
RIMS-1759

INTER-UNIVERSAL TEICHMÜLLER THEORY IV:
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Abstract. The present paper forms the fourth and final pa-
per in a series of papers concerning “inter-universal Teichmüller theory”. In

the first three papers of the series, we introduced and studied the theory surround-
ing the log-theta-lattice, a highly non-commutative two-dimensional diagram of
“miniature models of conventional scheme theory”, called Θ±ellNF-Hodge theaters,
that were associated, in the first paper of the series, to certain data, called initial

Θ-data. This data includes an elliptic curve EF over a number field F , together with
a prime number l ≥ 5. Consideration of various properties of the log-theta-lattice
led naturally to the establishment, in the third paper of the series, of multiradial
algorithms for constructing “splitting monoids of LGP-monoids”. Here, we

recall that “multiradial algorithms” are algorithms that make sense from the point
of view of an “alien arithmetic holomorphic structure”, i.e., the ring/scheme
structure of a Θ±ellNF-Hodge theater related to a given Θ±ellNF-Hodge theater by
means of a non-ring/scheme-theoretic horizontal arrow of the log-theta-lattice. In

the present paper, estimates arising from these multiradial algorithms for splitting
monoids of LGP-monoids are applied to verify various diophantine results which
imply, for instance, the so-called Vojta Conjecture for hyperbolic curves, the ABC

Conjecture, and the Szpiro Conjecture for elliptic curves. Finally, we examine
the foundational/set-theoretic issues surrounding the vertical and horizontal arrows
of the log-theta-lattice by introducing and studying the basic properties of the notion
of a “species”, which may be thought of as a sort of formalization, via set-theoretic

formulas, of the intuitive notion of a “type of mathematical object”. These foun-
dational issues are closely related to the central role played in the present series of
papers by various results from absolute anabelian geometry, as well as to the
idea of gluing together distinct models of conventional scheme theory, i.e., in a

fashion that lies outside the framework of conventional scheme theory. Moreover, it
is precisely these foundational issues surrounding the vertical and horizontal arrows
of the log-theta-lattice that led naturally to the introduction of the term “inter-
universal”.
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Introduction

The present paper forms the fourth and final paper in a series of papers concern-
ing “inter-universal Teichmüller theory”. In the first three papers, [IUTchI],
[IUTchII], and [IUTchIII], of the series, we introduced and studied the theory sur-
rounding the log-theta-lattice [cf. the discussion of [IUTchIII], Introduction], a
highly non-commutative two-dimensional diagram of “miniature models of conven-
tional scheme theory”, called Θ±ellNF-Hodge theaters, that were associated, in the
first paper [IUTchI] of the series, to certain data, called initial Θ-data. This data
includes an elliptic curve EF over a number field F , together with a prime number
l ≥ 5 [cf. [IUTchI], §I1]. Consideration of various properties of the log-theta-lattice
leads naturally to the establishment of multiradial algorithms for constructing
“splitting monoids of LGP-monoids” [cf. [IUTchIII], Theorem A]. Here, we
recall that “multiradial algorithms” [cf. the discussion of [IUTchIII], Introduction]
are algorithms that make sense from the point of view of an “alien arithmetic
holomorphic structure”, i.e., the ring/scheme structure of a Θ±ellNF-Hodge
theater related to a given Θ±ellNF-Hodge theater by means of a non-ring/scheme-
theoretic horizontal arrow of the log-theta-lattice. In the final portion of [IUTchIII],
by applying these multiradial algorithms for splitting monoids of LGP-monoids, we
obtained estimates for the log-volume of these LGP-monoids [cf. [IUTchIII], The-
orem B]. In the present paper, these estimates will be applied to verify various
diophantine results.

In §1 of the present paper, we start by discussing various elementary estimates
for the log-volume of various tensor products of the modules obtained by applying
the p-adic logarithm to the local units — i.e., in the terminology of [IUTchIII],
“tensor packets of log-shells” [cf. the discussion of [IUTchIII], Introduction] — in
terms of various well-known invariants, such as differents, associated to a mixed-
characteristic nonarchimedean local field [cf. Propositions 1.1, 1.2, 1.3, 1.4]. We
then discuss similar — but technically much simpler! — log-volume estimates in
the case of complex archimedean local fields [cf. Proposition 1.5]. After review-
ing a certain classical estimate concerning the distribution of prime numbers [cf.
Proposition 1.6], as well as some elementary general nonsense concerning weighted
averages [cf. Proposition 1.7] and well-known elementary facts concerning elliptic
curves [cf. Proposition 1.8], we then proceed to compute explicitly, in more elemen-
tary language, the quantity that was estimated in [IUTchIII], Theorem B. These
computations yield a quite strong/explicit diophantine inequality [cf. Theorem
1.10] concerning elliptic curves that are in “sufficiently general position”, so
that one may apply the general theory developed in the first three papers of the
series.

In §2 of the present paper, after reviewing another classical estimate concern-
ing the distribution of prime numbers [cf. Proposition 2.1, (ii)], we then proceed to
apply the theory of [GenEll] to reduce various diophantine results concerning an
arbitrary elliptic curve over a number field to results of the type obtained in The-
orem 1.10 concerning elliptic curves that are in “sufficiently general position”
[cf. Corollary 2.2; the discussion of Remark 2.3.2, (ii)]. This reduction allows us to
derive the following result [cf. Corollary 2.3], which constitutes the main appli-
cation of the “inter-universal Teichmüller theory” developed in the present series
of papers.
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Theorem A. (Diophantine Inequalities) Let X be a smooth, proper, geomet-

rically connected curve over a number field; D ⊆ X a reduced divisor; UX
def
= X\D;

d a positive integer; ε ∈ R>0 a positive real number. Write ωX for the canon-
ical sheaf on X. Suppose that UX is a hyperbolic curve, i.e., that the degree
of the line bundle ωX(D) is positive. Then, relative to the notation of [GenEll]
[reviewed in the discussion preceding Corollary 2.2 of the present paper], one has
an inequality of “bounded discrepancy classes”

htωX(D) � (1 + ε)(log-diffX + log-condD)

of functions on UX(Q)≤d — i.e., the function (1 + ε)(log-diffX + log-condD) −
htωX(D) is bounded below by a constant on UX(Q)≤d [cf. [GenEll], Definition 1.2,
(ii), as well as Remark 2.3.1, (ii), of the present paper].

Thus, Theorem A asserts an inequality concerning the canonical height [i.e.,
“htωX(D)”], the logarithmic different [i.e., “log-diffX”], and the logarithmic conduc-
tor [i.e., “log-condD”] of points of the curve UX valued in number fields whose
extension degree over Q is ≤ d . In particular, the so-called Vojta Conjecture for
hyperbolic curves, the ABC Conjecture, and the Szpiro Conjecture for elliptic
curves all follow as special cases of Theorem A. We refer to [Vjt] for a detailed
exposition of these conjectures.

Finally, in §3, we examine certain foundational issues underlying the theory
of the present series of papers. Typically in mathematical discussions — such as, for
instance, the theory developed in the present series of papers! — one defines various
“types of mathematical objects” [i.e., such as groups, topological spaces, or
schemes], together with a notion of “morphisms” between two particular examples
of a specific type of mathematical object [i.e., morphisms between groups, between
topological spaces, or between schemes]. Such objects and morphisms [typically]
determine a category. On the other hand, if one restricts one’s attention to such a
category, then one must keep in mind the fact that the structure of the category
— i.e., which consists only of a collection of objects and morphisms satisfying cer-
tain properties! — does not include any mention of the various sets and conditions
satisfied by those sets that give rise to the “type of mathematical object” under
consideration. For instance, the data consisting of the underlying set of a group, the
group multiplication law on the group, and the properties satisfied by this group
multiplication law cannot be recovered [at least in an a priori sense!] from the struc-
ture of the “category of groups”. Put another way, although the notion of a “type
of mathematical object” may give rise to a “category of such objects”, the notion
of a “type of mathematical object” is much stronger — in the sense that it involves
much more mathematical structure — than the notion of a category. Indeed, a
given “type of mathematical object” may have a very complicated internal struc-
ture, but may give rise to a category equivalent to a one-morphism category [i.e.,
a category with precisely one morphism]; in particular, in such cases, the structure
of the associated category does not retain any information of interest concerning
the internal structure of the “type of mathematical object” under consideration.

In Definition 3.1, (iii), we formalize this intuitive notion of a “type of mathe-
matical object” by defining the notion of a species as, roughly speaking, a collection
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of set-theoretic formulas that gives rise to a category in any given model of set the-
ory [cf. Definition 3.1, (iv)], but, unlike any specific category [e.g., of groups, etc.] is
not confined to any specific model of set theory. In a similar vein, by working
with collections of set-theoretic formulas, one may define a species-theoretic ana-
logue of the notion of a functor, which we refer to as a mutation [cf. Definition 3.3,
(i)]. Given a diagram of mutations, one may then define the notion of a “mutation
that extracts, from the diagram, a certain portion of the types of mathematical
objects that appear in the diagram that is invariant with respect to the mutations
in the diagram”; we refer to such a mutation as a core [cf. Definition 3.3, (v)].

One fundamental example, in the context of the present series of papers, of a
diagram of mutations is the usual set-up of [absolute] anabelian geometry [cf.
Example 3.5 for more details]. That is to say, one begins with the species constituted
by schemes satisfying certain conditions. One then considers the mutation

X � ΠX

that associates to such a scheme X its étale fundamental group ΠX [say, considered
up to inner automorphisms]. Here, it is important to note that the codomain of
this mutation is the species constituted by topological groups [say, considered up
to inner automorphisms] that satisfy certain conditions which do not include any
information concerning how the group is related [for instance, via some sort of
étale fundamental group mutation] to a scheme. The notion of an anabelian
reconstruction algorithm may then be formalized as a mutation that forms a
“mutation-quasi-inverse” to the fundamental group mutation.

Another fundamental example, in the context of the present series of papers, of
a diagram of mutations arises from the Frobenius morphism in positive characteristic
scheme theory [cf. Example 3.6 for more details]. That is to say, one fixes a prime
number p and considers the species constituted by reduced schemes of characteristic
p. One then considers the mutation that associates

S � S(p)

to such a scheme S the scheme S(p) with the same topological space, but whose
regular functions are given by the p-th powers of the regular functions on the original
scheme. Thus, the domain and codomain of this mutation are given by the same
species. One may also consider a log scheme version of this example, which, at the
level of monoids, corresponds, in essence, to assigning

M � p ·M

to a torsion-free abelian monoid M the submonoid p ·M ⊆ M determined by the
image of multiplication by p. Returning to the case of schemes, one may then
observe that the well-known constructions of the perfection and the étale site

S � Spf; S � Sét

associated to a reduced scheme S of characteristic p give rise to cores of the diagram
obtained by considering iterates of the “Frobenius mutation” just discussed.
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This last example of the Frobenius mutation and the associated core consti-
tuted by the étale site is of particular importance in the context of the present
series of papers in that it forms the “intuitive prototype” that underlies the theory
of the vertical and horizontal lines of the log-theta-lattice [cf. the discussion
of Remark 3.6.1, (i)]. One notable aspect of this example is the [evident!] fact
that the domain and codomain of the Frobenius mutation are given by the same
species. That is to say, despite the fact that in the construction of the scheme
S(p) [cf. the notation of the preceding paragraph] from the scheme S, the scheme
S(p) is “subordinate” to the scheme S, the domain and codomain species of the
resulting Frobenius mutation coincide, hence, in particular, are on a par with one
another. This sort of situation served, for the author, as a sort of model for the
log- and Θ×μ

LGP-links of the log-theta-lattice, which may be formulated as muta-
tions between the species constituted by the notion of a Θ±ellNF-Hodge theater.
That is to say, although in the construction of either the log- or the Θ×μ

LGP-link, the
domain and codomain Θ±ellNF-Hodge theaters are by no means on a “par” with
one another, the domain and codomain Θ±ellNF-Hodge theaters of the resulting
log-/Θ×μ

LGP-links are regarded as objects of the same species, hence, in particular,
completely on a par with one another. This sort of “relativization” of distinct
models of conventional scheme theory over Z via the notion of a Θ±ellNF-Hodge
theater [cf. Fig. I.1 below; the discussion of “gluing together” such models of con-
ventional scheme theory in [IUTchI], §I2] is one of the most characteristic features
of the theory developed in the present series of papers and, in particular, lies [tauto-
logically!] outside the framework of conventional scheme theory over Z. That is to
say, in the framework of conventional scheme theory over Z, if one starts out with
schemes over Z and constructs from them, say, by means of geometric objects such
as the theta function on a Tate curve, some sort of Frobenioid that is isomorphic to
a Frobenioid associated to Z, then — unlike, for instance, the case of the Frobenius
morphism in positive characteristic scheme theory —

there is no way, within the framework of conventional scheme theory, to
treat the newly constructed Frobenioid “as if it is the Frobenioid associated
to Z, relative to some new version/model of conventional scheme theory”.

. . .

non-
scheme-

—————
theoretic
link

one
model of
conven-
tional
scheme
theory
over Z

non-
scheme-

—————
theoretic
link

another
model of
conven-
tional
scheme
theory
over Z

non-
scheme-

—————
theoretic
link

. . .

Fig. I.1: Relativized models of conventional scheme theory over Z

If, moreover, one thinks of Z as being constructed, in the usual way, via ax-
iomatic set theory, then one may interpret the “absolute” — i.e., “tautologically
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unrelativizable” — nature of conventional scheme theory over Z at a purely set-
theoretic level. Indeed, from the point of view of the “∈-structure” of axiomatic set
theory, there is no way to treat sets constructed at distinct levels of this ∈-structure
as being on a par with one another. On the other hand, if one focuses not on
the level of the ∈-structure to which a set belongs, but rather on species, then the
notion of a species allows one to relate — i.e., to treat on a par with one another —
objects belonging to the species that arise from sets constructed at distinct levels
of the ∈-structure. That is to say,

the notion of a species allows one to “simulate ∈-loops” without vio-
lating the axiom of foundation of axiomatic set theory

— cf. the discussion of Remark 3.3.1, (i).

As one constructs sets at higher and higher levels of the ∈-structure of some
model of axiomatic set theory — e.g., as one travels along vertical or horizontal lines
of the log-theta-lattice! — one typically encounters new schemes, which give rise
to new Galois categories, hence to new Galois or étale fundamental groups, which
may only be constructed if one allows oneself to consider new basepoints, relative
to new universes. In particular, one must continue to extend the universe, i.e., to
modify the model of set theory, relative to which one works. Here, we recall in
passing that such “extensions of universe” are possible on account of an existence
axiom concerning universes, which is apparently attributed to the “Grothendieck
school” and, moreover, cannot, apparently, be obtained as a consequence of the
conventional ZFC axioms of axiomatic set theory [cf. the discussion at the beginning
of §3 for more details]. On the other hand, ultimately in the present series of papers
[cf. the discussion of [IUTchIII], Introduction], we wish to obtain algorithms for
constructing various objects that arise in the context of the new schemes/universes
discussed above — i.e., at distant Θ±ellNF-Hodge theaters of the log-theta-lattice
— that make sense from the point of view the original schemes/universes that
occurred at the outset of the discussion. Again, the fundamental tool that makes
this possible, i.e., that allows one to express constructions in the new universes in
terms that makes sense in the original universe is precisely

the species-theoretic formulation — i.e., the formulation via set-
theoretic formulas that do not depend on particular choices invoked
in particular universes — of the constructions of interest

— cf. the discussion of Remarks 3.1.2, 3.1.3, 3.1.4, 3.1.5, 3.6.2, 3.6.3. This is
the point of view that gave rise to the term “inter-universal”. At a more con-
crete level, this “inter-universal” contact between constructions in distant models
of conventional scheme theory in the log-theta-lattice is realized by considering
[the étale-like structures given by] the various Galois or étale fundamental groups
that occur as [the “type of mathematical object”, i.e., species constituted by] ab-
stract topological groups [cf. the discussion of Remark 3.6.3, (i); [IUTchI], §I3].
These abstract topological groups give rise to vertical or horizontal cores of
the log-theta-lattice. Moreover, once one obtains cores that are sufficiently “non-
degenerate”, or “rich in structure”, so as to serve as containers for the non-coric
portions of the various mutations [e.g., vertical and horizontal arrows of the log-
theta-lattice] under consideration, then one may construct the desired algorithms,
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or descriptions, of these non-coric portions in terms of coric containers, up
to certain relatively mild indeterminacies [i.e., which reflect the non-coric nature
of these non-coric portions!] — cf. the illustration of this sort of situation given in
Fig. I.2 below; Remark 3.3.1, (iii); Remark 3.6.1, (ii). In the context of the log-
theta-lattice, this is precisely the sort of situation that was achieved in [IUTchIII],
Theorem A [cf. the discussion of [IUTchIII], Introduction].

. . .
� •

• � • � •
• � • � •

• �
. . .

?
•

Fig. I.2: A coric container underlying a sequence of mutations

In the context of the above discussion of set-theoretic aspects of the theory
developed in the present series of papers, it is of interest to note the following
observation, relative to the analogy between the theory of the present series of
papers and p-adic Teichmüller theory [cf. the discussion of [IUTchI], §I4]. If,
instead of working species-theoretically, one attempts to document all of the possible
choices that occur in various newly introduced universes that occur in a construc-
tion, then one finds that one is obliged to work with sets, such as sets obtained via
set-theoretic exponentiation, of very large cardinality. Such sets of large
cardinality are reminiscent of the exponentially large denominators that occur
if one attempts to p-adically formally integrate an arbitrary connection as opposed
to a canonical crystalline connection of the sort that occurs in the context of
the canonical liftings of p-adic Teichmüller theory [cf. the discussion of Remark
3.6.2, (iii)]. In this context, it is of interest to recall the computations of [Finot],
which assert, roughly speaking, that the canonical liftings of p-adic Teichmüller
theory may, in certain cases, be characterized as liftings “of minimal complexity”
in the sense that their Witt vector coordinates are given by polynomials of minimal
degree.

Finally, we observe that although, in the above discussion, we concentrated on
the similarities, from an “inter-universal” point of view, between the vertical and
horizontal arrows of the log-theta-lattice, there is one important difference between
these vertical and horizontal arrows: namely,

· whereas the copies of the full arithmetic fundamental group — i.e., in
particular, the copies of the geometric fundamental group — on either
side of a vertical arrow are identified with one another,

· in the case of a horizontal arrow, only the Galois groups of the local
base fields on either side of the arrow are identified with one another

— cf. the discussion of Remark 3.6.3, (ii). One way to understand the reason
for this difference is as follows. In the case of the vertical arrows — i.e., the log-
links, which, in essence, amount to the various local p-adic logarithms — in order
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to construct the log-link, it is necessary to make use, in an essential way, of the
local ring structures at v ∈ V [cf. the discussion of [IUTchIII], Definition 1.1,
(i), (ii)], which may only be reconstructed from the full arithmetic fundamental

group. By contrast, in order to construct the horizontal arrows — i.e., the Θ×μ
LGP-

links — this local ring structure is unnecessary. On the other hand, in order to
construct the horizontal arrows, it is necessary to work with structures that, up
to isomorphism, are common to both the domain and the codomain of the arrow.
Since the construction of the domain of the Θ×μ

LGP-link depends, in an essential

way, on the Gaussian monoids, i.e., on the labels ∈ F�
l for the theta values,

which are constructed from the geometric fundamental group, while the codomain
only involves monoids arising from the local q-parameters “q

v
” [for v ∈ V

bad], which

are constructed in a fashion that is independent of these labels, in order to obtain
an isomorphism between structures arising from the domain and codomain, it is
necessary to restrict one’s attention to the Galois groups of the local base fields,
which are free of any dependence on these labels.
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Notations and Conventions:

We shall continue to use the “Notations and Conventions” of [IUTchI], §0.
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Section 1: Log-volume Estimates

In the present §1, we perform various elementary local computations con-
cerning nonarchimedean and archimedean local fields which allow us to obtainmore
explicit versions [cf. Theorem 1.10 below] of the log-volume estimates for Θ-
pilot objects obtained in [IUTchIII], Corollary 3.12.

In the following, if λ ∈ R, then we shall write

�λ� (respectively, �λ	)

for the smallest (respectively, largest) n ∈ Z such that n ≥ λ (respectively, n ≤ λ).

Proposition 1.1. (Multiple Tensor Products and Differents) Let p be
a prime number, I a nonempty finite set, Qp an algebraic closure of Qp. Write

R ⊆ Qp for the ring of integers of Qp and ord : Q
×
p → Q for the natural p-adic

valuation on Qp, normalized so that ord(p) = 1. For i ∈ I, let ki ⊆ Qp be a

finite extension of Qp; write Ri
def
= Oki = R

⋂
ki for the ring of integers of ki and

di ∈ Q≥0 for the order [i.e., “ord(−)”] of any generator of the different ideal of
Ri over Zp. Also, for any nonempty subset E ⊆ I, let us write

RE
def
=

⊗
i∈E

Ri; dE
def
=

∑
i∈E

di

— where the tensor product is over Zp. Fix an element ∗ ∈ I; write I∗ def
= I \ {∗}.

Then
RI ⊆ (RI)

∼; p�dI∗� · (RI)
∼ ⊆ RI

— where we write “(−)∼” for the normalization of the ring in parentheses.

Proof. Let us regard RI as an R∗-algebra in the evident fashion. It is immediate
from the definitions that RI ⊆ (RI)

∼. Now observe that

R⊗R∗ RI ⊆ R⊗R∗ (RI)
∼ ⊆ (R⊗R∗ RI)

∼

— where (R⊗R∗ RI)
∼ decomposes as a direct sum of finitely many copies of R. In

particular, one verifies immediately, in light of the fact the R is faithfully flat over
R∗, that to complete the proof of Proposition 1.1, it suffices to verify that

p�dI∗� · (R⊗R∗ RI)
∼ ⊆ R⊗R∗ RI

— or, indeed, that

pdI∗ · (R⊗R∗ RI)
∼ ⊆ R⊗R∗ RI

— where, for λ ∈ Q, we write pλ for any element of Qp such that ord(pλ) = λ.
On other hand, it follows immediately from induction on the cardinality of I that



10 SHINICHI MOCHIZUKI

to verify this last inclusion, it suffices to verify the inclusion in the case where I is
of cardinality two. But in this case, the desired inclusion follows immediately from
the definition of the different ideal. This completes the proof of Proposition 1.1. ©

Proposition 1.2. (Differents and Logarithms) We continue to use the
notation of Proposition 1.1. For i ∈ I, write ei for the ramification index of ki
over Qp;

ai
def
=

1

ei
· � ei

p− 2
� if p > 2, ai

def
= 2 if p = 2.

Here, “log(−)” denotes the natural logarithm. Thus,

if p > 2 and ei ≤ p− 2, then ai =
1

ei
.

For any nonempty subset E ⊆ I, let us write

logp(R
×
E)

def
=

⊗
i∈E

logp(R
×
i ); aE

def
=

∑
i∈E

ai

— where the tensor product is over Zp; we write “logp(−)” for the p-adic logarithm.

For λ ∈ 1
ei

·Z, we shall write pλ ·Ri for the fractional ideal of Ri generated by any

element “pλ” of ki such that ord(pλ) = λ. Let

φ : logp(R
×
I )⊗Qp

∼→ logp(R
×
I )⊗Qp

be an automorphism of the finite dimensional Qp-vector space logp(R
×
I )⊗Qp that

induces an automorphism of the submodule logp(R
×
I ). Then:

(i) We have:
pai ·Ri ⊆ logp(R

×
i )

— where the “⊆” is an equality when p > 2 and ei ≤ p− 2.

(ii) We have:

φ(pλ ·Ri ⊗Ri (RI)
∼) ⊆ p	λ
−�dI�−�aI� · logp(R×

I )

for any λ ∈ 1
ei

· Z, i ∈ I. In particular, φ((RI)
∼) ⊆ p−�dI�−�aI� · logp(R×

I ).

(iii) Suppose that p > 2, and that ei ≤ p− 2 for all i ∈ I. Then we have:

φ(pλ ·Ri ⊗Ri (RI)
∼) ⊆ p	λ
−�dI�−1 · (RI)

∼

for any λ ∈ 1
ei

· Z, i ∈ I. In particular, φ((RI)
∼) ⊆ p−�dI�−1 · (RI)

∼.

(iv) If p > 2 and ei = 1 for all i ∈ I, then φ((RI)
∼) ⊆ (RI)

∼.

Proof. Assertion (i) follows immediately from the well-known theory of the p-adic
logarithm and exponential maps [cf., e.g., [Kobl], p. 81]. Next, let us observe that
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to verify assertions (ii) and (iii), it suffices to consider the case where λ = 0. Now
it follows from the second displayed inclusion of Proposition 1.1 that

p�dI� · (RI)
∼ ⊆ RI =

⊗
i∈I

Ri

and hence that

p�dI�+�aI� · (RI)
∼ ⊆

⊗
i∈I

pai ·Ri ⊆
⊗
i∈I

logp(R
×
i ) = logp(R

×
I )

— where the first inclusion follows immediately from the fact that (RI)
∼ decom-

poses as a direct sum of rings of integers of finite extensions of Qp, and the second
inclusion follows from assertion (i). Thus, assertion (ii) follows immediately from
the fact that φ induces an automorphism of the submodule logp(R

×
I ). When p > 2

and ei ≤ p− 2 for all i ∈ I, we thus obtain that

p�dI�+�aI� · φ((RI)
∼) ⊆ logp(R

×
I ) =

⊗
i∈I

pai ·Ri ⊆ p	aI
 · (RI)
∼

— where the equality follows from assertion (i), and the final inclusion follows
immediately from the fact that (RI)

∼ decomposes as a direct sum of rings of integers
of finite extensions of Qp. Thus, assertions (iii) and (iv) follow immediately from
the fact that �aI	−�aI� ≥ −1, together with the fact that ai = 1, di = 0 whenever
ei = 1. This completes the proof of Proposition 1.2. ©

Proposition 1.3. (Estimates of Differents) We continue to use the notation
of Proposition 1.2. Suppose that k0 ⊆ ki is a subfield that contains Qp. Write

R0
def
= Ok0 for the ring of integers of k0, d0 for the order [i.e., “ord(−)”] of any

generator of the different ideal of R0 over Zp, e0 for the ramification index of k0

over Qp, ei/0
def
= ei/e0 (∈ Z), [ki : k0] for the degree of the extension ki/k0, ni

for the unique nonnegative integer such that [ki : k0]/p
ni is an integer prime to p.

Then:

(i) We have:

di ≥ d0 + (ei/0 − 1)/(ei/0 · e0) = d0 + (ei/0 − 1)/ei

— where the “≥” is an equality when ki is tamely ramified over k0.

(ii) Suppose that ki is a finite Galois extension of a subfield k1 ⊆ ki such that
k0 ⊆ k1, and k1 is tamely ramified over k0. Then we have: di ≤ d0 + ni + 1/e0.

Proof. First, we consider assertion (i). By replacing k0 by an unramified extension
of k0 contained in ki, we may assume without loss of generality that ki is a totally
ramified extension of k0. Let π0 be a uniformizer of R0. Then there exists an
isomorphism R0-algebras R0[x]/(f(x))

∼→ Ri, where f(x) ∈ R0[x] is a monic
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polynomial which is ≡ xei/0 (mod π0), that maps x �→ πi for some uniformizer πi

of Ri. Thus, the different di may be computed as follows:

di − d0 = ord(f ′(πi)) ≥ min(ord(π0), ord(ei/0 · πei/0−1

i ))

≥ min
( 1

e0
, ord(π

ei/0−1

i )
)

= min
( 1

e0
,
ei/0 − 1

ei/0 · e0
)

=
ei/0 − 1

ei

— where, for λ, μ ∈ R such that λ ≥ μ, we define min(λ, μ)
def
= μ. When ki is

tamely ramified over k0, one verifies immediately that the inequalities of the above
display are, in fact, equalities. This completes the proof of assertion (i).

Next, we consider assertion (ii). We apply induction on ni. Since assertion (ii)
follows immediately from assertion (i) when ni = 0, we may assume that ni ≥ 1,
and that assertion (ii) has been verified for smaller “ni”. By replacing k1 by some
tamely ramified extension of k1 contained in ki, we may assume without loss of
generality that Gal(ki/k1) is a p-group. Since p-groups are solvable, it follows that
there exists a subextension k1 ⊆ k∗ ⊆ ki such that ki/k∗ and k∗/k1 are Galois

extensions of degree p and pni−1, respectively. Write R∗
def
= Ok∗ for the ring of

integers of k∗, d∗ for the order [i.e., “ord(−)”] of any generator of the different
ideal of R∗ over Zp, and e∗ for the ramification index of k∗ over Qp. Thus, by
the induction hypothesis, it follows that d∗ ≤ d0 + ni − 1 + 1/e0. To verify that
di ≤ d0 +ni +1/e0, it suffices to verify that di ≤ d0 +ni +1/e0 + ε for any positive
real number ε. By possibly enlarging ki and k1, we may also assume without loss
of generality that the tamely ramified extension k1 of k0 contains a primitive p-th
root of unity, and, moreover, that the ramification index e1 of k1 over Qp satisfies
e1 ≥ p/ε [so e∗ ≥ e1 ≥ p/ε]. Thus, ki is a Kummer extension of k∗. In particular,
there exists an inclusion of R∗-algebras R∗[x]/(f(x)) ↪→ Ri, where f(x) ∈ R∗[x]
is a monic polynomial which is of the form f(x) = xp − �∗ for some element �∗
of R∗ satisfying 0 ≤ ord(�∗) ≤ p−1

e∗
, that maps x �→ �i for some element �i of Ri

satisfying 0 ≤ ord(�i) ≤ p−1
p·e∗ . Now we compute:

di ≤ ord(f ′(�i)) + d∗ ≤ ord(p ·�p−1
i ) + d0 + ni − 1 + 1/e0

= (p− 1) · ord(�i) + d0 + ni + 1/e0 ≤ (p− 1)2

p · e∗ + d0 + ni + 1/e0

≤ p

e∗
+ d0 + ni + 1/e0 ≤ d0 + ni + 1/e0 + ε

— thus completing the proof of assertion (ii). ©

Proposition 1.4. (Nonarchimedean Normalized Log-volume Estimates)
We continue to use the notation of Proposition 1.2. Also, for i ∈ I, write Rμ

i ⊆ R×
i

for the torsion subgroup of R×
i , R×μ

i
def
= R×

i /R
μ
i , pfi for the cardinality of the

residue field of ki, and pmi for the order of the p-primary component of Rμ
i . Thus,

the order of Rμ
i is equal to pmi · (pfi − 1). Then:

(i) The log-volumes constructed in [AbsTopIII], Proposition 5.7, (i), on the
various finite extensions of Qp contained in Qp may be suitably normalized [i.e.,
by dividing by the degree of the finite extension] so as to yield a notion of log-volume

μlog(−)
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defined on compact open subsets of finite extensions of Qp contained in Qp, valued

in R, and normalized so that μlog(Ri) = 0, μlog(p · Ri) = −log(p), for each i ∈ I.
Moreover, by applying the fact that tensor products of finitely many copies of Qp

over Zp decompose, naturally, as direct sums of finitely many copies of Qp, we
obtain a notion of log-volume — which, by abuse of notation, we shall also denote by
“μlog(−)” — defined on compact open subsets of finitely generated Zp-submodules
of such tensor products, valued in R, and normalized so that μlog((RE)

∼) = 0,
μlog(p · (RE)

∼) = −log(p), for any nonempty set E ⊆ I.

(ii) We have:

μlog(logp(R
×
i )) = −

( 1

ei
+

mi

eifi

)
· log(p)

[cf. [AbsTopIII], Proposition 5.8, (iii)].

(iii) Let I∗ ⊆ I be a subset such that for each i ∈ I \ I∗, it holds that p− 2 ≥
ei (≥ 1). Then for any λ ∈ 1

e
i†

· Z, i† ∈ I, we have φ(pλ · Ri† ⊗R
i† (RI)

∼) ⊆
p	λ
−�dI�−�aI� · logp(R×

I ), and

μlog(p	λ
−�dI�−�aI� · logp(R×
I )) ≤

(
− λ+ dI + 3 + 4 · |I∗|/p

)
· log(p)

— where we write |I∗| for the cardinality of I∗. Moreover, �dI� + �aI� ≥ |I| if
p > 2; �dI�+ �aI� ≥ 2 · |I| if p = 2.

(iv) If p > 2 and ei = 1 for all i ∈ I, then φ((RI)
∼) ⊆ (RI)

∼, and
μlog((RI)

∼) = 0.

Proof. Assertion (i) follows immediately from the definitions. Next, we consider
assertion (ii). Note that the log-volume on R×

i determines, in a natural way, a

log-volume on the quotient R×
i � R×μ

i . Moreover, in light of the compatibility
of the log-volume with “logp(−)” [cf. [AbsTopIII], Proposition 5.7, (i), (c)], it

follows immediately that μlog(logp(R
×
i )) = μlog(R×μ

i ). Thus, it suffices to compute

ei · fi · μlog(R×μ
i ) = ei · fi · μlog(R×

i ) − log(pmi · (pfi − 1)). On the other hand, it
follows immediately from the basic properties of the log-volume [cf. [AbsTopIII],

Proposition 5.7, (i), (a)] that ei ·fi ·μlog(R×
i ) = log(1−p−fi), so ei ·fi ·μlog(R×μ

i ) =
−(fi +mi) · log(p), as desired. This completes the proof of assertion (ii).

The inclusion of assertion (iii) follows immediately from Proposition 1.2, (ii).
When p = 2, the fact that �dI� + �aI� ≥ 2 · |I| follows immediately from the
definition of “ai” in Proposition 1.2. When p > 2, it follows immediately from
the definition of “ai” in Proposition 1.2 that ai ≥ 1/ei, for all i ∈ I; thus, since
di ≥ (ei − 1)/ei for all i ∈ I [cf. Proposition 1.3, (i)], we conclude that di + ai ≥ 1
for all i ∈ I, and hence that �dI� + �aI� ≥ dI + aI ≥ |I|, as asserted in the
stament of assertion (iii). Next, let us observe that 1

p−2 ≤ 4
p for p ≥ 3. Thus, it

follows immediately from the definition of ai in Proposition 1.2 that ai ≤ 4
p + 1

ei

for i ∈ I, ai = 1
ei

for i ∈ I \ I∗. On the other hand, by assertion (i), we have
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μlog(RI) ≤ μlog((RI)
∼) = 0; by assertion (ii), we have μlog(logp(R

×
i )) ≤ − 1

ei
·log(p).

Now we compute:

μlog(p	λ
−�dI�−�aI� · logp(R×
I )) ≤

(
− λ+ dI + aI + 3

)
· log(p) + μlog(logp(R

×
I ))

≤
(
− λ+ dI + aI + 3

)
· log(p)

+
{∑

i∈I

μlog(logp(R
×
i ))
}

+ μlog(RI)

≤
{
− λ+ dI + 3 +

∑
i∈I

(ai − 1

ei
)
}
· log(p)

≤
(
− λ+ dI + 3 + 4 · |I∗|/p

)
· log(p)

— thus completing the proof of assertion (iii). Assertion (iv) follows immediately
from assertion (i) and Proposition 1.2, (iv). ©

Proposition 1.5. (Archimedean Metric Estimates) In the following, we
shall regard the complex archimedean field C as being equipped its standard
Hermitian metric, i.e., the metric determined by the complex norm. Let us refer
to as the primitive automorphisms of C the group of automorphisms [of order
8] of the underlying metrized real vector space of C generated by the operations of
complex conjugation and multiplication by ±1 or ±√−1.

(i) (Direct Sum vs. Tensor Product Metrics) The metric on C deter-
mines a tensor product metric on C⊗RC, as well as a direct sum metric on C⊕C.
Then, relative to these metrics, any isomorphism of topological rings [i.e.,
arising from the Chinese remainder theorem]

C⊗R C
∼→ C⊕ C

is compatible with these metrics, up a factor of 2, i.e., the metric on the right-
hand side corresponds to 2 times the metric on the left-hand side. [Thus, lengths

differ by a factor of
√
2.]

(ii) (Direct Sum vs. Tensor Product Automorphisms) Relative to the
notation of (i), the direct sum decomposition C ⊕ C, together with its Her-
mitian metric, is preserved, relative to the displayed isomorphism of (i), by the
automorphisms of C ⊗R C induced by the various primitive automorphisms of
the two copies of “C” that appear in the tensor product C⊗R C.

(iii) (Direct Sums and Tensor Products of Multiple Copies) Let I,
V be nonempty finite sets, whose cardinalities we denote by |I|, |V |, respectively.
Write

M
def
=

⊕
v∈V

Cv

for the direct sum of copies Cv
def
= C of C labeled by v ∈ V , which we regard as

equipped with the direct sum metric, and

MI
def
=

⊗
i∈I

Mi
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for the tensor product over R of copies Mi
def
= M of M labeled by i ∈ I, which

we regard as equipped with the tensor product metric [cf. the constructions of
[IUTchIII], Proposition 3.2, (ii)]. Then the topological ring structure on each Cv

determines a topological ring structure on MI with respect to which MI admits
a unique direct sum decomposition as a direct sum of

2|I|−1 · |V ||I|

copies of C [cf. [IUTchIII], Proposition 3.1, (i)]. The direct sum metric on MI

— i.e., the metric determined by the natural metrics on these copies of C — is
equal to

2|I|−1

times the original tensor product metric on MI . Write

BI ⊆ MI

for the “integral structure” [cf. the constructions of [IUTchIII], Proposition 3.1,
(ii)] given by the direct product of the unit balls of the copies of C that occur in
the direct sum decomposition of MI . Then the tensor product metric on MI , the
direct sum decomposition of MI , the direct sum metric on MI , and the integral
structure BI ⊆ MI are preserved by the automorphisms of MI induced by the
various primitive automorphisms of the direct summands “Cv” that appear in
the factors “Mi” of the tensor product MI .

(iv) (Tensor Product of Vectors of a Given Length) Suppose that we are
in the situation of (iii). Fix λ ∈ R>0. Then

MI �
⊗
i∈I

mi ∈ λ|I| ·BI

for any collection of elements {mi ∈ Mi}i∈I such that the component of mi in each
direct summand “Cv” of Mi is of length λ.

Proof. Assertions (i) and (ii) are discussed in [IUTchIII], Remark 3.9.1, (ii), and
may be verified by means of routine and elementary arguments. Assertion (iii)
follows immediately from assertions (i) and (ii). Assertion (iv) follows immediately
from the various definitions involved. ©

Proposition 1.6. (The Prime Number Theorem) If n is a positive integer,
then let us write pn for the n-th largest prime number. [Thus, p1 = 2, p2 = 3, and
so on.] Then there exists an integer n0 such that holds that

n∑
m=1

log(pm)

pm
≤ 2 · log(n) (≤ 2 · log(pn))

for all n ≥ n0. In particular, there exists a positive real number ηprm such that∑
η≤p−1

log(p)

p
≤ − 2 · log(η)
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— where the sum ranges over the prime numbers p such that η ≤ p−1 — for all
positive real η < ηprm.

Proof. Relative to our notation, the Prime Number Theorem [cf., e.g., [DmMn],
§3.10] implies that

lim
m→∞

m · log(pm)

pm
= 1

— i.e., in particular, that for some positive integer m0, it holds that

log(pm)

pm
≤ 4

3
· 1

m

for all m ≥ m0. On the other hand, one verifies immediately [i.e., by estimating
the integral of the function R>0 � x �→ 1

x ∈ R>0] that m0 may be chosen so that

n∑
m=1

1

m
≤ 4

3
· log(n)

for all n ≥ m0. Thus, we conclude that for some n0 ≥ m0, it holds that

n∑
m=1

log(pm)

pm
≤

m0−1∑
m=1

log(pm)

pm
+

n∑
m=m0

log(pm)

pm

≤ 1

9
· log(n0) +

n∑
m=m0

4

3
· 1

m
≤ 1

9
· log(n0) +

16

9
· log(n)

≤ 2 · log(n)
for all n ≥ n0, as desired. The final portion of Proposition 1.6 follows formally. ©

Proposition 1.7. (Weighted Averages) Let E be a nonempty finite set, n a
positive integer. For e ∈ E, let λe ∈ R>0, βe ∈ R. Then, for any i = 1, . . . , n, we
have: ∑

�e∈En

β�e · λΠ�e∑
�e∈En

λΠ�e

=

∑
�e∈En

n · βei · λΠ�e∑
�e∈En

λΠ�e

= n · βavg

— where we write βavg
def
= βE/λE, βE

def
=
∑

e∈E βe · λe, λE
def
=
∑

e∈E λe,

β�e
def
=

n∑
j=1

βej ; λΠ�e
def
=

n∏
j=1

λej

for any n-tuple �e = (e1, . . . , en) ∈ En of elements of E.

Proof. We begin by observing that

λn
E =

∑
�e∈En

λΠ�e ; βE · λn−1
E =

∑
�e∈En

βei · λΠ�e
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for any i = 1, . . . , n. Thus, summing over i, we obtain that

n · βE · λn−1
E =

∑
�e∈En

β�e · λΠ�e =
∑
�e∈En

n · βei · λΠ�e

and hence that

n · βavg = n · βE · λn−1
E /λn

E =
( ∑

�e∈En

β�e · λΠ�e

)
·
( ∑

�e∈En

λΠ�e

)−1

=
( ∑

�e∈En

n · βei · λΠ�e

)
·
( ∑

�e∈En

λΠ�e

)−1

as desired. ©

Remark 1.7.1. In Theorem 1.10 below, we shall apply Proposition 1.7 to com-
pute various packet-normalized log-volumes of the sort discussed in [IUTchIII],
Proposition 3.9, (i) — i.e., log-volumes normalized by means of the normalized
weights discussed in [IUTchIII], Remark 3.1.1, (ii). Here, we recall that the nor-
malized weights discussed in [IUTchIII], Remark 3.1.1, (ii), were computed relative
to the non-normalized log-volumes of [AbsTopIII], Proposition 5.8, (iii), (vi) [cf.
the discussion of [IUTchIII], Remark 3.1.1, (ii); [IUTchI], Example 3.5, (iii)]. By
contrast, in the discussion of the present §1, our computations are performed rela-
tive to normalized log-volumes as discussed in Proposition 1.4, (i). In particular, it
follows that the weights [Kv : (Fmod)v]

−1, where V � v | v ∈ Vmod, of the dis-
cussion of [IUTchIII], Remark 3.1.1, (ii), must be replaced — i.e., when one works
with normalized log-volumes as in Proposition 1.4, (i) — by the weights

[Kv : QvQ
] · [Kv : (Fmod)v]

−1 = [(Fmod)v : QvQ
]

— where Vmod � v | vQ ∈ VQ. This means that the normalized weights of the
final display of [IUTchIII], Remark 3.1.1, (ii), must be replaced, when one works
with normalized log-volumes as in Proposition 1.4, (i), by the normalized weights( ∏

α∈A

[(Fmod)vα : QvQ
]
)

∑
{wα}α∈A

( ∏
α∈A

[(Fmod)wα : QvQ ]
)

— where the sum is over all collections {wα}α∈A of [not necessarily distinct!] ele-
ments wα ∈ Vmod lying over vQ and indexed by α ∈ A. Thus, in summary, when
one works with normalized log-volumes as in Proposition 1.4, (i), the appropriate
normalized weights are given by the expressions

λΠ�e †∑
�e∈En

λΠ�e

[where �e † ∈ En] that appear in Proposition 1.7. Here, one takes “E” to be the set

of elements of V
∼→ Vmod lying over a fixed vQ; one takes “n” to be the cardinality
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of A, so that one can write A = {α1, . . . , αn} [where the αi are distinct]; if e ∈ E
corresponds to v ∈ V, v ∈ Vmod, then one takes

“λe”
def
= [(Fmod)v : QvQ ] ∈ R>0

and “βe” to be a normalized log-volume of some compact open subset of Kv.

Before proceeding, we recall some well-known elementary facts concerning el-
liptic curves. In the following, we shall write Mell for the moduli stack of elliptic
curves over Z and

Mell ⊆ Mell

for the natural compactification of Mell, i.e., the moduli stack of one-dimensional

semi-abelian schemes over Z. Also, ifR is a Z-algebra, then we shall write (Mell)R
def
=

Mell ×Z R, (Mell)R
def
= Mell ×Z R.

Proposition 1.8. (Torsion Points of Elliptic Curves) Let k be a perfect

field k, k an algebraic closure of k. Write Gk
def
= Gal(k/k).

(i) Let l ≥ 3 be a prime number that is invertible in k; suppose that
k = k. Let A be an abelian variety over k, equipped with a polarization λ.
Write A[l] ⊆ A(k) for the group of l-torsion points of A(k). Then the natural map

φ : Autk(A, λ) → Aut(A[l])

from the group of automorphisms of the polarized abelian variety (A, λ) over k to
the group of automorphisms of the abelian group A[l] is injective.

(ii) Let Ek be an elliptic curve over k with origin εE ∈ E(k). For n a positive

integer, write Ek[n] ⊆ Ek(k) for the Gk-module of n-torsion points of Ek(k) and

Autk(Ek) ⊆ Autk(Ek)

for the respective groups of εE-preserving automorphisms of the k-scheme Ek and
the k-scheme Ek. Then we have a natural exact sequence

1 −→ Autk(Ek) −→ Autk(Ek) −→ Gk

— where the image GE ⊆ Gk of the homomorphism Autk(Ek) → Gk is open —
and a natural representation

ρn : Autk(Ek) → Aut(Ek[n])

on the n-torsion points of Ek. The finite extension kE of k determined by GE is
the minimal field of definition of Ek, i.e., the field generated over k by the j-
invariant of Ek. Finally, if H ⊆ Gk is any closed subgroup, which corresponds to
an extension kH of k, then the datum of a model of Ek over kH [i.e., descent data

for Ek from k to kH ] is equivalent to the datum of a section of the homomorphism
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Autk(Ek) → Gk over H. In particular, the homomorphism Autk(Ek) → Gk admits
a section over GE.

(iii) In the situation of (ii), suppose further that Autk(Ek) = {±1}. Then the
representation ρ2 factors through GE and hence defines a natural representa-
tion GE → Aut(Ek[2]).

(iv) In the situation of (ii), suppose further that l ≥ 3 is a prime number
that is invertible in k, and that Ek descends to elliptic curves E′

k and E′′
k over k,

all of whose l-torsion points are rational over k. Then E′
k is isomorphic to E′′

k

over k.

(v) In the situation of (ii), suppose further that k is a complete discrete
valuation field with ring of integers Ok, that l ≥ 3 is a prime number that is
invertible in Ok, and that Ek descends to an elliptic curve Ek over k, all of whose
l-torsion points are rational over k. Then Ek has semi-stable reduction over
Ok [i.e., extends to a semi-abelian scheme over Ok].

(vi) In the situation of (iii), suppose further that 2 is invertible in k, that
GE = Gk, and that the representation GE → Aut(Ek[2]) is trivial. Then Ek
descends to an elliptic curve Ek over k which is defined by means of the Legendre
form of the Weierstrass equation [cf., e.g., the statement of Corollary 2.2, below].
If, moreover, k is a complete discrete valuation field with ring of integers Ok

such that 2 is invertible in Ok, then Ek has semi-stable reduction over Ok′

[i.e., extends to a semi-abelian scheme over Ok′ ] for some finite extension k′ ⊆ k
of k such that [k′ : k] ≤ 2; if Ek has good reduction over Ok′ [i.e., extends to an
abelian scheme over Ok′ ], then one may in fact take k′ to be k.

(vii) In the situation of (ii), suppose further that k is a complete discrete
valuation field with ring of integers Ok, that Ek descends to an elliptic curve
Ek over k, and that n is invertible in Ok. If Ek has good reduction over Ok

[i.e., extends to an abelian scheme over Ok], then the action of Gk on Ek[n] is
unramified. If Ek has bad multiplicative reduction over Ok [i.e., extends
to a non-proper semi-abelian scheme over Ok], then the action of Gk on Ek[n] is
tamely ramified.

Proof. First, we consider assertion (i). Suppose that φ is not injective. Since
Autk(A, λ) is well-known to be finite [cf., e.g., [Milne], Proposition 17.5, (i)], we
thus conclude that there exists an α ∈ Ker(φ) of order n �= 1. We may assume
without loss of generality that n is prime. Now we follow the argument of [Milne],
Proposition 17.5, (ii). Since α acts trivially on A[l], it follows immediately that the
endomorphism of A given by α− idA [where idA denotes the identity automorphism
of A] may be written in the form l · β, for β an endomorphism of A over k. Write
Tl(A) for the l-adic Tate module of A. Since αn = idA, it follows that the eigen-
values of the action of α on Tl(A) are n-th roots of unity. On the other hand, the
eigenvalues of the action of β on Tl(A) are algebraic integers [cf. [Milne], Theorem
12.5]. We thus conclude that each eigenvalue ζ of the action of α on Tl(A) is an
n-th root of unity which, as an algebraic integer, is ≡ 1 (mod l) [where l ≥ 3],
hence = 1. Since αn = idA, it follows that α acts on Tl(A) as a semi-simple matrix
which is also unipotent, hence equal to the identity matrix. But this implies that



20 SHINICHI MOCHIZUKI

α = idA [cf. [Milne], Theorem 12.5]. This contradiction completes the proof of
assertion (i).

Next, we consider assertion (ii). Since Ek is proper over k, it follows [by
considering the space of global sections of the structure sheaf of Ek] that any

automorphism of the scheme Ek lies over an automorphism of k. This implies the
existence of a natural exact sequence and natural representation as in the statement
of assertion (ii). The relationship between kE and the j-invariant of Ek follows
immediately from the well-known theory of the j-invariant of an elliptic curve [cf.,
e.g., [Silv], Chapter III, Proposition 1.4, (b), (c)]. The final portion of assertion (ii)
concerning models of Ek follows immediately from the definitions. This completes
the proof of assertion (ii). Assertion (iii) follows immediately from the fact that
{±1} acts trivially on Ek[2].

Next, we consider assertion (iv). First, let us observe that it follows immedi-
ately from the final portion of assertion (ii) that a model E∗

k of Ek over k all of whose
l-torsion points are rational over k corresponds to a closed subgroupH∗ ⊆ Autk(Ek)
that lies in the kernel of ρl and, moreover, maps isomorphically to Gk. On the other
hand, it follows from assertion (i) that the restriction of ρl to Autk(Ek) ⊆ Autk(Ek)
is trivial. Thus, a closed subgroup H∗ ⊆ Autk(Ek) is uniquely determined by the
condition that it lie in the kernel of ρl and, moreover, map isomorphically to Gk.
This completes the proof of assertion (iv).

Next, we consider assertion (v). First, let us observe that, by considering l-
level structures, we obtain a finite covering of S → (Mell)Z[ 1l ] which is étale over

(Mell)Z[ 1l ] and tamely ramified over the divisor at infinity. Then it follows from

assertion (i) that the algebraic stack S is in fact a scheme, which is, moreover,
proper over Z[ 1l ]. Thus, it follows from the valuative criterion for properness that
any k-valued point of S determined by Ek — where we observe that such a point
necessarily exists, in light of our assumption that the l-torsion points of Ek are
rational over k — extends to an Ok-valued point of S, hence also of Mell, as
desired. This completes the proof of assertion (v).

Next, we consider assertion (vi). Since GE = Gk, it follows from assertion
(ii) that Ek descends to an elliptic curve Ek over k. Our assumption that the
representation Gk = GE → Aut(Ek[2]) of assertion (iii) is trivial implies that
the 2-torsion points of Ek are rational over k. Thus, by considering suitable global
sections of tensor powers of the line bundle on Ek determined by the origin on
which the automorphism “−1” of Ek acts via multiplication by ±1 [cf., e.g., [Harts],
Chapter IV, the proof of Proposition 4.6], one concludes immediately that a suitable
[possibly trivial] twist E′

k of Ek over k [i.e., such that E′
k and Ek are isomorphic over

some quadratic extension k′ of k] may be defined by means of the Legendre form
of the Weierstrass equation. Now suppose that k is a complete discrete valuation
field with ring of integers Ok such that 2 is invertible in Ok, and that Ek is defined
by means of the Legendre form of the Weierstrass equation. Then the fact that Ek

has semi-stable reduction over Ok′ for some finite extension k′ ⊆ k of k such that
[k′ : k] ≤ 2 follows from the explicit computations of the proof of [Silv], Chapter
VII, Proposition 5.4, (c). These explicit computations also imply that if Ek has
good reduction over Ok′ , then one may in fact take k′ to be k. This completes the
proof of assertion (vi).
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Assertion (vii) follows immediately from [NerMod], §7.4, Theorem 5, in the
case of good reduction and from [NerMod], §7.4, Theorem 6, in the case of bad
multiplicative reduction. ©

We are now ready to apply the elementary computations discussed above to
give more explicit log-volume estimates for Θ-pilot objects. We begin by recalling
some notation and terminology from [GenEll], §1.

Definition 1.9. Let F be a number field [i.e., a finite extension of the ra-
tional number field Q], whose set of valuations we denote by V(F ). Thus, V(F )
decomposes as a disjoint union V(F ) = V(F )non

⋃
V(F )arc of nonarchimedean and

archimedean valuations. If v ∈ V(F ), then we shall write Fv for the completion of
F at v; if v ∈ V(F )non, then we shall write ordv(−) : F×

v � Z for the order defined
by v, ev for the ramification index of Fv over Qpv , and qv for the cardinality of the
residue field of Fv.

(i) A(n) [Q-]arithmetic divisor a on F is defined to be a finite formal sum∑
v∈V(F )

cv · v

— where cv ∈ Q if v ∈ V(F )non and cv ∈ R if v ∈ V(F )arc. Here, we shall refer to
the set

Supp(a)

of v ∈ V(F ) such that cv �= 0 as the support of a; if all of the cv are ≥ 0, then we
shall say that the arithmetic divisor is effective. Thus, the [Q-]arithmetic divisors
on F naturally form a group ADivQ(F ). The assignment

V(F )non � v �→ log(qv); V(F )arc � v �→ 1

determines a homomorphism

degF : ADivQ(F ) → R

which we shall refer to as the degree map. If a ∈ ADivQ(F ), then we shall refer to

deg(a)
def
=

1

[F : Q]
· degF (a)

as the normalized degree of a. Thus, for any finite extension K of F , we have

deg(a|K) = deg(a)

— where we write deg(a|K) for the normalized degree of the pull-back a|K ∈
ADivQ(K) [defined in the evident fashion] of a to K.

(ii) Let vQ ∈ VQ
def
= V(Q), E ⊆ V(F ) a nonempty set of elements lying over

vQ. If a =
∑

v∈V(F )

cv · v ∈ ADivQ(F ), then we shall write

aE
def
=

∑
v∈E

cv · v ∈ ADivQ(F ); degE(a)
def
=

deg(aE)∑
v∈E

[Fv : QvQ ]
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for the portion of a supported in E and the “normalized E-degree” of a, respectively.
Thus, for any finite extension K of F , we have

degE|K (a|K) = degE(a)

— where we write E|K ⊆ V(K) for the set of valuations lying over valuations ∈ E.

Theorem 1.10. (Log-volume Estimates for Θ-Pilot Objects) Set

εΘ
def
= min

(
40ηprm

3 , 3−210
)

∈ R>0

— where the constant ηprm ∈ R>0 is as in Proposition 1.6. Then the constant
εΘ ∈ R>0 satisfies the following property:

Fix a collection of initial Θ-data as in [IUTchI], Definition 3.1. Suppose
that we are in the situation of [IUTchIII], Corollary 3.12. Also, in the notation of

[IUTchI], Definition 3.1, let us write dmod
def
= [Fmod : Q] and

Fmod ⊆ Ftpd
def
= Fmod( EFmod

[2] ) ⊆ F

for the “tripodal” intermediate field obtained from Fmod by adjoining the fields
of definition of the 2-torsion points of any model of EF over Fmod [cf. Proposition
1.8, (ii), (iii)]. Moreover, we assume that the (3·5)-torsion points of EF are defined
over F , and that

F = Fmod(
√−1, EFmod

[2 · 3 · 5] ) def
= Ftpd(

√−1, EFtpd
[3 · 5] )

— i.e., that F is obtained from Ftpd by adjoining
√−1, together with the fields of

definition of the (3 · 5)-torsion points of a model EFtpd
of the elliptic curve EF over

Ftpd determined by the Legendre form of the Weierstrass equation [cf., e.g., the
statement of Corollary 2.2, below; Proposition 1.8, (vi)]. [Thus, it follows from
Proposition 1.8, (iv), that EF

∼= EFtpd
×Ftpd

F over F .] If Fmod ⊆ F� ⊆ K is any
intermediate extension which is Galois over Fmod, then we shall write

d
F�
ADiv ∈ ADivQ(F�)

for the effective divisor determined by the different ideal of F� over Q,

q
F�
ADiv ∈ ADivQ(F�)

for the effective arithmetic divisor determined by the q-parameters of the elliptic

curve EF at the elements of V(F�)bad
def
= Vbad

mod ×Vmod
V(F�) ( �= ∅),

f
F�
ADiv ∈ ADivQ(F�)

for the effective arithmetic divisor whose support coincides with Supp(q
F�
ADiv), but

all of whose coefficients are equal to 1 — i.e., the conductor — and

log(d
F�
v )

def
= degV(F�)v (d

F�
ADiv) ∈ R≥0; log(d

F�
vQ )

def
= degV(F�)vQ

(d
F�
ADiv) ∈ R≥0

log(dF�)
def
= deg(d

F�
ADiv) ∈ R≥0
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log(qv)
def
= degV(F�)v

(q
F�
ADiv) ∈ R≥0; log(qvQ

)
def
= degV(F�)vQ

(q
F�
ADiv) ∈ R≥0

log(q)
def
= deg(q

F�
ADiv) ∈ R≥0

log(f
F�
v )

def
= degV(F�)v

(f
F�
ADiv) ∈ R≥0; log(f

F�
vQ

)
def
= degV(F�)vQ

(f
F�
ADiv) ∈ R≥0

log(fF�)
def
= deg(f

F�
ADiv) ∈ R≥0

— where v ∈ Vmod = V(Fmod), vQ ∈ VQ = V(Q), V(F�)v
def
= V(F�) ×Vmod

{v},
V(F�)vQ

def
= V(F�) ×VQ

{vQ}. Here, we observe that the various “log(q(−))’s” are
independent of the choice of F�, and that the quantity “|log(q)| ∈ R>0” defined in

[IUTchIII], Corollary 3.12, is equal to 1
2l · log(q) ∈ R [cf. the definition of “q

v
”

in [IUTchI], Example 3.2, (iv)]. Then one may take the constant “CΘ ∈ R” of
[IUTchIII], Corollary 3.12, to be

l+1
4 ·

{
(1 + ε+ 28·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 2 · log(l · ε−7)− 1
6 · log(q)

}
− 1

and hence, by applying [IUTchIII], Corollary 3.12, conclude that

1
6 · log(q) ≤ (1 + ε+ 28·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 2 · log(l · ε−7)

≤ (1 + ε+ 28·dmod

l ) · (log(dF ) + log(fF )) + 2 · log(l · ε−7)

for any ε ∈ R>0 satisfying ε < εΘ.

Proof. For ease of reference, we divide our discussion into steps, as follows.

(i) We begin by recalling the following elementary identities for n ∈ N≥1:

(E1) 1
n

n∑
m=1

m = 1
2 (n+ 1);

(E2) 1
n

n∑
m=1

m2 = 1
6 (2n+ 1)(n+ 1).

Also, we recall the following elementary facts:

(E3) For p a prime number, the cardinality |GL2(Fp)| of GL2(Fp) is given by
|GL2(Fp)| = p(p+ 1)(p− 1)2.

(E4) For p = 2, 3, 5, the expression of (E3) may be computed as follows:
2(2+1)(2−1)2 = 2·3; 3(3+1)(3−1)2 = 3·24; 5(5+1)(5−1)2 = 5·25 ·3.

(E5) The degree of the extension Fmod(
√−1 )/Fmod is ≤ 2.

(E6) We have: 0 ≤ log(2) ≤ 1, 1 ≤ log(3) ≤ log(π) ≤ log(5) ≤ 2.

(ii) Next, let us observe that the inequality

log(dFtpd) + log(fFtpd) ≤ log(dF ) + log(fF )
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follows immediately from Proposition 1.3, (i), and the various definitions involved.
On the other hand, the inequality

log(dF ) + log(fF ) ≤ log(dFtpd) + log(fFtpd) + log(211 · 33 · 52)
≤ log(dFtpd) + log(fFtpd) + 21

follows by applying Proposition 1.3, (i), at the primes that do not divide 2 ·3 ·5 [over
which the extension F/Ftpd is tamely ramified — cf. Proposition 1.8, (vi), (vii)] and
applying Proposition 1.3, (ii), together with (E3), (E4), (E5), (E6), and the fact
that we have a natural inclusion Gal(F/Ftpd) ↪→ GL2(F3) × GL2(F5) × Z/2Z, at
the primes that divide 2 · 3 · 5. In a similar vein, since the extension K/F is tamely
ramified at the primes that do not divide l, and we have a natural isomorphism
Gal(K/F )

∼→ GL2(Fl), the inequality

log(dK) ≤ log(dK) + log(fK) ≤ log(dF ) + log(fF ) + 2 · log(l)
≤ log(dFtpd) + log(fFtpd) + 2 · log(l) + 21

follows immediately from Proposition 1.3, (i), (ii). Finally, for later reference, we
observe that

(1 + 4
l ) · log(dK) ≤ (1 + 4

l ) · (log(dFtpd) + log(fFtpd)) + 2 · log(l) + 46

— where we apply the estimates log(l)
l ≤ 1

2 and 1 + 4
l ≤ 2, both of which are

consequences of the fact that l ≥ 5 [cf. also (E6)].

(iii) If Ftpd ⊆ F� ⊆ K is any intermediate extension which is Galois over Fmod,
then we shall write

V(F�)
dst ⊆ V(F�)

non

for the set of “distinguished” nonarchimedean valuations v ∈ V(F�)non, i.e., v
that extend to a valuation ∈ V(K)non that ramifies over Q. Now observe that it
follows immediately from Proposition 1.8, (vi), (vii), that

(D0) if v ∈ V(Ftpd)
non does not divide 2 ·3 ·5 · l and, moreover, is not contained

in Supp(q
Ftpd

ADiv), then the extension K/Ftpd is unramified over v.

Also, let us recall [cf. the various definitions involved] that K contains a primitive
4 · 3 · 5 · l-th root of unity, hence is ramified over Q at any valuation ∈ V(K)non

that divides 2 · 3 · 5 · l. Thus, one verifies immediately [i.e., by applying (D0);
cf. also [IUTchI], Definition 3.1, (c)] that the following conditions on a valuation
v ∈ V(F�)non are equivalent:

(D1) v ∈ V(F�)dst.
(D2) The valuation v either divides 2 · 3 · 5 · l or lies in Supp(q

F�
ADiv + d

F�
ADiv).

(D3) The image of v in V(Ftpd) lies in V(Ftpd)
dst.

Let us write
Vdst

mod ⊆ Vnon
mod; Vdst

Q ⊆ Vnon
Q
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for the respective images of V(Ftpd)
dst in Vmod, VQ and, for F∗ ∈ {F�, Fmod,Q}

and vQ ∈ VQ,

sF∗
ADiv

def
=

∑
v∈V(F∗)dst

ev · v ∈ ADivQ(F∗)

log(sF∗
vQ
)

def
= degV(F∗)vQ

(sF∗
ADiv) ∈ R≥0; log(sF∗)

def
= deg(sF∗

ADiv) ∈ R≥0

— where we write V(F∗)vQ

def
= V(F∗)×VQ

{vQ}. One verifies immediately [again, by
applying (D0); cf. also [IUTchI], Definition 3.1, (c)] that the following conditions
on a valuation vQ ∈ Vnon

Q are equivalent:

(D4) vQ ∈ Vdst
Q .

(D5) The valuation vQ ramifies in K.

(D6) Either pvQ | 2 · 3 · 5 · l or vQ lies in the image of Supp(q
Ftpd

ADiv + d
Ftpd

ADiv).

(D7) Either pvQ | 2 · 3 · 5 · l or vQ lies in the image of Supp(qFADiv + dFADiv).

Next, for later reference, we observe that the inequality

1
pvQ

· log(sFmod
vQ

) ≤ 1
pvQ

· log(pvQ)

holds for any vQ ∈ VQ; in particular, when pvQ
= l (≥ 5), it holds that

1
pvQ

· log(sFmod
vQ

) ≤ 1
pvQ

· log(pvQ
) ≤ 1

2

— cf. (E6). On the other hand, it follows immediately from Proposition 1.3, (i),

by considering the various possibilities for elements ∈ Supp(sFmod

ADiv), that

log(sFmod
vQ

) ≤ 2 · (log(dFtpd
vQ ) + log(f

Ftpd
vQ ))

— and hence that

1
pvQ

· log(sFmod
vQ

) ≤ 2
pvQ

· (log(dFtpd
vQ ) + log(f

Ftpd
vQ ))

— for any vQ ∈ VQ such that pvQ �∈ {2, 3, 5, l}. In a similar vein, we conclude that

log(sQ) ≤ 2 · dmod · (log(dFtpd) + log(fFtpd)) + log(2 · 3 · 5 · l)
≤ 2 · dmod · (log(dFtpd) + log(fFtpd)) + 5 + log(l)

and hence that

12
l · log(sQ) ≤ 24·dmod

l · (log(dFtpd) + log(fFtpd)) + 18

— cf. (E6); the fact that l ≥ 5. Combining this last inequality with the inequality
of the final display of Step (ii) yields the inequality

(1+ 4
l ) · log(dK)+ 12

l · log(sQ) ≤ (1+ 28·dmod

l ) ·(log(dFtpd)+log(fFtpd))+2 · log(l)+64

— where we apply the estimate dmod ≥ 1.
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(iv) In order to estimate the constant “CΘ” of [IUTchIII], Corollary 3.12, we
must, according to the various definitions given in the statement of [IUTchIII],
Corollary 3.12, compute an upper bound for the

procession-normalized mono-analytic log-volume of the union of the pos-
sible images of a Θ-pilot object, relative to the relevant Kummer isomor-
phisms [cf. [IUTchIII], Theorem 3.11, (ii)], in the multiradial representa-
tion of [IUTchIII], Theorem 3.11, (i), which we regard as subject to the
indeterminacies (Ind1), (Ind2), (Ind3) described in [IUTchIII], Theorem
3.11, (i), (ii).

Thus, we proceed to estimate this log-volume at each vQ ∈ VQ. Once one fixes vQ,
this amounts to estimating the component of this log-volume in

“IQ(S
±
j+1

;n,◦D�
vQ
)”

[cf. the notation of [IUTchIII], Theorem 3.11, (i), (a)], for each j ∈ {1, . . . , l�},
which we shall also regard as an element of F�

l , and then computing the average,
over j ∈ {1, . . . , l�}, of these estimates. Here, we recall [cf. [IUTchI], Proposition
6.9, (i); [IUTchIII], Proposition 3.4, (ii)] that S±j+1 = {0, 1, . . . , j}. Also, we recall

from [IUTchIII], Proposition 3.2, that “IQ(S
±
j+1

;n,◦D�
vQ
)” is, by definition, a tensor

product of j+1 copies, indexed by the elements of S±j+1, of the direct sum of the Q-

spans of the log-shells associated to each of the elements of V(Fmod)vQ
[cf., especially,

the second and third displays of [IUTchIII], Proposition 3.2]. In particular, for each
collection

{vi}i∈S
±
j+1

of [not necessarily distinct!] elements of V(Fmod)vQ
, we must estimate the com-

ponent of the log-volume in question corresponding to the tensor product of the
Q-spans of the log-shells associated to this collection {vi}i∈S

±
j+1

and then compute

the weighted average [cf. the discussion of Remark 1.7.1], over possible collections
{vi}i∈S

±
j+1

, of these estimates.

(v) Let vQ ∈ Vdst
Q . Fix j, {vi}i∈S

±
j+1

as in Step (iv). Write vi ∈ V
∼→ Vmod =

V(Fmod) for the element corresponding to vi. We would like to apply Proposition
1.4, (iii), to the present situation, by taking

· “I” to be S±j+1;

· “I∗ ⊆ I” to be the set of i ∈ I such that vi ∈ V(K)dst [i.e., such that vi
is ramified over Q];
· “ki” to be Kvi

[so “Ri” will be the ring of integers OKvi
of Kvi

];

· “i†” to be j ∈ S±j+1;

· “λ” to be 0 if vj ∈ V
good;

· “λ” to be “ord(−)” of the element qj
2

vj

[cf. the definition of “q
v
” in

[IUTchI], Example 3.2, (iv)] if vj ∈ V
bad.
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Thus, the inclusion “φ(pλ ·Ri† ⊗R
i† (RI)

∼) ⊆ p	λ
−�dI�−�aI� · logp(R×
I )” of Propo-

sition 1.4, (iii), implies that the result of multiplying the tensor product of log-shells
under consideration by a suitable nonpositive [cf. the final portion of Proposition
1.4, (iii)] integer power of pvQ

contains the “union of possible images of a Θ-pilot
object” discussed in Step (iv). That is to say, the indeterminacies (Ind1) and
(Ind2) are taken into account by the arbitrary nature of the automorphism “φ” [cf.
Proposition 1.2], while the indeterminacy (Ind3) is taken into account by the fact
that we are considering upper bounds [cf. the discussion of Step (x) of the proof of
[IUTchIII], Corollary 3.12], together with the fact that the above-mentioned integer
power of pvQ is nonpositive, which implies that the module obtained by multiplying
by this power of pvQ contains the tensor product of log-shells under consideration.
Thus, an upper bound on the component of the log-volume under consideration may
be obtained by computing an upper bound for the log-volume of the right-hand side
“p	λ
−�dI�−�aI� · logp(R×

I )” of the above inclusion. Such an upper bound

“
(
− λ+ dI + 3 + 4 · |I∗|/p

)
· log(p)”

is given in the displayed inequality of Proposition 1.4, (iii). Here, we note that, un-
like the other terms that appear in this upper bound, “λ” is asymmetric with respect
to the choice of “i† ∈ I” in S±j+1. Since we would like to compute weighted averages

[cf. the discussion of Remark 1.7.1], we thus observe that, after symmetrizing with
respect to the choice of “i† ∈ I” in S±j+1, this upper bound may be written in the
form

“β�e”

[cf. the notation of Proposition 1.7] if, in the situation of Proposition 1.7, one takes

· “E” to be V(Fmod)vQ ;
· “n” to be j + 1, so an element “�e ∈ En” corresponds precisely to a
collection {vi}i∈S

±
j+1

;

· “λe”, for an element e ∈ E corresponding to v ∈ V(Fmod) = Vmod, to be
[(Fmod)v : QvQ

] ∈ R>0;
· “βe”, for an element e ∈ E corresponding to v ∈ V, v ∈ V(Fmod) = Vmod,
to be

log(dKv )− j2

2l(j+1) · log(qv) + 3
j+1 · log(pvQ

) + 4·ιv
pvQ

· log(pvQ
)

— where we set ιv
def
= 1 if v ∈ V(K)dst, ιv

def
= 0 if v ∈ V(K)dst.

Here, we note that it follows immediately from the first equality of the first dis-
play of Proposition 1.7 that, after passing to weighted averages, the operation of
symmetrizing with respect to the choice of “i† ∈ I” in S±j+1 does not affect the com-
putation of the upper bound under consideration. Thus, by applying Proposition
1.7, we obtain that the resulting “weighted average upper bound” is given by

(j + 1) · log(dKvQ
)− j2

2l · log(qvQ
) + 3 · log(sQvQ) + 4(j+1)

pvQ
· log(sFmod

vQ
)

— where we recall the notational conventions introduced in Step (iii). Thus, it
remains to compute the average over j ∈ F�

l . By averaging over j ∈ {1, . . . , l� =
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l−1
2 } and applying (E1), (E2), we obtain the “procession-normalized upper

bound”

(l�+3)
2 · log(dKvQ)− (2l�+1)(l�+1)

12l · log(qvQ
) + 3 · log(sQvQ

) + 2(l�+3)
pvQ

· log(sFmod
vQ

)

= l+5
4 · log(dKvQ)− l+1

24 · log(qvQ) + 3 · log(sQvQ
) + (l+5)

pvQ
· log(sFmod

vQ
)

≤ l+1
4 ·

{
(1 + 4

l ) · log(dKvQ)− 1
6 · log(qvQ

) + 12
l · log(sQvQ) + 20

3pvQ
· log(sFmod

vQ
)

}

— where, in the passage to the final displayed inequality, we apply the estimates
1

l+1 ≤ 1
l and 4(l+5)

l+1 ≤ 20
3 , both of which are consequences of the fact that l ≥ 5.

(vi) Next, let vQ ∈ Vnon
Q \ Vdst

Q . Fix j, {vi}i∈S
±
j+1

as in Step (iv). Write

vi ∈ V
∼→ Vmod = V(Fmod) for the element corresponding to vi. We would like to

apply Proposition 1.4, (iv), to the present situation, by taking

· “I” to be S±j+1;

· “ki” to be Kvi
[so “Ri” will be the ring of integers OKvi

of Kvi
].

Here, we note that our assumption that vQ ∈ Vnon
Q \Vdst

Q implies that the hypotheses
of Proposition 1.4, (iv), are satisfied. Thus, the inclusion “φ((RI)

∼) ⊆ (RI)
∼” of

Proposition 1.4, (iv), implies that the tensor product of log-shells under consider-
ation contains the “union of possible images of a Θ-pilot object” discussed in Step
(iv). That is to say, the indeterminacies (Ind1) and (Ind2) are taken into account
by the arbitrary nature of the automorphism “φ” [cf. Proposition 1.2], while the
indeterminacy (Ind3) is taken into account by the fact that we are considering upper
bounds [cf. the discussion of Step (x) of the proof of [IUTchIII], Corollary 3.12],
together with the fact that the “container of possible images” is precisely equal to
the tensor product of log-shells under consideration. Thus, an upper bound on the
component of the log-volume under consideration may be obtained by computing
an upper bound for the log-volume of the right-hand side “(RI)

∼” of the above
inclusion. Such an upper bound

“0”

is given in the final equality of Proposition 1.4, (iv). One may then compute a
“weighted average upper bound” and then a “procession-normalized upper
bound”, as was done in Step (v). The resulting “procession-normalized upper
bound” is clearly equal to 0.

(vii) Next, let vQ ∈ Varc
Q . Fix j, {vi}i∈S

±
j+1

as in Step (iv). Write vi ∈
V

∼→ Vmod = V(Fmod) for the element corresponding to vi. We would like to
apply Proposition 1.5, (iii), (iv), to the present situation, by taking

· “I” to be S±j+1 [so |I| = j + 1];

· “V ” to be V(Fmod)vQ
;

· “Cv” to be Kv, where we write v ∈ V
∼→ Vmod for the element determined

by v ∈ V .
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Then it follows from Proposition 1.5, (iii), (iv), that

πj+1 ·BI

serves as a container for the “union of possible images of a Θ-pilot object” discussed
in Step (iv). That is to say, the indeterminacies (Ind1) and (Ind2) are taken into
account by the fact that BI ⊆ MI is preserved by arbitrary automorphisms of the
type discussed in Proposition 1.5, (iii), while the indeterminacy (Ind3) is taken into
account by the fact that we are considering upper bounds [cf. the discussion of
Step (x) of the proof of [IUTchIII], Corollary 3.12], together with the fact that, by
Proposition 1.5, (iv), together with our choice of the factor πj+1, this “container of
possible images” contains the elements of MI obtained by forming the tensor prod-
uct of elements of the log-shells under consideration. Thus, an upper bound on the
component of the log-volume under consideration may be obtained by computing
an upper bound for the log-volume of this container. Such an upper bound

(j + 1) · log(π)

follows immediately from the fact that [in order to ensure compatibility with arith-
metic degrees of arithmetic line bundles — cf. [IUTchIII], Proposition 3.9, (iii) —
one is obliged to adopt normalizations which imply that] the log-volume of BI is
equal to 0. One may then compute a “weighted average upper bound” and
then a “procession-normalized upper bound”, as was done in Step (v). The resulting
“procession-normalized upper bound” is given by

l+5
4 · log(π) ≤ l+1

4 · 4

— cf. (E1), (E6); the fact that l ≥ 5.

(viii) Now we return to the discussion of Step (iv). In order to compute the
desired upper bound for “CΘ”, it suffices to sum over vQ ∈ VQ the various local
“procession-normalized upper bounds” obtained in Steps (v), (vi), (vii) for
vQ ∈ VQ. By applying the inequality of the final display of Step (iii), we thus obtain
the following upper bound for “CΘ”:

l+1
4 ·

{
(1 + 28·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 2 · log(l) + 69− 1
6 · log(q)

+ 20
3 ·

∑
vQ∈Vdst

Q

1
pvQ

· log(sFmod
vQ

)

}
− 1

— where we apply the estimate l+1
4 ≥ 1 [a consequence of the fact that l ≥ 5].

Thus, it remains to evaluate the sum over vQ ∈ Vdst
Q that appears in the last

display. Recall the constant “ηprm” of Proposition 1.6. Now we define

εΘ
def
= min

(
40ηprm

3 , 3−210
)

and suppose that ε ∈ R>0 satisfies ε < εΘ. Note that this implies that 40
3ε > 5 and

2
3 · log(ε−1) ≥ 140 [cf. (E6)]. Write
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· V≺ε−1

Q

def
= {vQ ∈ VQ | pvQ ≤ 40

3ε };
· V�ε−1

Q

def
= {vQ ∈ Vdst

Q | l �= pvQ ≥ 40
3ε (> 5)}.

Then by applying Proposition 1.6, where we take “η” to be 3ε
40 < ηprm, together

with the discussion of Step (iii), we conclude that

20
3 ·

∑
vQ∈Vdst

Q

1
pvQ

· log(sFmod
vQ

)

≤ 20
3 ·

∑
l=pvQ

log(s
Fmod
vQ

)

pvQ
+ 20

3 ·
∑

vQ∈V�ε−1

Q

log(s
Fmod
vQ

)

pvQ
+ 20

3 ·
∑

vQ∈V≺ε−1

Q

log(s
Fmod
vQ

)

pvQ

≤ 4 + 40
3 ·

∑
vQ∈V�ε−1

Q

1
pvQ

· (log(dFtpd
vQ ) + log(f

Ftpd
vQ )) + 20

3 ·
∑

vQ∈V≺ε−1

Q

log(pvQ
)

pvQ

≤ 4 + ε · (log(dFtpd) + log(fFtpd))− 40
3 · log(ε) + 40

3 · log( 403 )

≤ ε · (log(dFtpd) + log(fFtpd)) + 2 · log(ε−7)− 2
3 · log(ε−1) + 60

≤ ε · (log(dFtpd) + log(fFtpd)) + 2 · log(ε−7)− 80

— where we apply the estimates 10
3 ≤ 4 and 40

3 · log( 403 ) ≤ 14 · log(15) ≤ 56 [cf.
(E6)]. Thus, substituting back into our original upper bound for “CΘ”, we obtain
the following upper bound for “CΘ”:

l+1
4 ·

{
(1 + ε+ 28·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 2 · log(l · ε−7)− 1
6 · log(q)

}
− 1

— where we apply the estimate 69 − 80 ≤ 0 — i.e., as asserted in the statement
of Theorem 1.10. The final portion of Theorem 1.10 follows immediately from
[IUTchIII], Corollary 3.12, together with the inequality of the first display of Step
(ii). ©

Remark 1.10.1. One of the main original motivations for the development of
the theory discussed in the present series of papers was to create a framework, or
geometry, within which a suitable analogue of the scheme-theoretic Hodge-Arakelov
theory of [HASurI], [HASurII] could be realized in such a way that the obstruc-
tions to diophantine applications that arose in the scheme-theoretic formulation of
[HASurI], [HASurII] [cf. the discussion of [HASurI], §1.5.1; [HASurII], Remark 3.7]
could be avoided. From this point of view, it is of interest to observe that the com-
putation of the “leading term” of the inequality of the final display of the statement
of Theorem 1.10 — i.e., of the term

(l�+3)
2 · log(dKvQ)− (2l�+1)(l�+1)

12l · log(qvQ
)

that occurs in the final display of Step (v) of the proof of Theorem 1.10 — via the
identities (E1), (E2) is essentially identical to the computation of the leading term
that occurs in the proof of [HASurI], Theorem A [cf. the discussion following the
statement of Theorem A in [HASurI], §1.1]. That is to say, in some sense,
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the computations performed in the proof of Theorem 1.10 were already
essentially known to the author around the year 2000; the problem then
was to construct an appropriate framework, or geometry, in which
these computations could be performed!

This sort of situation may be compared to the computations underlying the Weil
Conjectures priori to the construction of a “Weil cohomology” in which those
computations could be performed, or, alternatively, to various computations of
invariants in topology or differential geometry that were motivated by computations
in physics, again prior to the construction of a suitable mathematical framework
in which those computations could be performed.

Remark 1.10.2. The computation performed in the proof of Theorem 1.10 may
be thought of as the computation of a sort of derivative in the F�

l -direction,
which, relative to the analogy between the theory of the present series of papers
and the p-adic Teichmüller theory of [pOrd], [pTeich], corresponds to the derivative
of the canonical Frobenius lifting — cf. the discussion of [IUTchIII], Remark 3.12.4,
(iii). In this context, it is useful to recall the arithmetic Kodaira-Spencer morphism
that occurs in scheme-theoretic Hodge-Arakelov theory [cf. [HASurII], §3]. In
particular, in [HASurII], Corollary 3.6, it is shown that, when suitably formulated,
a “certain portion” of this arithmetic Kodaira-Spencer morphism coincides with the
usual geometric Kodaira-Spencer morphism. From the point of view of the action
of GL2(Fl) on the l-torsion points involved, this “certain portion” consists of the
unipotent matrices (

1 ∗
0 1

)
of GL2(Fl). By contrast, the F�

l -symmetries that occur in the present series of
papers correspond to the toral matrices(

1 0

0 ± ∗

)

of GL2(Fl) — cf. the discussion of [IUTchI], Example 4.3, (i). As we shall see in §2
below, in the present series of papers, we shall ultimately take l to be “large”. When
l is “sufficiently large”, GL2(Fl) may be thought of as a “good approximation” for
GL2(Z) or GL2(R) — cf. the discussion of [IUTchI], Remark 6.12.3, (i), (iii). In the
case of GL2(R), “toral subgroups” may thought of as corresponding to the isotropy
subgroups [isomorphic to S1] of points that arise from the action of GL2(R) on the
upper half-plane, i.e., subgroups which may be thought of as a sort of geometric,
group-theoretic representation of tangent vectors at a point.

Remark 1.10.3. The “log(l) term” that occurs in the inequality of the final
display of Theorem 1.10 may be thought of as an inevitable consequence of the
fundamental role played in the theory of the present series of papers by the l-torsion
points of the elliptic curve under consideration. Here, we note that it is of crucial
importance to work over the field of rationality of the l-torsion points [i.e., “K” as
opposed to “F”] not only when considering the global portions of the various ΘNF-



32 SHINICHI MOCHIZUKI

and Θ±ell-Hodge-theaters involved, but also when considering the local portions —
i.e., the prime-strips — of these ΘNF- and Θ±ell-Hodge-theaters. That is to say,
these local portions are necessary, for instance, in order to glue together the ΘNF-
and Θ±ell-Hodge-theaters that appear so as to form a Θ±ellNF-Hodge-theater [cf.
the discussion of [IUTchI], Remark 6.12.2]. In particular, to allow, within these
local portions, any sort of “Galois indeterminacy” with respect to the l-torsion
points — even, for instance, at v ∈ V

good⋂
V

non, which, at first glance, might
appear irrelevant to the theory of Hodge-Arakelov-theoretic evaluation at l-torsion
points developed in [IUTchII] — would have the effect of invalidating the various
delicate manipulations involving l-torsion points discussed in [IUTchI], §4, §6 [cf.,
e.g., [IUTchI], Propositions 4.7, 6.5].

Remark 1.10.4. The various fluctuations in log-volume — i.e., whose computa-
tion is the subject of Theorem 1.10! — that arise from themultiradial representation
of [IUTchIII], Theorem 3.11, (i), may be thought of as a sort of “inter-universal
analytic torsion”. Indeed,

in general, “analytic torsion”may be understood as a sort ofmeasure—
in “metrized” [e.g., log-volume!] terms — of the degree of deviation of
the “holomorphic functions” [such as sections of a line bundle] on a variety
— i.e., which depend, in an essential way, on the holomorphic moduli
of the variety! — from the “real analytic functions” — i.e., which are
invariant with respect to deformations of the holomorphic moduli
of the variety.

For instance:

(a) In “classical” Arakelov theory, analytic torsion typically arises as [the log-
arithm of] a sort of normalized determinant of the Laplacian acting on some
space of real analytic [or L2-] sections of a line bundle on a complex variety equipped
with a real analytic Kähler metric [cf., e.g., [Arak], Chapters V, VI]. Here, we recall
that in this sort of situation, the space of holomorphic sections of the line bundle
is given by the kernel of the Laplacian; the definition of the Laplacian depends, in
an essential way, on the Kähler metric, hence, in particular, on the holomorphic
moduli of the variety under consideration [cf., e.g., the case of the Poincaré metric
on a hyperbolic Riemann surface!].

(b) In the scheme-theoretic Hodge-Arakelov theory discussed in [HASurI], [HA-
SurII], the main theorem consists of a sort of comparison isomorphism [cf. [HASurI],
Theorem A] between the space of sections of an ample line bundle on the universal
vectorial extension of an elliptic curve and the space of set-theoretic functions on
the torsion points of the elliptic curve. That is to say, the former space of sections
contains, in a natural way, the space of holomorphic sections of the ample line on
the elliptic curve, while the latter space of functions may be thought of as a sort
of “discrete approximation” of the space of real analytic functions on the elliptic
curve [cf. the discussion of [HASurI], §1.3.2, §1.3.4]. In this context, the “Gaussian
poles” [cf. the discussion of [HASurI], §1.1] arise as a measure of the discrepancy
of integral structures between these two spaces in a neighborhood of the divisor at
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infinity of the moduli stack of elliptic curves, hence may be thought of as a sort of
“analytic torsion at the divisor at infinity” [cf. the discussion of [HASurI], §1.2].

(c) In the case of the multiradial representation of [IUTchIII], Theorem 3.11,
(i), the fluctuations of log-volume computed in Theorem 1.10 arise precisely as a
result of the execution of a comparison of an “alien” arithmetic holomorphic
structure to this multiradial representation, which is compatible with the per-
mutation symmetries of the étale-picture, i.e., which is “invariant with respect to
deformations of the arithmetic holomorphic moduli of the number field under con-
sideration” in the sense that it makes sense simultaneously with respect to distinct
arithmetic holomorphic structures [cf. [IUTchIII], Remark 3.11.1; [IUTchIII], Re-
mark 3.12.3, (ii)]. Here, it is of interest to observe that the object of this comparison
consists of the values of the theta function, i.e., in essence, a “holomorphic section
of an ample line bundle”. In particular, the resulting fluctuations of log-volume
may be thought as a sort of “analytic torsion”. By analogy to the terminology
“Gaussian poles” discussed in (b) above, it is natural to think of the terms involv-
ing the different dK(−) that appear in the computation underlying Theorem 1.10 [cf.,

e.g., the final display of Step (v) of the proof of Theorem 1.10] as “differential
poles” [cf. the discussion of Remarks 1.10.1, 1.10.2]. Finally, in the context of the
normalized determinants that appear in (a), it is interesting to note the role played
by the prime number theorem — i.e., in essence, the Riemann zeta func-
tion [cf. Proposition 1.6 and its proof] — in the computation of “inter-universal
analytic torsion” given in the proof of Theorem 1.10.
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Section 2: Diophantine Inequalities

In the present §2, we combine Theorem 1.10 with the theory of [GenEll] to
give a proof of the ABC Conjecture, or, equivalently, Vojta’s Conjecture for
hyperbolic curves [cf. Corollary 2.3 below].

We begin by reviewing some well-known estimates.

Proposition 2.1. (Well-known Estimates)

(i) (Linearization of Logarithms) Let C, ε ∈ R>0. Then there exists an
x0 ∈ R>0 such that log(x+ C) ≤ ε · x for all (R �) x ≥ x0.

(ii) (The Prime Number Theorem) There exists a ξprm ∈ R>0 such that∑
p≤x

log(p) ≤ 2x

— where the sum ranges over the prime numbers p such that p ≤ x — for all
(R �) x ≥ ξprm.

Proof. Assertion (i) is well-known and entirely elementary. Assertion (ii) is a
well-known consequence of the Prime Number Theorem [cf., e.g., [Edw], p. 76]. ©

Let Q be an algebraic closure of Q. In the following discussion, we shall apply
the notation and terminology of [GenEll]. Let X be a smooth, proper, geometrically

connected curve over a number field; D ⊆ X a reduced divisor; UX
def
= X\D; d a

positive integer. Write ωX for the canonical sheaf on X. Suppose that UX is a
hyperbolic curve, i.e., that the degree of the line bundle ωX(D) is positive. Then
we recall the following notation:

· UX(Q)≤d ⊆ UX(Q) denotes the subset of Q-rational points defined over
a finite extension field of Q of degree ≤ d [cf. [GenEll], Example 1.3, (i)].

· log-diffX denotes the (normalized) log-different function on UX(Q)≤d [cf.
[GenEll], Definition 1.5, (iii)].

· log-condD denotes the (normalized) log-conductor function on UX(Q)≤d

[cf. [GenEll], Definition 1.5, (iv)].

· htωX(D) denotes the (normalized) height function on UX(Q)≤d associ-
ated to ωX(D), which is well-defined up to a “bounded discrepancy” [cf.
[GenEll], Proposition 1.4, (iii)];

In order to apply the theory of the present series of papers, it is neceesary to
construct suitable initial Θ-data, as follows.
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Corollary 2.2. (Construction of Suitable Initial Θ-Data) Suppose that
X = P1

Q is the projective line over Q, and that D ⊆ X is the divisor consisting of
the three points “0”, “1”, and “∞”. We shall regard X as the “λ-line” — i.e.,
we shall regard the standard coordinate on X = P1

Q as the “λ” in the Legendre

form “y2 = x(x−1)(x−λ)” of the Weierstrass equation defining an elliptic curve —
and hence as being equipped with a natural classifying morphism UX → (Mell)Q
[cf. the discussion preceding Proposition 1.8]. Let

KV ⊆ UX(Q)

be a compactly bounded subset [i.e., regarded as a subset of X(Q) — cf.
[GenEll], Example 1.3, (ii)] whose support contains the nonarchimedean prime
“2”. Then:

(i) The normalized degree “deg(−)” of the effective arithmetic divisor deter-
mined by the q-parameters of an elliptic curve over a number field at the nonar-
chimedean primes that do not divide 2 [cf. the invariant “log(q)” associated, in the
statement of Theorem 1.10, to the elliptic curve EF ] determines an R-valued func-
tion on Mell(Q), hence also on UX(Q). If we denote this function by the notation
“log(q(−))”, then we have an equality of “bounded discrepancy classes” [cf.
[GenEll], Definition 1.2, (ii), as well as Remark 2.3.1, (ii), below]

1
6 · log(q(−)) ≈ htωX(D)

of functions on KV ⊆ UX(Q).

(ii) Let
R>0 � ε < min(ξ−1

prm, 5 · εΘ)
— where εΘ is as in Theorem 1.10; ξprm is as in Proposition 2.1, (ii). Then there

exists a Galois-finite [cf. [GenEll], Example 1.3, (i)] subset Excε ⊆ UX(Q) which
contains all points corresponding to elliptic curves with automorphisms of order > 2
and, moreover, satisfies the following property:

Let EF be an elliptic curve over a number field F ⊆ Q that lifts [not neces-
sarily uniquely!] to a point xE ∈ UX(F ) such that

[xE ] ∈ KV , [xE ] �∈ Excε.

Write Fmod for the minimal field of definition of the corresponding point ∈
Mell(Q) and

Fmod ⊆ Ftpd
def
= Fmod( EFmod

[2] ) ⊆ F

for the “tripodal” intermediate field obtained from Fmod by adjoining the fields
of definition of the 2-torsion points of any model of EF over Fmod [cf. Proposition
1.8, (ii), (iii)]. Moreover, we assume that the (3·5)-torsion points of EF are defined
over F , and that

F = Fmod(
√−1, EFmod

[2 · 3 · 5] ) def
= Ftpd(

√−1, EFtpd
[3 · 5] )
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— i.e., that F is obtained from Ftpd by adjoining
√−1, together with the fields

of definition of the (3 · 5)-torsion points of a model EFtpd
of the elliptic curve EF

over Ftpd determined by the Legendre form of the Weierstrass equation discussed
above [cf. Proposition 1.8, (vi)]. [Thus, it follows from Proposition 1.8, (iv), that
EF

∼= EFtpd
×Ftpd

F over F , so xE ∈ UX(Ftpd) ⊆ UX(F ).] Then EF and Fmod

arise as the “EF ” and “Fmod” for a collection of initial Θ-data as in Theorem
1.10 such that, in the notation of Theorem 1.10, the prime number l satisfies the
following conditions:

(P1) 2 · log(l) ≤ 1
5 · ε ·

{
1
6 · log(q) + log(dFtpd)

}
+ 2 · log(dmod);

(P2) l ≥ 5 · 28 · dmod · ε−1.

In particular, by applying Theorem 1.10, we conclude that

1
6 · log(q) ≤ (1+ε) ·(log-diffX(xE)+log-condX(xE))+28 · log(5 ·ε−1)+4 · log(dmod)

— where we observe that [it follows tautologically from the definitions that] we have:
log-diffX(xE) = log(dFtpd), log-condD(xE) = log(fFtpd).

Proof. First, we consider assertion (i). We begin by observing that since the
support of KV contains the nonarchimedean prime “2”, it follows immediately from
the various definitions involved that

log(q(−)) ≈ deg∞

— where “deg∞” is as in the discussion preceding [GenEll], Proposition 3.4 —
on KV ⊆ UX(Q). In a similar vein, since the support of KV contains the unique
archimedean prime of Q, it follows immediately from the various definitions involved
that

deg∞ ≈ ht∞

— where “ht∞” is as in the discussion preceding [GenEll], Proposition 3.4 — on
KV ⊆ UX(Q) [cf. the argument of the final paragraph of the proof of [GenEll],
Lemma 3.7]. Thus, we conclude that log(q(−)) ≈ ht∞. Since [as is well-known]

the pull-back to X of the divisor at infinity of the natural compatification (Mell)Q
of (Mell)Q is of degree 6, while the line bundle ωX(D) is of degree 1, the desired
equality of BD-classes 1

6 · log(q(−)) ≈ htωX(D) follows immediately from [GenEll],
Proposition 1.4, (i), (iii). This completes the proof of assertion (i).

Next, we consider assertion (ii). First, we observe that [one verifies easily that]
the image in Mell(Q) of KV determines a compactly bounded subset of Mell(Q).
Thus, by applying [GenEll], Corollary 4.4, to this compactly bounded subset of
Mell(Q), we obtain aGalois-finite subset “Exc” ofMell(Q), together with a constant
“C ∈ R”, that satisfy a certain property [cf. the statement of [GenEll], Corollary
4.4], which we shall discuss below in detail. Let us write

Excε ⊆ UX(Q)

for the inverse image of the subset “Exc” of [GenEll], Corollary 4.4, and C1 for
the constant “C”. One verifies immediately that this subset Excε ⊆ UX(Q) is
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Galois-finite. Although Excε, defined in this way, does not depend on ε, we shall, in
the argument to follow, enlarge Excε several times — i.e., by an abuse of notation,
for the purpose of simplifying the notation! — in such a way that the resulting
enlargement does in fact depend on ε.

Next, let us recall that if the once-punctured elliptic curve associated to EF

fails to admit an F -core, then there are only four possibilities for the j-invariant of
EF [cf. [CanLift], Proposition 2.7]. Thus, by possibly enlarging Excε [in a fashion
that is still independent of ε!], which is possible in light of [GenEll], Proposition
1.4, (iv), we may assume that the once-punctured elliptic curve associated to EF

admits an F -core, hence, in particular, does not have any automorphisms of order
> 2 over Q.

Now before proceeding, let us observe [cf., Proposition 1.8, (v)] that our as-
sumptions concerning the extension F/Fmod imply that EF has stable reduction at
all of the nonarchimedean primes of F [cf. the proof of [GenEll], Theorem 3.8].
Next, let us observe that it follows from assertion (i) that the function “htωX(D)”
is bounded on the set of [xE ] corresponding to EF with good reduction at all nonar-
chimedean primes that do not divide 2. In particular, by possibly enlarging Excε
[in a fashion that is still independent of ε!], which is possible in light of [GenEll],
Proposition 1.4, (iv), we may assume that EF has bad [but stable!] reduction at
some nonarchimedean prime that does not divide 2. Thus, in summary, one veri-
fies immediately [cf., especially, our assumptions concerning the extension F/Fmod]
that all of the conditions of [IUTchI], Definition 3.1, (a), (b), (d), (e), (f), are
satisfied. That is to say, in order to obtain a collection of initial Θ-data as in the
statement of assertion (ii), it suffices to show the existence of a prime number l that
satisfies the conditions of [IUTchI], Definition 3.1, (c), as well as the conditions
(P1), (P2) of the statement of assertion (ii).

Next, we would like to apply the property satisfied by the subset “Exc” of
[GenEll], Corollary 4.4. We take the set “S” of loc. cit. to be the set

S def
= {p | p is a prime number ≤ 5 · 28 · dmod · ε−1 (> 5)}

— cf. condition (P2). Thus, we obtain the estimate

xS
def
=
∑
p∈S

log(p) ≤ 10 · 28 · dmod · ε−1

— cf. our assumption that ε−1 ≥ ξprm; Proposition 2.1, (ii). Note that the quantity
“d” of loc. cit. corresponds to the quantity dmod of the present discussion. Now
we take the prime number l to be the prime number “l•” of [GenEll], Corollary 4.4.
Thus, l �∈ S, so the condition (P2) is satisfied. Moreover, since 2, 3, 5 ∈ S, it follows
from conditions (a), (b) of [GenEll], Corollary 4.4, that the conditions of [IUTchI],
Definition 3.1, (c), are satisfied.

Next, let us observe that it follows from the argument applied in the proof of as-
sertion (i), together with [GenEll], Proposition 3.4, that we have equalities/inequali-
ties of BD-classes

log(q(−)) ≈ ht∞ � 12 · htFalt
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on KV ⊆ UX(Q). Thus, it follows from condition (c) of [GenEll], Corollary 4.4,
that

l ≤ dmod ·
{
23040 · 50 · 1

6 · log(q) + 6 · log(dFmod) + 2xS · d−1
mod + C2

}
≤ dmod ·

{
23040 · 50 · 1

6 · log(q) + 6 · log(dFmod) + 20 · 28 · ε−1 + C2

}
≤ dmod ·

{
23040 · 50 · 1

6 · log(q) + 6 · log(dFtpd) + Cε

}
— where, in the first inequality, we replace the constant C1 by a new constant
C2, so as to take into account the inequality of BD-classes discussed above; in the

third inequality, we take Cε
def
= 20 · 28 · ε−1 + C2; we observe that the quantity

“log-diffMell
([EL])” of loc. cit. [cf. Remark 2.3.1, (iv), below] corresponds to the

quantity log(dFmod) (≤ log(dFtpd)) of the present discussion. Next, let us observe
that since log(dFtpd) ≥ 0 and Cε = 20 · 28 · ε−1 +C2 ≥ C2, it follows that any upper
bound on the quantity{

23040 · 50 · 1
6 · log(q) + 6 · log(dFtpd) + Cε

}
of the final line of the preceding display implies an upper bound on the quantity
log(q), i.e., [by applying the equalities of BD-classes discussed above] an upper
bound on the quantity “ht∞”, which [cf., e.g., [GenEll], Proposition 1.4, (iv)] can
only be satisfied by finitely many elements of Mell(Q)≤n, for a given integer n.
Thus, by possibly enlarging Excε [this time in a way that depends on ε!], we may
assume, by applying Proposition 2.1, (i), that

2 · log(l) ≤ 1
5 · ε ·

{
1
6 · log(q) + log(dFtpd)

}
+ 2 · log(dmod)

— i.e., that the condition (P1) is satisfied.

Finally, we observe that since, by assumption, 1
5 · ε < εΘ, it follows from the

final portion of Theorem 1.10 that

1
6 · log(q) ≤ (1 + 1

5 · ε+ 28·dmod

l ) · (log(dFtpd) + log(fFtpd))

+ 2 · log(l) + 14 · log(5 · ε−1)

≤ (1 + 1
5 · ε+ 1

5 · ε) · (log(dFtpd) + log(fFtpd))

+ 1
5 · ε ·

{
1
6 · log(q) + log(dFtpd)

}
+ 14 · log(5 · ε−1) + 2 · log(dmod)

≤ 1
5 · ε · 1

6 · log(q) + (1 + 3
5 · ε) · (log(dFtpd) + log(fFtpd))

+ 14 · log(5 · ε−1) + 2 · log(dmod)

— where we apply the inequalities of (P1), (P2), as well as the inequality log(fFtpd) ≥
0. The inequality

1
6 · log(q) ≤ (1+ε) ·(log-diffX(xE)+log-condD(xE))+28 · log(5 ·ε−1)+4 · log(dmod)

[cf. the final display of the statement of assertion (ii)] thus follows by applying the
estimates

1 + 3
5 · ε

1− 1
5 · ε ≤ 1 + ε; 1− 1

5 · ε ≥ 1
2
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— both of which are consequences of the fact that 0 < ε ≤ 1 — together with the
observation that it follows immediately from the definitions [cf. also Proposition
1.8, (vi)] that the quantities log-diffX(xE), log-condD(xE) correspond precisely to
the quantities log(dFtpd), log(fFtpd), respectively. ©

We are now ready to state and prove the main theorem of the present §2, which
may also be regarded as the main application of the theory developed in the present
series of papers.

Corollary 2.3. (Diophantine Inequalities) Let X be a smooth, proper,

geometrically connected curve over a number field; D ⊆ X a reduced divisor; UX
def
=

X\D; d a positive integer; ε ∈ R>0 a positive real number. Write ωX for the
canonical sheaf on X. Suppose that UX is a hyperbolic curve, i.e., that the degree
of the line bundle ωX(D) is positive. Then, relative to the notation reviewed above,
one has an inequality of “bounded discrepancy classes”

htωX(D) � (1 + ε)(log-diffX + log-condD)

of functions on UX(Q)≤d — i.e., the function (1 + ε)(log-diffX + log-condD) −
htωX(D) is bounded below by a constant on UX(Q)≤d [cf. [GenEll], Definition 1.2,
(ii), as well as Remark 2.3.1, (ii), below].

Proof. One verifies immediately that the content of the statement of Corollary 2.3
coincides precisely with the content of [GenEll], Theorem 2.1, (i). Thus, it follows
from the equivalence of [GenEll], Theorem 2.1, that, in order to complete the proof
of Corollary 2.3, it suffices to verify that Theorem 2.1, (ii), holds. That is to say,
we may assume without loss of generality that:

· X = P1
Q is the projective line over Q;

· D ⊆ X is the divisor consisting of the three points “0”, “1”, and “∞”;
· KV ⊆ UX(Q) is a compactly bounded subset whose support contains the
nonarchimedean prime “2”.

Then it suffices to show that the inequality of BD-classes of functions [cf. [GenEll],
Definition 1.2, (ii), as well as Remark 2.3.1, (ii), below]

htωX(D) � (1 + ε)(log-diffX + log-condD)

holds on KV

⋂
UX(Q)≤d. But such an inequality follows immediately, in light of

the equality of BD-classes of Corollary 2.2, (i), from the final portion of Corollary
2.2, (ii) [where we note that it follows immediately from the various definitions
involved that dmod ≤ d]. This completes the proof of Corollary 2.3. ©

Remark 2.3.1. We take this opportunity to correct some unfortunate misprints
in [GenEll].

(i) The notation “ordv(−) : Fv → Z” in the final sentence of the first paragraph
following [GenEll], Definition 1.1, should read “ordv(−) : F×

v → Z”.
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(ii) In [GenEll], Definition 1.2, (ii), the non-resp’d and first resp’d items in the
display should be reversed! That is to say, the notation “α �F β” corresponds to
“α(x)− β(x) ≤ C”; the notation “α �F β” corresponds to “β(x)− α(x) ≤ C”.

(iii) The first portion of the first sentence of the statement of [GenEll], Corollary
4.4, should read: “Let Q be an algebraic closure of Q; . . . ”.

(iv) The “log-diffMell
([EL]))” in the second inequality of the final display of

the statement of [GenEll], Corollary 4.4, should read “log-diffMell
([EL])”.

Remark 2.3.2.

(i) The reader will note that, by arguing with a “bit more care”, it is not
difficult to give stronger estimates for the various “constants” that occur in
Theorem 1.10; Corollaries 2.2, 2.3 and their proofs. Such stronger estimates are,
however, being the scope of the present series of papers, so we shall not pursue this
topic further in the present paper.

(ii) On the other hand, we recall that the constant “1” in the inequality of
the display of Corollary 2.3 cannot be improved — cf. the examples constructed in
[Mss]. In the context of the examples constructed in [Mss], it is of interest to note
that the estimates obtained in [Mss] for these examples appear, at first glance, to
contradict the rather strong inequality obtained in the final display of Corollary
2.2, (ii). Indeed, fix a ξ ∈ R such that 1

2 < ξ < 1. Then if one assumes that

(1) the quantity “log(q)” in the final display of Corollary 2.2, (ii), is roughly
equal to the height of the elliptic curve, i.e., the relation “log(q(−)) ≈
ht∞” derived at the beginning of proof of Corollary 2.2 — which amounts,
in essence, to the statement that one may ignore the contributions to the
height at the archimedean primes, as well as at the primes over 2 — holds
and, moreover, that

(2) the inequality in the final display of Corollary 2.2, (ii), may be applied
to the elliptic curves constructed in [Mss],

then a straightforward substitution reveals that if one takes

ε
def
= {log(dF ) + log(fF )}−ξ

in the inequality in the final display of Corollary 2.2, (ii), then one obtains, at least
asymptotically, a contradiction to the estimates obtained in [Mss]. In fact, it is not
clear that the elliptic curves constructed in [Mss] satisfy either of the assumptions
(1), (2), both of which may be thought of as assumptions to the effect that the
elliptic curve in question is in “sufficiently general position”. That is to say, in
order to obtain elliptic curves satisfying assumptions (1), (2), one must apply the
theory of [GenEll] [cf. the proofs of Corollaries 2.2, 2.3!], which involves constructing
various “noncritical Belyi maps” on finite étale coverings of the projective line minus
three points. Moreover, these Belyi maps and coverings depend, in an essential
way, on ε, and it is difficult to see how to bound the constants that arise in the
construction of these Belyi maps and coverings in such a way as to assure that
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these constants do not affect the delicate estimates of [Mss]. In particular, despite
the apparently sharper and more explicit nature [i.e., by comparison to the inequality
of Corollary 2.3] of the inequality of the final display of Corollary 2.2, (ii), there is,
in fact, no contradiction — as far as the author can see at the time of writing! —
between Corollary 2.2, (ii), and the estimates obtained in [Mss].
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Section 3: Inter-universal Formalism: the Language of Species

In the present §3, we develop the language of species. Roughly speaking, a
“species” is a “type of mathematical object”, such as a “group”, a “ring”,
a “scheme”, etc. In some sense, this language may be thought of as an explicit
description of certain tasks typically executed at an implicit, intuitive level by
mathematicians via a sort of “mental arithmetic” in the course of interpreting
various mathematical arguments. In the context of the theory developed in the
present series of papers, however, it is useful to describe these intuitive operations
explicitly.

In the following discussion, we shall work with various models — consisting
of “sets” and a relation “∈” — of the standard ZFC axioms of axiomatic set theory
[i.e., the nine axioms of Zermelo-Fraenkel, together with the axiom of choice —
cf., e.g., [Drk], Chapter 1, §3]. We shall refer to such models as ZFC-models.
Recall that a (Grothendieck) universe V is a set satisfying the following axioms [cf.
[McLn], p. 194]:

(i) V is transitive, i.e., if y ∈ x, x ∈ V , then y ∈ V .

(ii) The set of natural numbers N ∈ V .

(iii) If x ∈ V , then the power set of x also belongs to V .

(iv) If x ∈ V , then the union of all members of x also belongs to V .

(v) If x ∈ V , y ⊆ V , and f : x → y is a surjection, then y ∈ V .

We shall say that a set E is a V -set if E ∈ V .

The various ZFC-models that we work with may be thought of as [but are
not restricted to be!] the ZFC-models determined by various universes that are
sets relative to some ambient ZFC-model which, in addition to the standard ax-
ioms of ZFC set theory, satisfies the following existence axiom [attributed to the
“Grothendieck school” — cf. the discussion of [McLn], p. 193]:

(†G) Given any set x, there exists a universe V such that x ∈ V .

We shall refer to a ZFC-model that also satisfies this additional axiom of the
Grothendieck school as a ZFCG-model. This existence axiom (†G) implies, in par-
ticular, that:

Given a set I and a collection of universes Vi (where i ∈ I), indexed by I
[i.e., a ‘function’ I � i �→ Vi], there exists a [larger] universe V such that
Vi ∈ V , for i ∈ I.

Indeed, since the graph of the function I � i �→ Vi is a set, it follows that {Vi}i∈I

is a set. Thus, it follows from the existence axiom (†G) that there exists a universe
V such that {Vi}i∈I ∈ V . Hence, by condition (i), we conclude that Vi ∈ V , for
all i ∈ I, as desired. Note that this means, in particular, that there exist infinite
ascending chains of universes

V0 ∈ V1 ∈ V2 ∈ V3 ∈ . . . ∈ Vn ∈ . . . ∈ V
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— where n ranges over the natural numbers. On the other hand, by the axiom of
foundation, there do not exist infinite descending chains of universes

V0 � V1 � V2 � V3 � . . . � Vn � . . .

— where n ranges over the natural numbers.

Although we shall not discuss in detail here the quite difficult issue of whether
or not there actually exist ZFCG-models, we remark in passing that one may justify
the stance of ignoring such issues — at least from the point of view of establishing
the validity of various “final results” that may be formulated in ZFC-models — by
invoking a result of Feferman [cf. [Ffmn], §2.3] concerning the “conservative exten-
sionality” of ZFCG relative to ZFC, i.e., roughly speaking, that “any proposition
that may be formulated in a ZFC-model and, moreover, holds in a ZFCG-model in
fact holds in the original ZFC-model”.

In the following discussion, we use the phrase “set-theoretic formula” as it is
conventionally used in discussions of axiomatic set-theory [cf., e.g., [Drk], Chapter
1, §2].

Definition 3.1.

(i) A 0-species S0 is a collection of conditions given by a set-theoretic formula

Φ0(E)

involving an ordered collection E = (E1, . . . ,En0) of sets E1, . . . ,En0 [which we
think of as “indeterminates”], for some integer n0 ≥ 1; in this situation, we shall
refer to E as a collection of species-data for S0. If S0 is a 0-species given by a
set-theoretic formula Φ0(E), then a 0-specimen of S0 is a specific ordered collection
of n0 sets E = (E1, . . . , En0) in some specific ZFC-model that satisfies Φ0(E). If
E is a 0-specimen of a 0-species S0, then we shall write E ∈ S0. If, moreover, it
holds, in any ZFC-model, that the 0-specimens of S0 form a set, then we shall refer
to S0 as 0-small.

(ii) Let S0 be a 0-species. Then a 1-species S1 acting on S0 is a collection of
set-theoretic formulas Φ1, Φ1◦1 satisfying the following conditions:

(a) Φ1 is a set-theoretic formula

Φ1(E,E
′,F)

involving two collections of species-data E, E′ for S0 [i.e., the conditions
Φ0(E), Φ0(E

′) hold] and an ordered collection F = (F1, . . . ,Fn1
) of [“in-

determinate”] sets F1, . . . ,Fn1 , for some integer n1 ≥ 1; in this situation,
we shall refer to (E,E′,F) as a collection of species-data for S1 and write
F : E → E′. If, in some ZFC-model, E,E′ ∈ S0, and F is a specific or-
dered collection of n1 sets that satisfies the condition Φ1(E,E′, F ), then
we shall refer to the data (E,E′, F ) as a 1-specimen of S1 and write
(E,E′, F ) ∈ S1; alternatively, we shall denote a 1-specimen (E,E′, F ) via
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the notation F : E → E′ and refer to E (respectively, E′) as the domain
(respectively, codomain) of F : E → E′.

(b) Φ1◦1 is a set-theoretic formula

Φ1◦1(E,E′,E′′,F,F′,F′′)

involving three collections of species-data F : E → E′, F′ : E′ → E′′, F′′ :
E → E′′ for S1 [i.e., the conditions Φ0(E); Φ0(E

′); Φ0(E
′′); Φ1(E,E

′,F);
Φ1(E

′,E′′,F′); Φ1(E,E
′′,F′′) hold]; in this situation, we shall refer to F′′ as

a composite of F with F′ and write F′′ = F′ ◦F [which is, a priori, an abuse
of notation, since there may exist many composites of F with F′ — cf. (c)
below]; we shall use similar terminology and notation for 1-specimens in
specific ZFC-models.

(c) Given a pair of 1-specimens F : E → E′, F ′ : E′ → E′′ of S1 in some
ZFC-model, there exists a unique composite F ′′ : E → E′′ of F with F ′

in the given ZFC-model.

(d) Composition of 1-specimens F : E → E′, F ′ : E′ → E′′, F ′′ : E′′ → E′′′

of S1 in a ZFC-model is associative.

(e) For any 0-specimen E of S0 in a ZFC-model, there exists a [necessarily
unique] 1-specimen F : E → E of S1 [in the given ZFC-model] — which
we shall refer to as the identity 1-specimen idE of E — such that for any
1-specimens F ′ : E′ → E, F ′′ : E → E′′ of S1 [in the given ZFC-model]
we have F ◦ F ′ = F ′, F ′′ ◦ F = F ′′.

If, moreover, it holds, in any ZFC-model, that for any two 0-specimens E, E′ of
S0, the 1-specimens F : E → E′ of S1 [i.e., the 1-specimens of S1 with domain E
and codomain E′] form a set, then we shall refer to S1 as 1-small.

(iii) A species S is defined to be a pair consisting of a 0-species S0 and a 1-
species S1 acting on S0. Fix a species S = (S0,S1). Let i ∈ {0, 1}. Then we shall
refer to an i-specimen of Si as an i-specimen of S. We shall refer to a 0-specimen
(respectively, 1-specimen) ofS as a species-object (respectively, a species-morphism)
of S. We shall say that S is i-small if Si is i-small. We shall refer to a species-
morphism F : E → E′ as a species-isomorphism if there exists a species-morphism
F ′ : E′ → E such that the composites F ◦F ′, F ′◦F are identity species-morphisms;
in this situation, we shall say that E, E′ are species-isomorphic. [Thus, one veri-
fies immediately that composites of species-isomorphisms are species-isomorphisms.]
We shall refer to a species-isomorphism whose domain and codomain are equal as
a species-automorphism. We shall refer to as model-free [cf. Remark 3.1.1 below]
an i-specimen of S equipped with a description via a set-theoretic formula that
is “independent of the ZFC-model in which it is given” in the sense that for any
pair of universes V1, V2 of some ZFC-model such that V1 ∈ V2, the set-theoretic
formula determines the same i-specimen of S, whether interpreted relative to the
ZFC-model determined by V1 or the ZFC-model determined by V2.

(iv) We shall refer to as the category determined by S in a ZFC-model the
category whose objects are the species-objects of S in the given ZFC-model and
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whose arrows are the species-morphisms of S in the given ZFC-model. [One verifies
immediately that this description does indeed determine a category.]

Remark 3.1.1. We observe that any of the familiar descriptions of N [cf., e.g.,
[Drk], Chapter 2, Definition 2.3], Z, Q, Qp, or R, for instance, yield species [all of
whose species-morphisms are identity species-morphisms] each of which has a unique
species-object in any given ZFC-model. Such species are not to be confused with
such species as the species of “monoids isomorphic to N and monoid isomorphisms”,
which admits many species-objects [all of which are species-isomorphic] in any ZFC-
model. On the other hand, the set-theoretic formula used, for instance, to define
the former “species N” may be applied to define a “model-free species-object N” of
the latter “species of monoids isomorphic to N”.

Remark 3.1.2.

(i) It is important to remember when working with species that

the essence of a species lies not in the specific sets that occur as species-
objects or species-morphisms of the species in various ZFC-models, but
rather in the collection of rules, i.e., set-theoretic formulas, that gov-
ern the construction of such sets in an unspecified, “indeterminate” ZFC-
model.

Put another way, the emphasis in the theory of species lies in the programs — i.e.,
“software” — that yield the desired output data, not on the output data itself.
From this point of view, one way to describe the various set-theoretic formulas
that constitute a species is as a “deterministic algorithm” [a term suggested to the
author by M. Kim] for constructing the sets to be considered.

(ii) One interesting point of view that arose in discussions between the author
and F. Kato is the following. The relationship between the classical “set-theoretic”
approach to discussing mathematics — in which specific sets play a central role —
and the “species-theoretic” approach considered here — in which the rules, given
by set-theoretic formulas for constructing the sets of interest [i.e., not specific sets
themselves!], play a central role — may be regarded as analogous to the relation-
ship between classical approaches to algebraic varieties — in which specific sets of
solutions of polynomial equations in an algebraically closed field play a central role
— and scheme theory — in which the functor determined by a scheme, i.e., the
polynomial equations, or “rules”, that determine solutions, as opposed to specific
sets of solutions themselves, play a central role. That is to say, in summary:

[set-th. approach : species-th. approach] ←→ [varieties : schemes]

A similar analogy — i.e., of the form

[set-th. approach : species-th. approach]

←→ [groups of specific matrices : abstract groups]
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— may be made to the notion of an “abstract group”, as opposed to a “group
of specific matices”. That is to say, just as a “group of specific matrices may
be thought of as a specific representation of an “abstract group”, the category of
objects determined by a species in a specific ZFC-model may be thought of as a
specific representation of an “abstract species”.

(iii) If, in the context of the discussion of (i), (ii), one tries to form a sort
of quotient, in which “programs” that yield the same sets as “output data” are
identified, then one must contend with the resulting indeterminacy, i.e., working
with programs is only well-defined up to internal modifications of the programs in
question that does not affect the final output. This leads to somewhat intractable
problems concerning the internal structure of such programs — a topic that lies
well beyond the scope of the present work.

Remark 3.1.3.

(i) Typically, in the discussion to follow, we shall not write out explicitly the
various set-theoretic formulas involved in the definition of a species. Rather, it is to
be understood that the set-theoretic formulas to be used are those arising from the
conventional descriptions of the mathematical objects involved. When applying
such conventional descriptions, however, it is important to check that they are
well-defined and do not depend upon the use of arbitrary choices that are not
describable via well-defined set-theoretic formulas.

(ii) The fact that the data involved in a species is given by abstract set-theoretic
formulas imparts a certain canonicality to the mathematical notion constituted
by the species, a canonicality that is not shared, for instance, by mathematical
objects whose construction depends on an invocation of the axiom of choice in
some particular ZFC-model [cf. the discussion of (i) above]. Moreover, by furnishing
a stock of such “canonical notions”, the theory of species allows one, in effect, to
compute the extent of deviation of various “non-canonical objects” [i.e., whose
construction depends upon the invocation of the axiom of choice!] from a sort of
“canonical norm”.

Remark 3.1.4. Note that because the data involved in a species is given by
abstract set-theoretic formulas, the mathematical notion constituted by the species
is immune to, i.e., unaffected by, extensions of the universe — i.e., such as
the ascending chain V0 ∈ V1 ∈ V2 ∈ V3 ∈ . . . ∈ Vn ∈ . . . ∈ V that appears in
the discussion preceding Definition 3.1 — in which one works. This is the sense
in which we apply the term “inter-universal”. That is to say, “inter-universal
geometry” allows one to relate the “geometries” that occur in distinct universes.

Remark 3.1.5. Similar remarks to the remarks made in Remarks 3.1.2, 3.1.3,
and 3.1.4 concerning the significance of working with set-theoretic formulas may be
made with regard to the notions of mutations, morphisms of mutations, mutation-
histories, observables, and cores to be introduced in Definition 3.2 below.

One fundamental example of a species is the following.
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Example 3.2. Categories. The notions of a [small] category and an isomor-
phism class of [covariant] functors between two given [small] categories yield an
example of a species. That is to say, at a set-theoretic level, one may think of a
[small] category as, for instance, a set of arrows, together with a set of composition
relations, that satisfies certain properties; one may think of a [covariant] functor
between [small] categories as the set given by the graph of the map on arrows de-
termined by the functor [which satisfies certain properties]; one may think of an
isomorphism class of functors as a collection of such graphs, i.e., the graphs deter-
mined by the functors in the isomorphism class, which satisfies certain properties.
Then one has “dictionaries”

0-species ←→ the notion of a category

1-species ←→ the notion of an isomorphism class of functors

at the level of notions and

a 0-specimen ←→ a particular [small] category

a 1-specimen ←→ a particular isomorphism class of functors

at the level of specific mathematical objects in a specific ZFC-model. Moreover, one
verifies easily that species-isomorphisms between 0-species correspond to isomor-
phism classes of equivalences of categories in the usual sense.

Remark 3.2.1. Note that in the case of Example 3.2, one could also define a
notion of “2-species”, “2-specimens”, etc., via the notion of an “isomorphism of
functors”, and then take the 1-species under consideration to be the notion of a
functor [i.e., not an isomorphism class of functors]. Indeed, more generally, one
could define a notion of “n-species” for arbitrary integers n ≥ 1. Since, however,
this approach would only serve to add an unnecessary level of complexity to the
theory, we choose here to take the approach of working with “functors considered
up to isomorphism”.

Definition 3.3. Let S = (S0,S1); S = (S0,S1); S = (S
0
,S

1
) be species.

(i) A mutation M : S � S is defined to be a collection of set-theoretic
formulas Ψ0, Ψ1 satisfying the following properties:

(a) Ψ0 is a set-theoretic formula

Ψ0(E,E)

involving a collection of species-data E for S0 and a collection of species-
data E for S0; in this situation, we shall write M(E) for E. Moreover, if,
in some ZFC-model, E ∈ S0, then we require that there exist a unique
E ∈ S0 such that Ψ0(E,E) holds; in this situation, we shall write M(E)
for E.

(b) Ψ1 is a set-theoretic formula

Ψ1(E,E
′,F,F)
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involving a collection of species-data F : E → E′ for S1 and a collection
of species-data F : E → E′ for S1, where E = M(E), E′ = M(E′); in
this situation, we shall write M(F) for F. Moreover, if, in some ZFC-
model, (F : E → E′) ∈ S1, then we require that there exist a unique
(F : E → E′) ∈ S1 such that Ψ0(E,E′, F, F ) holds; in this situation,
we shall write M(F ) for F . Finally, we require that the assignment F �→
M(F ) be compatible with composites and map identity species-morphisms
of S to identity species-morphisms of S. In particular, if one fixes a ZFC-
model, then M determines a functor from the category determined by S
in the given ZFC-model to the category determined by S in the given
ZFC-model.

There are evident notions of “composition of mutations” and “identity mutations”.

(ii) Let M,M′ : S � S be mutations. Then a morphism of mutations
Z : M → M′ is defined to be a set-theoretic formula Ξ satisfying the following
properties:

(a) Ξ is a set-theoretic formula

Ξ(E,F)

involving a collection of species-data E for S0 and a collection of species-
data F : M(E) → M′(E) for S1; in this situation, we shall write Z(E) for
F. Moreover, if, in some ZFC-model, E ∈ S0, then we require that there
exist a unique F ∈ S1 such that Ξ(E,F ) holds; in this situation, we shall
write Z(E) for F .

(b) Suppose, in some ZFC-model, that F : E1 → E2 is a species-morphism
of S. Then one has an equality of composite species-morphisms M′(F ) ◦
Z(E1) = Z(E2) ◦ M(F ) : M(E1) → M′(E2). In particular, if one fixes a
ZFC-model, then a morphism of mutations M → M′ determines a natural
transformation between the functors determined by M, M′ in the ZFC-
model — cf. (i).

There are evident notions of “composition of morphisms of mutations” and “identity
morphisms of mutations”. If it holds that for every species-object E of S, Z(E) is
a species-isomorphism, then we shall refer to Z as an isomorphism of mutations. In
particular, one verifies immediately that Z is an isomorphism of mutations if and
only if there exists a morphism of mutations Z′ : M′ → M such that the composite
morphisms of mutations Z′ ◦ Z : M → M, Z ◦ Z′ : M′ → M′ are the respective
identity morphisms of the mutations M, M′.

(iii) Let M : S � S be a mutation. Then we shall say that M is a mutation-
equivalence if there exists a mutation M′ : S � S, together with isomorphisms
of mutations between the composites M ◦M′, M′ ◦M and the respective identity
mutations. In this situation, we shall say that M, M′ are mutation-quasi-inverses
to one another. Note that for any two given species-objects in the domain species
of a mutation-equivalence, the mutation-equivalence induces a bijection between
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the collection of species-isomorphisms between the two given species-objects [of the
domain species] and the collection of species-isomorphisms between the two species-
objects [of the codomain species] obtained by applying the mutation-equivalence to
the two given species-objects.

(iv) Let �Γ be an oriented graph, i.e., a graph Γ, which we shall refer to as the

underlying graph of �Γ, equipped with the additional data of a total ordering, for
each edge e of Γ, on the set [of cardinality 2] of branches of e [cf., e.g., [AbsTopIII],

§0]. Then we define a mutation-history H = (�Γ,S∗,M∗) [indexed by �Γ] to be a
collection of data as follows:

(a) for each vertex v of �Γ, a species Sv;

(b) for each edge e of �Γ, running from a vertex v1 to a vertex v2, a mutation
Me : Sv1 � Sv2 .

In this situation, we shall refer to the vertices, edges, and branches of �Γ as vertices,
edges, and branches of H. Thus, the notion of a “mutation-history” may be thought
of as a species-theoretic version of the notion of a “diagram of categories” given in
[AbsTopIII], Definition 3.5, (i).

(v) Let H = (�Γ,S∗,M∗) be a mutation-history; S a species. For simplicity,

we assume that the underlying graph of �Γ is simply connected. Then we shall refer
to as a(n) [S-valued] covariant (respectively, contravariant) observable V of the
mutation-history H a collection of data as follows:

(a) for each vertex v of �Γ, a mutation Vv : Sv → S, which we shall refer to
as the observation mutation at v;

(b) for each edge e of �Γ, running from a vertex v1 to a vertex v2, a morphism
of mutations Ve : Vv1 → Vv2 ◦Me (respectively, Ve : Vv2 ◦Me → Vv1).

If V is a covariant observable such that all of the morphisms of mutations “Ve” are
isomorphisms of mutations, then we shall refer to the covariant observable V as a
core. Thus, one may think of a core C of a mutation-history as lying “under” the
entire mutation-history in a “uniform fashion”. Also, we shall refer to the “property
[of an observable] of being a core” as the “coricity” of the observable. Finally, we
note that the notions of an “observable” and a “core” given here may be thought
of as simplified, species-theoretic versions of the notions of “observable” and “core”
given in [AbsTopIII], Definition 3.5, (iii).

Remark 3.3.1.

(i) One well-known consequence of the axiom of foundation of axiomatic set-
theory is the assertion that “∈-loops”

a ∈ b ∈ c ∈ . . . ∈ a
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can never occur in the set theory in which one works. On the other hand, there
are many situations in mathematics in which one wishes to somehow “identify”
mathematical objects that arise at higher levels of the ∈-structure of the set theory
under consideration with mathematical objects that arise at lower levels of this
∈-structure. In some sense, the notions of a “set” and of a “bijection of sets” allow
one to achieve such “identifications”. That is to say, the mathematical objects at
both higher and lower levels of the ∈-structure constitute examples of the same
mathematical notion of a “set”, so that one may consider “bijections of sets” be-
tween those sets without violating the axiom of foundation. In some sense, the
notion of a species may be thought of as a natural extension of this observation.
That is to say,

the notion of a “species” allows one to consider, for instance, species-
isomorphisms between species-objects that occur at different levels of the
∈-structure of the set theory under consideration — i.e., roughly speaking,
to “simulate ∈-loops” — without violating the axiom of foundation.

Moreover, typically the species-objects at higher levels of the ∈-structure occur as
the result of executing the mutations that arise in some sort of mutation-history

. . . � S � S � S � . . . � S � . . .

— e.g., the “output species-objects” of the “S” on the right that arise from applying
various mutations to the “input species-objects” of the “S” on the left.

(ii) In the context of constructing “loops” in a mutation-history as in the final
display of (i), we observe that

the simpler the structure of the species involved, the easier it is to
construct “loops”.

It is for this reason that species such as the species determined by the notion of
a category [cf. Example 3.2] are easier to work with, from the point of view of
constructing “loops”, than more complicated species such as the species determined
by the notion of a scheme. This is one of the principal motivations for the “geometry
of categories” — of which “absolute anabelian geometry” is the special case that
arises when the categories involved are Galois categories — i.e., for the theory of
representing scheme-theoretic geometries via categories [cf., e.g., the Introductions
of [LgSch], [ArLgSch], [SemiAnbd], [Cusp], [FrdI]]. At a more concrete level, the
utility of working with categories to reconstruct objects that occurred at lower
levels of some sort of “series of constructions” [cf. the mutation-history of the final
display of (i)!] may be seen in the “reconstruction of the underlying scheme”, given
in [LgSch], Corollary 2.15, from a certain category constructed from a log scheme,
as well as in the theory of “slim exponentiation” discussed in the Appendix to [FrdI].

(iii) Again in the context of mutation-histories such as the one given in the
final display of (i), although one may, on certain occasions, wish to apply various
mutations that fundamentally alter the structure of the mathematical objects in-
volved and hence give rise to “output species-objects” of the “S” on the right that
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are related in a highly nontrivial fashion to the “input species-objects” of the “S”
on the left, it is also of interest to consider

“portions” of the various mathematical objects that occur that are left
unaltered by the various mutations that one applies.

This is precisely the reason for the introduction of the notion of a core of a mutation-
history. One important consequence of the construction of various cores associated
to a mutation-history is that often

one may apply various cores associated to a mutation-history to describe,
by means of non-coric observables, the portions of the various math-
ematical objects that occur which are altered by the various mutations
that one applies in terms of the unaltered portions, i.e., cores.

Indeed, this point of view plays a central role in the theory of the present series of
papers — cf. the discussion of Remark 3.6.1, (ii), below.

Remark 3.3.2. One somewhat naive point of view that constituted one of
the original motivations for the author in the development of theory of the present
series of papers is the following. In the classical theory of schemes, when considering
local systems on a scheme, there is no reason to restrict oneself to considering
local systems valued in, say, modules over a finite ring. If, moreover, there is no
reason to make such a restriction, then one is naturally led to consider, for instance,
local systems of schemes [cf., e.g., the theory of the “Galois mantle” in [pTeich]], or,
indeed, local systems of “entire set-theoretic mathematical theaters”. One
may then ask what happens if one tries to consider local systems on the schemes
that occur as fibers of a local system of schemes. [More concretely, if X is, for
instance, a connected scheme, then one may consider local systems X over X whose
fibers are isomorphic to X; then one may repeat this process, by considering such
local systems over each fiber of the local system X on X, etc.] In this way, one
is eventually led to the consideration of “systems of nested local systems” —
i.e., a local system over a local system over a local system, etc. It is precisely this
point of view that underlies the notion of “successive iteration of a given mutation-
history”, relative to the terminology formulated in the present §3. If, moreover, one
thinks of such “successive iterates of a given mutation-history” as being a sort of
abstraction of the naive idea of a “system of nested local systems”, then the notion
of a core may be thought of as a sort of mathematical object that is invariant with
respect to the application of the operations that gave rise to the “system of nested
local systems”.

Example 3.4. Topological Spaces and Fundamental Groups.

(i) One verifies easily that the notions of a topological space and a continuous
map between topological spaces determine an example of a speciesStop. In a similar

vein, the notions of a universal covering X̃ → X of a pathwise connected topological

space X and a continuous map between such universal coverings X̃ → X, Ỹ → Y

[i.e., a pair of compatible continuous maps X̃ → Ỹ , X → Y ], considered up to
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composition with a deck transformation of the universal covering Ỹ → Y , determine
an example of a species Su-top. We leave to the reader the routine task of writing
out the various set-theoretic formulas that define the species structures of Stop,
Su-top. Here, we note that at a set-theoretic level, the species-morphisms of Su-top

are collections of continuous maps [between two given universal coverings], any two
of which differ from one another by composition with a deck transformation.

(ii) One verifies easily that the notions of a group and an outer homomorphism
between groups [i.e., a homomorphism considered up to composition with an inner
automorphism of the codomain group] determine an example of a species Sgp. We
leave to the reader the routine task of writing out the various set-theoretic formulas
that define the species structure of Sgp. Here, we note that at a set-theoretic
level, the species-morphisms of Sgp are collections of homomorphisms [between
two given groups], any two of which differ from one another by composition with
an inner automorphism.

(iii) Now one verifies easily that the assignment

(X̃ → X) �→ Aut(X̃/X)

— where (X̃ → X) is a species-object of Su-top, and Aut(X̃/X) denotes the group

of deck transformations of the universal covering X̃ → X — determines a mutation
Su-top � Sgp. That is to say, the “fundamental group” may be thought of as a
sort of mutation.

Example 3.5. Absolute Anabelian Geometry.

(i) Let S be a class of connected normal schemes that is closed under isomor-
phism [of schemes]. Suppose that there exists a set ES of schemes describable by
a set-theoretic formula with the property that every scheme of S is isomorphic to
some scheme belonging to ES . Then just as in the case of universal coverings of
topological spaces discussed in Example 3.4, (i), one verifies easily, by applying
the set-theoretic formula describing ES , that the universal pro-finite étale cover-

ings X̃ → X of schemes X belonging to S and isomorphisms of such coverings
considered up to composition with a deck transformation give rise to a species SS .

(ii) Let G be a class of topological groups that is closed under isomorphism
[of topological groups]. Suppose that there exists a set EG of topological groups
describable by a set-theoretic formula with the property that every topological
group of G is isomorphic to some topological group belonging to EG . Then just as
in the case of abstract groups discussed in Example 3.4, (ii), one verifies easily, by
applying the set-theoretic formula describing EG , that topological groups belonging
to G and [bi-continuous] outer isomorphisms between such topological groups give
rise to a species SG .

(iii) Let S be as in (i). Then for an appropriate choice of G, by associating to a
universal pro-finite étale covering the resulting group of deck transformations, one
obtains a mutation

Π : SS � SG
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[cf. Example 3.4, (iii)]. Then one way to define the notion that the schemes
belonging to the class S are “[absolute] anabelian” is to require the specification
of a mutation

A : SG � SS

which forms a mutation-quasi-inverse to Π. Here, we note that the existence of the
bijections [i.e., “fully faithfulness”] discussed in Definition 3.3, (iii), is, in essence,
the condition that is usually taken as the definition of “anabelian”. By contrast,
the species-theoretic approach of the present discussion may be thought of as an
explicit mathematical formulation of the algorithmic approach to [absolute] an-
abelian geometry discussed in the Introduction to [AbsTopI].

(iv) The framework of [absolute] anabelian geometry [cf., e.g., the framework
discussed above] gives a good example of the importance of specifying precisely
what species one is working with in a given “series of constructions” [cf., e.g., the
mutation-history of the final display of Remark 3.3.1, (i)]. That is to say, there is
a quite substantial difference between working with a

profinite group in its sole capacity as a profinite group

and working with the same profinite group — which may happen to arise as the
étale fundamental group of some scheme! —

regarded as being equipped with various data that arise from the construc-
tion of the profinite group as the étale fundamental group of some scheme.

It is precisely this sort of issue that constituted one of the original motivations for
the author in the development of the theory of species presented here.

Example 3.6. The Étale Site and Frobenius.

(i) Let p be a prime number. If S is a reduced scheme over Fp, then denote by

S(p) the scheme with the same topological space as S, but whose structure sheaf is
given by the subsheaf

OS(p)
def
= (OS)

p ⊆ OS

of p-th powers of sections of S. Thus, the natural inclusion OS(p) ↪→ OS induces
a morphism ΦS : S → S(p). Moreover, “raising to the p-th power” determines a
natural isomorphism αS : S(p) ∼→ S such that the resulting composite αS ◦ ΦS :
S → S is the Frobenius morphism of S. Write

Sp-sch

for the species of reduced schemes over Fp and morphisms of schemes. Note that
by considering, for instance, [necessarily quasi-affine!] étale morphisms of finite
presentation T → S equipped with factorizations T |U ⊆ AN

U → U for each affine
open U ⊆ S [where AN

U denotes a “standard copy of affine N -space over U”, for
some integer N ≥ 1; the “⊆” exhibits T |U as a finitely presented subscheme of AN

U ],
one may construct an assignment

S �→ Sét
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that maps a species-object S of Sp-sch to the category Sét of such étale morphisms
of finite presentation T → S and S-morphisms — i.e., “the small étale site of S”
— in such a way that the assignment S �→ Sét is contravariantly functorial with
respect to species-morphisms S1 → S2 of Sp-sch, and, moreover, may be described
via set-theoretic formulas. Thus, such an assignment determines an “étale site
mutation”

Mét : Sp-sch � Scat

— where we write Scat for the species of categories and isomorphism classes of
contravariant functors [cf. Example 3.2]. Another natural assignment in the present
context is the assignment

S �→ Spf

which maps S to its perfection Spf, i.e., the scheme determined by taking the inverse
limit of the inverse system . . . → S → S → S obtained by considering iterates of
the Frobenius morphism of S. Thus, by considering the final copy of “S” in this
inverse system, one obtains a natural morphism βS : Spf → S. Finally, one obtains
a “perfection mutation”

Mpf : Sp-sch � Sp-sch

by considering the set-theoretic formulas underlying the assignment S �→ Spf.

(ii) Write

Fp-sch : Sp-sch � Sp-sch

for the “Frobenius mutation” obtained by considering the set-theoretic formulas
underlying the assignment S �→ S(p). Thus, one may formulate the well-known
“invariance of the étale site under Frobenius” [cf., e.g., [FK], Chapter I, Proposition
3.16] as the statement that the “étale site mutation” Mét exhibits Scat as a core
— i.e., an “invariant piece” — of the “Frobenius mutation-history”

. . . � Sp-sch � Sp-sch � Sp-sch � Sp-sch � . . .

determined by the “Frobenius mutation” Fp-sch. In this context, we observe that
the “perfection mutation” Mpf also yields a core — i.e., another “invari-
ant piece” — of the Frobenius mutation-history. On the other hand, the nat-
ural morphism ΦS : S → S(p) may be interpreted as a covariant observable
of this mutation-history whose observation mutations are the identity mutations
idSp-sch : Sp-sch � Sp-sch. Since ΦS is not, in general, an isomorphism, it follows
that this observable constitutes an example of an non-coric observable. Never-
theless, the natural morphism βS : Spf → S may be interpreted as a morphism
of mutations Mpf → idSp-sch that serves to relate the non-coric observable just
considered to the coric observable arising from Mpf.

(iii) One may also develop a version of (i), (ii) for log schemes; we leave the
routine details to the interested reader. Here, we pause to mention that the theory of
log schemes motivates the following “combinatorial monoid-theoretic” version
of the non-coric observable on the Frobenius mutation-history of (ii). Write

Smon
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for the species of torsion-free abelian monoids and morphisms of monoids. If M

is a species-object of Smon, then write M (p) def
= p ·M ⊆ M . Then the assignment

M �→ M (p) determines a “monoid-Frobenius mutation”

Fmon : Smon � Smon

and hence a “monoid-Frobenius mutation-history”

. . . � Smon � Smon � . . .

which is equipped with a non-coric contravariant observable determined by the
natural inclusion morphism M (p) ↪→ M and the observation mutations given by the
identity mutations idSmon : Smon � Smon. On the other hand, the p-perfection
Mpf of M , i.e., the inductive limit of the inductive system M ↪→ M ↪→ M ↪→ . . .
obtained by considering the inclusions given by multiplying by p, gives rise to a
“monoid-p-perfection mutation”

Fpf : Smon � Smon

which may be interpreted as a core of the monoid-Frobenius mutation-history.
Finally, the natural inclusion of monoids M ↪→ Mpf may be interpreted as a mor-
phism of mutations idSmon → Fpf that serves to relate the non-coric observable just
considered to the coric observable arising from Fpf.

Remark 3.6.1.

(i) The various constructions of Example 3.6 may be thought of as providing,
in the case of the phenomena of “invariance of the étale site under Frobenius” and
“invariance of the perfection under Frobenius”, a “species-theoretic intepretation”
— i.e., via consideration of

“coric” versus “non-coric” observables

— of the difference between “étale-type” and “Frobenius-type” structures [cf.
the discussion of [FrdI], §I4]. This sort of approach via “combinatorial patterns”
to expressing the difference between “étale-type” and “Frobenius-type” structures
plays a central role in the theory of the present series of papers. Indeed, the
mutation-histories and cores considered in Example 3.6, (ii), (iii), may be thought
of as the underlying motivating examples for the theory of both

· the vertical lines, i.e., consisting of log-links, and

· the horizontal lines, i.e., consisting of Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -links,

of the log-theta-lattice [cf. [IUTchIII], Definitions 1.4, 3.8]. Finally, we recall
that this approach to understanding the log-links may be seen in the introduction
of the terminology of “observables” and “cores” in [AbsTopIII], Definition 3.5, (iii).

(ii) Example 3.6 also provides a good example of the important theme [cf. the
discussion of Remark 3.3.1, (iii)] of
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describing non-coric data in terms of coric data

— cf. the morphism βS : Spf → S of Example 3.6, (ii); the natural inclusion
M ↪→ Mpf of Example 3.6, (iii). From the point of view of the vertical and hori-
zontal lines of the log-theta-lattice [cf. the discussion of (i)], this theme may also
be observed in the vertically coric log-shells that serve as a common receptacle for
the various arrows of the log-Kummer correspondences of [IUTchIII], Corollary
3.11, (ii), as well as in the multiradial representations of [IUTchIII], Corollary 3.11,
(i), which describe [certain aspects of] the arithmetic holomorphic structure
on one vertical line of the log-theta-lattice in terms that may be understood rela-
tive to an alien arithmetic holomorphic structure on another vertical line — i.e.,
separated from the first vertical line by horizontal arrows — of the log-theta-lattice
[cf. [IUTchIII], Remark 3.11.1; [IUTchIII], Remark 3.12.3, (ii)].

Remark 3.6.2.

(i) In the context of the theme of “coric descriptions of non-coric data” dis-
cussed in Remark 3.6.1, (ii), it is of interest to observe the significance of the use of
set-theoretic formulas [cf. the discussion of Remarks 3.1.2, 3.1.3, 3.1.4] to realize
such descriptions. That is to say, descriptions in terms of arbitrary choices that
depend on a particular model of set theory [cf. Remark 3.1.3] do not allow one to
calculate in terms that make sense in one universe the operations performed in an
alien universe! This is precisely the sort of situation that one encounters when one
considers the vertical and horizontal arrows of the log-theta-lattice [cf. (ii) below],
where distinct universes arise from the distinct scheme-theoretic basepoints on
either side of such an arrow that correspond to distinct ring theories, i.e., ring
theories that cannot be related to one another by means of a ring homomorphism
— cf. the discussion of Remark 3.6.3 below. Indeed,

it was precisely the need to understand this sort of situation that led the
author to develop the “inter-universal” version of Teichmüller theory
exposed in the present series of papers.

Finally, we observe that the algorithmic approach [i.e., as opposed to the “fully
faithfulness/Grothendieck Conjecture-style approach” — cf. Example 3.5, (iii)] to
reconstruction issues via set-theoretic formulas plays an essential role in this con-
text. That is to say, although different algorithms, or software, may yield the
same output data, it is only by working with specific algorithms that one may
understand the delicate inter-relations that exist between various components of
the structures that occur as one performs various operations [i.e., the mutations
of a mutation-history]. In the case of the theory developed in the present series
of papers, one central example of this phenomenon is the cyclotomic rigidity
isomorphisms that underlie the theory of Θ×μ

LGP-link compatibility discussed in
[IUTchIII], Corollary 3.11, (iii), (c), (d) [cf. also [IUTchIII], Remarks 2.2.1, 3.10.1].

(ii) The algorithmic approach to reconstruction that is taken throughout the
present series of papers, as well as, for instance, in [FrdI], [EtTh], and [AbsTopIII],
was conceived by the author in the spirit of the species-theoretic formulation ex-
posed in the present §3. Nevertheless, [cf. Remark 3.1.3, (i)] we shall not explicitly
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write out the various set-theoretic formulas involved in the various species, muta-
tions, etc. that are implicit throughout the theory of the present series of papers.
Rather, it is to be understood that the set-theoretic formulas to be used are those
arising from the conventional descriptions that are given of the mathematical ob-
jects involved. When applying such conventional descriptions, however, the reader
is obliged to check that they are well-defined and do not depend upon the use of
arbitrary choices that are not describable via well-defined set-theoretic formulas.

(iii) The sharp contrast between

· the canonicality imparted by descriptions via set-theoretic formulas in
the context of extensions of the universe in which one works

[cf. Remarks 3.1.3, 3.1.4] and

· the situation that arises if one allows, in one’s descriptions, the various
arbitrary choices arising from invocations of the axiom of choice

may be understood somewhat explicitly if one attempts to “catalogue the various
possibilites” corresponding to various possible choices that may occur in one’s de-
scription. That is to say, such a “cataloguing operation” typically obligates one
to work with “sets of very large cardinality”, many of which must be constructed
by means of set-theoretic exponentiation [i.e., such as the operation of passing
from a set E to the set “2E” of all subsets of E]. Such a rapid outbreak of “unwieldy
large sets” is reminiscent of the rapid growth, in the p-adic crystalline theory, of the
p-adic valuations of the denominators that occur when one formally integrates an
arbitrary connection, as opposed to a “canonical connection” of the sort that
arises from a crystalline representation. In the p-adic theory, such “canonical con-
nections” are typically related to “canonical liftings”, such as, for instance, those
that occur in p-adic Teichmüller theory [cf. [pOrd], [pTeich]]. In this context,
it is of interest to recall that the canonical liftings of p-adic Teichmüller theory
may, under certain conditions, be thought of as liftings “of minimal complexity” in
the sense that their Witt vector coordinates are given by polynomials of minimal
degree — cf. the computations of [Finot].

Remark 3.6.3.

(i) In the context of Remark 3.6.2, it is useful to recall the fundamental reason
for the need to pursue “inter-universality” in the present series of papers [cf. the
discussion of [IUTchIII], Remark 1.2.4; [IUTchIII], Remark 1.4.2], namely,

since étale fundamental groups — i.e., in essence, Galois groups — are
defined as certain automorphism groups of fields/rings, the definition of
such a Galois group as a certain automorphism group of some ring struc-
ture is fundamentally incompatible with the vertical and horizontal
arrows of the log-theta-lattice [i.e., which do not arise from ring homo-
morphisms]!

In this respect, “transformations” such as the vertical and horizontal arrows of
the log-theta-lattice differ, quite fundamentally, from “transformations” that are
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compatible with the ring structures on the domain and codomain, i.e., morphisms
of rings/schemes, which tautologically give rise to functorial morphisms
between the respective étale fundamental groups. Put another way, in the notation
of [IUTchI], Definition 3.1, (e), (f), for, say, v ∈ V

non,

the only natural correspondence that may be described by means of set-
theoretic formulas between the isomorphs of the local base field Ga-
lois groups “Gv” on either side of a vertical or horizontal arrow of the
log-theta-lattice is the correspondence constituted by an indeterminate
isomorphism of topological groups.

A similar statement may be made concerning the isomorphs of the geometric funda-

mental group Δv
def
= Ker(Πv � Gv) on either side of a vertical [but not horizontal!

— cf. the discussion of (ii) below] arrow of the log-theta-lattice — that is to say,

the only natural correspondence that may described by means of set-
theoretic formulas between these isomorphs is the correspondence con-
stituted by an indeterminate isomorphism of topological groups
equipped with some outer action by the respective isomorph of “Gv”

— cf. the discussion of [IUTchIII], Remark 1.2.4. Here, again we recall from the
discussion of Remark 3.6.2, (i), (ii), that it is only by working with such corre-
spondences that may be described by means of set-theoretic formulas that one may
obtain descriptions that allow one to calculate the operations performed in one
universe from the point of view of an alien universe.

(ii) One fundamental difference between the vertical and horizontal arrows of

the log-theta-lattice is that whereas, for, say, v ∈ V
bad,

(V1) one identifies, up to isomorphism, the isomorphs of the full arithmetic
fundamental group “Πv” on either side of a vertical arrow,

(H1) one distinguishes the “Δv’s” on either side of a horizontal arrow, i.e.,
one only identifies, up to isomorphism, the local base field Galois groups
“Gv” on either side of a horizontal arrow.

— cf. the discussion of [IUTchIII], Remark 1.4.2. One way to understand the
fundamental reason for this difference is as follows.

(V2) In order to construct the log-link — i.e., at a more concrete level, the
power series that defines the pv-adic logarithm at v — it is necessary
to avail oneself of the local ring structures at v [cf. the discussion of
[IUTchIII], Definition 1.1, (i), (ii)], which may only be reconstructed from
the full “Πv” [i.e., not from “Gv stripped of its structure as a quotient
of Πv” — cf. the discussion of [IUTchIII], Remark 1.4.1, (i); [IUTchIII],
Remark 2.1.1, (ii); [AbsTopIII], §I3].

(H2) In order to construct the Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -links — i.e., at a more

concrete level, the correspondence

q �→
{
qj

2
}
j=1,... ,l�
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[cf. [IUTchII], Remark 4.11.1] — it is necessary, in effect, to construct
an “isomorphism” between a mathematical object [i.e., the theta values

“qj
2

”] that depends, in an essential way, on regarding the various “j” as

distinct labels [which are constructed from “Δv”!] and a mathematical
object [i.e., “q”] that is independent of these labels; it is then a tautol-

ogy that such an “isomorphism” may only be achieved if the labels — i.e.,
in essence, “Δv” — on either side of the “isomorphism” are kept distinct
from one another.

Here, we observe in passing that the “apparently horizontal arrow-related” issue dis-
cussed in (H2) of simultaneous realization of “label-dependent” and “label-
free” mathematical objects is reminiscent of the vertical arrow portion of the bi-
coricity theory of [IUTchIII], Theorem 1.5 — cf. the discussion of [IUTchIII],
Remark 1.5.1, (i), (ii); Step (vii) of the proof of [IUTchIII], Corollary 3.12.
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