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ABSTRACT. Let X be a subset of the set of prime numbers which
is either equal to the entire set of prime numbers or of cardinal-
ity one. In the present paper, we continue our study of the pro-X
fundamental groups of hyperbolic curves and their associated con-
figuration spaces over algebraically closed fields in which the primes
of ¥ are invertible. The starting point of the theory of the present
paper is a combinatorial anabelian result which, unlike results ob-
tained in previous papers, allows one to eliminate the hypothesis
that cuspidal inertia subgroups are preserved by the isomorphism in
question. This result allows us to [partially] generalize combina-
torial cuspidalization results obtained in previous papers to the
case of outer automorphisms of pro-3 fundamental groups of config-
uration spaces that do not necessarily preserve the cuspidal inertia
subgroups of the various one-dimensional subquotients of such a fun-
damental group. Such partial combinatorial cuspidalization results
allow one in effect to reduce issues concerning the anabelian geom-
etry of configuration spaces to issues concerning the anabelian
geometry of hyperbolic curves. These results also allow us, in the
case of configuration spaces of sufficiently large dimension, to give
purely group-theoretic characterizations of the cuspidal iner-
tia subgroups of the various one-dimensional subquotients of the
pro-X fundamental group of a configuration space. We then turn to
the study of tripod synchronization, i.e., roughly speaking, the
phenomenon that an outer automorphism of the pro-¥ fundamental
group of a log configuration space associated to a log stable curve
typically induces the same outer automorphism on the various sub-
quotients of such a fundamental group determined by tripods [i.e.,
copies of the projective line minus three points]. Our study of tripod
synchronization allows us to show that outer automorphisms of pro-X
fundamental groups of configuration spaces exhibit somewhat differ-
ent behavior from the behavior that may be observed in the case of
discrete fundamental groups, as a consequence of the classical Dehn-
Nielsen-Baer theorem. Other applications of the theory of tripod
synchronization include a result concerning commuting profinite
Dehn multi-twists that, a priori, arise from distinct semi-graph of
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anabelioids of pro-¥. PSC-type structures [i.e., the profinite analogue
of the notion of a decomposition of a hyperbolic topological surface into
hyperbolic subsurfaces, such as “pants”], as well as the computation,
in terms of a certain scheme-theoretic fundamental group, of the
purely combinatorial/group-theoretic commensurator of the group of
profinite Dehn multi-twists. Finally, we show that the condition
that an outer automorphism of the pro-3 fundamental group of a log
stable curve [lift to an outer automorphism of the pro-X fundamental
group of the corresponding n-th log configuration space, where n > 2
is an integer, is compatible, in a suitable sense, with localization
on the dual graph of the log stable curve. This localizability prop-
erty, together with the theory of tripod synchronization, is applied to
construct a purely combinatorial analogue of the natural outer
surjection from the étale fundamental group of the moduli stack of
hyperbolic curves over QQ to the absolute Galois group of Q.
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INTRODUCTION

Let ¥ C Primes be a subset of the set of prime numbers Primes
which is either equal to Primes or of cardinality one. In the present
paper, we continue our study of the pro-X fundamental groups of hyper-
bolic curves and their associated configuration spaces over algebraically
closed fields in which the primes of 3 are invertible [cf. [MzTa], [CmbCsp],
[NodNon], [CbTpI]]. One central theme of this study is the issue of n-
cuspidalizability [cf. Definition 3.20], i.e., the issue of the extent to
which a given isomorphism between the pro-Y fundamental groups of
a pair of hyperbolic curves lifts [necessarily uniquely, up to a permuta-
tion of factors — cf. [NodNon], Theorem B] to an isomorphism between
the pro-X fundamental groups of the corresponding n-th configuration
spaces, for n > 1 a positive integer. In this context, we recall that both
the algebraic and the anabelian geometry of such configuration spaces
revolves around the behavior of the various diagonals that are removed
from direct products of copies of the given curve in order to construct
these configuration spaces. From this point of view, it is perhaps nat-
ural to think of the issue of n-cuspidalizability as a sort of abstract
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profinite analogue of the notion of n-differentiability in the theory
of differential manifolds. In particular, it is perhaps natural to think
of the theory of the present paper [as well as of [MzTal], [CmbCsp],
[NodNon], [CbTpl]] as a sort of abstract profinite analogue of the
classical theory constituted by the differential topology of surfaces.

Next, we recall that, to a substantial extent, the theory of combi-
natorial cuspidalization developed in [CmbCsp] may be thought of
as an essentially formal consequence of the combinatorial anabelian
result obtained in [CmbGC], Corollary 2.7, (iii). In a similar vein,
the generalization of this theory of [CmbCsp] that is summarized in
[NodNon], Theorem B, may be regarded as an essentially formal con-
sequence of the combinatorial anabelian result given in [NodNon], The-
orem A. The development of the theory of the present paper follows
this pattern to a substantial extent. That is to say, in §1, we begin the
development of the theory of the present paper by proving a fundamen-
tal combinatorial anabelian result [cf. Theorem 1.9], which generalizes
the combinatorial anabelian results given in [CmbGC], Corollary 2.7,
(iii); [NodNon|, Theorem A. A substantial portion of the main results
obtained in the remainder of the present paper may be understood as
consisting of various applications of Theorem 1.9.

By comparison to the combinatorial anabelian results of [CmbGC],
Corollary 2.7, (iii); [NodNon]|, Theorem A, the main technical feature of
the combinatorial anabelian result given in Theorem 1.9 of the present
paper is that it allows one, to a substantial extent, to

eliminate the group-theoretic cuspidality hypothesis

— i.e., the assumption to the effect that the isomorphism between pro-
Y} fundamental groups of log stable curves under consideration neces-
sarily preserves cuspidal inertia subgroups — that plays a central role
in the proofs of earlier combinatorial anabelian results. In §2, we apply
Theorem 1.9 to obtain the following [partial] combinatorial cusp-
idalization result [cf. Theorem 2.3, (i), (ii); Corollary 3.22], which
[partially| generalizes [NodNon|, Theorem B.

Theorem A (Partial combinatorial cuspidalization for F-ad-
missible outomorphisms). Let (g,r) be a pair of nonnegative inte-
gers such that 2g — 2 +r > 0; n a positive integer; ¥ a set of prime
numbers which is either equal to the set of all prime numbers or of car-
dinality one; X a hyperbolic curve of type (g,7) over an algebraically
closed field of characteristic ¢ ¥; X,, the n-th configuration space
of X, 1I,, the maximal pro-X quotient of the fundamental group of X,,;

Out"(11,,) € Out(II,,)
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the subgroup of F-admissible outomorphisms [i.e., roughly speaking,
outomorphisms that preserve the fiber subgroups — cf. [CmbCsp], Def-
inition 1.1, (ii)] of 11,,;

Out"“(I1,,) € Out"(II,,)

the subgroup of FC-admissible outomorphisms [i.e., roughly speaking,
outomorphisms that preserve the fiber subgroups and the cuspidal iner-
tia subgroups — cf. [CmbCspl, Definition 1.1, (ii)] of I1,,. Then the
following hold:

(i) Write

et |1 ifr # 0, Cdet |3 if r£0,
=2 fr=0, ™iT {4 ifr=0.

If n > nin; (respectively, n > ny), then the natural homomor-
phism

Out"(IT,4 1) — Out"(II,,)

induced by the projections X,+1 — X,, obtained by forgetting
any one of the n+1 factors of X,,.1 [cf. [CbTpl], Theorem A,
(i)] is injective (respectively, bijective).

(i) Write

(2 i) =03,
nee = 3 if (g.7) #(0,3) and r # 0,
4 ifr=0.

If n > npg, then it holds that
Out™(11,,) = Out™(I1,,) .

(iii) Suppose that (g,7) & {(0,3);(1,1)}. Then the natural injec-
tion /cf. [NodNon|, Theorem B]

OutFC (Hg) — OutFC(Hl)

induced by the projections Xo — X, obtained by forgetting ei-
ther of the two factors of X5 is not surjective.

Here, we remark that the non-surjectivity discussed in Theorem A,
(i), is, in fact, obtained as a consequence of the theory of tripod syn-
chronization developed in §3 [cf. the discussion preceding Theorem C
below|. This non-surjectivity is remarkable in that it yields an impor-
tant example of substantially different behavior in the theory of profi-
nite fundamental groups of hyperbolic curves from the corresponding
theory in the discrete case. That is to say, in the case of the classi-
cal discrete fundamental group of a hyperbolic topological surface, the
surjectivity of the corresponding homomorphism may be derived as
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an essentially formal consequence of the well-known Dehn-Nielsen-
Baer theorem in the theory of topological surfaces [cf. the discussion
of Remark 3.22.1, (i)]. In particular, it constitutes an important “coun-
terezample” to the “principle” [which appears to play a central role in
the discussion of [Lch]] that one should expect essentially analogous
behavior in the theory of profinite fundamental groups of hyperbolic
curves to the relatively well understood behavior observed classically
in the theory of discrete fundamental groups of topological surfaces [cf.
the discussion of Remark 3.22.1, (iii)].

Theorem A leads naturally to the following strengthening of the
result obtained in [CbTpl], Theorem A, (ii), concerning the group-
theoreticity of the cuspidal inertia subgroups of the various one-
dimensional subquotients of a configuration space group [cf. Corol-
lary 2.4].

Theorem B (PFC-admissibility of outomorphisms). In the no-
tation of Theorem A, write
Out™(II,,) € Out(IL,,)

for the subgroup of PF-admissible outomorphisms [i.e., roughly speak-
ing, outomorphisms that preserve the fiber subgroups up to a possible
permutation of the factors — cf. [CbTpl|, Definition 1.4, (i)] and

Out™(I1,,) € Out™ (I1,)

for the subgroup of PFC-admissible outomorphisms [i.e., roughly speak-
ing, outomorphisms that preserve the fiber subgroups and the cuspi-
dal inertia subgroups up to a possible permutation of the factors —
cf. [CbTpl], Definition 1.4, (iii)]. Let us regard the symmetric group
on n letters &, as a subgroup of Out(Il,) via the natural inclusion
S, — Out(1l,,) obtained by permuting the various factors of X,,. Fi-
nally, suppose that (g,7) € {(0,3); (1,1)}. Then the following hold:

(i) We have an equality
Out(I,) = Out™™(11,,) .
If, moreover, (r,n) # (0,2), then we have equalities

Out(II,) = Out™ (I1,,) = Out*(IL,,) x &,,.

(ii) If either
or

then we have equalities

Out(TT,,) = Out™*(I1,,) = Out™(I1,) x &,,.
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The partial combinatorial cuspidalization of Theorem A has natural
applications to the relative and [semi-]absolute anabelian geom-
etry of configuration spaces [cf. Corollaries 2.5, 2.6], which gen-
eralize the theory of [AbsTpl], §1. Roughly speaking, these results
allow one, in a wide variety of cases, to reduce issues concerning the
relative and [semi-]absolute anabelian geometry of configuration spaces
to the corresponding issues concerning the relative and [semi-]absolute
anabelian geometry of hyperbolic curves. Also, we remark that in this
context, we obtain a purely scheme-theoretic result [cf. Lemma 2.7] that
states, roughly speaking, that the theory of isomorphisms [of schemes!]
between configuration spaces associated to hyperbolic curves may be
reduced to the theory of isomorphisms [of schemes!] between hyper-
bolic curves.

In §3, we take up the study of [the group-theoretic versions of]| the
various tripods [i.e., copies of the projective line minus three points]
that occur in the various one-dimensional fibers of the log configuration
spaces associated to a log stable curve. Roughly speaking, these tripods
either occur in the original log stable curve or arise as the result of
blowing up various cusps or nodes that occur in the one-dimensional
fibers of log configuration spaces of lower dimension [cf. Figure 1 at the
end of the present Introduction]. In fact, a substantial portion of §3 is
devoted precisely to the theory of classification of the various tripods
that occur in the one-dimensional fibers of the log configuration spaces
associated to a log stable curve [cf. Lemmas 3.6, 3.8]. This leads natu-
rally to the study of the phenomenon of tripod synchronization, i.e.,
roughly speaking, the phenomenon that an outomorphism [that is to
say, an outer automorphism] of the pro-¥X fundamental group of a log
configuration space associated to a log stable curve typically induces
the same outer automorphism on the various [group-theoretic| tripods
that occur in subquotients of such a fundamental group [cf. Theorems
3.16, 3.17, 3.18]. The phenomenon of tripod synchronization, in turn,
leads naturally to the definition of the tripod homomorphism |[cf.
Definition 3.19], which may be thought of as the homomorphism ob-
tained by associating to an [FC-admissible] outer automorphism of the
pro-X fundamental group of the n-th log configuration space associ-
ated to a log stable curve, where n > 3 is a positive integer, the outer
automorphism induced on the [group-theoretic] central tripod, i.e.,
roughly speaking, the tripod that arises, in the case where n = 3 and
the given log stable curve has no nodes, by blowing up the intersection
of the three diagonal divisors of the direct product of three copies of
the curve.

Theorem C (Synchronization of tripods in three or more di-
mensions). Let (g,7) be a pair of nonnegative integers such that 2g —
2+ 1r > 0; n a positive integer; > a set of prime numbers which is
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either equal to the set of all prime numbers or of cardinality one; k
an algebraically closed field of characteristic € 3; (Speck)'°® the log
scheme obtained by equipping Spec k with the log structure determined
by the fs chart N — k that maps 1 — 0; X8 = X}Og a stable log
curve of type (g,7) over (Speck)°®. Write G for the semi-graph of
anabelioids of pro-X PSC-type determined by the stable log curve X'°8.
For each positive integer i, write X\°® for the i-th log configuration
space of the stable log curve X'°¢ [cf. the discussion entitled “Curves”
in [CbTpl], §0/; TI; for the mazimal pro-X quotient of the kernel of
the natural surjection i (X,°%) — m((Speck)°8). Let T C 1L, be a
{1,--- ,m}-tripod of II,, [cf. Definition 3.3, (i)] for m a positive
integer < n. Suppose that n > 3. Write

Htpd C H3

for the central {1,2,3}-tripod of I1,, [cf. Definitions 3.5, (i); 3.7,
(i1)]. Then the following hold:

(i) The commensurator and centralizer of T' in I1,, satisfy the
equality

Cnm (T) =T x an (T) .

Thus, if an outomorphism « of 11,,, preserves the 11,,-conjugacy
class of T C 11,,, then one obtains a ‘restriction” a|r €
Out(T).

(ii) Let a € Out™(I1,) be an FC-admissible outomorphism of I1,,.
Then the outomorphism of 113 induced by o preserves the 13-
conjugacy class of I C Il3. In particular, by (i), we obtain
a natural homomorphism

Trrepa : Out™©(I1,,) — Out (1Y)

We shall refer to this homomorphism as the tripod homo-
morphism associated to 11,,.

(iii) Let o € Out"™ (I1,,) be an FC-admissible outomorphism of T1,,
such that the outomorphism «,, of I1,, induced by o preserves
the 11,,-conjugacy class of T C 11, and induces [cf. (i)] the
identity automorphism of the set of T-conjugacy classes of
cuspidal inertia subgroups of T'. Then there exists a geometric
[ef. Definition 3.4, (ii)] outer isomorphism TI"PY = T with
respect to which the outomorphism Tywa(a) € Out(II4) [cf.
(11)] is compatible with the outomorphism .|t € Out(T)

[ef. (1)].

(iv) Suppose, moreover, that either n > 4 or r # 0. Then the
homomorphism Tywa of (i) factors through Out®(ITP4)A+ C
Out(I1*9) [cf. Definition 3.4, (i)], and, moreover, the resulting
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homomorphism
Trea - Out” (I1,) = Out™(I1,,) — Out®(II™4)2+
[cf. Theorem A, (ii)] is surjective.

Here, we remark that the surjectivity of the tripod homomorphism
[cf. Theorem C, (iv)] is obtained [cf. Corollary 4.15] as a consequence
of the theory of glueability of combinatorial cuspidalizations developed
in §4 [cf. the discussion preceding Theorem F below|. Also, we recall
that the codomain of this surjective tripod homomorphism

Outc (Htpd)A-‘r

may be identified with the [pro-X] Grothendieck-Teichmiiller group
GT* [cf. the discussion of [CmbCsp], Remark 1.11.1]. Since GT* may
be thought of as a sort of abstract combinatorial approximation
of the absolute Galois group Gg of the rational number field Q, it is
thus natural to think of the surjective tripod homomorphism

Out" (I1,,) — Out®(IIP4)A+

of Theorem C as a sort of abstract combinatorial version of the
natural surjective outer homomorphism

m1(Mg,r)a) = Go

induced on étale fundamental groups by the structure morphism (M, 1)o
— Spec (Q) of the moduli stack (M ,)g of hyperbolic curves of type
(g,7) [cf. the discussion of Remark 3.19.1]. In particular, the kernel of
the tripod homomorphism — which we denote by

Out" (IL,, )&

— may be thought of as a sort of abstract combinatorial analogue of
the geometric étale fundamental group of (Mg )q [i-e., the kernel of
the natural outer homomorphism m; (M, )o) = Gaol-

One interesting application of the theory of tripod synchronization
is the following. Fix a pro-Y fundamental group of a hyperbolic curve.
Recall the notion of a nondegenerate profinite Dehn multi-twist
[cf. [CbTpl], Definition 5.8, (ii)] associated to a structure of semi-graph
of anabelioids of pro-X PSC-type on such a fundamental group. Here,
we recall that such a structure may be thought of as a sort of profinite
analogue of the notion of a decomposition of a hyperbolic topological
surface into hyperbolic subsurfaces [i.e., such as “pants”’]. Then the
following result asserts that, under certain technical conditions, any
such nondegenerate profinite Dehn multi-twist that commutes with
another nondegenerate profinite Dehn multi-twist associated to some
given totally degenerate semi-graph of anabelioids of pro-3 PSC-
type [cf. [CbTpl], Definition 2.3, (iv)] necessarily arises from a struc-
ture of semi-graph of anabelioids of pro-3 PSC-type that is “co-Dehn”
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to, i.e., arises by applying a deformation to, the given totally degener-
ate semi-graph of anabelioids of pro-3 PSC-type [cf. Corollary 3.25].
This sort of result is reminiscent of topological results concerning sub-
groups of the mapping class group generated by pairs of positive Dehn
multi-twists [cf. [Ishi], [HT]].

Theorem D (Co-Dehn-ness of degeneration structures in the
totally degenerate case). In the notation of Theorem C, for i =
1, 2, let Y/°% be a stable log curve over (Speck)°®; H; the “G” that
occurs in the case where we take “X'87 to be Y}5: (H;, Si, ¢) a 3-
cuspidalizable degeneration structure on G [cf. Definition 3.23,
(i), (v)]; a; € Out(Ilg) a nondegenerate (H;, S;, ¢;)-Dehn multi-twist
of G [cf. Definition 3.23, (iv)]. Suppose that o; commutes with as,
and that Hy is totally degenerate [cf. [CbTpl], Definition 2.3, (iv)].
Suppose, moreover, that one of the following conditions is satisfied:

(i) » # 0.
(ii) a; and oy are positive definite [cf. Definition 3.23, (iv)].

Then (Hi,S1,¢1) is co-Dehn to (Hz, Se,¢2) [cf. Definition 3.23,
(i11)], or, equivalently [since Hy is totally degenerate/, (Hsa, Sa, ¢2) <
(H1, S1, ¢1) [cf. Definition 3.23, (ii)].

Another interesting application of the theory of tripod synchroniza-
tion is to the computation, in terms of a certain scheme-theoretic
fundamental group, of the purely combinatorial commensurator of
the subgroup of profinite Dehn multi-twists in the group of 3-cuspidali-
zable, FC-admissible, “geometric” outer automorphisms of the pro-
Y. fundamental group of a totally degenerate log stable curve [cf.
Corollary 3.27]. Here, we remark that the scheme-theoretic [or, per-
haps more precisely, “log algebraic stack-theoretic”] fundamental group
that appears is, roughly speaking, the pro-¥ geometric fundamental
group of a formal neighborhood, in the corresponding logarithmic mod-
uli stack, of the point determined by the given totally degenerate log
stable curve. In particular, this computation may also be regarded
as a sort of purely combinatorial algorithm for constructing this
scheme-theoretic fundamental group [cf. Remark 3.27.1].

Theorem E (Commensurator of profinite Dehn multi-twists
in the totally degenerate case). In the notation of Theorem C [so
n > 3/, suppose further that if r = 0, then n > 4. Also, we as-
sume that G is totally degenerate [cf. [CbTpl], Definition 2.3, (iv)].
Write s: Speck — (Mg )k = (Mg ir)speck [cf- the discussion entitled
“Curves” in §0] for the underlying (1-)morphism of algebraic stacks of

the classifying (1-)morphism (Spec k)¢ — (./\/llg[ﬁ])k o (M;ﬁ])speck
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[cf. the discussion entitled “Curves” in §0] of the stable log curve
X% over (Speck)'e; N for the log scheme obtained by equipping

X@ o Spec k with the log structure induced, via s, by the log structure of

(M;O,f;r])k; N¢ for the log stack obtained by forming the [stack-theoretic]

quotient of the log scheme N°8 by the natural action of the finite [k-
Jgroup “s X (Mg ) s”, i.e., the fiber product over (Mg ), of two copies
of s; Ny for the underlying stack of the log stack N¥°8; I, C m(N!°®)
for the closed subgroup of the log fundamental group 7 (N°8) of Nl°e
given by the kernel of the natural surjection m (N8) — m(Ny) [in-
duced by the (1-)morphism N8 — N, obtained by forgetting the log
structure/; ﬂz) (N1°8) for the quotient of w1 (N°%) by the kernel of the
natural surjection from I, to its maximal pro-X quotient ]Efs. Then
we have an equality

NOutF(Hn)geo (Dehn(G)) = OOutF(Hn)ge°<Dehn(g>)
and a natural commutative diagram of profinite groups

1 — I — ) (Nles) — mM) —— 1

l l !

1 —— Dehn(G) —— Coyr, e (Dehn(G)) —— Aut(G) —— 1

[ef. Definition 3.1, (ii), concerning the notation “G”] — where the
horizontal sequences are exact, and the vertical arrows are isomor-
phisms. Moreover, Dehn(G) is open in Cp ey, jeeo (Dehn(G)).

In 84, we show, under suitable technical conditions, that an auto-
morphism of the pro-¥X fundamental group of the log configuration
space associated to a log stable curve necessarily preserves the graph-
theoretic structure of the various one-dimensional fibers of such a
log configuration space [cf. Theorem 4.7]. This allows us to verify the
glueability of combinatorial cuspidalizations, i.e., roughly speak-
ing, that, for n > 2 a positive integer, the datum of an n-cuspidalizable
outer automorphism of the pro-¥ fundamental group of a log stable
curve is equivalent, up to possible composition with a profinite Dehn
multi-twist, to the datum of a collection of n-cuspidalizable automor-
phisms of the pro-¥ fundamental groups of the various irreducible com-
ponents of the given log stable curve that satisfy a certain gluing condi-
tion involving the induced outer actions on tripods [cf. Theorem 4.14].

Theorem F (Glueability of combinatorial cuspidalizations). In
the notation of Theorem C, write

OutFC(Hn)brCh g OutFC(Hn)

for the closed subgroup of OutFC(Hn) consisting of FC-admissible out-
omorphisms « of I1,, such that the outomorphism of 11 determined by
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« induces the identity automorphism of Vert(G), Node(G), and, more-
over, fizes each of the branches of every node of G [cf. Definition 4.6,
(i)];

Glu(IL,) € [ Out™((IL,).)

vEVert(G)

for the closed subgroup of T, cver(g) Out™((I1,),) consisting of “glue-
able” collections of outomorphisms of the groups “(I,),” [cf. Defini-
tion 4.9, (iii)]. Then we have a natural exact sequence of profinite
groups

1 — Dehn(G) — Out™(11,,)>" — Glu(II,) — 1.

This glueability result may, alternatively, be thought of as a re-
sult that asserts the localizability [i.e., relative to localization on
the dual graph of the given log stable curve] of the notion of -
cuspidalizability. In this context, it is of interest to observe that this
glueability result may be regarded as a natural generalization, to the
case of n-cuspidalizability for n > 2, of the glueability result obtained
in [CbTpl], Theorem B, (iii), in the “l-cuspidalizable” case, which is
derived as a consequence of the theory of localizability [i.e., relative
to localization on the dual graph of the given log stable curve] and
synchronization of cyclotomes developed in [CbTpl], §3, §4. From
this point of view, it is also of interest to observe that the sufficiency
portion of [the equivalence that constitutes] this glueability result [i.e.,
Theorem F] may be thought of as a sort of “converse” to the theory
of tripod synchronizations developed in §3 [i.e., of which the necessity
portion of this glueability result is, in essence, a formal consequence.
Indeed, the bulk of the proof given in §4 of Theorem 4.14 is devoted
to the sufficiency portion of this result, which is verified by means of a
detailed combinatorial analysis [cf. the proof of [CbTpl], Proposition
4.10, (ii)] of the noncyclically primitive and cyclically primitive
cases [cf. Lemmas 4.12, 4.13; Figures 2, 3, 4].

Finally, we apply this glueability result to derive a cuspidalization
theorem — i.e., in the spirit of and generalizing the corresponding
results of [AbsCsp|, Theorem 3.1; [Hsh], Theorem 0.1; [Wkb], Theorem
C [cf. Remark 4.16.1] — for geometrically pro-l fundamental groups of
log stable curves over finite fields [cf. Corollary 4.16]. That is to say,
in the case of log stable curves over finite fields,

the condition of compatibility with the Galois action
is sufficient to imply the n-cuspidalizability of arbi-
trary isomorphisms between the geometric pro-I fun-
damental groups, for n > 1.
In this context, it is of interest to recall that strong anabelian results

[i.e., in the style of the “Grothendieck Conjecture”] for such geomet-
rically pro-l fundamental groups of log stable curves over finite fields



12 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

are not known in general, at the time of writing. On the other hand,
we observe that in the case of totally degenerate log stable curves
over finite fields, such “strong anabelian results” may be obtained un-
der certain technical conditions [cf. Corollary 4.17; Remarks 4.17.1,
4.17.2].

0. NOTATIONS AND CONVENTIONS

Groups: We shall refer to an element of a group as trivial (respectively,
nontrivial) if it is (respectively, is not) equal to the identity element of
the group. We shall refer to a nonempty subset of a group as trivial
(respectively, nontrivial) if it is (respectively, is not) equal to the set
whose unique element is the identity element of the group.

Topological groups: Let G be a topological group and J, H C G
closed subgroups. Then we shall write

Zy(H) Y Zo(HYNJ ={j € J|jh=hjforany h € H}

for the centralizer of H in J and

Z¥(H) € lim Z,(U) C J
— where the inductive limit is over all open subgroups U C H of H —

for the “local centralizer” of H in J. We shall write Z°°(G) & Zlee(G)
for the “local center” of G. Thus, a profinite group G is slim [cf. the
discussion entitled “Topological groups” in [CbTpl|, §0] if and only if

Z°(G) = {1}.

Curves: Let (g,7) be a pair of nonnegative integers such that 2g —
24 1r > 0. Then we shall write Mm for the moduli stack of pointed
stable curves of type (g,r), where the marked points are regarded as
unordered, over Z; Mg ;) C /\/lg i for the open substack of ./\/l r) that
parametrizes smooth curves, i.e., hyperbolic curves; ./\/l ;] for the log
stack obtained by equipping /\/l g¢,[r] With the log structure associated
to the divisor with normal crossings My \ My € My s Cop) —
M ] for the tautological stable curve over Mg [r]; 'Dg i S C Cg i for
the corresponding tautological divisor of cusps of Cg " — /\/l - Then
the divisor given by the union of Dg (] With the inverse image in C 1]
of the d1v1sor /\/lg m \ Mg C Mg ] determines a log structure on

C, (r]; Write cee  for the resultlng log stack. In particular, we obtain a

] — M We shall write Cy 1 C Cy )

for the interior of C. > g Lt the discussion entitled “Log schemes” in
[CbTpl], §0]. Thus, we obtain a (1-)morphism of stacks Cy ;] — Mg .
If S is a scheme, then we shall denote by means of a subscript S the
result of base-changing via the structure morphism S — SpecZ the
various log stacks of the above discussion.

g,[r

(1-)morphism of log stacks C M

Jr g,[r]"
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Figure 1 : tripods in the various fibers of a configuration space
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1. COMBINATORIAL ANABELIAN GEOMETRY IN THE ABSENCE OF
GROUP-THEORETIC CUSPIDALITY

In the present §1, we discuss various combinatorial versions of the
Grothendieck Conjecture for outer representations of NN- and IPSC-
type [cf. Theorem 1.9 below]. These Grothendieck Conjecture-type
results may be regarded as generalizations of [NodNon]|, Corollary 4.2;
[NodNon|, Remark 4.2.1, that may be applied to isomorphisms that
are not necessarily group-theoretically cuspidal. For instance, we prove
[cf. Theorem 1.9, (ii), below| that any isomorphism between outer
representations of IPSC-type [cf. [NodNon|, Definition 2.4, (i)] is nec-
essarily group-theoretically verticial, i.e., roughly speaking, preserves
the verticial subgroups.

A basic reference for the theory of semi-graphs of anabelioids of PSC-
type is [CmbGC]. We shall use the terms “semi-graph of anabelioids of
PSC-type”, “PSC-fundamental group of a semi-graph of anabelioids of
PSC-type”, “finite étale covering of semi-graphs of anabelioids of PSC-
type”, “vertex”, “edge’, “node”’, “cusp”, “verticial subgroup”, “edge-like
subgroup”, “nodal subgroup”, “cuspidal subgroup”, and “sturdy’ as they
are defined in [CmbGC], Definition 1.1 [cf. also Remark 1.1.2 below].
Also, we shall apply the various notational conventions established in
[NodNon], Definition 1.1, and refer to the “PSC-fundamental group of
a semi-graph of anabelioids of PSC-type” simply as the “fundamental
group” [of the semi-graph of anabelioids of PSC-type]. That is to
say, we shall refer to the maximal pro-¥X quotient of the fundamental
group of a semi-graph of anabelioids of pro-X PSC-type [as a semi-
graph of anabelioids!] as the “fundamental group of the semi-graph of
anabelioids of PSC-type”.

In the present §1, let 3 be a nonempty set of prime numbers and G a
semi-graph of anabelioids of pro-> PSC-type. Write G for the under-
lying semi-graph of G, Ilg for the [pro-X| fundamental group of G, and
5 — @ for the universal covering of G corresponding to Ilg. Then since
the fundamental group Ilg of G is topologically finitely generated, the
profinite topology of Tlg induces [profinite] topologies on Aut(Ilg) and
Out(Ilg) [cf. the discussion entitled “Topological groups” in [CbTpl],
§0]. If, moreover, we write Aut(G) for the automorphism group of G,
then, by the discussion preceding [CmbGC], Lemma 2.1, the natural
homomorphism

Aut(G) — Out(Ilg)

is an ingjection with closed image. [Here, we recall that an automor-
phism of a semi-graph of anabelioids consists of an automorphism of
the underlying semi-graph, together with a compatible system of iso-
morphisms between the various anabelioids at each of the vertices and
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edges of the underlying semi-graph which are compatible with the var-
ious morphisms of anabelioids associated to the branches of the under-
lying semi-graph — cf. [SemiAn|, Definition 2.1; [SemiAn|, Remark
2.4.2.] Thus, by equipping Aut(G) with the topology induced via this
homomorphism by the topology of Out(Ilg), we may regard Aut(G) as
being equipped with the structure of a profinite group.

Definition 1.1. We shall say that an element v € Ilg of Ilg is verticial
(respectively, edge-like; nodal; cuspidal) if v is contained in a verticial
(respectively, an edge-like; a nodal; a cuspidal) subgroup of Ilg.

Remark 1.1.1. Let v € Ilg be a nontrivial [cf. the discussion entitled
“Groups” in §0] element of I1g. If v € Ilg is edge-like [cf. Definition 1.1,
then it follows from [NodNon|, Lemma 1.5, that there exists a unique

edge € € Edge(G) such that v € Iz, If v € Ilg is wverticial, but not
nodal [cf. Definition 1.1], then it follows from [NodNon]|, Lemma 1.9,

(1), that there exists a unique vertex v € Vert(G) such that v € Il;.

Remark 1.1.2. Here, we take the opportunity to correct an unfortu-
nate misprintin [CmbGC]. In the final sentence of [CmbGC], Definition
1.1, (ii), the phrase “rank > 2” should read “rank > 2”.

Lemma 1.2 (Existence of a certain connected finite étale cov-

ering). Let n be a positive integer which is a product [possibly with
multiplicities!] of primes € ¥; €1, €3 € Edge(G); v € Vert(G). Write
el aof €1(G), es of €2(G), and v of v(G). Suppose that the following

conditions are satisfied:

(i) G is untangled [cf. [NodNon|, Definition 1.2].

(ii) If e; is a node, then the following condition holds: Let w,
w' € V(ey) be the two distinct elements of V(e1) [cf. (i)].
Then (N (w) NN (w'))* > 3.

(iii) If ey is a cusp, then the following condition holds: Let w €
V(ey) be the unique element of V(ey). Then C(w)* > 3.

(iv) e # es.
(v) v V(er).

Then there exists a Galois subcovering G' — G ofg — G such that n
divides [II;, : Iz, N1lg|, and, moreover, 1lg,, Iz C Tg.
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Proof. Suppose that e; is a node (respectively, cusp). Write H for
the [uniquely determined] sub-semi-graph of PSC-type [cf. [CbTpl],
Definition 2.2, (i)] of G whose set of vertices is = V(e;) = {w,w'}
[cf. condition (ii)] (respectively, = {w} [cf. condition (iii)]). Now it
follows from condition (ii) (respectively, (iii)) that there exists an e3 €
Node(G|n) = N(w) NN (w') (respectively, € Cusp(G|g) N Cusp(G) =
C(w)) [cf. [CbTpl], Definition 2.2, (ii)] such that e3 # e5. Moreover,
again by applying condition (ii) (respectively, (iii)), together with the
well-known structure of the abelianization of the fundamental group
of a smooth curve over an algebraically closed field of characteristic
¢ 3, we conclude that there exists a Galois covering Gy — G|g that
arises from a normal open subgroup of Ilg|,, and which is unramified at
every element of Edge(G|u) \ {e1,es} and totally ramified at ey, e3 with
ramification indices divisible by n. Now since Gy — G|g is unramified
at every element of Cusp(G|g)NNode(G), one may extend this covering
to a Galois subcovering G’ — G of G — G which restricts to the trivial
covering over every vertex u of G such that u # w, w’ (respectively,
u # w). Moreover, it follows immediately from the construction of
Q’ — Q that n divides [Hgl . Hgl N Hg/}, and HgQ, Hg - Hg/. This
completes the proof of Lemma 1.2. O

Lemma 1.3 (Product of edge-like elements). Let 7, v, € Ilg be
two nontrivial edge-like elements of g [cf. Definition 1.1]. Write
€1, €y € Edge(@v) for the unique elements of Edge(g) such that v, €
Iz, 72 € I, [cf. Remark 1.1.1]. Suppose that the following conditions
are satisfied:

(i) For every positive integer n, it holds that v~y is verticial.
(ii) €1 # e.
Then there ezists a [necessarily unique — cf. [NodNon|, Remark 1.8.1,
(111)] v € Vert(G) such that {e1,e2} C E(V); in particular, it holds that
772 € 1.
Proof. Since €; # ey [cf. condition (ii)], one verifies easily that there
exists a Galois subcovering H — G of G — G that satisfies the following
conditions:

(1) &1(H) # e (H).
(2) H is untangled [cf. [NodNon|, Definition 1.2; [NodNon|, Re-
mark 1.2.1, (i)].

(3) For i € {1,2}, if &; € Node(G), then the following holds: Let
w, w' € V(e;(H)) be the two distinct elements of V(e;(H)) [cf.
(ii)]. Then (N(w) NN (w'))* > 3.
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(4) For i € {1,2}, if ¢; € Cusp(G), then the following holds:
Let w € V(€;(H)) be the unique element of V(€;(H)). Then
C(w)* > 3.

Now it is immediate that there exists a positive integer m such that
vt € g, N1y, 73" € Tlg, N1l Let v € Vert(G) be such that 7{"y3" €
I [cf. condition (i)].

Suppose that ¥(H) ¢ V(e1(H)). Then it follows from Lemma 1.2
that there exists a Galois subcovering H' — H of G — M such that
v1* & 13y, and, moreover, Ilz, N Iy, Iz NIl C Il But this implies
that 73", 7"y € Iy, hence that v € Iy, a contradiction. In
particular, it holds that v(H) € V(e;(H)); a similar argument implies
that v(H) € V(e2(H)), hence that V(e1(H)) N V(ex(H)) # 0. Thus, by
applying this argument to a suitable system of connected finite étale
coverings of H, we conclude that V(e1)NV(e3) # 0, i.e., that there exists
a v € Vert(G) such that {e1,e3} C (). Then since Il , I, C Iz,
it follows immediately that ;7. € II;. This completes the proof of
Lemma 1.3. U

Proposition 1.4 (Group-theoretic characterization of closed
subgroups of edge-like subgroups). Let H C Ilg be a closed sub-
group of llg. Then the following conditions are equivalent:

(i) H is contained in an edge-like subgroup.

(ii) An open subgroup of H is contained in an edge-like sub-
group.
(iii) Every element of H is edge-like [cf. Definition 1.1].

(iv) There erists a connected finite étale subcovering GI — G of
G — G such that for any connected finite étale subcovering
G — g of G — G that factors through Gt — G, the image of
the composite

HNIlg — Mg — Hg?/edge

— where we write Hgl,)/ °€° for the torsion-free [cf. [CmbGC],
Remark 1.1.4] quotient of the abelianization H?j'? by the closed
subgroup topologically generated by the images in Hg’? of the
edge-like subgroups of Ilg: — s trivial.

Proof. The implications (i) = (ii) = (iv) are immediate. The equiv-
alence (iii) < (iv) follows immediately from [NodNon|, Lemma 1.6.
Thus, to complete the verification of Proposition 1.4, it suffices to ver-
ify the implication (iii) = (i). To this end, suppose that condition (iii)
holds. First, we observe that, to verify the implication (iii) = (i), it
suffices to verify the following assertion:



18 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

Claim 1.4.A: Let vy, 72 € H be nontrivial elements.
Write €, & € Edge(G) for the unique elements of
Edge(é) such that v, € Iz, 72 € Ilg, [cf. Remark 1.1.1].
Then e; = e,.

To verify Claim 1.4.A, let us observe that it follows from condition (iii)
that, for every positive integer n, it holds that v{'v% is edge-like, hence
verticial. Thus, it follows immediately from Lemma 1.3 that there
exists a element v € Vert(G) such that {e1,ex} C £(v); in particular,
it holds that v, 7. € II;. Thus, to complete the verification of Claim
1.4.A; we may assume without loss of generality — by replacing I1g, H
by 1T, Iz N H, respectively — that Node(G) = () [so €7, é; € Cusp(G)].
Moreover, we may assume without loss of generality — by replacing Ilg
(respectively, 71, 72) by a suitable open subgroup of Ilg (respectively,
suitable powers of 71, 72) — that Cusp(G)* > 4. Thus, it follows
immediately from the well-known structure of the abelianization of the
fundamental group of a smooth curve over an algebraically closed field
of characteristic € ¥ that the direct product of any 3 cuspidal inertia
subgroups of Ilg associated to distinct cusps of G maps injectively to the
abelianization Hgb of Ilg. In particular, since 7,7, is edge-like, hence
cuspidal, it follows, by considering the cuspidal inertia subgroups that
contain 71, 72, and 17y, that €; = €3. This completes the proof of
Claim 1.4.A, hence also of the implication (iii) = (i). This completes
the proof of Lemma 1.4. O

Proposition 1.5 (Group-theoretic characterization of closed
subgroups of verticial subgroups). Let H C Ilg be a closed sub-
group of llg. Then the following conditions are equivalent:

(i) H is contained in a verticial subgroup.

)
(ii) An open subgroup of H is contained in a verticial subgroup.
(iii) Every element of H is verticial [cf. Definition 1.1].

)

(iv) There exists a connected finite étale subcovering GI — G of

G — G such that for any connected finite étale subcovering
G — G of G — G that factors through G — G, the image of
the composite

HnN Hg/ — Hg/ — Hg?—comb

— where we write IIZ°™ for the torsion-free /cf. [CmbGC],
Remark 1.1.4] quotient of the abelianization Hgl? by the closed
subgroup topologically generated by the images in Hgk,’ of the
verticial subgroups of Ilg: — is trivial.
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Proof. The implications (i) = (ii) = (iv) are immediate. Next, we
verify the implication (iv) = (iii). Suppose that condition (iv) holds.
Let v € H. Then to verify that v is verticial, we may assume with-
out loss of generality — by replacing H by the procyclic subgroup
of H topologically generated by v — that H is procyclic. Now the
implication (iv) = (iii) follows immediately from a similar argument
to the argument applied in the proof of the implication (ii) = (i) of
[NodNon|, Lemma 1.6, in the edge-like case. Here, we note that unlike
the edge-like case, there is a slight complication arising from the fact
[cf. [NodNon|, Lemma 1.9, (i)] that an element v € Vert(G) is not
necessarily uniquely determined by the condition that H C Ilg, i.e.,
there may exist distinct 01, v, € V(€) for some € € Node(G) such that
H C Iz =1l N1lg,. On the other hand, this phenomenon is, in fact,
irrelevant to the argument in question, since 1Ig does not contain any
elements that fix, but permute the branches of, €. This completes the
proof of the implication (iv) = (iii).

Finally, we verify the implication (iii) = (i). Suppose that condition
(iii) holds. Now if every element of H is edge-like, then the implication
(iii) = (i) follows from the implication (iii) = (i) of Proposition 1.4,
together with the fact that every edge-like subgroup is contained in a
verticial subgroup. Thus, to verify the implication (iii) = (i), we may
assume without loss of generality that there exists an element v; € H

of H that is not edge-like. Write v; € Vert(G) for the unique element

of Vert(G) such that ~; € I, [cf. Remark 1.1.1].
Now we claim the following assertion:

Claim 1.5.A: H C Il

Indeed, let v, € H be a nontrivial element of H. If v = 7, then
v € Iz, . Thus, we may assume without loss of generality that 7, # 7o.
Write «y o vt

Next, suppose that v is not edge-like. Write vy € Vert(g) for the
unique element of Vert(G) such that vo € Il [cf. Remark 1.1.1]. Let
‘H — G be a connected finite étale subcovering of G — G. Then since
neither v; nor 7, is edge-like, one verifies easily — by applying the
implication (iv) = (i) of Proposition 1.4 to the closed subgroups of
ITg topologically generated by 71, 72, respectively — that there exist
a connected finite étale subcovering H' — H of G — H and a positive
integer n such that 7, 75 € Il C Ily, and, moreover, the images
of 4", 7% € Iy via the natural surjection Iy —» H?;i/ edge [cf. the
notation of Lemma 1.4, (iv)] are nontrivial. Thus, it follows from the
existence of the natural split injection

@ Hib/edge SN Hgb/edge
veVert(G)
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of [NodNon], Lemma 1.4, together with the fact that 17'v5 € Iy is
verticial [cf. condition (iii)], that v1(H') = v2(H'), hence that v1(H) =
U(H). Therefore, by allowing the subcovering H — G of § — g to
vary, we conclude that v; = vq; in particular, it holds that v, € Il .

Next, suppose that v, is edge-like, but that v is not edge-like. Then,
by applying the argument of the preceding paragraph concerning -, to
v, we conclude that ~y, hence also 7,, is contained in IT3,.

Next, suppose that both v, and v are edge-like. Write €3, € €
Edge(G) for the unique elements of Edge(G) such that v, € Tlg,, v € Tz
[cf. Remark 1.1.1]. Then since 7y is not edge-like, it follows immedi-
ately that ey # €. Moreover, it follows from condition (iii) that for
any positive integer n, the element vJ~" is verticial. Thus, it follows

immediately from Lemma 1.3 that there exists a unique v € Vert(G)
such that {es, e} C E£(V), 11 = 772 € lIz. On the other hand, since
vy € Vert(G) is uniquely determined by the condition that v, € Iz, we
thus conclude that v; = v, hence that v, € I, C I3, as desired. This
completes the proof of Claim 1.5.A and hence also of the implication
(iii) = (i). O

Theorem 1.6 (Section conjecture-type result for outer rep-
resentations of SNN-, IPSC-type). Let ¥ be a nonempty set of
prime numbers, G a semi-graph of anabelioids of pro-X PSC-type, and
I — Aut(G) an outer representation of SNN-type [cf. [NodNon],
Definition 2.4, (iii)]. Write Ilg for the [pro-X] fundamental group of G

e out . . . . .
and I1; o IIg x I [cf. the discussion entitled “Topological groups” in
[CbTpl|, §0/; thus, we have a natural exact sequence of profinite groups

1l—Ilg —Il; —1—1.

Write Sect(I1; /1) for the set of sections of the natural surjection I1; —»
1. Then the following hold:

(i) For anyv € Vert(G), the composite I; — I1; — I [cf. [NodNon],
Definition 2.2, (1)] is an isomorphism. In particular, Iz C I1;
determines an element sy € Sect(Il;/1); thus, we have a map

Vert(G) —  Sect(I1;/1)

v — Sy -

Finally, the following equalities concerning centralizers of sub-
groups of 11y in llg [cf. the discussion entitled “Topological
groups”™ in §0] hold: Zn,(s3(1)) = Zn, (I5) = 5.

(ii) The map of (i) is injective.
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(iii) If, moreover, I — Aut(G) is of IPSC-type [cf. [NodNon],
Definition 2.4, (i)], then, for any s € Sect(Il;/1I), the central-
izer Zng(s(I)) is contained in a verticial subgroup.

(iv) Let s € Sect(Il;/I). Consider the following two conditions:

(1) The section s is contained in the image of the map of (i),
i.e., s = sy for some v € Vert(G).

(2) Zng(Zng(s(1))) = {1},

Then we have an implication

(1) = (2).
If, moreover, I — Aut(G) is of IPSC-type, then we have an
equivalence

(1) = (2).

Proof. First, we verify assertion (i). The fact that the composite I —
II; — I is an isomorphism follows from condition (2') of [NodNon],
Definition 2.4, (ii). On the other hand, the equalities Zp,(s3(1)) =
Zng(Iy) = Il follow from [NodNon|, Lemma 3.6, (i). This completes
the proof of assertion (i). Assertion (ii) follows immediately from the
final equalities of assertion (i), together with [NodNon|, Lemma 1.9,
(ii). Next, we verify assertion (iii). Write H o Zng,(s(I)). Then

it follows immediately from [CmbGC]|, Proposition 2.6, together with

the definition of H Zng(s(1)), that for any connected finite étale

subcovering G’ — G of G — G, the image of the composite
H M Hg/ — Hg/ —» Hgk/)-comb

[cf. the notation of Proposition 1.5, (iv)] is trivial. Thus, it follows
from the implication (iv) = (i) of Proposition 1.5 that H is contained
in a verticial subgroup. This completes the proof of assertion (iii).
Finally, we verify assertion (iv). To verify the implication (1) = (2),
suppose that condition (1) holds. Then since Zn, (s3(1)) = Zn,(Iz) =
15 [cf. assertion (i)] is commensurably terminal in Ig [cf. [CmbGC],
Proposition 1.2, (ii)] and center-free [cf. [CmbGC]|, Remark 1.1.3], we
conclude that Zy, (Zu,(ss(1))) = Zn, (Ilz) = {1}. This completes the
proof of the implication (1) = (2). Next, suppose that I — Aut(G) is of

IPSC-type, and that condition (2) holds. Then it follows from assertion

(iii) that there exists a o € Vert(G) such that H o Zn,(s(I)) C

I3, so Iy € Zy,(H). On the other hand, since s(I) C Zp,(H), and
Znig(H) = Zng(Zng(s(1))) = {1} [cf. condition (2)], i.e., the composite
of natural homomorphisms Zp,(H) — II; — [ is injective, it follows
that s(I) = Zp,(H) 2 I;. Since [y and s(/) may be obtained as the
images of sections, we thus conclude that Iz = s([), i.e., s = s3. This
completes the proof of the implication (2) = (1), hence also of assertion

(iv). O
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Remark 1.6.1. Recall that in the case of outer representations of NN-
type, the period matriz is not necessarily nondegenerate [cf. [CbTpl],
Remark 5.9.2]. In particular, the argument applied in the proof of The-
orem 1.6, (iii) — which depends, in an essential way, on the fact that,
in the case of outer representations of IPSC-type, the period matrix is
nondegenerate [cf. the proof of [CmbGC], Proposition 2.6] — cannot be
applied in the case of outer representations of NN-type. Nevertheless,
the question of whether or not Theorem 1.6, (iii), as well as the appli-
cation of Theorem 1.6, (iii), given in Corollary 1.7, (ii), below, may be
generalized to the case of outer representations of NN-type remains a
topic of interest to the authors.

Corollary 1.7 (Group-theoretic characterization of verticial
subgroups for outer representations of IPSC-type). In the no-
tation of Theorem 1.6, let us refer to a closed subgroup of Ilg as a
section-centralizer if it may be written in the form Zy,(s(I)) for
some s € Sect(Il;/I). Let H C Ilg be a closed subgroup of Illg. Then
the following hold:

(i) Suppose that H is a section-centralizer such that Zy,(H) =
{1}. Then the following conditions on a section s € Sect(I1;/1)
are equivalent:

(1) H = Zug (s(1)).
(i-2) s(I) C Zn,(H).
(i-3) s(I) = Zn,(H).

(ii) Consider the following three conditions:
(ii-1) H is a verticial subgroup.
(ii-2) H is a section-centralizer such that Zn,(H) = {1}.
(ii-3) H is a maximal section-centralizer.
Then we have tmplications
(ii-1) = (ii-2) = (ii-3).

If, moreover, I — Aut(G) is of IPSC-type [c¢f. [NodNon],
Definition 2.4, (i)], then we have equivalences

(ii-1) = (ii-2) < (ii-3).

Proof. First, we verify assertion (i). The implication (i-1) = (i-2)
is immediate. To verify the implication (i-2) = (i-3), suppose that
condition (i-2) holds. Then since Zy,(H) N1lg = Zn,(H) = {1}, the
composite Zy, (H) — II; — I is injective. Thus, since the composite
s(I) — Zn,(H) — Iy — I is an isomorphism, it follows immediately
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that condition (i-3) holds. This completes the proof of the implication
(i-2) = (i-3). Finally, to verify the implication (i-3) = (i-1), suppose
that condition (i-3) holds. Then since H is a section-centralizer, there
exists a t € Sect(II;/I) such that H = Zy,(¢(I)). In particular, t(I) C
Zn,(H) = s(I) [cf. condition (i-3)]. We thus conclude that ¢ = s, i.e.,
that condition (i-1) holds. This completes the proof of assertion (i).
Next, we verify assertion (ii). The implication (ii-1) = (ii-2) fol-
lows immediately from Theorem 1.6, (i), (iv). To verify the impli-
cation (ii-2) = (ii-3), suppose that H satisfies condition (ii-2); let
s € Sect(Il;/I) be such that H C Zy,(s(I)). Then it follows imme-
diately that s(I) C Zy,(H). Thus, it follows immediately from the
equivalence (i-1) < (i-2) of assertion (i) that H = Zp,(s(/)). This
completes the proof of the implication (ii-2) = (ii-3). Finally, observe
that the implication (ii-3) = (ii-1) in the case where I — Aut(G) is of
IPSC-type follows immediately from Theorem 1.6, (iii), together with
the fact that every verticial subgroup is a section-centralizer [cf. the
implication (ii-1) = (ii-2) verified above]. This completes the proof of
Corollary 1.7. O

Lemma 1.8 (Group-theoretic characterization of verticial sub-
groups for outer representations of SNN-type). Let H C Ilg be

a closed subgroup of llg and I — Aut(G) an outer representation of
out

SNN-type [cf. [NodNon|, Definition 2.4, (iii)]. Write 11; dof Ilg x I
[cf. the discussion entitled “Topological groups”™ in [CbTpl], §0/; thus,
we have a natural exact sequence of profinite groups

1l —1Ilg — I —I1—1.

Suppose that G is untangled [cf. [NodNon|, Definition 1.2]. Then
H is verticial subgroup if and only if H satisfies the following four
conditions:

(i) The composite Iy o Zn,(H) — II; — I is an isomorphism.
(ii) It holds that H = Zn,(1g).
(i) For any v € llg, it holds that v € H if and only if HN (v H -
v # {1}
(iv) H contains a nontrivial verticial element of Ilg [cf. Defini-
tion 1.1].

Proof. It H is a verticial subgroup, then it is immediate that condition
(iv) is satisfied; moreover, it follows from condition (2) of [NodNon],
Definition 2.4, (ii) (respectively, [NodNon|, Lemma 3.6, (i); [NodNon],
Remark 1.10.1), that H satisfies condition (i) (respectively, (ii); (iii)).
This completes the proof of necessity.
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To verify sufficiency, suppose that H satisfies conditions (i), (ii), (iii),

and (iv). It follows from condition (iv) that there exists a ¥ € Vert(G)

such that J & H N 1l; # {1}. If either J = Il or J = H, i.e., either

Il € H or H C I3, then it is immediate that either Iz C I~ or I~ Cly
[cf. [NodNon], Definition 2.2, (i)]. Thus, it follows from condition (i)
[for H and Il that Iy = I;. But then it follows from condition (ii)
[for H and I3 that H = Z,(Ig) = Zn, (I5) = g; in particular, H is
a verticial subgroup.

Thus, we may assume without loss of generality that J # H, Il;.

Let v € H\ J. Write J? iy v -J -~ Then we have inclusions
IGFDOJCHDJ Cllgy (=v-Mz-y71).
Now we claim the following assertion:
Claim 1.8.A: Ny, (J) = J, Nu,(J7) = J7.

Indeed, let o € Nyg(J). Then since {1} # J = JN(o-J 07! C
I3 N1z, it follows from condition (iii) [for II;] that o € II. Similarly,
since {1} # J =JN(oc-J-07Y) C HN(o-H-o'), it follows
from condition (iii) [for H]| that ¢ € H. Thus, 0 € IIbNH = J. In
particular, we obtain that Ny, (J) = J. A similar argument implies
that Ny, (J7) = J7. This completes the proof of Claim 1.8.A.

Now the composites Ny, (J), Np,(J7) — II; — I fit into exact
sequences of profinite groups

1 — Np,(J) — N, (J) — 1,
1 — Np,(J7) — N, (J7) — 1.
Thus, since we have inclusions
Iy =Zn,(H) C Zy,(J) C N
Iy =27n,(H) C Zp,(J7) C Ny, (J7),
Iz = Zn, () € Zn,(J) € N, (J),
Iv = Zn, () € Zn, (J7) € N, (J7),

it follows immediately from Claim 1.8.A, together with condition (i)
[for H and II3], that

Ny, (J)=J -Ig=J Iy , Ny, (J)=J"-Iy=J" L.
In particular. we obtain that
Iy C Nu,(J)=J - Iz Cllz - Dy = Dy,
Iy € Nu,(J") =J" - Iy C gy - Dy = Dy
[cf. [NodNon], Definition 2.2, (i)], i.e., Iy € Dz N Dg. On the other
hand, since H 5 v ¢ J = H N1l it follows from condition (iii) [for
IT;] that IIz» N1l = {1}; thus, it follows immediately from the fact

that Dy N Dy N1l =y NIy = {1} [cf. [CmbGC], Proposition 1.2,
(ii)], together with condition (i), that Iy = Dy N Dy, which implies,

(J)
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by [NodNon], Proposition 3.9, (iii), that there exists a w € Vert(G)
such that Iy = Iz. In particular, it follows from condition (ii) [for H
and Ilg| that H = Zn,(Iy) = Zn, (1) = llg. Thus, H is a verticial
subgroup. This completes the proof of Lemma 1.8. U

Theorem 1.9 (Group-theoretic verticiality /nodality of isomor-
phisms of outer representations of NN-, IPSC-type). Let ¥ be
a nonempty set of prime numbers, G (respectively, H) a semi-graph
of anabelioids of pro-¥ PSC-type, Ilg (respectively, 1l3;) the [pro-X]
fundamental group of G (respectively, H), a: Ilg — Iy an isomor-
phism of profinite groups, I (respectively, J) a profinite group, py: I —
Aut(G) (respectively, py: J — Aut(H)) a continuous homomorphism,
and B: I = J an isomorphism of profinite groups. Suppose that the
diagram
I — Out(Hg)

ﬁl lOut(a)

J — Out(HH)

— where the right-hand vertical arrow is the isomorphism induced by
a; the upper and lower horizontal arrows are the homomorphisms de-
termined by p;r and py, respectively — commutes. Then the following
hold:

(i) Suppose, moreover, that pr, p; are of NN-type [cf. [NodNon],
Definition 2.4, (iii)]. Then the following three conditions are
equivalent:

(1) The isomorphism « is group-theoretically verticial [i.e.,
roughly speaking, preserves verticial subgroups — cf. [CmbGC],
Definition 1.4, (iv)].

(2) The isomorphism « is group-theoretically nodal [i.e.,
roughly speaking, preserves nodal subgroups — cf. [NodNon],
Definition 1.12].

(3) There exists a nontrivial verticial element v € Ilg such
that a(7y) € Iy is verticial [cf. Definition 1.1].

(ii) Suppose, moreover, that p; is of NN-type, and that py is of
IPSC-type /cf. [NodNon|, Definition 2.4, (i)]. [For ezample,
this will be the case if both p;r and py are of IPSC-type — cf.
[NodNon|, Remark 2.4.2.] Then « is group-theoretically
verticial, hence also group-theoretically nodal.

Proof. First, we verify assertion (i). The implication (1) = (2) fol-
lows from [NodNon|, Proposition 1.13. The implication (2) = (3)
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follows from the fact that any nodal subgroup is contained in a verti-
cial subgroup. [Note that if Node(H) = 0, then every element of Tl
is wverticial.] Finally, we verify the implication (3) = (1). Suppose
that condition (3) holds. Since verticial subgroups are commensurably
terminal [cf. [CmbGC]|, Proposition 1.2, (ii)], to verify the implica-
tion (3) = (1), by replacing II;, II; by open subgroups of II;, II;,
we may assume without loss of generality that p;, p; are of SNN-type
[cf. [NodNon], Definition 2.4, (iii)], and, moreover, that G and H are
untangled [cf. [NodNon], Definition 1.2; [NodNon]|, Remark 1.2.1, (i)].
Let ¥ € Vert(G) be such that v € IT;. Then it is immediate that a(II;)
satisfies conditions (i), (ii), and (iii) in the statement of Lemma 1.8.
On the other hand, it follows from condition (3) that «(Il;) satisfies
condition (iv) in the statement of Lemma 1.8. Thus, it follows from
Lemma 1.8 that o(Ilz) C Iy is a verticial subgroup. Now it follows
from [NodNon]|, Theorem 4.1, that « is group-theoretically verticial.
This completes the proof of the implication (3) = (1).

Finally, we verify assertion (ii). It is immediate that, to verify as-
sertion (ii) — by replacing I, J by open subgroups of I, J — we may
assume without loss of generality that p; is of SNN-type. Let H C 1lg
be a verticial subgroup of Ilg. Then it follows from Corollary 1.7,
(ii), that H, hence also a(H), is a mazimal section-centralizer [cf. the
statement of Corollary 1.7]. Thus, since p; is of IPSC-type, again by
Corollary 1.7, (ii), we conclude that a(H) C Iy is a verticial subgroup
of TI3;. In particular, it follows from [NodNon], Theorem 4.1, together
with [NodNon], Remark 2.4.2; that « is group-theoretically verticial
and group-theoretically nodal. This completes the proof of assertion
(ii). O

Remark 1.9.1. Thus, Theorem 1.9, (i), may be regarded as a gener-
alization of [NodNon], Corollary 4.2. Of course, ideally, one would like
to be able to prove that conditions (1) and (2) of Theorem 1.9, (i), hold
automatically [i.e., as in the case of outer representations of IPSC-type
treated in Theorem 1.9, (ii)], without assuming condition (3). Although
this topic lies beyond the scope of the present paper, perhaps progress
could be made in this direction if, say, in the case where X is either
equal to the set of all prime numbers or of cardinality one, one starts
with an isomorphism « that arises from a PF-admissible [cf. [CbTpl],
Definition 1.4, (i)] isomorphism between configuration space groups cor-
responding to m-dimensional configuration spaces [where m > 2] as-
sociated to stable curves that give rise to G and H, respectively [i.e.,
one assumes the condition of “m-cuspidalizability” discussed in Defini-
tion 3.20, below, where we replace the condition of “PFC-admissibility”
by the condition of “PF-admissibility”]. For instance, if Cusp(G) # 0,
then it follows from [CbTpl], Theorem 1.8, (iv); [NodNon], Corollary
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4.2, that this condition on « is sufficient to imply that conditions (1)
and (2) of Theorem 1.9, (i), hold.
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2. PARTIAL COMBINATORIAL CUSPIDALIZATION FOR F-ADMISSIBLE
OUTOMORPHISMS

In the present §2, we apply the results obtained in the preceding §1,
together with the theory developed by the authors in earlier papers, to
prove combinatorial cuspidalization-type results for F-admissible out-
omorphisms [cf. Theorem 2.3, (i), below]. We also show that any F-
admissible outomorphism of a configuration space group [arising from a
configuration space] of sufficiently high dimension [i.e., > 3 in the affine
case; > 4 in the proper case| is necessarily C-admissible, i.e., preserves
the cuspidal inertia subgroups of the various subquotients correspond-
ing to surface groups [cf. Theorem 2.3, (ii), below]. Finally, we discuss
applications of these combinatorial anabelian results to the anabelian
geometry of configuration spaces associated to hyperbolic curves over
arithmetic fields [cf. Corollaries 2.5, 2.6, below].

In the present §2, let ¥ be a set of prime numbers which is either
equal to the set of all prime numbers or of cardinality one; n a positive
integer; k an algebraically closed field of characteristic ¢ ¥; X a hyper-
bolic curve of type (g, r) over k. For each positive integer i, write X; for
the i-th configuration space of X; II; for the maximal pro-X quotient
of the fundamental group of Xj.

Definition 2.1. Let a € Aut(Il,) be an automorphism of II,,.
(i) Write
{1} =K, CK,1C--CK,CK CKy=1I,

for the standard fiber filtration on II, [cf. [CmbCsp], Defi-
nition 1.1, (i)]. For each m € {1,2,--- n}, write C,, for
the [finite] set of K,,_1/K,,-conjugacy classes of cuspidal in-
ertia subgroups of K,,_1/K,, [where we recall that K,,_1/K,,
is equipped with a natural structure of pro-3 surface group
— cf. [MzTa], Definition 1.2]. Then we shall say that « is
wC-admissible [i.e., “weakly C-admissible”] if o preserves the
standard fiber filtration on II,, and, moreover, satisfies the
following conditions:

e Ifm € {1,2,---n—1}, then the automorphism of K,, 1/K,,
determined by « induces an automorphism of C,.

o It follows immediately from the various definitions in-
volved that we have a natural injection C,,_; — C,,. That
is to say, if one thinks of K, o as the two-dimensional
configuration space group associated to some hyperbolic
curve, then the image of C),_; — (), corresponds to the
set of cusps of a fiber [of the two-dimensional configura-
tion space over the hyperbolic curve] that arise from the
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cusps of the hyperbolic curve. Then the automorphism of
K, 1 determined by « induces an automorphism of the
image of the natural injection C),_; — C,,.
Write
Aut¥(I1,,) C Aut(II,)

for the subgroup of wC-admissible automorphisms and
Out™C(I1,,) & Aut™C(I1,,)/Inn(I1,) € Out(Il,) .

We shall refer to an element of Out““(II,,) as a wC-admissible

outomorphism.

(ii) We shall say that a is FwC-admissible if o is F-admissible
[cf. [CmbCsp], Definition 1.1, (ii)] and wC-admissible [cf. (i)].
Write

Aut™C(I1,) C Autf(IT,,)

for the subgroup of FwC-admissible automorphisms and
Out™C(I1,) © Aut™C(I1,,)/Inn(I1,,) € Out¥(IL,,).

We shall refer to an element of Out™“(11,,) as an FwC-admissible
outomorphism.

(iii) We shall say that « is DF-admissible [i.e., “diagonal-fiber-
admissible”] if a is F-admissible, and, moreover, « induces
the same automorphism of II; relative to the various quotients
I1,, — II; by fiber subgroups of colength 1 [cf. [MzTa], Defini-
tion 2.3, (iii)]. Write

AutPF(I1,,) € Aut®(11,,)

for the subgroup of DF-admissible automorphisms.

Remark 2.1.1. Thus, it follows immediately from the definitions that
C-admissible = wC-admissible.

In particular, we have inclusions

Aut™C(11,) < Aut™vC(II,) Oout™(I1,) < Out™°(IL,)
N N N N
Aut®(IL,) < Aut“e(II,) Out“(1,) < Out™e(II,)

[cf. Definition 2.1, (i), (ii)].
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Lemma 2.2 (F-admissible automorphisms and inertia subgroups).
Let o € Aut™ (I1,) be an F-admissible automorphism of I1,,. Then the
following hold:

(i) There exist 8 € Aut® (I1,) [cf. Definition 2.1, (iii)] and v €
Inn(IL,) such that o = G o.

(ii) For each positive integer i, write Zgog for the i-th log config-
uration space of X [cf. the discussion entitled “Curves” in
[CbTpl|, §0/; Uz, C Z; for the interior of Z;Og [ef. the dis-
cussion entitled “Log schemes” in [CbTpl], §0/, which may
be identified with X;. Let € be an irreducible component of
the complement Z, 1 \ Uz, | [cf. [CmbCsp|, Definition 1.1];
I. C II,_1 an inertia subgroup of 11,1 associated to the di-
visor € of Z,_1; pr: Uy, — Uy _, the projection obtained by
forgetting the factor labeled n; pr'': II,, — II,_; the surjection

induced by pr; 11, /1 def Ker(pr™); 0 an irreducible component
of the fiber of the [uniquely determined] extension Z, — Z, 1
of pr over the generic point of € [so 0 naturally determines an
irreducible component of the complement Z,\ Uy, |; Dy C 11, a

decomposition subgroup of 11,, associated to the divisor [natu-

rally determined by] 0 of Z,; 11y dof Dy N 1L, /-1 [cf. [CmbCsp],

Proposition 1.3, (iv)]. Suppose that the automorphism of 11,,_;
induced by o € Aut® (IL,,) relative to pr'™" stabilizes I, C I1,,_;.
Then o preserves the I, ,_-conjugacy class of Il.

Proof. Assertion (i) follows immediately from [CbTpl], Theorem A, (i).
Assertion (ii) follows immediately from Theorem 1.9, (ii) [cf. also the
proof of [CmbCsp]|, Proposition 1.3, (iv)].

Theorem 2.3 (Partial combinatorial cuspidalization for F-ad-
missible outomorphisms). Let ¥ be a set of prime numbers which
15 either equal to the set of all prime numbers or of cardinality one; n
a positive integer; X a hyperbolic curve of type (g,r) over an alge-
braically closed field of characteristic & 3; X,, the n-th configuration
space of X ; 1, the mazimal pro-X quotient of the fundamental group
of Xn;
Out®(I1,,) € Out(IL,,)

the subgroup of F-admissible outomorphisms [i.e., roughly speaking,
outomorphisms that preserve the fiber subgroups — cf. [CmbCsp)|, Def-
inition 1.1, (ii)] of IL,;

Out™(11,,) € Out™(IT,,)

the subgroup of FC-admissible outomorphisms [i.e., roughly speak-
ing, outomorphisms that preserve the fiber subgroups and the cuspidal
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inertia subgroups — cf. [CmbCsp|, Definition 1.1, (ii)] of 11,,;
(Out™(11,,) €) Out™(11,,) € Out™(I1,,)

the subgroup of FwC-admissible outomorphisms [cf. Definition 2.1,
(i1)] of I,,. Then the following hold:

(i) Write

M= 2 gfr=0, ™8T 14 ifr=o0.

If n > nin; (respectively, n > ny), then the natural homomor-
phism

def{l ifr #£0, .dif{:g ifr #£0,

Out" (MMyg1) — Out® (1L,,)

induced by the projections X,1 — X, obtained by forgetting
any one of the n+1 factors of X,,+1 [¢f. [CbTpl], Theorem A,
(i)] is injective (respectively, bijective).

(i) Write
L2 e =03)
nre = ¢ 3 if (9,7) #(0,3) and r £0,
4 ifr=0.

If n > npc, then it holds that
Out™(I1,,) = Out"(I1,,) .

(iii) Write

2 afr>2,
nFWCdéf 3 Z.frzlv
4 ifr=0.

If n > npywc, then it holds that
Out™ ¢ (I1,) = Out™(I1,,) .

(iv) If (r,n) # (0,2), then the image of the natural inclusion
S, — Out(Il,)

— where we write S,, for the symmetric group on n letters —
obtained by permuting the various factors of X, is contained
in the centralizer Zoy,)(Out™ (IL,,)).

Proof. First, we verify assertion (iii) in the case where n = 2, which
implies that » > 2 [cf. the statement of assertion (iii)]. To verify
assertion (iii) in the case where n = 2, it is immediate that it suffices
to verify that

AutFWC<H2) = AutF(Hg) .
Let a € Aut™(II). Let us assign the cusps of X the labels ay,- - - ,a,.
Now, for each ¢ € {1,--- ,r}, recall that there is a uniquely determined
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cusp of the geometric generic fiber X5/, of the projection X, — X to
the factor labeled 1 that corresponds naturally to the cusp of X labeled
a;; we assign to this uniquely determined cusp the label b;. Thus,
there is precisely one cusp of X5/ that has not been assigned a label
€ {by, -+ ,b.}; we assign to this uniquely determined cusp the label
b-11. Then since the automorphism of II; induced by « relative to either
p1 or po — where we write py, po for the surjections Iy — II; induced
by the projections X — X to the factors labeled 1, 2, respectively
— is FC-admissible [cf. [CbTpl], Theorem A, (ii)], it follows from the
various definitions involved that, to verify that a € Aut™¢(Il,), it
suffices to verify the following assertion:

Claim 2.3.A: For any b € {by,---,b,}, if I, C Iy def

Ker(p;) C II, is a cuspidal inertia subgroup associated
to the cusp labeled b, then «(l}) is a cuspidal inertia
subgroup.

Now observe that to verify Claim 2.3.A, by replacing a by the compos-
ite of o with a suitable element of Aut"®(Ily) [cf. [CmbCsp], Lemma
2.4], we may assume without loss of generality that the [necessarily FC-
admissible] automorphism of II; induced by « relative to p;, hence also
relative to py [cf. [CbTpl], Theorem A, (i)], induces the identity auto-
morphism on the set of conjugacy classes of cuspidal inertia subgroups
of II;.

To verify Claim 2.3.A, let us fix b € {by,---,b.}, together with a
cuspidal inertia subgroup I, C Il,/; associated to the cusp labeled b of
Iy/1. Also, let us fix

e ac{a, - ,a,} such that if b = b; and a = a;, then i # j [cf.
the assumption that r > 2!J;

e a cuspidal inertia subgroup I, C II; associated to the cusp
labeled a of I1;.

Now observe that since the [necessarily FC-admissible] automorphism
of II; induced by « relative to p; induces the identity automorphism
on the set of conjugacy classes of cuspidal inertia subgroups of Il;, to
verify the fact that «(Ip) is a cuspidal inertia subgroup, we may assume
without loss of generality [by replacing « by a suitable II;-conjugate of
a] that the automorphism of II; induced by « relative to py fizes I,. Let
I, C Iy1 be a major verticial subgroup at a [cf. [CmbCsp], Definition

1.4, (ii)] such that I, C TIg,. Then it follows from Lemma 2.2, (ii),

that o fixes the I,/ -conjugacy class of Ilp,, i.e., that H}a o a(llg,)

is a Ily/-conjugate of IIr,. Thus, one verifies easily that, to verify
that «(Ip) is a cuspidal inertia subgroup, it suffices to verify that the
isomorphism I, — H}a induced by « is group-theoretically cuspidal
— cf. [CmbGC], Definition 1.4, (iv). [Note that it follows immediately
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from the various definitions involved that 11, and H}a may be regarded
as pro-Y fundamental groups of semi-graphs of anabelioids of pro-%
PSC-type.] On the other hand, it follows immediately from the various
definitions involved that this isomorphism factors as the composite
Mp, — T T < IO},

— where the first and third arrows are the isomorphisms induced by
pa: IIy — II; [ef. [CmbCsp]|, Definition 1.4, (ii)], and the second ar-
row is the automorphism induced by « relative to po — and that the
three arrows appearing in this composite are group-theoretically cuspi-
dal. Thus, we conclude that «(1,) is a cuspidal inertia subgroup. This
completes the proof of Claim 2.3.A, hence also of assertion (iii) in the
case where n = 2.

Next, we verify assertion (ii) in the case where (g,7,n) = (0,3,2).
In the following, we shall use the notation “a;” [for i = 1, 2, 3] and
“b;” [for 7 = 1, 2, 3, 4] introduced in the proof of assertion (iii) in
the case where n = 2. Now, to verify assertion (ii) in the case where
(g,m,n) = (0,3,2), it is immediate that it suffices to verify that

AutFC(Hg) = AutF<H2) .

Let o € Aut"(Il;). Then let us observe that to verify that a €
Aut"®(I1,), by replacing a by the composite of a with a suitable ele-
ment of Aut"“(IT,) [cf. [CmbCsp], Lemma 2.4], we may assume without
loss of generality that the [necessarily FC-admissible — cf. [CbTpl],
Theorem A, (ii)] automorphism of IT; induced by « relative to p;, hence
also relative to py [cf. [CbTpl], Theorem A, (i)] — where we write py,
py for the surjections II, — II; induced by the projections X, — X to
the factors labeled 1, 2, respectively — induces the identity automor-
phism on the set of conjugacy classes of cuspidal inertia subgroups of
IT;. Now it follows from assertion (iii) in the case where n = 2 that «
is FwC-admissible; thus, to verify the fact that o is FC-admissible, it
suffices to verify the following assertion:

Claim 2.3.B: If I, C Ty % Ker(p;) C Ty is a cuspi-
dal inertia subgroup associated to the cusp labeled by,
then «(1,,) is a cuspidal inertia subgroup.

On the other hand, as is well-known [cf. e.g., [CbTpl|, Lemma 6.10,
(ii)], there exists an automorphism of X, over X relative to the pro-
jection pr; to the factor labeled 1 which switches the cusps on the
geometric generic fiber Xy/; labeled b; and by. In particular, there ex-
ists an automorphism ¢ of Ily over II; relative to p; which switches the
respective Il,/i-conjugacy classes of cuspidal inertia subgroups associ-
ated to b; and by. Write 5 =1"'oaou.

Now let us verify that Claim 2.3.B follows from the following asser-
tion:

Claim 2.3.C: 8 € Aut"(Il,).
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Indeed, if Claim 2.3.C holds, then it follows from assertion (iii) in the
case where n = 2 that, for any cuspidal inertia subgroup I, C I/
associated to the cusp labeled by, 3(1;,) is a cuspidal inertia subgroup.
Thus, it follows immediately from our choice of ¢ that, for any cuspidal
inertia subgroup I, C Ily/; associated to the cusp labeled by, a([5,) is
a cuspidal inertia subgroup. This completes the proof of the assertion
that Claim 2.3.C implies Claim 2.3.B.

Finally, we verify Claim 2.3.C. Since « and ¢, hence also (3, preserve
Iy C 1y, it follows immediately from [CmbCsp], Proposition 1.2, (i),
that, to verify Claim 2.3.C, it suffices to verify that 3 preserves =5 C Il,
[cf. [CmbCsp], Definition 1.1, (iii)], i.e., the normal closed subgroup
of 11, topologically normally generated by a cuspidal inertia subgroup
associated to by. On the other hand, this follows immediately from
the fact that o preserves the IIy/-conjugacy class of cuspidal inertia
subgroups associated to by [cf. assertion (iii) in the case where n = 2|,
together with our choice of «. This completes the proof of Claim 2.3.C,
hence also of assertion (ii) in the case where (g,7,n) = (0, 3,2).

Next, we verify assertion (ii) in the case where (g,7r,n) # (0,3, 2).
Thus, n > 3. Write II} (respectively, II}; II1) for the kernel of the
surjection II,, — II,_3 (respectively, 11, ; — II,_3; II,_o — II,_3)
induced by the projection obtained by forgetting the factor(s) labeled
n, n— 1, n — 2 (respectively, n — 1, n — 2; n — 2). Here, if n = 3, then
we set II,_5 = ITy & {1}. Then recall [cf., e.g., the proof of [CmbCsp],
Theorem 4.1, (i)] that we have natural isomorphisms

I HT out ] t out ) 1 out
n = 1l3 X anS ) anl = H2 A Hn73 ) anQ = Hl A Hn—3
[cf. the discussion entitled “Topological groups’ in [CbTpl], §0]. Also,
we recall [cf. [MzTal], Proposition 2.4, (i)] that one may interpret the
surjections Hg — H; — HI induced by the surjections II,, — II,,_; —
Il,,_5 as the surjections “Il3 — Il — II;” that arise from the projec-
tions X3 — X3 — X in the case of an “X” of type (g,7 +n — 3).
Moreover, one verifies easily that this interpretation is compatible with
the definition of the various “Out(—)’s” involved. Thus, since npc = 4
if r = 0, the above natural isomorphisms, together with [CbTpl], The-
orem A, (ii), allow one to reduce the equality in question to the case
where n = 3 and r # 0.

Now one verifies easily that, to verify the equality in question in the
case where n = 3 and r # 0, it is immediate that it suffices to verify
that

AutFC(H;g) = AutF<H3) .
Let a € Aut"(Il3). Then let us observe that to verify o € Aut"(II,),
by replacing o by the composite of a with a suitable element of Aut"“(II5)

[cf. [CmbCspl, Lemma 2.4], we may assume without loss of general-
ity that the [necessarily FC-admissible — cf. [CbTpl|, Theorem A,
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(ii)] automorphism of II; induced by « relative to ¢, hence also rel-
ative to either ¢o or g3 [cf. [CbTpl|, Theorem A, (i)] — where we
write g1, ¢o, g3 for the surjections I3 — II; induced by the projections
X3 — X to the factors labeled 1, 2, 3, respectively — induces the iden-
tity automorphism on the set of conjugacy classes of cuspidal inertia
subgroups of IIy; in particular, one verifies easily that the [necessarily
FC-admissible — cf. [CbTpl], Theorem A, (ii)] automorphism of II,
— where we write py: Il — II; for the surjection induced by the pro-

jection Xy — X to the factor labeled 1 and IIy/ o Ker(py) C I, —
induced by « induces the identity automorphism on the set of conjugacy
classes of cuspidal inertia subgroups of Il ;. Write Xy, (respectively,
X3/2; X3/1) for the geometric generic fiber of the projection X; — X
(respectively, X3 — Xy; X3 — X) to the factor(s) labeled 1 (respec-
tively, 1, 2; 1). Let us assign the cusps of X the labels ay,--- ,a,. For
eachi € {1,--- 7}, we assign to the cusp of X/, that corresponds nat-
urally to the cusp of X labeled a; the label b;. Thus, there is precisely
one cusp of X,,; that has not been assigned a label € {by,--- ,b.};
we assign to this uniquely determined cusp the label b..,. For each
i€ {l,---,r+1}, we assign to the cusp of X3/, that corresponds nat-
urally to the cusp of X5/, labeled b; the label ¢;. Thus, there is precisely
one cusp of X3/, that has not been assigned a label € {cy,- -+, ¢41}; we
assign to this uniquely determined cusp the label ¢, 5. Now it follows
from assertion (iii) in the case where n = 2, applied to the restriction of

a to Il o Ker(q1), together with [CbTpl], Theorem A, (ii), that « is
FwC-admissible. Write qq5: 113 — Il for the surjection induced by the

projection X3 — Xy to the factors labeled 1, 2; I35 def Ker(q2) C II3.
Thus, to verify the fact that « is FC-admissible, it suffices to verify the
following assertion:

Claim 2.3.D: If I, ,, € Il3/5 is a cuspidal inertia sub-
group associated to the cusp labeled ¢, o, then a(Z, )

is a cuspidal inertia subgroup.

To verify Claim 2.3.D, let us fiz a cusp labeled b € {by,---,b.}
[where we recall that r # 0], a cuspidal inertia subgroup I ., C Il3/,
associated to the cusp labeled ¢, 5 of II3/5, and a cuspidal inertia sub-
group I, C Il,; associated to the cusp labeled b of X5/1. Now observe
that since the [necessarily FC-admissible] automorphism of Il in-
duced by « induces the identity automorphism on the set of conjugacy
classes of cuspidal inertia subgroups of I/, to verify the assertion
that «(/.,,,) is a cuspidal inertia subgroup, we may assume without
loss of generality [by replacing « by a suitable IT3-conjugate of a] that
the automorphism of Ily/; induced by « fixes I,. Let IIg, C Il3/5 be a
mainor verticial subgroup, relative to the two-dimensional configuration
space X3/ associated to the hyperbolic curve X/, at the cusp labeled
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b [cf. [CmbCsp], Definition 1.4, (ii)] such that I, C IIg,. Then it fol-

lows immediately from Lemma 2.2, (ii), that « fixes the II3/,-conjugacy

class of I1g,, i.e., that Hgb def a(Ilg,) is a II3/5-conjugate of I1g,. Thus,

one verifies easily that, to verify that «(/,,,) is a cuspidal inertia sub-
group, it suffices to verify that the isomorphism g, — HTEb induced by
a is group-theoretically cuspidal — cf. [CmbGC], Definition 1.4, (iv).
[Note that it follows immediately from the various definitions involved
that IIg, and Hgb may be regarded as pro-> fundamental groups of
semi-graphs of anabelioids of pro-¥ PSC-type.] On the other hand, it
follows immediately from a similar argument to the argument applied
in the discussion concerning the isomorphism of the second display of
[CmbCsp], Definition 1.4, (ii), that the composites

g, , Hij — I3/ — 1)y

— where the second arrow is the surjection determined by the surjec-
tion ¢3: II3 — Iy induced by the projection X3 — X, to the factors
labeled 1, 3 — are injective, and that the Il -conjugacy class of the
image in Ily/; of either of these composite injections coincides with the
115 /1-conjugacy class of a minor verticial subgroup at the cusp labeled
a; [where we write b = b; — cf. [CmbCsp]|, Definition 1.4, (ii)]. In
particular, since the automorphism of Il; induced by « relative to q3
is FC-admissible [cf. [CbTpl], Theorem A, (ii)], it follows immediately
that the isomorphism Iz, — Hgb induced by « is group-theoretically
cuspidal. This completes the proof of Claim 2.3.D, hence also of asser-
tion (ii).

Now assertion (iii) in the case where n # 2 follows immediately
from assertion (i), together with the natural inclusions Out"“(IT,,) C
Out™¢(I1,) € Out"(II,,) [ef. Remark 2.1.1]. This completes the proof
of assertion (iii).

Next, we verify assertion (i). The bijectivity portion of assertion
(i) follows from assertion (ii), together with the bijectivity portion of
[NodNon], Theorem B. Thus, it suffices to verify the injectivity portion
of assertion (i). First, we observe that injectivity in the case where
(g,7) = (0,3) follows from assertion (ii), together with the injectiv-
ity portion of [NodNon|, Theorem B. Write I}, (respectively, II}) for
the kernel of the surjection II,,4; — II,,_; (respectively, II, — II,,_4)

induced by the projection obtained by forgetting the factor(s) labeled

n+1, n (respectively, n). Here, if n = 1, then we set I1,,_; = Il o {1}.

Then recall [cf. e.g., the proof of [CmbCsp|, Theorem 4.1, (i)] that we
have natural isomorphisms
out out
My ~ I % I,y 5 I, ~ I % 10,
[cf. the discussion entitled “Topological groups’ in [CbTpl], §0]. Also,
we recall [cf. [MzTa], Proposition 2.4, (i)] that one may interpret the
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surjection H; —» HI induced by the surjection I1,,,; — II,, in question as
the surjection “II; — II;” that arises from the projection pry: Xy — X
in the case of an “X” of type (g, 7+n—1). Moreover, one verifies easily
that this interpretation is compatible with the definition of the various
“Out(—)’s” involved. Thus, since n;,; = 2 if r = 0, the above natural
isomorphisms allow one to reduce the injectivity in question to the
case where n = 1 and r # 0. On the other hand, this injectivity follows
immediately from a similar argument to the argument used in the proof
of [CmbCsp], Corollary 2.3, (ii), by replacing [CmbCsp|, Proposition
1.2, (iii) (respectively, the non-resp’d portion of [CmbCsp]|, Proposition
1.3, (iv); [CmbCsp], Corollary 1.12, (i)), in the proof of [CmbCsp],
Corollary 2.3, (ii), by Lemma 2.2, (i) (respectively, Lemma 2.2, (ii);
the injectivity in question in the case where (g,7) = (0,3), which was
verified above). This completes the proof of the injectivity portion of
assertion (i), hence also of assertion (i).

Finally, assertion (iv) follows immediately from assertion (i), to-
gether with a similar argument to the argument applied in the proof
of [CmbCsp|, Theorem 4.1, (iv). This completes the proof of Theo-
rem 2.3. O

Corollary 2.4 (PFC-admissibility of outomorphisms). In the no-
tation of Theorem 2.3, write

Out™ (I1,,) € Out(IL,)

for the subgroup of PF-admissible outomorphisms [i.e., roughly speak-
g, outomorphisms that preserve the fiber subgroups up to a possible
permutation of the factors — cf. [CbTpl|, Definition 1.4, (i)] and

Out™(11,,) € Out™™ (11,

for the subgroup of PFC-admissible outomorphisms [i.e., roughly speak-
ing, outomorphisms that preserve the fiber subgroups and the cuspidal
wertia subgroups up to a possible permutation of the factors — cf.
[CbTpl|, Definition 1.4, (iii)]. Let us regard the symmetric group on n
letters &, as a subgroup of Out(Il,) via the natural inclusion of The-
orem 2.3, (). Finally, suppose that (g,7) ¢ {(0,3);(1,1)}. Then the
following hold:

(i) We have an equality
Out(TL,) = Out™ (I1,,) .
If, moreover, (r,n) # (0,2), then we have equalities
Out(I1,) = Out™ (I1,,) = Out"(II,,) x &,

[cf. the notational conventions introduced in Theorem 2.3].
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(i) If either
r>0, n>3

or
n >4

Y

then we have equalities
Out(TT,,) = Out™*(11,,) = Out™(11,) x &,
[cf. the notational conventions introduced in Theorem 2.5].

Proof. First, we verify assertion (i). The equality in the first display
of assertion (i) follows from [MzTa], Corollary 6.3, together with the
assumption that (g,r) ¢ {(0,3);(1,1)}. The second equality in the
second display of assertion (i) follows from Theorem 2.3, (iv). This
completes the proof of assertion (i). Next, we verify assertion (ii). The
first equality of assertion (ii) follows immediately from Theorem 2.3,
(ii), together with the first equality of assertion (i). The second equality
of assertion (ii) follows from [NodNon|, Theorem B. This completes the
proof of assertion (ii). O

Corollary 2.5 (Anabelian properties of hyperbolic curves and
associated configuration spaces I). Let ¥ be a set of prime numbers
which is either equal to the set of all prime numbers or of cardinality
one; m < n positive integers; (g,r) a pair of nonnegative integers such
that 2g — 2 +1r > 0; k a field of characteristic € ¥; k a separable

closure of k; X a hyperbolic curve of type (g,r) over k. Write

G, ¢ Gal(k/k). For each positive integer i, write X; for the i-th

configuration space of X; (X;)z ©X, k; Ax, for the mazimal

pro- quotient of the étale fundamental group of (X;)z;
px,: G, — Out(Ay,)

for the pro-X outer Galois representation associated to X;; &; for the
symmetric group on i letters;

(I)ii 61 — Out(AXl)

for the outer representation arising from the permutations of the factors
of X;. Suppose that the following conditions are satisfied:

(1) (g,7) € {(0,3); (1, 1)}.

(2) If (r,n,m) € {(0,2,1);(0,2,2);(0,3,1)}, then there exists an
[ € X such that k is l-cyclotomically full, i.e., the [-adic
cyclotomic character of Gy has open image.

Then the following hold:
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Let o € Out(Ay, ). Then there exists a unique element o, €
&, such that a o ®,(0,) € Out'(Ax,) [cf. the notational
conventions introduced in Theorem 2.3]. Write

Ay, € OUtF(AXm)

for the outomorphism of Ax,, induced by oo ®,(0,), relative
to the quotient Ax, — Ax, by a fiber subgroup of colength m
of Ax,. [Note that it follows from [CbTpl|, Theorem A, (i),
that «,, does not depend on the choice of fiber subgroup of
colength m of Ax, ./

If (r,m,m) € {(0,2,1);(0,2,2);(0,3,1)}, then
Cout(ax,) (Im(px,)) C Out™ (Ax, )

[¢f. the notational conventions introduced in Corollary 2.4).
The map

Out(Ayx,) — Out(Ax,)

Q@ — O,
[cf. (i)] determines an exact sequence of homomorphisms of
profinite groups
1 — &, 2% Out™ (A, ) — Out(Ay,)

— where the second arrow s a split injection whose image
commutes with Out™(Ay, ) and has trivial intersection
with Im(p% ). If (r,n) # (0,2), then the map o — oy, deter-
mines a sequence of homomorphisms of profinite groups

1 — &, 2% Out(Ay,) — Out(Ax,)

— where the second arrow is a split injection whose im-
age commutes with Out"(Ax,) and has trivial intersec-
tion with Im(p%, ) — which is exact if, moreover, (r,n,m) #
(0,3,1).

Let oo € Out(Ax,). If (r,n,m) € {(0,2,1);(0,3,1)}, then we
suppose further that o € OutPFC(AXn which is the case if,
for instance, a € Cowyay,)(Im(p%,)) [cf. (ii)]. Then it holds
that

2,
)

a € ZOut(AXn) (Im(pin))

(respectively, Nouwax,)(Im(px,)) 5 Couax,)(Im(px,)))
iof and only if

m € Zout(ax,,)(Im(p¥. )

(respectively, Nout(Axm)(Im(pim)) : C’out(AXm)(Im(pim))).
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(v) For each positive integer i, write Auty(X;) for the group of au-
tomorphisms of X; over k. Then if the natural homomorphism

AUtk<Xm> - ZOut(AXm) (Im(p§m>>

15 bijective, then the natural homomorphism

Auty(X,) — ZOut(Axn)(Im(p)E(n))
1s bijective.

(vi) For each positive integer i, write Aut((X;)z/k) for the group
of automorphisms of (X;)z that are compatible with some au-
tomorphism of k; Aut’(Gy) for the group of automorphisms
of Gy that preserve Ker(py,) C Gy [where we note that, by

[NodNon], Corollary 6.2, (i), for any positive integer i, it holds
that Ker(py, ) = Ker(px,)]. Then if the natural homomorphism

Aut((Xp)z/k) — Aut’(Gy) XAut(Im(pgm))Nout(AXm)(Im(pim))

1s bijective, then the natural homomorphism

AU(X,)e/k) — AU (C0) X pumgrs, ) Nowtar) (Im(p5, )

is bijective.
Proof. First, we verify assertion (i). The existence of such a o, follows
from the fact that Out(Ax,) = Out"™ (A, ) [cf. Corollary 2.4, (i), to-
gether with assumption (1)]. The uniqueness of such a o, follows imme-
diately from the easily verified faithfulness of the action of &,,, via ®,,,
on the set of fiber subgroups of Ay, . This completes the proof of asser-
tion (i). Next, we verify assertion (ii). Since Out(Ay,) = Out™ (Ay,)
[cf. Corollary 2.4, (i), together with assumption (1)], assertion (ii)
follows immediately from [CmbGC], Corollary 2.7, (i), together with
condition (2). This completes the proof of assertion (ii).

Next, we verify assertion (iii). First, let us observe that it fol-
lows immediately from the various definitions involved that Im(®,) C
Out™C(Ayx,). Now since Out(Ay,) = Out™ (Ay,) [cf. Corollary 2.4,
(i), together with assumption (1)], and Out®(Ax,) is normalized by
Out™ (Ay, ), one verifies easily [i.e., by considering the action of ele-
ments of Out" (A, ) on the set of fiber subgroups of Ay, ] that the
second arrow in either of the two displayed sequences is a split injec-
tion. Moreover, since |as is easily verified| the outer action of Gy, via
p§(n, on Ay, fizes every fiber subgroup of Ay, , it follows immediately
from the faithfulness of the action of &, via ®,, on the set of fiber
subgroups of Ay, that the image of the second arrow in either of the
two displayed sequences has trivial intersection with Im(py ). Now
it follows from [NodNon|, Theorem B, that the image of the second
arrow of the first displayed sequence commautes with Out™®(Ay, ); in
particular, one verifies easily from the various definitions involved that
the third arrow of the first displayed sequence is a homomorphism. If
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(r,n) # (0,2), then it follows from Corollary 2.4, (i), that the image
of the second arrow of the second displayed sequence commutes with
Out®(Ax, ); in particular, one verifies easily from the various definitions
involved that the third arrow of the second displayed sequence is a ho-
momorphism. Now if (r,m) # (0,1), then it follows immediately from
the injectivity portion of Theorem 2.3, (i), together with the equality
Out(Ayx, ) = Out™(Ax,) [cf. Corollary 2.4, (i), together with assump-
tion (1)], that the kernel of the third arrow in either of the two displayed
sequences is Im(®,,). Moreover, if (r,n,m) € {(0,2,1);(0,3,1)}, then
it follows immediately from the injectivity portion of [NodNon], Theo-
rem B, that the kernel of the third arrow in the first displayed sequence
is Im(®,,). On the other hand, if (r,m) = (0,1) and n & {2, 3}, then it
follows immediately from the injectivity portion of [NodNon|, Theorem
B, together with Corollary 2.4, (ii), that the kernel of the third arrow
in either of the two displayed sequences is Im(®,,). This completes the
proof of assertion (iii).

Next, we verify assertion (iv). Now since the permutations of the
factors of X,, give rise to automorphisms of X, over k, it follows im-
mediately that Im(®,) C Zouyay,)(Im(p%,)). In particular, to ver-
ify assertion (iv), we may assume without loss of generality — by re-
placing a by a, [cf. assertion (i)] — that a € Out”(Ayx,), and that
m < n. Then necessity follows immediately. On the other hand, suffi-
ciency follows immediately from the exact sequences of assertion (iii).
This completes the proof of assertion (iv). Assertion (v) (respectively,
(vi)) follows immediately from assertions (i), (ii), (iii), together with
Lemma 2.7, (iii), below (respectively, Lemma 2.7, (iv), below). This
completes the proof of Corollary 2.5. O

Corollary 2.6 (Anabelian properties of hyperbolic curves and
associated configuration spaces II). Let X be a set of prime num-
bers which is either equal to the set of all prime numbers or of cardi-
nality one; m < n positive integers; (g9x,7x), (gy,ry) pairs of non-
negative integers such that 29x — 2+ rx, 29y — 2+ 1ry > 0; kx, ky
fields; kx, ky separable closures of kx, ky, respectively; X, Y hy-

perbolic curves of type (g9x,rx), (gy,ry) over kx, ky, respectively.

Write Gy o Gal(kx/kx); Gy, f Gal(ky /ky). For each positive

integer 1, write X;, Y; for the i-th configuration spaces of X, Y,
. def T def T

respectively; (Xi)z, = Xi Xpy kx; Yz, = Yi Xy ky; 70 ((Xo)z, ),

7 ((Yi)g, ) for the mazimal pro-X quotients of the étale fundamental

growps m((Xo)g ), m (Vg ) of (Xo)gy» (Vo)g, » respectively; m{™ (X),

kx
WEE)(Y;) for the geometrically pro-Y étale fundamental groups of X;, Y;,

respectively, i.e., the quotients of the étale fundamental groups m(X;),
m(Y;) of Xi, Yi by the respective kernels of the natural surjections



42 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

T (Xo)z) = T (Xigy ) m((Yi)z,) = 77 ((Ye)z, ). Suppose that the
following conditions are satisfied:
(1) {(gx,7x); (9v,7mv)} N {(0,3);(1,1)} = 0.

(2) If (rx,mn,m) (respectively, (ry,m,m)) is contained in the set
{(0,2,1);(0,2,2);(0,3,1)}, then there exists an I € ¥ such
that kx (respectively, ky ) is l-cyclotomically full, i.e., the -
adic cyclotomic character of Gy, (respectively, Gy, ) has open
image.

Then the following hold:

(i) Let 0: kx = ky be an isomorphism of fields that determines
an isomorphism kx — ky. For each positive integer i, write

Isomy(X;,Y;) for the set of isomorphisms of X; with Y; that
are compatible with the isomorphism kx — ky determined
by 0; Isomg(wiz)(Xi),ﬂz)(Yi)) for the set of isomorphisms of
7r§2) (X;) with 7T§Z) (Y;) that are compatible with the isomorphism
Gry — Gy, determined by 0. Then if the natural map
Tsomg (X, Vo) — Isomg (1 (X, ), 707 (Yi)) /Inn(7 ((Yin)7,. )

1s bijective, then the natural map
Tsomg(X,,, V;,) — Tsomg(mi ) (X,.), 78 (Vo)) /Inn(y (V)7 ))
15 bijective.

(ii) For each positive integer i, write Isom((X;)z /kx, (Yi)z, /ky)

for the set of isomorphisms of (X;)z, with (i), that are com-
patible with some field isomorphism of kx with ky;

Tsom (™ (X,) /Gy, 752 (Y3) /Gy )

for the set of isomorphisms of 7T§E) (X;) with W%E) (Y;) that are
compatible with some isomorphism of Gy, with Gy, . Then if
the natural map

Isom((Xon)z, /kx; (Yi)z, /Fy)

— Tsom(my ) (Xin) /G 1y (Vi) /Gy ) /Tnn (7} (Yo, )

1s bijective, then the natural map

Isom((Xn)z, /kx, (Ya)z, /ky)

— Tsom ({7 (X,) /Gy, 107 (Yn) /Gy ) /Tnn(7 (Yo ), ))

1s bijective.
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Proof. Consider assertion (i) (respectively, (ii)). If the set
tsomy (1 (Xa), 71 (Vo)) /Ion(a (Y2)g,. )
(respectively,
tsom(m” (Xa) (G 71 (Ya) /Gy ) /Ion(my (), )

is empty, then assertion (i) (respectively, (ii)) is immediate. Thus, we
may suppose without loss of generality that this set is nonempty. Then
one verifies easily from [MzTa], Corollary 6.3, together with condition
(1), that the set
> >
tsomg(mi™ (Xom), 71 (Vi) /Tom (7((Vin), )

ky

(respectively,

Tsom({ ™ (Xn) /G 75 (Yin) /Gy )/ Tn0(7 (Yo )7, )) )

is nonempty. Thus, it follows immediately from the bijectivity assumed
in assertion (i) (respectively, (ii)) that there exists an isomorphism
X,, = Y, that is compatible with the isomorphism kyx — ky deter-
mined by 6 (respectively, an isomorphism (X,,)z. — (Yn)z, that is
compatible with some isomorphism ky — ky). In particular, it follows
immediately from Lemma 2.7, (iii), below (respectively, Lemma 2.7,
(iv), below) that there exists an isomorphism X — Y that is compatible
with the isomorphism kx — ky determined by @ (respectively, an iso-
morphism X X, kx 5Y X oy ky that is compatible with some isomor-
phism kx — ky). Thus, by pulling back the various objects involved
via this isomorphism, to verify assertion (i) (respectively, (ii)), we may
assume without loss of generality that (X, kx, kx,0) = (Y, ky, ky, idz,)
(respectively, (X, kx,kx) = (Y, ky,ky)). Then assertion (i) (respec-
tively, (ii)) follows from Corollary 2.5, (v) (respectively, Corollary 2.5,
(vi)). This completes the proof of Corollary 2.6. O

Lemma 2.7 (Isomorphisms between configuration spaces of
hyperbolic curves). Let n be a positive integer; (gx,7rx), (9y,7y)
pairs of nonnegative integers such that 2gx —2+rx, 29y —2+1ry > 0;
kx, ky fields; kx, ky separable closures of kx, ky, respectively; X, Y
hyperbolic curves of type (9x,7x), (gv,ry) over kx, ky, respectively.

Write X,,, Y,, for the n-th configuration spaces of X, Y, respectively;

def - def - def - def
XEX = X XkX k‘X; YEY =Y Xky l{,’y,’ <X”)EX = Xn ka k’X; (Yn)ﬁy =

Y, Xi, ky; &, for the symmetric group on n letters; Auty, (X,) for
the group of automorphisms of X,, over kx;

‘Ifnl Gn — Auth (Xn)
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for the action of &,, on X,, over kx obtained by permuting the factors
of X,. Suppose that (9x,7x), (gv,ry) & {(0,3);(1,1)}. Then the
following hold:

(i) Let a: X,, = Y, be an isomorphism. Then there exists a
unique isomorphism og: ky — kx that is compatible with o
relative to the structure morphisms of X,, Y,.

(ii) Leta: X,, =Y, be an isomorphism. Then there exist a unique
permutation o € V,,(6,,) C Autg, (X,) and a unique isomor-
phism a;: X =Y that is compatible with o o o relative to the
projections X,, — X, Y, — Y to each of the n factors.

(iii) Write Isom(X,,,Y,,) for the set of isomorphisms of X, with'Y,,;
Isom(X,Y) o Isom(Xy,Y1). Then the natural map
Isom(X,Y) x U, (6,,) — Isom(X,,Y,)
1s bijective.
(iv) Write Isom((Xy)z, /kx, (Ya)z, /ky) for the set of isomorphisms

~

(X)), — (Ya)z, that are compatible with some isomorphism

ky = ko Tsom(Xg, Jkx, Yi, /ky) = Tsom((X1)z, [kx, (Y1)z, /kv).
Then the natural map

Isom(X7, /kx, Yz, /ky) X U, (6,) — Isom((Xn)EX/k;X, (Yn)gy/ky)
is bijective.
Proof. First, we verify assertion (i). Write (C:X)°8 (CY)le for the
n-th log configuration spaces [cf. the discussion entitled “Curves’ in
[CbTpl], §0] of [the smooth log curves over kx, ky determined by| X,
Y, respectively. Then recall [cf. the discussion at the beginning of
[MzTa], §2] that (CX)e, (CY)e are log regular log schemes whose
interiors are naturally isomorphic to X,,, Y,, respectively, and that the
underlying schemes CX,| CY of (CX)ls (CY)e are proper over ky,
ky, respectively. Thus, by applying [ExtFam]|, Theorem A, (1), to the
composite
Xn ﬂ) Yn — C}; - MQYJ’Y"‘”

— where we refer to the discussion entitled “Curves” in [CbTpl], §0,
concerning the notation “M,, . 4,”; the third arrow is the natural
(1-)morphism arising from the definition of C¥ — we conclude that
the composite

« Y el i
Xn - Yn - Cn - ngﬂ“y-i-n - (ngﬂ“y-i-n)c

— where we write (M, +n)¢ for the coarse moduli space associated
to Mgy ry4n — factors through the natural open immersion X, —
CX. On the other hand, one verifies immediately that the composite
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CY — Mgy ryin — (Myy rpin)¢ is proper and quasi-finite, hence fi-
nite. In particular, if we write CT C C:X x;,CY for the scheme-theoretic
closure of the graph of the composite X,, = Y, < CY then the com-
posite CT < CX x,, Y 2 CX is a finite morphism from an irreducible
scheme to a normal scheme which induces an isomorphism between the
respective function fields. Thus, we conclude that this composite is an
isomorphism, hence that a extends uniquely to a morphism CX — CY.
Now recall that CX is proper, geometrically normal, and geometrically
connected over kx. Thus, it follows immediately, by considering global
sections of the respective structure sheaves, that there exists a unique
homomorphism «q: ky — kx that is compatible with «. Moreover, by
applying a similar argument to a~!, it follows that aq is an isomor-
phism. This completes the proof of assertion (i).

Next, we verify assertion (ii). First, let us observe that, by replacing
Y by the result of base-changing Y via ag: ky — kx [cf. assertion (i)],
we may assume without loss of generality that ky = ky, ky = EX,
and that « is an isomorphism over ky. Next, let us observe that the
fact that o and «y as in the statement of assertion (ii) are unique is
immediate; thus, it remains to verify the existence of such ¢ and ;.
Next, let us observe that it follows immediately from [MzTa], Corollary
6.3, that there exists a permutation o € ¥,,(&,,) such that if we identify
the respective sets of fiber subgroups of Ay, , Ay, — where we write
Ax,, Ay, for the maximal pro-l quotients of the étale fundamental
groups of (X,)z , (Yn)z,, respectively, for some prime number [ that
is invertible in kx — with the set 28"} [cf. the discussion entitled
“Sets” in [CbTpl], §0] in the evident way, then the automorphism of

the set 2™ induced by the composite L 4 oo is the wdentity
automorphism. Write pry: X,, — X, pry: Y, — Y for the projections
to the factor labeled n, respectively. Then we claim that the following
assertion holds:

Claim 2.7.A: There exists an isomorphism a;: X =Y
that is compatible with 3 relative to pry, pry.

Indeed, write I' C X xj, Y for the scheme-theoretic image via X,, Xy,

Y (prx—’lc>iY) X Xy, Y of the graph of the composite X, LA Y., Yy,
Next, let us observe that if Z is an irreducible scheme of finite type
over ky, then any nonconstant i.e., dominant| kx-morphism Z — Yi,
induces an open homomorphism between the respective fundamental
groups. Thus, since the automorphism of the set 2{1 ™} induced by
0 is the identity automorphism, it follows immediately that, for any

kx-valued geometric point Z of X, if we write F' for the geometric
Br
fiber of pry: X, — X at T, then the composite F' — (X,)z, =X

(pry )z
(Yo)zx Lk Yz, is constant. In particular, one verifies immediately
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that ' is an integral, separated scheme of dimension 1. Thus, since
pry is surjective, geometrically connected, smooth, and factors through

the composite I' — X X, Y %X, it follows immediately that this
composite morphism I' — X is surjective and induces an isomorphism
between the respective function fields. Therefore, one concludes easily,
by applying Zariski’s main theorem, that the composite I' — X X,

Y 2 X is an 1somorphism, hence that there exists a unique morphism
ar: X — Y such that pry o f = ay o pry. Moreover, by applying a
similar argument to 37!, it follows that «; is an isomorphism. This
completes the proof of Claim 2.7.A.

Write v for the composite of 3 with the isomorphism Y, = X,, de-
termined by a;'. Then it is immediate that v is an automorphism
of X, over X relative to pry; in particular, the outomorphism of
Ay, induced by ~ is contained in the kernel of the homomorphism
Out"(Ax,) — Out™(Ax) — where we write Ay for the maximal pro-I
quotient of the étale fundamental group of Xz -~ induced by pry.
Now, by applying a similar argument to the argument of the proof of
Claim 2.7.A; one verifies easily that, for each i € {1,--- ,n}, there ex-
ists an automorphism ~; ; of X that is compatible with 7 relative to the
projection X,, — X to the factor labeled i. [Thus, v;, = idx.] More-
over, since, by applying induction on n, we may assume that assertion
(ii) has already been verified for n — 1, it follows immediately that
the outomorphism of Ay, induced by 7 is contained in Out™“(Ax, ),
hence in the kernel of the homomorphism Out™(Ayx,) — Out™(Ax)
induced by the projections X, — X to each of the n factors [cf.
[CmbCsp], Proposition 1.2, (iii)]. Therefore, it follows immediately
from the argument of the first paragraph of the proof of [LocAn], The-
orem 14.1, that, for each i € {1,--- ,n}, 71, is the identity automor-
phism of X, hence also that v is the identity automorphism of X,,. This
completes the proof of assertion (ii).

Assertions (iii), (iv) follow immediately from assertion (ii), together

with the various definitions involved. This completes the proof of
Lemma 2.7. 0
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3. SYNCHRONIZATION OF TRIPODS

In the present §3, we introduce and study the notion of a tripod of
the log fundamental group of the log configuration space of a stable
log curve [cf. Definition 3.3, (i), below]. In particular, we discuss the
phenomenon of synchronization among the various tripods of the log
fundamental group [cf. Theorems 3.17; 3.18, below|. One interesting
consequence of this phenomenon of tripod synchronization is a certain
non-surjectivity result [cf. Corollary 3.22 below|. Finally, we apply
the theory of synchronization of tripods to show that, under certain
conditions, commuting profinite Dehn multi-twists are “co-Dehn” [cf.
Corollary 3.25 below| and to compute the commensurator of certain
purely combinatorial/group-theoretic groups of profinite Dehn multi-
twists in terms of scheme theory [cf. Corollary 3.27 below].

In the present §3, let (g,r) be a pair of nonnegative integers such
that 29 — 2 +r > 0; n a positive integer; X a set of prime numbers
which is either the set of all prime numbers or of cardinality one; k
an algebraically closed field of characteristic ¢ ¥; (Spec k)¢ the log
scheme obtained by equipping Spec k with the log structure determined
by the fs chart N — k that maps 1 — 0; X8 = X a stable log
curve of type (g,r) over (Speck)°®. For each [possibly empty] subset
E CA{1,--- ,n}, write

X
for the E*-th log configuration space of the stable log curve X% [cf.
the discussion entitled “Curves” in [CbTpl], §0] whose factors we think
as being labeled by the elements of E C {1,--- ,n};

g

for the maximal pro-X quotient of the kernel of the natural surjection
T (X28) — 7 ((Speck)®®). Thus, by applying a suitable specializa-
tion isomorphism — cf. the discussion preceding [CmbCsp]|, Definition
2.1, as well as [CbTpl|, Remark 5.6.1 — one verifies easily that g is
equipped with a natural structure of pro-3 configuration space group
— cf. [MzTal, Definition 2.3, (i). For each 1 < m < n, write

log def /1o _ def
PR GRS | 5 | PR
Thus, for subsets £/ C E C {1,--- ,n}, we have a projection
plEofEﬁ leé)g - ngg

obtained by forgetting the factors that belong to E'\ E’. For 1 < m’ <
m < n, we shall write
pg/E/: HE —» HE/

for the surjection induced by plgﬁ B

def
Hg/p = Ker(pg/E’) Cllg;
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log def log . Xlog Xlog .
Py = Pl m} /{1y Sm” 77 A

m o def T . .
pm/m/ o p{lv'“vm}/{lr'“vm/} ) Hm _» Hm/ ’

ef
Hm/m’ d: H{1,~~~,m}/{l,~--,m’} C 1L, .

Definition 3.1. Let i € E C {1,--- ,n}; z € X, (k) a k-valued geo-
metric point of the underlying scheme X,, of X°8.

(i) Let " C {1,--- ,n} be a subset. Then we shall write xp €
Xg(k) for the k-valued geometric point of Xg obtained by
forming the image of x € X, (k) via pp ... ny/pr: Xn — Xgr;

log def lo

(ii) We shall write

g

for the semi-graph of anabelioids of pro-¥X PSC-type deter-
mined by the stable log curve X'°¢ over (Spec k)'°® [cf. [CmbGC],

Example 2.5];
G
for the underlying semi-graph of G;
Ig

for the [pro-X] fundamental group of G. Thus, we have a nat-
ural outer isomorphism

M, T, .

(iii) We shall write
Gicp
for the semi-graph of anabelioids of pro-¥X PSC-type deter-
mined by the geometric fiber of the projection plgf( YOI X]lgg —

lo lo lo. .
XE\g{i} over IE%{Z} - XE\g{i} [ef. ()];
HgiGE,z

for the [pro-X] fundamental group of G;cp .. Thus, we have a
natural identification

G =Giclita

and a natural T g-orbit [i.e., relative to composition with au-
tomorphisms induced by conjugation by elements of IIg| of
1somorphisms

(Mg 2) Ugye\ay) — Mgy, -
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For the remainder of the present §3, let us fix an outer isomor-
phism

Up/may — Ugiep.
whose constituent isomorphisms belong to the Ilg-orbit of iso-
morphisms just discussed.

(iv) Let v € Vert(Giep.) (respectively, e € Cusp(Gieps); € €
Node(Gicp.); e € Edge(Gicp); 2 € VCN(Gicp)). Then we
shall refer to the image [in IIg| of a verticial (respectively, a
cuspidal; a nodal; an edge-like; a VCN-) subgroup of Ilg,_, .
associated to v € Vert(Giep.) (respectively, e € Cusp(Gicp..);
e € Node(Giep.); e € Edge(Gieps); 2 € VCN(Giep,)) via the
inverse Ilg,.,, — g/ € Hg of any isomorphism that
lifts the fized outer isomorphism discussed in (iii) as a verti-
cial (respectively, a cuspidal; a nodal; an edge-like; a VCN-)
subgroup of Ilg associated to v € Vert(Gicp.) (respectively,
e € Cusp(Gicpe); € € Node(Gicpe); € € Edge(Gicpe); # €
VCN(Gicg)). Thus, the notion of a verticial (respectively, a
cuspidal; a nodal; an edge-like; a VCN-) subgroup of Iy as-
sociated to v € Vert(Gicps) (respectively, e € Cusp(Giep . );
e € Node(Giep); e € Edge(Gicpy); 2 € VCN(Giep,)) de-
pends on the choice of the fized outer isomorphism of (iii) [but
cf. Lemma 3.2, (i), below, in the case of cuspsl].

(v) We shall say that a vertex v € Vert(Giep ) of Gicpy is a(n)
[E-Jtripod of X% if v is of type (0,3) [cf. [CbTpl], Definition
2.3, (iii)]. If, in this situation, C(v) # 0, then we shall say that
the tripod v is cusp-supporting.

(vi) We shall say that a cusp ¢ € Cusp(Gieg ;) of Gicp . is diagonal
if ¢ does not arise from a cusp of the copy of X'°¢ given by the
factor of X198 labeled i € E.

Lemma 3.2 (Cusps of various fibers). Let i € E C {1,--- ,n};
x € X,(k). Then the following hold:

(i) Let ¢ € Cusp(Giep,) and 1, C Ig,_, . — g/ p\}) o cuspi-
dal subgroup of Tg,.,, . — g associated to ¢ € Cusp(Giep,y).
Then any I1g-conjugate of I1. is, in fact, a I1g g\ 3)-conju-
gate of II..

(ii) Fach diagonal cusp of Gicp . [cf. Definition 3.1, (vi)] admits
a natural label € E\{i}. More precisely, for each j € E\ {i},
there exists a unique diagonal cusp of Gicp, that arises

from the divisor of the fiber product over k of E* copies of X
consisting of the points whose i-th and j-th factors coincide.



50 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

(iii) Let a € Aut™(I,) [¢f. [CmbCsp], Definition 1.1, (ii)]. Sup-
pose that either E # {1,--- ,n} orn > ngc [cf. Theorem 2.5,
(it)]. Then the outomorphism of Ug,_, . < Ilg/mpy deter-
mined by « is group-theoretically cuspidal /c¢f. [CmbGC],
Definition 1.4, (iv)].

(iv) Let a € Aut"(Il,) and ¢ € Cusp(Gicr.,) a diagonal cusp of
Gicp,e- Suppose that the outomorphism of g, . & g/ e\
determined by « is group-theoretically cuspidal. Then
this outomorphism preserves the llg, . -conjugacy class of
cuspidal subgroups of Tlg,_, . & g/ e\y) associated to ¢ €

CUSp(gz'eE,x)-

Proof. Assertion (i) follows immediately from the [easily verified] fact
that the restriction of pl Jevy: He = Ilpgy to the normalizer of I,
in I[Ig is surjective. Assertion (ii) follows immediately from the various
definitions involved. Next, we verify assertion (iii). If £ # {1,--- ,n}
(respectively, n > npc), then assertion (iii) follows immediately from
[CbTpl], Theorem A, (ii) (respectively, Theorem 2.3, (ii), of the present
paper), together with assertion (i). This completes the proof of asser-
tion (iii). Finally, assertion (iv) follows immediately from the definition
of F-admissibility [cf. also assertion (ii)]. This completes the proof of
Lemma 3.2. O

Definition 3.3. Let £ C {1,--- ,n}.

(i) We shall say that a closed subgroup H C Ilg of Ilg is a(n)
[E-|tripod of 11,, if H is a verticial subgroup of Ilg [cf. Def-
inition 3.1, (iv)] associated to a(n) [E-Jtripod v of X8 [cf.
Definition 3.1, (v)]. If, in this situation, the tripod v is cusp-
supporting [cf. Definition 3.1, (v)], then we shall say that the
tripod H is cusp-supporting.

(ii) We shall say that an E-tripod of II,, [cf. (i)] is trigonal if, for
every J € E, the image of the tripod via pg/{j}: g — I is
trivial.

(iii) Let T'C Il be an E-tripod of II,, [cf. (i)] and £ C E. Then
we shall say that 7" is E'-strict if the image pj 5 (T) C Ilg: of
T via pg/E,: Iy — Il is an E'-tripod of II,,, and, moreover,
for every E” C E', the image of the E’-tripod pg/E,(T) via
pg//E,,: Iz — Iy is not a tripod of I1,,.

(iv) Let h be a positive integer. Then we shall say that an E-
tripod T of II,, [cf. (i)] is h-descendable if there exists a subset



COMBINATORIAL ANABELIAN TOPICS II 51

E' C E such that the image of T via pg/E, : g — g isan F'-
tripod of II,,, and, moreover, (E')* < n — h. [Thus, one verifies
immediately that an E-tripod T' C Ilg of I1,, is 1-descendable
if and only if either F # {1,--- ,n} or T fails to be E-strict
— cf. (iii).]

Remark 3.3.1. In the notation of Definition 3.1, let v € Vert(Gicp.4)
be an E-tripod of X°8 [cf. Definition 3.1, (v)]. Write T' C Il for the E-
tripod of 11,, associated to v [cf. Definition 3.3, (i)]; F), for the irreducible
component of the geometric fiber of pr/p\i}): Xg — Xp\fiy at xe ()
corresponding to v; FI°¢ for the log scheme obtained by equipping F,
with the log structure induced by the log structure of ng; n, for the
rank of the group-characteristic of FI°¢ [cf. [MzTa], Definition 5.1, (i)]
at the generic point of F,. Then it is immediate that the n,-interior
U, C F, of Fl°¢ [cf. [MzTa], Definition 5.1, (i)] is a nonempty open
subset of F, which is isomorphic to P}, \ {0,1,00} over k. Moreover,
one verifies easily that if we write U for the log scheme obtained by
equipping U, with the log structure induced by the log structure of X Z?g,
then the natural morphism U® — U, [obtained by forgetting the log
structure of U!°¢] determines a natural outer isomorphism T = w7 (U,)
— where we write “r7(—)” for the maximal pro-Y quotient of the étale
fundamental group of “(—)”. In particular, we obtain a natural outer
isomorphism
T =5 7P 0,1, 00))

that is well-defined up to composition with an outomorphism of 73 (P}, \
{0,1,00}) that arises from an automorphism of P} \ {0,1, 0o} over k.

Definition 3.4. Let £ C {1,--- ,n}.

(i) Let T C Il be an E-tripod of II,, [cf. Definition 3.3, (i)].
Then T" may be regarded as the “II;” that occurs in the case
where we take “X'°8” to be the smooth log curve associated to
Pi\ {0,1,00} [cf. Remark 3.3.1]. We shall write

Out®(T) C Out(T)
for the [closed] subgroup of Out(T") consisting of C-admissible
outomorphisms of 7" [cf. [CmbCsp], Definition 1.1, (ii)];
Out®(T)°P C Out(T)

for the [closed| subgroup of Out(7T) consisting of C-admissible
outomorphisms of T that induce the identity automorphism of
the set of T-conjugacy classes of cuspidal inertia subgroups;

Out(T)* C Out(T)
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for the centralizer of the subgroup [~ &3, where we write G
for the symmetric group on 3 letters| of Out(7") consisting of
the outer modular symmetries [cf. [CmbCsp], Definition 1.1,
(vi)];
Out(7T)* C Out(T)

for the [closed] subgroup of Out(T') given by the image of the
natural homomorphism Out®(T3) = Out™(T3) — Out(T) [cf.
Theorem 2.3, (ii); [CmbCsp], Proposition 1.2, (iii)] — where
we write 15 for the “Il,” that occurs in the case where we take
“X™¢” to be the smooth log curve associated to P\ {0, 1, 0o};

owt®(T)2 ¥ Out®(T) N Out(T)> ;

Out®(T)2+ & 0ut®(T)2 N Out(T)*
[cf. [CmbCsp], Definition 1.11, (i)].

(ii) Let ' C{1,--- ,n};let T CIlg, T" C g be E-, E'-tripods of
IT,, [cf. Definition 3.3, (i)], respectively. Then we shall say that
an outer isomorphism a: T' = T" is geometric if the composite

(P \ {0,1,00}) «— T — T = 77'(P; \ {0, 1, 00})
— where the first and third arrows are natural outer isomor-
phisms of the sort discussed in Remark 3.3.1 — arises from an
automorphism of P} \ {0,1, 00} over k.

Remark 3.4.1. In the notation of Definition 3.4, (ii), one verifies easily
that every geometric outer isomorphism a: T = T" preserves cuspidal
inertia subgroups and outer modular symmetries [cf. [CmbCsp], Defi-
nition 1.1, (vi)], and, moreover, lifts to an outer isomorphism Ty — T}
[i.e., of the corresponding “IIy’s”] that arises from an isomorphism of
two-dimensional configuration spaces. In particular, the isomorphism
Out(T) = Out(T") induced by « determines isomorphisms

Out®(T) = Out®(7") , Out®(T)P = Out®(T")™P
Out(7T)» = Out(7T")? , Out(T)" == Out(7T")"
[cf. Definition 3.4, (i)].

Lemma 3.5 (Triviality of the action on the set of cusps). In the
notation of Definition 3.4, it holds that Out®(T)» C Out®(T)ewP.

Proof. This follows immediately from the [easily verified] fact that S
is center-free, together with the various definitions involved. O
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Lemma 3.6 (Vertices, cusps, and nodes of various fibers). Let i,
J € E be two distinct elements of a subset E C {1,--- ,n}; x € X, (k).
Write 2 j. € VCN(Gjep\(i},2) for the element of VON(Gjcp\fi},e) on
which xp\ gy lies, that is to say: If xp\y s a cusp or node of the geo-
metric fiber of the projection pl(%g\{.})/(E\{m} X]lg\{z} — Xg)\g{i’j} over
IIE\{”} corresponding to an edge e € Edge(Gjep\(i}.2), then zija o e;
if Tp\fiy zs neither a cusp nor a node of the geometric fiber of the pro-

log log lo,
jection p(E\{ D/(E\{i}) - XE\{} — XE\{”} over .CEE%{”}, but lies on the
wrreducible component of the geometric fiber corresponding to a vertex

v E Vert(gjeE\{Z z), then 2 4 & . Then the following hold:

(i) The automorphism ofXEOg determined by permuting the factors
labeled i, j induces natural bijections

Vert(Gjep\ (it,e) — Vert(Giep jyz) ;

CUSp(gjeE\{i},m) — Cusp(gieE\{j},x) ,
Node(Gjep\{i},«) — Node(Giep\(j3.) -

(ii) Let us write

¢ ¢ Cusp(Gier.)

for the diagonal cusp of Gicg . [cf. Definition 3.1, (vi)] la-
beled j € E\{i} [cf. Lemma 3.2, (ii)]. Thenplgf(E\{j}): X8 —

X}g\g{j} induces a bijection
Cusp(Gier,x) \ {¢i%} = Cusp(Giep (j}.a) -

(iii) Suppose that z; ;. € Vert(Gijcp (i},2). Then pE/(E\{J}) Xlog —

X;{g{j} induces a bijection
Vert(Giep,.) — Vert(Gicp\ (j}.z) -

(iv) Suppose that z;j, € Edge(Gjcp\(iy2). Then there exists a
unique vertex

o € Vert(Gier..)
log

such that pgj g ) XpE— X};’\g{ .y induces a bijection

Vert(Giep.x) \ {055} = Vert(Gier\(jy.a)
Moreover, vi% is of type (0,3) [i.e., v} is an E-tripod

©,J,%

of X8 — c¢f. Definition 3.1, (v)], cmd cflja:gv € C(vrs%) [cf.
(ii)]. Finally, any verticial subgroup of Ilg associated to viSY,

surjects, via pE/(E\{j}), onto an edge-like subgroup of Ilg\ (5
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associated to the edge € Edge(Gicp\(jy,0) determined by z; ;. €
Edge(Gjcp\fi},e) via the bijections of (i).

(v) Suppose that E* = 3. Write h € E\ {i,j} for the unique
element of E\ {i,j}. Suppose, moreover, that z; ; , = c‘f,?i €
Cusp(Gjer\(it2) [cf- (i)]. Then the Ilg-conjugacy class of

a wverticial subgroup of g associated to the verter v}y

Vert(Gicr..) [c¢f. (iv)] does not depend on the choice of the

triple (i,7,x). Moreover, this llg-conjugacy class may also be

characterized uniquely as the Il g-conjugacy class of subgroups
of llg associated to some trigonal E-tripod of I1,, [cf. Defi-

nition 3.3, (ii)].

Proof. First, we verify assertions (i), (ii), (iii), and (iv). To verify as-
sertions (i), (ii), (iii), and (iv) — by replacing X2 by the base-change
of plEof{m}: X2 - X};“)%{i,j} via a suitable morphism of log schemes
(Spec k)8 — X{g\g{i’j} whose image lies on zp\ (53 € Xp\gijy (k) [cf.
Definition 3.1, (i)] — we may assume without loss of generality that
E* = 2. Then one verifies easily from the various definitions involved
that assertions (i), (ii), (iii), and (iv) hold. This completes the proof
of assertions (i), (ii), (iii), and (iv). Finally, we consider assertion (v).
First, we observe the easily verified fact [cf. assertions (iii), (iv)] that
the irreducible component corresponding to an E-tripod of X!°¢ [cf.
Definition 3.1, (v)] that gives rise to a trigonal E-tripod of II,, neces-
sarily collapses to a point upon projection to Xpg for any E' C E of
cardinality < 2. In light of this observation, it follows immediately [cf.
assertions (i), (ii), (iii), (iv)] that any E-tripod of X!°8 that gives rise to
a trigonal E-tripod of II,, arises as a vertex “v;'{%” as described in the
statement of assertion (v). Now the remainder of assertion (v) follows
immediately from the various definitions involved [cf. also the situa-
tion discussed in [CmbCsp], Definition 1.8, Proposition 1.9, Corollary
1.10, as well as the discussion, concerning specialization isomorphisms,
preceding [CmbCsp)|, Definition 2.1; [CbTpl|, Remark 5.6.1]. This com-
pletes the proof of Lemma 3.6. U

Definition 3.7. Let £ C {1,--- ,n}.

(i) Let v be an E-tripod of X°¢ [cf. Definition 3.1, (v)]; thus, v
belongs to Vert(G;cp ) for some choice of i € E and x € X,,(k).
Let j € E'\ {i} and e € Edge(Gjcp\{i},«)- Then we shall say
that v, or equivalently, an E-tripod of II,, associated to v [cf.
Definition 3.3, (i)], arises from e if e = z; j, [cf. the statement

of Lemma 3.6], and v = v}y [cf. Lemma 3.6, (iv)].
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(i) We shall say that an E-tripod of II,, is central if E* = 3, and,
moreover, the tripod is a verticial subgroup of the sort dis-
cussed in Lemma 3.6, (v), i.e., the unique, up to I1g-conjugacy,
trigonal E-tripod of II,.

Lemma 3.8 (Strict tripods). Let £ C {1,--- ,n} and T C Ilg an
E-tripod of I1,, [cf. Definition 3.3, (i)]. Then the following hold:

(i) There exists a [not necessarily unique!] subset E' C E such
that T is E’-strict [cf. Definition 3.3, (iii)]. Moreover, in this
situation, Py /gt Ug — Mg induces an isomorphism T 5
Tr onto an E'-tripod Tk of 11,,.

(ii) T is E-strict if and only if one of the following conditions is
satisfied:

(1) EF = 1.

(2c) Ef =2; T C Iy is a verticial subgroup of Ilg associated
to the vertex vy, € Vert(Giep ) of Lemma 3.6, (iv), for
some choice of (i,7,x) such that z; j, € Cusp(Gjcp\{i}.z)-
[In particular, T arises from z;;, € Cusp(Gjcp (i}z) —

cf. Definition 3.7, (i).]

(2x) E* = 2; T C Ilg is a verticial subgroup of Ilg associated
to the vertex v;5% € Vert(Giep.) of Lemma 3.6, (iv), for
some choice of (i,7,x) such that 2 j, € Node(Gjcp\{i}.z)-
[In particular, T" arises from z;;, € Node(Gjcp\fi}.e) —

cf. Definition 3.7, (i).]
(3) E¥ =3, and T is central [cf. Definition 3.7, (ii)].

(iii) Suppose that T is trigonal [cf. Definition 3.3, (ii)]. Then
there exists a [not necessarily unique!] subset E' C E such
that (E')* = 3, and, moreover, the image of T C g via
pg/E,: Iy — Ilg is a central tripod.

Proof. Assertion (i) follows immediately from the various definitions
involved by applying induction on E*, together with the well-known
elementary fact that any surjective endomorphism of a topologically
finitely generated profinite group is necessarily bijective. Next, we ver-
ify assertion (ii). First, let us observe that sufficiency is immediate.
Thus, it remains to verify necessity. Suppose that T is E-strict. Let
i€ E;x e X, (k); v e Vert(Giep) a vertex of type (0,3) such that
T is a verticial subgroup of IIg associated to v. [Thus, we have an
inclusion T C Mg g gy € Hp — cf. Definition 3.1, (iv).] Now one
verifies easily that if there exists a diagonal cusp ¢ € Cusp(Giep.) [cf.
Definition 3.1, (vi)] such that ¢ € C(v), then it follows immediately
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that there exists an element j € E'\ {i} such that the image of T C Il
via pg/(E\{j}): Hp — g\ is an (E\ {j})-tripod [cf. also Lemma 3.2,
(ii); Lemma 3.6, (iii), (iv)]. Thus, since T  is E-strict, we conclude
that every cusp of Gep, that is & C(v) is non-diagonal. In particular,
since v is of type (0,3), it follows immediately from Lemma 3.2, (ii),
that 0 < E* — 1 < C(v)* < 3. If C(v)* = 0, then it follows from the
inequality E* — 1 < C(v)* that E¥ = 1, i.e., condition (1) is satisfied.
If C(v)* = 3, then one verifies easily that E* = 1, i.e., condition (1)
is satisfied. Thus, it remains to verify assertion (ii) in the case where
C(v)f € {1,2}.

Suppose that C(v)* = 1 and E* # 1. Then it follows immediately
from the inequality Ef — 1 < C(v)* that E* = 2. Now let us recall
[cf. Lemma 3.2, (ii)] that the number of the diagonal cusps of Giep , is
= E* — 1 = 1. Moreover, the unique cusp on v is the unique diagonal
cusp of Giep, [cf. the argument of the preceding paragraph]. Thus,
one verifies easily that T satisfies condition (2y). Next, suppose that
C(v)* = 2 and E* # 1. Then it follows immediately from the inequality
E* —1 < C(v)* that E* € {2,3}. Now let us recall [cf. Lemma 3.2, (ii)]
that if E¥ = 2 (respectively, E* = 3), then the number of the diagonal
cusps of Gicp., is = Ef — 1, i.e., 1 (respectively, 2). Moreover, the set
of diagonal cusp(s) of Gieg, is contained in (respectively, is equal to)
C(v) [cf. the argument of the preceding paragraph]. Thus, one verifies
easily that T" satisfies condition (2¢) (respectively, (3)). This completes
the proof of assertion (ii).

Finally, we verify assertion (iii). It follows from assertion (i) that
there exists a subset £ C FE such that T is E’-strict. Moreover, it
follows immediately from the definition of a trigonal tripod that the
E’-tripod given by the image pg/E,(T) C Mg is trigonal. On the
other hand, if the E’-tripod p' y (1) satisfies any of the conditions
(1), (2¢), (2n) of assertion (ii), then one verifies easily that pg/E/(T) is
not trigonal [cf. the final portion of Lemma 3.6, (iv)]. Thus, p%/E, (T)
satisfies condition (3) of assertion (ii); in particular, p'; (1) is central.
This completes the proof of assertion (iii). U

Lemma 3.9 (Generalities on normalizers and commensura-
tors). Let G be a profinite group, N C G a normal closed subgroup
of G, and H C G a closed subgroup of G. Then the following hold:

(i) It holds that Co(H) C Co(H N N).

(i) It holds that Cq(H) C Ng(Z5¢(H)) [cf. the discussion entitled
“Topological groups” in §0].
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(iii) Suppose that H C N. Then it holds that Cq(H) C Ng(Cn(H)).
In particular, if, moreover, H is commensurably terminal
in N, then it holds that Co(H) = Ng(H).

(iv) Write HY H/(HNN)C GY< G/N. If HN N is commen-

surably terminal in N, and the image of Cq(H) C G in G

is contained in Ng(H), then Cqo(H) = Ng(H).
Proof. Assertion (i) follows immediately from the various definitions
involved. Next, we verify assertion (ii). Let g € Cg(H) and a €
Z8e(H). Since Z8°(H) = Z5°(H 0 (g - H - g)) = Z8(g™ - H - ),
there exists an open subgroup U C H of H such that a € Zg(g7'-U-g).
But this implies that gag™' € Zg(U) C Z$°(H). This completes the
proof of assertion (ii). Next, we verify assertion (iii). Let g € Cg(H)
and a € Cy(H). Since Cy(H) C Cq(H) = Co(HN (g7 - H - g)) =
Ca(g™' - H - g), we conclude that ag™ - H - ga™' is commensurate
with ¢~ - H - g. In particular, gag™' - H - ga~ g™ is commensurate
with H, ie., gag™' € Cq(H) N N = Cy(H). This completes the
proof of assertion (iii). Finally, we verify assertion (iv). First, we
observe that since H N N is commensurably terminal in N, one verifies
easily that H = Ng.ny(H N N). Let ¢ € Cg(H). Then since the
image of Cq(H) C G in G is contained in Ng(H), it is immediate that
g-H-g7' C H-N. On the other hand, again by applying the fact that
HNN is commensurably terminal in N, we conclude immediately from
assertions (i), (iii), that Cq(H) € Co(H N N) = Ng(H N N). Thus,
we obtain that (g- H-¢g~') NN = H N N; in particular, g- H - g~' C
Nun((g-H-g)NN) = Nyy(HNN) = H, ie., g € Ng(H). This
completes the proof of assertion (iv). O

Lemma 3.10 (Restrictions of outomorphisms). Let G be a profi-
nite group, H C G a closed subgroup of G. Write Out” (G) C Out(G)
for the group of outomorphisms of G that preserve the G-conjugacy
class of H. Suppose that the homomorphism Ng(H) — Aut(H) de-
termined by conjugation factors through Inn(H) C Aut(H). Then the
following hold:

(1) For a € Out™ (@), let us write a|y for the outomorphism of H
determined by the restriction to H C G of a lifting a € Aut(G)
of a such that a(H) = H. Then |y does not depend on the
choice of the lifting “a”, and the map

Out”(G) — Out(H)
given by assigning a — «|g is a group homomorphism.
(ii) The homomorphism

Out?(G) — Out(H)
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of (i) depends only on the G-conjugacy class of the closed
subgroup H C G, 1i.e., if we write H” def v-H -yt forvy € G,
then the diagram

Out”(G) —— Out(H)

| |

Out”" (G) —— Out(H)
— where the upper (respectively, lower) horizontal arrow is
the homomorphism given by mapping o — «|g (respectively,
a — algv), and the right-hand vertical arrow is the isomor-
phism obtained by conjugation via the isomorphism H = H?Y
determined by conjugation by v € G — commutes.

Proof. Assertion (i) follows immediately from our assumption that the
homomorphism Ng(H) — Aut(H) determined by conjugation factors
through Inn(H) C Aut(H), together with the various definitions in-
volved. Assertion (ii) follows immediately from the various definitions
involved. This completes the proof of Lemma 3.10. 0

Lemma 3.11 (Commensurator of a tripod arising from an
edge). In the notation of Lemma 3.6, suppose that (j,i) = (1,2);
E = {iaj}f' Zijax € Edge<gjeE\{i},x)~ /ThUS; gjeE\{i},x = gz‘eE\{j},m =g,
Iy =g, I = gy = g,y . = Hoi oy = Hpygay = s,

def def de

: f
Write 92/1 = gz‘eE,x; 91\2 = gjeE,o:; p{l\g = P%/{g}i I, — H{Q};

def ~ def . def
H1\2 = Ker(pll]\z) = HE/{Z} — Hgl\z; 2y = Zijax € Edge(g); cdiag <
cf‘fi € Cusp(Goy1) [c¢f. Lemma 3.6, (ii)]; v™°¥ def v & Vert(Gay1)

[c¢f. Lemma 3.6, (wv)]. Let 11, C II; be an edge-like subgroup as-
sociated to z, € Edge(G); Ilpmew C Iy a werticial subgroup asso-

ciated to v"V; Ilaiae C Iy a cuspidal subgroup associated to cdiag

that is contained in Ilyuew [cf. Lemma 8.6, (w)]. Write 1|, o

def def
H2 XHl sz g HQ; Dcdiag é NHQ(HCdiag); [,Unew’Zz é ZH2|zx (anew) C

def

D,Unew |Za: == NHQ‘zz (anew). Then the fOllOlUan hOld
(1) It hOldS that Dcdiag mHQ/l = Dcdiag ﬂHl\Q = CHZ (Hcdiag) OHQ/I -
CH2 (Hcdiag) N H1\2 = I, diag .
(11) ]t hOldS th/a/t CH2 (Hcdiag) - Dcdiag.
(iii) The surjections pg/l Iy, — 11, plf\2: Iy — Ilgoy determine

isomorphisms D /Tlains — Iy, Doaing /T oains — Iy, re-
spectively, such that the resulting composite outer isomorphism
I, = ;) is the identity outer isomorphism.
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(iv) The natural inclusions Mynew , Tynew|,, < Dynew|,, determine an
iSOl’nOI‘phism anew X ]Unew — CHQ‘Z;I; (]___[,Unew).
(V) It hOldS that CHz( ’U“eW’Zz) g CH2 (anew).
(vi)
( 1) It holds that ZH2 (ancw) = le—i)QC(HUnew) = lynew
(Vlll) CH2< ,Unew) = _D,Unew’ch = H,Unew X ZH2 (anew).

~
Zz — Dvnew 2

Dynew|,, is commensurably terminal in II5.

Zx

Proof. First, we verify assertion (i). Now it is immediate that we have
inclusions Hcdlag C Daiag € Cpp,(ITaaiag). In particular, since Iaiag is
commensurably terminal in I/ and Ij\o [cf. [CmbGC], Proposition
1.2, (ii)], we obtain that I e C D diag N Iy € Ch, (TTpaiag ) N Iy =
CH2/1(HCdiag) = Iludiag; Ieainz © Deaing N IIjng C Crr, (T gaiag ) N Mo =
Cr,, (Ileaiag ) = Tleaiag. This completes the proof of assertion (i). As-
sertions (ii), (iii) follow immediately from assertion (i), together with

2/1

the [easily verlﬁed} fact that the composites Daing — Iy — II; and

p1\2
Daing — Il — 19y are surjective.

Next, we verify assertion (iv). It follows immediately from the vari-
ous deﬁnitions involved — by considering a suitable stable log curve of
type (g,r) over (Speck)'® and applying a suitable specialization iso-
morphism [cf. the discussion preceding [CmbCsp|, Definition 2.1, as
well as [CbTpl], Remark 5.6.1] — that, to verify assertion (iv), we
may assume without loss of generality that Cusp(G)U{z,} = Edge(G).
Then, in light of the well-known local structure of X'°% in a neigh-
borhood of the node or cusp corresponding to z,, one verifies easily
that the outer action II,, — Out(ITy;) — Out(Ilg, ) arising from the
natural exact sequence

11— 1_[2/1 - Hz’zz — 1, —1

is of SNN-type [cf. [NodNon], Definition 2.4, (iii)]. Thus, assertion (iv)
follows immediately from [NodNon|, Remark 2.7.1, together with the
commensurable terminality of Il new in Il [cf. [CmbGC], Proposition
1.2, (ii)] and the fact that the composite Dynev|,, — Ila|,, — II,, is
surjective [cf. [NodNon], Lemma 2.7, (i)]. This completes the proof of
assertion (iv).

Next, we verify assertion (v). It follows immediately from asser-
tion (iv), together with the commensurable terminality of Ilymew in Iy
[cf. [CmbGC], Proposition 1.2, (ii)], that Dyew|., N 1ly1 = Iynew.
Thus, since Ily/; is normal in Iy, assertion (v) follows immediately
from Lemma 3.9, (i). This completes the proof of assertion (v).

Next, we verify assertion (vi). Since the image of the composite

P
Dynew|,, — Il ik I1; coincides with IT,, C II; [cf. [NodNon], Lemma
2.7, (1)], and I1,, C1I; is commensurably terminal in I1; [cf. [CmbGC],
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Proposition 1.2, (ii)], it follows immediately that Cry, (Dynew|,,) C 5|, .
In particular, it follows immediately from assertions (iv), (v) that
Dv“ew|zm - CH2<DU“GW Zm) C Cm, (Hv“ew> A H2|Zac = OHz\zz (Hv“ew) =
D new|,,. This completes the proof of assertion (vi).

Next, we verify assertion (vii). It follows from the various definitions
involved that we have inclusions Ipnew|., C Zp,(Hynew) € Z1(Iynew ).
Thus, to verify assertion (vii), it suffices to verify that Z¢(ITmew) C
Iynew|,,. To this end, let us observe that it follows immediately from
the final portion of Lemma 3.6, (iv), that the image pi\,(ITynew) C

Iy — Ilg is an edge-like subgroup of Ilfyy — Ilg associated to
z; € Edge(G). Thus, since every edge-like subgroup is commensu-
rably terminal [cf. [CmbGC], Proposition 1.2, (ii)], it follows that
the image pi\,(Zi7s (Iynew)) C Tlgzy = Ilg is contained in an edge-
like subgroup of Ijs; = Ilg associated to z, € Edge(G). On the
other hand, since e C Iynew, we have Z¢(Tlynew ) € Zi9¢ (I aias) C
Cr,(Igaiag) = Dgaiag [cf. assertion (ii)]. In particular, it follows im-
mediately from assertion (iii), together with the fact [cf. the proof of
assertion (iv)] that Imew|,, C Z1§¢(Iynew) surjects onto II,, [cf. also
[NodNon], Lemma 1.5], that py), (Zif(Ilynew)) C TIy is contained in
IL., CILy, i.e., Z[§(ynew) C IIy).,. Thus, it follows immediately from
assertion (iv), together with the slimness of Iljnew [cf. [CmbGC], Re-
mark 1.1.3], that Zg¢(Ilynew) C Iynew|.,. This completes the proof of
assertion (vii).

Finally, we verify assertion (viii). It follows from assertion (vii),
together with Lemma 3.9, (ii), that Cp, (Iynew) € Nypp(Iynewl,,). In
particular, since Dynew|,, is topologically generated by ynew, Lnew|,, [cf.
assertion (iv)], it follows immediately that (Dynew|,, C) Chp,(Ilynew) C
Chy (Dynew |, ). Thus, the first equality of assertion (viii) follows from
assertion (vi); the second equality of assertion (viii) follows immediately

from assertions (iv), (vii). This completes the proof of assertion (viii).
U

The following result is, along with its proof, a routine generalization
of [CmbCsp], Corollary 1.10, (ii).

Lemma 3.12 (Commensurator of a tripod). Let £ C {1,--- ,n}
and T C Ilg an E-tripod of 11, [cf. Definition 3.3, (i)]. Then it
holds that Cn,(T) =T x Zu,(T). Thus, if an outomorphism « of Ilg
preserves the Ilg-conjugacy class of T, then one may define a|r €
Out(T) [ef. Lemma 3.10, (i)].

Proof. Let i € E; x € X,(k); v € Vert(Gicp,) be such that v is of
type (0,3), and, moreover, T is a verticial subgroup of Il associated
to v € Vert(Gicpz). [Thus, we have an inclusion 7' C Ilg g\ iy C Hg
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— cf. Definition 3.1, (iv).] Since T'" C Hg gy € g, and T is
commensurably terminal in Ilg/ g ) [cf. [CmbGC], Proposition 1.2,
(ii)], it follows from Lemma 3.9, (iii), that Cp,(T) = N, (7). Thus,
in light of the slimness of T [cf. [CmbGC], Remark 1.1.3], to ver-
ify Lemma 3.12, it suffices to verify that the natural outer action of
Nu,(T) on T is trivial. To this end, let E' C E be such that T is
E'-strict [cf. Lemma 3.8, (i)]; write T C Ilp for the image of T via
Pijg: Mg — Ig. Then it is immediate that the image of N, (T)
via pg/E,: g — g is contained in Ny, (Tx), and that the natural
surjection T — Tgr is an isomorphism [cf. Lemma 3.8, (i)]. Thus, one
verifies easily — by replacing FE, T by E’, Tk, respectively — that,
to verify that the natural outer action of Ny, (T") on T is trivial, we
may assume without loss of generality that T is E-strict. If T satis-
fies condition (1) of Lemma 3.8, (ii), then Lemma 3.12 follows from
the commensurable terminality of T in I1g [cf. [CmbGC], Proposition
1.2, (ii)]. If T satisfies either (2¢) or (2y) of Lemma 3.8, (ii), then
Lemma 3.12 follows immediately from Lemma 3.11, (viii). If 7" sat-
isfies condition (3) of Lemma 3.8, (ii), then one verifies easily from
the various definitions involved — by considering a suitable stable log
curve of type (g,r) over (Spec k)8 and applying a suitable specializa-
tion isomorphism [cf. the discussion preceding [CmbCsp]|, Definition
2.1, as well as [CbTpl], Remark 5.6.1] — that, to verify Lemma 3.12,
we may assume without loss of generality that Node(G) = 0. Thus,
Lemma 3.12 follows immediately from [CmbCsp]|, Corollary 1.10, (ii).
This completes the proof of Lemma 3.12. U

Lemma 3.13 (Preservation of verticial subgroups). In the nota-
tion of Lemma 3.11, let & be an F-admissible automorphism of llgp =
Iy, v € Vert(G). Write v° € Vert(Gay1) for the vertex of Gyyi that
corresponds naturally to v € Vert(G) via the bijections of Lemma 3.6,
(i), (i); o, qap for the automorphisms of Iy, Ily 1 determined by o;
a, oy, agyy for the outomorphisms of ly, 11y, s/ determined by o,
ay, aig)q, respectively. Then the following hold:

(i) Recall the edge-like subgroup 11, C I1; — Ilg associated to the
edge z, € Edge(G). Suppose that
a (I1,,) =11, .
Suppose, moreover, either that
(a) the outomorphism azp of lg, & IIy/; maps some cusp-

idal inertia subgroup of 1lg, | & Iy to a cuspidal inertia

subgroup of 1lg, | & Iy, or that
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(b) z, € Cusp(G).

[For example, condition (a) holds if the outomorphism a1 of
Mg,, < Il is group-theoretically cuspidal — c¢f. [CmbGC],
Definition 1.4, (iv).] Then oy preserves the lly/;-conjugacy
class of the verticial subgroup ymew C 115/, =5 Ilg, P associated
to the verter v"*V € Vert(Ga1). If, moreover, ay is group-
theoretically cuspidal, then the induced outomorphism of

Hynew [cf. Lemma 3.12] is itself group-theoretically cuspi-
dal.

(ii) In the situation of (i), suppose, moreover, that there ezists
a verticial subgroup 11, C llg ST of I1g &1, associ-
ated to v € Vert(G) such that a; preserves the I1;-conjugacy
class of 11,. Then a1 preserves the 1ly/i-conjugacy class of

verticial subgroups of g, & Il associated to the vertex
v° € Vert(g2/1).

(iii) In the situation of (i), suppose, moreover, that X'°% is of type

(0,3) [which implies that 11, o [lg < I, is the unique verti-

cial subgroup of Ig associated to v], and that a; € Out®(IT,)°P
[ef. Definition 3.4, (i)]. Then there exists a geometric [cf.
Definition 3.4, (ii)] outer isomorphism Hymew — 11, (= [lg <
1) which satisfies the following condition:
If either oy € Out(Il;) = Out(Il,) is contained
in Out(IL,)> [cf. Definition 3.4, (i)] or a|mme. €
Out(Ilynew) [cf. (i); Lemma 3.12] is contained in
Out(Iymew )2, then the outomorphisms i e, a1 of
[T yew, 11, are compatible relative to the outer iso-
morphism in question Iymew — I1,.

Proof. First, we verify assertions (i), (ii). Write S = Node(Ga/1) \
N (v™™). Then it follows immediately from the well-known local struc-
ture of X'°% in a neighborhood of the edge corresponding to z, that if
z; € Node(G) (respectively, z, € Cusp(G)), then the outer action of
IL,, on I, )¢ [cf. [CbTpI], Definition 2.8] obtained by conjugating
the natural outer action IL,, — II; — Out(Ily;) = Out(Ilg,,,) —
where the second arrow is the outer action determined by the exact
sequence of profinite groups

~ S

pzn/l
1—>H2/1—>H2—>H1—>1

— by the natural outer isomorphism ®g, ) ¢ g, )5 — g, [cf
[CbTpl], Definition 2.10] is of SNN-type [cf. [NodNon]|, Definition 2.4,

(iii)] (respectively, IPSC-type [cf. [NodNon], Definition 2.4, (i)]). Thus,
it follows immediately [in light of the various assumptions made in the
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statement of assertion (i)!] in the case of condition (a) (respectively,
condition (b)) from Theorem 1.9, (i) (respectively, Theorem 1.9, (ii)),
that the outomorphism o of Ilig,,).s obtained by conjugat-

&

Ga/1)~s
92/1)s

ing as/; by the composite [T — Mg, , & Mg, )..s is group-
theoretically verticial [cf. [CmbGC], Definition 1.4, (iv)] and group-
theoretically nodal [cf. [NodNon], Definition 1.12]. On the other hand,
it follows immediately from condition (3) of [CbTpl], Proposition 2.9,
(i), that the image via &, ) ¢ Ig,,).s — Ig,, of any verticial
subgroup of g, )¢ associated to the vertex of (Ga/1)..s correspond-
ing to v™" is a verticial subgroup of Ilg, , associated to v™". Thus,
since g, ;)5 18 group-theoretically verticial, it follows immediately
that ay/; preserves the IIy/-conjugacy class of the verticial subgroup
ynew C Iy = ng associated to v"*V. [Here, we observe in passing
the following easily verified fact: a vertex of (Gy/1)-.g corresponds to
0" if and only if the verticial subgroup of II(g, ) ¢ associated to this

pH

vertex maps, via the composite Ilg, ) = 1Y) = 19y, to an abelian
subgroup of Ilgyy.] If, moreover, as,y is group-theoretically cuspidal,
then the group-theoretic cuspidality of the resulting outomorphism of
IIynew follows immediately from the group-theoretic cuspidality of ay/;
and the group-theoretic nodality of « This completes the proof
of assertion (i).

To verify assertion (ii), let us first observe that it follows immedi-
ately from [CbTpl], Theorem A, (i), that — after possibly replacing &
by the composite of & with an inner automorphism of Il; determined
by conjugation by an element of IIy/; — we may assume without loss
of generality that, if we write ayey for the automorphism of Il deter-
mined by «, then

Ga/1)~s"

agy(IL,) = II,

— where, by abuse of notation, we write I, for some fized subgroup of
IT{5; whose image in Ilg < Il is a verticial subgroup associated to v.

Next, let us fiz a verticial subgroup I, C Il = Ilg, P of Ilg,  as-
sociated to the vertex v° € Vert(G,/1) such that the composite IL,c —

I1
Iy pi\»2 II;9) determines an isomorphism Il,e = I1,. Then let us ob-
serve that one verifies easily from condition (3) of [CbTpl], Proposition
2.9, (i), together with [NodNon|, Lemma 1.9, (ii), that there exists a
unique vertex w® € Vert((Ga/1)~.s) such that the image Il C Ily;
®(G3/1) s

via the composite g, )5  —  Tlg,, « Ily; of some verticial
subgroup of Ilg, ), associated to w® contains the verticial subgroup

II,o C Iy — g, - Then it follows immediately from the various
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p111\2
definitions involved that the composite Il < Iy — Il is an

injective homomorphism whose image II,, C Tlj; maps via the com-
®g_
posite Iy = Mg < Ig__ — where we write S ' Node(G) \
(Node(G) N {2:}) — to a verticial subgroup of Ilg__ associated to a
vertex w € Vert(G_g). Here, we note that the vertex w may also
be characterized as the unique vertex of G_ g such that the image via
the natural outer isomorphism ®g _: Ilg = Ilg of some verticial
subgroup associated to w contains a verticial subgroup associated to
v € Vert(G). Thus, we obtain an isomorphism IT,. — II,,, hence also
an isomorphism &1 (IL,e) = aigoy(IL,).
Next, let us observe that since «g, ) s is group-theoretically ver-
ticial [cf. the argument given in the proof of assertion (i), it fol-
lows immediately that &g/ (Ile) C Iy — Ig,,)..s is a verticial

subgroup of Ilg, 1)-s that maps isomorphically to a verticial sub-

group ayoy(Il,) € Mgy = Tlg__ of Tlg _ that contains oy (Il,) =
IT,. On the other hand, in light of the unique characterization of w
given above, this implies that & (IL,) C Iy — Ilg__ is a verti-
cial subgroup associated to w, and hence [as is easily verified] that
g1 (Ilye) € Moy = Ilg,,).s is a verticial subgroup associated to
w®. In particular, one may apply the natural outer isomorphisms
WGyl o)ore — A21(ue); gl ) q, — @2y(Ily) arising from
condition (3) of [CbTpl], Proposition 2.9, (i); moreover, one veri-

fies easily that the resulting outer isomorphism II =

Gay1)lH,0) =10
IL(g|y, ). r, [induced by the above isomorphism a1 (ILye) = a2} (IL,,)]
arises from scheme theory, hence is graphic [cf. [CmbGC], Definition
1.4, (i)]. Therefore, we conclude that the closed subgroup s/ (Il,e) C
(g1 (Ilye) C) Iy = Ilg,,, is a verticial subgroup of Ilg,  associated
to v°. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). First, we recall from [CmbCsp],
Corollary 1.14, (ii), that there exists an outer modular symmetry o €

ini
g Py

~

(65 C) Out(Ily) such that the composite [Lpew — Il — Iy —
[T, = II, determines a(n) [necessarily geometric] outer isomorphism
[Lynew — II,. The rest of the proof of assertion (iii) is devoted to ver-
ifying that this outer isomorphism Ilmew — II, satisfies the condition
of assertion (iii). First, suppose that a; € Out(Il;)®. Then since
Out”(IIy) = Out"™(II,) = Out"™ ¥ (I,) [cf. [CmbCsp], Definition 1.1,
(iv); Theorem 2.3, (ii), (iv), of the present paper; our assumption that
X'¢ is of type (0, 3)], it follows from [CmbCsp], Corollary 1.14, (i), to-
gether with the injectivity portion of [CmbCsp|, Theorem A, (i), that «
commutes with every modular outer symmetry on Ily; in particular, «
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commutes with o. Thus, it follows immediately from [CmbCsp], Corol-
lary 1.14, (iii), that the above outer isomorphism Il ew — II, satisfies
the condition of assertion (iii).

Next, suppose that a|i .. € Out(anew)A. If we write o & 5o
oot (€ Outf(IIy)*" — cf. [CmbCsp|, Corollary 1.14, (i); Theo-
rem 2.3, (ii), and Lemma 3.5 of the present paper) and (a”); € Out(Il,)
for the outomorphism of II, determined by a“, then it follows imme-
diately from [CmbCsp]|, Corollary 1.14, (iii), that the outomorphisms
At pews (@7)1 Of Wynew, 11, are compatible relative to the outer isomor-
phism I new = II, discussed above. Thus, since @i, e € Out(Inew )2,
we conclude that (a?); € Out(Il,)*. In particular, [since Out™ (Iy) =
Out™(1ly) = Out*™ " (Ily) — cf. [CmbCsp], Definition 1.1, (iv); Theo-
rem 2.3, (ii), (iv), of the present paper; our assumption that X'°8 is of
type (0,3)] it follows from [CmbCsp], Corollary 1.14, (i), together with
the injectivity portion of [CmbCsp|, Theorem A, (i), that a” commutes
with every modular outer symmetry on 1l;. Thus, we conclude that o
commutes with ¢~!, which implies that & = a?. This completes the
proof of assertion (iii). O

Lemma 3.14 (Commensurator of the closed subgroup arising
from a certain second log configuration space). Leti € E, j € E,
x, and z; j, be as in Lemma 3.6; let v € Vert(Gjep\(iy,c). Then, by ap-
plying a similar argument to the argument used in [CmbCsp|, Definition
2.1, (iii), (vi), or [NodNon], Definition 5.1, (iz), (z) [i.e., by consider-
ing the portion of the underlying scheme Xg of Xg)g corresponding to
the underlying scheme (X,)s2 of the 2-nd log configuration space (XU)IQOg
of the stable log curve X\°8 determined by Gjep\ i}zl — ¢f. [CHTpI],
Definition 2.1, (iii)], one obtains a closed subgroup

()2 € Mp/(m\(ig)
[which is well-defined up to M g-conjugation]. Write

def
(Iy)2/1 = ()2 NIgy ey € (IL)2 .

[Thus, one verifies easily that there exists a natural commutative dia-
gram

1 —— (L) —— (IL)y —— 0, —— 1

! l !

Pl i
1 —— Hpppy —— p —— gy —— 1

— where we use the notation 1L, to denote a wverticial subgroup of
ngEE\{i},.r — H(E\{z})/(E\{z,]}) associated to v € Vert(gjeE\{i}yx), the
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horizontal sequences are exact, and the vertical arrows are injective./
Then the following hold:

(i) Suppose that z;;, € VCN(Gjcp\(i}2) 15 contained in £(v).
Write v° € Vert(Giep.) for the vertex of Gicp. that corre-
sponds to v € Vert(Gjcp\(i},«) via the bijections of Lemma 3.6,
(i), (). Let e, Hv;{% C Mg, p, - Hg/ e\ be verti-
cial subgroups of g, , . — gy associated to the ver-
tices v°, v}W € Vert(Giep), respectively, such that 11, pew C

U; ,Jr®
(11, )2/1, and, moreover, Il ﬂH new 7 {1}. Let us say that two
g/ e\fiy) -conjugates 1., 11 ”?3'72 [z e., where v, 0 € Hg/p\p)/
0f Wye, Tlypew are conjugate-adjacent if I, N Hg?% # {1}.
Let us say that a finite sequence OfHE/(E\{i})-conjugaijés of [0,
Hvi% is a conjugate-chain if any two adjacent members of
the finite sequence are conjugate-adjacent. Let us say that a
subgroup of g/ g\fi)) s conjugate-tempered if it appears
as the first member of a conjugate-chain whose final mem-
ber is equal to HU?’%. Then (HU)Q/l 15 equal to the subgroup
of g/ e\qy) topologically generated by the conjugate- tempered
subgroups and the elements 6 € g\ () such that [ ew s

LJ‘L

conjugate-tempered.
(11) If NHE\{i} (Hv) = CHE\{i} (H ) then NHE(( )2> OHE(( )2)

(i) If CHE\{i} (IL,) = II, x ZHE\{i} (IL,), then Cri,((1L,)2) = (IL,)2 X
Zn (Iy)2).

(iv) Suppose that v is of type (0,3), i.e., that I, is an (E \
{i})-tripod of II,, [cf. Definition 3.3, (i)]. Then it holds that
Chp ((I1y)2) = (IL,)2 X Zu,((I1,)2). Thus, if an outomorphism
a of Il preserves the Il g-conjugacy class of (I1,)a, then one
may define o), € Out((Il,)z2) [cf. Lemma 3.10, (i)].

Proof. First, we verify assertion (i). We begin by observing that it
follows immediately from [NodNon|, Lemma 1.9, (ii), together with
the commensurable terminality of Hvy‘;v; C lgyp\gy [cf. [CmbGC],
Proposition 1.2, (ii)], that the subgroup described in the final portion
of the statement of assertion (i) is contained in (IL,)q/1. If (NM(v°) N
N(vpe%))F = 1, then assertion (i) follows immediately from a similar
argument to the argument applied in the proof of [CmbCsp]|, Propo-
sition 1.5, (iii), together with the various definitions involved [cf. also
[NodNon], Lemma 1.9, (ii)]. Thus, we may assume without loss of
generality that (A(v°) NN (0f%))F = 2.
Write
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e c; € N() N N(wp§y) for the [uniquely determined — cf.
[NodNon|, Lemma 1.5] node such that e N Hypew (7 {1})
is a nodal subgroup associated to e; [cf. [NodNon], Lemma

1.9, (i)];

e ¢, for the unique element of N'(v°) NN (vj%) such that ey # e;
[so N(v°) NN (vPe%) = {eq, ea}];

,L?.]7:E

e H for the sub-semi-graph of PSC-type [cf. [CbTpl], Definition
2.2, (i)] of the underlying semi-graph of G;cp, whose set of
vertices = {v°, v} };

o S Node(Gicp.o|n)\ {e1, e2} [cf. [CHTpI], Definition 2.2, (ii)];

o HY (Giepo|m)s-s [which is well-defined since, as is easily ver-

ified, S is not of separating type as a subset of Node(Gicp +|n)
— cf. [CbTpl], Definition 2.5, (i), (ii)].

Then it follows immediately from the construction of H that H._.(c }
[cf. [CbTpl], Definition 2.8], where we observe that one verifies eas-
ily that the node e; of G,cp, may be regarded as a node of H, is
cyclically primitive [cf. [CbTpl], Definition 4.1]. Moreover, it follows
immediately from [NodNon|, Lemma 1.9, (ii), together with the vari-
ous definitions involved, that (II,)s1 € Ilg/ g\ = g, .., may be
characterized uniquely as the closed subgroup of Ilg,_, = that contains
ypew € Ilg, ., and, moreover, belongs to the Ilg,_, -conjugacy class
of closed subgroups of Ilg, . . obtained by forming the image of the
composite of outer homomorphisms

PrH ey

HHW{EI} — Iy = HgieE,m

[cf. [CbTpl], Definition 2.10] — where the second arrow is the outer in-
jection discussed in [CbTpl], Proposition 2.11. In particular, it follows
from the commensurable terminality of (I, )21 inIlg,_,, . [cf. [CmbGC],
Proposition 1.2, (ii)] that this characterization of (II, )21 determines an

~

outer isomorphism Il e (ILy)2/1-

On the other hand, it follows immediately from a similar argument
to the argument applied in the proof of [CmbCsp], Proposition 1.5,
(iii), together with the various definitions involved [cf. also [NodNon],
Lemma 1.9, (ii)], that the image of the closed subgroup of (II,)s/1 topo-
logically generated by II,e and Il,pev via the inverse (II, )21 = My )
of this outer isomorphism is a verticial subgroup of Il e} associated
to the unique vertex of H..(,y. Thus, since H..ie,y is cyclically primi-
tive, assertion (i) follows immediately from [CmbGC], Lemma 1.2, (ii);
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[NodNon], Lemma 1.9, (ii), together with the description of the struc-
ture of a certain tempered covering of H..(,3 given in [CbTpl], Lemma
4.3. This completes the proof of assertion (i).

Next, we verify assertion (ii). Since (II,)2/1 = ()2 N Uk iy is
commensurably terminal in Ilg g ) [cf. [CmbGC], Proposition 1.2,
(ii)], assertion (ii) follows immediately from Lemma 3.9, (iv). This
completes the proof of assertion (ii). Next, we verify assertion (iii).
First, let us observe that if £(v) = (), then one verifies immediately
that the vertical arrows of the commutative diagram in the statement
of Lemma 3.14 are isomorphisms, and hence that assertion (iii) holds.
Thus, we may assume that £(v) # (). Next, let us observe that it follows
from assertion (ii) that Ny, ((I1,)2) = C’HE(( v)2). Thus, in light of the
slimness of (I1,)q [cf. [MzTa|, Proposition 2.2, (ii)], to verify assertion
(iii), it suffices to verify that the natural outer action of Ny ((II,)2)
on (II,)y is trivial. On the other hand, since [one verifies easily that]
the natural outer action Ny, ((Il,)s) — Out((Il,)2) factors through
Out®((IT,)2) € Out((I1,)s), it follows from the injectivity portion of
Theorem 2.3, (i) [cf. our assumption that (v) # 0], that to verify the
triviality in question, it suffices to verify that the natural outer action
of N, ((IL,)2) on II, is trivial. But this follows from the equality
CHE\ {i}(Hv) = Il, X Zn,, {i}(Hv). This completes the proof of assertion
(iii). Assertion (iv) follows immediately from assertion (iii), together
with Lemma 3.12. This completes the proof of Lemma 3.14. U

Lemma 3.15 (Preservation of various subgroups of geomet-
ric origin). In the notation of Lemma 3.14, let a be an F-admissible
automorphism of llp. Write ap\y b ag/e\y) for the automorphisms
of Up\(iv, g/ e\ determined by a; o, ap\ iy, agy( (B\{i}) for the outo-
morphisms of llg, g\ iy, HE/ e\ determmed by &, ap\(iy, QCE/(E\{i});
respectively. Suppose that there exist an edge e € Edge(Gjcp\fi},z) ©
Gjce\{i} that belongs to E(v) C Edge(Gjep\(i},«) and a pair Il C
II, C ngeE\{i},z & I g\qi)/(e\{iyy) of VON-subgroups associated to
e € Edge(Gjcp\(i},e), v € Vert(Gjcp\(i},2), respectively, such that

apiy(le) = e € ap\ iy (IL,) =11, .
Suppose, moreover, either that
(a) the outomorphism agp\jiy) of lg,cp, & g/ e\ (i) maps some

cuspidal inertia subgroup of Ilg,_, , & HEg/e\(y) to a cuspidal
inertia subgroup of g, . < g/ m\y), or that

(b) e c CUSp(gjeE\{i},x)'

[For e:mmple condition (a) holds if the outomorphism ag;e\ () of
g, .., < g/ e\ is group-theoretically cuspidal — ¢f. [CmbGC],
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Definition 1.4, (iv).] Write T C Ilg for the E-tripod of I1,, arising
from e € Edge(Gjep\(iy,«) [cf. Definition 3.7, (i)]. Then the following
hold:

(i) The outomorphism o preserves the [lg-conjugacy classes of
T, (II,); C Hg. If, moreover, the outomorphism ag/(g\{i})
of Mg, & g/p\fy) is group-theoretically cuspidal /cf.
[CbGC], Definition 1.4, (iv)], then the outomorphism o|r [cf.
Lemma 3.12] of T is contained in Out®(T)<"P.

(ii) Suppose, moreover, that v is of type (0,3) — i.e., that II,
is an (E \ {i})-tripod of I1,, [cf. Definition 3.3, (i)] — and
that ap (i, € Owt(IL,)"P [ef. Lemma 3.12]. Then there
exists a geometric [cf. Definition 3.4, (ii)] outer isomorphism
T = 11, which satisfies the following condition:

If either ap o, € Out(ll,)® or alr € Out(T)”
[ef. (i); Lemma 3.12], then the outomorphisms o|r,
@E\{i}\nv of T, II, are compatible relative to the
outer isomorphism in question T = II,,.
If, moreover, 11, is (E \ {2})-strict [cf. Definition 5.3, (iii)],
then the following hold:

(1) If (E\{i})* =1 [i.e., 11, satisfies condition (1) of Lemma 3.8,
(i1)], then T is E-strict [i.e., T satisfies one of the two
conditions (2c), (2x) of Lemma 3.8, (ii)].

(2) If (E\ {i})} = 2 fi.e., 11, satisfies one of the two con-
ditions (2c), (2x) of Lemma 3.8, (ii)], and the edge e €
Edge(Gjcr\{i},«) is the unique diagonal cusp of Gicp\ (i}«
[ef. Lemma 3.2, (ii)], then T' is E-strict [i.e., T satisfies
condition (3) of Lemma 3.8, (ii)], hence also central [cf.
Definition 3.7, (ii)].

Proof. First, let us observe that one verifies easily — by replacing x
by a suitable k-valued geometric point of X, (k) that lifts xp\ gy €
X\ (k) [note that this does not affect “Giep\(iy.”!] — that, to
verify Lemma 3.15, we may assume without loss of generality that
Zi,j,a: =€ c Edge(Q]eE\{z}w)

Now we verify assertion (i). First, let us observe that one verifies eas-
ily — by replacing X 2 by the base-change of plEof gy X8 — le_g%{i,j}
by a suitable morphism of log schemes (Spec k)'°¢ — X{g{g{m} that lies
on Tp\(i;} € Xp\fij) (k) [cf. Definition 3.1, (i)] — that, to verify asser-
tion (i), we may assume without loss of generality that E* = 2. Then
it follows immediately from Lemma 3.13, (i), that ag/ e (i}) preserves
the Ilg/(m (i})-conjugacy class of T' (= H”R%) C g/ e\ More-
over, it follows immediately from Lemma 3.13, (i), (ii), together with
Lemma 3.14, (i), that ap/e\(iy) preserves the Ilg g (i))-conjugacy class
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of (I1y)2/1 € Hg)(p\(}). In particular, since a(11,) = II,, by considering

the natural isomorphism (IL,)o = (I, )21 % [T, [cf. the upper exact
sequence of the commutative diagram in the statement of Lemma 3.14;
the discussion entitled “Topological groups” in [CbTpl], §0], we con-
clude that ag preserves the Ilg-conjugacy class of (I1,)s C Ilg.

Next, suppose that the outomorphism a g\ (a}) of g, , & g/ e\
is group-theoretically cuspidal. Then it follows from Lemma 3.13, (i),
that al|r € OutC(T). Moreover, since ag/(p\(i1) is group-theoretically
cuspidal, it follows immediately from Lemma 3.2, (iv), that ag/ (e ()
fizes the 1l g/ g\ (ip)-conjugacy class of cuspidal inertia subgroups asso-
ciated to each element € C(v}'%) (3 c?ljaf) Thus, to verify that a|r €
Out®(T)eP, it suffices to verify that ag/e\y) Jives the g/ y)-
conjugacy class of nodal subgroups of Ilg,_,, , & g/ e\(iy) associated
to each element of N (v}$%) N N(v°). On the other hand, this fol-
lows immediately, in light of our assumption that &E\{i}(ﬂe) =1II, C
ap\iy(IL,) = II,, from the final portion of Lemma 3.6, (iv), together
with [NodNon|, Lemma 1.9, (i). This completes the proof of assertion
(i).

Next, we verify assertion (ii). Since v is of type (0,3), it follows
from assertion (i), together with Lemma 3.14, (iv), that one may de-
fine o), € Out((Il,)2). Thus, by applying Lemma 3.13, (iii), to
a|m,), € Out((Il,)2), one verifies easily that the first portion of asser-
tion (ii) holds. The final portion of assertion (ii) follows immediately
from the descriptions given in the four conditions of Lemma 3.8, (ii),
together with the various definitions involved. This completes the proof
of assertion (ii). O

Theorem 3.16 (Outomorphisms preserving tripods). In the no-

tation of the beginning of the present §3, let E C {1,--- ,n} and

T CIlg an E-tripod of I1,, [cf. Definition 3.3, (i)]. Let us write
Out" (I1,,)[T] € Out"(I1,,)

for the [closed] subgroup of Out®(I1,,) [cf. [CmbCsp|, Definition 1.1,
(i1)] consisting of F-admissible outomorphisms « of 11,, such that the

outomorphism of Il determined by o preserves the Il g-conjugacy class
of T C Ilg. Then the following hold:

(i) It holds that
Crip(T) =T X Zn, (T).

Thus, by applying Lemma 3.10, (i), to outomorphisms of g
determined by elements of Out® (IL,)[T], one obtains a natural
homomorphism

Tr: Out™ (I1,)[T] — Out(T).
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Let us write
OutF(Hn)[T AC}], OutF(Hn)[T HAIC}] OutF(Hn)[T {A}],
Out"(IL,) [T : {+}] € Out"(IL,)[T]

for the [closed] subgroups of Out® (IL,)[T] obtained by forming
the respective inverse images via Tr of the closed subgroups
Out®(T), Out®(T)*™P, Out(T)*, Out(T)* € Out(T) [cf. Def-
inition 3.4, (i)]. For a subset A C {C,|C|, A, +}, let us write

Out™(IL,)[T: A] = () Out™ (I,)[T : {O0}] € Out"(I1,)[7];
OeA

Out"™(IL,)[T : A] % Out"(IL,)[T": A N Out™(IL,) € Out"™(IL,).

(ii) It holds that
Out"(IL,) [T : {C, A}] = Out"(IL,) [T : {|C], A}].
(iii) Suppose that T is 1-descendable [cf. Definition 3.3, (iv)].
Then it holds that
Out™(IL) [T : {|C|}] = Out*™(I1,)[T : {|C], +}] .

If, moreover, one of the following conditions is satisfied, then
it holds that

Out" (IT,)[T : {|C[}] = Out™ (I,)[T: {|C], +}] -

(iii-1) T is 2-descendable [cf. Definition 3.3, (iv)].
(iii-2) There exists a subset E' C E such that:
(111—2—&) E 7é {17 to an};
(iii-2-b) the image pg/E,(T) C IIg is a cusp-supporting
E’-tripod of I1,, [cf. Definition 3.3, (i)].
iv) Lett, j € F be two distinct elements of E; e € Edge(Gicp\fit.»
JEE\{i},
[ef. Definition 3.1, (iii)]; o € Out®(Il,). Suppose that T
arises from e € Edge(Gjep\(i},2) [¢f. Definition 8.7, (i)], and
that the outomorphism of Il gy determined by o preserves
the Il g\ iy -conjugacy class of an edge-like subgroup of g\ (5
associated to e € Edge(Gijcp (i},2) [cf Definition 8.1, (iv)].
Suppose, moreover, that one of the following conditions is sat-
isfied:
(iv-1) a € Out¥™ (I1,,).
(iv-2) B* <n—1.

(iv-3) e € CUSp<gjeE\{i},z)'
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Then a € Out™ (I1,,)[T]. Suppose, further, that either condition
(iv-1) or condition (iv-2) is satisfied. Then o € Out® (IL,)[T :
{C}]; if, in addition, condition (iv-3) is satisfied, then a €
Out" (IT,)[T": {|C1}].

(v) Suppose that T is central [cf. Definition 3.7, (ii)]. If n > 4
[i.e., T is 1-descendable/, then it holds that

Out™(IT,,) = Out™ (I, [T : {|C], A, +}] .
If n =23 [i.e.,, T is not 1-descendable/, then it holds that
Out™(11,,) = Out™ (11, [T : {|C|, A}]
C Out®(I1,,) = Out™ (I1,)[T : {A}];
if, moreover, r # 0, then
Out"(II,,) = Out™(I1,)[T : {|C], A, +}].

Proof. Assertion (i) (respectively, (ii)) follows from Lemma 3.12 (re-
spectively, 3.5). Next, we claim that the following assertion holds:
Claim 3.16.A: Let £/ C E be a subset such that the
image Ty of T via p'i st Mg — Il is an E'-tripod;
thus, one verifies easily that one obtains a(n) [necessar-
ily geometric — cf. Definition 3.4, (ii)] outer isomor-
phism 7' = Tp [induced by pl /). Then we have an
inclusion Out™ (I1,)[T] € Out”(I1,)[Tx], and, more-
over, the diagram

Out™(IL,)[T] € Out"(I,)[T]
Trl Y

Out (T) ; Out (TE/)

— where the lower horizontal arrow is the isomorphism
determined by the isomorphism 7" = Ty induced by
pg JE T commutes.

Indeed, this follows immediately from the various definitions inovlved.
This completes the proof of Claim 3.16.A.

Next, we verify assertion (iii). First, to verify the first displayed
equality of assertion (iii), let us observe that since T" is 1-descendable,
there exists a subset E' C F such that the image of T" C Il via
pg/E,: g — g is an E'-tripod, and, moreover, (E')* < n — 1. Thus,
it follows immediately from Claim 3.16.A, together with Remark 3.4.1
— by replacing T, E, by p} I (T'), E', respectively — that, to verify the
first displayed equality of assertion (iii), we may assume without loss
of generality that £ # {1,--- ,n}. Then the first displayed equality of
assertion (iii) follows immediately from Lemma 3.14, (iv); the portion of
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Lemma 3.15, (i), concerning “(Il,)” [cf. condition (a) of Lemma 3.15].
This completes the proof of the first displayed equality of assertion (iii).

Next, suppose that condition (iii-1) is satisfied; thus, there exists a
subset E/ C FE such that the image pg/E, (T) C Ilg is an E’'-tripod, and,
moreover, (E')* < n — 2. Then — by replacing T, E by pg/E,(T), E,
respectively [and applying Claim 3.16.A] — we may assume without
loss of generality that £* < n—2. Thus, by applying [CbTpl], Theorem
A, (ii), we conclude that the second displayed equality of assertion (iii)
follows immediately from the first displayed equality of assertion (iii).

Next, suppose that condition (iii-2) is satisfied. Then — by re-
placing T, E by the pl. /E,(T), E’ in condition (iii-2) [and applying
Claim 3.16.A] — we may assume without loss of generality that E #
{1,--- ,n}, and, moreover, that T is a cusp-supporting E-tripod. Then
it follows immediately from Lemma 3.14, (iv); the portion of Lemma 3.15,
(i), concerning (IL,)s [cf. condition (b) of Lemma 3.15], that the second
displayed equality of assertion (iii) holds. This completes the proof of
assertion (iii).

Next, we verify assertion (iv). If either condition (iv-1) or condi-
tion (iv-3) is satisfied, then one reduces immediately to the case where
n = 2, in which case it follows immediately from Lemma 3.13, (i), that
a € Out®(I1,,)[T]. If condition (iv-1) is satisfied, then one reduces im-
mediately to the case where n = 2, in which case it follows immediately
from Lemma 3.13, (i), that a € Out" (I1,)[T : {C}]. If both condition
(iv-1) and condition (iv-3) is satisfied, then — by applying a suit-
able specialization isomorphism [cf. the discussion preceding [CmbCsp],
Definition 2.1, as well as [CbTpl], Remark 5.6.1] — one reduces imme-
diately to the case where n = 2 and Node(G) = (), in which case it fol-
lows immediately from Lemma 3.15, (i), that a € Out"(IL,)[T : {|C|}].
Finally, if condition (iv-2) is satisfied, then, by applying [CbTpl], The-
orem A, (ii), one reduces immediately to the case where “n” is taken
to be n — 1, and condition (iv-1) is satisfied. This completes the proof
of assertion (iv).

Finally, we verify assertion (v). First, we claim that the following
assertion holds:

Claim 3.16.B: Out" (I1,,) = Out" (IL,)[T].

Indeed, to verify Claim 3.16.B, by reordering the factors of X, we
may assume without loss of generality that £ = {1,2,3}. Let a €
Aut¥(II,). Then since n > 3, it follows immediately from [CbTpI],
Theorem A, (ii), together with Lemma 3.2, (iv), that the outomorphism
of IIy/; determined by a preserves the Il,;-conjugacy class of cuspidal
subgroups of Ily/; associated to the [unique — cf. Lemma 3.2, (ii)]
diagonal cusp. Thus, it follows immediately from assertion (iv) in the
case where condition (iv-3) is satisfied that the outomorphism of I3
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determined by a preserves the Ilz-conjugacy class of T" C II3. This
completes the proof of Claim 3.16.B.

Next, we claim that the following assertion holds:

Claim 3.16.C: Out" (IL,)[T] = Out" (IL,)[T : {A}].

Indeed, since n > 3, this follows immediately from Theorem 2.3, (iv),
together with a similar argument to the argument used in the proof of
[CmbCsp], Corollary 3.4, (i). This completes the proof of Claim 3.16.C.

Now it follows immediately from Claims 3.16.B, 3.16.C that we have
an equality Out™(II,) = Out"(IL,)[T : {A}]. Thus, it follows from
assertion (ii) and the first displayed equality of assertion (iii), together
with Theorem 2.3, (ii), that, to complete the proof of the content of
the first two displays of assertion (v), it suffices to verify the equality
Out™(I1,,)) = Out™(I1,,)[T" : {C}]. On the other hand, this follows im-
mediately from the portion of Lemma 3.15, (i), concerning «|r. [Note
that one verifies easily that every central tripod arises from a cusp.]

Thus, it remains to verify the equality of the final display of assertion
(v). In light of what has already been verified [cf. also assertion (ii);
Theorem 2.3, (ii)], to verify the final equality of assertion (v), it suffices
to verify the condition “+” on the right-hand side of this equality. On
the other hand, it follows immediately — by replacing an element of
the left-hand side of the equality under consideration by a composite
of the element with a suitable outomorphism arising from an element
of Out™(Ily) [cf. the equality of the first display of assertion (v)] —
from [CmbCsp]|, Lemma 2.4, that it suffices to verify the condition “+4”
on an element of the left-hand side of the equality under consideration
that induces the identity automorphism on Cusp(G). Then the equality
under consideration follows immediately, in light of the assumption that
r # 0, from Lemma 3.15, (i) [applied in the case where we take the
“E” of loc. cit. to be a subset of F of cardinality twol, (ii) [applied in
the case where we take the “E” of loc. cit. to be E]. This completes
the proof of assertion (v). d

Remark 3.16.1. Theorem 3.16, (i), may be regarded as a general-
ization of [CmbCsp|, Corollary 1.10, (ii). On the other hand, Theo-
rem 3.16, (v), may be regarded as a more precise version of [CmbCsp],
Corollary 3.4.

Theorem 3.17 (Synchronization of tripods in two dimensions).
In the notation of Theorem 3.16, suppose that n = 2, and that E* = 1;
thus, one may regard the E-tripod T of 11, as a verticial subgroup
of llg = Tlg associated to a vertex vy € Vert(G) of type (0,3) [cf.
Definition 3.1, (ii)]. Let E' C {1l,--- ,n} and T" C Ilg an E’-tripod
of Il,,. Then the following hold:
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(i) Suppose that there exists an edge e € E(vr) from which T'
arises [cf. Definition 3.7, (i)]. [Thus, it holds that E' =
{1,2}.] Then it holds that

Out™(IL,)[T": {|C1, A}] € Out™(IL,)[T": {|C], A, +}]

[¢f. the notational conventions of Theorem 3.16, (i)]. More-
over, there exists a geometric [cf. Definition 3.4, (ii)] outer
isomorphism T = T' such that the diagram

Out™(IL,)[T : {|C|,A}] €  Ouwt™(I,)[T": {|C|, A, +}]

Tr | | B

~

Out(T) — Out(7")

[cf.  the notation of Theorem 3.16, (i)] — where the lower
horizontal arrow is the isomorphism induced by the outer iso-
morphism in question T = T' — commutes.

(i) Suppose that (E')* = 1; thus, one may regard the E'-tripod
T" of I1,, as a verticial subgroup of g — Ilg associated to a
vertex v € Vert(G) of type (0,3). Suppose, moreover, that
N(vr) NN (vrr) # 0. Then there exists a geometric [cf. Def-
inition 3.4, (ii)] outer isomorphism T = T' such that if we
write

Out™(IL,) [T, T" : {|C|, A}]

def /
= Out™(IL,)[T': {|C], A}] N Out™ (IL,)[T" : {|C], A}],
then the diagram

Out™“(IL,) [T, T" : {|C], A} —— Out™(I1,)[T, T" : {|C|, A}]
“| J=
Out(T) — Out(T")

— where the lower horizontal arrow is the isomorphism induced
by the outer isomorphism in question T — T' — commutes.

Proof. First, we verify assertion (i). Let us observe that the inclu-
sion Out*(I1,,)[T : {|C|}] € Out™(IL,)[T"], hence also the inclusion
Out™(I1,)[T : {|C|, A}] € Out*™ (I1,)[T"], follows immediately from
Theorem 3.16, (iv), in the case where condition (iv-1) is satisfied. Thus,
one verifies easily from Lemma 3.15, (i), (ii) [cf. also Lemma 3.14, (iv)],
that the remainder of assertion (i) holds. This completes the proof of
assertion (i). Next, we verify assertion (ii). It follows immediately
from [CmbCsp], Proposition 1.2, (iii), that we may assume without
loss of generality that £’ = E. Write 7" C I, for the {1,2}-tripod of
I1,, arising from e € N (vr) NN (vy/). Then it follows from assertion
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~

(i) that there exist geometric outer isomorphisms T = T", T" = T"
that satisfy the condition of assertion (i) [i.e., for the pairs (T',7") and
(T, T")]. Thus, one verifies easily that the [necessarily geometric| outer
isomorphism T' = T" < T’ obtained by forming the composite of these
two outer isomorphisms satisfies the condition of assertion (ii). This
completes the proof of assertion (ii). O

Theorem 3.18 (Synchronization of tripods in three or more
dimensions). In the notation of Theorem 3.16, suppose that n > 3.

Then the following hold:

(i) It holds that
Out™(IL,)[T": {|C[}] = Out™ (IL,))[T": {|C[, A}]

[cf. the notational conventions of Theorem 3.16, (i)]. If, more-
over, n >4 orr # 0, then it holds that

Out™“(IL,)[T": {|C]}] = Out™(IL,)[T = {|C], A, +}]
[cf. the notational conventions of Theorem 3.16, (i)].

(i) Let E' C{1,--- ,n} and T' C g an E’-tripod of I1,,. Then
there exists a geometric [cf. Definition 3.4, (ii)] outer iso-
morphism T = T' such that if we write

Out™(IL,)[T, T" : {|C}]

S Ot (IL )T {|C1}] N Out™ (I, [T : {|C},
then the diagram

Owt*C(IL) [T, T : {|C]}] —— Out™(IL)[T, T" : {|C|}]
Out(T) — Out(7”)

[cf.  the notation of Theorem 3.16, (i)] — where the lower
horizontal arrow is the isomorphism induced by the outer iso-
morphism in question T — T' — commutes.

Proof. First, we verify the first displayed equality of assertion (i). Ob-
serve that it follows immediately from Lemma 3.8, (i), together with a
similar argument to the argument applied in the proof of the first dis-
played equality of Theorem 3.16, (iii), that we may assume without loss
of generality that T is E-strict, which thus implies that E* € {1,2,3}
[cf. Lemma 3.8, (ii)]. Now we apply induction on 3 — E* € {0,1,2}. If
3— E* =0, ie., T is central [cf. Lemma 3.8, (ii)], then the first dis-
played equality of assertion (i) follows immediately from Theorem 3.16,
(v). Now suppose that 3 — E* > 0, and that the induction hypothesis
is in force. Let a € Out™(I1,,)[T : {|C|}]. Then it follows immediately
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from Lemma 3.15, (i), (ii) [cf. also conditions (1), (2) of Lemma 3.15,
(ii)], that there exist a subset £ C E' C {1,--- ,n} and an E’-tripod
T' C Mg such that 3 — (B')* < 3 — E* T' C Iy is E'-strict, and o €
Out™ (IL,)[T" : {|C|}] [¢f. Lemma 3.15, (i)]. Thus, it follows immedi-
ately from the induction hypothesis that a € Out™(IL,)[T" : {|C|, A}].
In particular, it follows immediately from Lemma 3.15, (ii), that the
actions of & on T" and 7" may be related by means of a geometric outer
isomorphism, which thus implies that o € Out™(IL,)[T : {|C|, A}] [cf.
Remark 3.4.1]. This completes the proof of the first displayed equality
of assertion (i).

Next, we verify assertion (ii). First, we claim that the following
assertion holds:

Claim 3.18.A: If T is E-central, and T" is E’-central,

then the pair (7',7") satisfies the property stated in

assertion (ii).
Indeed, since the IIg-conjugacy class of the central E-tripod T is com-
pletely determined [cf. Lemma 3.6, (v)] by the subset [of cardinality 3]
E C {1,---,n}, it follows easily that there exist a {1,--- n}-tripod
T" C II,, of II,, and an element o € &,, of the symmetric group on n
letters [which acts, via outomorphisms, on II,, by permuting the factors
of X!¢] such that the images of the composites

Pl ny/m Z Py

71, — I, T'—II, =1, —» 15
are 1I,,-conjugates of T', T", respectively. Thus, we obtain a(n) [neces-
sarily geometric] outer isomorphism T' < T” = T’. Now since every
element of Out"“(I,) commutes with o [cf. [NodNon], Theorem B,
it follows immediately from the various definitions involved that this
outer isomorphism 7" < T" = T satisfies the property stated in asser-
tion (ii). This completes the proof of Claim 3.18.A.

Next, we claim that the following assertion holds:

Claim 3.18.B: Suppose that T is E-strict, and that
E* # 3 [ie, E* € {1,2} — cf. Lemma 3.8, (ii)].
Then there exist a subset £ C E” C {1,--- ,n} and
an E”-tripod T” C Ilgr such that T is E”-strict,
Out™(IL,)[T" : {|C[}] € Out™(IL,)[T" : {|C[}], and,
moreover, the pair (T, T") satisfies the property stated
in assertion (ii) [i.e., where one takes “T"” to be T"].

Indeed, this follows immediately from Lemma 3.15, (i), (ii) [cf. also
conditions (1), (2) of Lemma 3.15, (ii)], together with the first displayed
equality of assertion (i). This completes the proof of Claim 3.18.B.
To verify assertion (ii), let us observe that it follows immediately
from Lemma 3.8, (i), together with a similar argument to the argument
applied in the proof of the first displayed equality of Theorem 3.16, (iii),
that we may assume without loss of generality that 7' is E-strict; in
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particular, E* € {1,2,3} [cf. Lemma 3.8, (ii)]. Next, let us observe
that, by comparing two arbitrary tripods of II,, to a fixed central tripod
of IT,, [and applying Theorem 3.16, (v)], one may reduce immediately
to the case where T" is central. Moreover, by successive application
of Claim 3.18.B, one reduces immediately to the case where T is E-
central [and T" is E'-central], which was verified in Claim 3.18.A. This
completes the proof of assertion (ii). Finally, the second displayed
equality of assertion (i) follows immediately from assertion (ii), together
with Theorem 3.16, (v). This completes the proof of Theorem 3.18. [

Definition 3.19. Suppose that n > 3. Let us write
Htpd

for the central {1,2,3}-tripod of II,, [cf. Definitions 3.3, (i); 3.7, (ii)].
Then it follows from Theorem 3.16, (i), (v), that one has a natural
homomorphism

Trpa : Out™©(I1,,) = Out™ (11, [IT4 : {|C|, A}] — Out®(IIP4)A

[cf. Definition 3.4, (i)]. We shall refer to this homomorphism as the
tripod homomorphism associated to II,, and write

Out"°(I1,,)8*° € Out™(11,,)

for the kernel of this homomorphism [cf. Remark 3.19.1 below]. Note
that it follows from Theorem 3.16, (v), that if n > 4 or r # 0, then the
image of the tripod homomorphism is contained in Out®(II®*4)A+ C
Out?(II**4)A [cf. Definition 3.4, (i)]. If n > 4 or r # 0, then Typipa
may also be regarded as a homomorphism defined on Out®(Il,) (=
Out™(I1,) — cf. Theorem 2.3, (ii)); in this case, we shall write

OutF (I1,,)&% & OutFe(I1,, )&,

Remark 3.19.1. Let us recall that if we write m((Myg)q) for the
étale fundamental group of the moduli stack (M, [)g of hyperbolic
curves of type (g, r) over Q [cf. the discussion entitled “Curves” in §0],
then we have a natural outer homomorphism

1 ((My)g) — Out™(II,).

Suppose that n > 4. Then Out™(II,) = Out"(II,) does not de-
pend on n [cf. Theorem 2.3, (ii); [NodNon|, Theorem B|. Morever,
one verifies easily that the image of the geometric fundamental group
T ((Mgp1)g) € m1((Mgp1)g) — where we use the notation Q to denote
an algebraic closure of Q — via the above displayed outer homomor-
phism is contained in the kernel Out™(II,)& C Out*“(II,) of the
tripod homomorphism associated to II, [cf. Definition 3.19]. Thus,
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the outer homomorphism of the above display fits into a commutative
diagram of profinite groups

1 — m((Myp)g) — m((Mgpe) —  Gal(Q/Q) —— 1

l l l

| —— OutF(IL)*° ——  OwtF(Il,) —24 QutC(ITed)a+
— where the horizontal sequences are exact. In §4 below, we shall ver-
ify that the lower right-hand horizontal arrow is surjective [cf. Corol-
lary 4.15]. On the other hand, if ¥ is the set of all prime num-
bers, then it follows from Belyi’s Theorem that the right-hand ver-
tical arrow is injective; moreover, the surjectivity of the right-hand
vertical arrow has been conjectured in the theory of the Grothendieck-
Teichmailler group. From this point of view, one may regard the quo-

Ftpd
tient Out™(IT,) = OutC(IIPH)A+ as a sort of arithmetic quotient

of Out®(II,,) and the subgroup Out™(II,,)* C Out"(II,) as a sort of
geometric portion of Out® (IL,,).

Definition 3.20. Let m be a positive integer and Y'°¢ a stable log
curve over (Spec k)6, For each nonnegative integer 4, write YII; for the
“TI,” that occurs in the case where we take “X°8” to be Y'°8. Then
we shall say that an isomorphism (respectively, outer isomorphism)
I, = YII; is m-cuspidalizable if it arises from a [necessarily unique,
up to a permutation of the m factors, by [NodNon|, Theorem B] PFC-
admissible [cf. [CbTpl], Definition 1.4, (iii)] isomorphism IT,,, = YIL,,,.

Proposition 3.21 (Tripod homomorphisms and finite étale cov-
erings). Let Y8 be a stable log curve over (Speck)°® and Y18 —
X'og g finite log étale covering over (Spec k)8, For each positive inte-
ger i, write Yilog (respectively, YI1;) for the “X;Og 7 (respectively, “11;”)
that occurs in the case where we take “X'°8” to be Y'°8. Suppose that
Ylos . Xl¢ js geometrically pro-X and geometrically Galois,
i.e., Y — X' determines an injection YII; — II; [that is well-
defined up to I1;-conjugation] whose image is normal. Let a be an
automorphism of I1; that preserves YII; C I1;. Suppose, moreover, that

the outomorphism « of 11y determined by « is n-cuspidalizable /cf.
Definition 8.20]. Then the following hold:

(i) The outomorphism ay of Y11, determined by & is n-cuspidali-
zable [cf. Definition 3.20).

(ii) Suppose that n > 3. Let II'*4 C II3, YII'*? C YTI3 be cen-
tral [{1,2,3}-/tripods [cf. Definitions 3.3, (i); 3.7, (ii)] of I1,,
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1,,, respectively. Then there exists a geometric [cf. Def-
inition 3.4, (ii)] outer isomorphism ¢®d: TIPd = YTI®D sych
that the outomorphism Tywa () [cf. Definition 3.19] of TI'P4 s
compatible with the outomorphism Tymwa(ay) [cf. (i); Defi-
nition 3.19] of YII'4 relative to ¢'P4.

Proof. First, let us observe that, to verify Proposition 3.21 — by apply-
ing a suitable specialization isomorphism [cf. the discussion preceding
[CmbCsp]|, Definition 2.1, as well as [CbTpI|, Remark 5.6.1] — we
may assume without loss of generality that X'°¢ and Y'°¢ are smooth
log curves over (Speck)°s. Write (Ux),, (Uy), for the 1-interior [cf.
[MzTa], Definition 5.1, (i)] of X°8 Yo respectively. [Here, we note

that in the present situation, the O-interior of (Spec k)%, hence also

of X8 Yloe is empty!] Thus, one verifies easily that Uy o (Ux)1,

Uy def (Uy); are hyperbolic curves over k, and that (Ux),, (Uy), are

naturally isomorphic to the n-th configuration spaces of Uy, Uy, re-
spectively. Write Ug", Uy"™ for the respective fiber products of n
copies of Ux, Uy over k; II;™, YII™ for the respective direct prod-
ucts of n copies of II;, YII;; V, for the fiber product of the natu-
ral open immersion (Ux), — Ux" and the natural finite étale cov-
ering Uy — Ug™. Then one verifies easily that the resulting open
immersion V;, — Uy™" factors through the natural open immersion
(Uy), — Uy", ie., we obtain an open immersion V,, — (Uy),. That
is to say, whereas (Uy ), is the open subscheme of Uy:" obtained by re-
moving the various diagonals of Uy:", the scheme V,, may be thought of
as the open subscheme of Uy obtained by removing the various Galois
conjugates of these diagonals, relative to the action of the Galois group
Gal(Uy" /UZ"™) = Gal(Uy /Ux)*". In particular, we obtain a natural
outer isomorphism and outer surjection

Yrrxn Y7
11, X pen 7" « Iy, — 11,

— where we write Ily, for the maximal pro-3 quotient of the étale
fundamental group of V,.

Now we verify assertion (i). Let a, be an automorphism of II,
that lies over the automorphism « of II; with respect to each of the
n natural projections II,, — II;. Then one verifies easily, in light of
the description given above of (Uy), and V,,, that the outomorphism
of IT,, X pen YII;™ induced by @, and ay preserves the inertia subgroups
of the irreducible components of the complement (Uy), \ V,,. Thus,
we conclude, by applying the morphisms of the above display, that the
outomorphism of II,, X pen YTI;™ induced by @, and oy determines an
outomorphism of YII,,. Moreover, one verifies easily that the resulting
outomorphism of YII, lies over the outomorphism oy of YII;. This
completes the proof of assertion (i).
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Next, we verify assertion (ii). First, let us observe that the natural
inclusion IT*4 < TI;, together with the trivial homomorphism IT%*4 —
({1} <) YII;*, determines an injection T4 < I3 Xz I? & Ty,
Moreover, it follows immediately from the fact that the blow-up oper-
ation that gives rise to a central tripod is compatible with étale local-
ization [cf. the discussion of [CmbCsp|, Definition 1.8] that — after
possibly replacing YII**¢ C YII3 by a suitable YTI5-conjugate of YT —
the composite of this injection T < Iy, with the natural outer sur-
jection Iy, —» YII3 of the above display determines a geometric outer
[cf. Lemma 3.12] isomorphism ¢P4: I1'P4 = YI'Pd C Y[I3. On the
other hand, one verifies easily that this outer isomorphism ¢'*¢ satis-
fies the property stated in assertion (ii). This completes the proof of
assertion (ii). O

Corollary 3.22 (Non-surjectivity result). In the notation of The-
orem 3.16, suppose that (g,7) ¢ {(0,3);(1,1)}. Then the natural in-
jection

OutFC(H2) — OutFC (Hl)

of [NodNon|, Theorem B, is not surjective.

Proof. First, let us observe — by considering a suitable stable log
curve of type (g,7) over (Speck)®® and applying a suitable special-
ization isomorphism [cf. the discussion preceding [CmbCsp]|, Defini-
tion 2.1, as well as [CbTpl|, Remark 5.6.1] — that, to verify Corol-
lary 3.22, we may assume without loss of generality that G is totally
degenerate [cf. [CbTpl], Definition 2.3, (iv)], i.e., that every vertex
of G is a tripod of X!¢ [cf. Definition 3.1, (v)]. Note that [since
(g,7) € {(0,3);(1,1)}] this implies that Vert(G)* > 2. Let us fix a ver-

tex vy € Vert(G) and write oy, o idg),, € AutlEPr(G|,) [cf. [CbTpI],
Definitions 2.1, (iii), and 2.6, (i); Remark 4.1.2 of the present paper].
For each v € Vert(G) \ {w}, let a, € Aut®*"(G|,) be a nontriv-
ial automorphism of G|, such that a, € Out®(Ilg,)*, and, moreover,
Xg|, (@) = 1 [cf. [CbTpl], Definition 3.8, (ii)]. Here, we note that
since the image of the natural outer Galois representation of the ab-
solute Galois group of Q associated to IP’}@ \ {0, 1,00} is contained in
“Outc(—)A”, by considering a nontrivial element of this image whose
image via the cyclotomic character is trivial, one verifies immediately
that such an automorphism o, € Aut®®?"(G|,) always exists. Then it
follows immediately from [CbTpl], Theorem B, (iii), that there exists
an automorphism o € Aut®P*(G) such that Pt (@) = ()vevert(@)-
Now assume that there exists an outomorphism oy € Out¥(Il,) such
that a € Autl#™(G) (C Out(Ilg) < Out(Il,)) is equal to the image
of ay via the injection in question Out™®(Ily) < Out"“(IT;). Then,
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for each v € Vert(G), since a,, € Out®(Ilg,)?, and a € Aut'=?"(G),
it follows immediately from the various definitions involved that s €
Out™(ITy)[I, : {|C], A}] — where we use the notation II, to denote a
verticial subgroup of Ilg < II; associated to v € Vert(G). Thus, since

def

vy, = idgj, , it follows from Theorem 3.17, (i), that a, = idgy, for ev-
ery v € Vert(G), in contradiction to the fact that for v € Vert(G)\ {vo}
(# 0), the automorphism o, € Aut®?"(G|,) is nontrivial. This com-
pletes the proof of Corollary 3.22. O

Remark 3.22.1.

(i)

(iii)

Let us recall from [NodNon|, Corollary 6.6, that, in the dis-
crete case, the homomorphism that corresponds to the homo-
morphism discussed in Corollary 3.22 is, in fact, surjective;
moreover, this surjectivity may be regarded as an immediate
consequence of the Dehn-Nielsen-Baer theorem — cf. the proof
of [CmbCsp]|, Theorem 5.1, (ii). This phenomenon illustrates
that, in general, analogous constructions in the discrete and
profinite cases may in fact exhibit quite different behavior.

In the context of (i), we recall another famous example of sub-
stantially different behavior in the discrete and profinite cases:
As is well-known, in classical algebraic topology, singular co-
homology with coefficients in Z yields a “good” cohomology
theory with coefficients in Z. On the other hand, in the 1960’s,
Serre gave an argument involving supersingular elliptic curves
in positive characteristic which shows that such a “good” co-
homology theory with coefficients in Z [or even in Z,!] cannot
exist for smooth varieties of positive characteristic.

In [Lch], various conjectures concerning [in the notation of the
present paper| the profinite group “Out(Il;)” were introduced.
However, at the time of writing, the authors of the present
paper were unable to find any justification for the validity of
these conjectures that goes beyond the observation that the
discrete analogues of these conjectures are indeed valid. That
is to say, there does not appear to exist any justification for
excluding the possibility that — just as in the case of the exam-
ples discussed in (i), (ii), i.e., the Dehn-Nielsen-Baer theorem
and singular cohomology with coefficients in Z — the discrete
and profinite cases exhibit substantially different behavior. In
particular, it appears to the authors that it is desirable that
this issue be addressed in a satisfactory fashion in the context
of these conjectures.
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Remark 3.22.2. As discussed in Remark 3.22.1, (i), in the discrete
case, the homomorphism that corresponds to the homomorphism dis-
cussed in Corollary 3.22 is, in fact, bijective. The proof of Corollary 3.22
fails in the discrete case for the following reason. The pro- “II;” of
a tripod admits nontrivial C-admissible outomorphisms that commute
with the outer modular symmetries, and, moreover, lie in the kernel of
the cyclotomic character [cf. the proof of Corollary 3.22]. By contrast,
the discrete “Il;” of a tripod does not admit such outomorphisms. In-
deed, it follows from a classical result of Nielsen [cf. [CmbCsp]|, Remark
5.3.1] that the discrete “Out®(I1;)°"P” in the case of a tripod is a finite
group of order 2 whose unique nontrivial element arises from complex
conjugation.

Remark 3.22.3. Tt follows from [NodNon|, Theorem B, together with
Corollary 3.22, that if (g,7) € {(0,3);(1,1)}, then the homomorphism
Out"“(IT,.;1) — Out* (II,,) of [NodNon|, Theorem B, fits into the
following sequences of homomorphisms of profinite groups: If r # 0,
then for any n > 3,

Out™(I,,) = OutFC(I1y) &5 Out™(I1,) & OuwtFe(In,).

If r =0, then for any n > 4,

Out™e(I1,) > OutFC(IL,) <5 Ot (I1y) 5 OutFe(IL,) & Out™(IL,).

Definition 3.23. Let ¥ be a nonempty set of prime numbers and
Go a semi-graph of anabelioids of pro-X, PSC-type. Write Ilg, for the
[pro-%] fundamental group of Gy.

(i) Let H be a semi-graph of anabelioids of pro-X, PSC-type,
S C Node(H), and ¢: H.os — Go [cf. [CbTpI], Definition
2.8, for more on this notation] an isomorphism [of semi-graphs
of anabelioids of PSC-type]. Then we shall refer to the triple
(H, S, ¢) as a degeneration structure on Gy.

(i) Let (H1,S1,¢1), (Hz, Sa, ¢2) be two degeneration structures on
Go [cf. (1)]. Then we shall write

(Ha, S2,¢2) = (H1, 51, ¢1)

if there exist a subset Sy; C Sy of Sy and a(n) [uniquely de-
termined, by ¢ and ¢o! — cf. [CmbGC], Proposition 1.5, (ii)]
isomorphism @1 : (H2)ws,, — Hi [i.e., a degeneration struc-
ture (Ha, S2.1, ¢2.1) on Hy| such that ¢o; maps Sy \ S21 onto
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S1, and the diagram

((HZ)WszJ)WSz\Sz,l —— (Hl)wsl

zl zl@
(Ha)-s, 2. G

~

— where the upper horizontal arrow is the isomorphism in-
duced by @91, and the left-hand vertical arrow is the natural
isomorphism — commutes. [Here, we note that the subset Ss
is also uniquely determined by ¢ and ¢y — cf. [CmbGC],
Proposition 1.2, (i).]

Let (Hi,S1, ¢1), (Hz, Sa, ¢2) be two degeneration structures on
Go [cf. (i)]. Then we shall say that (Hy, S1,¢1) is co-Dehn to
(Ha, Sa, ¢o) if there exists a degeneration structure (Hsz, Ss, ¢3)
on Gy such that

(Hs, S3, ¢3) = (H1,S1,01) ;5 (Hs, Ss, ¢3) = (Hz, Sa, ¢2)
ef. (ii)].

Let (H,S,¢) be a degeneration structure on Gy [cf. (i)] and
a € Out(Ilg,). Then we shall say that « is an (H, S, ¢)-Dehn
multi-twist of Gy if « is contained in the image of the composite

Dehn(H) — Out(Ily) < Out(Ily_ ) — Out(Ilg,)

— where the first arrow is the natural inclusion [cf. [CbTpl],
Definition 4.4], the second arrow is the isomorphism deter-
mined by ®3,_, [cf. [CbTpl], Definition 2.10], and the third
arrow is the isomorphism determined by ¢. We shall say that
a is a nondegenerate (respectively, positive definite) (H, .S, ¢)-
Dehn multi-twist of Gy if « is the image of a nondegenerate [cf.
[CbTpl], Definition 5.8, (ii)] (respectively, positive definite [cf.
[CbTpl], Definition 5.8, (iii)]) profinite Dehn multi-twist of H
via the above composite.

Let m be a positive integer and Y'°¢ a stable log curve over
(Speck)°e. If m > 2, then suppose that ¥, is either equal
to Primes or of cardinality one. For each nonnegative integer
i, write YTI; (respectively, H) for the “II;” (respectively, “G”)
that occurs in the case where we take “X'°¢” to be Y'°¢. Then
we shall say that a degeneration structure (H, S, ¢) on G [cf.
(1)] is m-cuspidalizable if the composite

PH_,g ¢
I, =5 My & Ty — g «— 1,

— where the first and fourth arrows are the natural outer iso-
morphisms [cf. Definition 3.1, (ii)], and the second arrow @y,
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is the natural outer isomorphism of [CbTpl], Definition 2.10 —
is m-cuspidalizable [cf. Definition 3.20].

Remark 3.23.1. One interesting open problem in the theory of profi-
nite Dehn multi-twists developed in [CbTpl|, §4, is the following: In
the notation of Definition 3.23, for ¢ = 1, 2, let (H;, S, ¢;) be a de-
generation structure on Gy [cf. Definition 3.23, (i)]; a; € Out(Ilg,) a
nondegenerate (H;, S;, ¢;)-Dehn multi-twist [cf. Definition 3.23, (iv)].
Then:

Suppose that ay commutes with ap. Then is (Hy, S1, ¢1)
co-Dehn to (Ha, S2, ¢2) [cf. Definition 3.23, (iii)]?

It is not clear to the authors at the time of writing whether or not this
question may be answered in the affirmative. Nevertheless, we are able
to obtain a partial result in this direction [cf. Corollary 3.25 below].

Proposition 3.24 (Compatibility of tripod homomorphisms).
Suppose that n > 3. Then the following hold:

(i) Let Y'°% be a stable log curve over (Spec k). For each non-
negative integer i, write YII; (respectively, H) for the “II;” (re-
spectively, “G”) that occurs in the case where we take “X'°8” to
be Y'°¢. Let (H, S, ¢) be an n-cuspidalizable degeneration
structure on G [cf. Definition 3.23, (i), (v)]; ¢, "1, = 11,
a PFC-admissible outer isomorphism [cf. [CbTpl|, Defini-
tion 1.4, (iii)] that lies over the displayed composite isomor-
phism of Definition 3.23, (v); TI'**d C I3, YII'**? C YII3 cen-
tral [1,2,3}-/tripods [cf. Definitions 3.3, (i); 3.7, (ii)] of
I1,,, YII,,, respectively. Then there exists an outer isomorphism
ted: YIIPd 5 T4 syuch, that the diagram

Out™("11,) —— Out"(I1,,)

Ly rtpd l l‘zntpd

~

Out(M1Pd) —=—  Out(I1*P4)
[¢f. Definition 3.19] — where the upper and lower horizontal
arrows are the isomorphisms induced by ¢,, ¢, respectively

— commutes, up to inner automorphisms of Out(I1**). In
particular, ¢, determines an isomorphism

~

OutFC (YHn)geo -~ OutFC(Hn)geo
[ef. Definition 3.19].

(ii) If we regard Out™ (I1,) as a closed subgroup of Out™(I1;) by
means of the natural injection Out"“(II,) — Out™ (1) of
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[NodNon|, Theorem B, then the closed subgroup Dehn(G) C
(Aut(G) C) Out(Ilg) < Out(Ily) [cf. [CbTpI], Definition 4.4]
is contained in Out"“(IT,,)8° C Out™(I1,,), i.e.,

Dehn(G) € Out™(I1,, )5 .

Proof. First, we verify assertion (i). Let us observe that if the outer
isomorphism ¢,, arises scheme-theoretically as a specialization 1somor-
phism — cf. the discussion preceding [CmbCsp]|, Definition 2.1, as well
as [CbTpl], Remark 5.6.1 — then the commutativity in question follows
immediately from the various definitions involved [cf. also the discus-
sion preceding [CmbCsp]|, Definition 2.1]. Now the general case follows
from the observation that the scheme-theoretic case treated above al-
lows one to reduce to the case where Y'°¢ = X' and ¢, is an FC-
admissible outomorphism, in which case the commutativity in question
is a tautology. This completes the proof of assertion (i).

Next, we verify assertion (ii). The inclusion Dehn(G) € Out"“(I1,)
follows immediately from the fact that every profinite Dehn multi-
twist arises scheme-theoretically. Next, we observe that the inclusion
Dehn(G) € Out™(I1,,)8*° may be regarded either as a consequence
of the fact that every profinite Dehn multi-twist arises “Q-scheme-
theoretically”, i.e., from scheme theory over Q [cf. the commutative
diagram of Remark 3.19.1], or as a consequence of the following argu-
ment: Observe that it follows immediately from assertion (i), together
with [CbTpl|, Theorem 4.8, (ii), (iv), that, by applying a suitable spe-
cialization isomorphism — cf. the discussion preceding [CmbCsp]|, Def-
inition 2.1, as well as [CbTpl], Remark 5.6.1 — we may assume with-
out loss of generality that G is totally degenerate. Then the inclusion
Dehn(G) € Out¥™ (11, )&% follows immediately from Theorem 3.18, (ii)
[cf. also Theorem 3.16, (v); [CbTpl], Definition 4.4!]. This completes
the proof of assertion (ii). O

Corollary 3.25 (Co-Dehn-ness of degeneration structures in
the totally degenerate case). In the notation of Theorem 3.16, for
i=1,2, let Y°® be a stable log curve over (Speck)°8; H; the “G” that
occurs in the case where we take “X'27 to be Y}%: (H;, S;,¢:) a 3-
cuspidalizable degeneration structure on G [cf. Definition 3.23,
(i), (v)]; c; € Out(Ilg) a nondegenerate (H;, S;, ¢;)-Dehn multi-twist
of G [cf. Definition 3.23, (iv)]. Suppose that a; commutes with s,
and that Hy is totally degenerate [cf. [CbTpl|, Definition 2.3, (iv)].
Suppose, moreover, that one of the following conditions is satisfied:

(a) r # 0.
(b) ay and oy are positive definite [cf. Definition 3.23, (iv)].
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Then (Hi,Si,¢1) is co-Dehn to (Hz, Se,¢a) [cf. Definition 3.23,
(111)], or, equivalently [since Hy is totally degenerate/, (Ha, Sa, ¢2) <
(H1,S1,¢1) [cf. Definition 3.23, (ii)].

Proof. For i = 1, 2, write v; : [Ig — Iy, for the composite outer
isomorphism

o (I)(Hi)wsi
v 2 Mg — T, — 1y,

S;

and ¢ & ¢y o Yyt Write ay[Hy] € Out(Ily,) for the outomorphism

obtained by conjugating a; by 1. First, we claim that the following
assertion holds:

Claim 3.25.A: There exists a positive integer a such

that 3% a;[Hy]® € Dehn(H,).

Indeed, since oy is an (Hy, S1, ¢1)-Dehn multi-twist of G, the outomor-
phism oy [Hs] of Tly, is group-theoretically cuspidal. Thus, since
commutes with as, it follows, in the case of condition (a) (respectively,
(b)), from Theorem 1.9, (i) (respectively Theorem 1.9, (ii)), which
may be applied in light of [CbTpl], Corollary 5.9, (ii) (respectively,
[CbTpl], Corollary 5.9, (iii)), that a;[Hs] € Aut(Hz). In particular,
since the underlying semi-graph of Hs is finite, there exists a positive
integer a such that oq[Hy]* € Aut'®P(H,) [cf. [CbTpI], Definition
2.6, (i); Remark 4.1.2 of the present paper|. On the other hand, since
aq is an (Hy, S1, ¢1)-Dehn multi-twist of G, it follows immediately from
Proposition 3.24, (i), (ii), that the image of oy via the tripod homo-
morphism associated to II3 [cf. Definition 3.19] is trivial. Thus, since
H, is totally degenerate, and o [Hs)® € Aut/®P(H,), by applying The-
orem 3.18, (ii), together with Proposition 3.24, (i), we conclude that
a1[Hs]* € Dehn(Hz). This completes the proof of Claim 3.25.A.
Next, let us fix an element [ € ¥. For ¢ € {1,2}, write Hz{l} for the
semi-graph of anabelioids of pro-I PSC-type obtained by forming the
pro-l completion of H; [cf. [SemiAn], Definition 2.9, (ii)]. Then it fol-
lows immediately from Claim 3.25.A, together with [CbTpl], Theorem
4.8, (ii), (iv), that there exists a subset S C Node(Hs3) [which may
depend on 1] such that the automorphism S € Aut(Hi") induced
by § is contained in Dehn((HiM) .5) € Dehn(Hi") € Aut(Hi?) [ie.,
B s a profinite Dehn multi-twist of (Hél})wg], and, moreover, 3
is nondegenerate as a profinite Dehn multi-twist of (Hgl})wg. Write

ozi[l} for the outomorphism of the pro-I group II [which is naturally

HiY
isomorphic to the maximal pro-I quotient of Ily,] induced by «; and

U I, ) = IT, 1y for the outer isomorphism induced by ¢ [cf. the
2 1

discussion preceding Claim 3.25.A].
Next, we claim that the following assertion holds:
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Claim 3.25.B: The composite outer isomorphism

(M) s P
@Dsi H(H2)ws - HHz - HHl

~

is graphic, i.e., arises from an isomorphism (Hs)..s —

H;.

Indeed, let t¥g: I3,) = Tly, be an isomorphism that [lifts 1g.
Then it follows immediately from [CmbGC], Proposition 1.5, (i) —
by considering the functorial bijections between the sets “VCN” [cf.
[NodNon], Definition 1.1, (iii)] of various connected finite étale cover-
ings of Hy, (Hy)..s — that, to verify Claim 3.25.B, it suffices to verify
the following:

Let Z, — (H2)ws be a connected finite étale cov-

ering of (Hs)..s that corresponds to a characteristic

open subgroup Ilz, C Iy,) . Write Z; — H; for

the connected finite étale covering of H; that corre-

sponds to the [necessarily characteristic] open sub-

group Ilz, o ¥s(Ilz,) C Iy, and Ii{l}, Ié{l} for the

semi-graphs of anabelioids of pro-l PSC-type obtained

by forming the pro-l completions of Z;, Z,, respec-

tively. Then the outer isomorphism HIQ{Z} = HI}” de-

termined by g is graphic.
To verify this graphicity, let us first recall that the automorphisms
Bl e Aut((Hgl})wg) and oy € Aut(H;) are nondegenerate profinite
Dehn multi-twists. Thus, it follows immediately from Lemma 3.26, (i),
(ii), below, that there exist liftings 3 € Aut(ILzs,)_ ), a1 € Aut(Ily,)
of B, au, respectively, and a positive integer b such that the outomor-
phisms o, 71 of HI2{Z}’ Hfl{l} determined by 3°, a% are nondegenerate

profinite Dehn multi-twists of 12{”, Ii{l} , respectively, and, moreover,

vo and v{ are compatible relative to the outer isomorphism in ques-

tion I =5 IL_@y. Moreover, if condition (b) is satisfied, then ; is
2 1

a positive definite profinite Dehn multi-tunst of Il{l} [cf. Lemma 3.26,
(ii), below]. Thus, it follows, in the case of condition (a) (respectively,
(b)), from Theorem 1.9, (i) (respectively Theorem 1.9, (ii)), which
may be applied in light of [CbTpl], Corollary 5.9, (ii) (respectively,
[CbTpl|, Corollary 5.9, (iii)), that the outer isomorphism in question
HIQ{” St HIfz} is graphic. This completes the proof of Claim 3.25.B.

On the other hand, one verifies easily from the various definitions in-
volved that Claim 3.25.B implies that (Ha, So, ¢2) = (H1, S1, ¢1). This
completes the proof of Corollary 3.25. O
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Lemma 3.26 (Profinite Dehn multi-twists and pro-X comple-
tions of finite étale coverings). Let X1 C X be nonempty sets of
prime numbers, Gy a semi-graph of anabelioids of pro-Xo PSC-type,
Ho — Go a connected finite étale Galois covering that arises from a
normal open subgroup Iy, C g, of llg,, and o € Aut(llg,). Write
G1, Hi for the semi-graphs of anabelioids of pro-¥, PSC-type obtained
by forming the pro-X, completions of Gy, Ho, respectively [cf. [SemiAn],
Definition 2.9, (i1)]. Suppose that & € Aut(Ilg,) preserves the normal
open subgroup Iy, C Ilg, corresponding to Hy — Go. Write ag,, o,
ag,, ay, for the respective outomorphisms of llg,, 1y, g, , Iy, in-
duced by a. Suppose, moreover, that ag, € Dehn(Gy) [c¢f. [CbTpl],
Definition 4.4]. Then the following hold:

(i) It holds that ag, € Dehn(G;). Moreover, there exists a positive
integer a such that

oy, € Dehn(Hy) , af,, € Dehn(H,).

(i) If, moreover, ag, € Dehn(Gy) [cf. (i)] is nondegenerate (re-
spectively, positive definite) [cf. [CbTpl], Definition 5.8,
(i), (iii)], then of, € Dehn(H1) [cf. (i)] is nondegenerate
(respectively, positive definite).

Proof. First, we verify assertion (i). One verifies easily from [NodNon],
Lemma 2.6, (i), together with [CbTpl], Corollary 5.9, (i), that there
exists a positive integer a such that af, € Dehn(H,). Now since
ag, € Dehn(Gy), of, € Dehn(Hy), it follows immediately from the
various definitions involved that ag, € Dehn(G)), af, € Dehn(H,).
This completes the proof of assertion (i). Assertion (ii) follows imme-
diately from [CbTpl], Corollary 5.9, (v) [applied, via [CbTpl], Theorem
4.8, (ii), (iv), to each of the Dehn coordinates — cf. [CbTpl], Definition
5.8, (i) — of the profinite Dehn multi-twists under consideration]. This
completes the proof of Lemma 3.26. 0

Corollary 3.27 (Commensurator of profinite Dehn multi-twists
in the totally degenerate case). In the notation of Theorem 3.16,

Definition 3.19 [so n > 3], suppose further that G is totally degener-

ate [cf. [CbTpl], Definition 2.3, (iv)]. Write s: Speck — (Mg )k &

(Mg ir)speck [cf. the discussion entitled “Curves” in §0] for the under-
lying (1-)morphism of algebraic stacks of the classifying (1-)morphism

(Speck)le — (M;O’[gﬂ)k e lg(jﬁ})speck [ef. the discussion entitled

“Curves” in §0] of the stable log curve X'°& over (Spec k)'°8; /T/Slog for
the log scheme obtained by equipping./\Nfs & Spec k with the log structure

induced, via s, by the log structure of (Mzo[gr])k; Noe for the log stack

obtained by forming the [stack-theoretic] quotient of the log scheme K/gog
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by the natural action of the finite [k-]group “s X (Mg S s i-€., the fiber
product over (Mg )k of two copies of s; N for the underlying stack
of the log stack N¢; I, C m(N°®) for the closed subgroup of the log
fundamental group m (N8) of N given by the kernel of the natural
surjection w1 (N1°8) — 11 (N5) [induced by the (1-)morphism N1°¢ — N
obtained by forgetting the log structure]; W%E) (NI°&) for the quotient of
71 (N1°8) by the kernel of the natural surjection from Ly, to its mazimal
pro-% quotient Iy . Then the following hold:

(i) The natural homomorphism m (N°8) — Out(II,) factors through

the quotient m(N18) — ﬂz) (N!°8) and the natural inclusion
Nowre e (Dehn(G)) < Out(1ly) [cf. Proposition 5.24, (ii)].

In particular, we obtain a homomorphism
W%E)(A/slog) — Nowgre i, yeeo (Dehn(G))
hence also a homomorphism

0 (NI8) — Copreq, oo (Dehn(G))

(ii) The second displayed homomorphism of (i) fits into a natural
commutative diagram of profinite groups

1 — I} — e (Neg) — MmN —— 1

l l !

1 —— Dehn(G) —— Coyreq, e (Dehn(G)) —— Aut(G) —— 1

[¢f. Definition 3.1, (ii), concerning the notation “G”] — where
the horizontal sequences are exact, and the vertical arrows are
isomorphisms.

(iii) Dehn(G) is open in Cp yro g, e (Dehn(G)).
(iv) We have an equality
NOutFC(Hn)geo (Dehn(g)) = CoutFC(Hn)geo (Dehn(g)) .

Proof. First, we verify assertion (i). The fact that the image of the
homomorphism in question is contained in Out*“(I1,,)% follows imme-
diately from the [tautologicall] fact that this image arises “Q-scheme-
theoretically”, i.e., from scheme theory over Q [cf. the commutative
diagram of Remark 3.19.1]. Thus, assertion (i) follows immediately
from the fact that the natural homomorphism 7 (N8) — Out(Il;)
determines an isomorphism Iy — Dehn(G) [cf. [CbTpl], Proposition
5.6, (ii)]. This completes the proof of assertion (i).

Next, we verify assertion (ii). First, let us observe that it follows from
[CbTpl], Theorem 5.14, (iii), that Cpro, )z (Dehn(G)) C Aut(g).
Thus, we obtain a natural homomorphism Cq,roq, zo (Dehn(G)) —
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Aut(G), whose kernel contains Dehn(G) [cf. the definition of a profi-
nite Dehn multi-twist given in [CbTpl], Definition 4.4]. On the other
hand, if an element o € Cpypror, e (Dehn(G)) acts trivially on G,
then, since G is totally degenerate, it follows immediately from The-
orem 3.18, (ii), that @ € Dehn(G). This completes the proof of the
existence of the lower exact sequence in the diagram of assertion (ii),
except for the surjectivity of the third arrow of this sequence. Thus,
it follows immediately from the proof of assertion (i) that, to com-
plete the proof of assertion (ii), it suffices to verify that the right-hand
vertical arrow m(N;) — Aut(G) of the diagram is an isomorphism.
Write Autgpec oz (X'°8) for the group of automorphisms of X'°¢ over
(Spec k)8, Then since X8 is totally degenerate, one verifies easily
that the natural homomorphism Autgpec jyes (X log) — Aut(G) is an
isomorphism. Thus, it follows immediately from the various defini-
tions involved that the right-hand vertical arrow m;(N;) — Aut(G) of
the diagram is an isomorphism. This completes the proof of assertion
(ii).

Assertion (iii) follows immediately from the ezactness of the lower
sequence of the diagram of assertion (ii), together with the finiteness
of G. Assertion (iv) follows immediately from the fact that the middle
vertical arrow of the diagram of assertion (ii) is an isomorphism which
factors through N ro gy, o (Dehn(G)) C Coyiroqy, jeeo (Dehn(G)) [cf.
assertion (i)]. This completes the proof of Corollary 3.27. O

Remark 3.27.1. One interesting consequence of Corollary 3.27 is the
following: The profinite group Out"“(II,,)&* [which, as discussed in
Remark 3.19.1, may be regarded as the geometric portion of the group
of FC-admissible outomorphisms of the configuration space group II,,],
hence also the commensurator Cq,ro(p, jee0 (Dehn(G)), is defined in a
purely combinatorial/group-theoretic fashion. In particular, it follows
from the commutative diagram of Corollary 3.27, (ii), that this com-
mensurator Cp rc qy, e (Dehn(G)) yields a purely combinatorial/group-
theoretic algorithm for reconstructing the profinite groups of scheme-
theoretic origin that appear in the upper sequence of this diagram.
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4. GLUEABILITY OF COMBINATORIAL CUSPIDALIZATIONS

In the present §4, we discuss the glueability of combinatorial cuspidal-
1zations. The resulting theory may be regarded as a higher-dimensional
analogue of the displayed exact sequence of [CbTpl], Theorem B, (iii)
[cf. Theorem 4.14, (iii), below, of the present paper]|. This theory im-
plies a certain key surjectivity property of the tripod homomorphism
[cf. Corollary 4.15 below|. Finally, we apply this result to construct
cuspidalizations of the log fundamental group of a stable log curve over
a finite field [cf. Corollary 4.16 below| and to compute certain com-
mensurators of the corresponding Galois image in the totally degenerate
case [cf. Corollary 4.17 below].

In the present §4, we maintain the notation of the preceding §3 [cf.
also Definition 3.1]. In addition, let 3y be a nonempty set of prime
numbers and G, a semi-graph of anabelioids of pro->y PSC-type. Write
Gy for the underlying semi-graph of Gy and Ilg, for the [pro-¥y] funda-
mental group of Gy.

Definition 4.1.
(i) We shall write
AutPE(Gy) © (AutM ] (Gy) N Aut (Gy) ©) Aut(Gy)

[cf. [CbTpl], Definition 2.6, (i)] for the [closed] subgroup of
Aut(Gy) consisting of automorphisms « of Gy that induce the
identity automorphism of Vert(Gy), Node(Gy), and, moreover,
fix each of the branches of every node of Gy. Thus, we have a
natural exact sequence of profinite groups

1 — AutlePl(G) — Aut/Breh@l(G) — Aut(Cusp(Gy))
[cf. [CbTpl], Definition 2.6, (i); Remark 4.1.2 of the present
paper].
(ii) Let v € Vert(Gy). Then we shall write
E(Golv : Go) € Edge(Golv) (= Cusp(Gol,))

CbTpl], Definition 2.1, (iii)] for the subset of Edge(Go|,)

[ef. |
(= Cusp(Goly)) consisting of cusps of G|, that arise from nodes
O 0-

(iii) We shall write
Gl™™Go) € [ AutFE9l(G|,)
veVert(Gop)

[cf. (ii); [CbTpl], Definition 2.6, (i)] for the [closed] subgroup of
[Tocvert(ao) Autl€@91(G1,) consisting of “glueable” collections
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of automorphisms of the various Gyl,, i.e., the subgroup con-
sisting of (v )vevert(g,) such that, for every v, w € Vert(Gy), it
holds that y,(a,) = xw(aw) [cf. [CbTpl], Definition 3.8, (ii)].

Remark 4.1.1. In the notation of Definition 4.1, one verifies easily
from the various definitions involved that

G1u<g0) _ GlubrCh(go) N ( H Aut‘grph|(g0|v)>
veVert(Go)
[cf. [CbTpl], Definitions 2.6, (i), and 4.9; Remark 4.1.2 of the present
paper].

Remark 4.1.2. Here, we take the opportunity to correct a minor
error in the exposition of [CbTpl]. In [CbTpl], Definition 2.6, (i),
“Aut/e®l(G)” should be defined as the subgroup of Aut(G) of automor-
phisms of G which induce the identity automorphism on the underlying
semi-graph of G [cf. the definition given in [CbTpl], Theorem BJ. In a
similar vein, in [CbTpl], Definition 2.6, (i), “Aut™(G)” should be de-
fined as the subgroup of Aut(G) of automorphisms of G which preserve
the sub-semi-graph H of the underlying semi-graph of G and, moreover,
induce the identity automorphism of H. Since the correct definitions
are applied throughout the exposition of [CbTpl|, these errors in the
statement of the definitions have no substantive effect on the exposition
of [CbTpl], except for the following two instances [which themselves do
not have any substantive effect on the exposition of [CbTpl]]:

(i) In [CbTpI], Proposition 2.7, (ii), “Aut®?"(G)” should be re-
placed by “Aut!VeN@I(G)”.

(ii) In [CbTpl], Proposition 2.7, (iii), the phrase “In particular”
should be replaced by the word “Finally”.

Theorem 4.2 (Glueability of combinatorial cuspidalizations in
the one-dimensional case). Let ¥ be a nonempty set of prime num-
bers and Gy a semi-graph of anabelioids of pro-X, PSC-type. Write Ilg,
for the [pro-3,] fundamental group of Go. Then the following hold:

(i) The closed subgroup Dehn(Gy) C Aut(Gy) [cf. [CbTpl], Def-
inition 4.4] is contained in Aut/®*290l(G)) C Aut(Gy) [cf.
Definition 4.1, (i)], i.e., Dehn(Gy) C Aut/Prh(@)(Gy).

(ii) The natural homomorphism

Aut/Bren@l(g)y — Hve\/ert(go)AUt(gO|U)
o - (QGo|,, Juevert(Go)
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[ef. [CbTpl], Definition 2.14, (ii); [CbTpl], Remark 2.5.1,
(i1)] factors through

Gl ™(Go) €[] Aut(Golo)

veVert(Go)

[cf. Definition 4.1, (iii)].

(iii) The natural inclusion Dehn(Gy) — AutP*9N(Go) of (i) and
the natural homomorphism pgre: Aut/Br@l(Gy) — Glu""(Gy)
[ef. (ii)] fit into an exact sequence of profinite groups

brch

1 — Dehn(Gy) — Aut/Breh(@l(Gy) 0, Gl (g,) — 1.

Proof. Assertions (i) follows immediately from the various definitions
involved. Assertion (ii) follows immediately from [CbTpl], Corollary
3.9, (iv). Assertion (iii) follows from the exact sequence of [CbTpl],
Theorem B, (iii), together with the existence of automorphisms of Gy
that induce arbitrary permutations of the cusps and, moreover, restrict
to automorphisms of each Gyl|, that lie in the kernel of x, [cf. the
automorphisms constructed in the proof of [CmbCsp], Lemma 2.4]. O

Definition 4.3. Let H be a sub-semi-graph of PSC-type [cf. [CbTpl],
Definition 2.2, (i)] of G [cf. Definition 3.1, (ii)] and S C Node(G|m)
[cf. [CbTpl], Definition 2.2, (ii)] a subset of Node(G|g) that is not of
separating type [cf. [CbTpl], Definition 2.5, (i)]. Then, by applying
a similar argument to the argument applied in [CmbCsp], Definition
2.1, (iii), (vi), or [NodNon]|, Definition 5.1, (ix), (x) [i.e., by considering
the portion of the underlying scheme X,, of X'°& corresponding to the
underlying scheme (Xg g),, of the n-th log configuration space (X g)18
of the stable log curve Xﬁ% determined by (G|g).s — cf. [CbTpl],
Definition 2.5, (ii)], one obtains a closed subgroup

(HH,S)n g Hn

[which is well-defined up to II,,-conjugation]. We shall refer to (Ilg s), C
I1,, as a configuration space subgroup [associated to (H, S)]. For each
0 <1 <5 < n, we shall write

def
(i) = (Hps)n N1, C 1,y

[which is well-defined up to II,,-conjugation)];

def
(Mgs)j/e = Mas)nsi/ (s )nss €

[which is well-defined up to II;-conjugation];

def
(Mp,s); = (Hu,s)j0 € 11
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[which is well-defined up to II;-conjugation]. Thus, each (Ilgs);/; is a
pro-% configuration space group [cf. [MzTa|, Definition 2.3, (i)], and
we have natural exact sequences of profinite groups

1 — ()i — (ms); — (Hms)i — 1.
Finally, let v € Vert(G). Then the semi-graph of anabelioids of PSC-
type G|, [cf. [CbTpl], Definition 2.1, (iii)] may be naturally identified

with (Glm,)ss, for suitable choices of H,, S, [cf. [CbTpl], Remark
2.5.1, (ii)]. We shall refer to

def
(Hv)n - (HHU,Sv)n C IL,
as a configuration space subgroup associated to v. Thus, (I1,); C II; is
a verticial subgroup associated to v € Vert(G), i.e., a subgroup that is
typically denoted “IL,”. We shall write

def def
()6 = (Uw,.s,)5 € W5 (Iy); = (T, ); € 15

Remark 4.3.1. In the notation of Definition 4.3, one verifies easily
— by applying a suitable specialization isomorphism [cf. the discus-
sion preceding [CmbCsp]|, Definition 2.1, as well as [CbTpl], Remark
5.6.1] — that there exist a stable log curve Y'°& over (Speck)® and
an n-cuspidalizable degeneration structure (G, S,¢) on YG [cf. Defini-
tion 3.23, (i), (v)] — where we write YG for the “G” that occurs in the
case where we take “X'°8” to be Y8 — which satisfy the following:
Write Y1I,, for the “IL,” that occurs in the case where we take “X'°8”
to be Y'°8, Then:

The image of a configuration space subgroup of II,
associated to (H,S) [cf. Definition 4.3] via a PFC-
admissible outer isomorphism II,, = YTI,, that lies over
the displayed composite isomorphism of Definition 3.23,
(v) [where we note that, in loc. cit., the roles of “¥TI,,”
and “Il,,” are reversed!], is a configuration space sub-
group of YII,, associated to a vertex of ¥G.

Lemma 4.4 (Commensurable terminality and slimness). Every
configuration space subgroup [cf. Definition 4.5] of 11,, is topo-
logically finitely generated, slim, and commensurably terminal
m I1,,.

Proof. Since any configuration space subgroup is, in particular, a con-
figuration space group, the fact that such a subgroup is topologically
finitely generated and slim follows from [MzTa], Proposition 2.2, (ii).
Thus, it remains to verify commensurable terminality. By applying
the observation of Remark 4.3.1, we reduce immediately to the case
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of a configuration space subgroup associated to a vertex. But then
the desired commensurable terminality follows, in light of Lemma 4.5
below, by induction on n, together with the corresponding fact for
n =1 [cf. [CmbGC], Proposition 1.2, (ii)]. This completes the proof of
Lemma 4.4. U

Lemma 4.5 (Extensions and commensurable terminality). Let

1 Ny H Qu — 1
I
1 N G Q —— 1

be a commutative diagram of profinite groups, where the horizontal se-
quences are exact, and the vertical arrows are injective. Suppose
that Ny € N, Qg C ) are commensurably terminal in N, Q,
respectively. Then H C G is commensurably terminal in G.

Proof. This follows immediately from Lemma 3.9, (i). O

Definition 4.6.
(i) We shall write
OutFC<Hn)brCh g OutFC(Hn)

for the closed subgroup of Out"(Il,,) given by the inverse im-
age of

AutBrh@l(G) € (Aut(G) ) Out(Ilg) & Out(Il)

[cf. Definition 4.1, (i)] via the natural injection Out"(1l,,) «—
Out™(I1;) € Out(IT;) of [NodNon], Theorem B.

(ii) Let v € Vert(G); write 1I, o (I1,); [cf. Definition 4.3]. Then
we shall write

OutFC((Hv)n)g-node C OutFC((Hv)n)

for the [closed] subgroup of Out™((Tl,),) given by the inverse
image of

AutO9N(Gl,) € (Aut(G].) C) Out(IL,)

[cf. Definition 4.1, (ii); [CbTpl], Definition 2.6, (i)] via the
natural injection Out*“((Il,),) — Out"“(II,) € Out(Il,) of
[NodNon], Theorem B.
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Theorem 4.7 (Graphicity of outomorphisms of certain subquo-
tients). In the notation of the preceding §3 [cf. also Definition 3.1],
let x € X,,(k). Write
C, C Cusp(9)

for the [possibly empty] set consisting of cusps ¢ of G such that, for
some i € {1,--- ,n}, vy € Xi(k) = X(k) [cf. Definition 3.1, (i)]
lies on the cusp of X' corresponding to ¢ € Cusp(G). For each i €
{1, ,n}, write

def
gi/ifl,z = gie{l,---,i},m

[cf. Definition 3.1, (iii)] and
Zifi—la € VCN(Qi/i—l,z)

for the element of VCN(G;/i—1,4) on which x(y ... 3 lies, that is to say:
If vgh,.. 5y € Xi(k) [cf. the notation given in the discussion preceding
Definition 3.1] is a cusp or node of the geometric fiber of the projec-

! 1 1 1 ‘
tion pi‘;il: X% — X% over x{olg’m’i_l} corresponding to an edge e €

Edge(Giji—1,2), then 21,4 def e; if xqi,... iy € X;(k) is neither a cusp
or a node of the geometric fiber of the projection p?ﬁ_l: Xilog — X;igl
over xl{olg._. 1) but lies on the irreducible component of the geometric

fiber corresponding to a vertex v € Edge(gi/i_m), then zi/i—1 . &t o,

Let
a € OutFC (Hn)brch

[¢f. Definition 4.6, (i)]. Suppose that the element of
AutPDN(G) € (Aut(G) ) Out(Tlg) & Out(Tly)

[cf. Definition 4.1, (i)] determined by o € Out*°(IL,,)>*® [cf. Defini-
tion 4.6, (1)] is contained in

Aut'®l(G) C Aut(G)
[ef. [CbTpl|, Definition 2.6, (i)]. Then there exist
e a lifting a € Aut(Il,,) of o, and,
CILjq —

o for each i € {1,---,n}, a VON-subgroup 1L, =~ C
g, ,« [cf. Definition 3.1, (iii)] associated to the element

Ziji—-12 € VON(Gi/iz10)
such that the following properties hold:
(a) Foreachi € {1,---,n}, the automorphism of I1;;_1 — g, .,
determined by « fixes the VCN-subgroup 11 C I/ =
Ig

Zifi—1,x

ifi—1,2"
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(b) Foreachi € {1,--- ,n}, the outomorphism of I1;;_1 — Ilg
induced by a is contained in

Aut‘BrCh(gi/i‘l’z”(gi/i—l,m) - OUt(HQi/i_l,x) — Out(IL;i—1) -

i/i—1,@

Proof. We verify Theorem 4.7 by induction on n. If n =1, then Theo-
rem 4.7 follows immediately from the various definitions involved. Now
suppose that n > 2, and that the induction hypothesis is in force. In
particular, [since the homomorphism pg/n_lz I1,, — II,,_ is surjective]
we have a lifting @ € Aut(Il,,) of « and, for each i € {1,--- ,n — 1},
a VCN-subgroup Hzi/i_l,z C 1L = Hgm_l,w associated to the ele-
ment 21, € VON(G;/i—1,) such that, for each i € {1,---,n — 1},
the automorphism of II; determined by a fizes I, e © L1 C 1L,
and, moreover, the automorphism of II,,_; determined by « satisfies
the property (b) in the statement of Theorem 4.7. Now we claim that
the following assertion holds:

Claim 4.7.A: The outomorphism of II,, ,,_; S lg
induced by the lifting « is contained in

n/n—1,x

To this end, let us first observe that it follows immediately — by re-
placing X% by the base-change of pf/gn_zz Xlog — X%, via a suit-
able morphism of log schemes (Spec k)¢ — X,lfo whose image lies on
T, m—2y € Xp_a(k) — from Lemma 3.2, (iv), that, to verify Claim
4.7.A, we may assume without loss of generality that n = 2. Also, one
verifies easily, by applying Lemma 3.14, (i) [cf. also [CbTpI|, Proposi-
tion 2.9, (i)], that we may assume without loss of generality that x
is a cusp or node of X'°¢ [i.e., 210, € Edge(G1/0.4)]-

Next, let us recall that the automorphism of IT; = Ilg, 10, determined
by « fizes the edge-like subgroup II, . S 1h = Ilg, 0. ssociated to
the edge 21,0, of Gijo. [cf. the discussion preceding Claim 4.7.A].
Thus, since [we have assumed that] a € Out"™(II)"™" [which implies
that the outomorphism of II; = Ilg, 1., determined by o preserves the
IT;-conjugacy class of each verticial subgroup of II; = Ilg, /M], it fol-
lows immediately from Lemma 3.13, (i), (ii), that the outomorphism
of Tlg, e &I, 51 induced by a is group-theoretically verticial, hence
[cf. [NodNon], Proposition 1.13; [CmbGC], Proposition 1.5, (ii); the
fact that o is C-admissible] graphic, i.e., € Aut(Gy/1 ). Moreover, since
the outomorphism of g, ., . & 114 induced by @ is, by assumption,
contained in Aut®PM9(G) [cf. [CmbCsp], Proposition 1.2, (iii)], one
verifies easily, by considering the map on vertices/nodes/branches in-
duced by the projection

P?1,2}/{2}|H2/1: /1 — Ilggy
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cf. Lemma 3.6, (i), (iv)], that the outomorphism of Tlg,, =« Il
induced by @ is contained in the subgroup Aut/®*%2/12)\(G, ;). This
completes the proof of Claim 4.7.A.

On the other hand, one verifies easily from Claim 4.7.A, together with
the various definitions involved, that there exist a II,/,_;-conjugate B
of @ and a VCN-subgroup IL, - C I,/ = g, ., associated to
Znjn-1,2 € VCN(Gp/n—1,) such that o fizes IL, . 2 In particular, the

lifting 8 of @ and the VCN-subgroups II,, ,_, , [where i € {1,--- ,n}]
satisfy the properties (a), (b) in the statement of Theorem 4.7. This
completes the proof of Theorem 4.7. U

Lemma 4.8 (Preservation of configuration space subgroups).
The following hold:

(i) Let a € Out"™ (IL,)>" [c¢f. Definition 4.6, (i)]. Then o pre-
serves the I1,,-conjugacy class of each configuration space sub-
group [cf. Definition 4.3] of I1,,. Thus, by applying the portion
of Lemma 4.4 concerning commensurable terminality, to-
gether with Lemma 3.10, (i), we obtain a natural homomor-
phism

Out™(I1,)”* — [ Out((IL,),).
veVert(G)

(ii) The displayed homomorphism of (i) factors through
[I out™(m) %< ] Out((L).)
)

vEVert(G veVert(G)
[¢f. Definition 4.6, (ii)].

Proof. First, we verify assertion (i). We begin by observing that, in
light of the observation of Remark 4.3.1 [cf. also [CbTpl], Proposition
2.9, (ii)], to complete the verification of assertion (i), it suffices to verify
the following assertion:

Claim 4.8.A: For each v € Vert(G), o preserves the
IT,,-conjugacy class of configuration space subgroups
(11,),, C II,, of 1I,, associated to wv.

We verify Claim 4.8.A by induction on n. If n = 1, then Claim 4.8.A
follows immediately from the various definitions involved. Now suppose
that n > 2, and that the induction hypothesisis in force. Then it follows
from the induction hypothesis that the outomorphism of II,,_; induced
by a preserves the II,,_i-conjugacy class of configuration space sub-
groups (I1,),—1 C II,,_; associated to each v. On the other hand, it fol-
lows immediately from Theorem 4.7 that o preserves the II,,-conjugacy
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class of (IL,),, /m—1 C II,,. In particular, by considering the natural iso-

~

morphism (IL,), — (ILy)n/n-1 O;t (T1,),—1 [cf. the displayed exact se-
quence of Definition 4.3; the discussion entitled “7Topological groups”
in [CbTpl], §0] for a suitable choice of the pair ((IL,)n/n—1, (Ily)n-1)
[whose existence is a consequence of the existence of the closed sub-
group (II,), of II,], we conclude that « preserves the II,-conjugacy
class of (II,), C II,,. This completes the proof of Claim 4.8.A, hence
also of assertion (i)

Next, we verify assertion (ii). Let a € Out"“(IL,)”, v € Vert(G).
Write «, for the outomorphism of (IL,),, induced by « [cf. (i)]. Then
the F-admissibility of a, follows immediately from the F-admissibility
of . The C-admissibility of o, follows immediately from Theorem 4.7;
[CmbGC], Proposition 1.5, (i), together with the definition of C-admissi-
bility. Finally, the fact that a, € Out*°((Il,),)9"°% follows immedi-
ately from the fact that o € Out™(IL,)". This completes the proof
of assertion (ii). O

Definition 4.9. We shall write
Glu(IL,) € [ Out™((Im,),)o"%

veVert(G)

for the [closed] subgroup of [],cver g Out™((I1,),,)9°% consisting of
“glueable” collections of outomorphisms of (II,),, i.e., the subgroup
defined as follows:

(i) Suppose that n = 1. Then Glu(Il,,) consists of those collections
(Qty )vevert(g) such that, for every v, w € Vert(G), it holds that
Xo(w) = Xw(w) [cf. [CbTpl], Definition 3.8, (ii)] — where
we note that one verifies easily that a, may be regarded as an
element of Aut(gG|,).

(ii) Suppose that n = 2. Then Glu(Il,,) consists of those collections
(atw)vevert(g) that satisfy the following condition: Let v, w €
Vert(G); e € N(v) NN (w); T C Il C Iy = 11, the {1,2}-
tripod of II,, arising from e € N(v) N N (w) [cf. Definitions
3.3, (i); 3.7, (i)]. Then one verifies easily from the various
definitions involved that there exist II,,-conjugates T, T,, of T'
such that T, T,, are contained in (II,),, (Il )., respectively,
and, moreover,

Tv - (HU>2/1 C (Hv)2 = (Hv)n>

Tw - (Hw)2/1 - (Hw>2 = (Hw>n
are the tripods of (I1,),, (IL,), arising from [the cusps of G|,
G| corresponding to| the node e, respectively. Moreover, since
a, € Out™((I1,),)9™%, a,, € Out™((Il,),)9" %, it follows
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from Theorem 3.16, (iv), that o, € Out™((I1,),)[T,], aw €
Out"™((I1,), ) [T,]; thus, we obtain that Tp, (an,) € Out(T},) =
Out(7T); Tr, () € Out(T,,) = Out(T) [cf. Theorem 3.16,
()]. Then we require that Tr, () = T, ().

Suppose that n > 3. Then Glu(Il,) consists of those collec-
tions (auy)vevert(g) that satisfy the following condition: Write
[1%*4 C TI; for the central {1,2,3}-tripod of I, [cf. Definitions
3.3, (i); 3.7, (ii)]. Then one verifies easily from the various
definitions involved that, for every v € Vert(G), there exists a
[I3-conjugate 1P of T1*P4 such that I1'P4 C (II,)s is the cen-
tral tripod of (II,)s. Thus, since o, € Out"“((I1,),)9"°%, we
obtain % e () € Out(IIP?) = Out(IT*?) [cf. Theorem 3.16,
(i), (v)]. Then, for every v, w € Vert(G), we require that
Tppwa () = Tpppa ().

Remark 4.9.1. In the notation of Definition 4.9, one verifies eas-
ily from the various definitions involved that the natural outer iso-
moprhism II; = TIg determines a natural isomorphism Glu(Il;) =
Glu"™(G) [cf. Definition 4.1, (ii)].

Lemma 4.10 (Basic properties concerning groups of glueable
collections). Forn > 1, the following hold:

(i)

(i)

The natural injections
Out™((I1,)+1) — Out™((IL,)a)

of [NodNon], Theorem B — where v ranges over the vertices
of G — determine an injection

Glu(Il,,41) — Glu(IL,) .

The displayed homomorphism of Lemma 4.8, (i),
Out™(IL,)”* — [ Out((IL).)
veVert(G)
factors through
Glu(Il,) C H Out((

veVert(G)

Proof. First, we verify assertion (i). The fact that the image of the
composite

Glu(IT

we) =[] Owt™((M)n) = [ Out™((IL)n)

vEVert(G) veEVert(G)
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is contained in

[ ouwt™(m))7*c [ Out™(mL).)

veVert(G) veVert(G)

follows immediately from the various definitions involved. The fact
that the image of the composite

Glu(IT,,41) H OutFC o)1) H OutFC v)n)

veVert(G) veVert(G)

is contained in

Glu(IL,) €[] Out™((IL,)n)

veVert(G)

follows immediately from the various definitions involved when n > 3
and from Theorems 3.16, (iv), (v); 3.18, (ii) [applied to each (II,),41!],
when n = 2. Thus, it remains to verify assertion (i) in the case
where n = 1. Suppose that n = 1. Let (ay)everig) € Glu(Ily).
Write ((@)1)vevers(@) € [levert(o) Out™®((11,),)9% for the image of
(aw)vevert(g). Since G is connected, to verify assertion (i) in the case
where n = 1, it suffices to verify that, for any two vertices v, w of G
such that N (v) NN (w) # 0, it holds that x,((aw)1) = Xw((cw)1). Let
r € Xy(k) be a k-valued geometric point of X, such that xp; € X (k)
[cf. Definition 3.1, (i)] is a node of X'°¢ corresponding to an element of
N(v) NN (w) # 0. Then by applying Theorem 4.7 to a suitable lifting
a, (€ Aut"™((11,),)) of the outomorphism a, of (I1,)y [where we take
the “IT,,” in the statement of Theorem 4.7 to be (II,)s], we conclude
that the outomorphism (ay)a/1 of Tlg|,),e 1. < ()21 [cf. Defini-
tion 3.1, (iii)] determined by &, is graphic and fizes each of the vertices
of (G|v)2eq1,2},2- Thus, if we write ()2 for the outomorphism of the
“II{2y” that occurs in the case where we take “II,” to be (II,),, and
T, C (II,), for the [{1,2}-]tripod arising from the cusp x(1y of G|, [cf.
Definitions 3.3, (i); 3.7, (i)], then it follows from [CmbCsp], Proposi-
tion 1.2, (iii), together with the C-admissibility of (v )1, that (a,)qoy is
C-admissible, i.e., € Aut(G|,). Now we compute:

xgl, (o)1) = xal. (o) g23) [cf. [CmbCsp], Proposition 1.2, (iii)]
= X(g|v)26{1,2}‘z((ozv)2/1) [cf. [CbTpI], Corollary 3.9, (iv)]
= xr, ((aw)21|1,) [cf. [CbTpl], Corollary 3.9, (iv)]

[where we refer to Lemma 3.12 concerning “(ovw)2/1|r,”, and we write
xr, for the “x” associated to the vertex of (G|,)2eq1,2},0 corresponding
to T,]. Moreover, by applying a similar argument to the above argu-
ment, we conclude that there exists a lifting «,, of «,, such that the
outomorphism (v, )21 of Glu)oc i oy & (ILy)21 determined by av, is
graphic [and fizes each of the vertices of (G| )2eq1,2},2), and, moreover,
if we write T, C (IL,) for the [{1, 2}-]tripod arising from the cusp x {1}
of G|, then it holds that xg|, ((cw)1) = X1, ((Qtw)2/1|7, ). On the other
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hand, since (ay)veverrig)y € Glu(Ily), it holds that xr,((aw)21|r,) =
X1, ((w)2/1]1, ). In particular, we obtain that xg), ((cw)1) = Xgl. ((Qw)1)-
This completes the proof of assertion (i).

Next, we verify assertion (ii). If n = 1, then assertion (ii) amounts
to Theorem 4.2, (ii) [cf. also Remark 4.9.1]. If n > 2, then assertion
(ii) follows immediately from Lemma 4.8, (ii), together with the fact
that the homomorphism “T;” of Theorem 3.16, (i), does not depend
on the choice of “T” among its conjugates. This completes the proof
of assertion (ii). O

Definition 4.11. We shall write p™" for the homomorphism
Out™(11,,)Pr* — Glu(IT,,)

determined by the factorization of Lemma 4.10, (ii).

Lemma 4.12 (Glueable collections in the case of precisely one

node). Suppose that n = 2, and that Node(G) = 1. Let v, w € Vert(G)
be distinct elements such that N(¥) N N (@) # 0. Write € € Node(G)
for the unique element of N'(v) N N(w) [e¢f. [NodNon|, Lemma 1.8/;
Iz, g, Iz C Ilg < II; for the VCN-subgroups of Ilg < II; asso-

ciated to v, w, € € VCN(G), respectively; v o 0(G); w o w(G);

e e(9). [Thus, one verifies easily that 11z N, [¢f. [NodNon],
Lemma 1.9, (i)], that Vert(G) = {v,w}, and that if G is noncycli-
cally primitive (respectively, cyclically primitive) [cf. [CbTpl],
Definition 4.1], then v # w (respectively, v = w).] Let x € Xy(k) be
a k-valued geometric point of X, such that xgy € X (k) [cf. Defini-
tion 3.1, (i)] lies on the unique node of X'°8 [i.e., which corresponds
to 6]. Write g2/1 déf 926{172}’1 [Cf Deﬁmtzon 31, (ZZZ)/, gg/l — g2/1
for the profinite étale covering corresponding to Ilg, & Iy, v"ev
for the “3S%,” of Lemma 3.6, (iv). For each z € Vert(G), write
2° € Vert(Gop1) for the vertex of Goy1 that corresponds to z via the
bijection of Lemma 3.6, (iv). [Thus, it follows from Lemma 3.6, (iv),
that Vert(Gyn) = {v"¥,v°,w°}.] Then the following hold [cf. also
Figures 2, 3, below]:

(i) Let (Ilz)2 C Iy be a configuration space subgroup of Iy as-
sociated to v [cf. Definition 4.8] such that the image of the
11

Pay ~
composite (Ilz)s — Il 2 I1; coincides with Iz C Tlg « II;.
Also, let us fir a verticial subgroup Ilgmew C Ilg, | & I, of

g, , - Iy/1 associated to a vV € Vert(gNg/l) that lies over
™" € Vert(Gy/1) and is contained in (Il),. Then there
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exists a unique configuration space subgroup (Ilz)y C Ily of

Iy associated to w [cf. Definition 4.3] such that Hgnew =

(II5)2/1 N (Ilg)2n — where we write (I115)21 dof Iy N (I15)o;

(@) o o1 N (Ilg)e — and, moreover, the image of the

P2y

composite (Ilz)y — Tl 2L II, coincides with 115 C II;.
In the situation of (i), the natural homomorphism

hm(Hg — Hg — H@) — H1

—
— where the inductive limit is taken in the category of pro-
Y. groups — is injective, and its image is commensurably
terminal in II,. Write Il; i C II; for the image of the above

pH/

homomorphism; Ily|, , (C Iy) for the fiber product of Tl 2
I, and Iz 5 — 1I;. Thus, we have an exact sequence of
profinite groups

1 — 1L — 1_[2|H§,1B — s — 1.

In the situation of (i), for each Z € {v, W}, let Iz C g,
o1 be a wverticial subgroup of Ilg,, & I/, associated to
o def Z(G)° € ({v°,w°} C) Vert(Goy1) such that Ilze C (I1z)21
[ef. ()], and, moreover, Ilzo N gmew # {1}. Thus, Iz, o
Iz N Hgnew is the nodal subgroup of lg, & Il associated
to the unique element ez of N'(Z°) N N (v"") [cf. [NodNon],
Lemma 1.9, (i)]. Write e,o et €z(Ga2/1). Then the natural
homomorphism
@(H%’o — ngo — H?[jnew) — (HE)Q/l

— where the inductive limit is taken in the category of pro-
Y. groups — s an isomorphism. Write Gio for the sub-
semi-graph of PSC-type [cf. [CbTpl|, Definition 2.2, (i)]
of the underlying semi-graph of Go/1 whose set of vertices =

{(G)°, v""}; T def (Node(Ga/1) \ {ezo}) N Node(QQ/l\Gzo) C

Node(Ga/1) [cf. [CbTpl], Definition 2.2, (ii)]. Then the natu-
ral homomorphism of the above display allows one to identify
(Iz)2/1 with the [pro-X] fundamental group Iy, of

def
Hzo é <g2/1|Gl‘O)>-TZo

[ef. [CbTpl|, Definition 2.5, (i1)].
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Figure 2 : the noncyclically primitive case
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(iv) In the situation of (i), let (o.).everg) € Glu(lly). Write
((@2)1)zevers(g) € Glu(Ily) for the image of (cv.) zevery(g) € Glu(Ily)
via the injection of Lemma 4.10, (i). Let ay € AutP9Il(g)
be such that p™™(a1) = ((@:)1)zeversig) € Glu(Ily) [ef. Theo-
rem 4.2, (1i); Definition 4.11]. Then the outomorphism oy of
II, preserves the 11,-conjugacy class of 11z iz C II;. Thus, by
applying the portion of (ii) concerning commensurable termi-
nality, we obtain [cf. Lemma 3.10, (i)] a restricted outomor-
phism a1, , € Out(Ilz ).

(v) In the situation of (iv), there exists an outomorphism [y ga]
of Ua|n, , that satisfies the following conditions:

(1) Bszlai] preserves Iy, C oy, , and the Il
classes of (1), () C M|, o

115 5 ~Conjugacy

(2) There exists an automorphism ~g@[a1] of s, , that lifts
the outomorphism (s g[aq] such that the outomorphism of

lg, , & Iy determined by Bsglea] [¢f. (1)) is con-
tained in Autl™*“l(G, 1) C Out(Tlg, ).

(3) For each z € {v,w}, the outomorphism (5 glon]|a), of
(Iz)y determined by Byglai] [i-e., obtained by applying
(1) and Lemma 3.10, (i) — where we note that (Ilz)s is
commensurably terminal in Iy [cf. Lemma 4.4/, hence
also in Ily|n, ,/ coincides with azg) [cf. the notation of
(iv)].
(4) The outomorphism of & induced by By zlai] [cf. (1)]
coincides with a|u, , [cf (iv)].
Here, we observe, in the context of (2), that the outer iso-
morphism 11y, = Ig, , [i.e., which gives rise to “the” closed
subgroup AutBr@2l(G, ) C Out(Ilg,,, )/ may be character-
ized, up to composition with elements of Aut'BrCh(g?/l)‘(gg/l) C
Out(Hg2/1), as the outer isomorphism such that the semi-graph
of anabelioids structure on Gy, is the semi-graph of anabelioids
structure determined [cf. [NodNon|, Theorem A] by the result-
mg composite

Hg — Hg & H1 — Out(Hg/l) = Out(Hgm)

— where the third arrow is the outer action determined by the
pH
exact sequence 1 — Iy — Iy 2 I, — 1 — in a fashion

compatible with the projection p?1’2}/{2}]112/1: Iy — Iy and

the given outer isomorphisms gy — II; = Ilg.
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Proof. First, we verify assertion (i). The existence of such a (Ilg)y C Il
follows immediately from the various definitions involved. Thus, it
remains to verify the uniqueness of such a (Ilg)s. Let (I15)s C I3 be as
in assertion (i) and v € I, an element such that the conjugate (I1z)3
of (Ilz)2 by ~ satisfies the condition on “(Ilz),” stated in assertion
(i). Then since Ilg is commensurably terminal in II; [cf. [CmbGC],
Proposition 1.2, (ii)], it holds that the image of v via pQH/1 is contained in
[Iz. Thus — by multiplying v by a suitable element of (I15), — we may

assume without loss of generality that v € IIy,;. In particular, since

gnew © (I1g)2/1N (Ilg)5,, — where we write (Ilg); of Iy N ()5 —

is not abelian [cf. [CmbGC], Remark 1.1.3], it follows immediately from
[NodNon], Lemma 1.9, (i), that (Ilz)s/1 = (H@;)g/l. Thus, since (I13)2/1
is commensurably terminal in Iy, [cf. [CmbGC], Proposition 1.2, (ii)],
it holds that v € (Il3)2/1. This completes the proof of assertion (i).

Assertions (ii), (iii), (iv) follow immediately from the various def-
initions involved [cf. also [CmbGC]|, Propositions 1.2, (ii), and 1.5,
(i), as well as the proofs of [CmbCsp]|, Proposition 1.5, (iii); [CbTpl],
Proposition 2.11].

Finally, we verify assertion (v). It follows immediately from the
definition of “Out"((II_));)9"°%" [cf. Definition 4.6, (ii)] that, for
each 7 € {v,w}, there exists a lifting az € Aut((Ilz)2) of azg) such
that if we write (az); for the automorphism of II; determined by asz,
then (az);(Ilz) = II;. Now we claim that the following assertion holds:

Claim 4.12.A: Write (az)2/1 for the outomorphism of

(IIz)2/1 determined by az. Then — relative to the

natural identification ITy,_, — (IIz)21 of assertion (iii)

— it holds that

(O{g)g/l € Aut‘BrCh(HZO)‘(HZO)
(€ Out(Mly.) =  Out((Tz)z1))-
Indeed, careful inspection of the various definitions involved reveals
that Claim 4.12.A follows immediately from Theorem 4.7 [together
with the commensurable terminality of the subgroup Iz C Iz — cf.
[CmbGC], Proposition 1.2, (ii)]. Thus — by replacing @z by a suit-
able (IIz)y/1-conjugate — we may assume without loss of generality
that az(Ilz.,) = Ilz.,. Moreover, since [cf. Claim 4.12.A] az preserves
the (Ilz)/1-conjugacy classes of IIz and Ilgew, and the verticial sub-
groups Iz, Ilgnew C Ilg, | Y NP 51 are the unique verticial subgroups of
I, , < Iy, associated to 2(G)°, v"*V € Vert(Gy,1), respectively, such
that Iz, = IIze N Ilgnew [cf. [CmbGC], Proposition 1.5, (i)], we thus
conclude that az(Ilz0) = Iz, az(Ignew ) = Ignew.
Next, write (az)z0, (z)mmew for the respective outomorphisms of Iz,

[Tirew determined by az. Now we claim that the following assertion
holds:
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Claim 4.12.B: It holds that

(ai)@‘new — (aw)gnew .

Moreover, if v = w, i.e., G is cyclically primitive, then
— relative to the natural outer isomorphism Iy —
I[Igo [where we note that if v = w, then Iz is a Il -
conjugate of Ilz.] — it holds that

(O[g)go = (Oéﬁj)ﬁjo .

Indeed, the equality (o)mmew = (ag)gmew follows from the definition of
Glu(Ily). Next, suppose that G is cyclically primitive. To verify the
equality (ag)s = (ag)ge, let us observe that, for each z € {v,w}, the

11
P
) {1,2}/{2} ~ C .. .
composite [lze — Il — = Iljgy — Ilg is injective [and its image is a

verticial subgroup of Ilg associated to z(G) € Vert(G)]. Thus, to verify
the equality (az)s = (ag)ae, it suffices to verify that the outomor-
phism of the image of Ilge in Il induced by (ag)ze coincides with the
outomorphism of the image of IIgo in Iy induced by (ag)ge. On the
other hand, this follows immediately from the fact that both az and ag
are liftings of the same outomorphism «,, = a,, of “(IL, )" =“(I1,)2” [cf.
[CmbCsp], Proposition 1.2, (iii)]. This completes the proof of Claim
4.12.B.

Next, let us observe that it follows immediately from the various
definitions involved that if G is noncyclically primitive (respectively,
cyclically primitive), then Vert((Ga/1)afe,o1)" = 2 (respectively, = 1),
and that, relative to the correspondence discussed in [CbTpl], Propo-
sition 2.9, (i), (3), Hue, Ga/1lwe(g) (respectively, H,o) correspond(s) to
the two vertices (respectively, the unique vertex) of (Ga/1)fe,0}-

Next, let us observe the following equalities [cf. the notation of
[CbTpl], Definition 3.8, (ii)]:

cf. [CbTpl], Corollary 3.9, (iv)]
cf. Claim 4.12.B]|

cf. [CbTpl], Corollary 3.9, (iv)]
cf. [CbTpl], Corollary 3.9, (iv)].

XH,o ((045)2/1) = XHo|ynew ((az)znew)
= XH,o|ynew (Ot )gmew )
= XHyo ((aw)z/l)
= XQ2/1|w0(g)((aﬂ7)@°>

Now it follows immediately from these equalities, together with Claim
4.12.A, that the data

((04’17)2/1, (Oéﬁj)ﬁjo) c AUt(HUo) X Aut(g2/1|wo(g))

(respectively, (ag)2n € Aut(Hye))

————

may be regarded as an element of Glu”((Gaj1)-ie,oy) [cf. Defini-
tion 4.1, (iii)]. Thus, by applying the exact sequence of Theorem 4.2,
(iii) [cf. also Remark 4.9.1], we obtain an element

@z [7] € Aut G N (Gy) )
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that [cf. [CbTpl], Definition 2.10] belongs to a collection of outomor-
phisms of
q>(g2/1)w{euo}
H(g2/1)-{evo} — Hg2/1 — o/
li.e., contained in Aut((G2/1)wfe,03) = Out(Ily/1)] that admits a natu-
ral structure of torsor over

Dehn((G2/1)we,01) (€ Aut((G2/1)fe,0})) -

A similar argument yields an element
ag/l[@] c Aut|BrCh((g2/1)w{ewo})|((g2/1>w{ewo})

that [cf. [CbTpl], Definition 2.10] belongs to a collection of outomor-
phisms of
¢(92/1)w{ewo}

H( ; Hg2/1 L H2/1
[i.e., contained in Aut((Go1)-sfe,0}) — Out(Ily/)] that admits a nat-
ural structure of torsor over

Dehn((Ga/1)fe,o}) (S AUt((Ga/1)feye})) -
Now we claim that the following assertion holds:
Claim 4.12.C: For each z € {v,w}, the automorphism
(az)1 of Iz is compatible with the outomorphism a1 [Z]
of Tly;; relative to the homomorphism Iz — II; —
Out(IIy/;) — where the second arrow is the natural
outer action determined by the exact sequence

G2/1)~{eyo?

pg/1
1 — 1y — Iy — I — 1.
Indeed, to verify the compatibility of (az); and a1 [v], it follows im-
mediately from the various definitions involved that it suffices to verify
that, for each o € Iy, if we write 7 % (az)1(0) € 1, then there exist
liftings o, 7 € Il of o, 7 € Il;, respectively, such that the equality
[which is in fact independent of the choice of liftings]

az1[0] o [Inn(&)] 0 @y [0] " = [Inn(7)] € Out(Il/1)

— where we write “Inn(—)” for the automorphism of Il,,; determined
by conjugation by “(—)” and “[Inn(—)]” for the outomorphism of I/
determined by this automorphism — holds. To this end, let o € (I15)s
be a lifting of o € IIz. Then since (Il5)21 € (Ilg)s is normal, Inn(c)
preserves (1z)a/1.

Next, let us observe that the semi-graph of anabelioids structure of
(G2/1)~s{e 01 [With respect to which w® is a vertex!] may be thought
of as the semi-graph of anabelioids structure on the fiber subgroup
Ily/; [cf. Definition 3.1, (iii)] arising from a point of X'°¢ that lies in
the interior of the irreducible component of X'°¢ corresponding to v.
Now it follows immediately from this obervation that Inn(c) preserves
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the II,/i-conjugacy class of Ilge, as well as the IIy/;-conjugacy class of
Iz, = (Ilg)21 N go. By considering the various Ily/;-conjugates of
IIz_, and Ilg and applying [CmbGC], Propositions 1.2, (ii); 1.5, (i),
we thus conclude that Inn(c) preserves the (Ily)s/1-conjugacy classes
of Iz, , go. In particular — by multiplying o by a suitable element
of (Il5)21 — we may assume without loss of generality that Inn(c)
preserves (I15)q1, o, and Iz, .

Next, let us observe that one verifies easily [cf. Lemma 3.6, (iv)]

P12y 2y
that the composite Iz, — Il —  Ilfoy surjects onto a nodal

subgroup of IIg < II;y associated to e € Node(G). Thus, since Inn(o)
preserves Ilz_,, it follows [cf. [CmbGC], Proposition 1.2, (ii)] that the

~ P2y ()
image of o € Il via Il —  Ilfy) is contained in the image of the

P23/} ~
composite ITz_, — Il e Il9y. In particular — by multiplying o
by a suitable element of Ilz_, (C (Ilg)2/1) — we may assume without

loss of generality that o € Ker(p?m} / {2}). A similar argument implies

that there exists a lifting 7 € (Ilz)s of T o (az)1(0) € I such that

Inn(7) preserves (1l5)2/1, Hge, Hgﬁoi and, moreover, T € Ker(p?w}/{Q}).

Now since the automorphisms (05)2/1, (az)1 of (Ilz)e1, Il5, respec-
tively, arise from the automorphism ag of (I1)s, it follows immediately
from the construction of ay/1[v] that the equality

az[0] o [Inn(3)] 0 agy [0] " = [Inn(7)]

holds upon restriction to [an equality of outomorphisms of] (Il3)s/1.

I
i ) Pl12y/(2) o
Moreover, since the composite Ilz — 1ly —» oy is wnjective

land its image is a verticial subgroup of IIg < Il associated to w €
Vert(G) — cf. Lemma 3.6, (iv)], to verify the restriction of the equality

21 [0] © [Inn ()] 0 sy [7] ™ = [Inn(7)]

to [an equality of outomorphisms of] I1g., it suffices to verify that the
outomorphism of the image of Ilgo in Il induced by the product

a1 [0] © [Inn(@)] 0 g1 [0] ™ © [Inn (7))

is trivial. On the other hand, this follows immediately from the fact
that &, 7 € Ker(p}] 5 /12))-

Thus, in summary, the restrictions of the equality in question [i.e.,
in Claim 4.12.C] to [equalities of outomorphisms of] (Il3)2/; and Ilge
hold. In particular, it follows immediately from the displayed exact
sequence of Theorem 4.2, (iii) [cf. also Remark 4.9.1], that the product

az/1[v] o [Inn(a)] o az/lm_l o [Inn(7)] ™"
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is contained in Dehn((Ga/1)fe,o3). Thus — by considering the outo-
morphism of Il induced by the above product — one verifies eas-
ily from [CbTpl], Theorem 4.8, (iv), together with the fact that &,
TE Ker(p?ljg} / {2}), that the equality in question holds. This completes
the proof of the compatibility of (&)1 and ay1[v]. The compatibility of
(@)1 and ag/p[w] follows from a similar argument. This completes the
proof of Claim 4.12.C.
Next, we claim that the following assertion holds:
Claim 4.12.D: The difference a1 [0]oag 1 [w] ™ € Out(Ily/)
is contained in Dehn(Gy1) (€ Out(Tlg, ,) < Out(Ily/)).
Indeed, this follows immediately from the two displayed equalities of
Claim 4.12.B, together with the construction of a1 [0], ag1[w]. This
completes the proof of Claim 4.12.D.
Thus, it follows immediately from Claim 4.12.D, together with the
existence of the natural isomorphism

Dehn((QQ/l)W{evo}) D Dehn((QQ/l)“’“’{ewO}) — Dehl’l(g2/1)

[cf.  [CbTpl], Theorem 4.8, (ii), (iv)], that — by replacing ay/[v],
ag1|w] by the composites of as1[v], ag/w] with suitable elements
of Dehn((Ga/1)-{e,01), Dehn((Ga/1)sie,01), respectively [where we re-
call that the outomorphisms ag/1[0], ag/i[w] belong to torsors over
Dehn((Ga/1)sfe,01), Dehn((Goji)sie,o}), respectively] — we may as-
sume without loss of generality that

a1 [V] = g [w] .

Write (/1 et az1[V] = agpn[w]. Then it follows immediately from
Claim 4.12.C, together with the fact that Il 5 is topologically gener-
ated by Ily, Il C Il g [cf. assertion (ii)], that the outomorphism 5/
of Ily/1 is compatible with the automorphism a|m, , of Ilzz [i.e., the
automorphism induced by (&)1, (@g); — cf. assertion (ii)], relative
to the composite Il 3 — II; — Out(Ily/1) — where the second ar-
row is the outer action determined by the displayed exact sequence
of Claim 4.12.C. In particular, by considering the natural isomorphism

H2’Hm =1, n Oit II5 & [cf. the discussion entitled “Topological groups”
in [CbTpl], §0], we obtain an outomorphism 5 g of Ils|m, , which, by
construction, satisfies the four conditions listed in assertion (v). This
completes the proof of assertion (v). O

Lemma 4.13 (Glueability of combinatorial cuspidalizations in
the case of precisely one node). Suppose that n = 2, and that
Node(G)* = 1. Then p5*! [cf. Definition 4.11] is surjective.

Proof. If G is noncyclically primitive [cf. [CbTpl], Definition 4.1], then
the surjectivity of p5r® follows immediately from Lemma 4.12, (v),
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together with the [easily verified] fact that the natural injection Il 5 —
IT; [cf. Lemma 4.12, (ii)] is an isomorphism. Thus, it remains to verify
the surjectivity of pbrCh in the case where G is cyclically primitive [cf.
[CbTpl], Definition 4.1]. Since we are in the situation of [CbTpl],
Lemma 4.3, we shall apply the notational conventions established in
[CbTpl], Lemma 4.3. Also, we shall write Vert(G) = {v}, Node(G) =
{e}. Let © € X5(k) be a k-rational geometric point of X, such that
xg1y € X (k) [cf. Definition 3.1, (i)] lies on the unique node of X™¢ [i.e.,
which corresponds to e].

Recall from [CbTpl], Lemma 4.3, (i), that we have a natural exact
sequence

1 — 1™ (Go) — m™(G) — m™(G) — 1.

Let 7o € m°P(G) be a generator of m}P(G) (~ Z) and , € m""P(G) a
lifting of 7,.. By abuse of notation, write 7, € IIg < II; for the image
of Yoo € m™(G) via the natural injection m;""P(G) — Ilg < II; [cf.
the evident pro-3 generalization of [SemiAn]|, Proposition 3.6, (iii)].
Next, let us fix a verticial subgroup

Moy € (M (Gw) ©) m™™(9)

of 7i*™P(G) that corresponds to a vertex 7(0) € Vert(G) that lifts the
vertex V(0) € Vert(Go,) [cf. [CbTpl], Lemma 4.3, (iii)]. Thus, for each
integer a € Z, by forming the conjugate of 1_[~e by 7%,, we obtain a
verticial subgroup

IS € (x™(Gxo) C) ™ (G)

of 7™ (G) associated to some vertex U(a) € Vert(G) that lifts the
vertex V(a) € Vert(G) [cf. [CbTpl], Lemma 4.3, (iii), (vi)]. Write

5y € Ilg

for the image of II em)p C ™ (G) in Mg.

Next, let us suppose that 7, was chosen in such a way that, for
each a € Z, the intersection N (v(a)) NN (v(a+1)) consists of a unique
node 7(a+ 1) € Node(G) that lifts the node N(a+ 1) € Node(Gso) [cf.
[CbTpl], Lemma 4.3, (iii)]. [One verifies easily that such a 7., always
exists.] Then let us observe that, for each a < b € Z, we have a nat-
ural morphism of semi-graphs of anabelioids G, 5 — Goo [cf. [CbTPpI],
Lemma 4.3, (iv)], which induces injections [cf. the evident pro-X gen-
eralizations of [SemiAn], Example 2.10; [SemiAn], Proposition 2.5, (i);
[SemiAn], Proposition 3.6, (iii)]

M (Glag) = T () 5 g, — Mg

— where we write ;""" (Glap), Ilg, , for the tempered, pro-X funda-
mental groups of the semi-graph of anabelioids G, 5 of pro-X PSC-type,
respectively — which are well-defined up to composition with inner
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automorphisms. By choosing appropriate basepoints, these inner auto-
morphism indeterminacies may be eliminated in such a way that, for
each a < ¢ < b, the resulting injections are compatible with one another
and, moreover, their images contain the subgroups H%’?Sp C (G ),
5 C Ig & 114, respectively. Then, relative to the resulting in-
clusions, H%‘?Sp, I3 form verticial subgroups of m"™(Gpy), lg, ,
associated to the vertex of G, corresponding to V(c) [cf. [CbTpl],
Lemma 4.3, (iii)]. In particular, we have a natural isomorphism

def ~
Higat1) = Uia)ia+1) — Hg,, .4y,

[cf. Lemma 4.12, (ii)]. Let us write

def
a(g,a11) = Halm, .,y €1l

[cf. Lemma 4.12, (ii)];
def
Hig = ) ;

o) o Hy X, g € Hyffa—1,q , o2

[a,a+1] -
Next, we claim that the following assertion holds:

Claim 4.13.A: The profinite group Ilg is topologically
generated by Il C Ilg and 7o € 1g.
Indeed, let us first observe that it follows immediately from a similar
argument to the argument applied in the proof of [CmbCsp|, Propo-
sition 1.5, (iii) [i.e., in essence, from the “van Kampen Theorem” in
elementary algebraic topology|, that the image of the natural homo-
morphism

hi)l’l ﬂ-‘l:emp(g[—a,a]) - Wicmp<goo)
a>0

— where the inductive limit is taken in the category of tempered groups
[cf. [SemiAn], Definition 3.1, (i); [SemiAn], Example 2.10; [SemiAn],
Proposition 3.6, (i)] — is dense. In particular, it follows immediately
from the exact sequence of [CbTpl], Lemma 4.3, (i), that the tempered
group 7™ (G) [cf. [SemiAn], Example 2.10; [SemiAn], Proposition 3.6,
(1)] is topologically generated by H%ezgl)p C 1™ (G) and Foo € mP(G).
Thus, Claim 4.13.A follows immediately from the fact that the image
of the natural injection m;""P(G) < Ilg is dense. This completes the
proof of Claim 4.13.A.
For a € 7Z, let us write

a,a def
gé/’l I Goc(1,2) 2

[cf. Definition 3.1, (iii)], where we take the “fized’ outer isomorphism

H2/1 — Hg[a,a+1]

2/1
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of Definition 3.1, (iii), to be an outer isomorphism [cf. the discussion of
the final portion of Lemma 4.12, (v)] such that the semi-graph of an-
abelioids structure on Q;f 1 is the semi-graph of anabelioids structure

determined by the resulting composite

Hﬁ(a—i—l) — Hg <1 H1 — Out(Hz/l) ; Out(Hgg;,fH])

— where we write II5z,41) C Ilg for the nodal subgroup of Ilg asso-

ciated to the unique element n(a + 1) € N(v(a)) NN (v(a + 1)), and

the third arrow arises from the outer action determined by the exact
pH

sequence 1 — 1l — Il 2 II; — 1 — in a fashion compatible with

the projection p?172}/{2}|112/1 : II3/1 — Ilgz) and the given outer isomor-

phisms Iy — II; = IIg. Here, we note that, for a, b € Z, there

exist isomorphisms Qg}la o~ Goc(12}0 — gg’/’f“} of semi-graphs of

anabelioids of pro-X PSC-type. On the other hand, it is not difficult

to show [although we shall not use this fact in the present proof!] that

the well-known injectivity of the homomorphism II; — Out(Ily/) of

the above display [cf. [Asd]|, Theorem 1; [Asd], the Remark following

the proof of Theorem 1] implies that when a # b, the composite
Hg[a,a+1] & Iy /4 = Hg[b,b+1]

2/1 2/1

in fact fails to be graphic!

4 N

[a—1,d] [a] [a,a+1]
g2/1 g2/1 g2/1
v v v
¥a— 1) (a) Ba+1)
—o ° ~—
H[a—l,a] H[a,a—H]

Figure 4: gg}f’“l, ggjl, and Qg;la +1]
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For each a € 7Z, let us write

la,a+1]~[a] def [a,a+1] la,a+1]~~[a+1] def / »[a,a+1]
g2/1 <g2/1 )W{ma)o} ) g2/1 = (g2/1 )W{eu(aH)o}
— where we write e, (q)e, Co(at1)e for the nodes “e,.” of Lemma 4.12,
(iii), that occur, respectively, in the cases where the pair “(Ga/1,2°)"
is taken to be (géc;f+1]a~< )°); (Qé‘}f“] v(a 4+ 1)°). Then one verifies
easily that the composite

H a a|~|a H a a H H a,a H a,a
gé/ll el = 2/11 < 2/1 = gé/l o < g£/1 el
— where the first and fourth arrows are the natural specialization outer
isomorphisms [cf. [CbTpl], Definition 2.10], and the second and third
arrows are the outer isomorphisms fixed above — is graphic. In light
of this observation, it makes sense to write
def 5la—1,a]~[a] ~ »la,a+1]~[a]
g2/1 g2/1 g

[cf. Figure 4 above].

Next, let us observe that one verifies easily that the composites

H[a] — Hg & H1 — Out(Hg/l) — Out( (La+1 ) & Out(Hg[a] )
/ 2/1

H[a+1] — Hg & H1 — Out(l_[g/l) = Out(Hg[a,a+1 ) — Out( a+1])
2/1

2/1
— where the third arrows on each line of the display arise from the

pl'l
outer action determined by the exact sequence 1 — Il — Il 2L

IT; — 1, the fourth arrows are the isomorphisms induced by the outer

isomorphism II5/; = Hg[a,a+1] fixed above, and the fifth arrows are the
2/1

isomorphisms induced by the natural specialization outer isomorphisms
[cf. [CbTpl], Definition 2.10] — factor through
a+1
Aut (gl /1) C Out(Hgg;]l) . Aut(G! " h ¢ Out(l_[ggﬁu),

respectively.

Now we turn to the verification of the surjectivity of the homomor-
phism p5'". Let a, € Glu(Ily) (€ Out™((I1,)2)9°d). Write (), €
Glu(IT;) for the image of a, € Glu(Ily) via the injection of Lemma 4.10,
(i). Let oy € Aut®M9I(G) be such that pP""(ay) = (a); € Glu(Ily)
[cf. Theorem 4.2, (iii); Definition 4.11]. Now, by applying Lemma 4.12,
(v), in the case where we take the pair “(v, w)” to be (v(0),v(1)), we
obtain an outomorphism [y 1] = @, yalai] [cf. Lemma 4.12, (v)] of
I| (0,1 [cf. the notation of the dlscussmn precedmg Claim 4.13.A]. Let
By € Aut(Ily]p1)) be an automorphism that lifts B € Out(Ily| 1))
and 7., € Ily a lifting of 7, € II;. Then since [as is easily verified]
Iy|f,2 [cf. the notation of the discussion precedlng Clalm 4.13.A] is
the conjugate of Ily|j1; by ¥ 'yoo, by conjugating ﬁ 1 by ¥ ’yoo, we obtain
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an automorphism Em] of IIs|1,9. On the other hand, it follows imme-
diately from [CmbGC], Proposition 1.2, (ii), together with Lemma 4.5,
that Ily|;y [cf. the notation of the discussion preceding Claim 4.13.A]
is commensurably terminal in Ily|j ], Ila|p 2, which thus implies [cf.
Lemma 3.10, (i); condition (4) of Lemma 4.12, (v)] that — by restrict-
ing ﬁ[m 6[1 9) to s € a1, 1|2 — we obtain two restricted
outomorphisms
Bl > Bualn

of H2|[1}- Now we claim that the following assertion holds:

Claim 4.13.B: There exist automorphisms 5[0,1]][1], 5[1,2]“1]

of Iyl that lift Boajlpy, Bpzlpy, respectively, such

that the outomorphisms of Il C Hg\m determined

by ﬁ[071]|[1], 6[172”[1] coincide.
Indeed, it follows from condition (2) of Lemma 4.12, (v), together
with the definition of 3 5, that there exist automorphisms B[O 1l
6[1 gl of Ils|py that lift By, 1]| 1], Bp,2lpy, respectively, such that the

outomorphisms (ﬁ[g 1ln)2, (6[1 9lmy)2/1 of Iaq determlned by ﬁo 1l

5[1,2]|[1] are contained in Aut/PrP9 £/1])|<g2/1 ), Aut|BrCh 2 )|(g£1/12]) (C
Out(IIy/1)), respectively. In particular, it follows that, relative to the
specialization outer isomorphisms H gl = H g2 Hggl]l = H o that
appeared in the discussion following the proof of Claim 4.13.A, together
with the natural inclusion of [CbTpl], Proposition 2.9, (ii), it holds that

~ ~ ceh(cl
Boalm)zn » Bualy)zn € Aut PP E(GE ) (S Out(Tly)) .

Moreover, it follows immediately from condition (3) of Lemma 4.12,
(v), applied in the case of (], together with the definition of 3} 9,
that the outomorphisms of the configuration space subgroup

(Hz 2 s 2 > (IT50))2 ( C Iylpg C H2>

associated to the vertex v(1) determined by B9 1), Bu,9 coincide with
a,. Now let us recall from the above discussion that the composite

H[l] — II; — Out(Hg/l) = Out(Hgél/]l)

g C ( ) .

Thus, it follows immediately from the displayed exact sequence of The-
orem 4.2, (iii) [cf. also Remark 4.9.1], that — after possibly replacing

B2l by a suitable Ily|f)-conjugate — if we write

def rch(gl
5= (Boalm)z © (Bual Do € Aut” h(92/1)|(g2[1/]1) (S Out(Ilyn)),
then it holds that § € Dehn(Gy))).
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Next, let us observe that, for a € {0,1}, since E[a,aﬂ] preserves the
II5/1-conjugacy class of cuspidal inertia subgroups associated to the di-
agonal cusp [cf. condition (2) of Lemma 4.12, (v)], it follows from a
similar argument to the argument applied in the proof of [CmbCsp],
Proposition 1.2, (iii), that the outomorphism (/g[a7a+1}){2} of Il in-
duced by B[MH] on the quotient

IT
P{1,2}/{2}

I -~ Iy — I, — {2}

Gk
is compatible, relative to the natural outer inclusion IIj, 1) — I =
IT;2y, with the outomorphism a; |, ., [cf. condition (4) of Lemma 4.12,

(v)]. Since an element of Aut®*M9N(G) is completely determined by
its restriction to Aut(Gaat1)) [cf. [CbTpl], Definition 4.4; [CbTpl],
Remark 4.8.1], we thus conclude that, relative to the natural outer
isomorphisms sy — II; = g, it holds that

(5[a,a+1]){2} =aq.
In particular, we thus conclude that the element of Aut®*"9I(G) in-

] ~
duced by § € Aut‘BrCh(%/l)'(gg/]l) on the quotient IT — Iy —

93
pH
{1.2}/(2} ~ o
2 — Iy — Ilg is trwial. On the other hand, let us observe
that one verifies easily from [CbTpl], Theorem 4.8, (iii), (iv), that this

1T
P{1,2y/{2}

composite 11 & I, — Il —- Il = Ilg determines an

gl
2/1

1somorphism

Dehn(gg/]l) — Dehn(G).

Thus, we conclude that § is the identity outomorphism of Ily,;. This
completes the proof of Claim 4.13.B. In the following, we shall suppose
that the automorphism Sy ) of H2|[0’1} was chosen so as to satisfy the
following condition:

Bpo,1) preserves the subgroup Ils|; € Iy, and its
restriction to H2|[1] is equal to the lifting “5[071}\[1]” of
Claim 4.13.B.

Next, let us fizx an automorphism a; € Aut(Ily) that lifts a; €
AutlEP(G) € Out(Tlg) < Out(IT;) and preserves the subgroups Mg,
[y, M,y € II;, and whose restriction to Iy C Il coincides with
the automorphism of IIjp;; determined by the automorphism &071} of
Is|j01)- [One verifies easily that such an oy always exists.] Write
Ba/1 € Out(Ily/q) for the outomorphism of Il C Ily|j1) determined
by 5[0,1]. Now we claim that the following assertion holds:

Claim 4.13.C: Write p: II; — Out(Ily/;) for the ho-
momorphism determined by the exact sequence 1 —
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I
Py

H2/1 — H2 — H1 — 1. Then

p(al(:\}//oo)) = ﬁ?/l o p(:yloo) o ﬁ;/ll S Out(Hg/l) .
Indeed, let us first observe that it follows from Claim 4.13.B, together

with the definition of 5[1,2], that there exists an element e € IIj;) such
that

p(Foo) © Baj1 0 p(Vt) 0 By = ple™) (*1) -
Next, let us observe that if we write
def ~ ~ ~_
1= @1 (o) © T € Iy (*2)

[cf. our choice of ayl], then it follows immediately from our choices
of @y and 7, that n € II;. Thus, to verify Claim 4.13.C, it suffices
to verify that p(e) = p(n). To this end, let ( € Ijg. Then, by our
choice of o, it follows that s 0 ( 035} € IIpy). In particular, since
the outomorphism [,/ arises from an automorphism By of a1,
which is an automorphism over the restriction of a; to Iy, it follows
immediately that

Bayr e p(¢) = p(@1(C)) o B2 (3) -

Ba1 0 p(Foo © ¢ 075)) = p(@1(Foo © C 075))) © Bopt (*4) -
Thus, if we write

O, def pleoqs 0ai(() o %—01 o 6_1) o € Out(Hz/l) ,
Oy p(noFm 0 @1(¢) 0T 0 ™") 0 o1 € Out(Ilyyn)
then
O = pleoTnom(Q) oty op(TR) [ (x1)
= pleo 'yOO)No Ba1 oNp(C oy [cf. (*3)]
= Papr0p(Fec 00T [ef. (x1)]
= pla1(Feo 0 C0FL)) 0 Bap [cf. (+4)]
= 0, [cf. (x2)]

— which thus implies that p(n~'oe€) commutes with p(F 01 () 07L}).
In particular, since Jo © a1 (Iljg) © Jod' = Foo © Il 0 . = Iy, by
allowing “¢” to vary among the elements of Iy, it follows that p(n~'oe)
centralizes p(Ilfy)). On the other hand, it follows from [Asd], Theorem 1;
[Asd], the Remark following the proof of Theorem 1, that p is injective.
Thus, since €, € IIjy), we conclude that =" oe € Z(Ily)) = {1} [cf.
[CmbGC], Remark 1.1.3]. This completes the proof of Claim 4.13.C.
Now let us recall that the outomorphism 35/, of II/; of Claim 4.13.C
arises from an automorphism By 1) of H2|[071}. Thus, it follows immedi-
ately from Claims 4.13.A, 4.13.C that the outomorphism [,/ of Il
is compatible with the automorphism a; € Aut(Il;) relative to the
homomorphism II; — Out(Ily/;) determined by the exact sequence
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11
1 — 1y — 11 p2—/>1 Iy, — 1. In particular — by considering the nat-
ural isomorphism Iy = Il / Oit I1; [cf. the discussion entitled “Topo-
logical groups” in [CbTpl], §0] — we conclude that the outomorphism
Ba/1 € Out(Ily1) extends to an outomorphism a of II,. On the other
hand, it follows immediately from the various definitions involved that
oy € Out™(IIy)P" | and that p5**(ay) = a, € Glu(Ily) [cf. condition
(3) of Lemma 4.12, (v)]. This completes the proof of Lemma 4.13 in
the case where G is cyclically primitive, hence also of Lemma 4.13. [

Theorem 4.14 (Glueability of combinatorial cuspidalizations).
Let (g,7) be a pair of nonnegative integers such that 2g — 2 + r > 0;
n a positive integer; ¥ a set of prime numbers which is either equal to
the set of all prime numbers or of cardinality one; k an algebraically
closed field of characteristic € X; (Spec k)'°® the log scheme obtained by
equipping Spec k with the log structure determined by the fs chart N — k
that maps 1 — 0; X8 = X|°® ¢ stable log curve of type (g,7) over
(Speck)°e. Write G for the semi-graph of anabelioids of pro-Y PSC-
type determined by the stable log curve X'°8. For each positive integer
i, write X\°® for the i-th log configuration space of the stable log
curve X'°8 [cf. the discussion entitled “Curves” in [CbTpl], §0/; 11,
for the maximal pro-X quotient of the kernel of the natural surjection
T (X)) — m((Spec k)'°%). Then the following hold:

(i) There exists a natural commutative diagram of profinite
groups

brch
OutFC (I, 1) 2 Glu(Il, )

l l

brch
Out¥ (1L, )re» 2 Glu(Il,)

[¢f. Definitions 4.6, (i); 4.9; 4.11] — where the vertical arrows
[ef. Lemma 4.10, (i)] are injective.

(ii) The closed subgroup Dehn(G) C (Aut(G) C) Out(1ly) /cf. [CbTpl],
Definition 4.4] is contained in the image of the injection
Out"(I1,,)Prd — Out™(I1,)>*" [ef. the left-hand vertical ar-
rows of the diagrams of (i), for varying nj. Thus, one may
regard Dehn(G) as a closed subgroup of Out™ (IL,)> ", i.e.,
Dehn(G) € Out® (I1,,)Pr.

(iii) The homomorphism pP®: Out™(II,)* — Glu(TL,) of (i)
and the inclusion Dehn(G) — Out™(IL,)>*® of (i) fit into
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an exact sequence of profinite groups

brch
1 — Dehn(G) — Out™(I1,,)P* 20 Glu(IL,) — 1.

In particular, the commutative diagram of (i) is cartesian,
and the horizontal arrows of this diagram are surjective.

Proof. Assertion (i) follows immediately from Lemma 4.10, (i), together
with the injectivity portion of [NodNon|, Theorem B. Assertion (ii)
follows immediately from Proposition 3.24, (ii); Theorem 4.2, (i).

Finally, we verify assertion (iii). First, we claim that the following
assertion holds:

Claim 4.14.A: Ker(pP®®) = Dehn(G) [cf. assertion
(ii)].
Indeed, it follows immediately from Theorem 4.2, (iii) [cf. also Re-

mark 4.9.1], together with assertion (i), that we have a natural com-
mutative diagram

brch

1 —— Ker(p®) —— Out™ (1L, 22— Glu(IL,)

l l l

brch
1 —— Dehn(G) —— Out™ (1) 2 Glu(1l,) —— 1
— where the horizontal sequences are exact, and the vertical arrows
are injective. Thus, Claim 4.14.A follows immediately. In particular,
to complete the verification of assertion (iii), it suffices to verify the
surjectivity of pP®. The remainder of the proof of assertion (iii) is

devoted to verifying this surjectivity.
Next, we claim that the following assertion holds:

Claim 4.14.B: If n = 2, then p> is surjective.

n

We verify Claim 4.14.B by induction on Node(G)*. If Node(G)* = 0,
then Claim 4.14.B is immediate. If Node(G)* = 1, then Claim 4.14.B
follows from Lemma 4.13. Now suppose that Node(G)* > 1, and that
the induction hypothesis is in force. Let (ay)vevery(g) € Glu(Ily). Write
((ow)1)vevertg) € Glu(Ily) for the element of Glu(Il;) determined by
(Cty)vevert(g) [i-e., the image of (a)vevert(g) via the right-hand vertical
arrow of the diagram of assertion (i) in the case where n = 1]. Let
e € Node(G). Write H for the unique sub-semi-graph of PSC-type [cf.
[CbTpl], Definition 2.2, (i)] of the underlying semi-graph of G whose set

of vertices is V(e). Then one verifies easily that S o Node(Glm) \ {e}
[cf. [CbTpl], Definition 2.2, (ii)] is not of separating type [cf. [CbTpl],
Definition 2.5, (i)] as a subset of Node(G|g). Thus, since (G|g)~s [cf.
[CbTpl], Definition 2.5, (ii)] has precisely one node, and (v, )vey(e) may
be regarded as an element of Glu((Ily s)2) — where we use the notation

(II,s)2 to denote a configuration space subgroup of II, associated to
(H, S) [cf. Definition 4.3], to which the notation “Glu(—)” is applied
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in the evident sense — it follows from Lemma 4.13 that there exists an
outomorphism By s of (Ily,s)2 C I, that lifts (ow)vev(e) € Glu((Ilm,s)2).

Next, let us observe that it follows immediately from the various
definitions involved that

7 E (Bus, (aw)ogvie) € Out((Mes)2) x ] Out((IL,)2)

may be regarded as an element of the “Glu(Il2)” that occurs in the case
where we take the stable log curve “X'°8” to be a stable log curve over
(Spec k)°8 obtained by deforming the node corresponding to e. Thus,
since the number of nodes of such a stable log curve is = Node(G)* —
1 < Node(G)*, by applying the induction hypothesis, we conclude that
the above v arises from an outomorphism a., € Out"“(Ily)"™. On
the other hand, it follows immediately from the various definitions
involved that the image of a, via py™™® coincides with (a)pevers(g)-
This completes the proof of Claim 4.14.B.

Finally, we verify the surjectivity of pP® [for arbitrary n]| by in-
duction on n. If n < 2, then the surjectivity of pP™" follows from
Theorem 4.2, (iii) [cf. also Remark 4.9.1], Claim 4.14.B. Now sup-
pose that n > 3, and that the induction hypothesis is in force. Let
(ay)vevert(g) € Glu(Il,,). First, let us observe that it follows from the in-
duction hypothesis that there exists an element a,,_; € Out™®(IT,,_; )"
such that pP™(a,, 1) coincides with the element of Glu(Il,_;) deter-
mined by (o )vevertg) € Glu(Il,) [cf. assertion (i)]. Let ay,—; be an
automorphism of II,,_; that lifts a,,_;. Write a;,—1/,—5 for the outomor-
phism of II,,_1,_o determined by &,_; and &, _» for the automorphism
of II,,_5 determined by &, _1.

Next, let us observe that one verifies easily from the various defi-
nitions involved that II,,,_o C II,, may be regarded as the “II,” as-
sociated to some stable log curve “X'°8” over (Spec k). Moreover,
this stable log curve may be taken to be a geometric fiber of the sort
discussed in Definition 3.1, (iii), in the case of the projection piff L n—2:
relative to a point “x € X, (k)” that maps to the interior of the same
irreducible component of X'°8, relative to the n projections to X'°¢. In
particular, by fixing such a stable log curve, together with a suitable
choice of lifting &,_1 [cf. Theorem 4.7], it makes sense to speak of
Glu(IL,,/,—2). Moreover, it follows immediately from our choice of “z”
that every configuration space subgroup that appears in the definition

cf. Definition 4.9, (ii)| of Glu(IL,/,_o) either
[ /

e occurs as a configuration space subgroup of the intersection
with II,,/,_ of some configuration space subgroup that appears
in the definition [cf. Definition 4.9, (iii)] of Glu(IL,) or

e projects isomorphically, via the projection II,, — Il to the
factors labeled n and n — 1, to a configuration space subgroup
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of Il,, i.e., a configuration space subgroup that appears in the
definition [cf. Definition 4.9, (ii)] of Glu(Ily).

In particular, every tripod that appears in the definition [cf. Defini-
tion 4.9, (ii)] of Glu(Il,/,—2) occurs as a tripod of a configuration space
subgroup that appears eitherin the definition [cf. Definition 4.9, (iii)] of
Glu(II,) orin the definition [cf. Definition 4.9, (ii)] of Glu(Ily). More-
over, it follows from Theorem 4.7; Lemma 3.2, (iv); Lemma 4.8, (i),
that the various «,,’s preserve these configuration space subgroups and
tripods — as well as each conjugacy class of cuspidal inertia subgroups
of each of these tripods! — that appear in the definition [cf. Defini-
tion 4.9, (ii)] of Glu(Il,/,—2). Thus, we conclude from Theorem 3.18,
(ii), together with Definition 4.9, (iii), in the case of Glu(Il,), and Defi-
nition 4.9, (ii), in the case of Glu(Ily), that (o), € Vert(G) determines
an element € Glu(Il,,_5), hence, by Claim 4.14.B, an element

Qp p—2 € OUtFC (Hn/n—Q)

that lifts the element ay,_1/n,—2 € Out(Il,—1/n—2).
Now we claim that the following assertion holds:

Claim 4.14.C: This outomorphism o, /,—o of I/, is

compatible with the automorphism «,,_o of II,,_o rel-

ative to the homomorphism II,_y — Out(IL, /) in-

duced by the natural exact sequence of profinite groups

pg/n—2
1—>Hn—2/n—>Hn - n—z — 1.
Indeed, this follows immediately from the corresponding fact for o, —1/n—2
[which follows from the existence of &, 1], together with the injectivity
of the natural homomorphism OutFC(Hn/n,g) — OutFC(Hn,l/n,Q) [cf.
[NodNon], Theorem B]. This completes the proof of Claim 4.14.C.
Thus, by applying Claim 4.14.C and the natural isomorphism II,, —

1L /n—2 O;t II,,_o [cf. the discussion entitled “Topological groups’ in
[CbTpI], §0], we obtain an outomorphism «, of II,, that lifts the outo-
morphism «,,_; of I,,_;. Thus, it follows immediately from Lemma 4.10,
(i), that prr () = (@ )vevert(g)- This completes the proof of the sur-

n
jectivity of pP*® hence also of assertion (iii). O

Remark 4.14.1. In the notation of Theorem 4.14, observe that the
data of collections of smooth log curves that [by gluing at prescribed
cusps| give rise to a stable log curve whose associated semi-graph of
anabelioids [of pro-¥ PSC-type| is isomorphic to G form a smooth,
connected moduli stack. In particular, by considering a suitable path
in the étale fundamental groupoid of this moduli stack, one verifies
immediately that one may reduce the verification of an “.somorphism
version” — i.e., concerning PFC-admissible [cf. [CbTpl], Definition
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1.4, (iii)] outer isomorphisms between the pro-¥ fundamental groups
of the configuration spaces associated to two a priori distinct stable
log curves “X'°8” and “Y'°8” — of Theorem 4.14 to the “automorphism
version” given in Theorem 4.14 [cf. [CmbCsp], Remark 4.1.4]. A similar
statement may be made concerning Theorem 4.7. We leave the routine
details to the interested reader. In the present paper, we restricted our
attention to the “automorphism versions” of these results in order to
simplify the [already somewhat complicated!] notation.

Remark 4.14.2. One may regard [CmbCsp|, Corollary 3.3, as a special
case of the surjectivity of pP*® discussed in Theorem 4.14, i.e., the case
in which X'# is obtained by gluing a tripod to a smooth log curve
along a cusp of the smooth log curve.

Corollary 4.15 (Surjectivity result). In the notation of Theorem 3.16,
suppose thatn > 3. If r = 0, then we suppose further that n > 4. Then
the tripod homomorphism

Tiptpd OU_tF(Hn) SN OutC<Htpd)A+
[cf. Definition 3.19; Theorem 3.16, (v)] is surjective.

Proof. Let a € Out®(II**4)A+, First, let us observe that — by consider-
ing a suitable stable log curve of type (g, r) over (Speck)°8 and apply-
ing a suitable specialization isomorphism [cf. Proposition 3.24, (i); the
discussion preceding [CmbCsp|, Definition 2.1, as well as [CbTpl], Re-
mark 5.6.1] — to verify Corollary 4.15, we may assume without loss of
generality that G is totally degenerate [cf. [CbTpl|, Definition 2.3, (iv)],
i.e., that every vertex of G is a tripod of X°¢ [cf. Definition 3.1, (v)].
Then since a € Out®(II**4)A+ it follows immediately from [CmbCsp],
Corollary 4.2, (ii), that there exists an element a, € Out™(II%*d) —
where we write IT'P9 for the “II,,” that occurs in the case where we take
“X8” to be a tripod — such that « arises as the image of a,, via the
natural injection Out"®(I1*4) — Out™(11**?) of [NodNon|, Theorem
B. Thus, it follows immediately from Theorem 4.14, (iii), that there
exists an element 8 € Out™(IL,)P" that lifts — relative to pr® —
the element of Glu(II,,) determined by a,, € Out"°(I1t*4). [Here, recall
that we have assumed that G is totally degenerate.] Now it follows from
Theorem 3.18, (ii), that Tywa () = a, i.e., that « is contained in the
image of Typwpa. This completes the proof of Corollary 4.15. 0

Corollary 4.16 (Absolute anabelian cuspidalization for stable
log curves over finite fields). Let p, Ix, ly be prime numbers such
that p & {lx,ly'}; (9x,7x), (9v,7y) pairs of nonnegative integers such



COMBINATORIAL ANABELIAN TOPICS II 125

that 2gx —24rx, 29y —2+7ry > 0; kx, ky finite fields of characteris-
tic p; kx, ky algebraic closures of kx, ky; (Spec kx)'°¢ (Spec ky )'°% the
log schemes obtained by equipping Spec kx, Spec ky with the log struc-
tures determined by the fs charts N — kx, N — ky that map 1 — 0;
X'e ylog stable log curves [cf. the discussion entitled “Curves” in
[CbTpl], §0/ of type (gx,7x), (gv,ry) over (Speckx)®8, (Spec ky )18,

Gt & m((Spec kx)™®) — G © Gal(ky /kx):

kx

GI2% % ((Spec by ) %) — G, 2 Gal(ky /ky)

sx: Gry — leo)%,
jections G}f}f — Gy, G}ff — Gyy. For each positive integer n, write
Xlog ylog for the n-th log configuration spaces [cf. the discus-
sion entitled “Curves” in [CbTpl|, §0] of X8, Y&, X1, YII, for the
maximal pro-lx, pro-ly quotients of the kernels of the natural surjec-
tions 1 (X1°8) — ij, m(Y8) — fo. Then the sections sx, Sy
determine outer actions of Gy, Gr, on X, YII,,. Thus, we obtain
profinite groups

1 .
sy: Gy, — G2 sections of the above natural sur-
Y ky

ut ut
XHn O>q Sx GkX 3 YHn O>q sy ka

[ef. [MzTa|, Proposition 2.2, (ii); the discussion entitled “Topological
groups” in [CbTpl|, §0/]. Let

out ~ out

Q' XH1 Hgy ka — YH1 N gy ka

be an isomorphism of profinite groups. Then lx = ly; there exists a
unique collection of isomorphisms of profinite groups

out

X out ~ v
{Oén. Hn X sy ka — Hn N sy ka o
n_

out
— well-defined up to composition with an inner automorphism of I, X 4,

Gy by an element of the intersection Y=, C Y11, of the fiber subgroups
of Y11, of co-length 1 [cf. [CmbCsp], Definition 1.1, (iii)] — such that
each diagram

out out
X Antl Y]
Hn+1 X Sx G]CX H?’L+1 X Sy ka

| !

out out
XHn Hsy GkX 2, YHn X gy ka
— where the vertical arrows are the surjections induced by the pro-
jections X128 — X8 VI8 — Y12 obtained by forgetting the factors
labeled j, for some j € {1,--- ,n+1} — commutes, up to composition
with a Y=,-inner automorphism.
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Proof. First, let us observe that it follows from [AbsTpl], Corollary
out
2.8, (i), that a; maps *TI; C XTI} %, G, bijectively onto YII; C

out
I, x4, Gi,. In particular, Ix = ly; a; induces isomorphisms of

profinite groups
m. X ~ Y . ~
(07T H1—> Hl, O[O.ka—>ka.

Write | % Ix =ly. For O € {X,Y}, write G,(f; C Gy, for the maximal
pro-l closed subgroup of Gj; G,(:;l) for the maximal pro-prime-to-I

closed subgroup of Gy, . Then since Gy, is isomorphic to 7 as an
abstract profinite group, we have a natural decomposition

6 % G = .

Thus, the isomorphism «g naturally decomposes into a pair of isomor-
phisms
aél): G,@( oW Oé[()sél): GFD >, o#)

ky kx ky

Next, let us observe that since PII; is topologically finitely generated
and pro-l, one verifies easily that [by replacing Gy, by a suitable open
subgroup| we may assume without loss of generality that the outer
action of Gy on PII; — hence [cf. the injectivity portion of [NodNon],
Theorem B] also on D11, for each positive integer n — factors through
the quotient Gy, — Gg; X ijsl) — G,(Cg. Thus, it follows immediately
from the slimness of PII, [cf. [MzTa], Proposition 2.2, (ii)] that the
composite

ou
0 Hn ts G n n SO kD kl:l

determines an isomorphism

O ~ l
Z ow ()G

II,, % S0 GkD

In particular, if we identify ZDH out (M11,,) with GZDl by means of
n XN s YkO
this isomorphism, then we obtain a natural isomorphism
out

out ~
(o, 3. G0 x G =71, 5, Gy

Next, let us observe that the following assertion holds:

Claim 4.16.A: There exists a power ¢ of p such that
log,(q) is divisible by logp(k;gf), logp(k}ﬁ,), and, more-
over,
! ! 1
ay ((Fr,)i) = (Fry)y,)

kx
— where we write (Fr,)i, € Gi,, (Fry)r, € Gy, for
the g-power Frobenius elements of Gy, G, ; (Frq)(l) €

kx
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G,(f))(, (Frq)gi € G,(f}), for the respective images of (Fr, )i, €
A !
ka, (Frq)ky € ka mn G](f))(, Gég]

Indeed, let us first observe that it follows immediately from [CmbGC],
Corollary 2.7, (ii) [cf. also the proof of [CmbGC], Proposition 2.4,
(v)], that oll is graphic. In particular, we have an equality rx = ry,
which thus implies [cf. the well-known fact that, for O € {X, Y}, the
abelianization of U1, is a free Zy-module of rank 2go + max{0,rg— 1}
— cf., e.g., [CmbGC], Remark 1.1.3] that (gx,rx) = (gy,7y). Next,
let us observe that, for O € {X, Y}, it follows immediately from the
definition of the filtration on the abelianization of PII; given in the
second display of [CmbGC]|, Definition 1.1, (ii) [cf. also the duality
property reviewed in [CmbGC]|, Proposition 1.3|, that the character
detm: G,(Cg — Zj determined by the square of the determinant of the
abelianization [which is a free Z;-module of finite rank] of P11, coincides
with the 2¢g-th tensor power of the [-adic cyclotomic character of Gy,
where we write t f go + max{0,rg — 1}. Thus, for a suitable power
q of p such that log,(q) is divisible by logp(kg(), logp(kg/), it follows
immediately from the [easily verified] injectivity of det that (Frq),(fé
may be characterized uniquely by the condition that detg((Frq),(f;) =
¢*'0. In particular, since dety is compatible, relative to aq, with dety,
and tx = ty, we conclude that a(()l)((Frq),(fi) = (Frq),(fi. This completes
the proof of Claim 4.16.A.

Write Hy, C Giy, Hi, € Gy, for the open subgroups of Gy, , Gk,
topologically generated by (Fr,)i, € Giy, (Fry)r, € Gy [cf. Claim
4.16.A]; Uy, C Gy, for the open subgroup of Gy, topologically gener-
ated by ao((Fry)ky) € Gy ; H,gg C ng{ for the image of Hy, C Gi, in
G,(f))(; H,EQ, U,g? C G,EQ for the images of Hy, , Uy, C Gy, in G,(fi. Then
it follows from Claim 4.16.A that we have an equality H ,EQ =U, ,EQ, and,
moreover, that the isomorphism Hj, = Uk, induced by oy induces
an isomorphism H,gg = U,EQ = H,ily) Thus, again by Claim 4.16.A,
one verifies easily that if we write off: Hy, — Hy, for the [uniquely
determined] isomorphism of profinite groups which

(a) preserves the respective g-power Frobenius elements of Hj,,
Hk’y?

then
(

(b) the isomorphism H kg = H ,EQ induced by aff coincides with

the above isomorphism H ,52 Sul =H ,&Q induced by «y.

y —
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Moreover, it follows immediately from condition (b), together with the
existence of the natural isomorphisms

out

out ~
(1, % 60 x G0 = 0m, N Gy

out

out ~
(YHH X sy Gl(ﬁlx)f) X Gl(fil) - YH” X sy ka )

that there exists an isomorphism

H. X out ~ vy out
oy H1 N sy Hkx—) H1 N sy Hky

such that

(c) the isomorphism “ay” of Hy, with Hg, that occurs in the
case where we take the “a;” to be aff coincides with off | and,
moreover,

(d) the isomorphism “al” of *II; with YTI; that occurs in the case
where we take the “a;” to be af coincides with [the original]
ol
In particular, we conclude, again by the existence of the natural iso-
morphisms

X kX

out ~ out
<XHn X s G(Z)) X G;z;l) E— XHn X SXx ka )

(5, G0) < G M, Gy

together with the injectivity portion of [NodNon|, Theorem B, that,
to verify Corollary 4.16 — by replacing Gy, G, , aq by Hy,, Hy, ,
afl — we may assume without loss of generality that ag preserves
the respective Frobenius elements of Gy, G, [cf. condition (a)]. By
choosing the power ¢ of p in Claim 4.16.A in an appropriate fashion, we
may also assume without loss of generality that the following condition
holds:

(e) for O € {X,Y}, Gy, acts trivially on the underlying semi-
graph of the semi-graph of anabelioids of pro-l PSC-type de-
termined by [J'°¢.

Next, let us recall that the isomorphism !l is graphic [cf. the proof
of Claim 4.16.A]. In particular, by applying the observation of Re-
mark 4.14.1, we reduce immediately to the case where X = Y&
and the outomorphism J; of II; determined by a; determines an ele-
ment of Aut®MIN(G) (C Out(Ily) & Out(Ily)) [where we omit the
various superscript “X’s” that occur in the notation of the statement
of Corollary 4.16]. Then the uniqueness portion of Corollary 4.16 fol-
lows immediately from the injectivity portion of [NodNon]|, Theorem B,
together with the slimness of 1I;.
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Thus, it remains to verify the existence of a collection of a,,’s as in
the statement of Corollary 4.16. To this end, for each positive inte-

ger ¢ and each v € Vert(G), let us fiz a configuration space subgroup

(II,); € II, of II, associated to v € Vert(G). Write (8y)vevert(q) et

preh(3) € Glu”(G) [cf. Definition 4.1, (iii); Theorem 4.2, (iii)].
Then it follows immediately from the various definitions involved that,
for each v € Vert(G), the outomorphism (3, of (II,); is compatible with
the natural outer action of Gy, [cf. condition (e)]. Thus, by applying
[Wkb], Theorem C, we obtain an outomorphism [, ,, of (II,), which
is compatible with the natural outer action of Gy. Moreover, since
(Bo)vevert(g) € GlubrCh(g), one verifies easily from the injectivity dis-
cussed in [Hsh], Remark 6, (iv) [i.e., applied to the outomorphisms
of the various tripods of (Il,), induced by 8,,] that (5yn)vevert(g) €
Glu(II,,) [cf. Definition 4.9]. In particular, since the diagram of The-
orem 4.14, (i), is cartesian [cf. Theorem 4.14, (iii)], it follows that
B € AwtPONG) and (Byn)vevert) € Clu(Il,) determine an ele-
ment of Out™(I1,,)"*"| which — by the injectivity portion of [NodNon],
Theorem B — is compatible with the natural outer action of GG} on II,,
determined by s. Finally, one verifies immediately that the resulting
a,,’s satisty the properties stated in Corollary 4.16. This completes the
proof of the existence of the «,,’s, hence also of Corollary 4.16. 0

Remark 4.16.1. Corollary 4.16 may be regarded as a generalization
of [AbsCsp|, Theorem 3.1; [Hsh], Theorem 0.1; [Wkb], Theorem C.

Corollary 4.17 (Commensurator of the image of the absolute
Galois group of a finite field in the totally degenerate case).
Let n be a positive integer; p, | two distinct prime numbers; (g,7)
a pair of nonnegative integers such that 29 — 2 +r > 0; k a finite
field of characteristic p; k an algebraic closure of k; (Spec k)¢ the log
scheme obtained by equipping Spec k with the log structure determined
by the fs chart N — k that maps 1 — 0; X'°¢ g stable log curve
[¢f. the discussion entitled “Curves” in [CbTpl|, §0/ of type (g,7) over
(Spec k)°s. Write G for the semi-graph of anabelioids of pro-1 PSC-type
associated to the stable log curve X'°8; G for the underlying semi-graph
of G; Tlg for the [pro-l] fundamental group of G;

Gl & 7 ((Spec k)8) — Gy & Gal(k/k)
for the natural surjection. For each positive integer i, write X}og for the
i-th log configuration space [cf. the discussion entitled “Curves” in
([CbTpl], §0] of X'°8; 11; for the mazimal pro-l quotient of the kernel of

the natural surjection m,(X,°8) — G*8. Thus, we have a natural outer
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isomorphism I1; = Ilg and a natural outer action
pytex s GIE — Out™ (11,

[cf. the notation of [CmbCsp], Definition 1.1, (ii)]. Let H C Gi¥ be
a closed subgroup of G}:g whose image in Gy is open. Write Iy C H
for the kernel of the composite H — Gfg — (.. We shall say that H
1s of I-Dehn type if the mazimal pro-l quotient of Iy is nontrivial.
Suppose that the stable log curve X'°% is totally degenerate [i.c., that
the smooth locus of any irreducible component of X forms a tripod/.
Then the following hold:
(i) The image pXiog(IH) C Out(IIy) is contained in Dehn(G) C
Out(Tlg) < Out(Il;) [cf. the notation of [CbTpl], Definition
4.4]. Moreover, the image Pxclos (Iy) is nontrivial if and only
if H is of I-Dehn type. Write
159 (pyaos (1) ©2, Qi) N Dehn(G) € Dehn()

[considered in Dehn(G) ®z, Q; — c¢f. [CbTpl], Theorem 4.8,
(iv)].

(ii) For any positive integer m < n, the natural injection Out*°(Il,,)
— Out"(II,,) of [NodNon], Theorem B, induces isomor-
phisms

ZoutFC(nn)(PX;og(H)) — ZoutFC(nm)(Pxi;;g(H)) )
Zeec iy (Pxios (H)) == Z8%wc gy, (0106 (H)
[cf. the discussion entitled “Topological groups” in §0],
NOutFC(Hn)(pXifg(H)) — NoutFC(nm)(Pxi;;g(H)) )
CoutFC(nn)(PX;og(H ) — CoutFC(nm)(PX;gg(H ))-

(iii) Relative to the natural inclusion Aut(G) (C Out(Ilg) < Out(Iy)),
the following equality holds:

CoutFe ) (Pxiog (H)) = Caun(g) (Pxiog (H)).

In particular, we have natural homomorphisms of profinite groups

Coure(r) (Pxios(H)) = Coyre )y (pxee (H)) — Aut(G),

COutFC(Hn)(PX}fg(H)) = OOuth(Hl)(pxiOg(H)) b Z?
[cf. the notation of [CbTpl], Definition 3.8, (ii)] — where the

first arrow on each line is the isomorphism of (ii). By abuse
of notation [i.e., since pyios(H) is not necessarily contained in
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Autl®P(G) — ¢f. the notation of [CbTpl], Definition 2.6, (i);
Remark 4.1.2 of the present paper], write

ZAutlgfph\(g) (Px,l,?g (H)) C ZoutFC(nn)(Png(H
ZIAOSt\grphl(g) (px}log (H)) C ZgStFC(Hn)(px}f’g(H
NAutlgrPh\(g) (Pxilog(H)) - NOutFC(nn)(PXIDg(H) )
Cimnigy (i) € Copre (e (H)

for the kernels of the restrictions of the composite homomor-

phism of the first line of the second display [of the present (iii)]
to

ZOutFC (I1,) (pXif’g (H)) ) Z(I;)EtFC(]‘[n) (pXLOg (H)) ;

NOutFC(Hn)(PX};’g(H» ) COutFC(Hn)(PX}fg(H))a
respectively.

Suppose that H is not of I-Dehn type. Then we have equal-
ities
ZAut‘grph‘ (9) (pX,lfg (H)) = legstlgrph\ () (pX}LOg (H))
= Nyuwoniggy (potox (H)

= CAut\grPhl(g)(r’)Xifg(H )

[cf. the notation of (iii)]. Moreover, each of the four groups
appearing in these equalities is, in fact, independent of n [cf.
Suppose that H is of I-Dehn type. Then the composite ho-
momorphism of the first line of the second display of (iii) de-
termines an injection of profinite groups

ZgSth(Hn)(pXiLog<H)) — Aut(G).
Write kjgepn (C k) for the [finite] subfield of k consisting of the
invariants of k with respect to [the natural action on k of] the
kernel of the natural action of H on G. Then the composite
homomorphism of the second line of the second display of (iii)
determines natural exact sequences of profinite groups

1 — IIJLIV(ID) — NAut\grph\(g) (pXilog(H)) — 7,

c *
1 B IH(p) — Autlgrph|(g) (pX’}Log (H)) — Zl
[cf. the notation of (i), (iii)] — where

ef
(PX;og(IH) <) fquv(p) < NAutlngh\(g) (/)Xjfg(H)) N Dehn(g)

[cf. (i1), (17i)] is an open subgroup of [g(p); the image of the
third arrow on each line contains kfgrph‘ € Z; and does not
depend on the choice of n. In particular, these images are
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open; if, moreover, kf arph| € Z; topologically generates Z;,
then the third arrows on each line are surjective.
(vil) The closed subgroup pyis(H), hence also Ngyere(py,, ) (pxios (H)),
is open in Coero ) (pxios (H)).
(viii) Consider the following conditions [cf. Remark 4.17.1 below]:
(1) Write Autgpec)os (X™8) for the group of automorphisms
of X% over (Spec k)'°8. Then the natural homomorphism
Aut(spec k)log (Xlog) — Aut (G)
1s surjective.
i
(2) klgrph\

If condition (1) is satisfied, and H is of I-Dehn type, then
we have an equality

€ Z; topologically generates Z;.

ZOutFC(Hn) (pxif’g (H)) = gﬁth(nn) (pxifg (H)) )

and, moreover, the composite homomorphism of the first line
of the second display of (iii) determines an isomorphism

gSth(Hn)(pXilog(H)) = Aut(G).

If conditions (1) and (2) are satisfied, then the composite ho-
momorphisms of the two lines of the second display of (iii)
determine natural exact sequences of profinite groups

1 — Iy"” — Noyreqn, (pxiee(H)) — Aut(G) x Zf — 1,

1 — [g(/)) — OoutFC(Hn)(pX’bog(H)) E— Aut(((}) X Z; — 1.

Proof. Assertion (i) follows immediately from the various definitions

involved, together with [CbTpl|, Proposition 5.6, (ii). Assertion (ii)

follows immediately from Corollary 4.16, together with the openness

of the image of H in Gj. Assertion (iii) follows immediately from

[CmbGC], Corollary 2.7, (ii) [cf. also the proof of [CmbGC], Proposi-

tion 2.4, (v)], together with the openness of the image of H in Gy,.
For O € {Z, Z°¢,N,C} and v € Vert(G), write

0% Doureqy (P () € Out(ITy) = Out(Mg);

Dlerph) = 0N Aut®(G) € Out(Ilg)

[cf. the notation of [CbTpl], Definition 2.6, (i); Remark 4.1.2 of the
present paper];

pr,: Aut®P(G) — AutlePhl(g),)
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for the homomorphism determined by restriction to G|, [cf. [CbTpl],
Definition 2.14, (ii); [CbTpl], Remark 2.5.1, (ii)];

0, C Aut=P(g],)

for the image of Ojgrpn| € Aut®2(G) via pr,. Then we claim that the
following assertion holds:

Claim 4.17.A: Let v € Vert(G). Then
Cy N Ker(xg),) = {1}
[cf. the notation of [CbTpl], Definition 3.8, (ii)].

Indeed, let us first observe that it follows immediately from a similar
argument to the argument applied in the proof of Claim 4.16.A [in the
proof of Corollary 4.16] that C,, C Aut®™*"(G|,) is contained in the local
centralizer [cf. the discussion entitled “Topological groups’ in §0] of the
natural image of Gy in Aut'®P"(G|,) [cf. the fact that G|, is of type
(0,3)]. Thus, Claim 4.17.A follows immediately from the injectivity
discussed in [Hsh], Remark 6, (iv). This completes the proof of Claim
4.17.A.
Next, we claim that the following assertion holds:

Claim 4.17.B: Let v € Vert(G). Then

Clarpn) N Ker(pr,) = Clgipn) N Dehn(G) ;
Zlgrph| N Ker(pr,) = Z\l;’fpm N Ker(pr,) = {1} .
In particular, we obtain natural isomorphisms

~ loc ~ loc
Z\grph| Zy ) Z|grph\ Zv

and a natural exact sequence of profinite groups [cf.
[CbTpl], Corollary 3.9, (iv)]

1 — Clgepn| N Dehn(G) — Clapn| = Z; .

Indeed, let us first observe that the first displayed equality of Claim
4.17.B follows immediately from Claim 4.17.A; together with [CbTpl],
Corollary 3.9, (iv). On the other hand, since the image of H in Gy is
open, the second displayed equality of Claim 4.17.B follows immediately
from [CbTpl], Theorem 4.8, (iv), (v), together with the first displayed
equality of Claim 4.17.B. This completes the proof of Claim 4.17.B.

Next, we verify assertion (iv). Let us first observe that it follows from
Lemma 3.9, (i), that Clgpn € Noyreqr,)(2'°°), which thus implies
that we have a natural action of Cgpy on Z'°¢ hence also on Z|lgrcph|v
as well as a natural [triviall] action of Cgpn on Aut(G). Moreover, by
considering the inclusion

1 ~ 1
(C|grph\ 2) Z|§fph| - ZUOC - Z;
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induced by xg|, [cf. Claims 4.17.A, 4.17.B], we conclude that the ho-
momorphisms of the two lines of the second display of assertion (iii)
determine a natural [Cgpn|-equivariant!] injection

7' — Aut(G) x Z; .

Thus, since Zj is abelian, it follows that Cig.pn acts triwially on z'oe,
i.e., that Clgpn| € Zowrear,)(£'°°). On the other hand, since H is not
of I-Dehn type, one verifies easily from assertion (i) that pXiog(H ) is

abelian, hence that Pos (H) C Z C Z'"°. Thus, we conclude that

Claphl S Zowreqny(2°9) N Autgrphlggr)hl
Zowreqn) (Pxios(H)) N Aut®P2(G)
= ZN Aut'grph‘(g) = Z|grph| .

N

This completes the proof of assertion (iv).

Next, we verify assertion (v). First, let us observe that it follows
immediately from Claims 4.17.A, 4.17.B, together with assertion (ii),
that, to verify assertion (v), it suffices to verify that Xg(Zﬂgr"pm) =
{1}. On the other hand, since H is of [-Dehn type, by considering
the conjugation action of Zﬂgfph‘ Ol ) ylog (Ig) [which is nontrivial by
assertion (i)], we conclude from [CbTpl|, Theorem 4.8, (iv), (v), that
Xg(lengphl) = {1}, as desired. This completes the proof of assertion (v).

Next, we verify assertion (vi). First, we observe that it follows from
assertions (ii), (iii) that the definition of Ig(p ) is indeed independent
of n [as the notation suggests!]. Next, we claim that the following

assertion holds:
Claim 4.17.C:

pxes(1ir) € Nigepny N1 Dehn(G) = I € Clypy N Dehn(G) = 157

Indeed, the final equality follows immediately from an elementary com-
putation [in which we apply [CbTpl], Theorem 4.8, (iv), (v)], together
with assertion (i); the remainder of Claim 4.17.C follows immediately
from the various definitions involved, together with assertion (i). This
completes the proof of Claim 4.17.C. Now it follows immediately from
Claims 4.17.B, 4.17.C, together with assertion (ii), that the composite
homomorphism of the second line of the second display of (iii) deter-
mines the two displayed exact sequences of assertion (vi), and that
pXiog(IH), hence also Iﬁ(’)), is an open subgroup of IS"”. The fact that
the image of the third arrow on each line of the displayed sequences of
assertion (vi) contains kf wrph| € 2 follows immediately from the fact
that the image, via pyu, of the kernel of the natural action of H on G
is contained in N . The fact that the image of the third arrow on
each line of the displayed sequences of assertion (vi) does not depend
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on the choice of n follows from assertion (ii). This completes the proof
of assertion (vi).

Assertion (vii) follows immediately from assertions (iii) and (vi),
together with the finiteness of Aut(G). Assertion (viii) follows im-
mediately from assertions (v) and (vi). This completes the proof of
Corollary 4.17. O

Remark 4.17.1.

(i) One verifies easily that condition (1) of Corollary 4.17, (viii),
holds if, for instance, k = kjgpn|, and, moreover, the lengths [cf.
[CbTpl], Definition 5.3, (ii)] of the various nodes of X'°¢ [whose
base-change from k to k may be thought of as the special fiber
log stable curve of [CbTpl], Definition 5.3] coincide.

(i) In a similar vein, one verifies easily that condition (2) of Corol-
lary 4.17, (viii), holds if, for instance, Kjgpn = IFp, and, more-
over, p remains prime in the cyclotomic extension Q(e%i/ 52)

where i = /—1, and we assume that [ is odd.

Y

Remark 4.17.2. The computation of the centralizer (respectively,

normalizer and commensurator) in Corollary 4.17, (viii), may be thought
of as a sort of relative geometrically pro-l (respectively, [semi-]

absolute geometrically pro-l) version of the Grothendieck Con-

jecture for totally degenerate log stable curves over finite fields.

In fact, the proofs of these computations of Corollary 4.17, (viii), only

involve the theory of [CbTpl]. On the other hand, these computations

of Corollary 4.17, (viii), can only be performed under certain relatively

restrictive conditions [cf. Remark 4.17.1]. It is precisely for this reason

that Corollary 4.17, (ii), which may be thought of as an application of
the theory of the present paper, is of interest in the context of these

computations of Corollary 4.17, (viii).
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