log(†F)
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the collection of diagrams {†Fv
log−→ log(†Fv)}v∈V constructed in (i), (ii) for v ∈ V

and refer to this relationship between †F and log(†F) as the tautological log-link

associated to †F. If log(†F) ∼→ ‡F is any [poly-]isomorphism of F-prime-strips,
then we shall write

†F
log−→ ‡F

for the diagram obtained by post-composing the tautological log-link associated to
†F with the given [poly-]isomorphism log(†F) ∼→ ‡F and refer to this relationship
between †F and ‡F as a log-link from †F to ‡F; when the given [poly-]isomorphism

log(†F) ∼→ ‡F is the full poly-isomorphism, then we shall refer to the resulting log-
link as the full log-link from †F to ‡F. Finally, we shall write

I†F
def
= {I†Fv

}v∈V

for the collection of log-shells constructed in (i), (ii) for v ∈ V and refer to this
collection as the log-shell associated to †F and [by a slight abuse of notation]

I†F ⊆ log(†F)

for the collection of natural inclusions indexed by v ∈ V. In particular, [cf. the
discussion of (i), (ii)], it thus follows that one may think of this log-shell as an object
associated to the codomain of any [that is to say, not necessarily tautological!] log-
link

†F
log−→ ‡F

— i.e., an object that is determined by the image of a certain portion [cf. the
discussion of (i), (ii)] of the domain of this log-link.

(iv) Let v ∈ V
non. Then observe that it follows immediately from the con-

structions of (i) that the topological modules with Gv(
†Πv)-action I†Fv

⊆ log(†Fv)

may be constructed solely from the collection of data †F�×μ
v [i.e., the portion of the

F�×μ-prime-strip †F�×μ labeled by v]. That is to say, in light of the definition of a
×μ-Kummer structure [cf. [IUTchII], Definition 4.9, (i), (ii), (iv), (vi), (vii)], these
constructions only require the perfection “(−)pf” of the units and are manifestly
unaffected by the operation of forming the quotient by a torsion subgroup of the
units. Write

I†F�×μ
v

⊆ log(†F�×μ
v )

for the resulting topological modules with Gv(
†Πv)-action, regarded as objects con-

structed from †F�×μ
v .

(v) Let v ∈ V
arc. Then by applying the algorithms for constructing “k∼(G)”,

“I(G)” given in [AbsTopIII], Proposition 5.8, (v), to the [object of the category

“TM�” of split topological monoids discussed in [IUTchI], Example 3.4, (ii), deter-
mined by the] split Frobenioid portion of the collection of data †F�

v , one obtains

a functorial algorithm in the collection of data †F�
v for constructing a topological

module log(†F�
v ) [i.e., corresponding to “k∼(G)”] and a topological subspace I†F�

v

[i.e., corresponding to “I(G)”]. In fact, this functorial algorithm only makes use of
the unit portion of this split Frobenioid, together with a pointed universal covering
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of this unit portion. Moreover, by arguing as in (ii), one may in fact regard this
functorial algorithm as an algorithm that only makes use of the quotient of this unit
portion by its N -torsion subgroup, for N ∈ N≥1, together with a pointed universal
covering of this quotient. That is to say, this functorial algorithm may, in fact, be
regarded as a functorial algorithm in the collection of data †F�×μ

v . Write

I†F�×μ
v

⊆ log(†F�×μ
v )

for the resulting topological module equipped with a closed subspace, regarded as
objects constructed from †F�×μ

v .

(vi) Finally, just as in (iii), we shall write

I†F�×μ
def
= {I†F�×μ

v
}v∈V ⊆ log(†F�×μ)

def
= {log(†F�×μ

v )}v∈V

for the resulting collections of data constructed solely from the F�×μ-prime-strip
†F�×μ [i.e., which we do not regard as objects constructed from †F!].

From the point of view of the present series of papers, the theory of [AbsTopIII]
may be summarized as follows.

Proposition 1.2. (log-links Between F-prime-strips) Let

†F = {†Fv}v∈V;
‡F = {‡Fv}v∈V

be F-prime-strips [relative to the given initial Θ-data — cf. [IUTchI], Definition
5.2, (i)] and

†F
log−→ ‡F

a log-link from †F to ‡F. Write †F�×μ, ‡F�×μ for the associated F�×μ-prime-strips
[cf. [IUTchII], Definition 4.9, (vi), (vii)]; †D, ‡D for the associated D-prime-strips
[cf. [IUTchI], Remark 5.2.1, (i)]; †D�, ‡D� for the associated D�-prime-strips [cf.
[IUTchI], Definition 4.1, (iv)]. Also, let us recall the diagrams

Ψ†Fv
⊇ Ψ×

†Fv
→ log(†Fv) = Ψ

gp

log(†Fv)

∼→ Ψ
gp
‡Fv

(∗non)

Ψ†Fv
⊆ Ψgp

†Fv
� log(†Fv) = Ψ

gp

log(†Fv)

∼→ Ψ
gp
‡Fv

(∗arc)

— where the v of (∗non) (respectively, (∗arc)) belongs to V
non (respectively, Varc),

and the [poly-]isomorphisms on the right are induced by the “
log−→ ” — of Definition

1.1, (i), (ii).

(i) (Coricity of Associated D-Prime-Strips) The log-link †F
log−→ ‡F

induces [poly-]isomorphisms

†D ∼→ ‡D; †D� ∼→ ‡D�
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between the associated D- and D�-prime-strips. In particular, the [poly-]isomorphism
†D ∼→ ‡D induced by †F

log−→ ‡F induces a [poly-]isomorphism

Ψcns(
†D)

∼→ Ψcns(
‡D)

between the collections of monoids equipped with auxiliary data of [IUTchII], Corol-
lary 4.5, (i).

(ii) (Simultaneous Compatibility with Ring Structures) At v ∈ V
non,

the natural †Πv-actions on the “Ψ’s” appearing in the diagram (∗non) are com-

patible with the topological ring structures on Ψ
gp
†Fv

and Ψ
gp

log(†Fv)
. At v ∈ V

arc,

the co-holomorphicizations determined by the natural Ψ
gp
†Fv

- and Ψ
gp

log(†Fv)
(=

Ψ∼
†Fv

)-Kummer structures on †Uv — which [cf. the discussion of Definition 1.1,

(ii)] are compatible with the diagram (∗arc) — are compatible with the topological

ring structures on Ψ
gp
†Fv

and Ψ
gp

log(†Fv)
.

(iii) (Simultaneous Compatibility with Log-volumes) At v ∈ V
non, the

diagram (∗non) is compatible with the natural pv-adic log-volumes [cf. [Ab-
sTopIII], Proposition 5.7, (i); [AbsTopIII], Corollary 5.10, (ii)] on the subsets of
†Πv-invariants of Ψ

gp
†Fv

and Ψ
gp

log(†Fv)
. At v ∈ V

arc, the diagram (∗arc) is compati-

ble with the natural angular log-volume [cf. Remark 1.2.1 below; [AbsTopIII],
Proposition 5.7, (ii); [AbsTopIII], Corollary 5.10, (ii)] on Ψ×

†Fv
and the natural

radial log-volume [cf. [AbsTopIII], Proposition 5.7, (ii); [AbsTopIII], Corollary

5.10, (ii)] on Ψ
gp

log(†Fv)
.

(iv) (Kummer theory) The Kummer isomorphisms

Ψcns(
†F) ∼→ Ψcns(

†D); Ψcns(
‡F) ∼→ Ψcns(

‡D)

of [IUTchII], Corollary 4.6, (i), fail to be compatible with the [poly-]isomorphism

Ψcns(
†D)

∼→ Ψcns(
‡D) of (i), relative to the diagrams (∗non), (∗arc) [and the

notational conventions of Definition 1.1] — cf. [AbsTopIII], Corollary 5.5, (iv).
[Here, we regard the diagrams (∗non), (∗arc) as diagrams that relate Ψ†Fv

and Ψ‡Fv
,

via the [poly-]isomorphism log(†F) ∼→ ‡F that determines the log-link †F
log−→ ‡F.]

(v) (Holomorphic Log-shells) At v ∈ V
non, the log-shell

I†Fv
⊆ log(†Fv) (

∼→ Ψ
gp
‡Fv

)

satisfies the following properties: (anon) I†Fv
is compact, hence of finite log-

volume [cf. [AbsTopIII], Corollary 5.10, (i)]; (bnon) I†Fv
contains the submonoid

of †Πv-invariants of Ψlog(†Fv) [cf. [AbsTopIII], Definition 5.4, (iii)]; (cnon) I†Fv

contains the image of the submonoid of †Πv-invariants of Ψ×
†Fv

. At v ∈ V
arc, the

log-shell

I†Fv
⊆ log(†Fv) (

∼→ Ψ
gp
‡Fv

)
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satisfies the following properties: (aarc) I†Fv
is compact, hence of finite radial

log-volume [cf. [AbsTopIII], Corollary 5.10, (i)]; (barc) I†Fv
contains Ψlog(†Fv)

[cf. [AbsTopIII], Definition 5.4, (v)]; (carc) the image of I†Fv
in Ψgp

†Fv
contains

Ψ×
†Fv

[i.e., in essence, the pre-log-shell].

(vi) (Nonarchimedean Mono-analytic Log-shells) At v ∈ V
non, if we

write †D�
v = Btemp(†Gv)

0 for the portion of †D� indexed by v [cf. the notation of

[IUTchII], Corollary 4.5], then the algorithms for constructing “k∼(G)”, “I(G)”
given in [AbsTopIII], Proposition 5.8, (ii), yield a functorial algorithm in the
category †D�

v for constructing a topological module equipped with a continuous †Gv-
action

log(†D�
v )

def
=

{
†Gv � k∼(†Gv)

}
and a topological submodule — i.e., a “mono-analytic log-shell” —

I†D�
v

def
= I(†Gv) ⊆ k∼(†Gv)

equipped with a pv-adic log-volume [cf. [AbsTopIII], Corollary 5.10, (iv)]. More-
over, there is a natural functorial algorithm [cf. the second display of [IUTchII],
Corollary 4.6, (ii)] in the collection of data †F�×μ

v [i.e., the portion of †F�×μ labeled

by v] for constructing an Ism-orbit of isomorphisms [cf. [IUTchII], Example 1.8,
(iv); [IUTchII], Definition 4.9, (i), (vii)]

log(†D�
v )

∼→ log(†F�×μ
v )

of topological modules [cf. Definition 1.1, (iv)], as well as a functorial algorithm
[cf. [AbsTopIII], Corollary 5.10, (iv), (c), (d); the fourth display of [IUTchII],
Corollary 4.5, (ii); the final display of [IUTchII], Corollary 4.6, (i)] in the collection
of data †Fv for constructing isomorphisms

log(†D�
v )

∼→ log(†F�×μ
v )

∼→ log(†Fv) (
∼→ Ψ

gp
‡Fv

)

of topological modules. The various isomorphisms of the last two displays are com-
patible with one another, as well as with the respective †Gv- and Gv(

†Πv)-actions

[relative to the natural identification †Gv = Gv(
†Πv) that arises from regarding †D�

v

as an object constructed from †F�×μ
v ], the respective log-shells, and the respective

log-volumes on these log-shells.

(vii) (Archimedean Mono-analytic Log-shells) At v ∈ V
arc, the algo-

rithms for constructing “k∼(G)”, “I(G)” given in [AbsTopIII], Proposition 5.8,
(v), yield a functorial algorithm in †D�

v [regarded as an object of the category

“TM�” of split topological monoids discussed in [IUTchI], Example 3.4, (ii)] for
constructing a topological module

log(†D�
v )

def
= k∼(†Gv)

and a topological subspace — i.e., a “mono-analytic log-shell” —

I†D�
v

def
= I(†Gv) ⊆ k∼(†Gv)
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equipped with angular and radial log-volumes [cf. [AbsTopIII], Corollary 5.10, (iv)].
Moreover, there is a natural functorial algorithm [cf. the second display of
[IUTchII], Corollary 4.6, (ii)] in the collection of data †F�×μ

v for constructing

a poly-isomorphism [i.e., an orbit of isomorphisms with respect to the indepen-
dent actions of {±1} on each of the direct factors that occur in the construction
of [AbsTopIII], Proposition 5.8, (v)]

log(†D�
v )

∼→ log(†F�×μ
v )

of topological modules [cf. Definition 1.1, (v)], as well as a functorial algorithm
[cf. [AbsTopIII], Corollary 5.10, (iv), (c), (d); the fourth display of [IUTchII],
Corollary 4.5, (ii); the final display of [IUTchII], Corollary 4.6, (i)] in the collection
of data †Fv for constructing poly-isomorphisms [i.e., orbits of isomorphisms with
respect to the independent actions of {±1} on each of the direct factors that occur
in the construction of [AbsTopIII], Proposition 5.8, (v)]

log(†D�
v )

∼→ log(†F�×μ
v )

∼→ log(†Fv) (
∼→ Ψ

gp
‡Fv

)

of topological modules. The various isomorphisms of the last two displays are com-
patible with one another, as well as with the respective log-shells and the respec-
tive angular and radial log-volumes on these log-shells.

(viii) (Mono-analytic Log-shells) The various [poly-]isomorphisms of (vi),
(vii) [cf. also Definition 1.1, (iii), (vi)] yield collections of [poly-]isomorphisms
indexed by v ∈ V

log(†D�) def
= {log(†D�

v )}v∈V
∼→ log(†F�×μ)

def
= {log(†F�×μ

v )}v∈V

I†D�
def
= {I†D�

v
}v∈V

∼→ I†F�×μ
def
= {I†F�×μ

v
}v∈V

log(†D�) ∼→ log(†F�×μ)
∼→ log(†F) def

= {log(†Fv)}v∈V( ∼→ Ψ
gp
cns(

‡F) def
= {Ψgp

‡Fv
}v∈V

)
I†D�

∼→ I†F�×μ
∼→ I†F

def
= {I†Fv

}v∈V

— where, in the definition of “Ψ
gp
cns(‡F)”, we regard each Ψ

gp
‡Fv

, for v ∈ V
non, as

being equipped with its natural Gv(
‡Πv)-action [cf. the discussion at the beginning

of Definition 1.1].

(ix) (Coric Holomorphic Log-shells) Let ∗D be a D-prime-strip; write

F(∗D)

for the F-prime-strip naturally determined by Ψcns(
∗D) [cf. [IUTchII], Remark

4.5.1, (i)]. Suppose that †F = ‡F = F(∗D), and that the given log-link F(∗D) =
†F

log−→ ‡F = F(∗D) is the full log-link. Then there exists a functorial algorithm
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in the D-prime-strip ∗D for constructing a collection of topological subspaces — i.e.,
a collection of “coric holomorphic log-shells” —

I∗D def
= I†F

of the collection Ψ
gp
cns(∗D), which may be naturally identified with Ψ

gp
cns(‡F), together

with a collection of natural isomorphisms [cf. (viii); the fourth display of [IUTchII],
Corollary 4.5, (ii)]

I∗D�
∼→ I∗D

— where we write ∗D� for the D�-prime-strip determined by ∗D.

(x) (Frobenius-picture) Let {nF}n∈Z be a collection of distinct F-prime-
strips [relative to the given initial Θ-data — cf. [IUTchI], Definition 5.2, (i)]
indexed by the integers. Write {nD}n∈Z for the associated D-prime-strips [cf.
[IUTchI], Remark 5.2.1, (i)] and {nD�}n∈Z for the associated D�-prime-strips [cf.

[IUTchI], Definition 4.1, (iv)]. Then the full log-links nF
log−→ (n+1)F, for

n ∈ Z, give rise to an infinite chain

. . .
log−→ (n−1)F

log−→ nF
log−→ (n+1)F

log−→ . . .

of log-linked F-prime-strips which induces chains of full poly-isomorphisms

. . .
∼→ nD

∼→ (n+1)D
∼→ . . . and . . .

∼→ nD� ∼→ (n+1)D� ∼→ . . .

on the associated D- and D�-prime-strips. These chains may be represented sym-

bolically as an oriented graph �Γ [cf. [AbsTopIII], §0]

. . . → • → • → • → . . .

. . . ↘ ↓ ↙ . . .

◦

— i.e., where the horizontal arrows correspond to the “
log−→ ’s”; the “•’s” corre-

spond to the “nF”; the “◦” corresponds to the “nD”, identified up to isomorphism;
the vertical/diagonal arrows correspond to the Kummer isomorphisms of (iv).

This oriented graph �Γ admits a natural action by Z [cf. [AbsTopIII], Corollary 5.5,
(v)] — i.e., a translation symmetry — that fixes the “core” ◦, but it does not

admit arbitrary permutation symmetries. For instance, �Γ does not admit an
automorphism that switches two adjacent vertices, but leaves the remaining vertices
fixed.

Proof. The various assertions of Proposition 1.2 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 1.2.1. Suppose that we are in the situation of Definition 1.1, (ii).
Then at the level of metrics — i.e., which give rise to angular log-volumes as in
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Proposition 1.2, (iii) — we suppose that Ψgp
†Fv

/ΨμN
†Fv

is equipped with the metric

obtained by descending the metric of Ψgp
†Fv

, but we regard the object

Ψgp
†Fv

/ΨμN
†Fv

[or Ψ×
†Fv

/ΨμN
†Fv

] as being equipped with a “weight N”

— i.e., which has the effect of ensuring that the log-volume of Ψ×
†Fv

/ΨμN
†Fv

is equal

to that of Ψ×
†Fv

. That is to say, this convention concerning “weights” ensures that

working with Ψgp
†Fv

/ΨμN
†Fv

does not have any effect on various computations of log-

volume.

Remark 1.2.2. Before proceeding, we pause to consider the significance of the
various properties discussed in Proposition 1.2, (v). For simplicity, we suppose
that “†F” is the F-prime-strip that arises from the data constructed in [IUTchI],
Examples 3.2, (iii); 3.3, (i); 3.4, (i) [cf. [IUTchI], Definition 5.2, (i)].

(i) Suppose that v ∈ V
non. Thus, Kv [cf. the notation of [IUTchI], Definition

3.1, (e)] is amixed-characteristic nonarchimedean local field. Write k
def
= Kv,

Ok ⊆ k for the ring of integers of k, O×
k ⊆ Ok for the group of units, and logk :

O×
k → k for the pv-adic logarithm. Then, at a more concrete level — i.e., relative

to the notation of the present discussion — the log-shell “I†Fv
” corresponds to

the submodule

Ik def
= (p∗v)

−1 · logk(O×
k ) ⊆ k

— where p∗v = pv if pv is odd, p∗v = p2v if pv is even — while the properties (bnon),

(cnon) of Proposition 1.2, (v), correspond, respectively, to the evident inclusions

O�
k

def
= Ok \ {0} ⊆ Ok ⊆ Ik; logk(O×

k ) ⊆ Ik

of subsets of k.

(ii) Suppose that v ∈ V
arc. Thus, Kv [cf. the notation of [IUTchI], Definition

3.1, (e)] is a complex archimedean field. Write k
def
= Kv, Ok ⊆ k for the subset

of elements of absolute value ≤ 1, O×
k ⊆ Ok for the group of elements of absolute

value = 1, and expk : k → k× for the exponential map. Then, at a more concrete
level — i.e., relative to the notation of the present discussion — the log-shell
“I†Fv

” corresponds to the subset

Ik def
= {a ∈ k | |a| ≤ π} ⊆ k

of elements of absolute value ≤ π, while the properties (barc), (carc) of Proposition
1.2, (v), correspond, respectively, to the evident inclusions

O�
k

def
= Ok \ {0} ⊆ Ok ⊆ Ik; O×

k ⊆ expk(Ik)

— where we note the slightly different roles played, in the archimedean [cf. the
present (ii)] and nonarchimedean [cf. (i)] cases, by the exponential and logarithmic
functions, respectively [cf. [AbsTopIII], Remark 4.5.2].
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(iii) The diagram represented by the oriented graph �Γ of Proposition 1.2, (x), is,
of course, far from commutative [cf. Proposition 1.2, (iv)]! Ultimately, however,
[cf. the discussion of Remark 1.4.1, (ii), below] we shall be interested in

(a) constructing invariants with respect to the Z-action on �Γ— i.e., in effect,
constructing objects via functorial algorithms in the coric D-prime-strips
“nD” —

while, at the same time,

(b) relating the corically constructed objects of (a) to the non-coric “nF” via
the various Kummer isomorphisms of Proposition 1.2, (iv).

That is to say, from the point of view of (a), (b), the content of the inclusions
discussed in (i) and (ii) above may be interpreted, at v ∈ V

non, as follows:

the coric holomorphic log-shells of Proposition 1.2, (ix), contain not
only the images, via the Kummer isomorphisms [i.e., the vertical/diagonal

arrows of �Γ], of the various “O�” at v ∈ V
non, but also the images, via

the composite of the Kummer isomorphisms with the various iterates of

the log-link [i.e., the horizontal arrows of �Γ], of the portions of the various
“O�” at v ∈ V

non on which these iterates are defined.

An analogous statement in the case of v ∈ V
arc may be formulated by adjusting

the wording appropriately so as accommodate the latter portion of this statement,
which corresponds to a certain surjectivity — we leave the routine details to the

reader. Thus, although the diagram [corresponding to] �Γ fails to be commutative,

the coric holomorphic log-shells involved exhibit a sort of “upper semi-
commutativity” with respect to containing/surjecting onto the various

images arising from composites of arrows in �Γ.

(iv) Note that although the diagram �Γ admits a natural “upper semi-commu-
tativity” interpretation as discussed in (iii) above, it fails to admit a corresponding
“lower semi-commutativity” interpretation. Indeed, such a “lower semi-commu-
tativity” interpretation would amount to the existence of some sort of collection
of portions of the various “O�’s” involved [cf. the discussion of (i), (ii) above]
— i.e., a sort of “core” — that are mapped to one another isomorphically by
the various maps “logk”/“expk” [cf. the discussion of (i), (ii) above] in a fashion
that is compatible with the various Kummer isomorphisms that appear in

the diagram �Γ. On the other hand, it is difficult to see how to construct such a
collection of portions of the various “O�’s” involved.

(v) Proposition 1.2, (iii), may be interpreted in the spirit of the discussion of

(iii) above. That is to say, although the diagram corresponding to �Γ fails to be
commutative, it is nevertheless “commutative with respect to log-volumes”, in
the sense discussed in Proposition 1.2, (iii). This “commutativity with respect to
log-volumes” allows one to work with log-volumes in a fashion that is consistent
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with all composites of the various arrows of �Γ. Log-volumes will play an important
role in the theory of §3, below, as a sort of mono-analytic version of the notion of
the degree of a global arithmetic line bundle [cf. the theory of [AbsTopIII], §5].

(vi) As discussed in [AbsTopIII], §I3, the log-links of �Γ may be thought of
as a sort of “juggling of �, �” [i.e., of the two combinatorial dimensions of
the ring structure constituted by addition and multiplication]. The “arithmetic
holomorphic structure” constituted by the coric D-prime-strips is immune to
this juggling, and hence may be thought as representing a sort of quotient of the

horizontal arrow portion of �Γ by the action of Z [cf. (iii), (a)] — i.e., at the level
of abstract oriented graphs, as a sort of “oriented copy of S1”. That is to say,

the horizontal arrow portion of �Γ may be thought of as a sort of “unraveling” of
this “oriented copy of S1”, which is subject to the “juggling of �, �” constituted
by the Z-action. Here, it is useful to recall that

(a) the Frobenius-like structures constituted by the monoids that appear

in the horizontal arrow portion of �Γ play the crucial role in the theory
of the present series of papers of allowing one to construct such “non-
ring/scheme-theoretic filters” as the Θ-link [cf. the discussion of
[IUTchII], Remark 3.6.2, (ii)].

By contrast,

(b) the étale-like structures constituted by the coric D-prime-strips play
the crucial role in the theory of the present series of papers of allowing
one to construct objects that are capable of “functorially permeating”
such non-ring/scheme-theoretic filters as the Θ-link [cf. the discussion of
[IUTchII], Remark 3.6.2, (ii)].

Finally, in order to relate the theory of (a) to the theory of (b), one must avail
oneself of Kummer theory [cf. (iii), (b), above].

mono-anabelian coric invariant differential
étale-like structures dθ on S1

post-anabelian coordinate functions

Frobenius-like structures
∫
• dθ on �Γ

Fig. 1.1: Analogy with the differential geometry of S1

(vii) From the point of view of the discussion in (vi) above of the “oriented

copy of S1” obtained by forming the quotient of the horizontal arrow portion of �Γ
by Z, one may think of the coric étale-like structures of Proposition 1.2, (i) — as
well as the various objects constructed from these coric étale-like structures via the
various mono-anabelian algorithms discussed in [AbsTopIII] — as corresponding to
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the “canonical invariant differential dθ” on S1 [which is, in particular, invariant
with respect to the action of Z!]. On the other hand, the various post-anabelian
Frobenius-like structures obtained by forgetting the mono-anabelian algorithms ap-
plied to construct these objects — cf., e.g.., the “Ψcns(

†F)” that appear in the
Kummer isomorphisms of Proposition 1.2, (iv) — may be thought of as coordinate

functions on the horizontal arrow portion of �Γ [which are not invariant with respect
to the action of Z!] of the form “

∫
• dθ” obtained by integrating the invariant dif-

ferential dθ along various paths of �Γ that emanate from some fixed vertex “•” of
�Γ. This point of view is summarized in Fig. 1.1 above. Finally, we observe that
this point of view is reminiscent of the discussion of [AbsTopIII], §I5, concerning
the analogy between the theory of [AbsTopIII] and the construction of canonical
coordinates via integration of Frobenius-invariant differentials in the classical p-adic
theory.

Remark 1.2.3.

(i) Observe that, relative to the notation of Remark 1.2.2, (i), any multi-
plicative indeterminacy with respect to the action on O�

k of some subgroup

H ⊆ O×
k at some “•” of the diagram �Γ gives rise to an additive indeterminacy

with respect to the action of logk(H) on the copy of “Ok” that corresponds to the

subsequent “•” of the diagram �Γ. In particular, if H consists of roots of unity,
then logk(H) = {0}, so the resulting additive indeterminacy ceases to exist. This
observation will play a crucial role in the theory of §3, below, when it is applied in
the context of the constant multiple rigidity properties constituted by the canon-
ical splittings of theta and Gaussian monoids discussed in [IUTchII], Proposition
3.3, (i); [IUTchII], Corollary 3.5, (iii) [cf. also [IUTchII], Corollary 1.12, (ii); the
discussion of [IUTchII], Remark 1.12.2, (iv)].

(ii) In the theory of §3, below, we shall consider global arithmetic line bundles.
This amounts, in effect, to considering multiplicative translates by f ∈ F×

mod

of the product of the various “O×
k ” of Remark 1.2.2, (i), (ii), as v ranges over the

elements of V. Such translates are disjoint from one another, except in the case
where f is a unit at all v ∈ V. By elementary algebraic number theory [cf., e.g.,
[Lang], p. 144, the proof of Theorem 5], this corresponds precisely to the case where
f is a root of unity. In particular, to consider quotients by this multiplicative action

by F×
mod at one “•” of the diagram �Γ [where we allow v to range over the elements

of V] gives rise to an additive indeterminacy by “logarithms of roots of unity”

at the subsequent “•” of the diagram �Γ. In particular, at v ∈ V
non, the resulting

additive indeterminacy ceases to exist [cf. the discussion of (i); Definition 1.1,
(iv)]; at v ∈ V

arc, the resulting indeterminacy corresponds to considering certain
quotients of the copies of “O×

k ” — i.e., of “S1” — that appear by some finite group
[cf. the discussion of Definition 1.1, (ii)]. These observations will be of use in the
development of the theory of §3, below.

Remark 1.2.4.

(i) At this point, we pause to recall the important observation that the log-link

is incompatible with the ring structures of Ψ
gp
†Fv

and Ψ
gp

log(†Fv)
[cf. the notation
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of Proposition 1.2, (ii)], in the sense that it does not arise from a ring homomorphism
between these two rings. The barrier constituted by this incompatibility between
the ring structures on either side of the log-link is precisely what is referred to as the
“log-wall” in the theory of [AbsTopIII] [cf. the discussion of [AbsTopIII], §I4]. This
incompatibility with the respective ring structures implies that it is not possible,
a priori, to transport objects whose structure depends on these ring structures via
the log-link by invoking the principle of “transport of structure”. From the point
of view of the theory of the present series of papers, this means, in particular, that

the log-wall is incompatible with conventional scheme-theoretic base-
points, which are defined by means of geometric points [i.e., ring homo-
morphisms of a certain type]

— cf. the discussion of [IUTchII], Remark 3.6.3, (i); [AbsTopIII], Remark 3.7.7, (i).
In this context, it is useful to recall that étale fundamental groups — i.e., Galois
groups — are defined as certain automorphism groups of fields/rings; in particular,
the definition of such a Galois group “as a certain automorphism group of some ring
structure” is incompatible, in a quite essential way, with the log-wall. In a similar
vein, Kummer theory, which depends on the multiplicative structure of the ring
under consideration, is also incompatible, in a quite essential way, with the log-wall
[cf. Proposition 1.2, (iv)]. That is to say, in the context of the log-link,

the only structure of interest that is manifestly compatible with the log-
link [cf. Proposition 1.2, (i), (ii)] is the associated D-prime-strip

— i.e., the abstract topological groups [isomorphic to “Πv” — cf. the notation of
[IUTchI], Definition 3.1, (e), (f)] at v ∈ V

non and abstract Aut-holomorphic spaces
[isomorphic to “Uv” — cf. the notation of [IUTchII], Proposition 4.3] at v ∈ V

arc.
Indeed, this observation is precisely the starting point of the theory of [AbsTopIII]
[cf. the discussion of [AbsTopIII], §I1, §I4].

(ii) Other important examples of structures which are incompatible with the
log-wall include

(a) the additive structure on the image of the Kummer map [cf. the discussion
of [AbsTopIII], Remark 3.7.5];

(b) in the “birational” situation — i.e., where one replaces “Πv” by the abso-

lute Galois group Πbirat
v of the function field of the affine curve that gave

rise to Πv — the datum of the collection of closed points that determines
the affine curve [cf. [AbsTopIII], Remark 3.7.7, (ii)].

Note, for instance in the case of (b), that one may think of the additional datum
under consideration as consisting of the natural outer surjection Πbirat

v � Πv that
arises from the scheme-theoretic morphism from the spectrum of the function field
to the given affine curve. On the other hand, just as in the case of the discussion of
scheme-theoretic basepoints in (i), the construction of such an object Πbirat

v � Πv

whose structure depends, in an essential way, on the scheme [i.e., ring!] structures
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involved necessarily fails to be compatible with the log-link [cf. the discussion of
[AbsTopIII], Remark 3.7.7, (ii)].

(iii) One way to understand the incompatibility discussed in (ii), (b), is as
follows. Write Δbirat

v , Δv for the respective kernels of the natural surjections

Πbirat
v � Gv, Πv � Gv. Then if one forgets about the scheme-theoretic base-

points discussed in (i), Gv, Δbirat
v , and Δv may be understood on both sides of

the log-wall as “some topological group”, and each of the topological groups Δbirat
v ,

Δv may be understood on both sides of the log-wall as being equipped with “some
outer Gv-action” — cf. the two diagonal arrows of Fig. 1.2 below. On the other

hand, the datum of a particular outer surjection Δbirat
v � Δv [cf. the dotted line in

Fig. 1.2] relating these two diagonal arrows — which depends, in an essential way,
on the scheme [i.e., ring] structures involved! — necessarily fails to be compatible
with the log-link [cf. the discussion of [AbsTopIII], Remark 3.7.7, (ii)]. This issue
of “triangular compatibility between independent indeterminacies” is formally remi-
niscent of the issue of compatibility of outer homomorphisms discussed in [IUTchI],
Remark 4.5.1, (i) [cf. also [IUTchII], Remark 2.5.2, (ii)].

indep.
bp. indet.

�

nonarch. local
abs. Galois group Gv

indep.
bp. indet.

�

↙ � ↘ indep.
bp. indet.

�

birational geom.
fund. gp. Δbirat

v

?
. . . . . . . . . . . . . . .

affine geom.
fund. gp. Δv

Fig. 1.2: Independent basepoint indeterminacies obstruct relationship
between birational and affine geometric fundamental groups

Proposition 1.3. (log-links Between Θ±ellNF-Hodge Theaters) Let

†HT Θ±ellNF; ‡HT Θ±ellNF

be Θ±ellNF-Hodge theaters [relative to the given initial Θ-data] — cf. [IUTchI],

Definition 6.13, (i). Write †HT D-Θ±ellNF, ‡HT D-Θ±ellNF for the associated D-
Θ±ellNF-Hodge theaters — cf. [IUTchI], Definition 6.13, (ii). Then:
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(i) (Construction of the log-Link) Fix an isomorphism

Ξ : †HT D-Θ±ellNF ∼→ ‡HT D-Θ±ellNF

of D-Θ±ellNF-Hodge theaters. Let †F� be one of the F-prime-strips that appear

in the Θ- and Θ±-bridges that constitute †HT Θ±ellNF — i.e., either one of the
F-prime-strips

†F>,
†F	

or one of the constituent F-prime-strips of the capsules

†FJ ,
†FT

[cf. [IUTchI], Definition 5.5, (ii); [IUTchI], Definition 6.11, (i)]. Write ‡F� for

the corresponding F-prime-strip of ‡HT Θ±ellNF. Then the poly-isomorphism deter-
mined by Ξ between the D-prime-strips associated to †F�, ‡F� uniquely determines
a poly-isomorphism log(†F�)

∼→ ‡F� [cf. Definition 1.1, (iii); [IUTchI], Corol-

lary 5.3, (ii)], hence a log-link †F�
log−→ ‡F� [cf. Definition 1.1, (iii)]. We shall

denote by
†HT Θ±ellNF log−→ ‡HT Θ±ellNF

and refer to as a log-link from †HT Θ±ellNF to ‡HT Θ±ellNF the collection of data

consisting of Ξ, together with the collection of log-links †F�
log−→ ‡F�, as “�”

ranges over all possibilities for the F-prime-strips in question. When Ξ is replaced

by a poly-isomorphism †HT D-Θ±ellNF ∼→ ‡HT D-Θ±ellNF, we shall also refer to the
resulting collection of log-links [i.e., corresponding to each constituent isomorphism

of the poly-isomorphism Ξ] as a log-link from †HT Θ±ellNF to ‡HT Θ±ellNF. When
Ξ is the full poly-isomorphism, we shall refer to the resulting log-link as the full

log-link. When †HT Θ±ellNF = ‡HT Θ±ellNF, and Ξ is the identity, then we shall
refer to the resulting log-link as the tautological log-link.

(ii) (Coricity) Any log-link †HT Θ±ellNF log−→ ‡HT Θ±ellNF induces [and may
be thought of as “lying over”] a [poly-]isomorphism

†HT D-Θ±ellNF ∼→ ‡HT D-Θ±ellNF

of D-Θ±ellNF-Hodge theaters [and indeed coincides with the log-link constructed in
(i) from this [poly-]isomorphism of D-Θ±ellNF-Hodge theaters].

(iii) (Further Properties of the log-Link) In the notation of (i), any log-

link †HT Θ±ellNF log−→ ‡HT Θ±ellNF satisfies, for each F-prime-strip †F�, properties
corresponding to the properties of Proposition 1.2, (ii), (iii), (iv), (v), (vi), (vii),
(viii), (ix) i.e., concerning simultaneous compatibility with ring structures
and log-volumes, Kummer theory, and log-shells.

(iv) (Frobenius-picture) Let {nHT Θ±ellNF}n∈Z be a collection of distinct
Θ±ellNF-Hodge theaters [relative to the given initial Θ-data] indexed by the in-

tegers. Write {nHT D-Θ±ellNF}n∈Z for the associated D-Θ±ellNF-Hodge theaters.
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Then the full log-links nHT Θ±ellNF log−→ (n+1)HT Θ±ellNF, for n ∈ Z, give rise
to an infinite chain

. . .
log−→ (n−1)HT Θ±ellNF log−→ nHT Θ±ellNF log−→ (n+1)HT Θ±ellNF log−→ . . .

of log-linked F-prime-strips which induces a chain of full poly-isomorphisms

. . .
∼→ nHT D-Θ±ellNF ∼→ (n+1)HT D-Θ±ellNF ∼→ . . .

on the associated D-Θ±ellNF-Hodge theaters. These chains may be represented

symbolically as an oriented graph �Γ [cf. [AbsTopIII], §0]

. . . → • → • → • → . . .

. . . ↘ ↓ ↙ . . .

◦

— i.e., where the horizontal arrows correspond to the “
log−→ ’s”; the “•’s” corre-

spond to the “nHT Θ±ellNF”; the “◦” corresponds to the “nHT D-Θ±ellNF”, identified
up to isomorphism; the vertical/diagonal arrows correspond to the Kummer iso-

morphisms implicit in the statement of (iii). This oriented graph �Γ admits a
natural action by Z [cf. [AbsTopIII], Corollary 5.5, (v)] — i.e., a translation
symmetry — that fixes the “core” ◦, but it does not admit arbitrary per-

mutation symmetries. For instance, �Γ does not admit an automorphism that
switches two adjacent vertices, but leaves the remaining vertices fixed.

Proof. The various assertions of Proposition 1.3 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 1.3.1. Note that in Proposition 1.3, (i), it was necessary to carry
out the given construction of the log-link first for a single Ξ [i.e., as opposed to
a poly-isomorphism Ξ], in order to maintain compatibility with the crucial “±-
synchronization” [cf. [IUTchI], Remark 6.12.4, (iii); [IUTchII], Remark 4.5.3,
(iii)] inherent in the structure of a Θ±ell-Hodge theater.

Remark 1.3.2. In the construction of Proposition 1.3, (i), the constituent F-
prime-strips †Ft, for t ∈ T , of the capsule †FT are considered without regard to the
F�±
l -symmetries discussed in [IUTchII], Corollary 4.6, (iii). On the other hand, one

verifies immediately that the log-links associated, in the construction of Proposi-
tion 1.3, (i), to these F-prime-strips †Ft, for t ∈ T — i.e., more precisely, associated
to the labeled collections of monoidsΨcns(

†F	)t of [IUTchII], Corollary 4.6, (iii)
— are in fact compatible with the F�±

l -symmetrizing isomorphisms discussed
in [IUTchII], Corollary 4.6, (iii), hence also with the conjugate synchronization
determined by these F�±

l -symmetrizing isomorphisms — cf. the discussion of Step
(vi) of the proof of Corollary 3.12 of §3 below. We leave the routine details to the
reader.



40 SHINICHI MOCHIZUKI

Remark 1.3.3.

(i) In the context of Proposition 1.3, it is of interest to observe that the rela-
tionship between the various Frobenioid-theoretic [i.e., Frobenius-like!] portions
of the Θ±ellNF-Hodge theaters in the domain and codomain the log-link of Propo-
sition 1.3, (i),

does not include any data that is incompatible, relative to the relevant
Kummer isomorphisms, with the log-wall

— cf. the discussion of Remark 1.2.4, (ii), (a), (b); Remark 1.2.4, (iii). This follows
immediately from the fact [cf. Remarks 1.3.1, 1.3.2; [IUTchI], Corollary 5.3, (i),
(ii), (iv); [IUTchI], Corollary 5.6, (i), (ii), (iii)] that these Frobenioid-theoretic
portions of the Θ±ellNF-Hodge theaters under consideration are completely [i.e.,
fully faithfully!] controlled [cf. the discussion of (ii) below for more details], via
functorial algorithms, by the corresponding étale-like structures, i.e., structures
that appear in the associated D-Θ±ellNF-Hodge theaters, which satisfy the crucial
coricity property of Proposition 1.3, (ii).

(ii) In the context of (i), it is of interest to recall that the global portion of
the underlying Θell-bridges is defined [cf. [IUTchI], Definition 6.11, (ii)] in such a
way that is does not contain any global Frobenioid-theoretic data! In particular,
the issue discussed in (i) only concerns the Frobenioid-theoretic portions of the
following:

(a) the various F-prime-strips that appear;
(b) the underlying Θ-Hodge theaters of the Θ±ellNF-Hodge theaters under

consideration;
(c) the global portion of the underlying NF-bridges of the Θ±ellNF-Hodge

theaters under consideration.

Here, the Frobenioid-theoretic data of (c) gives rise to independent basepoints
with respect to the F�

l -symmetry [cf. [IUTchI], Corollary 5.6, (iii); [IUTchI],
Remark 6.12.6, (iii); [IUTchII], Remark 4.7.6]. On the other hand, the independent
basepoints that arise from the Frobenioid-theoretic data of (b), as well as of the
portion of (a) that lies in the underlying ΘNF-Hodge theater, do not cause any
problems since this data is only subject to relationships defined by means of full
poly-isomorphisms [cf. [IUTchI], Examples 4.3, 4.4]. That is to say, the F-prime-
strips that lie in the underlying Θ±ell-Hodge theater constitute the most delicate
[i.e., relative to the issue of independent basepoints!] portion of the Frobenioid-
theoretic data of a Θ±ellNF-Hodge theater. This delicacy revolves around the
global synchronization of ±-indeterminacies in the underlying Θ±ell-Hodge theater
[cf. [IUTchI], Remark 6.12.4, (iii); [IUTchII], Remark 4.5.3, (iii)]. On the other
hand, this delicacy does not in fact cause any problems since the synchronizations
of ±-indeterminacies in the underlying Θ±ell-Hodge theater are defined [not by
means of scheme-theoretic relationships, but rather] by means of the structure of
the underlying D-Θ±ell-Hodge theater, which satisfies the crucial coricity property
of Proposition 1.3, (ii) [cf. the discussion of (i)].
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The diagrams discussed in the following Definition 1.4 will play a central role
in the theory of the present series of papers.

Definition 1.4. We maintain the notation of Proposition 1.3 [cf. also [IUTchII],

Corollary 4.10, (iii)]. Let {n,mHT Θ±ellNF}n,m∈Z be a collection of distinct Θ±ellNF-
Hodge theaters [relative to the given initial Θ-data] indexed by pairs of integers.
Then we shall refer to either of the diagrams

...
...�⏐⏐log

�⏐⏐log

. . .
Θ×μ

−→ n,m+1HT Θ±ellNF Θ×μ

−→ n+1,m+1HT Θ±ellNF Θ×μ

−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ×μ

−→ n,mHT Θ±ellNF Θ×μ

−→ n+1,mHT Θ±ellNF Θ×μ

−→ . . .�⏐⏐log

�⏐⏐log

...
...

...
...�⏐⏐log

�⏐⏐log

. . .
Θ×μ

gau−→ n,m+1HT Θ±ellNF Θ×μ
gau−→ n+1,m+1HT Θ±ellNF Θ×μ

gau−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ×μ

gau−→ n,mHT Θ±ellNF Θ×μ
gau−→ n+1,mHT Θ±ellNF Θ×μ

gau−→ . . .�⏐⏐log

�⏐⏐log

...
...

— where the vertical arrows are the full log-links, and the horizontal arrows are the
Θ×μ- and Θ×μ

gau-links of [IUTchII], Corollary 4.10, (iii) — as the log-theta-lattice.

We shall refer to the log-theta-lattice that involves the Θ×μ- (respectively, Θ×μ
gau-)

links as non-Gaussian (respectively, Gaussian). Thus, either of these diagrams may
be represented symbolically by an oriented graph

...
...�⏐⏐ �⏐⏐

. . . −→ • −→ • −→ . . .�⏐⏐ �⏐⏐

. . . −→ • −→ • −→ . . .�⏐⏐ �⏐⏐
...

...
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— where the “•’s” correspond to the “n,mHT Θ±ellNF”.

Remark 1.4.1.

(i) One fundamental property of the log-theta-lattices discussed in Definition
1.4 is the following:

the various squares that appear in each of the log-theta-lattices discussed
in Definition 4.1 are far from being [1-]commutative!

Indeed, whereas the vertical arrows in each log-theta-lattice are constructed by
applying the various logarithms at v ∈ V — i.e., which are defined by means of
power series that depend, in an essential way, on the local ring structures at v ∈ V

— the horizontal arrows in each log-theta-lattice [i.e., the Θ×μ-, Θ×μ
gau-links] are

incompatible with these local ring structures at v ∈ V in an essential way [cf.
[IUTchII], Remark 1.11.2, (i), (ii)].

(ii) Whereas the horizontal arrows in each log-theta-lattice [i.e., the Θ×μ-,
Θ×μ

gau-links] allow one, roughly speaking, to identify the respective “O×μ’s” at [for
simplicity] v ∈ V

non on either side of the horizontal arrow [cf. [IUTchII], Corollary
4.10, (iv)], in order to avail oneself of the theory of log-shells — which will play
an essential role in the multiradial representation of the Gaussian monoids to be
developed in §3 below — it is necessary for the “•” [i.e., Θ±ellNF-Hodge theater] in
which one operates to appear as the codomain of a log-link, i.e., of a vertical arrow
of the log-theta-lattice [cf. the discussion of [AbsTopIII], Remark 5.10.2, (iii)].
That is to say, from the point of view of the goal of constructing the multiradial
representation of the Gaussian monoids that is to be developed in §3 below,

each execution of a horizontal arrow of the log-theta-lattice necessarily
obligates a subsequent execution of a vertical arrow of the log-theta-lattice.

On the other hand, in light of the noncommutativity observed in (i), this “in-
tertwining” of the horizontal and vertical arrows of the log-theta-lattice means
that the desired multiradiality — i.e., simultaneous compatibility with the
arithmetic holomorphic structures on both sides of a horizontal arrow of the log-
theta-lattice — can only be realized if one works with objects that are invariant
with respect to the vertical arrows [i.e., with respect to the action of Z discussed in
Proposition 1.3, (iv)], that is to say, with “vertical cores”, of the log-theta-lattice.

(iii) From the point of view of the analogy between the theory of the present
series of papers and p-adic Teichmüller theory [cf. [AbsTopIII], §I5], the vertical
arrows of the log-theta-lattice correspond to the Frobenius morphism in positive
characteristic, whereas the horizontal arrows of the log-theta-lattice correspond
to the “transition from pnZ/pn+1Z to pn−1Z/pnZ”, i.e., the mixed characteristic
extension structure of a ring of Witt vectors [cf. [IUTchI], Remark 3.9.3, (i)]. These
correspondences are summarized in Fig. 1.3 below. In particular, the “intertwining
of horizontal and vertical arrows of the log-theta-lattice” discussed in (ii) above
may be thought of as the analogue, in the context of the theory of the present
series of papers, of the well-known “intertwining between the mixed characteristic
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extension structure of a ring of Witt vectors and the Frobenius morphism in positive
characteristic” that appears in the classical p-adic theory.

horizontal arrows of the mixed characteristic extension structure
log-theta-lattice of a ring of Witt vectors

vertical arrows of the the Frobenius morphism
log-theta-lattice in positive characteristic

Fig. 1.3: Analogy between the log-theta-lattice and p-adic Teichmüller theory

Remark 1.4.2.

(i) The horizontal and vertical arrows of the log-theta-lattices discussed in
Definition 4.1 share the common property of being incompatible with the local ring
structures, hence, in particular, with the conventional scheme-theoretic basepoints
on either side of the arrow in question [cf. the discussion of [IUTchII], Remark 3.6.3,
(i)]. On the other hand, whereas the linking data of the vertical arrows [i.e., the log-
link] is rigid and corresponds to a single fixed, rigid arithmetic holomorphic
structure in which addition and multiplication are subject to “rotations” [cf. the
discussion of [AbsTopIII], §I3], the linking data of the horizontal arrows [i.e., the
Θ×μ-, Θ×μ

gau-links] — i.e., more concretely, the “O×μ’s” at [for simplicity] v ∈ V
non

— is subject to a Ẑ×-indeterminacy, which has the effect of obliterating the
arithmetic holomorphic structure associated to a vertical line of the log-theta-lattice
[cf. the discussion of [IUTchII], Remark 1.11.2, (i), (ii)].

(ii) If, in the spirit of the discussion of [IUTchII], Remark 1.11.2, (ii), one
attempts to “force” the horizontal arrows of the log-theta-lattice to be compat-
ible with the arithmetic holomorphic structures on either side of the arrow by
declaring — in the style of the log-link! — that these horizontal arrows induce an
isomorphism of the respective “Πv’s” at [for simplicity] v ∈ V

non, then one must
contend with a situation in which the “common arithmetic holomorphic structure
rigidified by the isomorphic copies of Πv” is obliterated each time one takes into

account the action of a nontrivial element of Ẑ× [i.e., that arises from the Ẑ×-
indeterminacy involved] on the corresponding “O×μ”. In particular, in order to
keep track of the arithmetic holomorphic structure currently under consideration,
one must, in effect, consider paths that record the sequence of “Πv-rigidifying”

and “Ẑ×-indeterminacy” operations that one invokes. On the other hand, the hor-
izontal lines of the log-theta-lattices given in Definition 4.1 amount, in effect, to
universal covering spaces of the loops — i.e., “unraveling paths of the loops” [cf.
the discussion of Remark 1.2.2, (vi)] — that occur as one invokes various series

of “Πv-rigidifying” and “Ẑ×-indeterminacy” operations. Thus, in summary, any
attempt as described above to “force” the horizontal arrows of the log-theta-lattice
to be compatible with the arithmetic holomorphic structures on either side of the
arrow does not result in any substantive simplification of the theory of the present
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series of papers. We refer the reader to [IUTchIV], Remark 3.6.3, for a discussion
of a related topic.

We are now ready to state the main result of the present §1.

Theorem 1.5. (Bi-cores of the Log-theta-lattice) Fix a collection of initial
Θ-data

(F/F, XF , l, CK , V, ε)

as in [IUTchI], Definition 3.1. Then any Gaussian log-theta-lattice correspond-
ing to this collection of initial Θ-data [cf. Definition 1.4] satisfies the following
properties:

(i) (Vertical Coricity) The vertical arrows of the Gaussian log-theta-lattice
induce full poly-isomorphisms between the respective associated D-Θ±ellNF-Hodge
theaters

. . .
∼→ n,mHT D-Θ±ellNF ∼→ n,m+1HT D-Θ±ellNF ∼→ . . .

[cf. Proposition 1.3, (ii)]. Here, n ∈ Z is held fixed, while m ∈ Z is allowed to vary.

(ii) (Horizontal Coricity) The horizontal arrows of the Gaussian log-theta-
lattice induce full poly-isomorphisms between the respective associated F�×μ-
prime-strips

. . .
∼→ n,mF�×μ



∼→ n+1,mF�×μ



∼→ . . .

[cf. [IUTchII], Corollary 4.10, (iv)]. Here, m ∈ Z is held fixed, while n ∈ Z is
allowed to vary.

(iii) (Bi-coric F�×μ-Prime-Strips) For n,m ∈ Z, write n,mD�

 for the D�-

prime-strip associated to the F�-prime-strip n,mF�

 labeled “�” of the Θ±ellNF-

Hodge theater n,mHT Θ±ellNF [cf. [IUTchII], Corollary 4.10, (i)]; n,mD	 for the D-
prime-strip labeled “�” of the Θ±ellNF-Hodge theater n,mHT Θ±ellNF [cf. [IUTchI],
Definition 6.11, (i)]. Let us identify [cf. [IUTchII], Corollary 4.10, (i)] the col-
lections of data

Ψcns(
n,mD	)0 and Ψcns(

n,mD	)〈F�

l
〉

via the isomorphism of the final display of [IUTchII], Corollary 4.5, (iii), and
denote by

F�

(n,mD	)

the resulting F�-prime-strip. [Thus, it follows immediately from the constructions
involved — cf. the discussion of [IUTchII], Corollary 4.10, (i) — that there is a

natural identification isomorphism F�

(n,mD	)

∼→ F�
>(

n,mD>), where we

write F�
>(

n,mD>) for the F�-prime-strip determined by Ψcns(
n,mD>).] Write

F�×

 (n,mD	), F�×μ


 (n,mD	)
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for the F�×-, F�×μ-prime-strips determined by F�

(n,mD	) [cf. [IUTchII], Defi-

nition 4.9, (vi), (vii)]. Thus, by applying the isomorphisms “Ψcns(
n,mD)×v

∼→
Ψss

cns(
n,mD�)×v ”, for v ∈ V, of [IUTchII], Corollary 4.5, (ii), [it follows immediately

from the definitions that] there exists a functorial algorithm in the D�-prime-

strip n,mD�

 for constructing an F�×-prime-strip F�×


 (n,mD�

), together with a

natural isomorphism

F�×

 (n,mD	)

∼→ F�×

 (n,mD�


)

— i.e., in more intuitive terms, “F�×

 (n,mD	)”, hence also the associated F�×μ-

prime-strip “F�×μ

 (n,mD	)”, may be naturally regarded as objects constructed from

n,mD�

. Then the poly-isomorphisms of (i) [cf. Remark 1.3.2], (ii) induce, respec-

tively, poly-isomorphisms of F�×μ-prime-strips

. . .
∼→ F�×μ


 (n,mD	)
∼→ F�×μ


 (n,m+1D	)
∼→ . . .

. . .
∼→ F�×μ


 (n,mD�

)

∼→ F�×μ

 (n+1,mD�


)
∼→ . . .

— where we note that the poly-isomorphisms of F�×μ-prime-strips of the first line
of the display are not full. In particular, by composing these isomorphisms, one
obtains full poly-isomorphisms of F�×μ-prime-strips

F�×μ

 (n,mD�


)
∼→ F�×μ


 (n
′,m′

D�

)

for arbitrary n′,m′ ∈ Z. That is to say, in more intuitive terms, the F�×μ-prime-

strip “n,mF�×μ

 (n,mD�


)”, regarded up to isomorphism, is an invariant — which we
shall refer to as “bi-coric” — of both the horizontal and the vertical arrows of the
log-theta-lattice. Finally, the Kummer isomorphisms “Ψcns(

‡F) ∼→ Ψcns(
‡D)” of

[IUTchII], Corollary 4.6, (i), determine Kummer isomorphisms

n,mF�×μ



∼→ F�×μ

 (n,mD�


)

which are compatible with the poly-isomorphisms of (ii), as well as with the ×μ-
Kummer structures at the v ∈ V

non of the various F�×μ-prime-strips involved [cf.
[IUTchII], Definition 4.9, (vi), (vii)]; a similar compatibility holds for v ∈ V

arc [cf.
the discussion of the final portion of [IUTchII], Definition 4.9, (v)].

(iv) (Bi-coric Mono-analytic Log-shells) The full poly-isomorphisms that
constitute the bi-coricity property discussed in (iii) induce poly-isomorphisms{

In,mD�
�
⊆ log(n,mD�


)
} ∼→

{
In′,m′D�

�
⊆ log(n

′,m′
D�


)
}

{
IF�×μ

� (n,mD�
�) ⊆ log(F�×μ


 (n,mD�

))

} ∼→
{
IF�×μ

� (n′,m′D�
�) ⊆ log(F�×μ


 (n
′,m′

D�

))

}
for arbitrary n,m, n′,m′ ∈ Z that are compatible with the natural poly-isomor-
phisms{

In,mD�
�
⊆ log(n,mD�


)
} ∼→

{
IF�×μ

� (n,mD�
�) ⊆ log(F�×μ


 (n,mD�

))

}
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of Proposition 1.2, (viii). On the other hand, by applying the constructions of
Definition 1.1, (i), (ii), to the collections of data “Ψcns(

†F	)0” and “Ψcns(
†F	)〈F�

l
〉”

used in [IUTchII], Corollary 4.10, (i), to construct n,mF�

 [cf. Remark 1.3.2], one

obtains a [“holomorphic”] log-shell, together with an enveloping “log(−)” [cf.

the pair “I†F ⊆ log(†F)” of Definition 1.1, (iii)], which we denote by

In,mF� ⊆ log(n,mF
)

[by means of a slight abuse of notation, since no F-prime-strip “n,mF
” has been
defined!]. Then one has natural poly-isomorphisms{

In,mD�
�
⊆ log(n,mD�


)
} ∼→

{
In,mF�×μ

�
⊆ log(n,mF�×μ


 )
}

∼→
{
In,mF� ⊆ log(n,mF
)

}
[cf. the poly-isomorphisms obtained in Proposition 1.2, (viii)]; here, the first “

∼→ ”
may be regarded as being induced by the Kummer isomorphisms of (iii) and is
compatible with the poly-isomorphisms induced by the poly-isomorphisms of (ii).

(v) (Bi-coric Mono-analytic Realified Global Frobenioids) Let n,m, n′,m′ ∈
Z. Then the poly-isomorphisms of D�-prime-strips n,mD�



∼→ n′,m′

D�

 induced by

the full poly-isomorphisms of (i), (ii) induce [cf. [IUTchII], Corollaries 4.5, (ii);
4.10, (v)] an isomorphism of collections of data

(D�(n,mD�

), Prime(D�(n,mD�


))
∼→ V, {n,mρD�,v}v∈V)

∼→ (D�(n
′,m′

D�

), Prime(D�(n

′,m′
D�


))
∼→ V, {n′,m′

ρD�,v}v∈V)

— i.e., consisting of a Frobenioid, a bijection, and a collection of isomorphisms of
topological monoids indexed by V. Moreover, this isomorphism of collections of data
is compatible, relative to the full poly-isomorphisms of (ii), with the R>0-orbits
of the isomorphisms of collections of data

(n,mC�
, Prime(n,mC�
)
∼→ V, {n,mρ
,v}v∈V)

∼→ (D�(n,mD�

), Prime(D�(n,mD�


))
∼→ V, {n,mρD�,v}v∈V)

obtained by applying the functorial algorithm discussed in the final portion of [IUTchII],
Corollary 4.6, (ii) [cf. also the final portion of [IUTchII], Corollary 4.10, (v)].

Proof. The various assertions of Theorem 1.5 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ©

Remark 1.5.1.

(i) Note that the theory of conjugate synchronization developed in [IUTchII]
[cf., especially, [IUTchII], Corollaries 4.5, (iii); 4.6, (iii)] plays an essential role in
establishing the bi-coricity properties discussed in Theorem 1.5, (iii), (iv) — i.e.,
at a more technical level, in constructing the objects equipped with a subscript “�”
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that appear in Theorem 1.5, (iii); [IUTchII], Corollary 4.10, (i). That is to say, the
conjugate synchronization determined by the various symmetrizing isomorphisms
of [IUTchII], Corollaries 4.5, (iii); 4.6, (iii), may be thought of as a sort of descent
mechanism that allows one to descend data that, a priori, is label-dependent [i.e.,
depends on the labels “t ∈ LabCusp±(−)”] to data that is label-independent.
Here, it is important to recall that these labels depend, in an essential way, on
the “arithmetic holomorphic structures” involved — i.e., at a more techni-
cal level, on the geometric fundamental groups involved — hence only make sense
within a vertical line of the log-theta-lattice. That is to say, the significance of
this transition from label-dependence to label-independence lies in the fact that
this transition is precisely what allows one to construct objects that make sense
in horizontally adjacent “•’s” of the log-theta-lattice, i.e., to construct horizontally
coric objects [cf. Theorem 1.5, (ii); the second line of the fifth display of Theorem
1.5, (iii)]. On the other hand, in order to construct the horizontal arrows of the
log-theta-lattice, it is necessary to work with Frobenius-like structures [cf. the
discussion of [IUTchII], Remark 3.6.2, (ii)]. In particular, in order to construct
vertically coric objects [cf. the first line of the fifth display of Theorem 1.5, (iii)],
it is necessary to pass to étale-like structures [cf. the discussion of Remark 1.2.4,
(i)] by means of Kummer isomorphisms [cf. the final display of Theorem 1.5,
(iii)]. Thus, in summary,

the bi-coricity properties discussed in Theorem 1.5, (iii), (iv) — i.e.,
roughly speaking, the bi-coricity of the various “O×μ” at v ∈ V

non —
may be thought of as a consequence of the intricate interplay of various
aspects of the theory ofKummer-compatible conjugate synchroniza-
tion established in [IUTchII], Corollaries 4.5, (iii); 4.6, (iii).

(ii) In light of the central role played by the theory of conjugate synchronization
in the constructions that underlie Theorem 1.5 [cf. the discussion of (i)], it is of
interest to examine in more detail to what extent the highly technically nontrivial
theory of conjugate synchronization may be replaced by a simpler apparatus. One
naive approach to this problem is the following. Let G be a topological group [such
as one of the absolute Galois groups Gv associated to v ∈ V

non]. Then one way
to attempt to avoid the application of the theory of conjugate synchronization —
which amounts, in essence, to the construction of a diagonal embedding

G ↪→ G × . . . × G

[cf. the notation “〈|Fl|〉”, “〈F�
l 〉” that appears in [IUTchII], Corollaries 3.5, 3.6,

4.5, 4.6] in a product of copies of G that, a priori, may only be identified with
one another up to conjugacy [i.e., up to composition with an inner automorphism]
— is to try to work, instead, with the (G × . . . × G)-conjugacy class of such a
diagonal. Here, to simplify the notation, let us assume that the above products of
copies of G are, in fact, products of two copies of G. Then to identify the diagonal
embedding G ↪→ G×G with its (G×G)-conjugates implies that one must consider
identifications

(g, g) ∼ (g, hgh−1) = (g, [h, g] · g)
[where g, h ∈ G] — i.e., one must identify (g, g) with the product of (g, g) with
(1, [h, g]). On the other hand, the original purpose of working with distinct copies
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of G lies in considering distinct Galois-theoretic Kummer classes — correspond-
ing to distinct theta values [cf. [IUTchII], Corollaries 3.5, 3.6] — at distinct
components. That is to say, to identify elements of (G,G) that differ by a factor
of (1, [h, g]) is incompatible, in an essential way, with the convention that such
a factor (1, [h, g]) should correspond to distinct elements [i.e., “1” and “[h, g]”] at
distinct components [cf. the discussion of Remark 1.5.3, (ii), below]. Here, we note
that this incompatibility may be thought of as an essential consequence of the highly
nonabelian nature of G, e.g., when G is taken to a copy of Gv, for v ∈ V

non. Thus,
in summary, this naive approach to replacing the theory of conjugate synchroniza-
tion by a simpler apparatus is inadequate from the point of view of the theory of
the present series of papers.

(iii) At a purely combinatorial level, the notion of conjugate synchronization
is reminiscent of the label synchronization discussed in [IUTchI], Remark 4.9.2,
(i), (ii). Indeed, both conjugate and label synchronization may be thought of as a
sort of combinatorial representation of the arithmetic holomorphic structure
associated to a single vertical line of the log-theta-lattice [cf. the discussion of
[IUTchI], Remark 4.9.2, (iv)].

Remark 1.5.2.

(i) Recall that unlike the case with the action of the F�±
l -symmetry on the

various labeled copies of the absolute Galois group Gv, for v ∈ V
non [cf. [IUTchII],

Corollaries 4.5, (iii); 4.6, (iii)], it is not possible to establish an analogous theory of
conjugate synchronization in the case of the F�

l -symmetry for labeled copies of F
[cf. [IUTchII], Remark 4.7.2]. This is to say, the closest analogue of the conjugate
synchronization obtained in the local case relative to the F�±

l -symmetry is the

action of the F�
l -symmetry on labeled copies of the subfield Fmod ⊆ F discussed in

[IUTchII], Corollaries 4.7, (ii); 4.8, (ii). One consequence of this incompatibility of
the F�

l -symmetry with the full algebraic closure F of Fmod [hence, in particular,

with various roots of elements of Fmod] is that the F
�
l -symmetry on labeled copies of

the subfield Fmod ⊆ F discussed in [IUTchII], Corollaries 4.7, (ii); 4.8, (ii), fails to
be compatible with Kummer theory. This is one quite essential reason why it is
not possible to establish bi-coricity properties for, say, “F×

mod” that are analogous
to the bi-coricity properties established in Theorem 1.5, (iii), for “O×μ” [cf. the
discussion of Remark 1.5.1, (i)]. From this point of view,

the bi-coric mono-analytic realified global Frobenioids of Theorem
1.5, (v) — i.e., in essence, the notion of “log-volume” [cf. the point of
view of Remark 1.2.2, (v)] — may be thought of as a sort of “closest
possible approximation” to such a “bi-coric F×

mod” [i.e., which does
not exist].

Alternatively, from the point of view of the theory to be developed in §3 below,

we shall apply the bi-coric “O×μ’s” of Theorem 1.5, (iii) — i.e., in
the form of the bi-coric mono-analytic log-shells of Theorem 1.5,
(iv) — to construct “multiradial containers” for the labeled copies of
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Fmod discussed above by applying the localization functors discussed
in [IUTchII], Corollaries 4.7, (iii); 4.8, (iii).

That is to say, such “multiradial containers” will play the role of a transportation
mechanism for “F×

mod”— up to certain indeterminacies! — between distinct arith-
metic holomorphic structures [i.e., distinct vertical lines of the log-theta-lattice].

(ii) Note that although the F�
l -symmetry fails to be compatible with labeled

copies of “F” [cf. the discussion of (i)], if one forgets the F�
l -symmetry and the

corresponding labels, then

the functorial algorithms of [IUTchII], Corollary 4.7, (i), applied to the
vertical coricity of Theorem 1.5, (i), allow one to construct vertically
coric versions of “F” which are, moreover, compatible with Kummer
theory [cf. [IUTchII], Corollary 4.8, (i)].

This point of view will be applied in §3 below, in conjunction with the point of
view of “multiradial containers” discussed in (i) above. Here, we recall [cf. the
discussion of [IUTchII], Remark 3.6.2, (ii)] that, in general, the phenomenon of
“Kummer-incompatibility” [i.e., incompatibility with Kummer theory — cf. the
discussion of “Kummer-blindness” in [IUTchI], Remark 5.1.3] occurs precisely when
one wishes to perform constructions — such as, for instance, the construction of
the Θ-, Θ×μ-, or Θ×μ

gau-links — that are “not bound to conventional scheme
theory”. That is to say, in the case of the labeled copies of “Fmod” discussed in
(i), the Kummer-incompatibility that occurs may be thought of as a reflection of
the dismantling of the global prime-tree structure of a number field [cf. the
discussion of [IUTchII], Remark 4.11.2, (iv)] that underlies the construction of the
Θ±ellNF-Hodge theater performed in [IUTchI], [IUTchII], hence, in particular, of
the conjugate synchronization established for the F�±

l -symmetry.

(iii) Despite the failure of labeled copies of “F×
mod” to admit a natural bi-coric

structure — a state of affairs that forces one to resort to the use of “multiradial
containers” in order to transport such labeled copies of “F×

mod” to alien arithmetic
holomorphic structures [cf. the discussion of (i) above] — the global Frobenioids
associated to copies of “F×

mod” nevertheless possess important properties that are
not satisfied, for instance, by the bi-coric realified global Frobenioids discussed in
Theorem 1.5, (v) [cf. also [IUTchI], Definition 5.2, (iv); [IUTchII], Corollary 4.5,
(ii); [IUTchII], Corollary 4.6, (ii)]. Indeed, unlike the objects contained in the
realified global Frobenioids that appear in Theorem 1.5, (v), the objects contained
in the global Frobenioids associated to copies of “F×

mod” correspond to genuine
“conventional arithmetic line bundles”. In particular, by applying the ring
structure of the copies of “Fmod” under consideration, one can push forward such
arithmetic line bundles so as to obtain arithmetic vector bundles over [the ring
of rational integers] Z and then form tensor products of such arithmetic vector
bundles. Such operations will play a key role in the theory of §3 below, as well as
in the theory to be developed in [IUTchIV].
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Remark 1.5.3.

(i) In [QuCnf] [cf. also [AbsTopIII], Proposition 2.6; [AbsTopIII], Corollary
2.7], a theory was developed concerning deformations of holomorphic structures
on Riemann surfaces in which holomorphic structures are represented by means of
squares or rectangles on the surface, while quasiconformal Teichmüller deforma-
tions of holomorphic structures are represented by parallelograms on the surface.
That is to say, relative to appropriate choices of local coordinates, quasiconformal
Teichmüller deformations may be thought of as affine linear deformations in which
one of the two underlying real dimensions of the Riemann surface is dilated by some
factor ∈ R>0, while the other underlying real dimensions is left undeformed. From
this point of view, the theory of conjugate synchronization — which may be
regarded as a sort of ridigity that represents the arithmetic holomorphic struc-
ture associated to a vertical line of the log-theta-lattice [cf. the discussion given
in [IUTchII], Remarks 4.7.3, 4.7.4, of the uniradiality of the F�±

l -symmetry that
underlies the phenomenon of conjugate synchronization] — may be thought of as
a sort of nonarchimedean arithmetic analogue of the representation of holo-
morphic structures by means of squares/rectangles referred to above. That is to
say, the right angles which are characteristic of squares/rectangles may be thought
of as a sort of synchronization between the metrics of the two underlying real di-
mensions of a Riemann surface [i.e., metrics which, a priori, may differ by some
dilating factor] — cf. Fig. 1.4 below. Here, we mention in passing that this point
of view is reminiscent of the discussion of [IUTchII], Remark 3.6.5, (ii), in which
the point of view is taken that the phenomenon of conjugate synchronization may
be thought of as a reflection of the coherence of the arithmetic holomorphic
structures involved.

Gv . . . Gv Gv Gv . . . Gv

� . . . � � � . . . �

−l� . . . −1 0 1 . . . l�

...

R>0 �
... ↗ ↘
... ↗ ↘

. . . . . . . . . . . . . . . � id
... ↘ ↗
... ↘ ↗

Fig. 1.4: Analogy between conjugate synchronization and the
representation of complex holomorphic structures via squares/rectangles

(ii) Relative to the point of view discussed in (i), the approach described in Re-
mark 1.5.1, (ii), to “avoiding conjugate synchronization by identifying the various
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conjugates of the diagonal embedding” corresponds — in light of the highly non-
abelian nature of the groups involved! [cf. the discussion of Remark 1.5.1, (ii)] — to
thinking of a holomorphic structure on a Riemann surface as an “equivalence class
of holomorphic structures in the usual sense relative to the equivalence relation of
differing by a Teichmüller deformation”! That is to say, such an [unconventional!]
approach to the definition of a holomorphic structure allows one to circumvent the
issue of rigidifying the relationship between the metrics of the two underlying real
dimensions of the Riemann surface — but only at the cost of rendering unfeasible
any meaningful theory of “deformations of a holomorphic structure”!

(iii) The analogy discussed in (i) between conjugate synchronization [which
arises from the F�±

l -symmetry!] and the representation of a complex holomorphic
structure by means of squares/rectangles may also be applied to the “synchro-
nization” given in [IUTchII], Corollary 4.7, (ii); [IUTchII], Corollary 4.8, (ii),
between the various labeled non-realified and realified global Frobenioids by means
of the F�

l -symmetry. Indeed, this analogy is all the more apparent in the case
of the realified global Frobenioids — which admit a natural R>0-action. Here, we
observe in passing that, just as the theory of conjugate synchronization plays an
essential role in the construction of the local portions of the Θ×μ-, Θ×μ

gau-links given
in [IUTchII], Corollary 4.10, (i), (ii), (iii),

the synchronization of realified global Frobenioids by means of the
F�
l -symmetry may be related — via the isomorphisms of Frobenioids of

the second displays of [IUTchII], Corollary 4.7, (iii); [IUTchII], Corollary
4.8, (iii) [cf. also the discussion of [IUTchII], Remark 4.8.1] — to the
construction of the realified global Frobenioid portion of the Θ×μ

gau-link
given in [IUTchII], Corollary 4.10, (ii).

On the other hand, the synchronization involving the non-realified global Frobe-
nioids may be thought of a sort of further rigidification of the realified global Frobe-
nioids. As discussed in Remark 1.5.2, (iii), this “further rigidification” will play an
important role in the theory of §3 below.

Remark 1.5.4.

(i) As discussed in [IUTchII], Remark 3.8.3, (iii), one of the main themes of the
present series of papers is the goal of giving an explicit description of what one
arithmetic holomorphic structure — i.e., one vertical line of the log-theta-lattice —
looks like from the point of view of a distinct arithmetic holomorphic structure
— i.e., another vertical line of the log-theta-lattice — that is only related to the
original arithmetic holomorphic structure via some mono-analytic core, e.g., the
various bi-coric structures discussed in Theorem 1.5, (iii), (iv), (v). Typically, the
objects of interest that are constructed within the original arithmetic holomorphic
structure are Frobenius-like structures [cf. the discussion of [IUTchII], Remark
3.6.2], which, as we recall from the discussion of Remark 1.5.2, (ii) [cf. also the
discussion of [IUTchII], Remark 3.6.2, (ii)], are necessary in order to perform con-
structions — such as, for instance, the construction of the Θ-, Θ×μ-, or Θ×μ

gau-links
— that are “not bound to conventional scheme theory”. Indeed, the main
example of such an object of interest consists precisely of the Gaussian monoids
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discussed in [IUTchII], §3, §4. Thus, the operation of describing such an object of
interest from the point of view of a distinct arithmetic holomorphic structure may
be broken down into two steps:

(a) passing from Frobenius-like structures to étale-like structures via various
Kummer isomorphisms;

(b) transporting the resulting étale-like structures from one arithmetic holo-
morphic structure to another by means of various multiradiality prop-
erties.

In particular, the computation of what the object of interest looks like from the
point of view of a distinct arithmetic holomorphic structure may be broken down
into the computation of the indeterminacies or “departures from rigidity” that
arise — i.e., the computation of “what sort of damage is incurred to the object
of interest” — during the execution of each of these two steps (a), (b). We shall
refer to the indeterminacies that arise from (a) as Kummer-detachment inde-
terminacies and to the indeterminacies that arise from (b) as étale-transport
indeterminacies.

(ii) Étale-transport indeterminacies typically amount to the indeterminacies
that occur as a result of the execution of various “anabelian” or “group-theoretic”
algorithms. One fundamental example of such indeterminacies is constituted by the
indeterminacies that occur in the context of Theorem 1.5, (iii), (iv), as a result of
the existence of automorphisms of the various [copies of] local absolute Galois
groups Gv, for v ∈ V

non, which are not of scheme-theoretic origin [cf. the discussion
of [AbsTopIII], §I3].

(iii) On other hand, one important example, from the point of view of the
theory of the present series of papers, of a Kummer-detachment indeterminacy is
constituted by the Frobenius-picture diagrams given in Propositions 1.2, (x);
1.3, (iv) — i.e., the issue of which path one is to take from a particular “•” to the
coric “◦”. That is to say, despite the fact that these diagrams fail to be commutative,
the “upper semi-commutativity” property satisfied by the coric holomorphic
log-shells involved [cf. the discussion of Remark 1.2.2, (iii)] may be regarded as a
sort of computation, in the form of an upper estimate, of the Kummer-detachment
indeterminacy in question. Another important example, from the point of view of
the theory of the present series of papers, of a Kummer-detachment indeterminacy is

given by the Ẑ×-indeterminacies discussed in Remark 1.4.2 [cf. also the Kummer
isomorphisms of the final display of Theorem 1.5, (iii)].
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Section 2: Multiradial Theta Monoids

In the present §2, we globalize the multiradial portion of the local the-
ory of theta monoids developed in [IUTchII], §1, §3, at v ∈ V

bad [cf., espe-
cially, [IUTchII], Corollary 1.12; [IUTchII], Proposition 3.4] so as to cover the theta
monoids of [IUTchII], Corollaries 4.5, (iv), (v); 4.6, (iv), (v), and explain how the
resulting theory may be fit into the framework of the log-theta-lattice developed
in §1.

In the following discussion, we assume that we have been given initial Θ-data

as in [IUTchI], Definition 3.1. Let †HT Θ±ellNF be a Θ±ellNF-Hodge theater [relative
to the given initial Θ-data — cf. [IUTchI], Definition 6.13, (i)] and

{n,mHT Θ±ellNF}n,m∈Z

a collection of distinct Θ±ellNF-Hodge theaters [relative to the given initial Θ-data]
indexed by pairs of integers, which we think of as arising from a Gaussian log-theta-
lattice, as in Definition 1.4. We begin by reviewing the theory of theta monoids
developed in [IUTchII].

Proposition 2.1. (Vertical Coricity and Kummer Theory of Theta
Monoids) We maintain the notation introduced above. Also, we shall use the
notation AutF�(−) to denote the group of automorphisms of the F�-prime-strip in
parentheses. Then:

(i) (Vertically Coric Theta Monoids) In the notation of [IUTchII], Corol-
lary 4.5, (iv), (v), there are functorial algorithms in the D- and D�-prime-strips
†D>,

†D�
> associated to the Θ±ellNF-Hodge theater †HT Θ±ellNF for constructing

collections of data indexed by V

V � v �→ Ψenv(
†D>)v; V � v �→ ∞Ψenv(

†D>)v

as well as a global realified Frobenioid

D�
env(

†D�
>)

equipped with a bijection Prime(D�
env(

†D�
>))

∼→ V and corresponding local isomor-
phisms, for each v ∈ V, as described in detail in [IUTchII], Corollary 4.5, (v). In
particular, each isomorphism of the full poly-isomorphism induced [cf. Theorem 1.5,
(i)] by a vertical arrow of the Gaussian log-theta-lattice under consideration
induces a compatible collection of isomorphisms

Ψenv(
n,mD>)

∼→ Ψenv(
n,m+1D>); ∞Ψenv(

n,mD>)
∼→ ∞Ψenv(

n,m+1D>)

D�
env(

n,mD�
>)

∼→ D�
env(

n,m+1D�
>)

— where the final isomorphism of Frobenioids is compatible with the respective
bijections involving “Prime(−)”, as well as with the respective local isomorphisms
for each v ∈ V.
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(ii) (Kummer Isomorphisms) In the notation of [IUTchII], Corollary 4.6,

(iv), (v), there are functorial algorithms in the Θ±ellNF-Hodge theater †HT Θ±ellNF

for constructing collections of data indexed by V

V � v �→ ΨFenv(
†HT Θ)v; V � v �→ ∞ΨFenv(

†HT Θ)v

as well as a global realified Frobenioid

C�env(†HT Θ)

equipped with a bijection Prime(C�env(†HT Θ))
∼→ V and corresponding local iso-

morphisms, for each v ∈ V, as described in detail in [IUTchII], Corollary 4.6,

(v). Moreover, there are functorial algorithms in †HT Θ±ellNF for constructing
Kummer isomorphisms

ΨFenv(
†HT Θ)

∼→ Ψenv(
†D>); ∞ΨFenv(

†HT Θ)
∼→ ∞Ψenv(

†D>)

C�env(†HT Θ)
∼→ D�

env(
†D�

>)

— where the final isomorphism of Frobenioids is compatible with the respective bi-
jections involving “Prime(−)”, as well as with the respective local isomorphisms
for each v ∈ V — with the data discussed in (i) [cf. [IUTchII], Corollary 4.6,
(iv), (v)]. Finally, the collection of data Ψenv(

†D>) gives rise, in a natural fash-
ion, to an F�-prime-strip F�

env(
†D>) [cf. the F�-prime-strip “†F�

env” of [IUTchII],
Corollary 4.10, (ii)]; the global realified Frobenioid D�

env(
†D�

>), equipped with the

bijection Prime(D�
env(

†D�
>))

∼→ V and corresponding local isomorphisms, for each
v ∈ V, reviewed in (i), together with the F�-prime-strip F�

env(
†D>), determine an

F�-prime-strip F�
env(

†D>) [cf. the F�-prime-strip “†F�
env” of [IUTchII], Corollary

4.10, (ii)]. In particular, the first and third Kummer isomorphisms of the above
display may be interpreted as [compatible] isomorphisms

†F�
env

∼→ F�
env(

†D>);
†F�

env
∼→ F�

env(
†D>)

of F�-, F�-prime-strips.

(iii) (Kummer Theory at Bad Primes) The portion at v ∈ V
bad of the

Kummer isomorphisms of (ii) is obtained by composing the Kummer isomorphisms
of [IUTchII], Proposition 3.3, (i) — which, we recall, were defined by forming
Kummer classes in the context of mono-theta environments that arise from
tempered Frobenioids — with the isomorphisms on cohomology classes induced
[cf. the upper left-hand portion of the first display of [IUTchII], Proposition 3.4,
(i)] by the full poly-isomorphism of projective systems of mono-theta envi-

ronments “MΘ
∗ (

†D>,v)
∼→ MΘ

∗ (
†F

v
)” [cf. [IUTchII], Proposition 3.4; [IUTchII],

Remark 4.2.1, (iv)] between projective systems of mono-theta environments that
arise from tempered Frobenioids [i.e., “†F

v
”] and projective systems of mono-theta

environments that arise from the tempered fundamental group [i.e., “†D>,v”] —
cf. the left-hand portion of the third display of [IUTchII], Corollary 3.6, (ii), in
the context of the discussion of Remark 3.6.2, (i). Here, each “isomorphism on
cohomology classes” is induced by the isomorphism on exterior cyclotomes

Πμ(M
Θ
∗ (

†D>,v))
∼→ Πμ(M

Θ
∗ (

†F
v
))
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determined by each of the isomorphisms that constitutes the full poly-isomorphism
of projective systems of mono-theta environments discussed above. In particular,
the composite map

Πμ(M
Θ
∗ (

†D>,v))⊗Q/Z → (Ψ†FΘ
v
)×μ

obtained by composing the result of applying “⊗ Q/Z” to this isomorphism on ex-
terior cyclotomes with the natural inclusion

Πμ(M
Θ
∗ (

†F
v
))⊗Q/Z ↪→ (Ψ†FΘ

v
)×

[cf. the notation of [IUTchII], Proposition 3.4, (i); the description given in [IUTchII],
Proposition 1.3, (i), of the exterior cyclotome of a mono-theta environment that
arises from a tempered Frobenioid] and the natural projection (Ψ†FΘ

v
)× � (Ψ†FΘ

v
)×μ

is equal to the zero map.

(iv) (Kummer Theory at Good Nonarchimedean Primes) The unit

portion at v ∈ V
good ⋂

V
non of the Kummer isomorphisms of (ii) is obtained [cf.

[IUTchII], Proposition 4.2, (iv)] as the unit portion of a “labeled version” of the
isomorphism of topological monoids equipped with a topological group ac-
tion — i.e., in the language of [AbsTopIII], Definition 3.1, (ii), the isomorphism
of “MLF-Galois TM-pairs” — discussed in [IUTchII], Proposition 4.2, (i) [cf.
also [IUTchII], Remark 1.11.1, (i), (a); [AbsTopIII], Proposition 3.2, (iv)]. In par-

ticular, the portion at v ∈ V
good ⋂

V
non of the AutF�(†F�

env)-orbit of the second
isomorphism of the final display of (ii) may be obtained as a “labeled version” of
the “Kummer poly-isomorphism of semi-simplifications” given in the final
display of [IUTchII], Proposition 4.2, (ii).

(v) (Kummer Theory at Good Archimedean Primes) The unit portion

at v ∈ V
good ⋂

V
arc of the Kummer isomorphisms of (ii) is obtained [cf. [IUTchII],

Proposition 4.4, (iv)] as the unit portion of a “labeled version” of the isomor-
phism of topological monoids discussed in [IUTchII], Proposition 4.4, (i). In

particular, the portion at v ∈ V
good ⋂

V
arc of the AutF�(†F�

env)-orbit of the second
isomorphism of the final display of (ii) may be obtained as a “labeled version” of
the “Kummer poly-isomorphism of semi-simplifications” given in the final
display of [IUTchII], Proposition 4.4, (ii) [cf. also [IUTchII], Remark 4.6.1].

(vi) (Compatibility with Constant Monoids) The definition of the unit
portion of the theta monoids involved [cf. [IUTchII], Corollary 4.10, (iv)] gives
rise to natural isomorphisms

†F�×



∼→ †F�×
env; F�×


 (†D�

)

∼→ F�×
env(

†D>)

— i.e., where the morphism induced on F�×μ-prime-strips by the first displayed
isomorphism is precisely the isomorphism of the first display of [IUTchII], Corollary
4.10, (iv) — of the respective associated F�×-prime-strips [cf. the notation of
Theorem 1.5, (iii), where the label “n,m” is replaced by the label “†”]. Moreover,
these natural isomorphisms are compatible with the Kummer isomorphisms of
(ii) above and Theorem 1.5, (iii).
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Proof. The various assertions of Proposition 2.1 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 2.1.1. The theory of mono-theta environments [cf. Proposition 2.1,
(iii)] will play a crucial role in the theory of the present §2 [cf. Theorem 2.2, (ii);
Corollary 2.3, (iv), below] in the passage from Frobenius-like to étale-like struc-
tures [cf. Remark 1.5.4, (i), (a)] at bad primes. In particular, the various rigidity
properties of mono-theta environments established in [EtTh] play a fundamental
role in ensuring that the resulting “Kummer-detachment indeterminacies” [cf. the
discussion of Remark 1.5.4, (i)] are sufficiently mild so as to allow the establishment
of the various reconstruction algorithms of interest. For this reason, we pause to
review the main properties of mono-theta environments established in [EtTh] [cf.
[EtTh], Introduction] — namely,

(a) cyclotomic rigidity
(b) discrete rigidity
(c) constant multiple rigidity
(d) isomorphism class compatibility
(e) Frobenioid structure compatibility

— and the roles played by these main properties in the theory of the present series of
papers. Here, we remark that “isomorphism class compatibility” [i.e., (d)] refers to
compatibility with the convention that various objects of the tempered Frobenioids
[and their associated base categories] under consideration are known only up to
isomorphism [cf. [EtTh], Corollary 5.12; [EtTh], Remarks 5.12.1, 5.12.2]. In the
Introduction to [EtTh], instead of referring to (d) in this form, we referred to the
property of compatibility with the topology of the tempered fundamental group. In
fact, however, this compatibility with the topology of the tempered fundamental
group is a consequence of (d) [cf. [EtTh], Remarks 5.12.1, 5.12.2]. On the other
hand, from the point of view of the present series of papers, the essential property
of interest in this context is best understood as being the property (d).

(i) First, we recall that the significance, in the context of the theory of the
present series of papers, of the compatibility with the Frobenioid structure of the
tempered Frobenioids under consideration [i.e., (e)] — i.e., in particular, with the
monoidal portion, equipped its natural Galois action, of these Frobenioids — lies in
the role played by this “Frobenius-like” monoidal portion in performing construc-
tions — such as, for instance, the construction of the log-, Θ-, Θ×μ-, or Θ×μ

gau-links
— that are “not bound to conventional scheme theory”, but may be related,
viaKummer theory, to various étale-like structures [cf. the discussions of Remark
1.5.4, (i); [IUTchII], Remark 3.6.2, (ii); [IUTchII], Remark 3.6.4, (ii), (v)].

(ii) Next, we consider isomorphism class compatibility [i.e., (d)]. As discussed
above, this compatibility corresponds to regarding each of the various objects of
the tempered Frobenioids [and their associated base categories] under consideration
as being known only up to isomorphism [cf. [EtTh], Corollary 5.12; [EtTh], Re-
marks 5.12.1, 5.12.2]. As discussed in [IUTchII], Remark 3.6.4, (i), the significance
of this property (d) in the context of the present series of papers lies in the fact
that — unlike the case with the projective systems constituted by Kummer tow-
ers constructed from N -th power morphisms, which are compatible with only the
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multiplicative, but not the additive structures of the pv-adic local fields involved —
each individual object in such a Kummer tower corresponds to a single field [i.e., as
opposed to a projective system of multiplicative groups of fields]. This field/ring
structure is necessary in order to apply the theory of the log-link developed in §1
— cf. the vertical coricity discussed in Proposition 2.1, (i). Note, moreover, that,
unlike the log-, Θ-, Θ×μ-, or Θ×μ

gau-links, the N -th power morphisms that appear in
a Kummer tower are “algebraic”, i.e., scheme-theoretic, hence compatible with
the conventional scheme-theoretic theory of the étale [or tempered] fundamental
group. In particular, since the tempered Frobenioids under consideration may be
constructed from such scheme-theoretic categories, the fundamental groups on ei-
ther side of such an N -th power morphism may be related up to an indeterminacy
arising from an inner automorphism of the tempered fundamental group [i.e.,
the “fundamental group” of the base category] under consideration — cf. the dis-
cussion of [IUTchII], Remark 3.6.3, (ii). On the other hand, the objects that appear
in these Kummer towers necessarily arise from nontrivial line bundles [indeed, line
bundles all of whose positive tensor powers are nontrivial!] on tempered coverings of
a Tate curve — cf. the constructions underlying the Frobenioid-theoretic version of
the mono-theta environment [cf. [EtTh], Proposition 1.1; [EtTh], Lemma 5.9]; the
crucial role played by the commutator “[−,−]” in the theory of cyclotomic rigidity
[i.e., (a)] reviewed in (iv) below. In particular, the extraction of various N -th roots
in a Kummer tower necessarily leads to mutually non-isomorphic line bundles, i.e.,
mutually non-isomorphic objects in the Kummer tower. From the point of view of
reconstruction algorithms, such non-isomorphic objects may be naturally — i.e.,
algorithmically — related to another only via indeterminate isomorphisms
[cf., (d)!]. This point of view is precisely the starting point of the discussion of
— for instance, “constant multiple indeterminacy” in — [EtTh], Remarks 5.12.2,
5.12.3.

(iii) Next, we recall that the significance of constant multiple rigidity [i.e.,
(c)] in the context of the present series of papers lies in the construction of the
canonical splittings of theta monoids via restriction to the zero section
discussed, for instance, in [IUTchII], Corollary 1.12, (ii); [IUTchII], Proposition 3.3,
(i); [IUTchII], Remark 1.12.2, (iv) [cf. also Remark 1.2.3, (i), of the present paper].

(iv) Next, we review the significance of cyclotomic rigidity [i.e., (a)] in the
context of the present series of papers. First, we recall that this cyclotomic rigidity
is essentially a consequence of the nondegenerate nature of the commutator “[−,−]”
of the theta groups involved [cf. the discussion of [EtTh], Introduction; [EtTh],
Remark 2.19.2]. Put another way, since this commutator is quadratic in nature,
one may think of this nondegenerate nature of the commutator as a statement to
the effect that “the degree of the commutator is precisely 2”. At a more concrete
level, the cyclotomic rigidity arising from a mono-theta environment consists of a
certain specific isomorphism between the interior and exterior cyclotomes [cf. the
discussion of [IUTchII], Definition 1.1, (ii)]. Put another way, one may think of this
cyclotomic rigidity isomorphism as a sort of rigidification of a certain “projective
line of cyclotomes”, i.e., the projectivization of the direct sum of the interior and
exterior cyclotomes [cf. the computations that underlie [EtTh], Proposition 2.12].
In particular, this rigidification is fundamentally nonlinear in nature. Indeed, if
one attempts to compose it with an N -th power morphism, then one is obliged
to sacrifice constant multiple rigidity [i.e., (c)] — cf. the discussion of [EtTh],
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Remark 5.12.3. That is to say, the distinguished nature of the “first power” of
the cyclotomic rigidity isomorphism is an important theme in the theory of [EtTh]
[cf. the discussion of [EtTh], Remark 5.12.5; [IUTchII], Remark 3.6.4, (iii), (iv)].
The multiradiality of mono-theta-theoretic cyclotomic rigidity [cf. [IUTchII],
Corollary 1.10] — which lies in stark contrast with the indeterminacies that arise
when one attempts to give a multiradial formulation [cf. [IUTchII], Corollary 1.11;
the discussion of [IUTchII], Remark 1.11.3] of the more classical “MLF-Galois pair
cyclotomic rigidity” arising from local class field theory — will play a central role
in the theory of the present §2 [cf. Theorem 2.2, Corollary 2.3 below].

(v) Finally, we review the significance of discrete rigidity [i.e., (b)] in the context
of the present series of papers. First, we recall that, at a technical level, whereas
cyclotomic rigidity may be regarded [cf. the discussion of (iv)] as a consequence of
the fact that “the degree of the commutator is precisely 2”, discrete rigidity may be
regarded as a consequence of the fact that “the degree of the commutator is ≤ 2”
[cf. the statements and proofs of [EtTh], Proposition 2.14, (ii), (iii)]. At a more
concrete level, discrete rigidity assures one that one may restrict one’s attentions

to Z-multiples/powers — as opposed to Ẑ-multiples/powers — of divisors,
line bundles, and rational functions [such as, for instance, the q-parameter!] on the
tempered coverings of a Tate curve that occur in the theory of [EtTh] [cf. [EtTh],
Remark 2.19.4]. This prompts the following question:

Can one develop a theory of Ẑ-divisors/line bundles/rational functions in,
for instance, a parallel fashion to the way in which one considers perfections
and realifications of Frobenioids in the theory of [FrdI]?

As far as the author can see at the time of writing, the answer to this question is
“no”. Indeed, unlike the case with Q or R, there is no notion of positivity [or nega-

tivity] in Ẑ. For instance, −1 ∈ Ẑ may be obtained as a limit of positive integers. In

particular, if one had a theory of Ẑ-divisors/line bundles/rational functions, then
such a theory would necessarily require one to “confuse” positive [i.e., effective]
and negative divisors, hence to work birationally. But to work birationally means,
in particular, that one must sacrifice the conventional structure of isomorphisms
[e.g., automorphisms] between line bundles — which plays an indispensable role,
for instance, in the constructions underlying the Frobenioid-theoretic version of
the mono-theta environment [cf. [EtTh], Proposition 1.1; [EtTh], Lemma 5.9; the
crucial role played by the commutator “[−,−]” in the theory of cyclotomic rigidity
[i.e., (a)] reviewed in (iv) above].

Remark 2.1.2.

(i) In the context of the discussion of Remark 2.1.1, (v), it is of interest to recall
[cf. [IUTchII], Remark 4.5.3, (iii); [IUTchII], Remark 4.11.2, (iii)] that the essen-
tial role played, in the context of the F�±

l -symmetry, by the “global bookkeeping
operations” involving the labels of the evaluation points gives rise, in light of the
profinite nature of the global étale fundamental groups involved, to a situation
in which one must apply the “complements on tempered coverings” developed in
[IUTchI], §2. That is to say, in the notation of the discussion given in [IUTchII],
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Remark 2.1.1, (i), of the various tempered coverings that occur at v ∈ V
bad, these

“complements on tempered coverings” are applied precisely so as to allow one to
restrict one’s attention to the [discrete!] Z-conjugates — i.e., as opposed to [profi-

nite!] Ẑ-conjugates [where we write Ẑ for the profinite completion of Z] — of the
theta functions involved. In particular, although such “evaluation-related issues”,
which will become relevant in the context of the theory of §3 below, do not play
a role in the theory of the present §2, the role played by the theory of [IUTchI],
§2, in the theory of the present series of papers may also be thought of as a sort of
“discrete rigidity” — which we shall refer to as “evaluation discrete rigidity”
— i.e., a sort of rigidity that is concerned with similar issues to the issues discussed
in the case of “mono-theta-theoretic discrete rigidity” in Remark 2.1.1, (v), above.

(ii) Next, let us suppose that we are in the situation discussed in [IUTchII],

Proposition 2.1. Fix v ∈ V
bad. Write Π

def
= Πv; Π̂ for the profinite completion

of Π. Thus, we have natural surjections Π � l · Z (⊆ Z), Π̂ � l · Ẑ (⊆ Ẑ).

Write Π† def
= Π̂ ×

Ẑ
Z ⊆ Π̂. Next, we observe that from the point of view of the

evaluation points, the evaluation discrete rigidity discussed in (i) corresponds to the
issue of whether, relative to some arbitrarily chosen basepoint, the coordinates

of the evaluation point lie ∈ Z or ∈ Ẑ [cf. the discussion of the “torsor over Z”
in [IUTchII], Remark 2.1.1, (i)]. Thus, if one is only concerned with the issue of
arranging for these coordinates to lie ∈ Z, then one is led to pose the following
question:

Is it possible to simply use the “partially tempered fundamental group” Π†

instead of the “full” tempered fundamental group Π in the theory of the
present series of papers?

The answer to this question is “no”. One way to see this is to consider the [easily
verified] natural isomorphism

N
Π̂
(Π†)/Π† ∼→ Ẑ/Z

involving the normalizer N
Π̂
(Π†) of Π† in Π̂. One consequence of this isomorphism

is that — unlike the tempered fundamental group Π [cf., e.g., [SemiAnbd], The-
orems 6.6, 6.8] — the topological group Π† fails to satisfy various fundamental
absolute anabelian properties which play a crucial role in the theory of [EtTh],
as well as in the present series of papers [cf., e.g., the theory of [IUTchII], §2]. At
a more concrete level, unlike the case with the tempered fundamental group Π,

the profinite conjugacy indeterminacies that act on Π† give rise to Ẑ-translation
indeterminacies acting on the coordinates of the evaluation points involved. That

is to say, in the case of Π, such Ẑ-translation indeterminacies are avoided precisely
by applying the “complements on tempered coverings” developed in [IUTchI], §2
— i.e., in a word, as a consequence of the “highly anabelian nature” of the [full!]
tempered fundamental group Π.

Theorem 2.2. (Kummer-compatible Multiradiality of Theta Monoids)
Fix a collection of initial Θ-data

(F/F, XF , l, CK , V, ε)



60 SHINICHI MOCHIZUKI

as in [IUTchI], Definition 3.1. Let †HT Θ±ellNF be a Θ±ellNF-Hodge theater
[relative to the given initial Θ-data — cf. [IUTchI], Definition 6.13, (i)]. For
� ∈ {�,� 	 ×μ,�×μ}, write AutF�(−) for the group of automorphisms of the
F�-prime-strip in parentheses.

(i) (Automorphisms of Prime-strips) The natural functors determined by
assigning to an F�-prime-strip the associated F��×μ- and F�×μ-prime-strips [cf.
[IUTchII], Definition 4.9, (vi), (vii), (viii)] and then composing with the natural
isomorphisms of Proposition 2.1, (vi), determine natural homomorphisms

AutF�(F�
env(

†D>)) → AutF��×μ(F��×μ
env (†D>)) � AutF�×μ(F�×μ


 (†D�

))

AutF�(†F�
env) → AutF��×μ(‡F��×μ

env ) � AutF�×μ(†F�×μ

 )

— where the second arrows in each line are surjections — that are compatible
with the Kummer isomorphisms of Proposition 2.1, (ii), and Theorem 1.5, (iii)
[cf. the final portions of Proposition 2.1, (iv), (v), (vi)].

(ii) (Kummer Aspects of Multiradiality at Bad Primes) Let v ∈ V
bad.

Write

∞Ψ⊥
env(

†D>)v ⊆ ∞Ψenv(
†D>)v; ∞Ψ⊥

Fenv
(†HT Θ)v ⊆ ∞ΨFenv(

†HT Θ)v

for the submonoids corresponding to the respective splittings [cf. [IUTchII], Corol-
laries 3.5, (iii); 3.6, (iii)], i.e., the submonoids generated by “∞θι

env
(MΘ

∗ )” [cf. the

notation of [IUTchII], Proposition 3.1, (i)] and the respective torsion subgroups.
Now consider the commutative diagram

∞Ψ⊥
env(

†D>)v ⊇ ∞Ψenv(
†D>)

μ
v ⊆ ∞Ψenv(

†D>)
×
v⏐⏐� ⏐⏐� ⏐⏐�

∞Ψ⊥
Fenv

(†HT Θ)v ⊇ ∞ΨFenv(
†HT Θ)μv ⊆ ∞ΨFenv(

†HT Θ)×v

� ∞Ψenv(
†D>)

×μ
v

∼→ Ψss
cns(

†D�

)×μ

v⏐⏐� ⏐⏐�
� ∞ΨFenv(

†HT Θ)×μ
v

∼→ Ψss
cns(

†F�

)×μ

v

— where the inclusions “⊇”, “⊆” are the natural inclusions; the surjections “�”
are the natural surjections; the superscript “μ” denotes the torsion subgroup; the
superscript “×” denotes the group of units; the superscript “×μ” denotes the quo-
tient “(−)×/(−)μ”; the first four vertical arrows are the isomorphisms determined
by the inverse of the second Kummer isomorphism of the third display of Propo-
sition 2.1, (ii); †D�


 is as discussed in Theorem 1.5, (iii); †F�

 is as discussed in

[IUTchII], Corollary 4.10, (i); the final vertical arrow is the inverse of the Kum-
mer isomorphism determined by the final displayed isomorphism of [IUTchII],
Corollary 4.6, (i) [cf. also the isomorphism of the fourth display of [IUTchII],
Corollary 4.5, (ii)]; the final upper horizontal arrow is the poly-isomorphism de-
termined by composing the isomorphism determined by the inverse of the natural
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isomorphism of Proposition 2.1, (vi), with the poly-automorphism of Ψss
cns(

†D�

)×μ

v

induced by the full poly-automorphism of the D�-prime-strip †D�

; the final

lower horizontal arrow is the poly-automorphism determined by the condition that
the final square be commutative. This commutative diagram is compatible with the
various group actions involved relative to the following diagram

ΠX(MΘ
∗ (

†D>,v)) � Gv(M
Θ
∗ (

†D>,v)) = Gv(M
Θ
∗ (

†D>,v))

= Gv(M
Θ
∗ (

†D>,v))
∼→ Gv(M

Θ
∗ (

†D>,v))

[cf. the notation of [IUTchII], Proposition 3.1; [IUTchII], Remark 4.2.1, (iv);

[IUTchII], Corollary 4.5, (iv)] — where “�” denotes the natural surjection; “
∼→ ”

denotes the full poly-automorphism of Gv(M
Θ
∗ (

†D>,v)). Finally, each of the various
composite maps

∞Ψenv(
†D>)

μ
v → Ψss

cns(
†F�


)×μ
v

is equal to the zero map [cf. (bv) below; the final portion of Proposition 2.1, (iii)].
In particular, the identity automorphism on the following objects is compati-
ble, relative to the various natural morphisms involved [cf. the above commutative
diagram], with the collection of automorphisms of Ψss

cns(
†F�


)×μ
v induced by arbi-

trary automorphisms ∈ AutF�×μ(†F�×μ

 ) [cf. [IUTchII], Corollary 1.12, (iii);

[IUTchII], Proposition 3.4, (i)]:

(av) ∞Ψ⊥
env(

†D>)v ⊇ ∞Ψenv(
†D>)

μ
v ;

(bv) Πμ(M
Θ
∗ (

†D>,v))⊗Q/Z [cf. the discussion of Proposition 2.1, (iii)], rela-

tive to the natural isomorphism Πμ(M
Θ
∗ (

†D>,v))⊗Q/Z
∼→ ∞Ψenv(

†D>)
μ
v

of [IUTchII], Remark 1.5.2 [cf. (av)];

(cv) the projective system of mono-theta environments MΘ
∗ (

†D>,v) [cf.
(bv)];

(dv) the splittings ∞Ψ⊥
env(

†D>)v � ∞Ψenv(
†D>)

μ
v [cf. (av)] by means of re-

striction to zero-labeled evaluation points [cf. [IUTchII], Proposition
3.1, (i)].

Proof. The various assertions of Theorem 2.2 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ©

Remark 2.2.1. In light of the central importance of Theorem 2.2, (ii), in the
theory of the present §2, we pause to examine the significance of Theorem 2.2, (ii),
in more conceptual terms.

(i) In the situation of Theorem 2.2, (ii), let us write [for simplicity] Πv
def
=

ΠX(MΘ
∗ (

†D>,v)), Πμ
def
= Πμ(M

Θ
∗ (

†D>,v)) [cf. (bv)]. Also, for simplicity, we write

(l · ΔΘ)
def
= (l · ΔΘ)(M

Θ
∗ (

†D>,v)) [cf. [IUTchII], Proposition 1.5, (iii)]. Here, we
recall that in fact, (l · ΔΘ) may be thought of as an object constructed from Πv
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[cf. [IUTchII], Proposition 1.4]. Then the projective system of mono-theta environ-
ments MΘ

∗ (
†D>,v) [cf. (cv)] may be thought of as a sort of “amalgamation of Πv

and Πμ”, where the amalgamation is such that it allows the reconstruction of the
mono-theta-theoretic cyclotomic rigidity isomorphism

(l ·ΔΘ)
∼→ Πμ

[cf. [IUTchII], Proposition 1.5, (iii)] — i.e., not just the Ẑ×-orbit of this isomor-
phism!

(ii) Now, in the notation of (i), the Kummer classes ∈ ∞Ψ⊥
env(

†D>)v [cf. (av)]
constituted by the various étale theta functions may be thought of, for an appro-
priate characteristic open subgroup H ⊆ Πv, as twisted homomorphisms

(Πv ⊇) H → Πμ

whose restriction to (l · ΔΘ) coincides with the cyclotomic rigidity isomorphism

(l ·ΔΘ)
∼→ Πμ discussed in (i). Then the essential content of Theorem 2.2, (ii),

lies in the observation that

since theKummer-theoretic link between étale-like data and Frobenius-
like data at v ∈ V

bad is established by means of projective systems of
mono-theta environments [cf. the discussion of Proposition 2.1, (iii)]
— i.e., which do not involve the various monoids “(−)×μ”! — the mono-
theta-theoretic cyclotomic rigidity isomorphism [i.e., not just the

Ẑ×-orbit of this isomorphism!] is immune to the various automorphisms
of the monoids “(−)×μ” which, from the point of view of the multiradial
formulation to be discussed in Corollary 2.3 below, arise from isomor-
phisms of coric data.

Put another way, this “immunity” may be thought of as a sort of decoupling of the
“geometric” [i.e., in the sense of the geometric fundamental group Δv ⊆ Πv] and
“base-field-theoretic” [i.e., associated to the local absolute Galois group Πv � Gv]
data which allows one to treat the exterior cyclotome Πμ — which, a priori, “looks
base-field-theoretic” — as being part of the “geometric” data. From the point of
view of the multiradial formulation to be discussed in Corollary 2.3 below [cf. also
the discussion of [IUTchII], Remark 1.12.2, (vi)], this decoupling may be thought
of as a sort of splitting into purely radial and purely coric components — i.e.,
with respect to which Πμ is “purely radial”, while the various monoids “(−)×μ”
are “purely coric”.

(iii) Note that the immunity to automorphisms of the monoids “(−)×μ” dis-

cussed in (ii) lies in stark contrast to the Ẑ×-indeterminacies that arise in the case
of the cyclotomic rigidity isomorphisms constructed from MLF-Galois pairs in a
fashion that makes essential use of the monoids “(−)×μ”, as discussed in [IUTchII],
Corollary 1.11; [IUTchII], Remark 1.11.3. In the following discussion, let us write
“O×μ” for the various monoids “(−)×μ” that occur in the situation of Theorem

2.2; also, we shall use similar notation “Oμ”, “O×”, “O�”, “Ogp”, “Oĝp” [cf. the
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notational conventions of [IUTchII], Example 1.8, (iv), (vii)]. Thus, we have a
diagram

Oμ ⊆ O× ⊆ O� ⊆ Ogp ⊆ Oĝp

↘
⏐⏐�
O×μ

of natural morphisms between monoids equipped with Πv-actions. Relative to
this notation, the essential input data for the cyclotomic rigidity isomorphism con-
structed from an MLF-Galois pair is given by “O�” [cf. [IUTchII], Corollary 1.11,

(a)]. On the other hand — unlike the case with Oμ — a Ẑ×-indeterminacy act-

ing on O×μ does not lie under an identity action on O×! That is to say, a Ẑ×-
indeterminacy acting on O×μ can only be lifted naturally to Ẑ×-indeterminacies on

O×, Oĝp [cf. Fig. 2.1 below; [IUTchII], Corollary 1.11, (a), in the case where one

takes “Γ” to be Ẑ×; [IUTchII], Remark 1.11.3, (ii)]. In the presence of such Ẑ×-
indeterminacies, one can only recover the Ẑ×-orbit of the MLF-Galois-pair-theoretic
cyclotomic rigidity isomorphism.

Ẑ× � Ẑ× � Ẑ× �

O×μ � O× ⊆ O� ⊆ Ogp ⊆ Oĝp

(⊇ Oμ)

Fig. 2.1: Induced Ẑ×-indeterminacies in the case of
MLF-Galois pair cyclotomic rigidity

id � Ẑ× �

Πμ
∼→ Oμ → O×μ

Fig. 2.2: Insulation from Ẑ×-indeterminacies in the case of
mono-theta-theoretic cyclotomic rigidity

(iv) Thus, in summary, [cf. Fig. 2.2 above]

mono-theta-theoretic cyclotomic rigidity plays an essential role in
the theory of the present §2 — and, indeed, in the theory of the present
series of papers! — in that it serves to insulate the étale theta function

from the Ẑ×-indeterminacies which act on the coric log-shells [i.e., the
various monoids “(−)×μ”].

The techniques that underlie the resultingmultiradiality of theta monoids [cf. Corol-
lary 2.3 below], cannot, however, be applied immediately to the case of Gaussian
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monoids. That is to say, the corresponding multiradiality of Gaussian monoids, to
be discussed in §3 below, requires one to apply the theory of log-shells developed
in §1 [cf. [IUTchII], Remark 2.9.1, (iii); [IUTchII], Remark 3.4.1, (ii); [IUTchII],
Remark 3.7.1]. On the other hand, as we shall see in §3 below, the multiradiality
of Gaussian monoids depends in an essential way on the multiradiality of theta
monoids discussed in the present §2 as a sort of “essential first step” constituted by
the decoupling discussed in (ii) above. Indeed, if one tries to consider the Kummer

theory of the theta values [i.e., the “q
j2

v
” — cf. [IUTchII], Remark 2.5.1, (i)] just

as elements of the base field — i.e., without availing oneself of the theory of the étale
theta function — then it is difficult to see how to rigidify the cyclotomes involved
by any means other than the theory of MLF-Galois pairs discussed in (iii) above.
But, as discussed in (iii) above, this approach to cyclotomic rigidity gives rise to

Ẑ×-indeterminacies — i.e., to confusion between the theta values “q
j2

v
” and their

Ẑ×-powers, which is unacceptable from the point of view of the theory of the present
series of papers! For another approach to understanding the indispensability of the
multiradiality of theta monoids, we refer to Remark 2.2.2 below.

Remark 2.2.2.

(i) One way to understand the very special role played by the theta values
[i.e., the values of the theta function] in the theory of the present series of papers
is to consider the following naive question:

Can one develop a similar theory to the theory of the present series of
papers in which one replaces the Θ×μ

gau-link

q �→ q

(
12
...

(l�)2

)

[cf. [IUTchII], Remark 4.11.1] by a correspondence of the form

q �→ qλ

— where λ is some arbitrary positive integer?

The answer to this question is “no”. Indeed, such a correspondence does not
come equipped with the extensive multiradiality machinery — such as mono-
theta-theoretic cyclotomic rigidity and the splittings determined by zero-
labeled evaluation points — that has been developed for the the étale theta
function. For instance, the lack of mono-theta-theoretic cyclotomic rigidity means
that one does not have an apparatus for insulating the Kummer classes of such

a correspondence from the Ẑ×-indeterminacies that act on the various monoids
“(−)×μ” [cf. the discussion of Remark 2.2.1, (iv)]. The splittings determined
by zero-labeled evaluation points also play an essential role in decoupling these
monoids “(−)×μ” — i.e., the coric log-shells — from the “purely radial” [or,
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put another way, “value group”] portion of such a correspondence “q �→ qλ” [cf.

Remark 2.2.1, (ii); [IUTchII], Remark 1.12.2, (vi)]. Note, moreover, that if one tries
to realize such a multiradial splitting via evaluation — i.e., in accordance with the
principle of “Galois evaluation” [cf. the discussion of [IUTchII], Remark 1.12.4]
— for a correspondence “q �→ qλ” by, for instance, taking λ to be one of the “j2”

[where j is a positive integer] that appears as a value of the étale theta function, then
one must contend with issues of symmetry between the zero-labeled evaluation
point and the evaluation point corresponding to λ — i.e., symmetry issues that
are resolved in the theory of the present series of papers by means of the theory
surrounding the F�±

l -symmetry [cf. the discussion of [IUTchII], Remarks 2.6.2,
3.5.2]. As discussed in [IUTchII], Remark 2.6.3, this sort of situation leads to
numerous conditions on the collection of evaluation points under consideration. In
particular, ultimately, it is difficult to see how to construct a theory as in the present
series of papers for any collection of evaluation points other than the collection that
is in fact adopted in the definition of the Θ×μ

gau-link.

(ii) As discussed in Remark 2.2.1, (iv), we shall be concerned, in §3 below, with
developing multiradial formulations for Gaussian monoids. These multiradial for-
mulations will be subject to certain indeterminacies, which — although sufficiently
mild to allow the execution of the volume computations that will be the subject of
[IUTchIV] — are, nevertheless, substantially more severe than the indeterminacies
that occur in the multiradial formulation given for theta monoids in the present §2
[cf. Corollary 2.3 below]. Indeed, the indeterminacies in the multiradial formulation
given for theta monoids in the present §2 — which essentially consist of multiplica-
tion by roots of unity [cf. [IUTchII], Proposition 3.1, (i)] — are essentially negligible
and may be regarded as a consequence of the highly nontrivial Kummer theory
surrounding mono-theta environments [cf. Proposition 2.1, (iii); Theorem 2.2,
(ii)], which, as discussed in Remark 2.2.1, (iv), cannot be mimicked for “theta val-
ues regarded just as elements of the base field”. That is to say, the quite exact
nature of the multiradial formulation for theta monoids — i.e., which contrasts
sharply with the somewhat approximate nature of the multiradial formulation
for Gaussian monoids to be developed in §3 — constitutes another important ingre-
dient of the theory of the present paper that one must sacrifice if one attempts to
work with correspondences q �→ qλ as discussed in (i), i.e., correspondences which

do not come equipped with the extensive multiradiality machinery that arises as a
consequence of the theory of the étale theta function developed in [EtTh].

We conclude the present §3 with the following multiradial interpretation [cf.
[IUTchII], Remark 4.1.1, (iii); [IUTchII], Remark 4.3.1] — in the spirit of the étale-
picture of D-Θ±ellNF-Hodge theaters of [IUTchII], Corollary 4.11, (ii) — of the
theory surrounding Theorem 2.2.

Corollary 2.3. (Étale-picture of Multiradial Theta Monoids) In the
notation of Theorem 2.2, let

{n,mHT Θ±ellNF}n,m∈Z

be a collection of distinct Θ±ellNF-Hodge theaters [relative to the given initial
Θ-data] — which we think of as arising from a Gaussian log-theta-lattice [cf.
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Definition 1.4]. Write n,mHT D-Θ±ellNF for the D-Θ±ellNF-Hodge theater associated

to n,mHT Θ±ellNF. Consider the radial environment [cf. [IUTchII], Example 1.7,
(ii)] defined as follows. We define a collection of radial data

†R = (†HT D-Θ±ellNF,F�
env(

†D>),
†Rbad,F�×μ


 (†D�

),F�×μ

env (†D>)
∼→ F�×μ


 (†D�

))

to consist of

(aR) a D-Θ±ellNF-Hodge theater †HT D-Θ±ellNF;

(bR) the F�-prime-strip F�
env(

†D>) associated to †HT D-Θ±ellNF [cf. Proposi-
tion 2.1, (ii)];

(cR) the data (av), (bv), (cv), (dv) of Theorem 2.2, (ii), for v ∈ V
bad, which

we denote by †Rbad;

(dR) the F�×μ-prime-strip F�×μ

 (†D�


) associated to †HT D-Θ±ellNF [cf. The-

orem 1.5, (iii)];

(eR) the full poly-isomorphism of F�×μ-prime-strips F�×μ
env (†D>)

∼→ F�×μ

 (†D�


).

We define a morphism between two collections of radial data †R → ‡R [where we
apply the evident notational conventions with respect to “†” and “‡”] to consist of
data as follows:

(aMorR) an isomorphism of D-Θ±ellNF-Hodge theaters †HT D-Θ±ellNF ∼→ ‡HT D-Θ±ellNF;

(bMorR) the isomorphism of F�-prime-strips F�
env(

†D>)
∼→ F�

env(
‡D>) induced

by the isomorphism of (aMorR);

(cMorR) the isomorphism between collections of data †Rbad ∼→ ‡Rbad induced by
the isomorphism of (aMorR);

(dMorR) an isomorphism of F�×μ-prime-strips F�×μ

 (†D�


)
∼→ F�×μ


 (‡D�

);

(eMorR) we observe that the isomorphisms of (bMorR) and (dMorR) are necessarily
compatible with the poly-isomorphisms of (eR) for “†”, “‡”.

We define a collection of coric data

†C = (†D�,F�×μ

 (†D�))

to consist of

(aC) a D�-prime-strip †D�;

(bC) the F�×μ-prime-strip F�×μ

 (†D�) associated to †D� [cf. Theorem 1.5,

(iii)].
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We define a morphism between two collections of coric data †C → ‡C [where we
apply the evident notational conventions with respect to “†” and “‡”] to consist of
data as follows:

(aMorC) an isomorphism of D�-prime-strips †D� ∼→ ‡D�;

(bMorC) an isomorphism of F�×μ-prime-strips F�×μ

 (†D�) ∼→ F�×μ


 (‡D�) that

induces the isomorphism †D� ∼→ ‡D� on associated D�-prime-strips of
(aMorC).

The radial algorithm is given by the assignment

†R = (†HT D-Θ±ellNF,F�
env(

†D>),
†Rbad,F�×μ


 (†D�

),F�×μ

env (†D>)
∼→ F�×μ


 (†D�

))

�→ †C = (†D�

,F�×μ


 (†D�

))

— together with the assignment on morphisms determined by the data of (dMorR).
Then:

(i) The functor associated to the radial algorithm defined above is full and
essentially surjective. In particular, the radial environment defined above is
multiradial.

(ii) Each D-Θ±ellNF-Hodge theater n,mHT D-Θ±ellNF, for n,m ∈ Z, defines, in
an evident way, an associated collection of radial data n,mR. The poly-isomorphisms
induced by the vertical arrows of the Gaussian log-theta-lattice under consid-
eration [cf. Theorem 1.5, (i)] induce poly-isomorphisms of radial data . . .

∼→ n,mR
∼→ n,m+1R

∼→ . . . . Write
n,◦R

for the collection of radial data obtained by identifying the various n,mR, for m ∈ Z,
via these poly-isomorphisms and n,◦C for the collection of coric data associated, via
the radial algorithm defined above, to the radial data n,◦R. In a similar vein,
the horizontal arrows of the Gaussian log-theta-lattice under consideration induce
full poly-isomorphisms . . .

∼→ n,mD�



∼→ n+1,mD�



∼→ . . . of D�-prime-strips [cf.

Theorem 1.5, (ii)]. Write
◦,◦C

for the collection of coric data obtained by identifying the various n,◦C, for n ∈ Z,
via these poly-isomorphisms. Thus, by applying the radial algorithm defined above to
each n,◦R, for n ∈ Z, we obtain a diagram — i.e., an étale-picture of radial data
— as in Fig. 2.3 below. This diagram satisfies the important property of admitting
arbitrary permutation symmetries among the spokes [i.e., the labels n ∈ Z]
and is compatible, in the evident sense, with the étale-picture of D-Θ±ellNF-Hodge
theaters of [IUTchII], Corollary 4.11, (ii).

(iii) The [poly-]isomorphisms of F�×μ-prime-strips of/induced by (eR), (bMorR),
(dMorR) [cf. also (eMorR)] are compatible, relative to the Kummer isomor-
phisms of Proposition 2.1, (ii) [cf. also Proposition 2.1, (vi)], and Theorem 1.5,
(iii), with the poly-isomorphisms — arising from the horizontal arrows of the
Gaussian log-theta-lattice — of Theorem 1.5, (ii).
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(iv) At v ∈ V
bad, the isomorphism †Rbad ∼→ ‡Rbad of (cMorR) is compat-

ible [cf. the final portion of Theorem 2.2, (ii)], relative to the Kummer iso-
morphisms and poly-isomorphisms of projective systems of mono-theta
environments discussed in Proposition 2.1, (ii), (iii) [cf. also Proposition 2.1,
(vi); the second display of Theorem 2.2, (ii)], and Theorem 1.5, (iii), with the
poly-isomorphisms — arising from the horizontal arrows of the Gaussian log-
theta-lattice — of Theorem 1.5, (ii).

Proof. The various assertions of Corollary 2.3 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ©

F�
env(

n,◦D>)
+ n,◦Rbad + . . .

. . .
|

. . .

F�
env(

n′,◦D>)

+ n′,◦Rbad + . . .

. . .

—
F�×μ

 (◦,◦D�


)

|

— F�
env(

n′′,◦D>)

+ n′′,◦Rbad + . . .

. . .

F�
env(

n′′′,◦D>)

+ n′′′,◦Rbad + . . .

Fig. 2.3: Étale-picture of radial data

Remark 2.3.1.

(i) In the context of the étale-picture of Fig. 2.3, it is of interest to recall the
point of view of the discussion of [IUTchII], 1.12.5, (i), (ii), concerning the analogy
between étale-pictures in the theory of the present series of papers and the polar
coordinate representation of the classical Gaussian integral.

(ii) The étale-picture discussed in Corollary 2.3, (ii), may be thought of as
a sort of canonical splitting of the portion of the Gaussian log-theta-lattice
under consideration that involves theta monoids [cf. the discussion of [IUTchI],
§I1, preceding Theorem A].

(iii) The portion of the multiradiality discussed in Corollary 2.3, (iv), at

v ∈ V
bad corresponds, in essence, to the multiradiality discussed in [IUTchII],

Corollary 1.12, (iii); [IUTchII], Proposition 3.4, (i).
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Definition 2.4.

(i) Let
‡F� = {‡F�

v }v∈V

be an F�-prime-strip. Then recall from the discussion of [IUTchII], Definition 4.9,

(ii), that at each w ∈ V
bad, the splittings of the split Frobenioid ‡F�

w determine

submonoids “O⊥(−) ⊆ O�(−)”, as well as quotient monoids “O⊥(−) � O�(−)”
[i.e., by forming the quotient of “O⊥(−)” by its torsion subgroup]. In a similar vein,

for each w ∈ V
good, the splitting of the split Frobenioid determined by [indeed,

“constituted by”, when w ∈ V
good ⋂

V
non — cf. [IUTchI], Definition 5.2, (ii)] ‡F�

w

determines a submonoid “O⊥(−) ⊆ O�(−)” whose subgroup of units is trivial

[cf. [IUTchII], Definition 4.9, (iv), when w ∈ V
good ⋂

V
non]; in this case, we set

O�(−) def
= O⊥(−). Write

‡F�⊥ = {‡F�⊥
v }v∈V;

‡F�� = {‡F��
v }v∈V

for the collections of data obtained by replacing the split Frobenioid portion of
each ‡F�

v by the Frobenioids determined, respectively, by the subquotient monoids

“O⊥(−) ⊆ O�(−)”, “O�(−)” just defined.

(ii) We define [in the spirit of [IUTchII], Definition 4.9, (vii)] an F�⊥-prime-
strip to be a collection of data

∗F�⊥ = {∗F�⊥
v }v∈V

that satisfies the following conditions: (a) if v ∈ V
non, then ∗F�⊥

v is a Frobenioid

that is isomorphic to ‡F�⊥
v [cf. (i)]; (b) if v ∈ V

arc, then ∗F�⊥
v consists of a

Frobenioid and an object of TM� [cf. [IUTchI], Definition 5.2, (ii)] such that ∗F�⊥
v

is isomorphic to ‡F�⊥
v . In a similar vein, we define an F��-prime-strip to be a

collection of data
∗F�� = {∗F��

v }v∈V

that satisfies the following conditions: (a) if v ∈ V
non, then ∗F��

v is a Frobenioid

that is isomorphic to ‡F��
v [cf. (i)]; (b) if v ∈ V

arc, then ∗F��
v consists of a

Frobenioid and an object of TM� [cf. [IUTchI], Definition 5.2, (ii)] such that ∗F��
v

is isomorphic to ‡F��
v . A morphism of F�⊥- (respectively, F��-) prime-strips

is defined to be a collection of isomorphisms, indexed by V, between the various
constituent objects of the prime-strips [cf. [IUTchI], Definition 5.2, (iii)].

(iii) We define [in the spirit of [IUTchII], Definition 4.9, (viii)] an F�⊥-prime-
strip to be a collection of data

∗F�⊥ = (∗C�, Prime(∗C�) ∼→ V, ∗F�⊥, {∗ρv}v∈V)

satisfying the conditions (a), (b), (c), (d), (e), (f) of [IUTchI], Definition 5.2, (iv),
for an F�-prime-strip, except that the portion of the collection of data constituted
by an F�-prime-strip is replaced by an F�⊥-prime-strip. [We leave the routine
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details to the reader.] In a similar vein, we define an F��-prime-strip to be a
collection of data

∗F�� = (∗C�, Prime(∗C�) ∼→ V, ∗F��, {∗ρv}v∈V)

satisfying the conditions (a), (b), (c), (d), (e), (f) of [IUTchI], Definition 5.2, (iv),
for an F�-prime-strip, except that the portion of the collection of data constituted
by an F�-prime-strip is replaced by an F��-prime-strip. [We leave the routine
details to the reader.] A morphism of F�⊥- (respectively, F��-) prime-strips is
defined to be an isomorphism between collections of data as discussed above.

Remark 2.4.1.

(i) Thus, by applying the constructions of Definition 2.4, (i), to the [underlying
F�-prime-strips associated to the] F�-prime-strips “F�

env(
†D>)” that appear in

Corollary 2.3, one may regard the multiradiality of Corollary 2.3, (i), as implying
a corresponding multiradiality assertion concerning the associated F�⊥-prime-
strips “F�⊥

env(
†D>)”.

(ii) Suppose that we are in the situation discussed in (i). Then at v ∈ V
bad, the

submonoids “O⊥(−) ⊆ O�(−)” may be regarded, in a natural way [cf. Proposition
2.1, (ii); Theorem 2.2, (ii)], as submonoids of the monoids “∞Ψ⊥

env(
†D>)v” of The-

orem 2.2, (ii), (av). Moreover, the resulting inclusion of monoids is compatible

with the multiradiality discussed in (i) and the multiradiality of the data “†Rbad”
of Corollary 2.3, (cR), that is implied by the multiradiality of Corollary 2.3, (i).
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Section 3: Multiradial Logarithmic Gaussian Procession Monoids

In the present §3, we apply the theory developed thus far in the present series
of papers to give [cf. Theorem 3.11 below] multiradial algorithms for a slightly
modified version of the Gaussian monoids discussed in [IUTchII], §4. This modi-
fication revolves around the combinatorics of processions, as developed in [IUTchI],
§4, §5, §6, and is necessary in order to establish the desired multiradiality. At a
more concrete level, these combinatorics require one to apply the theory of tensor
packets [cf. Propositions 3.1, 3.2, 3.3, 3.4, 3.7, 3.9, below]. Finally, we observe
in Corollary 3.12 that these multiradial algorithms give rise to certain estimates
concerning the log-volumes of the logarithmic Gaussian procession monoids
that occur. This observation forms the starting point of the theory to be developed
in [IUTchIV].

In the following discussion, we assume that we have been given initial Θ-data
as in [IUTchI], Definition 3.1. Also, we shall write

VQ
def
= V(Q)

[cf. [IUTchI], §0] and apply the notation of Definition 1.1 of the present paper. We
begin by discussing the theory of tensor packets, which may be thought of as a
sort of amalgamation of the theory of log-shells developed in §1 with the theory of
processions developed in [IUTchI], §4, §5, §6.

Proposition 3.1. (Local Holomorphic Tensor Packets) Let

{αF}α∈A =
{
{αFv}v∈V

}
α∈A

be an n-capsule, with index set A, of F-prime-strips [relative to the given initial
Θ-data — cf. [IUTchI], §0; [IUTchI], Definition 5.2, (i)]. Then [cf. the notation
of Definition 1.1, (iii)] we shall refer to the correspondence

VQ � vQ �→ log(αFvQ
)

def
=

⊕
V � v | vQ

log(αFv)

as the [1-]tensor packet associated to the F-prime-strip αF and to the correspon-
dence

VQ � vQ �→ log(AFvQ
)

def
=

⊗
α∈A

log(αFvQ)

— where the tensor product is to be understood as a tensor product of topological
modules — as the [n-]tensor packet associated to the collection of F-prime-strips
{αF}α∈A. Then:

(i) (Ring Structures) The topological field structures on the various
log(αFv) [cf. Definition 1.1, (i), (ii), (iii)], for α ∈ A, determine a topolog-

ical ring structure on log(AFvQ
) with respect to which log(AFvQ

) decomposes,
uniquely, as a direct sum of topological fields, in a fashion that is compatible,
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for α ∈ A, with the natural action of the topological group αΠv [where V � v | vQ]
on the direct summand with subscript v of the factor labeled α.

(ii) (Integral Structures) Fix elements α ∈ A, v ∈ V, vQ ∈ VQ such that
v | vQ. Relative to the tensor product in the above definition of log(AFvQ), write

log(A,αFv)
def
= log(αFv) ⊗

{ ⊗
β∈A\{α}

log(βFvQ)
}
⊆ log(AFvQ

)

for the topological submodule determined by the tensor product of the factors labeled
by β ∈ A \ {α} with the tensor product of the direct summand with subscript v of
the factor labeled α. Then log(A,αFv) forms a direct summand of the topological

ring log(AFvQ); the topological ring structure on log(A,αFv) decomposes, uniquely,
as a direct sum of topological fields. Moreover, by forming the tensor product
with “1’s” in the factors labeled by β ∈ A \ {α}, one obtains a natural injective
homomorphism of topological rings

log(αFv) → log(A,αFv)

that induces an isomorphism of the domain onto each of the direct summand
topological fields of the codomain. In particular, the integral structure

Ψlog(αFv)
def
= Ψlog(αFv)

⋃
{0} ⊆ log(αFv)

[cf. the notation of Definition 1.1, (i), (ii)] determines integral structures on
each of the direct summand topological fields of log(A,αFv), log(

AFvQ).

Proof. The various assertions of Proposition 3.1 follow immediately from the
definitions and the references quoted in the statements of these assertions [cf. also
Remark 3.1.1, (i), below]. ©

Remark 3.1.1.

(i) Let v ∈ V. In the notation of [IUTchI], Definition 3.1, write k
def
= Kv; let k

be an algebraic closure of k. Then, roughly speaking, in the notation of Proposition
3.1,

log(αFv)
∼→ k; Ψlog(αFv)

∼→ Ok;

log(A,αFv)
∼→

⊗
k

∼→
⊕

k ⊇
⊕

Ok

— i.e., one verifies immediately that each topological field log(αFv) is isomorphic to

k; each log(A,αFv) is a tensor product [say, over Q] of copies of k, hence decomposes

as a direct sum of copies of k; each Ψlog(αFv) is a copy of the set [i.e., a ring, when

v ∈ V
non] of integers Ok ⊆ k. In particular, the “integral structures” discussed in

the final portion of Proposition 3.1, (ii), correspond to copies of Ok contained in

copies of k.

(ii) Ultimately, for v ∈ V, we shall be interested [cf. Proposition 3.9, (i), (ii),
below] in considering log-volumes on the portion of log(αFv) corresponding to
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Kv. On the other hand, let us recall that we do not wish to consider all of the
valuations in V(K). That is to say, we wish to restrict ourselves to considering the

subset V ⊆ V(K), equipped with the natural bijection V
∼→ Vmod [cf. [IUTchI],

Definition 3.1, (e)], which we wish to think of as a sort of “local analytic section” [cf.
the discussion of [IUTchI], Remark 4.3.1, (i)] of the natural morphism Spec(K)→
Spec(F ) [or, perhaps more precisely, Spec(K)→ Spec(Fmod)]. In particular, it will
be necessary to consider these log-volumes on the portion of log(αFv) corresponding

to Kv relative to the weight [Kv : (Fmod)v]
−1, where we write v ∈ Vmod for

the element determined [via the natural bijection just discussed] by v [cf. the
discussion of [IUTchI], Example 3.5, (i), (ii), (iii), where similar factors appear].
When, moreover, we consider direct sums over all v ∈ V lying over a given vQ ∈ VQ

as in the case of log(αFvQ
), it will be convenient to use the normalized weight

1

[Kv : (Fmod)v] ·
( ∑

Vmod�w|vQ
[(Fmod)w : QvQ ]

)

— i.e., normalized so that multiplication by pvQ affects log-volumes by addition or
subtraction [that is to say, depending on whether vQ ∈ Varc

Q or vQ ∈ Vnon
Q ] of the

quantity log(pvQ
) ∈ R. In a similar vein, when we consider log-volumes on the

portion of log(AFvQ
) corresponding to the tensor product of various Kvα

, where
V � vα | vQ, it will be necessary to consider these log-volumes relative to the
weight

1∏
α∈A

[Kvα
: (Fmod)vα ]

— where we write vα ∈ Vmod for the element determined by vα. When, moreover,
we consider direct sums over all possible choices for the data {vα}α∈A, it will be
convenient to use the normalized weight

1( ∏
α∈A

[Kvα
: (Fmod)vα ]

)
·
{ ∑

{wα}α∈A

( ∏
α∈A

[(Fmod)wα : QvQ
]
)}

— where the sum is over all collections {wα}α∈A of [not necessarily distinct!] el-
ements wα ∈ Vmod lying over vQ and indexed by α ∈ A. Again, these normalized
weights are normalized so that multiplication by pvQ affects log-volumes by addition
or subtraction [that is to say, depending on whether vQ ∈ Varc

Q or vQ ∈ Vnon
Q ] of the

quantity log(pvQ) ∈ R.

Remark 3.1.2. The constructions involving local holomorphic tensor packets
given in Proposition 3.1 may be applied to the capsules that appear in the various
F-prime-strip processions obtained by considering the evident F-prime-strip
analogues [cf. [IUTchI], Remark 5.6.1; [IUTchI], Remark 6.12.1] of the holomor-
phic processions discussed in [IUTchI], Proposition 4.11, (i); [IUTchI], Proposi-
tion 6.9, (i).



74 SHINICHI MOCHIZUKI

Proposition 3.2. (Local Mono-analytic Tensor Packets) Let

{αD�}α∈A =
{
{αD�

v }v∈V

}
α∈A

be an n-capsule, with index set A, of D�-prime-strips [relative to the given initial
Θ-data — cf. [IUTchI], §0; [IUTchI], Definition 4.1, (iii)]. Then [cf. the notation
of Proposition 1.2, (vi), (vii)] we shall refer to the correspondence

VQ � vQ �→ log(αD�
vQ
)

def
=

⊕
V � v | vQ

log(αD�
v )

as the [1-]tensor packet associated to the D�-prime-strip αD� and to the corre-
spondence

VQ � vQ �→ log(AD�
vQ
)

def
=

⊗
α∈A

log(αD�
vQ
)

— where the tensor product is to be understood as a tensor product of topological
modules — as the [n-]tensor packet associated to the collection of D�-prime-strips
{αD�}α∈A. For α ∈ A, v ∈ V, vQ ∈ VQ such that v | vQ, we shall write

log(A,αD�
v ) ⊆ log(AD�

vQ
)

for the topological submodule determined by the tensor product of the factors labeled
by β ∈ A \ {α} with the tensor product of the direct summand with subscript v of
the factor labeled α [cf. Proposition 3.1, (ii)]. If the capsule of D�-prime-strips
{αD�}α∈A arises from a capsule of F�×μ-prime-strips

{αF�×μ}α∈A =
{
{αF�×μ

v }v∈V

}
α∈A

[relative to the given initial Θ-data — cf. [IUTchI], §0; [IUTchII], Definition 4.9,
(vii)], then we shall use similar notation to the notation just introduced concerning
{αD�}α∈A to denote objects associated to {αF�×μ}α∈A, i.e., by replacing “D�”
in the above notational conventions by “F�×μ” [cf. also the notation of Proposition
1.2, (vi), (vii)]. Then:

(i) (Mono-analytic/Holomorphic Compatibility) Suppose that the cap-
sule of D�-prime-strips {αD�}α∈A arises from the capsule of F-prime-strips {αF}α∈A

of Proposition 3.1; write {αF�×μ}α∈A for the capsule of F�×μ-prime-strips associ-

ated to {αF}α∈A. Then the poly-isomorphisms “log(†D�
v )

∼→ log(†F�×μ
v )

∼→ log(†Fv)”

of Proposition 1.2, (vi), (vii), induce natural poly-isomorphisms of topologi-
cal modules

log(αD�
vQ
)

∼→ log(αF�×μ
vQ

)
∼→ log(αFvQ); log(AD�

vQ
)

∼→ log(AF�×μ
vQ

)
∼→ log(AFvQ)

log(A,αD�
v )

∼→ log(A,αF�×μ
v )

∼→ log(A,αFv)

between the various “mono-analytic” tensor packets of the present Proposition
3.2 and the “holomorphic” tensor packets of Proposition 3.1.
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(ii) (Integral Structures) If V � v | vQ ∈ Vnon
Q , then the mono-analytic

log-shells “I†D�
v
” of Proposition 1.2, (vi), determine topological submodules

I(αD�
vQ
) ⊆ log(αD�

vQ
); I(AD�

vQ
) ⊆ log(AD�

vQ
); I(A,αD�

v ) ⊆ log(A,αD�
v )

— which may be regarded as integral structures on the Q-spans of these sub-
modules. If V � v | vQ ∈ Varc

Q , then by regarding the mono-analytic log-shell
“I†D�

v
” of Proposition 1.2, (vii), as the “closed unit ball” of a Hermitian metric on

“log(†D�
v )”, and considering the induced direct sum Hermitian metric on log(αD�

vQ
),

together with the induced tensor product Hermitian metric on log(AD�
vQ
), one ob-

tains Hermitian metrics on log(αD�
vQ
), log(AD�

vQ
), and log(A,αD�

v ), whose associ-
ated unit closed balls

I(αD�
vQ
) ⊆ log(αD�

vQ
); I(AD�

vQ
) ⊆ log(AD�

vQ
); I(A,αD�

v ) ⊆ log(A,αD�
v )

may be regarded as integral structures on log(αD�
vQ
), log(AD�

vQ
), and log(A,αD�

v ),

respectively. For arbitrary V � v | vQ ∈ VQ, we shall denote by “IQ((−))” the Q-
span of “I((−))”; also, we shall apply this notation involving “I((−))”, “IQ((−))”
with “D�” replaced by “F” or “F�×μ” for the various objects obtained from the
“D�-versions” discussed above by applying the natural poly-isomorphisms of
(i).

Proof. The various assertions of Proposition 3.2 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 3.2.1. The issue of estimating the discrepancy between the holo-
morphic integral structures of Proposition 3.1, (ii), and the mono-analytic in-
tegral structures of Proposition 3.2, (ii), will form one of the main topics to be
discussed in [IUTchIV] — cf. also Remark 3.9.1 below.

Remark 3.2.2. The constructions involving local mono-analytic tensor pack-
ets given in Proposition 3.2 may be applied to the capsules that appear in the
various D�-prime-strip processions — i.e., mono-analytic processions —
discussed in [IUTchI], Proposition 4.11, (ii); [IUTchI], Proposition 6.9, (ii).

Proposition 3.3. (Global Tensor Packets) Let

†HT Θ±ellNF

be a Θ±ellNF-Hodge theater [relative to the given initial Θ-data] — cf. [IUTchI],

Definition 6.13, (i). Thus, †HT Θ±ellNF determines ΘNF- and Θ±ell-Hodge theaters
†HT ΘNF, †HT Θ±ell

as in [IUTchII], Corollary 4.8. Let {αF}α∈A be an n-capsule
of F-prime-strips as in Proposition 3.1. Suppose, further, that A is a subset of
the index set J that appears in the ΘNF-Hodge theater †HT ΘNF, and that, for each
α ∈ A, we are given a log-link

αF
log−→ †Fα
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— i.e., a poly-isomorphism of F-prime-strips log(αF)
∼→ †Fα [cf. Definition

1.1, (iii)]. Next, recall the field †M
�
mod discussed in [IUTchII], Corollary 4.8, (i);

thus, [cf. [IUTchII], Corollary 4.8, (ii)], one also has, for j ∈ J , a labeled version

(†M
�
mod)j of this field. We shall refer to

(†M
�
mod)A

def
=

⊗
α∈A

(†M
�
mod)α

— where the tensor product is to be understood as a tensor product of modules —
as the global [n-]tensor packet associated to the subset A ⊆ J and the Θ±ellNF-

Hodge theater †HT Θ±ellNF.

(i) (Ring Structures) The field structure on the various (†M
�
mod)α, for

α ∈ A, determine a ring structure on (†M
�
mod)A with respect to which (†M

�
mod)A

decomposes, uniquely, as a direct sum of number fields. Moreover, the various
localization functors “(†F�

mod)j → †Fj” considered in [IUTchII], Corollary
4.8, (iii), determine, by composing with the given log-links, a natural injective
localization ring homomorphism

(†M
�
mod)A → log(AFVQ

)
def
=

∏
vQ∈VQ

log(AFvQ
)

to the product of the local holomorphic tensor packets considered in Proposition 3.1.

(ii) (Integral Structures) Fix an element α ∈ A. Then by forming the tensor
product with “1’s” in the factors labeled by β ∈ A \ {α}, one obtains a natural
ring homomorphism

(†M
�
mod)α → (†M

�
mod)A

that induces an isomorphism of the domain onto a subfield of each of the direct
summand number fields of the codomain. For each vQ ∈ VQ, this homomorphism is
compatible, in the evident sense, relative to the localization homomorphism of
(i), with the natural homomorphism of topological rings considered in Proposition
3.1, (ii). Moreover, for each vQ ∈ Vnon

Q , the composite of the above displayed homo-
morphism with the component at vQ of the localization homomorphism of (i) maps

the ring of integers of the number field (†M
�
mod)α into the submodule constituted by

the integral structure on log(AFvQ) considered in Proposition 3.1, (ii); for each
vQ ∈ Varc

Q , the composite of the above displayed homomorphism with the component
at vQ of the localization homomorphism of (i) maps the set of archimedean integers
[i.e., elements of absolute value ≤ 1 at all archimedean primes] of the number field

(†M
�
mod)α into the direct product of subsets constituted by the integral structures

considered in Proposition 3.1, (ii), on the various direct summand topological fields
of log(AFvQ).

Proof. The various assertions of Proposition 3.3 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 3.3.1. One may perform analogous constructions to the constructions

of Proposition 3.3 for the fields “M
�
mod(

†D�)j” of [IUTchII], Corollary 4.7, (ii) [cf.
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also the localization functors of [IUTchII], Corollary 4.7, (iii)], constructed from

the associated D-Θ±ellNF-Hodge theater †HT D-Θ±ellNF. These constructions are
compatible with the corresponding constructions of Proposition 3.3, in the evident
sense, relative to the various labeled Kummer-theoretic isomorphisms of [IUTchII],
Corollary 4.8, (ii). We leave the routine details to the reader.

Remark 3.3.2.

(i) One may consider the image of the localization homomorphism of Propo-
sition 3.3, (i), in the case of the various local holomorphic tensor packets aris-
ing from processions, as discussed in Remark 3.1.2. Indeed, at the level of the
labels involved, this is immediate in the case of the “F�

l -processions” of [IUTchI],
Proposition 4.11, (i). On the other hand, in the case of the “|Fl|-processions” of
[IUTchI], Proposition 6.9, (i), this may be achieved by applying the identifying
isomorphisms between the zero label 0 ∈ |Fl| and the diagonal label 〈F�

l 〉 associated
to F�

l discussed in [the final display of] [IUTchII], Corollary 4.6, (iii).

(ii) In a similar vein, one may compose the “D-Θ±ellNF-Hodge theater version”
discussed in Remark 3.3.1 of the localization homomorphism of Proposition 3.3,
(i), with the product over vQ ∈ VQ of the inverses of the upper right-hand dis-
played isomorphisms at vQ of Proposition 3.2, (i), and then consider the image of
this composite morphism in the case of the various local mono-analytic tensor
packets arising from processions, as discussed in Remark 3.2.2. Just as in the
holomorphic case discussed in (i), in the case of the case of the “|Fl|-processions”
of [IUTchI], Proposition 6.9, (ii), this obliges one to apply the identifying isomor-
phisms between the zero label 0 ∈ |Fl| and the diagonal label 〈F�

l 〉 associated to F�
l

discussed in [the final display of] [IUTchII], Corollary 4.5, (iii).

(iii) The various images of global tensor packets discussed in (i) and (ii) above
may be identified — i.e., in light of the injectivity of the homomorphisms applied to
construct these images — with the global tensor packets themselves. These local
holomorphic/local mono-analytic global tensor packet images will play a
central role in the development of the theory of the present §3 [cf., e.g., Proposition
3.7, below].

Remark 3.3.3. The log-shifted nature of the localization homomorphism of
Proposition 3.3, (i), will play a crucial role in the development of the theory of
present §3 — cf. the discussion of [IUTchII], Remark 4.8.2, (i), (iii).

Remark 3.3.4. Relative to the notation introduced in Propositions 3.1, 3.2, 3.3,
write

log
orb

(α(−)v)
— i.e., where “(−)” may be taken to be “F”, “D�”, or “F�×μ” — for the set of
collections of Galois-orbits [i.e., “αΠv”- or “†Gv”-orbits when v ∈ V

non — cf.
Propositions 1.2, (vi), and 3.1, (i); {1}-orbits, when v ∈ V

arc] of log(α(−)v) [cf. the
definition of “M�

orb(−)”, “M
�
orb(−)” in [IUTchII], Corollary 4.7, (i)];

log
orb

(α(−)vQ)
def
=

∏
V � v | vQ

log
orb

(α(−)v); log
orb

(α(−)VQ
)

def
=

∏
vQ∈VQ

log
orb

(α(−)vQ
)
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— where the “vQ” in the first “
def
=” is an element of VQ. Then observe that the

natural localization homomorphism

(†M
�
mod)α → log(αFVQ

)
def
=

∏
vQ∈VQ

log(αFvQ
)

[cf. Proposition 3.3, (i)] admits a natural Galois-orbit-theoretic extension

((†M�
orb)α ⊆) (†M

�
orb)α → log

orb
(αFVQ

)

[cf. the notation of [IUTchII], Corollary 4.8, (ii)] — i.e., the map of sets that assigns
to a collection of global Galois-orbits the resulting collection, at each v ∈ V, of local
Galois-orbits.

q1 � qj
2

� q(l
�)2 �

/± ↪→ /±/± ↪→ . . . ↪→ /±/± . . . /± ↪→ . . . ↪→ /±/± . . . . . . /±

S±1 S±1+1=2 S±j+1 S±1+l�=l±

Fig. 3.1: Splitting monoids of LGP-monoids acting on tensor packets

Proposition 3.4. (Local Packet-theoretic Frobenioids)

(i) (Single Packet Monoids) In the situation of Proposition 3.1, fix elements
α ∈ A, v ∈ V, vQ ∈ VQ such that v | vQ. Then by forming the image via
the natural homomorphism log(αFv) → log(A,αFv) of Proposition 3.1, (ii), the
monoid Ψlog(αFv) [cf. the notation of Definition 1.1, (i), (ii)], together with its

submonoid of units Ψ×
log(αFv)

and realification ΨR
log(αFv)

, determine monoids

Ψlog(A,αFv), Ψ×
log(A,αFv)

, ΨR
log(A,αFv)

— which are equipped with Gv(
αΠv)-actions when v ∈ V

non and, in the case of the
first displayed monoid, with a pair consisting of an Aut-holomorphic orbispace
and a Kummer structure when v ∈ V

arc. We shall think of these monoids as
[possibly realified] subquotients of

log(A,αFv)

that act [multiplicatively] on appropriate [possibly realified] subquotients of log(A,αFv).
In particular, when v ∈ V

non, the first displayed monoid, together with its αΠv-
action, determine a Frobenioid equipped with a natural isomorphism to αFv; when
v ∈ V

arc, the first displayed monoid, together with its Aut-holomorphic orbispace
and Kummer structure, determine a collection of data equipped with a natural iso-
morphism to αFv.

(ii) (Local Logarithmic Gaussian Procession Monoids) Let

‡HT Θ±ellNF log−→ †HT Θ±ellNF
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be a log-link of Θ±ellNF-Hodge theaters as in Proposition 1.3, (i) [cf. also the
situation of Proposition 3.3]. Consider the F-prime-strip processions that arise
as the F-prime-strip analogues [cf. Remark 3.1.2; [IUTchI], Remark 6.12.1] of the
holomorphic processions discussed in [IUTchI], Proposition 6.9, (i), when the
functor of [IUTchI], Proposition 6.9, (i), is applied to the Θ±-bridges associated

to †HT Θ±ellNF, ‡HT Θ±ellNF; we shall refer to such processions as “†-” or “‡-”
processions. Here, we recall that for j ∈ {1, . . . , l�}, the index set of the (j + 1)-
capsule that appear in such a procession is denoted S±j+1. Then by applying the

various constructions of “single packet monoids” given in (i) in the case of the
various capsules of F-prime-strips that appear in a holomorphic ‡-procession — i.e.,
more precisely, in the case of the label j ∈ {1, . . . , l�} [which shall occasionally
identify with its image in F�

l ⊆ |Fl|] that appears in the (j + 1)-capsule of the ‡-
procession — to the pull-backs, via the given log-link, of the [collections of] monoids

ΨFgau(
†HT Θ)v, ∞ΨFgau(

†HT Θ)v of [IUTchII], Corollary 4.6, (iv), for v ∈ V, one

obtains a functorial algorithm in the log-link of Θ±ellNF-Hodge theaters
‡HT Θ±ellNF log−→ †HT Θ±ellNF for constructing [collections of] monoids

v � V �→ ΨFLGP(
†HT Θ±ellNF)v; v � V �→ ∞ΨFLGP(

†HT Θ±ellNF)v

equipped with splittings [up to torsion, when v ∈ V
bad] — which we refer to as

“[local] LGP-monoids”, or “logarithmic Gaussian procession monoids” [cf. Fig.

3.1 above]. Here, we note that the notation “(†HT Θ±ellNF)” constitutes a slight
abuse of notation. Also, we note that this functorial algorithm requires one to
apply the compatibility of the given log-link with the F�±

l -symmetrizing iso-

morphisms involved [cf. Remark 1.3.2]. For v ∈ V
bad, the component labeled

j ∈ {1, . . . , l�} of the submonoid of Galois invariants [cf. (i)] of the entire

LGP-monoid ΨFLGP(
†HT Θ±ellNF)v is a subset of

IQ(S
±
j+1

,j;‡Fv)

[i.e., where the notation “; ‡” denotes the result of applying the discussion of (i)
to the case of F-prime-strips labeled “‡”; cf. also the notational conventions of

Proposition 3.2, (ii)] that acts multiplicatively on IQ(S
±
j+1

,j;‡Fv) [cf. the construc-
tions of [IUTchII], Corollary 3.6, (ii)]. For any v ∈ V, the component labeled
j ∈ {1, . . . , l�} of the submodule of Galois invariants [cf. (i) when v ∈ V

non; this

Galois action is trivial when v ∈ V
arc] of the unit portion ΨFLGP(

†HT Θ±ellNF)×v
of such an LGP-monoid is a subset of

IQ(S
±
j+1

,j;‡Fv)

[cf. the discussion of (i); the notational conventions of Proposition 3.2, (ii)] that

acts multiplicatively on IQ(S
±
j+1

,j;‡Fv) [cf. the constructions of [IUTchII], Corollary
3.6, (ii); [IUTchII], Proposition 4.2, (iv); [IUTchII], Proposition 4.4, (iv)].

Proof. The various assertions of Proposition 3.4 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©



80 SHINICHI MOCHIZUKI

Proposition 3.5. (Kummer Theory and Upper Semi-compatibility for

Vertically Coric Local LGP-Monoids) Let {n,mHT Θ±ellNF}n,m∈Z be a collec-
tion of distinct Θ±ellNF-Hodge theaters [relative to the given initial Θ-data]
— which we think of as arising from a Gaussian log-theta-lattice [cf. Definition
1.4]. For each n ∈ Z, write

n,◦HT D-Θ±ellNF

for the D-Θ±ellNF-Hodge theater determined, up to isomorphism, by the various
n,mHT Θ±ellNF, where m ∈ Z, via the vertical coricity of Theorem 1.5, (i).

(i) (Vertically Coric Local LGP-Monoids and Associated Kummer
Theory) Write

F(n,◦D	)t

for the F-prime-strip associated [cf. [IUTchII], Remark 4.5.1, (i)] to the labeled
collection of monoids “Ψcns(

n,◦D	)t” of [IUTchII], Corollary 4.5, (iii) [i.e., where
we take “†” to be “n, ◦”]. Recall the constructions of Proposition 3.4, (ii), involving
F-prime-strip processions. Then by applying these constructions to the F-prime-
strips “F(n,◦D	)t” and the various full log-links associated [cf. the discussion of
Proposition 1.2, (ix)] to these F-prime-strips — which we consider in a fashion
compatible with the F�±

l -symmetries involved [cf. Remark 1.3.2; Proposition

3.4, (ii)] — we obtain a functorial algorithm in the D-Θ±ellNF-Hodge theater
n,◦HT D-Θ±ellNF for constructing [collections of] monoids

v � V �→ ΨLGP(
n,◦HT D-Θ±ellNF)v; v � V �→ ∞ΨLGP(

n,◦HT D-Θ±ellNF)v

equipped with splittings [up to torsion, when v ∈ V
bad] — which we refer to as

“vertically coric [local] LGP-monoids”. For each n,m ∈ Z, this functorial
algorithm is compatible [in the evident sense] with the functorial algorithm of
Proposition 3.4, (ii) — i.e., where we take “†” to be “n,m” and “‡” to be “n,m−1”
— relative to the Kummer isomorphisms of labeled data

Ψcns(
n,m′

F	)t
∼→ Ψcns(

n,◦D	)t

of [IUTchII], Corollary 4.6, (iii), and the evident identification, for m′ = m,m−1,

of n,m′
Ft [i.e., the F-prime-strip that appears in the associated Θ±-bridge] with the

F-prime-strip associated to Ψcns(
n,m′

F	)t. In particular, for each n,m ∈ Z, we
obtain Kummer isomorphisms of [collections of ] monoids

ΨFLGP(
n,mHT Θ±ellNF)v

∼→ ΨLGP(
n,◦HT D-Θ±ellNF)v

∞ΨFLGP(
n,mHT Θ±ellNF)v

∼→ ∞ΨLGP(
n,◦HT D-Θ±ellNF)v

for v ∈ V.

(ii) (Upper Semi-compatibility) The Kummer isomorphisms of the final
two displays of (i) are “upper semi-compatible” — cf. the discussion of “up-
per semi-commutativity” in Remark 1.2.2, (iii) — with the various log-links of

Θ±ellNF-Hodge theaters n,m−1HT Θ±ellNF log−→ n,mHT Θ±ellNF [where m ∈ Z]
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of the Gaussian log-theta-lattice under consideration in the following sense. Let
j ∈ {0, 1, . . . , l�}. Then:

(a) (Nonarchimedean Primes) For vQ ∈ Vnon
Q , the topological module

I(S
±
j+1F(n,◦D	)vQ

)

— i.e., that arises from applying the constructions of Proposition 3.4, (ii),
in the vertically coric context of (i) above [cf. also the notational con-
ventions of Proposition 3.2, (ii)] — contains the image of the submodules
of Galois invariants [where we recall the Galois actions that appear in
the data of [IUTchII], Corollary 4.6, (i), (iii)] of the groups of units
(Ψcns(

n,mF	)|t|)×v , for V � v | vQ and |t| ∈ {0, . . . , j}, via both

(1) the tensor product, over such |t|, of the [relevant] Kummer
isomorphisms of (i), and

(2) the tensor product, over such |t|, of the pre-composite of these
Kummer isomorphisms with the m′-th iterates of the log-links,
for m′ ≥ 1, of the n-th column of the Gaussian log-theta-lattice
under consideration [cf. the discussion of Remark 1.2.2, (i),
(iii)].

(b) (Archimedean Primes) For vQ ∈ Varc
Q , the closed unit ball

I(S
±
j+1F(n,◦D	)vQ

)

— i.e., that arises from applying the constructions of Proposition 3.4,
(ii), in the vertically coric context of (i) above [cf. also the notational
conventions of Proposition 3.2, (ii)] — contains the image, via the tensor
product, over |t| ∈ {0, . . . , j}, of the [relevant] Kummer isomorphisms
of (i), of both

(1) the groups of units (Ψcns(
n,mF	)|t|)×v , for V � v | vQ, and

(2) the closed balls of radius π inside (Ψcns(
n,mF	)|t|)

gp
v [cf. the

notational conventions of Definition 1.1], for V � v | vQ.

Here, we recall from the discussion of Remark 1.2.2, (ii), (iii), that a
closed ball as in (2) contains, for each m′ ≥ 1, a subset that surjects,
via the m′-th iterate of the log-link of the n-th column of the Gaussian
log-theta-lattice under consideration, onto the subset of the group of units
(Ψcns(

n,m−m′
F	)|t|)×v given by the image, via this iterate, of the entire

domain on which this iterate is defined.

(c) (Bad Primes) Let v ∈ V
bad; suppose that j �= 0. Recall that the various

monoids “ΨFLGP(−)v”, “∞ΨFLGP(−)v” constructed in Proposition 3.4,
(ii), as well as the monoids “ΨLGP(−)v”, “∞ΨLGP(−)v” constructed in
(i) above, are equipped with natural splittings up to torsion. Write

Ψ⊥
FLGP

(−)v ⊆ ΨFLGP(−)v; ∞Ψ⊥
FLGP

(−)v ⊆ ∞ΨFLGP(−)v
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Ψ⊥
LGP(−)v ⊆ ΨLGP(−)v; ∞Ψ⊥

LGP(−)v ⊆ ∞ΨLGP(−)v
for the submonoids corresponding to these splittings [cf. the submonoids
“O⊥(−) ⊆ O�(−)” discussed in Definition 2.4, (i), in the case of “Ψ⊥”;
the notational conventions of Theorem 2.2, (ii), in the case of “∞Ψ⊥”].
[Thus, the subgroup of units of “Ψ⊥” consists of the 2l-torsion subgroup of
“Ψ”, while the subgroup of units of “∞Ψ⊥” contains of the entire torsion
torsion subgroup of “∞Ψ”.] Then, as m ranges over the elements of
Z, the actions, via the [relevant] Kummer isomorphisms of (i), of the

various monoids Ψ⊥
FLGP

(n,mHT Θ±ellNF)v ⊆ ∞Ψ⊥
FLGP

(n,mHT Θ±ellNF)v on
the topological modules

IQ(S
±
j+1

,jF(n,◦D	)v) ⊆ log(S
±
j+1

,jF(n,◦D	)v)

[where j = 1, . . . , l�] — i.e., that arise from applying the constructions
of Proposition 3.4, (ii), in the vertically coric context of (i) above [cf.
also the notational conventions of Proposition 3.2, (ii)] — are mutually
compatible, relative to the log-links of the n-th column of the Gaussian
log-theta-lattice under consideration, in the sense that the only portions
of these actions that are related to one another via these log-links are the
indeterminacies with respect to multiplication by roots of unity,
that is to say, indeterminacies at m that correspond, via the log-link, to
“addition by zero” — i.e., to no indeterminacy! — at m+ 1.

Now let us think of the various groups of units, for v ∈ V,

(Ψcns(
n,mF	)|t|)×v , ΨFLGP(

n,mHT Θ±ellNF)×v

and splitting monoids, for v ∈ V
bad,

Ψ⊥
FLGP

(n,mHT Θ±ellNF)v

as acting on various portions of the modules, for vQ ∈ VQ,

IQ(S
±
j+1F(n,◦D	)vQ

)

not via a single Kummer isomorphism as in (i) — which fails to be com-
patible with the log-links of the Gaussian log-theta-lattice! — but rather via the
totality of the various pre-composites of the relevant Kummer isomorphism with
the various iterates of the log-links of the Gaussian log-theta-lattice — i.e., pre-
cisely as was described in detail in (a), (b), (c) above! Then one obtains a sort
of “log-Kummer correspondence” between the totality, as m ranges over the
elements of Z, of the various groups of units and splitting monoids just discussed
[i.e., which are labeled by “n,m”] and their actions on the “IQ” labeled by “n, ◦”
which is invariant with respect to the translation symmetries [cf. Proposition
1.3, (iv)] of the n-th column of the Gaussian log-theta-lattice [cf. the discussion of
Remark 1.2.2, (iii)].

Proof. The various assertions of Proposition 3.5 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©
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Example 3.6. Concrete Representations of Global Frobenioids. Before
proceeding, we pause to take a closer look at the Frobenioid “†F�

mod” of [IUTchI],
Example 5.1, (iii), i.e., more concretely speaking, the Frobenioid of arithmetic line
bundles on the stack “Smod” of [IUTchI], Remark 3.1.5. Let us write

F�
mod

for the Frobenioid “†F�
mod” of [IUTchI], Example 5.1, (iii), in the case where the

data denoted by the label “†” arises [in the evident sense] from data as discussed
in [IUTchI], Definition 3.1. In the following discussion, we shall use the notation of
[IUTchI], Definition 3.1.

(i) (Rational Function Torsor Version) For each v ∈ V, the valuation on
Kv determined by v determines a group homomorphism βv : F×

mod → K×
v /O×

Kv
[cf.

Remark 3.6.1 below]. Then let us define a category F�
MOD as follows. An object

T = (T, {tv}v∈V) of F�
MOD consists of

(a) an F×
mod-torsor T ;

(b) a trivalization tv of the torsor Tv obtained from T by executing the
“change of structure group” operation determined by the homomorphism
βv.

An elementary morphism T1 = (T1, {t1,v}v∈V) → T2 = (T2, {t2,v}v∈V) between

objects of F�
MOD is defined to be an isomorphism T1

∼→ T2 of F×
mod-torsors which is

integral at each v ∈ V, i.e., maps the trivialization t1,v to an element of the O�
Kv

-

orbit of t2,v. There is an evident notion of composition of elementary morphisms,
as well as an evident notion of tensor powers T ⊗n, for n ∈ Z, of an object T of
F�

MOD. A morphism T1 = (T1, {t1,v}v∈V) → T2 = (T2, {t2,v}v∈V) between objects

of F�
MOD is defined to be an elementary morphism (T1)⊗n → T2 for some positive

integer n. There is an evident notion of composition of morphisms. Thus, F�
MOD

forms a category. In fact, one verifies immediately that, from the point of view of the
theory of Frobenioids developed in [FrdI], [FrdII], F�

MOD admits a natural Frobenioid
structure [cf. [FrdI], Definition 1.3], for which the base category is the category
with precisely one arrow. Relative to this Frobenioid structure, the elementary
morphisms are precisely the linear morphisms, and the positive integer “n” that
appears in the definition of a morphism of F�

MOD is the Frobenius degree of the

morphism. Moreover, by associating to an arithmetic line bundle on Smod the F×
mod-

torsor determined by restricting the line bundle to the generic point of Smod and
the local trivializations at v ∈ V determined by the various local integral structures,
one verifies immediately that there exists a natural isomorphism of Frobenioids

F�
mod

∼→ F�
MOD

that induces the identity morphism F×
mod → F×

mod on the associated rational func-
tion monoids [cf. [FrdI], Corollary 4.10].

(ii) (Local Fractional Ideal Version) Let us define a category F�
mod as

follows. An object
J = {Jv}v∈V
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of F�
mod consists of a collection of “fractional ideals” Jv ⊆ Kv for each v ∈ V — i.e.,

a finitely generated nonzero OKv -submodule of Kv when v ∈ V
non; a positive real

multiple of OKv

def
= {λ ∈ Kv | |λ| ≤ 1} ⊆ Kv when v ∈ V

arc — such that Jv = OKv

for all but finitely many v. If J = {Jv}v∈V is an object of F�
mod, then for any element

f ∈ F×
mod, one obtains an object f · J = {f ·Jv}v∈V of F�

mod by multiplying each of

the fractional ideals Jv by f . Moreover, if J = {Jv}v∈V is an object of F�
mod, then

for any n ∈ Z, there is an evident notion of the n-th tensor power J⊗n of J . An
elementary morphism J1 = {J1,v}v∈V → J2 = {J2,v}v∈V between objects of F�

mod is

defined to be an element f ∈ F×
mod that is integral with respect to J1 and J2 in the

sense that f · J1,v ⊆ J2,v for each v ∈ V. There is an evident notion of composition
of elementary morphisms. A morphism J1 = {J1,v}v∈V → J2 = {J2,v}v∈V between

objects of F�
mod is defined to be an elementary morphism (J1)⊗n → J2 for some

positive integer n. There is an evident notion of composition of morphisms. Thus,
F�

mod forms a category. In fact, one verifies immediately that, from the point
of view of the theory of Frobenioids developed in [FrdI], [FrdII], F�

mod admits a
natural Frobenioid structure [cf. [FrdI], Definition 1.3], for which the base category
is the category with precisely one arrow. Relative to this Frobenioid structure, the
elementary morphisms are precisely the linear morphisms, and the positive integer
“n” that appears in the definition of a morphism of F�

mod is the Frobenius degree
of the morphism. Moreover, by associating to an object J = {Jv}v∈V of F�

mod the
arithmetic line bundle on Smod obtained from the trivial arithmetic line bundle
on Smod by modifying the integral structure of the trivial line bundle at v ∈ V in
the fashion prescribed by Jv, one verifies immediately that there exists a natural
isomorphism of Frobenioids

F�
mod

∼→ F�
mod

that induces the identity morphism F×
mod → F×

mod on the associated rational func-
tion monoids [cf. [FrdI], Corollary 4.10].

(iii) By composing the isomorphisms of Frobenioids of (i) and (ii), one thus
obtains a natural isomorphism of Frobenioids

F�
mod

∼→ F�
MOD

that induces the identity morphism F×
mod → F×

mod on the associated rational func-
tion monoids [cf. [FrdI], Corollary 4.10]. One verifies immediately that although the
above isomorphism of Frobenioids is not necessarily determined by the condition
that it induce the identity morphism on F×

mod, the induced isomorphism between

the respective perfections [hence also on realifications] of F�
mod, F�

MOD is completely
determined by this condition.

Remark 3.6.1. Note that, as far the various constructions of Example 3.6,
(i), are concerned, the various homomorphisms βv, for v ∈ V, may be thought of,
alternatively, as a collection of

subquotients of the perfection (F×
mod)

pf of F×
mod

— each of which is equipped with a submonoid of “nonnegative elements” — that
are completely determined by the ring structure of the field Fmod [i.e., equipped
with its structure as the field of moduli of XF ].
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Remark 3.6.2.

(i) In the theory to be developed below, we shall be interested in relating
the realifications of various Frobenioids isomorphic to F�

mod that lie on opposite
sides of the Θ×μ

gau-link to one another. In particular, at the level of objects of the
Frobenioids involved, it only makes sense to work with isomorphism classes of
objects that are preserved by the isomorphisms of Frobenioids that appear. Here,
we note that the isomorphism classes of the sort of Frobenioids that appear in this
context are determined, in an essential way, by the rational function monoid
of the Frobenioid in question [cf. the constructions given in [FrdI], Theorem 5.2,
(i)]. In this context, we observe that the rational function monoid F×

mod of F�
mod

satisfies the following fundamental property:

[the union with {0} of] F×
mod admits a natural additive structure.

In this context, we note that this property is not satisfied by

(a) the rational function monoids of the perfection or realification of F�
mod

(b) subgroups Γ ⊆ F×
mod — such as, for instance, the trivial subgroup {1} or

the subgroup of S-units, for S ⊆ Vmod a nonempty finite subset — that
do not arise as the multiplicative group of some subfield of Fmod.

The significance of this fundamental property is that it allows one to represent the
objects of F�

mod additively, i.e., as modules — cf. the point of view of Example
3.6, (ii). At a more concrete level, if, in the notation of (b), one considers the result
of “adding” two elements of a Γ-torsor [cf. the point of view of Example 3.6, (i)!],
then the resulting “sum” can only be rendered meaningful, relative to the given Γ-
torsor, if Γ is additively closed. The additive representation of objects of F�

mod

will be of crucial importance in the theory of the present series of papers since it will
allow us to relate objects of F�

mod on opposite sides of the Θ×μ
gau-link to one another

— which, a priori, are only related to one another at the level of realifications
in a multiplicative fashion — by means of mono-analytic log-shells [cf. the
discussion of [IUTchII], Remark 4.7.2].

(ii) One way to understand the content of the discussion of (i) is as follows:
whereas

the construction of F�
mod depends on the additive structure of F×

mod

in an essential way,

the construction of F�
MOD is strictly multiplicative in nature.

Indeed, the construction of F�
MOD given in Example 3.6, (i), is essentially the same

as the construction of F�
mod given in [FrdI], Example 6.3 [i.e., in effect, in [FrdI],

Theorem 5.2, (i)]. From the this point of view, it is natural to identify F�
MOD with

F�
mod via the natural isomorphism of Frobenioids of Example 3.6, (i). We shall

often do this in the theory to be developed below.
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Proposition 3.7. (Global Packet-theoretic Frobenioids)

(i) (Single Packet Rational Function Torsor Version) In the notation
of Proposition 3.3: For each α ∈ A, there is an algorithm for constructing, as
discussed in Example 3.6, (i) [cf. also Remark 3.6.1], from the [number] field given
by the image

(†M
�
MOD)α

of the composite

(†M
�
mod)α → (†M

�
mod)A → log(AFVQ

)

of the homomorphisms of Proposition 3.3, (i), (ii), a Frobenioid (†F�
MOD)α, to-

gether with a natural isomorphism of Frobenioids

(†F�
mod)α

∼→ (†F�
MOD)α

[cf. the notation of [IUTchII], Corollary 4.8, (ii)] that induces the tautological

isomorphism (†M�
mod)α

∼→ (†M�
MOD)α on the associated rational function monoids

[cf. Example 3.6, (i)]. We shall often use this isomorphism of Frobenioids to

identify (†F�
mod)α with (†F�

MOD)α [cf. Remark 3.6.2, (ii)]. Write (†F�R
MOD)α for

the realification of (†F�
MOD)α.

(ii) (Single Packet Local Fractional Ideal Version) In the notation of
Propositions 3.3, 3.4: For each α ∈ A, there is an algorithm for constructing, as

discussed in Example 3.6, (ii), from the [number] field (†M
�
mod)α

def
= (†M

�
MOD)α [cf.

(i)] and the Galois invariants of the local monoids

Ψlog(A,αFv) ⊆ log(A,αFv)

for v ∈ V of Proposition 3.4, (i) — i.e., so the corresponding local “fractional
ideal Jv” of Example 3.6, (ii), is a subset [indeed a submodule when v ∈ V

non] of

IQ(A,αFv) whose Q-span is equal to IQ(A,αFv) [cf. the notational conventions of

Proposition 3.2, (ii)] — a Frobenioid (†F�
mod)α, together with natural isomor-

phisms of Frobenioids

(†F�
mod)α

∼→ (†F�
mod)α; (†F�

mod)α
∼→ (†F�

MOD)α

that induce the tautological isomorphisms (†M�
mod)α

∼→ (†M�
mod)α, (

†M�
mod)α

∼→
(†M�

MOD)α on the associated rational function monoids [cf. the natural isomorphism

of Frobenioids of (i); Example 3.6, (ii), (iii)]. Write (†F�R
mod)α for the realification

of (†F�
mod)α.

(iii) (Realified Global LGP-Frobenioids) In the notation of Proposition

3.4: By applying the composites of the isomorphisms of Frobenioids “†C�j
∼→

(†F�R
mod)j” of [IUTchII], Corollary 4.8, (iii), with the realifications “(†F�R

mod)α
∼→

(†F�R
MOD)α” of the isomorphisms of Frobenioids of (i) above to the realified global

Frobenioid portion †C�gau of the F�-prime-strip †F�
gau of [IUTchII], Corollary 4.10,

(ii) [cf. Remarks 1.5.3, (iii); 3.3.2, (i)], one obtains a functorial algorithm
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in the log-link of Θ±ellNF-Hodge theaters ‡HT Θ±ellNF log−→ †HT Θ±ellNF of
Proposition 3.4, (ii), for constructing a Frobenioid

C�LGP(
†HT Θ±ellNF)

— which we refer to as a “global realified LGP-Frobenioid”. Here, we note

that the notation “(†HT Θ±ellNF)” constitutes a slight abuse of notation. In par-

ticular, the global realified Frobenioid †C�LGP
def
= C�LGP(

†HT Θ±ellNF), together with

the collection of data ΨFLGP
(†HT Θ±ellNF) constructed in Proposition 3.4, (ii), give

rise, in a natural fashion, to an F�-prime-strip

†F�
LGP = (†C�LGP, Prime(†C�LGP)

∼→ V, †F�
LGP, {†ρLGP,v}v∈V)

— cf. the construction of the F�-prime-strip †F�
gau in [IUTchII], Corollary 4.10,

(ii) — together with a natural isomorphism

†F�
gau

∼→ †F�
LGP

of F�-prime-strips [i.e., that arises tautologically from the construction of †F�
LGP!].

(iv) (Realified Global lgp-Frobenioids) In the situation of (iii) above, write

ΨFlgp
(†HT Θ±ellNF)

def
= ΨFLGP(

†HT Θ±ellNF), †F�
lgp

def
= †F�

LGP. Then by replacing, in

the construction of (iii), the isomorphisms “(†F�R
mod)α

∼→ (†F�R
MOD)α” by the natural

isomorphisms “(†F�R
mod)α

∼→ (†F�R
mod)α” [cf. (ii)], one obtains a functorial algo-

rithm in the log-link of Θ±ellNF-Hodge theaters ‡HT Θ±ellNF log−→ †HT Θ±ellNF

of Proposition 3.4, (ii), for constructing a Frobenioid

C�lgp(†HT Θ±ellNF)

— which we refer to as a “global realified lgp-Frobenioid” — as well as an
F�-prime-strip

†F�
lgp = (†C�lgp, Prime(†C�lgp)

∼→ V, †F�
lgp, {†ρlgp,v}v∈V)

— where we write †C�lgp
def
= C�lgp(†HT Θ±ellNF) — together with tautological iso-

morphisms
†F�

gau
∼→ †F�

LGP
∼→ †F�

lgp

of F�-prime-strips [cf. (iii)].

(v) (Realified Product Embeddings and Non-realified Global Frobe-

nioids) The constructions of C�LGP(
†HT Θ±ellNF), C�lgp(†HT Θ±ellNF) given in (iii)

and (iv) above give rise to a commutative diagram of categories

C�LGP(
†HT Θ±ellNF) ↪→ ∏

j∈F
�

l
(†F�R

MOD)j⏐⏐� ⏐⏐�
C�lgp(†HT Θ±ellNF) ↪→ ∏

j∈F
�

l
(†F�R

mod)j



88 SHINICHI MOCHIZUKI

— where the horizontal arrows are embeddings that arise tautologically from the
constructions of (iii) and (iv) [cf. [IUTchII], Remark 4.8.1, (i)]; the vertical arrows
are isomorphisms; the left-hand vertical arrow arises from the second isomorphism
that appears in the final display of (iv); the right-hand vertical arrow is the product
of the realifications of copies of the inverse of the second isomorphism that appears
in the final display of (ii). In particular, by applying the definition of (†F�

mod)j —
i.e., in terms of local fractional ideals [cf. (ii)] — together with the products of
realification functors ∏

j∈F
�

l

(†F�
mod)j →

∏
j∈F

�

l

(†F�R
mod)j

[cf. [FrdI], Proposition 5.3], one obtains an algorithm for constructing, in a fash-
ion compatible [in the evident sense] with the local isomorphisms {†ρlgp,v}v∈V,

{†ρLGP,v}v∈V of (iii) and (iv), objects of the [global!] categories C�lgp(†HT Θ±ellNF),

C�LGP(
†HT Θ±ellNF) from the local fractional ideals generated by elements of the

monoids [cf. (iv); Proposition 3.4, (ii)]

ΨFlgp
(†HT Θ±ellNF)v

for v ∈ V
bad.

Proof. The various assertions of Proposition 3.7 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 3.7.1. By analogy to the notation introduced in Proposition 3.7, (i),
(ii), we shall write

(†M�
ORB)α = (†M�

orb)α ⊆ (†M
�
ORB)α = (†M

�
orb)α

for the respective images of the maps (†M�
orb)α → log

orb
(αFVQ

), (†M
�
orb)α →

log
orb

(αFVQ
) defined in Remark 3.3.4.

Definition 3.8.

(i) In the situation of Proposition 3.7, (iv), (v), write Ψ⊥
Flgp

(−)v def
= Ψ⊥

FLGP
(−)v,

for v ∈ V
bad [cf. the notation of Proposition 3.5, (ii), (c)]. Then we shall refer to

the object of ∏
j∈F

�

l

(†F�
mod)j

— as well as its image in †C�LGP = C�LGP(
†HT Θ±ellNF) or †C�lgp = C�lgp(†HT Θ±ellNF)

[cf. Proposition 3.7, (iii), (iv), (v)] — determined by any collection, indexed by

v ∈ V
bad, of generators up to torsion of the monoids Ψ⊥

Flgp
(†HT Θ±ellNF)v as a

Θ-pilot object. We shall refer to the object of the [global realified] Frobenioid

†C�
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of [IUTchII], Corollary 4.10, (i), determined by any collection, indexed by v ∈ V
bad,

of generators up to torsion of the splitting monoid associated to the split Frobenioid
(†F�


)v [i.e., the data indexed by v of the F�-prime-strip †F�

 of [IUTchII], Corollary

4.10, (i)] — that is to say, at a more concrete level, determined by the “q
v
”, for

v ∈ V
bad [cf. the notation of [IUTchI], Example 3.2, (iv)] — as a q-pilot object.

(ii) Let
‡HT Θ±ellNF log−→ †HT Θ±ellNF

be a log-link of Θ±ellNF-Hodge theaters and

∗HT Θ±ellNF

a Θ±ellNF-Hodge theater [all relative to the given initial Θ-data]. Recall the F�-
prime-strip

∗F�



constructed from ∗HT Θ±ellNF in [IUTchII], Corollary 4.10, (i). Following the nota-

tional conventions of [IUTchII], Corollary 4.10, (iii), let us write ∗F��×μ

 (respec-

tively, †F��×μ
LGP ; †F��×μ

lgp ) for the F��×μ-prime-strip associated to the F�-prime-

strip ∗F�

 (respectively, †F�

LGP;
†F�

lgp) [cf. Proposition 3.7, (iii), (iv); [IUTchII],

Definition 4.9, (viii); the functorial algorithm described in [IUTchII], Definition
4.9, (vi)]. Then — in the style of [IUTchII], Corollary 4.10, (iii) — we shall refer

to the full poly-isomorphism of F��×μ-prime-strips †F��×μ
LGP

∼→ ∗F��×μ

 as the

Θ×μ
LGP-link

†HT Θ±ellNF Θ×μ
LGP−→ ∗HT Θ±ellNF

from †HT Θ±ellNF to ‡HT Θ±ellNF, relative to the log-link ‡HT Θ±ellNF log−→ †HT Θ±ellNF,

and to the full poly-isomorphism of F��×μ-prime-strips †F��×μ
lgp

∼→ ∗F��×μ

 as

the Θ×μ
lgp -link

†HT Θ±ellNF
Θ×μ

lgp−→ ∗HT Θ±ellNF

from †HT Θ±ellNF to ‡HT Θ±ellNF, relative to the log-link ‡HT Θ±ellNF log−→ †HT Θ±ellNF.

(iii) Let {n,mHT Θ±ellNF}n,m∈Z be a collection of distinct Θ±ellNF-Hodge the-
aters [relative to the given initial Θ-data] indexed by pairs of integers. Then we
shall refer to the first (respectively, second) diagram

...
...�⏐⏐log

�⏐⏐log

. . .
Θ×μ

LGP−→ n,m+1HT Θ±ellNF Θ×μ
LGP−→ n+1,m+1HT Θ±ellNF Θ×μ

LGP−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ×μ

LGP−→ n,mHT Θ±ellNF Θ×μ
LGP−→ n+1,mHT Θ±ellNF Θ×μ

LGP−→ . . .�⏐⏐log

�⏐⏐log

...
...
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...
...�⏐⏐log

�⏐⏐log

. . .
Θ×μ

lgp−→ n,m+1HT Θ±ellNF
Θ×μ

lgp−→ n+1,m+1HT Θ±ellNF
Θ×μ

lgp−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ×μ

lgp−→ n,mHT Θ±ellNF
Θ×μ

lgp−→ n+1,mHT Θ±ellNF
Θ×μ

lgp−→ . . .�⏐⏐log

�⏐⏐log

...
...

— where the vertical arrows are the full log-links, and the horizontal arrow of the

first (respectively, second) diagram from n,mHT Θ±ellNF to n+1,mHT Θ±ellNF is the

Θ×μ
LGP- (respectively, Θ

×μ
lgp -) link from n,mHT Θ±ellNF to n+1,mHT Θ±ellNF, relative

to the full log-link n,m−1HT Θ±ellNF log−→ n,mHT Θ±ellNF [cf. (ii)] — as the [LGP-
Gaussian] (respectively, [lgp-Gaussian]) log-theta-lattice. Thus, [cf. Definition
1.4] either of these diagrams may be represented symbolically by an oriented graph

...
...�⏐⏐ �⏐⏐

. . . −→ • −→ • −→ . . .�⏐⏐ �⏐⏐

. . . −→ • −→ • −→ . . .�⏐⏐ �⏐⏐
...

...

— where the “•’s” correspond to the “n,mHT Θ±ellNF”.

Remark 3.8.1. The LGP-Gaussian and lgp-Gaussian log-theta-lattices are, of
course, closely related, but, in the theory to be developed below, we shall mainly be
interested in the LGP-Gaussian log-theta-lattice [for reasons to be explained in

Remark 3.10.2, (ii), below]. On the other hand, our computation of the Θ×μ
LGP-link

will involve the Θ×μ
lgp -link, as well as related Θ-pilot objects, in an essential way.

Here, we note, for future reference, that both the Θ×μ
LGP- and the Θ×μ

lgp -link map
Θ-pilot objects to q-pilot objects.

Remark 3.8.2. One verifies immediately that the main results obtained so far
concerning Gaussian log-theta-lattices — namely, Theorem 1.5, Proposition 2.1,
Corollary 2.3, and Proposition 3.5 — generalize immediately [indeed, “formally”]
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to the case of LGP- or lgp-Gaussian log-theta-lattices. Indeed, the substantive
content of these results concerns portions of the log-theta-lattices involved that
are substantively unaffected by the transition from “Gaussian” to “LGP- or lgp-
Gaussian”.

Remark 3.8.3. In the definition of the various horizontal arrows of the log-
theta-lattices discussed in Definition 3.8, (iii), it may appear to the reader, at
first glance, that, instead of working with F��×μ-prime-strips, it might in fact
be sufficient to replace the unit [i.e., F�×μ-prime-strip] portions of these prime-
strips by the associated log-shells [cf. Proposition 1.2, (vi), (vii)], on which, at
nonarchimedean v ∈ V, the associated local Galois groups act trivially. In fact,
however, this is not the case. That is to say, the nontrivial Galois action on the
local unit portions of the F��×μ-prime-strips involved is necessary in order to
consider the Kummer theory [cf. Proposition 3.5, (i), (ii), as well as Proposition
3.10, (i), (iii); Remark 3.10.1, (ii), below] of the various local and global objects
for which the log-shells serve as “multiradial containers” [cf. the discussion of
Remark 1.5.2]. Here, we recall that this Kummer theory plays a crucial role in the
theory of the present series of papers in relating corresponding Frobenius-like and
étale-like objects [cf. the discussion of Remark 1.5.4, (i)].

Proposition 3.9. (Log-volume for Packets and Processions)

(i) (Local Holomorphic Packets) In the situation of Proposition 3.2, (i),
(ii): Suppose that V � v | vQ ∈ Vnon

Q , α ∈ A. Then the pvQ-adic log-volume on each

of the direct summand pvQ
-adic fields of IQ(αFvQ

), IQ(AFvQ
), and IQ(A,αFv) — cf.

the direct sum decompositions of Proposition 3.1, (i), together with the discussion
of normalized weights in Remark 3.1.1, (ii) — determines [cf. [AbsTopIII],
Proposition 5.7, (i)] log-volumes

μlog
α,vQ

: M(IQ(αFvQ
)) → R; μlog

A,vQ
: M(IQ(AFvQ)) → R

μlog
A,α,v : M(IQ(A,αFv)) → R

— where we write “M(−)” for the set of compact open subsets of “(−)” — such
that the log-volume of each of the “local holomorphic” integral structures of
Proposition 3.1, (ii) — i.e., the elements

OαFvQ
⊆ IQ(αFvQ); OAFvQ

⊆ IQ(AFvQ
); OA,αFv

⊆ IQ(A,αFv)

of “M(−)” given by the integral structures discussed in Proposition 3.1, (ii), on each
of the direct summand pvQ

-adic fields — is equal to zero. Here, we assume that
these log-volumes are normalized so that multiplication of an element of “M(−)”
by pv corresponds to adding the quantity −log(pv) ∈ R; we shall refer to this nor-
malization as the packet-normalization. Suppose that V � v | vQ ∈ Varc

Q , α ∈ A.
Then the sum of the radial log-volumes on each of the direct summand complex
archimedean fields of IQ(αFvQ

), IQ(AFvQ
), and IQ(A,αFv) — cf. the direct sum

decompositions of Proposition 3.1, (i), together with the discussion of normalized
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weights in Remark 3.1.1, (ii) — determines [cf. [AbsTopIII], Proposition 5.7, (ii)]
log-volumes

μlog
α,vQ

: M(IQ(αFvQ
)) → R; μlog

A,vQ
: M(IQ(AFvQ)) → R

μlog
A,α,v : M(IQ(A,αFv)) → R

— where we write “M(−)” for the set of compact closures of open subsets of
“(−)” — such that the log-volume of each of the “local holomorphic” integral
structures of Proposition 3.1, (ii) — i.e., the elements

OαFvQ
⊆ IQ(αFvQ); OAFvQ

⊆ IQ(AFvQ
); OA,αFv

⊆ IQ(A,αFv)

of “M(−)” given by the products of the integral structures discussed in Proposition
3.1, (ii), on each of the direct summand complex archimedean fields — is equal to
zero. Here, we assume that these log-volumes are normalized so that multiplication
of an element of “M(−)” by e = 2.71828 . . . corresponds to adding the quantity 1 =
log(e) ∈ R; we shall refer to this normalization as the packet-normalization. In

both the nonarchimedean and archimedean cases, “μlog
A,vQ

” is invariant with respect

to permutations of A. Finally, when working with collections of capsules in a
procession, as in Proposition 3.4, (ii), we obtain, in both the nonarchimedean and
archimedean cases, log-volumes on the products of the “M(−)” associated to the
various capsules under consideration, which we normalize by taking the average,
over the various capsules under consideration; we shall refer to this normalization
as the procession-normalization [cf. Remark 3.9.3 below].

(ii) (Mono-analytic Compatibility) In the situation of Proposition 3.2,
(i), (ii): Suppose that V � v | vQ ∈ VQ. Then by applying the pvQ-adic log-volume,
when vQ ∈ Vnon

Q , or the radial log-volume, when vQ ∈ Varc
Q , on the mono-analytic

log-shells “I†D�
v
” of Proposition 1.2, (vi), (vii), (viii), and adjusting appropriately

[cf. Remark 3.9.1 below for more details] to account for the discrepancy between
the “local holomorphic” integral structures of Proposition 3.1, (ii), and the
“mono-analytic” integral structures of Proposition 3.2, (ii), one obtains [by a
slight abuse of notation] log-volumes

μlog
α,vQ

: M(IQ(αD�
vQ
)) → R; μlog

A,vQ
: M(IQ(AD�

vQ
)) → R

μlog
A,α,v : M(IQ(A,αD�

v )) → R

— where “M(−)” is as in (i) above — which are compatible with the log-volumes
obtained in (i), relative to the natural poly-isomorphisms of Proposition 3.2,
(i). In particular, these log-volumes may be constructed via a functorial algo-
rithm from the D�-prime-strips under consideration. If one considers the mono-
analyticization [cf. [IUTchI], Proposition 6.9, (ii)] of a holomorphic procession
as in Proposition 3.4, (ii), then taking the average, as in (i) above, of the packet-
normalized log-volumes of the above display gives rise to procession-normalized
log-volumes, which are compatible, relative to the natural poly-isomorphisms of
Proposition 3.2, (i), with the procession-normalized log-volumes of (i). Finally,
by replacing “D�” by “F�×μ” [cf. also the discussion of Proposition 1.2, (vi),
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(vii), (viii)], one obtains a similar theory of log-volumes for the various objects as-
sociated to the mono-analytic log-shells “I†F�×μ

v
”, which is compatible with the

theory obtained for “D�” relative to the various natural poly-isomorphisms of
Proposition 3.2, (i).

(iii) (Global Compatibility) In the situation of Proposition 3.7, (i), (ii):
Write

IQ(AFVQ
)

def
=

∏
vQ∈VQ

IQ(AFvQ
) ⊆ log(AFVQ

) =
∏

vQ∈VQ

log(AFvQ
)

and
M(IQ(AFVQ

)) ⊆
∏

vQ∈VQ

M(IQ(AFvQ))

for the subset of elements whose components, indexed by vQ ∈ VQ, have zero log-
volume [cf. (i)] for all but finitely many vQ ∈ VQ. Then, by adding the log-volumes
of (i) [all but finitely many of which are zero!] at the various vQ ∈ VQ, one obtains
a global log-volume

μlog
A,VQ

: M(IQ(AFVQ
)) → R

which is invariant with respect to multiplication by elements of

(†M
�
mod)α = (†M

�
MOD)α ⊆ IQ(AFVQ

)

as well as with respect to permutations of A, and, moreover, satisfies the fol-
lowing property concerning [the elements of “M(−)” determined by] objects “J =
{Jv}v∈V” of (†F�

mod)α [cf. Example 3.6, (ii); Proposition 3.7, (ii)]: the global

log-volume μlog
A,VQ

(J ) is equal to the degree of the arithmetic line bundle de-

termined by J [cf. the discussion of Example 3.6, (ii); the natural isomorphism

(†F�
mod)α

∼→ (†F�
mod)α of Proposition 3.7, (ii)], relative to a suitable normal-

ization.

(iv) (log-link Compatibility) Let {n,mHT Θ±ellNF}n,m∈Z be a collection of
distinct Θ±ellNF-Hodge theaters [relative to the given initial Θ-data] — which
we think of as arising from an LGP-Gaussian log-theta-lattice [cf. Definition
3.8, (iii)]. Then [cf. also the discussion of Remark 3.9.4 below]:

(a) For n,m ∈ Z, the log-volumes constructed in (i), (ii), (iii) above deter-
mine log-volumes on the various “IQ((−))” that appear in the construc-
tion of the local/global LGP-/lgp-monoids/Frobenioids that appear
in the F�-prime-strips n,mF�

LGP,
n,mF�

lgp constructed in Proposition 3.7,

(iii), (iv), relative to the log-link n,m−1HT Θ±ellNF log−→ n,mHT Θ±ellNF.

(b) At the level of the Q-spans of log-shells “IQ((−))” that arise from the
various F-prime-strips involved, the log-volumes of (a) indexed by (n,m)
are compatible — in the sense discussed in Propositions 1.2, (iii); 1.3,
(iii) — with the corresponding log-volumes indexed by (n,m− 1), relative

to the log-link n,m−1HT Θ±ellNF log−→ n,mHT Θ±ellNF.
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Proof. The various assertions of Proposition 3.9 follow immediately from the
definitions and the references quoted in the statements of these assertions. ©

Remark 3.9.1. In the spirit of the explicit descriptions of Remark 3.1.1, (i) [cf.
also Remark 1.2.2, (i), (ii)], we make the following observations.

(i) Suppose that vQ ∈ Vnon
Q . Write {v1, . . . , vn} for the [distinct!] elements of

V that lie over vQ. For each i = 1, . . . , n, set ki
def
= Kvi

; write Oki ⊆ ki for the ring
of integers of ki,

Ii def
= (p∗vQ)

−1 · logki
(O×

ki
) ⊆ ki

— where p∗vQ = pv if pvQ is odd, p∗vQ
= p2vQ

if pvQ
is even — cf. Remark 1.2.2, (i).

Then, roughly speaking, in the notation of Proposition 3.9, (i), the mono-analytic
integral structures of Proposition 3.2, (ii), in

IQ(αFvQ)
∼→

n⊕
i=1

ki; IQ(AFvQ
)

∼→
⊗
α∈A

IQ(αFvQ
)

are given by

I(αFvQ)
∼→

n⊕
i=1

Ii; I(AFvQ)
∼→

⊗
α∈A

I(αFvQ)

while the local holomorphic integral structures

OαFvQ
⊆ IQ(αFvQ

); OAFvQ
⊆ IQ(AFvQ)

of Proposition 3.9, (i), in the topological rings IQ(αFvQ), IQ(AFvQ) — both of
which are direct sums of finite extensions of QpvQ

— are given by the subrings of

integers in IQ(αFvQ
), IQ(AFvQ

). Thus, by applying the formula of the final display
of [AbsTopIII], Proposition 5.8, (iii), for the log-volume of Ii, [one verifies easily
that] one may compute the log-volumes

μlog
α,vQ

(I(αFvQ)), μlog
A,vQ

(I(AFvQ))

entirely in terms of the given initial Θ-data. We leave the routine details to the
reader.

(ii) Suppose that vQ ∈ Varc
Q . Write {v1, . . . , vn} for the [distinct!] elements of

V that lie over vQ. For each i = 1, . . . , n, set ki
def
= Kvi

; write Oki ⊆ {λ ∈ ki | |λ| ≤
1} ⊆ ki for the “set of integers” of ki,

Ii def
= π · Oki ⊆ ki

— cf. Remark 1.2.2, (ii). Then, roughly speaking, in the notation of Proposition
3.9, (i), the discrepancy between the mono-analytic integral structures of
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Proposition 3.2, (ii), determined by the I(†Fvi
)

∼→ Ii ⊆ ki and the local
holomorphic integral structures

OαFvQ
⊆ IQ(αFvQ)

∼→
n⊕

i=1

ki

OAFvQ
⊆ IQ(AFvQ

)
∼→

⊗
α∈A

IQ(αFvQ)

of Proposition 3.9, (i), in the topological rings IQ(αFvQ
), IQ(AFvQ) — both of which

are direct sums of complex archimedean fields — determined by taking the product
[relative to this direct sum decomposition] of the respective “subsets of integers”
may be computed entirely in terms of the given initial Θ-data, by applying the
following two [easily verified] observations:

(a) Equip C with its standard Hermitian metric, i.e., the metric determined
by the complex norm. This metric on C determines a tensor product
metric on C⊗RC, as well as a direct sum metric on C⊕C. Then, relative
to these metrics, any isomorphism of topological rings [i.e., arising from
the Chinese remainder theorem]

C⊗R C
∼→ C⊕ C

is compatible with these metrics, up a factor of 2, i.e., the metric on the
right-hand side corresponds to 2 times the metric on the left-hand side.

(b) Relative to the notation of (a), the direct sum decomposition C⊕C,
together with its Hermitian metric, is preserved, relative to the displayed
isomorphism of (a), by the operation of conjugation on either of the two
copies of “C” that appear in C ⊗R C, as well as by the operations of
multiplying by ±1 or ±

√
−1 via either of the two copies of “C” that

appear in C⊗R C.

We leave the routine details to the reader.

(iii) The computation of the discrepancy between local holomorphic and mono-
analytic integral structures will be discussed in more detail in [IUTchIV].

Remark 3.9.2. In the situation of Proposition 3.9, (iii), one may construct
[“mono-analytic”] algorithms for recovering the subquotient of the perfection
of (†M�

mod)α = (†M�
MOD)α associated to w ∈ V [cf. Remark 3.6.1], together with

the submonoid of “nonnegative elements” of such a subquotient, by considering the
effect of multiplication by elements of (†M�

mod)α = (†M�
MOD)α on the log-volumes

defined on the various IQ(A,αFv)
∼→ IQ(A,αD�

v ) [cf. Proposition 3.9, (ii)].

Remark 3.9.3. With regard to the procession-normalizations discussed in
Proposition 3.9, (i), (ii), the reader might wonder the following: Is it possible to
work with
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more general weighted averages, i.e., as opposed to just averages, in the
usual sense, over the capsules that appear in the procession?

The answer to this question is “no”. Indeed, in the situation of Proposition 3.4,
(ii), for j ∈ {1, . . . , l�}, the packet-normalized log-volume corresponding to the
capsule with index set S±j+1 may be thought of as a log-volume that arises from

“any one of the log-shells whose label ∈ {0, 1, . . . , j}”. In particular, if j′, j1, j2 ∈
{1, . . . , l�}, and j′ ≤ j1, j2, then log-volumes corresponding to the same log-shell
labeled j′ might give rise to packet-normalized log-volumes corresponding to either
of [the capsules with index sets] S±j1+1, S±j2+1. That is to say, in order for the
resulting notion of a procession-normalized log-volume to be compatible with the
appearance of the component labeled j′ in various distinct capsules of the procession
— i.e., compatible with the various inclusion morphisms of the procession! —
one has no choice but to assign the same weights to [the capsules with index sets]
S±j1+1, S

±
j2+1.

Remark 3.9.4. One way to understand the significance of the log-link compat-
ibility of log-volumes discussed in Proposition 3.9, (iv), is as follows. Suppose
that instead of knowing this property, one only knows that

each application of the log-link has the effect of dilating volumes by a
factor λ ∈ R>0, i.e., which is not necessarily equal to 1.

Then in order to compute log-volumes in a fashion that is consistent with the various
arrows [i.e., both Kummer isomorphisms and log-links!] of the “systems” consti-
tuted by the log-Kummer correspondences discussed in Proposition 3.5, (ii), it
would be necessary, whenever λ �= 1, to regard the various “log-volumes” computed
as only giving rise to well-defined elements [not ∈ R, but rather]

∈ R/Z · log(λ) (∼= S1)

— a situation which is not acceptable, relative to the goal of obtaining estimates
[i.e., as in Corollary 3.12 below] for the various objects for which log-shells serve as
“multiradial containers” [cf. the discussion of Remark 1.5.2; the content of Theorem
3.11 below].

Proposition 3.10. (Global Kummer Theory and Non-interference with

Local Integers) Let {n,mHT Θ±ellNF}n,m∈Z be a collection of distinct Θ±ellNF-
Hodge theaters [relative to the given initial Θ-data] — which we think of as aris-
ing from an LGP-Gaussian log-theta-lattice [cf. Definition 3.8, (iii); Proposi-
tion 3.5; Remark 3.8.2]. For each n ∈ Z, write

n,◦HT D-Θ±ellNF

for the D-Θ±ellNF-Hodge theater determined, up to isomorphism, by the various
n,mHT Θ±ellNF, where m ∈ Z, via the vertical coricity of Theorem 1.5, (i) [cf.
Remark 3.8.2].
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(i) (Vertically Coric Global LGP-, lgp-Frobenioids and Associated
Kummer Theory) Recall the constructions of various global Frobenioids in Propo-
sition 3.7, (i), (ii), (iii), (iv), in the context of F-prime-strip processions. Then by
applying these constructions to the F-prime-strips “F(n,◦D	)t” [cf. the notation
of Proposition 3.5, (i)] and the various full log-links associated [cf. the discussion
of Proposition 1.2, (ix)] to these F-prime-strips — which we consider in a fash-
ion compatible with the F�±

l -symmetries involved [cf. Remark 1.3.2; Propo-

sition 3.4, (ii)] — we obtain functorial algorithms in the D-Θ±ellNF-Hodge

theater n,◦HT D-Θ±ellNF for constructing [number] fields, monoids, and Frobe-
nioids equipped with natural isomorphisms

M
�
mod(

n,◦HT D-Θ±ellNF)α = M
�
MOD(

n,◦HT D-Θ±ellNF)α

⊇ M�
mod(

n,◦HT D-Θ±ellNF)α = M�
MOD(

n,◦HT D-Θ±ellNF)α

M
�
mod(

n,◦HT D-Θ±ellNF)α ⊇ M�
mod(

n,◦HT D-Θ±ellNF)α

F�
mod(

n,◦HT D-Θ±ellNF)α
∼→ F�

mod(
n,◦HT D-Θ±ellNF)α

∼→ F�
MOD(

n,◦HT D-Θ±ellNF)α

[cf. the number fields, monoids, and Frobenioids “M
�
mod(

†D�)j ⊇ M�
mod(

†D�)j”,
“F�

mod(
†D�)j” of [IUTchII], Corollary 4.7, (ii)] for α ∈ A, where A is a subset of

J [cf. Proposition 3.3], as well as F�-prime-strips equipped with natural isomor-
phisms

F�(n,◦HT D-Θ±ellNF)gau
∼→ F�(n,◦HT D-Θ±ellNF)LGP

∼→ F�(n,◦HT D-Θ±ellNF)lgp

— [all of ] which we shall refer to as being “vertically coric”. For each n,m ∈ Z,
these functorial algorithms are compatible [in the evident sense] with the [“non-
vertically coric”] functorial algorithms of Proposition 3.7, (i), (ii), (iii), (iv) —
i.e., where [in Proposition 3.7, (iii), (iv)] we take “†” to be “n,m” and “‡” to be
“n,m− 1” — relative to the Kummer isomorphisms of labeled data

Ψcns(
n,m′

F	)t
∼→ Ψcns(

n,◦D	)t

(n,m
′
M�

mod)j
∼→ M�

mod(
n,◦D�)j ; (n,m

′
M

�
mod)j

∼→ M
�
mod(

n,◦D�)j

[cf. [IUTchII], Corollary 4.6, (iii); [IUTchII], Corollary 4.8, (ii)] and the evident

identification, for m′ = m,m − 1, of n,m′
Ft [i.e., the F-prime-strip that appears

in the associated Θ±-bridge] with the F-prime-strip associated to Ψcns(
n,m′

F	)t
[cf. Proposition 3.5, (i)]. In particular, for each n,m ∈ Z, we obtain “Kummer
isomorphisms” of fields, monoids, Frobenioids, and F�-prime-strips

(n,mM
�
mod)α

∼→ M
�
mod(

n,◦HT D-Θ±ellNF)α; (n,mM
�
MOD)α

∼→ M
�
MOD(

n,◦HT D-Θ±ellNF)α

(n,mM�
mod)α

∼→ M�
mod(

n,◦HT D-Θ±ellNF)α; (n,mM�
MOD)α

∼→ M�
MOD(

n,◦HT D-Θ±ellNF)α

(n,mF�
mod)α

∼→ F�
mod(

n,◦HT D-Θ±ellNF)α; (n,mF�
MOD)α

∼→ F�
MOD(

n,◦HT D-Θ±ellNF)α

(n,mM
�
mod)α

∼→ M
�
mod(

n,◦HT D-Θ±ellNF)α; (n,mM�
mod)α

∼→ M�
mod(

n,◦HT D-Θ±ellNF)α
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(n,mF�
mod)α

∼→ F�
mod(

n,◦HT D-Θ±ellNF)α;
n,mF�

gau
∼→ F�(n,◦HT D-Θ±ellNF)gau

n,mF�
LGP

∼→ F�(n,◦HT D-Θ±ellNF)LGP;
n,mF�

lgp
∼→ F�(n,◦HT D-Θ±ellNF)lgp

that are compatible with the various equalities, natural inclusions, and natural
isomorphisms discussed above.

(ii) (Non-interference with Local Integers) In the notation of Proposi-
tions 3.2, (ii); 3.4, (i); 3.7, (i), (ii); 3.9, (iii), we have

(†M�
MOD)α

⋂ ∏
v∈V

Ψlog(A,αFv) = (†M�μ
MOD)α

(
⊆

∏
v∈V

IQ(A,αFv) =
∏

vQ∈VQ

IQ(AFvQ
) = IQ(AFVQ

)
)

— where we write (†M�μ
MOD)α ⊆ (†M�

MOD)α for the [finite] subgroup of torsion
elements, i.e., roots of unity; we identify the product

∏
V�v|vQ∈VQ

IQ(A,αFv)

with IQ(AFvQ). Now let us think of the various groups

(n,mM�
MOD)j

[of nonzero elements of a number field] as acting on various portions of the modules

IQ(S
±
j+1F(n,◦D	)VQ

)

[cf. the notation of Proposition 3.5, (ii)] not via a single Kummer isomor-
phism as in (i), but rather via the totality of the various pre-composites of the
relevant Kummer isomorphism with the various iterates of the log-links of the
LGP-Gaussian log-theta-lattice — i.e., which is possible, up to [harmless!] “iden-
tity indeterminacies” at an adjacent “m”, precisely as a consequence of the
equality of the first display of the present (ii) [cf. the discussion of Remark 1.2.3,
(ii); the discussion of Definition 1.1, (ii), concerning quotients by ΨμN

†Fv
at v ∈ V

arc;

the discussion of Definition 1.1, (iv), at v ∈ V
non]. Then one obtains a sort of “log-

Kummer correspondence” between the totality, as m ranges over the elements
of Z, of the various groups [of nonzero elements of a number field] just discussed
[i.e., which are labeled by “n,m”] and their actions on the “IQ” labeled by “n, ◦”
which is invariant with respect to the translation symmetries [cf. Proposition
1.3, (iv)] of the n-th column of the LGP-Gaussian log-theta-lattice [cf. the discus-
sion of Remark 1.2.2, (iii)].

(iii) (Frobenioid-theoretic log-Kummer Correspondences) The relevant
Kummer isomorphisms of (i) induce, via the “log-Kummer correspondence” of (ii)
[cf. also Proposition 3.7, (i); Remarks 3.6.1, 3.9.2], isomorphisms of Frobe-
nioids

(n,mF�
MOD)α

∼→ F�
MOD(

n,◦HT D-Θ±ellNF)α

(n,mF�R
MOD)α

∼→ F�R
MOD(

n,◦HT D-Θ±ellNF)α
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that are mutually compatible, as m varies over the elements of Z, with the
log-links of the LGP-Gaussian log-theta-lattice. Moreover, these compatible iso-
morphisms of Frobenioids, together with the relevant Kummer isomorphisms of (i),
induce, via the global “log-Kummer correspondence” of (ii) and the splitting
monoid portion of the “log-Kummer correspondence” of Proposition 3.5, (ii), iso-
morphisms of associated F�⊥-prime-strips [cf. Definition 2.4, (iii)]

n,mF�⊥
LGP

∼→ F�⊥(n,◦HT D-Θ±ellNF)LGP

that are mutually compatible, as m varies over the elements of Z, with the
log-links of the LGP-Gaussian log-theta-lattice.

Proof. The various assertions of Proposition 3.10 follow immediately from the
definitions and the references quoted in the statements of these assertions. Here,
we observe that the computation of the intersection of the first display of (ii) is an
immediate consequence of the well-known fact that the set of nonzero elements of
a number field that are integral at all of the places of the number field consists of
the set of roots of unity contained in the number field [cf. the discussion of Remark
1.2.3, (ii); [Lang], p. 144, the proof of Theorem 5]. ©

Remark 3.10.1.

(i) Observe that it follows immediately from the well-known fact from elemen-
tary algebraic number theory applied in the proof of Proposition 3.10, (ii), that the
first display of Proposition 3.10, (ii), admits a Galois-orbit-theoretic analogue:

(†M�
ORB)α

⋂ ∏
v∈V

(Ψlog(αFv))orb = (†M�μ
ORB)α

(
⊆ log

orb
(αFVQ

)
)

— where we write
(Ψlog(αFv))orb

for the set of collections of Galois-orbits [i.e., “αΠv”- or “
†Gv”-orbits when v ∈ V

non

— cf. Propositions 1.2, (vi), and 3.1, (i); {1}-orbits, when v ∈ V
arc] of Ψlog(αFv)

[cf. the discussion of Remark 3.3.4] and, in the notation of Remark 3.7.1,

(†M�μ
ORB)α = (†M�μ

orb)α ⊆ (†M�
ORB)α = (†M�

orb)α

for the subset of collections of Galois-orbits all of whose members are roots of unity.

(ii) Write(
(Ψlog(αFv))orb ⊇

)
(Ψ×

log(αFv)
)orb � (Ψ×μ

log(αFv)
)orb

for the respective sets of collections of Galois-orbits [i.e., “αΠv”- or “†Gv”-orbits
when v ∈ V

non — cf. Propositions 1.2, (vi), and 3.1, (i); {1}-orbits, when v ∈ V
arc]

of Ψ×
log(αFv)

, Ψ×μ
log(αFv)

[cf. the discussion of (i) above] and

log(αF)�×μ def
= {log(αFv)

�×μ}v∈V
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for the F�×μ-prime-strip determined [cf. [IUTchII], Definition 4.9, (vi), (vii)] by
the F-prime-strip log(αF) [cf. Definition 1.1, (iii)]. Then one way to interpret the
computation of the intersection of the first display of (i) is as an analogue for
“M�” of the multiradiality for mono-theta environments discussed in Theorem 2.2,
(ii); Remark 2.2.1 [cf., especially, Fig. 2.2]; Corollary 2.3, (iv) — i.e., as a sort of
multiradiality for number fields to the effect that

the cyclotomic rigidity isomorphism and related Kummer theory
of [IUTchI], Example 5.1, (v), are insulated from the indeterminacies
that arise from automorphisms ∈ AutF�×μ(log(αF)�×μ).

That is to say, it follows immediately from (i) that

the identity automorphism of (†M�
ORB)α is compatible with the col-

lection of automorphisms of (Ψ×μ
log(αFv)

)orb induced by arbitrary auto-

morphisms ∈ AutF�×μ(log(αF)�×μ), relative to the diagram

(†M�
ORB)α

⋂ ∏
v∈V (Ψlog(αFv))orb −→ (†M�

ORB)α⏐⏐� ⏐⏐�∏
v∈V (Ψ×

log(αFv)
)orb ↪→ ∏

v∈V (Ψlog(αFv))orb −→ log
orb

(αFVQ
)⏐⏐�∏

v∈V (Ψ×μ
log(αFv)

)orb

— in which the arrows are the natural morphisms.

Here, we note that the significance of considering various versions of “orb” lies in the
fact that collections of Galois-orbits arise naturally when one restricts the Kummer
theory — i.e., the theory of Galois-stable collections of N -th roots of elements [for
N ≥ 1 an integer] — of copies of the number field Fmod [i.e., such as (†M�

MOD)α]
to the Kummer theory of the various localizations of the number field at v ∈ V.

Remark 3.10.2.

(i) Note that the log-Kummer correspondence of Proposition 3.10, (ii), induces
isomorphisms of Frobenioids as in the first display of Proposition 3.10, (iii), precisely
because the construction of “(†F�

MOD)α” only involves the group “(†M�
MOD)α”, to-

gether with the collection of subquotients of its perfection indexed by V [cf. Propo-
sition 3.7, (i); Remarks 3.6.1, 3.9.2]. By contrast, the construction of “(†F�

mod)α”
also involves the local monoids “Ψlog(A,αFv) ⊆ log(A,αFv)” in an essential way [cf.

Proposition 3.7, (ii)]. These local monoids are subject to a somewhat more compli-
cated “log-Kummer correspondence” [cf. Proposition 3.5, (ii)] that revolves around
“upper semi-compatibility”, i.e., in a word, one-sided inclusions, as opposed to pre-
cise equalities. The imprecise nature of such one-sided inclusions is incompatible
with the construction of “(†F�

mod)α”. In particular, one cannot construct log-link-
compatible isomorphisms of Frobenioids for “(†F�

mod)α” as in the first display of
Proposition 3.10, (iii).
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(ii) The precise compatibility of “F�
MOD” with the log-links of the LGP-

Gaussian log-theta-lattice [cf. the discussion of (i); the first “mutual compatibility”
of Proposition 3.10, (iii)] makes it more suited [i.e., by comparison to “F�

mod”] to the
task of computing the Kummer-detachment indetermacies [cf. Remark 1.5.4,
(i), (iii)] that arise when one attempts to pass from the Frobenius-like structures

constituted by the global portion of the domain of the Θ×μ
LGP-links of the LGP-

Gaussian log-theta-lattice to corresponding étale-like structures. That is to say, the
mutual compatibility of the isomorphisms

n,mF�⊥
LGP

∼→ F�⊥(n,◦HT D-Θ±ellNF)LGP

of the second display of Proposition 3.10, (iii), asserts, in effect, that such Kummer-
detachment indeterminacies do not arise. This is precisely the reason why we
wish to work with the LGP-, as opposed to the lgp-, Gaussian log-theta lattice
[cf. Remark 3.8.1]. On the other hand, the essentially multiplicative nature of
“F�

MOD” [cf. Remark 3.6.2, (ii)] makes it ill-suited to the task of computing the
étale-transport indeterminacies [cf. Remark 1.5.4, (i), (ii)] that occur as one
passes between distinct arithmetic holomorphic structures on opposite sides of a
Θ×μ

LGP-link.

(iii) By contrast, whereas the additive nature of the local modules [i.e., local
fractional ideals] that occur in the construction of “F�

mod” renders “F�
mod” ill-suited

to the computation of Kummer-detachment indeterminacies [cf. the discussion of
(i), (ii)], the close relationship [cf. Proposition 3.9, (i), (ii), (iii)] of these local mod-

ules to the mono-analytic log-shells that are coric with respect to the Θ×μ
LGP-link

[cf. Theorem 1.5, (iv); Remark 3.8.2] renders “F�
mod” well-suited to the computa-

tion of the étale-transport indeterminacies that occur as one passes between
distinct arithmetic holomorphic structures on opposite sides of a Θ×μ

LGP-link. That
is to say, although various distortions of these local modules arise as a result of both
[the Kummer-detachment indeterminacies constituted by] the local “upper semi-
compatibility” of Proposition 3.5, (ii), and [the étale-transport indeterminacies
constituted by] the discrepancy between local holomorphic and mono-analytic
integral structures [cf. Remark 3.9.1, (i), (ii)], one may nevertheless compute —
i.e., if one takes into account the various distortions that occur, “estimate” —
the global arithmetic degrees of objects of “F�

mod” by computing log-volumes
[cf. Proposition 3.9, (iii)], which are bi-coric, i.e., coric with respect to both the

Θ×μ
LGP-links [cf. Proposition 3.9, (ii)] and the log-links [cf. Proposition 3.9, (iv)] of

the LGP-Gaussian log-theta-lattice. This computability is precisely the topic of
Corollary 3.12 below. On the other hand, the issue of obtaining concrete estimates
will be treated in [IUTchIV].

(iv) The various properties of “F�
MOD” and “F�

mod” discussed in (i), (ii), (iii)
above are summarized in Fig. 3.2 below. In this context, it is of interest to observe
that the natural isomorphisms of Frobenioids

F�
mod(

n,◦HT D-Θ±ellNF)α
∼→ F�

MOD(
n,◦HT D-Θ±ellNF)α

as well as the resulting isomorphisms of F�-prime-strips

F�(n,◦HT D-Θ±ellNF)LGP
∼→ F�(n,◦HT D-Θ±ellNF)lgp
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of Proposition 3.10, (i), play the highly nontrivial role of relating [cf. the discussion
of [IUTchII], Remark 4.8.2, (i)] the “multiplicatively biased F�

MOD” to the “addi-

tively biased F�
mod” by means of the global ring structure of the number field

M
�
mod(

n,◦HT D-Θ±ellNF)α = M
�
MOD(

n,◦HT D-Θ±ellNF)α. A similar statement holds

concerning the tautological isomorphism of F�-prime-strips †F�
LGP

∼→ †F�
lgp of

Proposition 3.7, (iv).

F�
MOD/LGP-structures F�

mod/lgp-structures

biased toward biased toward
multiplicative structures additive structures

easily related to easily related to unit group/coric

value group/non-coric portion portion “(−)�×μ” of Θ×μ
LGP-/Θ

×μ
lgp -link,

“(−)��” of Θ×μ
LGP-link i.e., mono-analytic log-shells

admits only admits
precise log-Kummer “upper semi-compatible”

correspondence log-Kummer correspondence

rigid, but not suited subject to substantial distortion,
to explicit computation but suited to explicit estimates

Fig. 3.2: F�
MOD/LGP-structures versus F�

mod/lgp-structures

We are now ready to discuss the main theorem of the present series of papers.

Theorem 3.11. (Multiradial Algorithms via LGP-Monoids/Frobenioids)
Fix a collection of initial Θ-data

(F/F, XF , l, CK , V, ε)

as in [IUTchI], Definition 3.1. Let

{n,mHT Θ±ellNF}n,m∈Z

be a collection of distinct Θ±ellNF-Hodge theaters [relative to the given initial
Θ-data] — which we think of as arising from an LGP-Gaussian log-theta-lattice
[cf. Definition 3.8, (iii)]. For each n ∈ Z, write

n,◦HT D-Θ±ellNF
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for the D-Θ±ellNF-Hodge theater determined, up to isomorphism, by the various
n,mHT Θ±ellNF, where m ∈ Z, via the vertical coricity of Theorem 1.5, (i) [cf.
Remark 3.8.2].

(i) (Multiradial Representation) Consider the procession of D�-prime-
strips Prc(n,◦D�

T )

{n,◦D�
0} ↪→ {n,◦D�

0 ,
n,◦D�

1} ↪→ . . . ↪→ {n,◦D�
0 ,

n,◦D�
1 , . . . , n,◦D�

l±}

obtained by applying the natural functor of [IUTchI], Proposition 6.9, (ii), to [the

D-Θ±-bridge associated to] n,◦HT D-Θ±ellNF. Consider also the following data:

(a) for V � v | vQ, j ∈ |Fl|, the topological modules and mono-analytic
integral structures

I(S
±
j+1

;n,◦D�
vQ
) ⊆ IQ(S

±
j+1

;n,◦D�
vQ
); I(S

±
j+1

,j;n,◦D�
v ) ⊆ IQ(S

±
j+1

,j;n,◦D�
v )

— where the notation “;n, ◦” denotes the result of applying the construc-
tion in question to the case of D�-prime-strips labeled “n, ◦” — of Proposi-
tion 3.2, (ii) [cf. also the notational conventions of Proposition 3.4, (ii)],
which we regard as equipped with the procession-normalized mono-
analytic log-volumes of Proposition 3.9, (ii);

(b) for V
bad � v, the splitting monoid

Ψ⊥
LGP(

n,◦HT D-Θ±ellNF)v

of Proposition 3.5, (ii), (c) [cf. also the notation of Proposition 3.5, (i)],
which we regard — via the natural poly-isomorphisms

IQ(S
±
j+1

,j;n,◦D�
v )

∼→ IQ(S
±
j+1

,jF�×μ(n,◦D	)v)
∼→ IQ(S

±
j+1

,jF(n,◦D	)v)

for j ∈ F�
l [cf. Proposition 3.2, (i), (ii)] — as a subset of∏

j∈F
�

l

IQ(S
±
j+1

,j;n,◦D�
v )

equipped with a(n) [multiplicative] action on
∏

j∈F
�

l
IQ(S

±
j+1

,j;n,◦D�
v );

(c) for j ∈ F�
l , the number field

M
�
MOD(

n,◦HT D-Θ±ellNF)j = M
�
mod(

n,◦HT D-Θ±ellNF)j

⊆ IQ(S
±
j+1

;n,◦D�
VQ
)

def
=

∏
vQ∈VQ

IQ(S
±
j+1

;n,◦D�
vQ
)

[cf. the natural isomorphisms discussed in (b); Proposition 3.9, (iii);
Proposition 3.10, (i)], together with natural isomorphisms between the
associated global non-realified/ realified Frobenioids

F�
MOD(

n,◦HT D-Θ±ellNF)j
∼→ F�

mod(
n,◦HT D-Θ±ellNF)j
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F�R
MOD(

n,◦HT D-Θ±ellNF)j
∼→ F�R

mod(
n,◦HT D-Θ±ellNF)j

[cf. Proposition 3.10, (i)], whose associated “global degrees” may be
computed by means of the log-volumes of (a) [cf. Proposition 3.9, (iii)].

Write
n,◦RLGP

for the collection of data (a), (b), (c) regarded up to indeterminacies of the
following two types:

(Ind1) the indetermacies induced by the automorphisms of the procession
of D�-prime-strips Prc(n,◦D�

T );

(Ind2) for each vQ ∈ Vnon
Q (respectively, vQ ∈ Varc

Q ), the indeterminacies induced
by the action of independent copies of Ism [cf. Proposition 1.2, (vi)]
(respectively, copies of each of the automorphisms of order 2 whose orbit
constitutes the poly-automorphism discussed in Proposition 1.2, (vii)) on
each of the direct summands of the j+1 factors appearing in the tensor

product used to define IQ(S
±
j+1

;n,◦D�
vQ
) [cf. (a) above; Proposition 3.2, (ii)]

— where we recall that the cardinality of the collection of direct summands
is equal to the cardinality of the set of v ∈ V that lie over vQ.

Then n,◦RLGP may be constructed via an algorithm in the procession of D�-prime-
strips Prc(n,◦D�

T ) that is functorial with respect to isomorphisms of processions
of D�-prime-strips. For n, n′ ∈ Z, the permutation symmetries of the étale-
picture discussed in [IUTchI], Corollary 6.10, (iii); [IUTchII], Corollary 4.11,
(ii), (iii) [cf. also Corollary 2.3, (ii); Remark 3.8.2, of the present paper], induce
compatible poly-isomorphisms

Prc(n,◦D�
T )

∼→ Prc(n
′,◦D�

T );
n,◦RLGP ∼→ n′,◦RLGP

which are, moreover, compatible with the poly-isomorphisms

n,◦D�
0

∼→ n′,◦D�
0

induced by the bi-coricity poly-isomorphisms of Theorem 1.5, (iii) [cf. also [IUTchII],
Corollaries 4.10, (iv); 4.11, (i)].

(ii) (log-Kummer Correspondence) For n,m ∈ Z, the Kummer isomor-
phisms of labeled data

Ψcns(
n,mF	)t

∼→ Ψcns(
n,◦D	)t{

π1(
n,◦D�) � n,mM

�} ∼→
{
π1(

n,◦D�) � M
�
(n,◦D�)

}
(n,mM

�
mod)j

∼→ M
�
mod(

n,◦D�)j ; (n,mM
�
orb)j

∼→ M
�
orb(

n,◦D�)j

— where t ∈ LabCusp±(n,◦D	) — of [IUTchII], Corollary 4.6, (iii); [IUTchII],
Corollary 4.8, (i), (ii) [cf. also Propositions 3.5, (i); 3.10, (i), of the present paper]
induce isomorphisms between the vertically coric data (a), (b), (c) of (i) and
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the corresponding data arising from each Θ±ellNF-Hodge theater n,mHT Θ±ellNF,
i.e.:

(a) for V � v | vQ, j ∈ |Fl|, isomorphisms with local mono-analytic
tensor packets and their Q-spans

I(S
±
j+1

;n,mFvQ
)

∼→ I(S
±
j+1

;n,mF�×μ
vQ

)
∼→ I(S

±
j+1

;n,◦D�
vQ
)

IQ(S
±
j+1

;n,mFvQ
)

∼→ IQ(S
±
j+1

;n,mF�×μ
vQ

)
∼→ IQ(S

±
j+1

;n,◦D�
vQ
)

I(S
±
j+1

,j;n,mFv)
∼→ I(S

±
j+1

,j;n,mF�×μ
v )

∼→ I(S
±
j+1

,j;n,◦D�
v )

IQ(S
±
j+1

,j;n,mFv)
∼→ IQ(S

±
j+1

,j;n,mF�×μ
v )

∼→ IQ(S
±
j+1

,j;n,◦D�
v )

[cf. Propositions 3.2, (i), (ii); 3.4, (ii); 3.5, (i)], all of which are com-
patible with the respective log-volumes [cf. Proposition 3.9, (ii)];

(b) for V
bad � v, isomorphisms of splitting monoids

Ψ⊥
FLGP

(n,mHT Θ±ellNF)v
∼→ Ψ⊥

LGP(
n,◦HT D-Θ±ellNF)v

[cf. Proposition 3.5, (i); Proposition 3.5, (ii), (c)];

(c) for j ∈ F�
l , isomorphisms of number fields and non-realified/realified

global Frobenioids

(n,mM
�
MOD)j

∼→ M
�
MOD(

n,◦HT D-Θ±ellNF)j ; (n,mM
�
mod)j

∼→ M
�
mod(

n,◦HT D-Θ±ellNF)j

(n,mF�
MOD)j

∼→ F�
MOD(

n,◦HT D-Θ±ellNF)j ; (n,mF�
mod)j

∼→ F�
mod(

n,◦HT D-Θ±ellNF)j

(n,mF�R
MOD)j

∼→ F�R
MOD(

n,◦HT D-Θ±ellNF)j ; (n,mF�R
mod)j

∼→ F�R
mod(

n,◦HT D-Θ±ellNF)j

which are compatible with the respective natural isomorphisms between
“MOD”- and “mod”-subscripted versions [cf. Proposition 3.10, (i)]; here,
the isomorphisms of the third line of the display induce isomorphisms of
the global realified Frobenioid portions

n,mC�LGP
∼→ C�LGP(

n,◦HT D-Θ±ellNF); n,mC�lgp
∼→ C�lgp(n,◦HT D-Θ±ellNF)

of the F�-prime-strips n,mF�
LGP, F�(n,◦HT D-Θ±ellNF)LGP,

n,mF�
lgp, and

F�(n,◦HT D-Θ±ellNF)lgp [cf. Propositions 3.7, (iii), (iv), (v); 3.10, (i)].

Moreover, as one varies m ∈ Z, the isomorphisms of (b), as well as the isomor-
phisms of the first line in the first display of (c), are mutually compatible,
relative to the log-links of the n-th column of the LGP-Gaussian log-theta-lattice
under consideration, in the sense that the only portions of the domains of these
isomorphisms that are related to one another via the log-links consist of roots of
unity [multiplication by which corresponds, via the log-link, to an “addition by
zero” indeterminacy, i.e., to no indeterminacy!] — cf. Proposition 3.5, (ii),
(c); Proposition 3.10, (ii). This mutual compatibility of the isomorphisms of the
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first line in the first display of (c) implies a corresponding mutual compatibility
between the isomorphisms of the second and third lines in the first display of (c)
that involve the subscript “MOD” [but not between the isomorphisms that in-
volve the subscript “mod”! — cf. Proposition 3.10, (iii); Remark 3.10.2]. On the
other hand, the isomorphisms of (a) are subject to a certain “indeterminacy” as
follows:

(Ind3) as one varies m ∈ Z, the isomorphisms of (a) are “upper semi-
compatible”, relative to the log-links of the n-th column of the LGP-
Gaussian log-theta-lattice under consideration, in a sense that involves
certain natural inclusions “⊆” at vQ ∈ Vnon

Q and certain natural sur-
jections “�” at vQ ∈ Varc

Q — cf. Proposition 3.5, (ii), (a), (b), for more
details.

Finally, as one varies m ∈ Z, the isomorphisms of (a) are [precisely!] compatible,
relative to the log-links of the n-th column of the LGP-Gaussian log-theta-lattice
under consideration, with the respective log-volumes [cf. Proposition 3.9, (iv)].

(iii) (Θ×μ
LGP-Link Compatibility) The various Kummer isomorphisms of (ii)

satisfy compatibility properties with the various horizontal arrows — i.e., Θ×μ
LGP-

links — of the LGP-Gaussian log-theta-lattice under consideration as follows:

(a) The first Kummer isomorphism of the first display of (ii) induces — by

applying the F�±
l -symmetry of the Θ±ellNF-Hodge theater n,mHT Θ±ellNF

— a Kummer isomorphism n,mF�×μ



∼→ F�×μ

 (n,◦D�


) [cf. The-

orem 1.5, (iii)]. Relative to this Kummer isomorphism, the full poly-
isomorphism of F�×μ-prime-strips

F�×μ

 (n,◦D�


)
∼→ F�×μ


 (n+1,◦D�

)

is compatible with the full poly-isomorphism of F�×μ-prime-strips

n,mF�×μ



∼→ n+1,mF�×μ



induced [cf. Theorem 1.5, (ii)] by the horizontal arrows of the LGP-
Gaussian log-theta-lattice under consideration [cf. Theorem 1.5, (iii)].

(b) The F�-prime-strips n,mF�
env, F

�
env(

n,◦D>) [cf. Proposition 2.1, (ii)] that
appear implicitly in the construction of the local portion of the F�-prime-

strips n,mF�
LGP, F

�(n,◦HT D-Θ±ellNF)LGP,
n,mF�

lgp, F
�(n,◦HT D-Θ±ellNF)lgp

[cf. (ii), (b), above; Proposition 3.4, (ii); Proposition 3.7, (iii), (iv);
[IUTchII], Corollary 4.6, (iv)] admit natural isomorphisms of asso-

ciated F�×μ-prime-strips n,mF�×μ



∼→ n,mF�×μ
env , F�×μ


 (n,◦D�

)

∼→
F�×μ
env (n,◦D>) [cf. Proposition 2.1, (vi)]. Relative to these natural isomor-

phisms and to the Kummer isomorphism discussed in (a) above, the full
poly-isomorphism of F�×μ-prime-strips

F�×μ
env (n,◦D�


)
∼→ F�×μ

env (n+1,◦D�

)
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is compatible with the full poly-isomorphism of F�×μ-prime-strips

n,mF�×μ



∼→ n+1,mF�×μ



induced [cf. Theorem 1.5, (ii)] by the horizontal arrows of the LGP-
Gaussian log-theta-lattice under consideration [cf. Corollary 2.3, (iii)].

(c) Recall the data “n,◦Rbad” [cf. Corollary 2.3, (cR)] associated to the

D-Θ±ellNF-Hodge theater n,◦HT D-Θ±ellNF at v ∈ V
bad — data which ap-

pears implicitly in the construction of the local portion of the F�-prime-

strips n,mF�
LGP, F

�(n,◦HT D-Θ±ellNF)LGP,
n,mF�

lgp, F
�(n,◦HT D-Θ±ellNF)lgp

[cf. (ii), (b), above; Proposition 3.4, (ii); Proposition 3.7, (iii), (iv);

[IUTchII], Corollary 4.6, (iv)]. This data that arises from n,◦HT D-Θ±ellNF

is related to corresponding data that arises from the projective system of
mono-theta environments associated to the tempered Frobenioids of the

Θ±ellNF-Hodge theater n,mHT Θ±ellNF at v ∈ V
bad via the Kummer

isomorphisms and poly-isomorphisms of projective systems of
mono-theta environments discussed in Proposition 2.1, (ii), (iii) [cf.
also the second display of Theorem 2.2, (ii)] and Theorem 1.5, (iii) [cf.
also (a), (b) above]. Relative to these Kummer isomorphisms and poly-
isomorphisms of projective systems of mono-theta environments, the poly-
isomorphism

n,◦Rbad ∼→ n+1,◦Rbad

induced by any permutation symmetry of the étale-picture [cf. the fi-

nal portion of (i) above; Corollary 2.3, (ii); Remark 3.8.2] n,◦HT D-Θ±ellNF

∼→ n+1,◦HT D-Θ±ellNF is compatible with the full poly-isomorphism of
F�×μ-prime-strips

n,mF�×μ



∼→ n+1,mF�×μ



induced [cf. Theorem 1.5, (ii)] by the horizontal arrows of the LGP-
Gaussian log-theta-lattice under consideration [cf. Corollary 2.3, (iv)].

(d) Relative to the Kummer isomorphisms of the first display of (ii) [cf. also
(a), (b) above], the poly-isomorphisms{

π1(
n,◦D�) � M

�
(n,◦D�)

} ∼→
{
π1(

n+1,◦D�) � M
�
(n+1,◦D�)

}
M

�
orb(

n,◦D�)j
∼→ M

�
orb(

n+1,◦D�)j

induced by any permutation symmetry of the étale-picture [cf. the fi-

nal portion of (i) above; Corollary 2.3, (ii); Remark 3.8.2] n,◦HT D-Θ±ellNF

∼→ n+1,◦HT D-Θ±ellNF are compatible [cf. the discussion of Remark
3.10.1, (ii), for more details] with the full poly-isomorphism of F�×μ-
prime-strips

n,mF�×μ



∼→ n+1,mF�×μ



induced [cf. Theorem 1.5, (ii)] by the horizontal arrows of the LGP-
Gaussian log-theta-lattice under consideration.
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Proof. The various assertions of Theorem 3.11 follow immediately from the defi-
nitions and the references quoted in the statements of these assertions — cf. also
the various related observations of Remarks 3.11.1, 3.11.2 below. ©

Remark 3.11.1. One way to summarize the content of Theorem 3.11 is as follows:

Theorem 3.11 gives an algorithm for describing, up to certain relatively
mild indeterminacies, the LGP-monoids [cf. Fig. 3.1] — i.e., in
essence, the theta values {

qj
2
}
j=1,... ,l�

— which are constructed relative to the scheme/ring structure, i.e.,
“arithmetic holomorphic structure”, associated to one vertical line
[i.e., “(n, ◦)” for fixed some n ∈ Z] in the LGP-Gaussian log-theta-lattice
under consideration in terms of the a priori alien arithmetic holomorphic
structure of another vertical line [i.e., “(n + 1, ◦)”] in the LGP-Gaussian
log-theta-lattice under consideration — cf., especially, the final portion of
Theorem 3.11, (i), concerning functoriality and compatibility with the
permutation symmetries of the étale-picture.

This point of view is consistent with the point of view of the discussion of Remark
1.5.4; [IUTchII], Remark 3.8.3, (iii).

Remark 3.11.2.

(i) In Theorem 3.11, (i), we do not apply the formalism or language developed
in [IUTchII], §1, for discussing multiradiality. Nevertheless, the approach taken in
Theorem 3.11, (i) — i.e., by regarding the collection of data (a), (b), (c) up to the
indeterminacies given by (Ind1), (Ind2) — to constructing “multiradial repre-
sentations” amounts, in essence, to a special case of the tautological approach
to constructing multiradial environments discussed in [IUTchII], Example 1.9, (ii).
That is to say, this tautological approach is applied to the vertically coric con-
structions of Proposition 3.5, (i); 3.10, (i), which, a priori, are uniradial in the sense
that they depend, in an essential way, on the arithmetic holomorphic structure
constituted by a particular vertical line — i.e., “(n, ◦)” for fixed some n ∈ Z — in
the LGP-Gaussian log-theta-lattice under consideration.

(ii) One important underlying aspect of the tautological approach to multira-
diality discussed in (i) is the treatment of the various labels that occur in the
multiplicative and additive combinatorial Teichmüller theory associated to

the D-Θ±ellNF-Hodge theater n,◦HT D-Θ±ellNF under consideration [cf. the theory
of [IUTchI], §4, §6]. The various transitions between types of labels is illustrated
in Fig. 3.3 below. Here, we recall that:

(a) the passage from the F�±
l -symmetry to labels ∈ Fl forms the content

of the associated D-Θ±ell-Hodge theater [cf. [IUTchI], Remark 6.6.1];
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(b) the passage from labels ∈ Fl to labels ∈ |Fl| forms the content of the
functorial algorithm of [IUTchI], Proposition 6.7;

(c) the passage from labels ∈ |Fl| to ±-processions forms the content of
[IUTchI], Proposition 6.9, (ii);

(d) the passage from the F�
l -symmetry to labels ∈ F�

l forms the content
of the associated D-ΘNF-Hodge theater [cf. [IUTchI], Remark 4.7.2, (i)];

(e) the passage from labels ∈ F�
l to �-processions forms the content of

[IUTchI], Proposition 4.11, (ii);

(f) the compatibility between �-processions and ±-processions, relative
to the natural inclusion of labels F�

l ↪→ |Fl|, forms the content of [IUTchI],
Proposition 6.9, (iii).

Here, we observe in passing that, in order to perform these various transitions, it
is absolutely necessary to work with all of the labels in Fl or |Fl|, i.e., one does
not have the option of “arbitrarily omitting certain of the labels” [cf. the discussion
of [IUTchII], Remark 2.6.3; [IUTchII], Remark 3.5.2]. Also, in this context, it
is important to note that there is a fundamental difference between the labels ∈
Fl, |Fl|,F�

l —which are essentially arithmetic holomorphic in the sense that they
depend, in an essential way, on the various local and global arithmetic fundamental
groups involved — and the index sets of the mono-analytic ±-processions
that appear in the multiradial representation of Theorem 3.11, (i). Indeed, these
index sets are just “naked sets” which are determined, up to isomorphism, by their
cardinality. In particular,

the construction of these index sets is independent of the various arith-
metic holomorphic structures involved.

Indeed, it is precisely this property of these index sets that renders them suitable
for use in the construction of the multiradial representations of Theorem 3.11, (i).
As discussed in [IUTchI], Proposition 6.9, (i), for j ∈ {0, . . . , l�}, there are pre-
cisely j + 1 possibilities for the “element labeled j” in the index set of cardinality
j + 1; this leads to a total of (l� + 1)! = l±! possibilities for the “label inden-
tification” of elements of index sets of capsules appearing in the mono-analytic
±-processions of Theorem 3.11, (i). Finally, in this context, it is of interest to recall
that the “rougher approach to symmetrization” that arises when one works with
mono-anlytic processions is [“downward”] compatible with the finer arithmetically
holomorphic approach to symmetrization that arises from the F�±

l -symmetry [cf.
[IUTchII], Remark 3.5.3; [IUTchII], Remark 4.5.2, (ii); [IUTchII], Remark 4.5.3,
(ii)].

(iii) Observe that the “Kummer isomorphism of global realified Frobe-
nioids” that appears in the theory of [IUTchII], §4 — i.e., more precisely, the

various versions of the isomorphism of Frobenioids “‡C� ∼→ D�(‡D�)” discussed
in [IUTchII], Corollary 4.6, (ii), (v) — is constructed by considering isomorphisms
between local value groups obtained by forming the quotient of the multiplica-
tive groups associated to the various local fields that appear by the subgroups of
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local units [cf. [IUTchII], Propositions 4.2, (ii); 4.4, (ii)]. In particular, such
“Kummer isomorphisms” fail to give rise to a “log-Kummer correspondence”,
i.e., they fail to satisfy mutual compatibility properties of the sort discussed in
the final portion of Theorem 3.11, (ii). Indeed, as discussed in Remark 1.2.3, (i) [cf.
also [IUTchII], Remark 1.12.2, (iv)], at v ∈ V

non, the operation of forming a multi-
plicative quotient by local units corresponds, on the opposite side of the log-link, to
forming an additive quotient by the submodule obtained as the pv-adic logarithm
of these local units. This is precisely why, in the context of Theorem 3.11, (ii), we

wish to work with the global non-realified/realified Frobenioids “F�
MOD”, “F�R

MOD”
that arise from copies of “Fmod” which satisfy a “log-Kummer correspondence”, as
described in the final portion of Theorem 3.11, (ii) [cf. the discussion of Remark
3.10.2]. On the other hand, the pathologies/indeterminacies that arise from work-
ing with global arithmetic line bundles by means of various local data at v ∈ V in
the context of the log-link are formalized via the theory of the global Frobenioids
“F�

mod”, together with the “upper semi-compatibility” of local units discussed
in the final portion of Theorem 3.11, (ii) [cf. also the discussion of Remark 3.10.2].

F�±
l -symmetry

⇓

F�
l -symmetry

⇓

labels ∈ Fl
=⇒

labels ∈ |Fl|

⇓

⇐=
labels ∈ F�

l

⇓

±-procession ⇐= �-procession

Fig. 3.3: Transitions from symmetries to labels to processions
in a Θ±ellNF-Hodge theater

(iv) In the context of the discussion of global realified Frobenioids given in (iii),
we observe that, in the case of the global realified Frobenioids [constructed by means

of “F�R
MOD”!] that appear in the F�-prime-strips n,mF�

LGP, F
�(n,◦HT D-Θ±ellNF)LGP

[cf. Theorem 3.11, (ii), (c)], the various localization functors that appear [i.e.,
the various “‡ρv” of [IUTchI], Definition 5.2, (iv); cf. also the isomorphisms of
the second display of [IUTchII], Corollary 4.6, (v)] may be reconstructed, in the
spirit of the discussion of Remark 3.9.2, “by considering the effect of multiplication
by elements of the [non-realified] global monoids under consideration on the log-
volumes of the various local mono-analytic tensor packets that appear”. [We leave
the routine details to the reader.] This reconstructibility, together with the mutual
incompatibilities observed in (iii) above that arise when one attempts to work si-
multaneously with log-shells and with the splitting monoids of the F�-prime-strip
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n,mF�
LGP at v ∈ V

good, are the primary reasons for our omission of the the splitting

monoids at v ∈ V
good from the statement of Theorem 3.11 [cf. Theorem 3.11, (i),

(b); Theorem 3.11, (ii), (b); Theorem 3.11, (iii), (c), in the case of v ∈ V
bad].

Remark 3.11.3. Before proceeding, we pause to discuss the relationship between
the log-Kummer correspondence of Theorem 3.11, (ii), and the Θ×μ

LGP-link
compatibility of Theorem 3.11, (iii).

(i) First, we recall [cf. Remarks 1.4.1, (i); 3.8.2] that the various squares that
appear in the [LGP-Gaussian] log-theta-lattice are far from being [1-]commutative!
On the other hand, the bi-coricity of F�×μ-prime-strips and mono-analytic log-
shells discussed in Theorem 1.5, (iii), (iv), may be intepreted as the statement
that

the various squares that appear in the [LGP-Gaussian] log-theta-lattice
are in fact [1-]commutative with respect to [the portion of the data
associated to each “•” in the log-theta-lattice that is constituted by] these
bi-coric F�×μ-prime-strips and mono-analytic log-shells.

(ii) Next, let us observe that in order to relate both the unit and value group

portions of the domain and codomain of the Θ×μ
LGP-link corresponding to adjacent

vertical lines — i.e., (n− 1, ∗) and (n, ∗) — of the [LGP-Gaussian] log-theta-lattice
to one another,

it is necessary to relate these unit and value group portions to one
another by means of a single Θ×μ

LGP-link, i.e., from (n− 1,m) to (n,m).

That is to say, from the point of view of constructing the various LGP-monoids
that appear in the multiradial representation of Theorem 3.11, (i), one is tempted
to work with correspondences between value groups on adjacent vertical lines that
lie in a vertically once-shifted position — i.e., say, at (n − 1,m) and (n,m) —
relative to the correspondence between unit groups on adjacent vertical lines, i.e.,
say, at (n− 1,m− 1) and (n,m− 1). On the other hand, such an approach fails, at
least from an a priori point of view, precisely on account of the noncommutativity
discussed in (i). Finally, we observe that in order to relate both unit and value

groups by means of a single Θ×μ
LGP-link,

it is necessary to avail oneself of the Θ×μ
LGP-link compatibility properties

discussed in Theorem 3.11, (iii) — i.e., of the theory of §2 and [IUTchI],
Example 5.1, (v) — so as to insulate the cyclotomes that appear in
the construction of the étale theta function via mono-theta envi-
ronments and the construction of number fields via global Kummer
theory from the AutF�×μ(−)-indeterminacies that act on the F�×μ-

prime-strips involved as a result of the application of the Θ×μ
LGP-link

— cf. the discussion of Remarks 2.2.1; 3.10.1, (ii).

(iii) As discussed in (ii) above, a “vertically once-shifted” approach to relating
units on adjacent vertical lines fails on account of the noncommutativity discussed in
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(i). Thus, one natural approach to treating the units in a “vertically once-shifted”
fashion — which, we recall, is necessary in order to relate the LGP-monoids on
adjacent vertical lines to one another! — is to apply the bi-coricity of mono-
analytic log-shells discussed in (i). On the other hand, to take this approach means
that one must work in a framework that allows one to relate [cf. the discussion
of Remark 1.5.4, (i)] the “Frobenius-like” structure constituted by the Frobenioid-

theoretic units [i.e., which occur in the domain and codomain of the Θ×μ
LGP-link] to

corresponding étale-like structures simultaneously via both

(a) the usual Kummer isomorphisms — i.e., so as to be compatible with
the application of the compatibility properties of Theorem 3.11, (iii), as
discussed in (ii) — and

(b) the composite of the usual Kummer isomorphisms with [a single iterate
of] the log-link — i.e., so as to be compatible with the bi-coric treatment
of mono-analytic log-shells [as well as the closely related construction of
LGP-monoids] proposed above.

Such a framework may only be realized if one relates Frobenius-like structures to
étale-like structures in a fashion that is invariant with respect to pre-composition
of various iterates of the log-link [cf. the final portions of Propositions 3.5, (ii);
3.10, (ii)]. This is precisely what is achieved by the log-Kummer correspondences
of the final portion of Theorem 3.11, (ii).

(iv) The discussion of (i), (ii), (iii) above may be summarized as follows: The
log-Kummer correspondences of the final portion of Theorem 3.11, (ii), allow
one to

(a) relate both the unit and the value group portions of the domain and

codomain of the Θ×μ
LGP-link corresponding to adjacent vertical lines of the

[LGP-Gaussian] log-theta-lattice to one another, in a fashion that

(b) insulates the cyclotomes/Kummer theory surrounding the étale
theta function and number fields involved from the AutF�×μ(−)-
indeterminacies that act on F�×μ-prime-strips involved as a result of
the application of the Θ×μ

LGP-link [cf. Theorem 3.11, (iii)], and, moreover,

(c) is compatible with the bi-coricity of the mono-analytic log-shells
[cf. Theorem 1.5, (iv)], hence also with the operation of relating the
LGP-monoids that appear in the multiradial representation of Theorem
3.11, (i), corresponding to adjacent vertical lines of the [LGP-Gaussian]
log-theta-lattice to one another.

These observations will play a key role in the proof of Corollary 3.12 below.

The following result may be thought of as a relatively concrete consequence of
the somewhat abstract content of Theorem 3.11.

Corollary 3.12. (Log-volume Estimates for Θ-Pilot Objects) Suppose
that we are in the situation of Theorem 3.11. Write

− |log(Θ)| ∈ R
⋃
{+∞}
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for the procession-normalized mono-analytic log-volume [i.e., where the av-
erage is taken over j ∈ F�

l — cf. Remark 3.1.1, (ii); Proposition 3.9, (i), (ii);
Theorem 3.11, (i), (a)] of the union of the possible images of a Θ-pilot object
[cf. Definition 3.8, (i)], relative to the relevant Kummer isomorphisms [cf. The-
orem 3.11, (ii)], in the multiradial representation of Theorem 3.11, (i), which
we regard as subject to the indeterminacies (Ind1), (Ind2), (Ind3) described in
Theorem 3.11, (i), (ii). Write

− |log(q)| ∈ R

for the procession-normalized mono-analytic log-volume of the image of a
q-pilot object [cf. Definition 3.8, (i)], relative to the relevant Kummer isomor-
phisms [cf. Theorem 3.11, (ii)], in the multiradial representation of Theorem
3.11, (i), which we do not regard as subject to the indeterminacies (Ind1), (Ind2),
(Ind3) described in Theorem 3.11, (i), (ii). Here, we recall the definition of the
symbol “�” as the result of identifying the labels

“0” and “〈F�
l 〉”

[cf. [IUTchII], Corollary 4.10, (i)]. In particular, |log(q)| > 0 is easily computed

in terms of the various q-parameters of the elliptic curve EF [cf. [IUTchI],

Definition 3.1, (b)] at v ∈ V
bad ( �= ∅). Then it holds that

CΘ ≥ −1

for any real number CΘ ∈ R such that

− |log(Θ)| ≤ CΘ · |log(q)| (∗CΘ)

[i.e., − |log(Θ)| ∈ R ⊆ R
⋃ {+∞} and satisfies the inequality (∗CΘ)].

Proof. Suppose that we are in the situation of Theorem 3.11. We begin by
reviewing precisely what is achieved by the various portions of Theorem 3.11 and,
indeed, by the theory developed thus far in the present series of papers. This review
leads naturally to an interpretation of the theory that gives rise to the inequality
asserted in the statement of Corollary 3.12. For ease of reference, we divide our
discussion into steps, as follows.

(i) In the following discussion, we concentrate on a single arrow — i.e., a single

Θ×μ
LGP-link

0,0HT Θ±ellNF Θ×μ
LGP−→ 1,0HT Θ±ellNF

— of the [LGP-Gaussian] log-theta-lattice under consideration. This arrow consists
of the full poly-isomorphism of F��×μ-prime-strips

0,0F��×μ
LGP

∼→ 1,0F��×μ



[cf. Definition 3.8, (ii)]. This poly-isomorphism may be thought of as consisting of
a “unit portion” constituted by the associated [full] poly-isomorphism of F�×μ-
prime-strips

0,0F�×μ
LGP

∼→ 1,0F�×μ
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and a “value group portion” constituted by the associated [full] poly-isomorphism
of F��-prime-strips

0,0F��
LGP

∼→ 1,0F��



[cf. Definition 2.4, (iii)]. This value group portion of the Θ×μ
LGP-link maps Θ-pilot

objects of 0,0HT Θ±ellNF to q-pilot objects of 1,0HT Θ±ellNF [cf. Remark 3.8.1].

(ii) Whereas the units of the Frobenioids that appear in the F�×μ-prime-strip
0,0F�×μ

LGP are subject to AutF�×μ(−)-indeterminacies [i.e., “(Ind2)” — cf. Theorem
3.11, (iii), (a), (b)], the cyclotomes that appear in the Kummer theory related
to the étale theta function and the number fields involved, i.e., which give
rise to the “value group portion” 0,0F��

LGP, are insulated from these AutF�×μ(−)-
indeterminacies — cf. Theorem 3.11, (iii), (c), (d); the discussion of Remark
3.11.3, (iv); Fig. 3.4 below. Here, we recall that in the case of the étale theta
function, this follows from the theory of §2, i.e., in essence, from the cyclotomic
rigidity of mono-theta environments, as discussed in [EtTh]. On the other
hand, in the case of number fields, this follows, in essence, from the elementary
algebraic number theory fact applied in the proof of Proposition 3.10 to the effect
that the nonzero global integers of a number field are necessarily roots of unity,
together with the algorithms discussed in [IUTchI], Example 5.1, (v).

Θ-related objects NF-related objects

require local LGP-monoids Fmod

mono-analytic
containers, [cf. Proposition [cf. Proposition

Kummer-incompatible 3.4, (ii)] 3.7, (i)]

independent of étale theta F
mono-analytic function, [cf. [IUTchI],
containers, mono-theta Example 5.1, (v);

Kummer-compatible environments [IUTchII],
[cf. Corollary 2.3] Corollary 4.8, (i)]

Fig. 3.4: Relationship of theta- and number field-related objects
to mono-analytic containers

(iii) In the following discussion, it will be of crucial importance to relate si-

multaneously both the unit and the value group portions of the Θ×μ
LGP-link(s)

involved on the 0-column [i.e., the vertical line indexed by 0] of the log-theta-lattice
under consideration to the corresponding unit and value group portions on the
1-column [i.e., the vertical line indexed by 1] of the log-theta-lattice under con-
sideration. On the other hand, if one attempts to relate the unit portions via
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one Θ×μ
LGP-link [say, from (0,m) to (1,m)] and the value group portions via another

Θ×μ
LGP-link [say, from (0,m′) to (1,m′), for m′ �= m], then the non-commutativity

of the log-theta-lattice renders it practically impossible to obtain conclusions that
require one to relate both the unit and the value group portions simultaneously [cf.
the discussion of Remark 3.11.3, (i), (ii)]. This is precisely why we concentrate on

a single Θ×μ
LGP-link [cf. (i)].

(iv) The issue discussed in (iii) is relevant in the context of the present dis-
cussion for the following reason. Ultimately, we wish to apply the bi-coricity of
the units [cf. Theorem 1.5, (iii), (iv)] in order to compute the 0-column Θ-pilot
object in terms of the arithmetic holomorphic structure of the 1-column. In or-
der to do this, one must work with units that are vertically once-shifted [i.e.,
lie at (n,m − 1)] relative to the value group structures involved [i.e., which lie at
(n,m)] — cf. the discussion of Remark 3.11.3, (ii). The solution to the problem of
simultaneous accommodating these apparently contradictory requirements — i.e.,
“vertical shift” vs. “impossibility of vertical shift” [cf. (iii)] — is given precisely
by working, on the 0-column, with structures that are invariant with respect to
vertical shifts [i.e., “(0,m) �→ (0,m+ 1)”] of the log-theta-lattice [cf. the discus-
sion surrounding Remark 1.2.2, (iii), (a)] such as vertically coric structures [i.e.,
indexed by “(n, ◦)”] that are related to the “Frobenius-like” structures which are
not vertically coric by means of the log-Kummer correspondences of Theorem
3.11, (ii). Here, we note that this “solution” may be implemented only at the cost
of admitting the “indeterminacy” constituted by the upper semi-compatibility
of (Ind3).

(v) Thus, we begin our computation of the 0-column Θ-pilot object in terms of
the arithmetic holomorphic structure of the 1-column by relating the units on the
0- and 1-columns by means of the unit portion

0,0F�×μ
LGP

∼→ 1,0F�×μ



of the Θ×μ
LGP-link from (0, 0) to (1, 0) [cf. (i)] and then applying the bi-coricity of

the units of Theorem 1.5, (iii), (iv). In particular, the mono-analytic log-shell
interpretation of this bi-coricity given in Theorem 1.5, (iv), will be applied to regard
these mono-analytic log-shells as “multiradial mono-analytic containers” [cf.
the discussion of Remark 1.5.2, (i), (ii), (iii)] for the various [local and global] value
group structures that constitute the Θ-pilot object on the 0-column — cf. Fig.
3.4 above. [Here, we observe that the parallel treatment of “theta-related” and
“number field-related” objects is reminiscent of the discussion of [IUTchII], Remark
4.11.2, (iv).] That is to say, we will relate the various Frobenioid-theoretic [i.e.,
“Frobenius-like” — cf. Remark 1.5.4, (i)]

· local units at v ∈ V,
· splitting monoids at v ∈ V

bad, and
· global Frobenioids

indexed by (0,m), for m ∈ Z, to the vertically coric [i.e., indexed by “(0, ◦)”]
versions of these bi-coric mono-analytic containers by means of the log-Kummer
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correspondences of Theorem 3.11, (ii), (a), (b), (c) — i.e., by varying the “Kum-
mer input index” (0,m) along the 0-column.

(vi) In the context of (v), it is useful to recall that the log-Kummer correspon-
dences of Theorem 3.11, (ii), (b), (c), are obtained precisely as a consequence of
the splittings, up to roots of unity, of the relevant monoids into unit and value
group portions constructed by applying the constant multiple rigidity estab-
lished in [EtTh] [in the case of Theorem 3.11, (ii), (b)] and the elementary algebraic
number theory characterization of the global integers of a number field that was
applied in the proof of Proposition 3.10 [in the case of Theorem 3.11, (ii), (c)].
Moreover, we recall that the Kummer theory surrounding the local LGP-monoids
of Proposition 3.4, (ii), depends, in an essential way, on the theory of [IUTchII],
§3 [cf., especially, [IUTchII], Corollaries 3.5, 3.6], which, in turn, depends, in an
essential way, on the Kummer theory surrounding mono-theta environments
established in [EtTh]. Thus, for instance, we recall that the discrete rigidity es-
tablished in [EtTh] is applied so as to avoid working, in the tempered Frobenioids

that occur, with “Ẑ-divisors/line bundles” [i.e., “Ẑ-completions” of Z-modules
of divisors/line bundles], which are fundamentally incompatible with conventional
notions of divisors/line bundles, hence, in particular, with mono-theta-theoretic cy-
clotomic rigidity [cf. Remark 2.1.1, (v)]. Also, we recall that “isomorphism class
compatibility”— i.e., in the terminology of [EtTh], “compatibility with the topol-
ogy of the tempered fundamental group” [cf. the discussion at the beginning
of Remark 2.1.1] — allows one to apply the Kummer theory of mono-theta environ-
ments [i.e., the theory of [EtTh]] relative to the ring-theoretic basepoints that
occur on either side of the log-link [cf. Remark 2.1.1, (ii); [IUTchII], Remark 3.6.4,
(i)], for instance, in the context of the log-Kummer correspondence for the splitting
monoids of local LGP-monoids, whose construction depends, in an essential way
[cf. the theory of [IUTchII], §3, especially, [IUTchII], Corollaries 3.5, 3.6], on the
conjugate synchronization arising from the F�±

l -symmetry. That is to say,

it is precisely by establishing this conjugate synchronization arising from
the F�±

l -symmetry relative to these basepoints that occur on either side of
the log-link that one is able to conclude the crucial compatibility of this
conjugate synchronization with the log-link discussed in Remark 1.3.2.

A similar observation may be made concerning theMLF-Galois pair approach to the
cyclotomic rigidity isomorphism that is applied at v ∈ V

good ⋂
V

non [cf. [IUTchII],
Corollary 1.11, (a); [IUTchII], Remark 1.11.1, (i), (a); [IUTchII], Proposition 4.2,
(i); [AbsTopIII], Proposition 3.2, (iv)], which amounts, in essence, to

computations involving the Galois cohomology groups of various subquo-
tients — such as torsion subgroups [i.e., roots of unity] and associated
value groups — of the [multiplicative] module of nonzero elements of an
algebraic closure of the mixed characteristic local field involved

[cf. the proof of [AbsAnab], Proposition 1.2.1, (vii)] — i.e., algorithms that are
compatible with the topology of the profinite groups involved, in the sense that
they do not require one to pass to Kummer towers [cf. the discussion of [IUTchII],
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Remark 3.6.4, (i)], which have are fundamentally incompatible with the ring struc-
ture of the fields involved. Here, we note in passing that the corresponding property
for v ∈ V

arc [cf. [IUTchII], Proposition 4.4, (i)] holds for the simple reason that
the complex archimedean local fields that occur at such v are already algebraically
closed [so that there is no issue of possibly having to pass to Kummer towers]! On

the other hand, the approaches to cyclotomic rigidity just discussed for v ∈ V
bad

and v ∈ V
good ⋂

V
non differ quite fundamentally from the approach to cyclotomic

rigidity taken in the case of [global] number fields in the algorithms described in
[IUTchI], Example 5.1, (v), which depend, in an essential way, on the property

Q>0

⋂
Ẑ× = {1}

— i.e., which is fundamentally incompatible with the topology of the profinite
groups involved in the sense that it clearly cannot be obtained as some sort of limit
of corresponding properties of (Z/NZ)×! Nevertheless, with regard to uni-/multi-
radiality issues, this approach to cyclotomic rigidity in the case of the number fields
resembles the theory of mono-theta-theoretic cyclotomic rigidity at v ∈ V

bad in that
it admits a natural multiradial formulation [cf. Theorem 3.11, (iii), (c), (d); the
discussion of Remark 3.11.3], in sharp contrast to the essentially uniradial nature

of the approach to cyclotomic rigidity via MLF-Galois pairs at v ∈ V
good ⋂

V
non [cf.

the discussion of [IUTchII], Remark 1.11.3]. These observations are summarized in
Fig. 3.5 below. Finally, we recall that [one verifies immediately that] the various
approaches to cyclotomic rigidity just discussed aremutually compatible in the sense
that they yield the same cyclotomic rigidity isomorphism in any setting in which
more than one of these approaches may be applied.

Approach to Uni-/multi- Compatibility with ring
cyclotomic radiality structure, log-link in the
rigidity context of the F�±

l -symmetry

mono-theta multiradial compatible
environments

MLF-Galois pairs, uniradial compatible
via Brauer groups

number fields, via multiradial incompatible

Q>0

⋂
Ẑ× = {1} (⇐= ∃ splitting)

Fig. 3.5: Three approaches to cyclotomic rigidity

(vii) In the context of the discussion in the final portion of (vi), it is of in-
terest to recall that the constructions underlying the crucial bi-coricity theory of
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Theorem 1.5, (iii), (iv), depend, in an essential way, on the conjugate synchro-
nization arising from the F�±

l -symmetry, which allows one to relate the local
monoids and Galois groups at distinct labels ∈ |Fl| to one another in a fashion that
is simultaneously compatible both with

· the vertically coric structures and Kummer theory that give rise to
the log-Kummer correspondences of Theorem 3.11, (ii),

and with

· the property of distinguishing [i.e., not identifying] data indexed by
distinct labels ∈ |Fl|

— cf. the discussion of Remark 1.5.1, (i), (ii). Since, moreover, this crucial conju-
gate synchronization is fundamentally incompatible with the F�

l -symmetry, it is
necessary to work with these two symmetries separately, as was done in [IUTchI],
§4, §5, §6 [cf. [IUTchII], Remark 4.7.6]. Here, it is useful to recall that the F�

l -
symmetry also plays a crucial role, in that it allows one to “descend to Fmod” at the
level of absolute Galois groups [cf. [IUTchII], Remark 4.7.6]. On the other hand,
both the F�±

l - and F�
l -symmetries share the property of being compatible with the

vertical coricity and relevant Kummer isomorphisms of the 0-column — cf.
the log-Kummer correspondences of Theorem 3.11, (ii), (b) [in the case of the
F�±
l -symmetry], (c) [in the case of the F�

l -symmetry]. Indeed, the vertically coric

versions of both the F�±
l - and the F�

l -symmetries depend, in an essential way, on
the arithmetic holomorphic structure of the 0-column, hence give rise to mul-
tiradial structures via the tautological approach to constructing such structures
discussed in Remark 3.11.2, (i), (ii).

(viii) In the context of (vii), it is useful to recall that in order to construct
the F�±

l -symmetry, it is necessary to make use of global ±-synchronizations of
various local ±-indeterminacies. Since the local tempered fundamental groups at
v ∈ V

bad do not extend to a “global tempered fundamental group”, these global ±-
synchronizations give rise to profinite conjugacy indeterminacies in the verti-
cally coric construction of the LGP-monoids [i.e., the theta values at torsion points]
given in [IUTchII], §2, which are resolved by applying the theory of [IUTchI], §2 —
cf. the discussion of [IUTchI], Remark 6.12.4, (iii); [IUTchII], Remark 4.5.3, (iii);
[IUTchII], Remark 4.11.2, (iii).

(ix) In the context of (vii), it is also useful to recall the important role played,
in the theory of the present series of papers, by the various “copies of Fmod”,
i.e., more concretely, in the form of the various copies of the global Frobenioids
“F�

MOD”, “F�
mod” and their realifications. That is to say, the ring structure of

the global field Fmod allows one to bridge the gap — i.e., furnishes a translation
apparatus — between the multiplicative structures constituted by the global
realified Frobenioids related via the Θ×μ

LGP-link and the additive representations of
these global Frobenioids that arise from the “mono-analytic containers” furnished
by the mono-analytic log-shells [cf. (v)]. Here, the precise compatibility of
the ingredients for “F�

MOD” with the log-Kummer correspondence renders “F�
MOD”

better suited to describing the relation to the Θ×μ
LGP-link [cf. Remark 3.10.2, (ii)].
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On the other hand, the local portion of “F�
mod” — i.e., which is subject to “upper

semi-compatibility” [cf. (Ind3)], hence only “approximately compatible” with the
log-Kummer correspondence — renders it better suited to explicit estimates of
global arithmetic degrees, by means of log-volumes [cf. Remark 3.10.2, (iii)].

(x) Thus, one may summarize the discussion thus far as follows. The theory
of “Kummer-detachment” — cf. Remarks 1.5.4, (i); 2.1.1; 3.10.2, (ii), (iii) —
furnished by Theorem 3.11, (ii), (iii), allows one to relate the Frobenoid-theoretic
[i.e., “Frobenius-like”] structures that appear in the domain [i.e., at (0, 0)] of the

Θ×μ
LGP-link [cf. (i)] to the multiradial representation described in Theorem 3.11,

(i), (a), (b), (c), but only at the cost of introducing the indeterminacies

(Ind1) — which may be thought of as arising from the requirement of com-
patibility with the permutation symmetries of the étale-picture [cf.
Theorem 3.11, (i)];

(Ind2) — which may be thought of as arising from the requirement of com-
patibility with the AutF�×μ(−)-indeterminacies that act on the do-

main/codomain of the Θ×μ
LGP-link [cf. (ii); Theorem 3.11, (i), (iii)], i.e.,

with the horizontal arrows of the log-theta-lattice;

(Ind3) — which may be thought of as arising from the requirement of compat-
ibility with the log-Kummer correspondences of Theorem 3.11, (ii),
i.e., with the vertical arrows of the log-theta-lattice.

The various indeterminacies (Ind1), (Ind2), (Ind3) to which the multiradial repre-
sentation is subject may be thought of as data that describes some sort of “formal
quotient”, like the “fine moduli spaces” that appear in algebraic geometry.
In this context, the procession-normalized mono-analytic log-volumes [i.e.,
where the average is taken over j ∈ F�

l ] of Theorem 3.11, (i), (a), (c), furnish a
means of constructing a sort of associated “coarse space” or “inductive limit”
[of the “inductive system” constituted by this “formal quotient”] — i.e., in the
sense that [one verifies immediately — cf. Proposition 3.9, (ii) — that] the result-
ing log-volumes ∈ R are invariant with to respect to the indeterminacies (Ind1),
(Ind2), and have the effect of converting the indeterminacy (Ind3) into an in-
equality (from above). Moreover, the log-link compatibility of the various log-
volumes that appear [cf. Proposition 3.9, (iv); the final portion of Theorem 3.11,
(ii)] ensures that these log-volumes are compatible with [the portion of the “formal
quotient”/“inductive system” constituted by] the various arrows [i.e., Kummer iso-
morphisms and log-links] of the log-Kummer correspondence of Theorem 3.11,
(ii). Here, we note that the averages over j ∈ F�

l that appear in the definition of
the procession-normalized volumes involved may be thought of as a consequence
of the F�

l -symmetry acting on the labels of the theta values that give rise to the
LGP-monoids — cf. the also the definition of the symbol “�” in [IUTchII], Corol-
lary 4.10, (i), via the identification of the symbols “0” and “〈F�

l 〉”; the discussion of
Remark 3.9.3. Also, in this context, it is of interest to observe that the various ten-
sor products that appear in the various local mono-analytic tensor packets that
arise in the multiradial representation of Theorem 3.11, (i), (a), have the effect of
identifying the operation of “multiplication by elements of Z” — and hence also
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the effect on log-volumes of such multiplication operations! — at different labels
∈ F�

l .

(xi) Now let us consider a q-pilot object at (1, 0), which we think of —
relative to the relevant copy of “F�

mod” — in terms of the mono-analytic log-

shells constructed at (1, 0) [cf. (v)]. Then the Θ×μ
LGP-link from (0, 0) to (1, 0)

may be interpreted as a sort of gluing isomorphism that relates the arithmetic
holomorphic structure— i.e., the “conventional ring/scheme-theory”— at (1, 0)
to the arithmetic holomorphic structure at (0, 0) in such a way that the Θ-pilot
object at (0, 0) [thought of as an object of the relevant global realified Frobenioid]
corresponds to the q-pilot object at (1, 0) [cf. (i)]. On the other hand, the
discussion of (x) furnishes another way of computing the global arithmetic degree
— i.e., the log-volume [cf. Theorem 3.11, (i), (c)] — of this q-pilot object at
(1, 0), namely, by computing the log-volume of the Θ-pilot object (0, 0), constructed
relative to the alien [i.e., from the point of view of the arithmetic holomorphic
structure at (1, 0)] arithmetic holomorphic structure at (0, 0), in terms of the
arithmetic holomorphic structure at (1, 0) [cf. the final portion of Theorem 3.11,
(i); Remark 3.11.1]. That is to say,

the theory of the present series of papers yields two tautologically equiv-
alent ways to compute the log-volume of the q-pilot object at (1, 0)

multiradial
representation
at 0-column (0, ◦)

permutation
symmetry of

≈
étale-picture

multiradial
representation
at 1-column (1, ◦)

Kummer-
detach-
ment
via
log-

Kummer

⇑

com-
pati-
bly
with

Θ×μ
LGP-
link

com-
pari-
son
via

⇓ log-
vol.

Θ-pilot object in
Θ±ellNF-Hodge
theater at (0, 0)

(−)��-portion,
(−)�×μ-portion

≈
of Θ×μ

LGP-link

q-pilot object in
Θ±ellNF-Hodge
theater at (1, 0)

Fig. 3.6: Two tautologically equivalent ways to compute
the log-volume of the q-pilot object at (1, 0)

— cf. Fig. 3.6. If one interprets this observation in terms of the notation introduced
in the statement of Corollary 3.12, then one concludes that

− |log(q)| ≤ − |log(Θ)| ∈ R
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— hence, in particular, that

− |log(q)| ≤ CΘ · |log(q)|

for any CΘ ∈ R such that − |log(Θ)| ≤ CΘ ·|log(q)|. Since [one verifies immediately

that] |log(q)| ∈ R is positive, we thus conclude that CΘ ≥ −1, as desired. In this

context, it is useful to recall that the above argument depends, in an essential way
[cf. the discussion of (ii), (vi)], on the theory of [EtTh], which does not admit
any evident generalization to the case of N -th tensor powers of Θ-pilot objects, for
N ≥ 2. That is to say, the log-volume of such an N -th tensor power of a Θ-pilot
object must always be computed as the result of multiplying the log-volume of the
original Θ-pilot object by N — cf. Remark 2.1.1, (iv); [IUTchII], Remark 3.6.4,
(iii), (iv). In particular, although the analogue of the above argument for such
an N -th tensor power would lead to sharper inequalities than the inequalities
obtained here, it is difficult to see how to obtain such sharper inequalities via a
routine generalization of the above argument. In fact, as we shall see in [IUTchIV],
these sharper inequalities are known to be false [cf. [IUTchIV], Remark 2.3.2, (ii)].

(xii) In the context of the argument of (xi), it is useful to observe the important

role played by the global realified Frobenioids that appear in the Θ×μ
LGP-link. That

is to say, since ultimately one is only concerned with the computation of log-volumes,
it might appear, at first glance, that it is possible to dispense with the use of
such global Frobenioids and instead work only with the various local Frobenioids,
for v ∈ V, that are directly related to the computation of log-volumes. On the
other hand, observe that since the isomorphism of [local or global!] Frobenioids

arising from the Θ×μ
LGP-link only preserves isomorphism classes of objects of

these Frobenioids [cf. the discussion of Remark 3.6.2, (i)], to work only with local
Frobenioids means that one must contend with the indeterminacy of not knowing
whether, for instance, such a local Frobenioid object at some v ∈ V

non corresponds
to a given open submodule of the log-shell at v or to, say, the pNv -multiple of this
submodule, for N ∈ Z. Put another way, one must contend with the indeterminacy
arising from the fact that, unlike the case with the global Frobenioids “F�

MOD”,

“F�R
MOD”, objects of the various local Frobenioids that arise admit endomorphisms

which are not automorphisms. This indeterminacy has the effect of rendering
meaningless any attempt to perform a precise log-volume computation as in (xi).
©

Remark 3.12.1.

(i) In [IUTchIV], we shall be concerned with obtaining more explicit upper
bounds on − |log(Θ)|, i.e., estimates “CΘ” as in the statement of Corollary 3.12.

(ii) It is not difficult to verify that, for λ ∈ Q>0, one may obtain a similar theory

to the theory developed in the present series of papers for “generalized Θ×μ
LGP-links”

of the form

qλ �→ q

(
12
...

(l�)2

)
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— i.e., so the theory developed in the present series of papers corresponds to the
case of λ = 1. This sort of “generalized Θ×μ

LGP-link” is roughly reminiscent of —
but by no means equivalent to! — the sort of issues considered in the discussion
of Remark 2.2.2, (i). Here, we observe that raising to the λ-th power on the “q

side” differs quite fundamentally from raising to the λ-th power on the “q(1
2...(l�)2)

side”, an issue that is discussed briefly [in the case of λ = N ] in the final portion of

Step (xi) of the proof of Corollary 3.12. That is to say, “generalized Θ×μ
LGP-links”

as in the above display differ fundamentally both from the situation of Remark
2.2.2, (i), and the situation discussed in the final portion of Step (xi) of the proof of
Corollary 3.12 in that the theory of the first power of the étale theta function is
left unchanged [i.e., relative to the theory developed in the present series of papers]
— cf. the discussion of Remark 2.2.2, (i); Step (xi) of the proof of Corollary 3.12.

At any rate, in the case of “generalized Θ×μ
LGP-links” as in the above display, one

may apply the same arguments as the arguments used to prove Corollary 3.12 to
conclude the inequality

CΘ ≥ −λ

— i.e., which is sharper, for λ < 1, than the inequality obtained in Corollary 3.12 in
the case of λ = 1. In fact, however, such sharper inequalities will not be of interest
to us, since, in [IUTchIV], our estimates for the upper bound CΘ will be sufficiently
rough as to be unaffected by adding a constant of absolute value ≤ 1.

Remark 3.12.2.

(i) One of the main themes of the present series of papers is the issue of
dismantling the two underlying combinatorial dimensions of a number field
— cf. Remarks 1.2.2, (vi), of the present paper, as well as [IUTchI], Remarks 3.9.3,
6.12.3, 6.12.6; [IUTchII], Remarks 4.7.5, 4.7.6, 4.11.2, 4.11.3, 4.11.4. The principle
examples of this topic may be summarized as follows.

(a) splittings of various monoids into unit and value group portions;

(b) separating the “Fl” arising from the l-torsion points of the elliptic curve
— which may be thought of as a sort of “finite approximation” of Z! —
into a [multiplicative] F�

l -symmetry — which may also be thought of
as corresponding to the global arithmetic portion of the arithmetic funda-
mental groups involved — and a(n) [additive] F�±

l -symmetry — which
may also be thought of as corresponding to the geometric portion of the
arithmetic fundamental groups involved;

(c) separating the ring structures of the various global number fields
that appear into their respective underlying additive structures — which
may be related directly to the various log-shells that appear — and their
respective underlying multiplicative structures — which may be related
directly to the various Frobenioids that appear.

From the point of view of Theorem 3.11, example (a) may be seen in the “non-
interference” properties that underlie the log-Kummer correspondences of
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Theorem 3.11, (ii), (b), (c), as well as in the Θ×μ
LGP-link compatibility properties

discussed in Theorem 3.11, (ii), (c), (d).

(ii) On the other hand, another important theme of the present §3 consists
of the issue of “reassembling” these two dismantled combinatorial dimensions by
means of the multiradial mono-analytic containers furnished by the mono-
analytic log-shells — cf. Fig. 3.4 — i.e., of exhibiting the extent to which
these two dismantled combinatorial dimensions cannot be separated from one
another by describing the “structure of the intertwining” between these two
dimensions that existed prior to their separation. From this point of view, one may
think of the multiradial representations discussed in Theorem 3.11, (i) [cf. also
Theorem 3.11, (ii), (iii)], as the final output of this “reassembling procedure”. Put
another way, from the point of view of example (a) of the discussion of (i), this
“reassembling procedure” allows one to compute/estimate the value group
portions of various monoids of arithmetic interest in terms of the unit group
portions of these monoids. It is precisely these estimates that give rise to the
inequality obtained in Corollary 3.12.

(iii) One fundamental aspect of the theory that renders possible the “reassem-
bling procedure” discussed in (ii) [cf. the discussion of Step (iv) of the proof of
Corollary 3.12] is the “juggling of �, �” [cf. the discussion of Remark 1.2.2, (vi)]
effected by the log-links, i.e., the vertical arrows of the log-theta-lattice. This
“juggling of �, �” may be thought of as a sort of combinatorial way of represent-
ing the arithmetic holomorphic structure associated to a vertical line of the
log-theta-lattice. Indeed, at archimedean primes, this juggling amounts essentially
to multiplication by ±i, which is a well-known method [cf. the notion of an “al-
most complex structure”!] for representing holomorphic structures in the classical
theory of differential manifolds. On the other hand, it is important to recall in
this context that this “juggling of �, �” is precisely what gives rise to the up-
per semi-compatibility indeterminacy (Ind3) [cf. Proposition 3.5, (ii); Remark
3.10.2, (i)].

Remark 3.12.3.

(i) Let S be a hyperbolic Riemann surface of finite type of genus gS with rS

punctures. Write χS
def
= −(2gS − 2 + rS) for the Euler characteristic of S and dμS

for the Kähler metric on S [i.e., the (1, 1)-form] determined by the Poincaré metric
on the upper half-plane. Recall the analogy discussed in [IUTchI], Remark 4.3.3,
between the theory of log-shells, which plays a key role in the theory developed in
the present series of papers, and the classical metric geometry of hyperbolic
Riemann surfaces. Then, relative to this analogy, the inequality obtained in
Corollary 3.12 may be regarded as corresponding to the inequality

χS = −
∫
S

dμS < 0

— i.e., in essence, a statement of the hyperbolicity of S — arising from the clas-
sical Gauss-Bonnet formula, together with the positivity of dμS . Relative to
the analogy between real analytic Kähler metrics and ordinary Frobenius liftings
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discussed in [pOrd], Introduction, §2 [cf. also the discussion of [pTeich], Introduc-
tion, §0], the local property constituted by this positivity of dμS may be thought
of as corresponding to the [local property constituted by the] Kodaira-Spencer iso-
morphism of an indigenous bundle — i.e., which gives rise to the ordinarity of the
corresponding Frobenius lifting on the ordinary locus — in the p-adic theory. As
discussed in [AbsTopIII], §I5, these properties of indigenous bundles in the p-adic
theory may be thought of as corresponding, in the theory of log-shells, to the “max-
imal incompatibility” between the various Kummer isomorphisms and the corically
constructed data of the Frobenius-picture of Proposition 1.2, (x). On the other
hand, it is just this “maximal incompatibility” that gives rise to the “upper semi-
commutativity” discussed in Remark 1.2.2, (iii), i.e., [from the point of view of the
theory of the present §3] the upper semi-compatibility indeterminacy (Ind3) of
Theorem 3.11, (ii), that underlies the inequality of Corollary 3.12 [cf. Step (x) of
the proof of Corollary 3.12].

(ii) The “metric aspect” of Corollary 3.12 discussed in (i) is reminiscent of the
analogy between the theory of the present series of papers and classical complex
Teichmüller theory [cf. the discussion of [IUTchI], Remark 3.9.3] in the following
sense:

Just as classical complex Teichmüller theory is concerned with relating dis-
tinct holomorphic structures in a sufficiently canonical way as to min-
imize the resulting volume distortion, the canonical nature of the
algorithms discussed in Theorem 3.11 for relating alien arithmetic holo-
morphic structures [cf. Remark 3.11.1] gives rise to a relatively strong
estimate of the [log-]volume distortion [cf. Corollary 3.12] resulting
from such a deformation of the arithmetic holomorphic structure.

Remark 3.12.4. In light of the discussion of Remark 3.12.3, it is of interest
to reconsider the analogy between the theory of the present series of papers and
the p-adic Teichmüller theory of [pOrd], [pTeich], in the context of Theorem 3.11,
Corollary 3.12.

(i) First, we observe that the splitting monoids at v ∈ V
bad [cf. Theorem

3.11, (i), (b); Theorem 3.11, (ii), (b)] may be regarded as analogous to the canoni-
cal coordinates of p-adic Teichmüller theory [cf., e.g., [pTeich], Introduction, §0.9]
that are constructed over the ordinary locus of a canonical curve. In particular, it
is natural to regard the bad primes ∈ V

bad as corresponding to the ordinary
locus of a canonical curve and the good primes ∈ V

good as corresponding to the
supersingular locus of a canonical curve. This point of view is reminiscent of the
discussion of [IUTchII], Remark 4.11.4, (iii).

(ii) On the other hand, the bi-coric mono-analytic log-shells — i.e., the
various local “O×μ” — that appear in the tensor packets of Theorem 3.11, (i),
(a); Theorem 3.11, (ii), (a), may be thought of as corresponding to the [multi-
plicative!] Teichmüller representatives associated to the various Witt rings
that appear in p-adic Teichmüller theory. Within a fixed arithmetic holomorphic
structure, these mono-analytic log-shells arise from “local holomorphic units”
— i.e., “O×” — which are subject to the F�±

l -symmetry. These “local holomor-
phic units” may be thought of as corresponding to the positive characteristic
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ring structures on [the positive characteristic reductions of] Teichmüller repre-
sentatives. Here, the uniradial, i.e., “non-multiradial”, nature of these “local
holomorphic units” [cf. the discussion of [IUTchII], Remark 4.7.4, (ii); [IUTchII],
Figs. 4.1, 4.2] may be regarded as corresponding to the mixed characteristic nature
of Witt rings, i.e., the incompatibility of Teichmüller representatives with the
additive structure of Witt rings.

(iii) The set F�
l of l� “theta value labels”, which plays an important role in

the theory of the present series of papers, may be thought of as corresponding to
the “factor of p” that appears in the “mod p/p2 portion”, i.e., the gap separating
the “mod p” and “mod p2” portions, of the rings of Witt vectors that occur in the
p-adic theory. From this point of view, one may think of the procession-normalized
volumes obtained by taking averages over j ∈ F�

l [cf. Corollary 3.12] as corre-
sponding to the operation of dividing by p to relate the “mod p/p2 portion” of the
Witt vectors to the “mod p portion” of the Witt vectors [i.e., the characteristic p
theory]. In this context, the multiradial representation of Theorem 3.11, (i), by
means of mono-analytic log-shells labeled by elements of F�

l may be thought of as
corresponding to the derivative of the canonical Frobenius lifting on a canon-
ical curve in the p-adic theory [cf. the discussion of [AbsTopIII], §I5] in the sense
that this multiradial representation may be regarded as a sort of comparison of the
canonical splitting monoids discussed in (i) to the “absolute constants” [cf.
the discussion of (ii)] constituted by the bi-coric mono-analytic log-shells. This
“absolute comparison” is precisely what results in the indeterminacies (Ind1),
(Ind2) of Theorem 3.11, (i).

(iv) In the context of the discussion of (iii), we note that the set of labels F�
l

may, alternatively, be thought of as corresponding to the infinitesimal moduli of
the positive characteristic curve under consideration in the p-adic theory [cf. the
discussion of [IUTchII], Remark 4.11.4, (iii), (d)]. That is to say, the “deformation
dimension” constituted by the horizontal dimension of the log-theta-lattice in the
theory of the present series of papers or by the deformations modulo various powers
of p in the p-adic theory [cf. Remark 1.4.1, (iii); Fig. 1.3] is highly canonical in
nature, hence may be thought of as being equipped with a natural isomorphism to
the “absolute moduli” — i.e., so to speak, the “moduli over F1” — of the given
number field equipped with an elliptic curve, in the theory of the present series
of papers, or of the given positive characteristic hyperbolic curve equipped with a
nilpotent ordinary indigenous bundle, in p-adic Teichmüller theory.

(v) Let A be a ring of Witt vectors of a perfect field k of characteristic p; X a
smooth, proper hyperbolic curve over A of genus gX which is canonical in the sense

of p-adic Teichmüller theory; X̂ the p-adic formal scheme associated to X; Û ⊆ X̂

the ordinary locus of X̂. Write ωXk
for the canonical bundle of Xk. Then when [cf.

the discussion of (iii)] one computes the derivative of the canonical Frobenius

lifting Φ : Û → Û on Û , one must contend with “interference phenomena” between
the various copies of some positive characteristic algebraic geometry set-up — i.e.,
at a more concrete level, the various Frobenius conjugates “tp

n

” [where t is a local

coordinate on Xk
def
= X ×A k] associated to various n ∈ N≥1. In particular, this

derivative only yields [upon dividing by p] an inclusion [i.e., not an isomorphism!]
of line bundles

ωXk
↪→ Φ∗ωXk
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— also known as the “[square] Hasse invariant” [cf. [pOrd], Chapter II, Propo-
sition 2.6; the discussion of “generalities on ordinary Frobenius liftings” given in
[pOrd], Chapter III, §1]. Thus, at the level of global degrees of line bundles, we
obtain an inequality [i.e., not an equality!]

(1− p)(2gX − 2) ≤ 0

inter-universal Teichmüller theory p-adic Teichmüller theory

splitting monoids canonical coordinates

at v ∈ V
bad on the ordinary locus

bad primes ∈ V
bad ordinary locus of a can. curve

good primes ∈ V
good supersing. locus of a can. curve

mono-analytic log-shells “O×μ” [multiplicative!] Teich. reps.

uniradial “local hol. units O×” pos. char. ring structures on
subject to F�±

l -symmetry [pos. char. reductions of] Teich. reps.

set of “theta value labels” factor p in
F�
l mod p/p2 portion of Witt vectors

multiradial rep. via F�
l -labeled derivative of the

mono-analytic log-shells canonical Frobenius lifting
(cf. (Ind1), (Ind2))

set of “theta value labels” F�
l implicit “absolute moduli/F1”

inequality arising from upper inequality arising from interference
semi-compatibility (cf. (Ind3)) between Frobenius conjugates

Fig. 3.7: The analogy between inter-universal Teichmüller theory
and p-adic Teichmüller theory
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— which may be thought of as being, in essence, a statement of the hyperbolicity
of X [cf. the inequality of the display of Remark 3.12.3, (i)]. Since the “Frobenius
conjugate dimension” [i.e., the “n” that appears in “tp

n

”] in the p-adic theory
corresponds to the vertical dimension of the log-theta-lattice in the theory of the
present series of papers [cf. Remark 1.4.1, (iii); Fig. 1.3], we thus see that the
inequality of the above display in the p-adic case arises from circumstances that are
entirely analogous to the circumstances — i.e., the upper semi-compatibility
indeterminacy (Ind3) of Theorem 3.11, (ii) — that underlie the inequality of
Corollary 3.12 [cf. Step (x) of the proof of Corollary 3.12; the discussion of Remark
3.12.3, (i)].

(vi) The analogies of the above discussion are summarized in Fig. 3.7 above.
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