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Abstract. Let Σ be a subset of the set of prime numbers which
is either equal to the entire set of prime numbers or of cardinal-
ity one. In the present paper, we continue our study of the pro-Σ
fundamental groups of hyperbolic curves and their associated con-
figuration spaces over algebraically closed fields in which the primes
of Σ are invertible. The starting point of the theory of the present
paper is a combinatorial anabelian result which, unlike results ob-
tained in previous papers, allows one to eliminate the hypothesis
that cuspidal inertia subgroups are preserved by the isomorphism in
question. This result allows us to [partially] generalize combina-
torial cuspidalization results obtained in previous papers to the
case of outer automorphisms of pro-Σ fundamental groups of config-
uration spaces that do not necessarily preserve the cuspidal inertia
subgroups of the various one-dimensional subquotients of such a fun-
damental group. Such partial combinatorial cuspidalization results
allow one in effect to reduce issues concerning the anabelian geom-
etry of configuration spaces to issues concerning the anabelian
geometry of hyperbolic curves. These results also allow us, in the
case of configuration spaces of sufficiently large dimension, to give
purely group-theoretic characterizations of the cuspidal iner-
tia subgroups of the various one-dimensional subquotients of the
pro-Σ fundamental group of a configuration space. We then turn to
the study of tripod synchronization, i.e., roughly speaking, the
phenomenon that an outer automorphism of the pro-Σ fundamental
group of a log configuration space associated to a log stable curve
typically induces the same outer automorphism on the various sub-
quotients of such a fundamental group determined by tripods [i.e.,
copies of the projective line minus three points]. Our study of tripod
synchronization allows us to show that outer automorphisms of pro-Σ
fundamental groups of configuration spaces exhibit somewhat differ-
ent behavior from the behavior that may be observed in the case of
discrete fundamental groups, as a consequence of the classical Dehn-
Nielsen-Baer theorem. Other applications of the theory of tripod
synchronization include a result concerning commuting profinite
Dehn multi-twists that, a priori, arise from distinct semi-graph of
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anabelioids of pro-Σ PSC-type structures [i.e., the profinite analogue
of the notion of a decomposition of a hyperbolic topological surface into
hyperbolic subsurfaces, such as “pants”], as well as the computation,
in terms of a certain scheme-theoretic fundamental group, of the
purely combinatorial/group-theoretic commensurator of the group of
profinite Dehn multi-twists. Finally, we show that the condition
that an outer automorphism of the pro-Σ fundamental group of a log
stable curve lift to an outer automorphism of the pro-Σ fundamental
group of the corresponding n-th log configuration space, where n ≥ 2
is an integer, is compatible, in a suitable sense, with localization
on the dual graph of the log stable curve. This localizability prop-
erty, together with the theory of tripod synchronization, is applied to
construct a purely combinatorial analogue of the natural outer
surjection from the étale fundamental group of the moduli stack of
hyperbolic curves over Q to the absolute Galois group of Q.
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Introduction

Let Σ ⊆ Primes be a subset of the set of prime numbers Primes
which is either equal to Primes or of cardinality one. In the present
paper, we continue our study of the pro-Σ fundamental groups of hyper-
bolic curves and their associated configuration spaces over algebraically
closed fields in which the primes of Σ are invertible [cf. [MzTa], [CmbCsp],
[NodNon], [CbTpI]]. One central theme of this study is the issue of n-
cuspidalizability [cf. Definition 3.20], i.e., the issue of the extent to
which a given isomorphism between the pro-Σ fundamental groups of
a pair of hyperbolic curves lifts [necessarily uniquely, up to a permuta-
tion of factors — cf. [NodNon], Theorem B] to an isomorphism between
the pro-Σ fundamental groups of the corresponding n-th configuration
spaces, for n ≥ 1 a positive integer. In this context, we recall that both
the algebraic and the anabelian geometry of such configuration spaces
revolves around the behavior of the various diagonals that are removed
from direct products of copies of the given curve in order to construct
these configuration spaces. From this point of view, it is perhaps nat-
ural to think of the issue of n-cuspidalizability as a sort of abstract
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profinite analogue of the notion of n-differentiability in the theory
of differential manifolds. In particular, it is perhaps natural to think
of the theory of the present paper [as well as of [MzTa], [CmbCsp],
[NodNon], [CbTpI]] as a sort of abstract profinite analogue of the
classical theory constituted by the differential topology of surfaces.

Next, we recall that, to a substantial extent, the theory of combi-
natorial cuspidalization developed in [CmbCsp] may be thought of
as an essentially formal consequence of the combinatorial anabelian
result obtained in [CmbGC], Corollary 2.7, (iii). In a similar vein,
the generalization of this theory of [CmbCsp] that is summarized in
[NodNon], Theorem B, may be regarded as an essentially formal con-
sequence of the combinatorial anabelian result given in [NodNon], The-
orem A. The development of the theory of the present paper follows
this pattern to a substantial extent. That is to say, in §1, we begin the
development of the theory of the present paper by proving a fundamen-
tal combinatorial anabelian result [cf. Theorem 1.9], which generalizes
the combinatorial anabelian results given in [CmbGC], Corollary 2.7,
(iii); [NodNon], Theorem A. A substantial portion of the main results
obtained in the remainder of the present paper may be understood as
consisting of various applications of Theorem 1.9.

By comparison to the combinatorial anabelian results of [CmbGC],
Corollary 2.7, (iii); [NodNon], Theorem A, the main technical feature of
the combinatorial anabelian result given in Theorem 1.9 of the present
paper is that it allows one, to a substantial extent, to

eliminate the group-theoretic cuspidality hypothesis

— i.e., the assumption to the effect that the isomorphism between pro-
Σ fundamental groups of log stable curves under consideration neces-
sarily preserves cuspidal inertia subgroups — that plays a central role
in the proofs of earlier combinatorial anabelian results. In §2, we apply
Theorem 1.9 to obtain the following [partial] combinatorial cusp-
idalization result [cf. Theorem 2.3, (i), (ii); Corollary 3.22], which
[partially] generalizes [NodNon], Theorem B.

Theorem A (Partial combinatorial cuspidalization for F-ad-
missible outomorphisms). Let (g, r) be a pair of nonnegative inte-
gers such that 2g − 2 + r > 0; n a positive integer; Σ a set of prime
numbers which is either equal to the set of all prime numbers or of car-
dinality one; X a hyperbolic curve of type (g, r) over an algebraically
closed field of characteristic 6∈ Σ; Xn the n-th configuration space
of X; Πn the maximal pro-Σ quotient of the fundamental group of Xn;

OutF(Πn) ⊆ Out(Πn)
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the subgroup of F-admissible outomorphisms [i.e., roughly speaking,
outomorphisms that preserve the fiber subgroups — cf. [CmbCsp], Def-
inition 1.1, (ii)] of Πn;

OutFC(Πn) ⊆ OutF(Πn)

the subgroup of FC-admissible outomorphisms [i.e., roughly speaking,
outomorphisms that preserve the fiber subgroups and the cuspidal iner-
tia subgroups — cf. [CmbCsp], Definition 1.1, (ii)] of Πn. Then the
following hold:

(i) Write

ninj
def
=

{
1 if r 6= 0,
2 if r = 0 ,

nbij
def
=

{
3 if r 6= 0,
4 if r = 0 .

If n ≥ ninj (respectively, n ≥ nbij), then the natural homomor-
phism

OutF(Πn+1) −→ OutF(Πn)

induced by the projections Xn+1 → Xn obtained by forgetting
any one of the n+1 factors of Xn+1 [cf. [CbTpI], Theorem A,
(i)] is injective (respectively, bijective).

(ii) Write

nFC
def
=

 2 if (g, r) = (0, 3),
3 if (g, r) 6= (0, 3) and r 6= 0,
4 if r = 0 .

If n ≥ nFC, then it holds that

OutFC(Πn) = OutF(Πn) .

(iii) Suppose that (g, r) 6∈ {(0, 3); (1, 1)}. Then the natural injec-
tion [cf. [NodNon], Theorem B]

OutFC(Π2) ↪→ OutFC(Π1)

induced by the projections X2 → X1 obtained by forgetting ei-
ther of the two factors of X2 is not surjective.

Here, we remark that the non-surjectivity discussed in Theorem A,
(iii), is, in fact, obtained as a consequence of the theory of tripod syn-
chronization developed in §3 [cf. the discussion preceding Theorem C
below]. This non-surjectivity is remarkable in that it yields an impor-
tant example of substantially different behavior in the theory of profi-
nite fundamental groups of hyperbolic curves from the corresponding
theory in the discrete case. That is to say, in the case of the classi-
cal discrete fundamental group of a hyperbolic topological surface, the
surjectivity of the corresponding homomorphism may be derived as
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an essentially formal consequence of the well-known Dehn-Nielsen-
Baer theorem in the theory of topological surfaces [cf. the discussion
of Remark 3.22.1, (i)]. In particular, it constitutes an important “coun-
terexample” to the “principle” [which appears to play a central role in
the discussion of [Lch]] that one should expect essentially analogous
behavior in the theory of profinite fundamental groups of hyperbolic
curves to the relatively well understood behavior observed classically
in the theory of discrete fundamental groups of topological surfaces [cf.
the discussion of Remark 3.22.1, (iii)].

Theorem A leads naturally to the following strengthening of the
result obtained in [CbTpI], Theorem A, (ii), concerning the group-
theoreticity of the cuspidal inertia subgroups of the various one-
dimensional subquotients of a configuration space group [cf. Corol-
lary 2.4].

Theorem B (PFC-admissibility of outomorphisms). In the no-
tation of Theorem A, write

OutPF(Πn) ⊆ Out(Πn)

for the subgroup of PF-admissible outomorphisms [i.e., roughly speak-
ing, outomorphisms that preserve the fiber subgroups up to a possible
permutation of the factors — cf. [CbTpI], Definition 1.4, (i)] and

OutPFC(Πn) ⊆ OutPF(Πn)

for the subgroup of PFC-admissible outomorphisms [i.e., roughly speak-
ing, outomorphisms that preserve the fiber subgroups and the cuspi-
dal inertia subgroups up to a possible permutation of the factors —
cf. [CbTpI], Definition 1.4, (iii)]. Let us regard the symmetric group
on n letters Sn as a subgroup of Out(Πn) via the natural inclusion
Sn ↪→ Out(Πn) obtained by permuting the various factors of Xn. Fi-
nally, suppose that (g, r) 6∈ {(0, 3); (1, 1)}. Then the following hold:

(i) We have an equality

Out(Πn) = OutPF(Πn) .

If, moreover, (r, n) 6= (0, 2), then we have equalities

Out(Πn) = OutPF(Πn) = OutF(Πn) × Sn .

(ii) If either

r > 0 , n ≥ 3

or

n ≥ 4 ,

then we have equalities

Out(Πn) = OutPFC(Πn) = OutFC(Πn) × Sn .
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The partial combinatorial cuspidalization of Theorem A has natural
applications to the relative and [semi-]absolute anabelian geom-
etry of configuration spaces [cf. Corollaries 2.5, 2.6], which gen-
eralize the theory of [AbsTpI], §1. Roughly speaking, these results
allow one, in a wide variety of cases, to reduce issues concerning the
relative and [semi-]absolute anabelian geometry of configuration spaces
to the corresponding issues concerning the relative and [semi-]absolute
anabelian geometry of hyperbolic curves. Also, we remark that in this
context, we obtain a purely scheme-theoretic result [cf. Lemma 2.7] that
states, roughly speaking, that the theory of isomorphisms [of schemes!]
between configuration spaces associated to hyperbolic curves may be
reduced to the theory of isomorphisms [of schemes!] between hyper-
bolic curves.

In §3, we take up the study of [the group-theoretic versions of] the
various tripods [i.e., copies of the projective line minus three points]
that occur in the various one-dimensional fibers of the log configuration
spaces associated to a log stable curve. Roughly speaking, these tripods
either occur in the original log stable curve or arise as the result of
blowing up various cusps or nodes that occur in the one-dimensional
fibers of log configuration spaces of lower dimension [cf. Figure 1 at the
end of the present Introduction]. In fact, a substantial portion of §3 is
devoted precisely to the theory of classification of the various tripods
that occur in the one-dimensional fibers of the log configuration spaces
associated to a log stable curve [cf. Lemmas 3.6, 3.8]. This leads natu-
rally to the study of the phenomenon of tripod synchronization, i.e.,
roughly speaking, the phenomenon that an outomorphism [that is to
say, an outer automorphism] of the pro-Σ fundamental group of a log
configuration space associated to a log stable curve typically induces
the same outer automorphism on the various [group-theoretic] tripods
that occur in subquotients of such a fundamental group [cf. Theorems
3.16, 3.17, 3.18]. The phenomenon of tripod synchronization, in turn,
leads naturally to the definition of the tripod homomorphism [cf.
Definition 3.19], which may be thought of as the homomorphism ob-
tained by associating to an [FC-admissible] outer automorphism of the
pro-Σ fundamental group of the n-th log configuration space associ-
ated to a log stable curve, where n ≥ 3 is a positive integer, the outer
automorphism induced on the [group-theoretic] central tripod, i.e.,
roughly speaking, the tripod that arises, in the case where n = 3 and
the given log stable curve has no nodes, by blowing up the intersection
of the three diagonal divisors of the direct product of three copies of
the curve.

Theorem C (Synchronization of tripods in three or more di-
mensions). Let (g, r) be a pair of nonnegative integers such that 2g −
2 + r > 0; n a positive integer; Σ a set of prime numbers which is
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either equal to the set of all prime numbers or of cardinality one; k
an algebraically closed field of characteristic 6∈ Σ; (Spec k)log the log
scheme obtained by equipping Spec k with the log structure determined
by the fs chart N → k that maps 1 7→ 0; X log = X log

1 a stable log
curve of type (g, r) over (Spec k)log. Write G for the semi-graph of
anabelioids of pro-Σ PSC-type determined by the stable log curve X log.
For each positive integer i, write X log

i for the i-th log configuration
space of the stable log curve X log [cf. the discussion entitled “Curves”
in [CbTpI], §0]; Πi for the maximal pro-Σ quotient of the kernel of

the natural surjection π1(X
log
i ) ³ π1((Spec k)log). Let T ⊆ Πm be a

{1, · · · , m}-tripod of Πn [cf. Definition 3.3, (i)] for m a positive
integer ≤ n. Suppose that n ≥ 3. Write

Πtpd ⊆ Π3

for the central {1, 2, 3}-tripod of Πn [cf. Definitions 3.3, (i); 3.7,
(ii)]. Then the following hold:

(i) The commensurator and centralizer of T in Πm satisfy the
equality

CΠm(T ) = T × ZΠm(T ) .

Thus, if an outomorphism α of Πm preserves the Πm-conjugacy
class of T ⊆ Πm, then one obtains a “restriction” α|T ∈
Out(T ).

(ii) Let α ∈ OutFC(Πn) be an FC-admissible outomorphism of Πn.
Then the outomorphism of Π3 induced by α preserves the Π3-
conjugacy class of Πtpd ⊆ Π3. In particular, by (i), we obtain
a natural homomorphism

TΠtpd : OutFC(Πn) −→ Out(Πtpd) .

We shall refer to this homomorphism as the tripod homo-
morphism associated to Πn.

(iii) Let α ∈ OutFC(Πn) be an FC-admissible outomorphism of Πn

such that the outomorphism αm of Πm induced by α preserves
the Πm-conjugacy class of T ⊆ Πm and induces [cf. (i)] the
identity automorphism of the set of T -conjugacy classes of
cuspidal inertia subgroups of T . Then there exists a geometric
[cf. Definition 3.4, (ii)] outer isomorphism Πtpd ∼→ T with
respect to which the outomorphism TΠtpd(α) ∈ Out(Πtpd) [cf.
(ii)] is compatible with the outomorphism αm|T ∈ Out(T )
[cf. (i)].

(iv) Suppose, moreover, that either n ≥ 4 or r 6= 0. Then the
homomorphism TΠtpd of (ii) factors through OutC(Πtpd)∆+ ⊆
Out(Πtpd) [cf. Definition 3.4, (i)], and, moreover, the resulting
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homomorphism

TΠtpd : OutF(Πn) = OutFC(Πn) −→ OutC(Πtpd)∆+

[cf. Theorem A, (ii)] is surjective.

Here, we remark that the surjectivity of the tripod homomorphism
[cf. Theorem C, (iv)] is obtained [cf. Corollary 4.15] as a consequence
of the theory of glueability of combinatorial cuspidalizations developed
in §4 [cf. the discussion preceding Theorem F below]. Also, we recall
that the codomain of this surjective tripod homomorphism

OutC(Πtpd)∆+

may be identified with the [pro-Σ] Grothendieck-Teichmüller group
GTΣ [cf. the discussion of [CmbCsp], Remark 1.11.1]. Since GTΣ may
be thought of as a sort of abstract combinatorial approximation
of the absolute Galois group GQ of the rational number field Q, it is
thus natural to think of the surjective tripod homomorphism

OutF(Πn) ³ OutC(Πtpd)∆+

of Theorem C as a sort of abstract combinatorial version of the
natural surjective outer homomorphism

π1((Mg,[r])Q) ³ GQ

induced on étale fundamental groups by the structure morphism (Mg,[r])Q
→ Spec (Q) of the moduli stack (Mg,[r])Q of hyperbolic curves of type
(g, r) [cf. the discussion of Remark 3.19.1]. In particular, the kernel of
the tripod homomorphism — which we denote by

OutF(Πn)geo

— may be thought of as a sort of abstract combinatorial analogue of
the geometric étale fundamental group of (Mg,[r])Q [i.e., the kernel of
the natural outer homomorphism π1((Mg,[r])Q) ³ GQ].

One interesting application of the theory of tripod synchronization
is the following. Fix a pro-Σ fundamental group of a hyperbolic curve.
Recall the notion of a nondegenerate profinite Dehn multi-twist
[cf. [CbTpI], Definition 5.8, (ii)] associated to a structure of semi-graph
of anabelioids of pro-Σ PSC-type on such a fundamental group. Here,
we recall that such a structure may be thought of as a sort of profinite
analogue of the notion of a decomposition of a hyperbolic topological
surface into hyperbolic subsurfaces [i.e., such as “pants”]. Then the
following result asserts that, under certain technical conditions, any
such nondegenerate profinite Dehn multi-twist that commutes with
another nondegenerate profinite Dehn multi-twist associated to some
given totally degenerate semi-graph of anabelioids of pro-Σ PSC-
type [cf. [CbTpI], Definition 2.3, (iv)] necessarily arises from a struc-
ture of semi-graph of anabelioids of pro-Σ PSC-type that is “co-Dehn”
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to, i.e., arises by applying a deformation to, the given totally degener-
ate semi-graph of anabelioids of pro-Σ PSC-type [cf. Corollary 3.25].
This sort of result is reminiscent of topological results concerning sub-
groups of the mapping class group generated by pairs of positive Dehn
multi-twists [cf. [Ishi], [HT]].

Theorem D (Co-Dehn-ness of degeneration structures in the
totally degenerate case). In the notation of Theorem C, for i =

1, 2, let Y log
i be a stable log curve over (Spec k)log; Hi the “G” that

occurs in the case where we take “X log” to be Y log
i ; (Hi, Si, φi) a 3-

cuspidalizable degeneration structure on G [cf. Definition 3.23,
(i), (v)]; αi ∈ Out(ΠG) a nondegenerate (Hi, Si, φi)-Dehn multi-twist
of G [cf. Definition 3.23, (iv)]. Suppose that α1 commutes with α2,
and that H2 is totally degenerate [cf. [CbTpI], Definition 2.3, (iv)].
Suppose, moreover, that one of the following conditions is satisfied:

(i) r 6= 0.

(ii) α1 and α2 are positive definite [cf. Definition 3.23, (iv)].

Then (H1, S1, φ1) is co-Dehn to (H2, S2, φ2) [cf. Definition 3.23,
(iii)], or, equivalently [since H2 is totally degenerate], (H2, S2, φ2) ¹
(H1, S1, φ1) [cf. Definition 3.23, (ii)].

Another interesting application of the theory of tripod synchroniza-
tion is to the computation, in terms of a certain scheme-theoretic
fundamental group, of the purely combinatorial commensurator of
the subgroup of profinite Dehn multi-twists in the group of 3-cuspidali-
zable, FC-admissible, “geometric” outer automorphisms of the pro-
Σ fundamental group of a totally degenerate log stable curve [cf.
Corollary 3.27]. Here, we remark that the scheme-theoretic [or, per-
haps more precisely, “log algebraic stack-theoretic”] fundamental group
that appears is, roughly speaking, the pro-Σ geometric fundamental
group of a formal neighborhood, in the corresponding logarithmic mod-
uli stack, of the point determined by the given totally degenerate log
stable curve. In particular, this computation may also be regarded
as a sort of purely combinatorial algorithm for constructing this
scheme-theoretic fundamental group [cf. Remark 3.27.1].

Theorem E (Commensurator of profinite Dehn multi-twists
in the totally degenerate case). In the notation of Theorem C [so
n ≥ 3], suppose further that if r = 0, then n ≥ 4. Also, we as-
sume that G is totally degenerate [cf. [CbTpI], Definition 2.3, (iv)].

Write s : Spec k → (Mg,[r])k
def
= (Mg,[r])Spec k [cf. the discussion entitled

“Curves” in §0] for the underlying (1-)morphism of algebraic stacks of

the classifying (1-)morphism (Spec k)log → (Mlog
g,[r])k

def
= (Mlog

g,[r])Spec k



10 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

[cf. the discussion entitled “Curves” in §0] of the stable log curve

X log over (Spec k)log; Ñ log
s for the log scheme obtained by equipping

Ñs
def
= Spec k with the log structure induced, via s, by the log structure of

(Mlog
g,[r])k; N log

s for the log stack obtained by forming the [stack-theoretic]

quotient of the log scheme Ñ log
s by the natural action of the finite [k-

]group “s×(Mg,[r])k
s”, i.e., the fiber product over (Mg,[r])k of two copies

of s; Ns for the underlying stack of the log stack N log
s ; INs ⊆ π1(N log

s )
for the closed subgroup of the log fundamental group π1(N log

s ) of N log
s

given by the kernel of the natural surjection π1(N log
s ) ³ π1(Ns) [in-

duced by the (1-)morphism N log
s → Ns obtained by forgetting the log

structure]; π
(Σ)
1 (N log

s ) for the quotient of π1(N log
s ) by the kernel of the

natural surjection from INs to its maximal pro-Σ quotient IΣ
Ns

. Then
we have an equality

NOutF(Πn)geo(Dehn(G)) = COutF(Πn)geo(Dehn(G))

and a natural commutative diagram of profinite groups

1 −−−→ IΣ
Ns

−−−→ π
(Σ)
1 (N log

s ) −−−→ π1(Ns) −−−→ 1y y y
1 −−−→ Dehn(G) −−−→ COutF(Πn)geo(Dehn(G)) −−−→ Aut(G) −−−→ 1

[cf. Definition 3.1, (ii), concerning the notation “G”] — where the
horizontal sequences are exact, and the vertical arrows are isomor-
phisms. Moreover, Dehn(G) is open in COutF(Πn)geo(Dehn(G)).

In §4, we show, under suitable technical conditions, that an auto-
morphism of the pro-Σ fundamental group of the log configuration
space associated to a log stable curve necessarily preserves the graph-
theoretic structure of the various one-dimensional fibers of such a
log configuration space [cf. Theorem 4.7]. This allows us to verify the
glueability of combinatorial cuspidalizations, i.e., roughly speak-
ing, that, for n ≥ 2 a positive integer, the datum of an n-cuspidalizable
outer automorphism of the pro-Σ fundamental group of a log stable
curve is equivalent, up to possible composition with a profinite Dehn
multi-twist, to the datum of a collection of n-cuspidalizable automor-
phisms of the pro-Σ fundamental groups of the various irreducible com-
ponents of the given log stable curve that satisfy a certain gluing condi-
tion involving the induced outer actions on tripods [cf. Theorem 4.14].

Theorem F (Glueability of combinatorial cuspidalizations). In
the notation of Theorem C, write

OutFC(Πn)brch ⊆ OutFC(Πn)

for the closed subgroup of OutFC(Πn) consisting of FC-admissible out-
omorphisms α of Πn such that the outomorphism of Π1 determined by
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α induces the identity automorphism of Vert(G), Node(G), and, more-
over, fixes each of the branches of every node of G [cf. Definition 4.6,
(i)];

Glu(Πn) ⊆
∏

v∈Vert(G)

OutFC((Πv)n)

for the closed subgroup of
∏

v∈Vert(G) OutFC((Πv)n) consisting of “glue-

able” collections of outomorphisms of the groups “(Πv)n” [cf. Defini-
tion 4.9, (iii)]. Then we have a natural exact sequence of profinite
groups

1 −→ Dehn(G) −→ OutFC(Πn)brch −→ Glu(Πn) −→ 1 .

This glueability result may, alternatively, be thought of as a re-
sult that asserts the localizability [i.e., relative to localization on
the dual graph of the given log stable curve] of the notion of n-
cuspidalizability. In this context, it is of interest to observe that this
glueability result may be regarded as a natural generalization, to the
case of n-cuspidalizability for n ≥ 2, of the glueability result obtained
in [CbTpI], Theorem B, (iii), in the “1-cuspidalizable” case, which is
derived as a consequence of the theory of localizability [i.e., relative
to localization on the dual graph of the given log stable curve] and
synchronization of cyclotomes developed in [CbTpI], §3, §4. From
this point of view, it is also of interest to observe that the sufficiency
portion of [the equivalence that constitutes] this glueability result [i.e.,
Theorem F] may be thought of as a sort of “converse” to the theory
of tripod synchronizations developed in §3 [i.e., of which the necessity
portion of this glueability result is, in essence, a formal consequence].
Indeed, the bulk of the proof given in §4 of Theorem 4.14 is devoted
to the sufficiency portion of this result, which is verified by means of a
detailed combinatorial analysis [cf. the proof of [CbTpI], Proposition
4.10, (ii)] of the noncyclically primitive and cyclically primitive
cases [cf. Lemmas 4.12, 4.13; Figures 2, 3, 4].

Finally, we apply this glueability result to derive a cuspidalization
theorem — i.e., in the spirit of and generalizing the corresponding
results of [AbsCsp], Theorem 3.1; [Hsh], Theorem 0.1; [Wkb], Theorem
C [cf. Remark 4.16.1] — for geometrically pro-l fundamental groups of
log stable curves over finite fields [cf. Corollary 4.16]. That is to say,
in the case of log stable curves over finite fields,

the condition of compatibility with the Galois action
is sufficient to imply the n-cuspidalizability of arbi-
trary isomorphisms between the geometric pro-l fun-
damental groups, for n ≥ 1.

In this context, it is of interest to recall that strong anabelian results
[i.e., in the style of the “Grothendieck Conjecture”] for such geomet-
rically pro-l fundamental groups of log stable curves over finite fields
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are not known in general, at the time of writing. On the other hand,
we observe that in the case of totally degenerate log stable curves
over finite fields, such “strong anabelian results” may be obtained un-
der certain technical conditions [cf. Corollary 4.17; Remarks 4.17.1,
4.17.2].

0. Notations and Conventions

Groups: We shall refer to an element of a group as trivial (respectively,
nontrivial) if it is (respectively, is not) equal to the identity element of
the group. We shall refer to a nonempty subset of a group as trivial
(respectively, nontrivial) if it is (respectively, is not) equal to the set
whose unique element is the identity element of the group.

Topological groups: Let G be a topological group and J , H ⊆ G
closed subgroups. Then we shall write

ZJ(H)
def
= ZG(H) ∩ J = { j ∈ J | jh = hj for any h ∈ H }

for the centralizer of H in J and

Z loc
J (H)

def
= lim−→ZJ(U) ⊆ J

— where the inductive limit is over all open subgroups U ⊆ H of H —

for the “local centralizer” of H in J . We shall write Z loc(G)
def
= Z loc

G (G)
for the “local center” of G. Thus, a profinite group G is slim [cf. the
discussion entitled “Topological groups” in [CbTpI], §0] if and only if
Z loc(G) = {1}.

Curves: Let (g, r) be a pair of nonnegative integers such that 2g −
2 + r > 0. Then we shall write Mg,[r] for the moduli stack of pointed
stable curves of type (g, r), where the marked points are regarded as
unordered, over Z; Mg,[r] ⊆ Mg,[r] for the open substack of Mg,[r] that

parametrizes smooth curves, i.e., hyperbolic curves; Mlog

g,[r] for the log

stack obtained by equipping Mg,[r] with the log structure associated

to the divisor with normal crossings Mg,[r] \ Mg,[r] ⊆ Mg,[r]; Cg,[r] →
Mg,[r] for the tautological stable curve over Mg,[r]; Dg,[r] ⊆ Cg,[r] for

the corresponding tautological divisor of cusps of Cg,[r] → Mg,[r]. Then

the divisor given by the union of Dg,[r] with the inverse image in Cg,[r]

of the divisor Mg,[r] \ Mg,[r] ⊆ Mg,[r] determines a log structure on

Cg,[r]; write Clog

g,[r] for the resulting log stack. In particular, we obtain a

(1-)morphism of log stacks Clog

g,[r] → Mlog

g,[r]. We shall write Cg,[r] ⊆ Cg,[r]

for the interior of Clog

g,[r] [cf. the discussion entitled “Log schemes” in
[CbTpI], §0]. Thus, we obtain a (1-)morphism of stacks Cg,[r] → Mg,[r].
If S is a scheme, then we shall denote by means of a subscript S the
result of base-changing via the structure morphism S → Spec Z the
various log stacks of the above discussion.
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Figure 1 : tripods in the various fibers of a configuration space
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1. Combinatorial anabelian geometry in the absence of
group-theoretic cuspidality

In the present §1, we discuss various combinatorial versions of the
Grothendieck Conjecture for outer representations of NN- and IPSC-
type [cf. Theorem 1.9 below]. These Grothendieck Conjecture-type
results may be regarded as generalizations of [NodNon], Corollary 4.2;
[NodNon], Remark 4.2.1, that may be applied to isomorphisms that
are not necessarily group-theoretically cuspidal. For instance, we prove
[cf. Theorem 1.9, (ii), below] that any isomorphism between outer
representations of IPSC-type [cf. [NodNon], Definition 2.4, (i)] is nec-
essarily group-theoretically verticial, i.e., roughly speaking, preserves
the verticial subgroups.

A basic reference for the theory of semi-graphs of anabelioids of PSC-
type is [CmbGC]. We shall use the terms “semi-graph of anabelioids of
PSC-type”, “PSC-fundamental group of a semi-graph of anabelioids of
PSC-type”, “finite étale covering of semi-graphs of anabelioids of PSC-
type”, “vertex”, “edge”, “node”, “cusp”, “verticial subgroup”, “edge-like
subgroup”, “nodal subgroup”, “cuspidal subgroup”, and “sturdy” as they
are defined in [CmbGC], Definition 1.1 [cf. also Remark 1.1.2 below].
Also, we shall apply the various notational conventions established in
[NodNon], Definition 1.1, and refer to the “PSC-fundamental group of
a semi-graph of anabelioids of PSC-type” simply as the “fundamental
group” [of the semi-graph of anabelioids of PSC-type]. That is to
say, we shall refer to the maximal pro-Σ quotient of the fundamental
group of a semi-graph of anabelioids of pro-Σ PSC-type [as a semi-
graph of anabelioids!] as the “fundamental group of the semi-graph of
anabelioids of PSC-type”.

In the present §1, let Σ be a nonempty set of prime numbers and G a
semi-graph of anabelioids of pro-Σ PSC-type. Write G for the under-
lying semi-graph of G, ΠG for the [pro-Σ] fundamental group of G, and

G̃ → G for the universal covering of G corresponding to ΠG. Then since
the fundamental group ΠG of G is topologically finitely generated, the
profinite topology of ΠG induces [profinite] topologies on Aut(ΠG) and
Out(ΠG) [cf. the discussion entitled “Topological groups” in [CbTpI],
§0]. If, moreover, we write Aut(G) for the automorphism group of G,
then, by the discussion preceding [CmbGC], Lemma 2.1, the natural
homomorphism

Aut(G) −→ Out(ΠG)

is an injection with closed image. [Here, we recall that an automor-
phism of a semi-graph of anabelioids consists of an automorphism of
the underlying semi-graph, together with a compatible system of iso-
morphisms between the various anabelioids at each of the vertices and
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edges of the underlying semi-graph which are compatible with the var-
ious morphisms of anabelioids associated to the branches of the under-
lying semi-graph — cf. [SemiAn], Definition 2.1; [SemiAn], Remark
2.4.2.] Thus, by equipping Aut(G) with the topology induced via this
homomorphism by the topology of Out(ΠG), we may regard Aut(G) as
being equipped with the structure of a profinite group.

Definition 1.1. We shall say that an element γ ∈ ΠG of ΠG is verticial
(respectively, edge-like; nodal; cuspidal) if γ is contained in a verticial
(respectively, an edge-like; a nodal; a cuspidal) subgroup of ΠG.

Remark 1.1.1. Let γ ∈ ΠG be a nontrivial [cf. the discussion entitled
“Groups” in §0] element of ΠG. If γ ∈ ΠG is edge-like [cf. Definition 1.1],
then it follows from [NodNon], Lemma 1.5, that there exists a unique

edge ẽ ∈ Edge(G̃) such that γ ∈ Π
ee. If γ ∈ ΠG is verticial, but not

nodal [cf. Definition 1.1], then it follows from [NodNon], Lemma 1.9,

(i), that there exists a unique vertex ṽ ∈ Vert(G̃) such that γ ∈ Π
ev.

Remark 1.1.2. Here, we take the opportunity to correct an unfortu-
nate misprint in [CmbGC]. In the final sentence of [CmbGC], Definition
1.1, (ii), the phrase “rank ≥ 2” should read “rank > 2”.

Lemma 1.2 (Existence of a certain connected finite étale cov-
ering). Let n be a positive integer which is a product [possibly with

multiplicities!] of primes ∈ Σ; ẽ1, ẽ2 ∈ Edge(G̃); ṽ ∈ Vert(G̃). Write

e1
def
= ẽ1(G), e2

def
= ẽ2(G), and v

def
= ṽ(G). Suppose that the following

conditions are satisfied:

(i) G is untangled [cf. [NodNon], Definition 1.2].

(ii) If e1 is a node, then the following condition holds: Let w,
w′ ∈ V(e1) be the two distinct elements of V(e1) [cf. (i)].
Then (N (w) ∩N (w′))] ≥ 3.

(iii) If e1 is a cusp, then the following condition holds: Let w ∈
V(e1) be the unique element of V(e1). Then C(w)] ≥ 3.

(iv) e1 6= e2.

(v) v 6∈ V(e1).

Then there exists a Galois subcovering G ′ → G of G̃ → G such that n
divides [Π

ee1 : Π
ee1 ∩ ΠG′ ], and, moreover, Π

ee2, Π
ev ⊆ ΠG′.
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Proof. Suppose that e1 is a node (respectively, cusp). Write H for
the [uniquely determined] sub-semi-graph of PSC-type [cf. [CbTpI],
Definition 2.2, (i)] of G whose set of vertices is = V(e1) = {w,w′}
[cf. condition (ii)] (respectively, = {w} [cf. condition (iii)]). Now it
follows from condition (ii) (respectively, (iii)) that there exists an e3 ∈
Node(G|H) = N (w) ∩ N (w′) (respectively, ∈ Cusp(G|H) ∩ Cusp(G) =
C(w)) [cf. [CbTpI], Definition 2.2, (ii)] such that e3 6= e2. Moreover,
again by applying condition (ii) (respectively, (iii)), together with the
well-known structure of the abelianization of the fundamental group
of a smooth curve over an algebraically closed field of characteristic
6∈ Σ, we conclude that there exists a Galois covering G ′

H → G|H that
arises from a normal open subgroup of ΠG|H and which is unramified at
every element of Edge(G|H)\{e1, e3} and totally ramified at e1, e3 with
ramification indices divisible by n. Now since G ′

H → G|H is unramified
at every element of Cusp(G|H)∩Node(G), one may extend this covering

to a Galois subcovering G ′ → G of G̃ → G which restricts to the trivial
covering over every vertex u of G such that u 6= w, w′ (respectively,
u 6= w). Moreover, it follows immediately from the construction of
G ′ → G that n divides [Π

ee1 : Π
ee1 ∩ ΠG′ ], and Π

ee2 , Π
ev ⊆ ΠG′ . This

completes the proof of Lemma 1.2. ¤

Lemma 1.3 (Product of edge-like elements). Let γ1, γ2 ∈ ΠG be
two nontrivial edge-like elements of ΠG [cf. Definition 1.1]. Write

ẽ1, ẽ2 ∈ Edge(G̃) for the unique elements of Edge(G̃) such that γ1 ∈
Π

ee1, γ2 ∈ Π
ee2 [cf. Remark 1.1.1]. Suppose that the following conditions

are satisfied:

(i) For every positive integer n, it holds that γn
1 γn

2 is verticial.

(ii) ẽ1 6= ẽ2.

Then there exists a [necessarily unique — cf. [NodNon], Remark 1.8.1,

(iii)] ṽ ∈ Vert(G̃) such that {ẽ1, ẽ2} ⊆ E(ṽ); in particular, it holds that
γ1γ2 ∈ Π

ev.

Proof. Since ẽ1 6= ẽ2 [cf. condition (ii)], one verifies easily that there

exists a Galois subcovering H → G of G̃ → G that satisfies the following
conditions:

(1) ẽ1(H) 6= ẽ2(H).

(2) H is untangled [cf. [NodNon], Definition 1.2; [NodNon], Re-
mark 1.2.1, (i)].

(3) For i ∈ {1, 2}, if ẽi ∈ Node(G̃), then the following holds: Let
w, w′ ∈ V(ẽi(H)) be the two distinct elements of V(ẽi(H)) [cf.
(ii)]. Then (N (w) ∩N (w′))] ≥ 3.
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(4) For i ∈ {1, 2}, if ẽi ∈ Cusp(G̃), then the following holds:
Let w ∈ V(ẽi(H)) be the unique element of V(ẽi(H)). Then
C(w)] ≥ 3.

Now it is immediate that there exists a positive integer m such that

γm
1 ∈ Π

ee1 ∩ΠH, γm
2 ∈ Π

ee2 ∩ΠH. Let ṽ ∈ Vert(G̃) be such that γm
1 γm

2 ∈
Π

ev [cf. condition (i)].
Suppose that ṽ(H) 6∈ V(ẽ1(H)). Then it follows from Lemma 1.2

that there exists a Galois subcovering H′ → H of G̃ → H such that
γm

1 6∈ ΠH′ , and, moreover, Π
ee2 ∩ ΠH, Π

ev ∩ ΠH ⊆ ΠH′ . But this implies
that γm

2 , γm
1 γm

2 ∈ ΠH′ , hence that γm
1 ∈ ΠH′ , a contradiction. In

particular, it holds that ṽ(H) ∈ V(ẽ1(H)); a similar argument implies
that ṽ(H) ∈ V(ẽ2(H)), hence that V(ẽ1(H))∩ V(ẽ2(H)) 6= ∅. Thus, by
applying this argument to a suitable system of connected finite étale
coverings of H, we conclude that V(ẽ1)∩V(ẽ2) 6= ∅, i.e., that there exists

a ṽ ∈ Vert(G̃) such that {ẽ1, ẽ2} ⊆ E(ṽ). Then since Π
ee1 , Π

ee2 ⊆ Π
ev,

it follows immediately that γ1γ2 ∈ Π
ev. This completes the proof of

Lemma 1.3. ¤

Proposition 1.4 (Group-theoretic characterization of closed
subgroups of edge-like subgroups). Let H ⊆ ΠG be a closed sub-
group of ΠG. Then the following conditions are equivalent:

(i) H is contained in an edge-like subgroup.

(ii) An open subgroup of H is contained in an edge-like sub-
group.

(iii) Every element of H is edge-like [cf. Definition 1.1].

(iv) There exists a connected finite étale subcovering G† → G of

G̃ → G such that for any connected finite étale subcovering

G ′ → G of G̃ → G that factors through G† → G, the image of
the composite

H ∩ ΠG′ ↪→ ΠG′ ³ Π
ab/edge
G′

— where we write Π
ab/edge
G′ for the torsion-free [cf. [CmbGC],

Remark 1.1.4] quotient of the abelianization Πab
G′ by the closed

subgroup topologically generated by the images in Πab
G′ of the

edge-like subgroups of ΠG′ — is trivial.

Proof. The implications (i) ⇒ (ii) ⇒ (iv) are immediate. The equiv-
alence (iii) ⇔ (iv) follows immediately from [NodNon], Lemma 1.6.
Thus, to complete the verification of Proposition 1.4, it suffices to ver-
ify the implication (iii) ⇒ (i). To this end, suppose that condition (iii)
holds. First, we observe that, to verify the implication (iii) ⇒ (i), it
suffices to verify the following assertion:
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Claim 1.4.A: Let γ1, γ2 ∈ H be nontrivial elements.

Write ẽ1, ẽ2 ∈ Edge(G̃) for the unique elements of

Edge(G̃) such that γ1 ∈ Π
ee1 , γ2 ∈ Π

ee2 [cf. Remark 1.1.1].
Then ẽ1 = ẽ2.

To verify Claim 1.4.A, let us observe that it follows from condition (iii)
that, for every positive integer n, it holds that γn

1 γn
2 is edge-like, hence

verticial. Thus, it follows immediately from Lemma 1.3 that there

exists a element ṽ ∈ Vert(G̃) such that {ẽ1, ẽ2} ⊆ E(ṽ); in particular,
it holds that γ1, γ2 ∈ Π

ev. Thus, to complete the verification of Claim
1.4.A, we may assume without loss of generality — by replacing ΠG, H

by Π
ev, Π

ev ∩H, respectively — that Node(G) = ∅ [so ẽ1, ẽ2 ∈ Cusp(G̃)].
Moreover, we may assume without loss of generality — by replacing ΠG
(respectively, γ1, γ2) by a suitable open subgroup of ΠG (respectively,
suitable powers of γ1, γ2) — that Cusp(G)] ≥ 4. Thus, it follows
immediately from the well-known structure of the abelianization of the
fundamental group of a smooth curve over an algebraically closed field
of characteristic 6∈ Σ that the direct product of any 3 cuspidal inertia
subgroups of ΠG associated to distinct cusps of G maps injectively to the
abelianization Πab

G of ΠG. In particular, since γ1γ2 is edge-like, hence
cuspidal, it follows, by considering the cuspidal inertia subgroups that
contain γ1, γ2, and γ1γ2, that ẽ1 = ẽ2. This completes the proof of
Claim 1.4.A, hence also of the implication (iii) ⇒ (i). This completes
the proof of Lemma 1.4. ¤

Proposition 1.5 (Group-theoretic characterization of closed
subgroups of verticial subgroups). Let H ⊆ ΠG be a closed sub-
group of ΠG. Then the following conditions are equivalent:

(i) H is contained in a verticial subgroup.

(ii) An open subgroup of H is contained in a verticial subgroup.

(iii) Every element of H is verticial [cf. Definition 1.1].

(iv) There exists a connected finite étale subcovering G† → G of

G̃ → G such that for any connected finite étale subcovering

G ′ → G of G̃ → G that factors through G† → G, the image of
the composite

H ∩ ΠG′ ↪→ ΠG′ ³ Πab-comb
G′

— where we write Πab-comb
G′ for the torsion-free [cf. [CmbGC],

Remark 1.1.4] quotient of the abelianization Πab
G′ by the closed

subgroup topologically generated by the images in Πab
G′ of the

verticial subgroups of ΠG′ — is trivial.
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Proof. The implications (i) ⇒ (ii) ⇒ (iv) are immediate. Next, we
verify the implication (iv) ⇒ (iii). Suppose that condition (iv) holds.
Let γ ∈ H. Then to verify that γ is verticial, we may assume with-
out loss of generality — by replacing H by the procyclic subgroup
of H topologically generated by γ — that H is procyclic. Now the
implication (iv) ⇒ (iii) follows immediately from a similar argument
to the argument applied in the proof of the implication (ii) ⇒ (i) of
[NodNon], Lemma 1.6, in the edge-like case. Here, we note that unlike
the edge-like case, there is a slight complication arising from the fact

[cf. [NodNon], Lemma 1.9, (i)] that an element ṽ ∈ Vert(G̃) is not
necessarily uniquely determined by the condition that H ⊆ Π

ev, i.e.,

there may exist distinct ṽ1, ṽ2 ∈ V(ẽ) for some ẽ ∈ Node(G̃) such that
H ⊆ Π

ee = Π
ev1 ∩ Π

ev2 . On the other hand, this phenomenon is, in fact,
irrelevant to the argument in question, since ΠG does not contain any
elements that fix, but permute the branches of, ẽ. This completes the
proof of the implication (iv) ⇒ (iii).

Finally, we verify the implication (iii) ⇒ (i). Suppose that condition
(iii) holds. Now if every element of H is edge-like, then the implication
(iii) ⇒ (i) follows from the implication (iii) ⇒ (i) of Proposition 1.4,
together with the fact that every edge-like subgroup is contained in a
verticial subgroup. Thus, to verify the implication (iii) ⇒ (i), we may
assume without loss of generality that there exists an element γ1 ∈ H

of H that is not edge-like. Write ṽ1 ∈ Vert(G̃) for the unique element

of Vert(G̃) such that γ1 ∈ Π
ev1 [cf. Remark 1.1.1].

Now we claim the following assertion:

Claim 1.5.A: H ⊆ Π
ev1 .

Indeed, let γ2 ∈ H be a nontrivial element of H. If γ2 = γ1, then
γ2 ∈ Π

ev1 . Thus, we may assume without loss of generality that γ1 6= γ2.

Write γ
def
= γ1γ

−1
2 .

Next, suppose that γ2 is not edge-like. Write ṽ2 ∈ Vert(G̃) for the

unique element of Vert(G̃) such that γ2 ∈ Π
ev2 [cf. Remark 1.1.1]. Let

H → G be a connected finite étale subcovering of G̃ → G. Then since
neither γ1 nor γ2 is edge-like, one verifies easily — by applying the
implication (iv) ⇒ (i) of Proposition 1.4 to the closed subgroups of
ΠG topologically generated by γ1, γ2, respectively — that there exist

a connected finite étale subcovering H′ → H of G̃ → H and a positive
integer n such that γn

1 , γn
2 ∈ ΠH′ ⊆ ΠH, and, moreover, the images

of γn
1 , γn

2 ∈ ΠH′ via the natural surjection ΠH′ ³ Π
ab/edge
H′ [cf. the

notation of Lemma 1.4, (iv)] are nontrivial. Thus, it follows from the
existence of the natural split injection⊕

v∈Vert(G)

Πab/edge
v −→ Π

ab/edge
G
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of [NodNon], Lemma 1.4, together with the fact that γn
1 γn

2 ∈ ΠH′ is
verticial [cf. condition (iii)], that ṽ1(H′) = ṽ2(H′), hence that ṽ1(H) =

ṽ2(H). Therefore, by allowing the subcovering H → G of G̃ → G to
vary, we conclude that ṽ1 = ṽ2; in particular, it holds that γ2 ∈ Π

ev1 .
Next, suppose that γ2 is edge-like, but that γ is not edge-like. Then,

by applying the argument of the preceding paragraph concerning γ2 to
γ, we conclude that γ, hence also γ2, is contained in Π

ev1 .
Next, suppose that both γ2 and γ are edge-like. Write ẽ2, ẽ ∈

Edge(G̃) for the unique elements of Edge(G̃) such that γ2 ∈ Π
ee2 , γ ∈ Π

ee

[cf. Remark 1.1.1]. Then since γ1 is not edge-like, it follows immedi-
ately that ẽ2 6= ẽ. Moreover, it follows from condition (iii) that for
any positive integer n, the element γn

2 γn is verticial. Thus, it follows

immediately from Lemma 1.3 that there exists a unique ṽ ∈ Vert(G̃)
such that {ẽ2, ẽ} ⊆ E(ṽ), γ1 = γγ2 ∈ Π

ev. On the other hand, since

ṽ1 ∈ Vert(G̃) is uniquely determined by the condition that γ1 ∈ Π
ev1 , we

thus conclude that ṽ1 = ṽ, hence that γ2 ∈ Π
ee2 ⊆ Π

ev1 , as desired. This
completes the proof of Claim 1.5.A and hence also of the implication
(iii) ⇒ (i). ¤

Theorem 1.6 (Section conjecture-type result for outer rep-
resentations of SNN-, IPSC-type). Let Σ be a nonempty set of
prime numbers, G a semi-graph of anabelioids of pro-Σ PSC-type, and
I → Aut(G) an outer representation of SNN-type [cf. [NodNon],
Definition 2.4, (iii)]. Write ΠG for the [pro-Σ] fundamental group of G
and ΠI

def
= ΠG

out
o I [cf. the discussion entitled “Topological groups” in

[CbTpI], §0]; thus, we have a natural exact sequence of profinite groups

1 −→ ΠG −→ ΠI −→ I −→ 1 .

Write Sect(ΠI/I) for the set of sections of the natural surjection ΠI ³
I. Then the following hold:

(i) For any ṽ ∈ Vert(G̃), the composite I
ev ↪→ ΠI ³ I [cf. [NodNon],

Definition 2.2, (i)] is an isomorphism. In particular, I
ev ⊆ ΠI

determines an element s
ev ∈ Sect(ΠI/I); thus, we have a map

Vert(G̃) −→ Sect(ΠI/I)
ṽ 7→ s

ev .

Finally, the following equalities concerning centralizers of sub-
groups of ΠI in ΠG [cf. the discussion entitled “Topological
groups” in §0] hold: ZΠG(s

ev(I)) = ZΠG(I
ev) = Π

ev.

(ii) The map of (i) is injective.
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(iii) If, moreover, I → Aut(G) is of IPSC-type [cf. [NodNon],
Definition 2.4, (i)], then, for any s ∈ Sect(ΠI/I), the central-
izer ZΠG(s(I)) is contained in a verticial subgroup.

(iv) Let s ∈ Sect(ΠI/I). Consider the following two conditions:

(1) The section s is contained in the image of the map of (i),

i.e., s = s
ev for some ṽ ∈ Vert(G̃).

(2) ZΠG(ZΠG(s(I))) = {1}.
Then we have an implication

(1) =⇒ (2) .

If, moreover, I → Aut(G) is of IPSC-type, then we have an
equivalence

(1) ⇐⇒ (2) .

Proof. First, we verify assertion (i). The fact that the composite I
ev ↪→

ΠI ³ I is an isomorphism follows from condition (2′) of [NodNon],
Definition 2.4, (ii). On the other hand, the equalities ZΠG(s

ev(I)) =
ZΠG(I

ev) = Π
ev follow from [NodNon], Lemma 3.6, (i). This completes

the proof of assertion (i). Assertion (ii) follows immediately from the
final equalities of assertion (i), together with [NodNon], Lemma 1.9,

(ii). Next, we verify assertion (iii). Write H
def
= ZΠG(s(I)). Then

it follows immediately from [CmbGC], Proposition 2.6, together with

the definition of H
def
= ZΠG(s(I)), that for any connected finite étale

subcovering G ′ → G of G̃ → G, the image of the composite

H ∩ ΠG′ ↪→ ΠG′ ³ Πab-comb
G′

[cf. the notation of Proposition 1.5, (iv)] is trivial. Thus, it follows
from the implication (iv) ⇒ (i) of Proposition 1.5 that H is contained
in a verticial subgroup. This completes the proof of assertion (iii).

Finally, we verify assertion (iv). To verify the implication (1) ⇒ (2),
suppose that condition (1) holds. Then since ZΠG(s

ev(I)) = ZΠG(I
ev) =

Π
ev [cf. assertion (i)] is commensurably terminal in ΠG [cf. [CmbGC],

Proposition 1.2, (ii)] and center-free [cf. [CmbGC], Remark 1.1.3], we
conclude that ZΠG(ZΠG(s

ev(I))) = ZΠG(Π
ev) = {1}. This completes the

proof of the implication (1) ⇒ (2). Next, suppose that I → Aut(G) is of
IPSC-type, and that condition (2) holds. Then it follows from assertion

(iii) that there exists a ṽ ∈ Vert(G̃) such that H
def
= ZΠG(s(I)) ⊆

Π
ev, so I

ev ⊆ ZΠI
(H). On the other hand, since s(I) ⊆ ZΠI

(H), and
ZΠG(H) = ZΠG(ZΠG(s(I))) = {1} [cf. condition (2)], i.e., the composite
of natural homomorphisms ZΠI

(H) ↪→ ΠI ³ I is injective, it follows
that s(I) = ZΠI

(H) ⊇ I
ev. Since I

ev and s(I) may be obtained as the
images of sections, we thus conclude that I

ev = s(I), i.e., s = s
ev. This

completes the proof of the implication (2) ⇒ (1), hence also of assertion
(iv). ¤
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Remark 1.6.1. Recall that in the case of outer representations of NN-
type, the period matrix is not necessarily nondegenerate [cf. [CbTpI],
Remark 5.9.2]. In particular, the argument applied in the proof of The-
orem 1.6, (iii) — which depends, in an essential way, on the fact that,
in the case of outer representations of IPSC-type, the period matrix is
nondegenerate [cf. the proof of [CmbGC], Proposition 2.6] — cannot be
applied in the case of outer representations of NN-type. Nevertheless,
the question of whether or not Theorem 1.6, (iii), as well as the appli-
cation of Theorem 1.6, (iii), given in Corollary 1.7, (ii), below, may be
generalized to the case of outer representations of NN-type remains a
topic of interest to the authors.

Corollary 1.7 (Group-theoretic characterization of verticial
subgroups for outer representations of IPSC-type). In the no-
tation of Theorem 1.6, let us refer to a closed subgroup of ΠG as a
section-centralizer if it may be written in the form ZΠG(s(I)) for
some s ∈ Sect(ΠI/I). Let H ⊆ ΠG be a closed subgroup of ΠG. Then
the following hold:

(i) Suppose that H is a section-centralizer such that ZΠG(H) =
{1}. Then the following conditions on a section s ∈ Sect(ΠI/I)
are equivalent:

(i-1) H = ZΠG(s(I)).

(i-2) s(I) ⊆ ZΠI
(H).

(i-3) s(I) = ZΠI
(H).

(ii) Consider the following three conditions:

(ii-1) H is a verticial subgroup.

(ii-2) H is a section-centralizer such that ZΠG(H) = {1}.
(ii-3) H is a maximal section-centralizer.

Then we have implications

(ii-1) =⇒ (ii-2) =⇒ (ii-3) .

If, moreover, I → Aut(G) is of IPSC-type [cf. [NodNon],
Definition 2.4, (i)], then we have equivalences

(ii-1) ⇐⇒ (ii-2) ⇐⇒ (ii-3) .

Proof. First, we verify assertion (i). The implication (i-1) ⇒ (i-2)
is immediate. To verify the implication (i-2) ⇒ (i-3), suppose that
condition (i-2) holds. Then since ZΠI

(H) ∩ ΠG = ZΠG(H) = {1}, the
composite ZΠI

(H) ↪→ ΠI ³ I is injective. Thus, since the composite
s(I) ↪→ ZΠI

(H) ↪→ ΠI ³ I is an isomorphism, it follows immediately
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that condition (i-3) holds. This completes the proof of the implication
(i-2) ⇒ (i-3). Finally, to verify the implication (i-3) ⇒ (i-1), suppose
that condition (i-3) holds. Then since H is a section-centralizer, there
exists a t ∈ Sect(ΠI/I) such that H = ZΠI

(t(I)). In particular, t(I) ⊆
ZΠI

(H) = s(I) [cf. condition (i-3)]. We thus conclude that t = s, i.e.,
that condition (i-1) holds. This completes the proof of assertion (i).

Next, we verify assertion (ii). The implication (ii-1) ⇒ (ii-2) fol-
lows immediately from Theorem 1.6, (i), (iv). To verify the impli-
cation (ii-2) ⇒ (ii-3), suppose that H satisfies condition (ii-2); let
s ∈ Sect(ΠI/I) be such that H ⊆ ZΠG(s(I)). Then it follows imme-
diately that s(I) ⊆ ZΠI

(H). Thus, it follows immediately from the
equivalence (i-1) ⇔ (i-2) of assertion (i) that H = ZΠG(s(I)). This
completes the proof of the implication (ii-2) ⇒ (ii-3). Finally, observe
that the implication (ii-3) ⇒ (ii-1) in the case where I → Aut(G) is of
IPSC-type follows immediately from Theorem 1.6, (iii), together with
the fact that every verticial subgroup is a section-centralizer [cf. the
implication (ii-1) ⇒ (ii-2) verified above]. This completes the proof of
Corollary 1.7. ¤

Lemma 1.8 (Group-theoretic characterization of verticial sub-
groups for outer representations of SNN-type). Let H ⊆ ΠG be
a closed subgroup of ΠG and I → Aut(G) an outer representation of

SNN-type [cf. [NodNon], Definition 2.4, (iii)]. Write ΠI
def
= ΠG

out
o I

[cf. the discussion entitled “Topological groups” in [CbTpI], §0]; thus,
we have a natural exact sequence of profinite groups

1 −→ ΠG −→ ΠI −→ I −→ 1 .

Suppose that G is untangled [cf. [NodNon], Definition 1.2]. Then
H is verticial subgroup if and only if H satisfies the following four
conditions:

(i) The composite IH
def
= ZΠI

(H) ↪→ ΠI ³ I is an isomorphism.

(ii) It holds that H = ZΠG(IH).

(iii) For any γ ∈ ΠG, it holds that γ ∈ H if and only if H ∩ (γ ·H ·
γ−1) 6= {1}.

(iv) H contains a nontrivial verticial element of ΠG [cf. Defini-
tion 1.1].

Proof. If H is a verticial subgroup, then it is immediate that condition
(iv) is satisfied; moreover, it follows from condition (2′) of [NodNon],
Definition 2.4, (ii) (respectively, [NodNon], Lemma 3.6, (i); [NodNon],
Remark 1.10.1), that H satisfies condition (i) (respectively, (ii); (iii)).
This completes the proof of necessity.
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To verify sufficiency, suppose that H satisfies conditions (i), (ii), (iii),

and (iv). It follows from condition (iv) that there exists a ṽ ∈ Vert(G̃)

such that J
def
= H ∩ Π

ev 6= {1}. If either J = Π
ev or J = H, i.e., either

Π
ev ⊆ H or H ⊆ Π

ev, then it is immediate that either IH ⊆ I
ev or I

ev ⊆ IH

[cf. [NodNon], Definition 2.2, (i)]. Thus, it follows from condition (i)
[for H and Π

ev] that IH = I
ev. But then it follows from condition (ii)

[for H and Π
ev] that H = ZΠG(IH) = ZΠG(I

ev) = Π
ev; in particular, H is

a verticial subgroup.
Thus, we may assume without loss of generality that J 6= H, Π

ev.

Let γ ∈ H \ J . Write Jγ def
= γ · J · γ−1. Then we have inclusions

Π
ev ⊇ J ⊆ H ⊇ Jγ ⊆ Π

evγ (= γ · Π
ev · γ−1) .

Now we claim the following assertion:

Claim 1.8.A: NΠG(J) = J , NΠG(Jγ) = Jγ.

Indeed, let σ ∈ NΠG(J). Then since {1} 6= J = J ∩ (σ · J · σ−1) ⊆
Π

ev ∩Π
evσ , it follows from condition (iii) [for Π

ev] that σ ∈ Π
ev. Similarly,

since {1} 6= J = J ∩ (σ · J · σ−1) ⊆ H ∩ (σ · H · σ−1), it follows
from condition (iii) [for H] that σ ∈ H. Thus, σ ∈ Π

ev ∩ H = J . In
particular, we obtain that NΠG(J) = J . A similar argument implies
that NΠG(Jγ) = Jγ. This completes the proof of Claim 1.8.A.

Now the composites NΠI
(J), NΠI

(Jγ) ↪→ ΠI ³ I fit into exact
sequences of profinite groups

1 −→ NΠG(J) −→ NΠI
(J) −→ I ,

1 −→ NΠG(Jγ) −→ NΠI
(Jγ) −→ I .

Thus, since we have inclusions

IH = ZΠI
(H) ⊆ ZΠI

(J) ⊆ NΠI
(J) ,

IH = ZΠI
(H) ⊆ ZΠI

(Jγ) ⊆ NΠI
(Jγ) ,

I
ev = ZΠI

(Π
ev) ⊆ ZΠI

(J) ⊆ NΠI
(J) ,

I
evγ = ZΠI

(Π
evγ ) ⊆ ZΠI

(Jγ) ⊆ NΠI
(Jγ) ,

it follows immediately from Claim 1.8.A, together with condition (i)
[for H and Π

ev], that

NΠI
(J) = J · IH = J · I

ev , NΠI
(Jγ) = Jγ · IH = Jγ · I

evγ .

In particular. we obtain that

IH ⊆ NΠI
(J) = J · I

ev ⊆ Π
ev · Dev = D

ev ,

IH ⊆ NΠI
(Jγ) = Jγ · I

evγ ⊆ Π
evγ · D

evγ = D
evγ

[cf. [NodNon], Definition 2.2, (i)], i.e., IH ⊆ D
ev ∩ D

evγ . On the other
hand, since H 3 γ 6∈ J = H ∩ Π

ev, it follows from condition (iii) [for
Π

ev] that Π
evγ ∩ Π

ev = {1}; thus, it follows immediately from the fact
that D

ev ∩ D
evγ ∩ ΠG = Π

ev ∩ Π
evγ = {1} [cf. [CmbGC], Proposition 1.2,

(ii)], together with condition (i), that IH = D
ev ∩ D

evγ , which implies,
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by [NodNon], Proposition 3.9, (iii), that there exists a w̃ ∈ Vert(G̃)
such that IH = I

ew. In particular, it follows from condition (ii) [for H
and Π

ew] that H = ZΠG(IH) = ZΠG(I
ew) = Π

ew. Thus, H is a verticial
subgroup. This completes the proof of Lemma 1.8. ¤

Theorem 1.9 (Group-theoretic verticiality/nodality of isomor-
phisms of outer representations of NN-, IPSC-type). Let Σ be
a nonempty set of prime numbers, G (respectively, H) a semi-graph
of anabelioids of pro-Σ PSC-type, ΠG (respectively, ΠH) the [pro-Σ]

fundamental group of G (respectively, H), α : ΠG
∼→ ΠH an isomor-

phism of profinite groups, I (respectively, J) a profinite group, ρI : I →
Aut(G) (respectively, ρJ : J → Aut(H)) a continuous homomorphism,

and β : I
∼→ J an isomorphism of profinite groups. Suppose that the

diagram

I −−−→ Out(ΠG)

β

y yOut(α)

J −−−→ Out(ΠH)

— where the right-hand vertical arrow is the isomorphism induced by
α; the upper and lower horizontal arrows are the homomorphisms de-
termined by ρI and ρJ , respectively — commutes. Then the following
hold:

(i) Suppose, moreover, that ρI , ρJ are of NN-type [cf. [NodNon],
Definition 2.4, (iii)]. Then the following three conditions are
equivalent:

(1) The isomorphism α is group-theoretically verticial [i.e.,
roughly speaking, preserves verticial subgroups — cf. [CmbGC],
Definition 1.4, (iv)].

(2) The isomorphism α is group-theoretically nodal [i.e.,
roughly speaking, preserves nodal subgroups — cf. [NodNon],
Definition 1.12].

(3) There exists a nontrivial verticial element γ ∈ ΠG such
that α(γ) ∈ ΠH is verticial [cf. Definition 1.1].

(ii) Suppose, moreover, that ρI is of NN-type, and that ρJ is of
IPSC-type [cf. [NodNon], Definition 2.4, (i)]. [For example,
this will be the case if both ρI and ρJ are of IPSC-type — cf.
[NodNon], Remark 2.4.2.] Then α is group-theoretically
verticial, hence also group-theoretically nodal.

Proof. First, we verify assertion (i). The implication (1) ⇒ (2) fol-
lows from [NodNon], Proposition 1.13. The implication (2) ⇒ (3)
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follows from the fact that any nodal subgroup is contained in a verti-
cial subgroup. [Note that if Node(H) = ∅, then every element of ΠH
is verticial.] Finally, we verify the implication (3) ⇒ (1). Suppose
that condition (3) holds. Since verticial subgroups are commensurably
terminal [cf. [CmbGC], Proposition 1.2, (ii)], to verify the implica-
tion (3) ⇒ (1), by replacing ΠI , ΠJ by open subgroups of ΠI , ΠJ ,
we may assume without loss of generality that ρI , ρJ are of SNN-type
[cf. [NodNon], Definition 2.4, (iii)], and, moreover, that G and H are
untangled [cf. [NodNon], Definition 1.2; [NodNon], Remark 1.2.1, (i)].

Let ṽ ∈ Vert(G̃) be such that γ ∈ Π
ev. Then it is immediate that α(Π

ev)
satisfies conditions (i), (ii), and (iii) in the statement of Lemma 1.8.
On the other hand, it follows from condition (3) that α(Π

ev) satisfies
condition (iv) in the statement of Lemma 1.8. Thus, it follows from
Lemma 1.8 that α(Π

ev) ⊆ ΠH is a verticial subgroup. Now it follows
from [NodNon], Theorem 4.1, that α is group-theoretically verticial.
This completes the proof of the implication (3) ⇒ (1).

Finally, we verify assertion (ii). It is immediate that, to verify as-
sertion (ii) — by replacing I, J by open subgroups of I, J — we may
assume without loss of generality that ρI is of SNN-type. Let H ⊆ ΠG
be a verticial subgroup of ΠG. Then it follows from Corollary 1.7,
(ii), that H, hence also α(H), is a maximal section-centralizer [cf. the
statement of Corollary 1.7]. Thus, since ρJ is of IPSC-type, again by
Corollary 1.7, (ii), we conclude that α(H) ⊆ ΠH is a verticial subgroup
of ΠH. In particular, it follows from [NodNon], Theorem 4.1, together
with [NodNon], Remark 2.4.2, that α is group-theoretically verticial
and group-theoretically nodal. This completes the proof of assertion
(ii). ¤

Remark 1.9.1. Thus, Theorem 1.9, (i), may be regarded as a gener-
alization of [NodNon], Corollary 4.2. Of course, ideally, one would like
to be able to prove that conditions (1) and (2) of Theorem 1.9, (i), hold
automatically [i.e., as in the case of outer representations of IPSC-type
treated in Theorem 1.9, (ii)], without assuming condition (3). Although
this topic lies beyond the scope of the present paper, perhaps progress
could be made in this direction if, say, in the case where Σ is either
equal to the set of all prime numbers or of cardinality one, one starts
with an isomorphism α that arises from a PF-admissible [cf. [CbTpI],
Definition 1.4, (i)] isomorphism between configuration space groups cor-
responding to m-dimensional configuration spaces [where m ≥ 2] as-
sociated to stable curves that give rise to G and H, respectively [i.e.,
one assumes the condition of “m-cuspidalizability” discussed in Defini-
tion 3.20, below, where we replace the condition of “PFC-admissibility”
by the condition of “PF-admissibility”]. For instance, if Cusp(G) 6= ∅,
then it follows from [CbTpI], Theorem 1.8, (iv); [NodNon], Corollary
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4.2, that this condition on α is sufficient to imply that conditions (1)
and (2) of Theorem 1.9, (i), hold.
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2. Partial combinatorial cuspidalization for F-admissible
outomorphisms

In the present §2, we apply the results obtained in the preceding §1,
together with the theory developed by the authors in earlier papers, to
prove combinatorial cuspidalization-type results for F-admissible out-
omorphisms [cf. Theorem 2.3, (i), below]. We also show that any F-
admissible outomorphism of a configuration space group [arising from a
configuration space] of sufficiently high dimension [i.e., ≥ 3 in the affine
case; ≥ 4 in the proper case] is necessarily C-admissible, i.e., preserves
the cuspidal inertia subgroups of the various subquotients correspond-
ing to surface groups [cf. Theorem 2.3, (ii), below]. Finally, we discuss
applications of these combinatorial anabelian results to the anabelian
geometry of configuration spaces associated to hyperbolic curves over
arithmetic fields [cf. Corollaries 2.5, 2.6, below].

In the present §2, let Σ be a set of prime numbers which is either
equal to the set of all prime numbers or of cardinality one; n a positive
integer; k an algebraically closed field of characteristic 6∈ Σ; X a hyper-
bolic curve of type (g, r) over k. For each positive integer i, write Xi for
the i-th configuration space of X; Πi for the maximal pro-Σ quotient
of the fundamental group of Xi.

Definition 2.1. Let α ∈ Aut(Πn) be an automorphism of Πn.

(i) Write

{1} = Kn ⊆ Kn−1 ⊆ · · · ⊆ K2 ⊆ K1 ⊆ K0 = Πn

for the standard fiber filtration on Πn [cf. [CmbCsp], Defi-
nition 1.1, (i)]. For each m ∈ {1, 2, · · · , n}, write Cm for
the [finite] set of Km−1/Km-conjugacy classes of cuspidal in-
ertia subgroups of Km−1/Km [where we recall that Km−1/Km

is equipped with a natural structure of pro-Σ surface group
— cf. [MzTa], Definition 1.2]. Then we shall say that α is
wC-admissible [i.e., “weakly C-admissible”] if α preserves the
standard fiber filtration on Πn, and, moreover, satisfies the
following conditions:

• If m ∈ {1, 2, · · ·n−1}, then the automorphism of Km−1/Km

determined by α induces an automorphism of Cm.

• It follows immediately from the various definitions in-
volved that we have a natural injection Cn−1 ↪→ Cn. That
is to say, if one thinks of Kn−2 as the two-dimensional
configuration space group associated to some hyperbolic
curve, then the image of Cn−1 ↪→ Cn corresponds to the
set of cusps of a fiber [of the two-dimensional configura-
tion space over the hyperbolic curve] that arise from the
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cusps of the hyperbolic curve. Then the automorphism of
Kn−1 determined by α induces an automorphism of the
image of the natural injection Cn−1 ↪→ Cn.

Write

AutwC(Πn) ⊆ Aut(Πn)

for the subgroup of wC-admissible automorphisms and

OutwC(Πn)
def
= AutwC(Πn)/Inn(Πn) ⊆ Out(Πn) .

We shall refer to an element of OutwC(Πn) as a wC-admissible
outomorphism.

(ii) We shall say that α is FwC-admissible if α is F-admissible
[cf. [CmbCsp], Definition 1.1, (ii)] and wC-admissible [cf. (i)].
Write

AutFwC(Πn) ⊆ AutF(Πn)

for the subgroup of FwC-admissible automorphisms and

OutFwC(Πn)
def
= AutFwC(Πn)/Inn(Πn) ⊆ OutF(Πn) .

We shall refer to an element of OutFwC(Πn) as an FwC-admissible
outomorphism.

(iii) We shall say that α is DF-admissible [i.e., “diagonal-fiber-
admissible”] if α is F-admissible, and, moreover, α induces
the same automorphism of Π1 relative to the various quotients
Πn ³ Π1 by fiber subgroups of colength 1 [cf. [MzTa], Defini-
tion 2.3, (iii)]. Write

AutDF(Πn) ⊆ AutF(Πn)

for the subgroup of DF-admissible automorphisms.

Remark 2.1.1. Thus, it follows immediately from the definitions that

C-admissible =⇒ wC-admissible.

In particular, we have inclusions

AutFC(Πn) ⊂ AutFwC(Πn) OutFC(Πn) ⊂ OutFwC(Πn)

∩ ∩ ∩ ∩

AutC(Πn) ⊂ AutwC(Πn) OutC(Πn) ⊂ OutwC(Πn)

[cf. Definition 2.1, (i), (ii)].
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Lemma 2.2 (F-admissible automorphisms and inertia subgroups).
Let α ∈ AutF(Πn) be an F-admissible automorphism of Πn. Then the
following hold:

(i) There exist β ∈ AutDF(Πn) [cf. Definition 2.1, (iii)] and ι ∈
Inn(Πn) such that α = β ◦ ι.

(ii) For each positive integer i, write Z log
i for the i-th log config-

uration space of X [cf. the discussion entitled “Curves” in

[CbTpI], §0]; UZi
⊆ Zi for the interior of Z log

i [cf. the dis-
cussion entitled “Log schemes” in [CbTpI], §0], which may
be identified with Xi. Let ε be an irreducible component of
the complement Zn−1 \ UZn−1 [cf. [CmbCsp], Definition 1.1];
Iε ⊆ Πn−1 an inertia subgroup of Πn−1 associated to the di-
visor ε of Zn−1; pr : UZn → UZn−1 the projection obtained by
forgetting the factor labeled n; prΠ : Πn ³ Πn−1 the surjection

induced by pr; Πn/n−1
def
= Ker(prΠ); θ an irreducible component

of the fiber of the [uniquely determined] extension Zn → Zn−1

of pr over the generic point of ε [so θ naturally determines an
irreducible component of the complement Zn \UZn]; Dθ ⊆ Πn a
decomposition subgroup of Πn associated to the divisor [natu-

rally determined by] θ of Zn; Πθ
def
= Dθ∩Πn/n−1 [cf. [CmbCsp],

Proposition 1.3, (iv)]. Suppose that the automorphism of Πn−1

induced by α ∈ AutF(Πn) relative to prΠ stabilizes Iε ⊆ Πn−1.
Then α preserves the Πn/n−1-conjugacy class of Πθ.

Proof. Assertion (i) follows immediately from [CbTpI], Theorem A, (i).
Assertion (ii) follows immediately from Theorem 1.9, (ii) [cf. also the
proof of [CmbCsp], Proposition 1.3, (iv)]. ¤

Theorem 2.3 (Partial combinatorial cuspidalization for F-ad-
missible outomorphisms). Let Σ be a set of prime numbers which
is either equal to the set of all prime numbers or of cardinality one; n
a positive integer; X a hyperbolic curve of type (g, r) over an alge-
braically closed field of characteristic 6∈ Σ; Xn the n-th configuration
space of X; Πn the maximal pro-Σ quotient of the fundamental group
of Xn;

OutF(Πn) ⊆ Out(Πn)

the subgroup of F-admissible outomorphisms [i.e., roughly speaking,
outomorphisms that preserve the fiber subgroups — cf. [CmbCsp], Def-
inition 1.1, (ii)] of Πn;

OutFC(Πn) ⊆ OutF(Πn)

the subgroup of FC-admissible outomorphisms [i.e., roughly speak-
ing, outomorphisms that preserve the fiber subgroups and the cuspidal
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inertia subgroups — cf. [CmbCsp], Definition 1.1, (ii)] of Πn;

(OutFC(Πn) ⊆) OutFwC(Πn) ⊆ OutF(Πn)

the subgroup of FwC-admissible outomorphisms [cf. Definition 2.1,
(ii)] of Πn. Then the following hold:

(i) Write

ninj
def
=

{
1 if r 6= 0,
2 if r = 0 ,

nbij
def
=

{
3 if r 6= 0,
4 if r = 0 .

If n ≥ ninj (respectively, n ≥ nbij), then the natural homomor-
phism

OutF(Πn+1) −→ OutF(Πn)

induced by the projections Xn+1 → Xn obtained by forgetting
any one of the n+1 factors of Xn+1 [cf. [CbTpI], Theorem A,
(i)] is injective (respectively, bijective).

(ii) Write

nFC
def
=

 2 if (g, r) = (0, 3),
3 if (g, r) 6= (0, 3) and r 6= 0,
4 if r = 0 .

If n ≥ nFC, then it holds that

OutFC(Πn) = OutF(Πn) .

(iii) Write

nFwC
def
=

 2 if r ≥ 2,
3 if r = 1,
4 if r = 0 .

If n ≥ nFwC, then it holds that

OutFwC(Πn) = OutF(Πn) .

(iv) If (r, n) 6= (0, 2), then the image of the natural inclusion

Sn ↪→ Out(Πn)

— where we write Sn for the symmetric group on n letters —
obtained by permuting the various factors of Xn is contained
in the centralizer ZOut(Πn)(OutF(Πn)).

Proof. First, we verify assertion (iii) in the case where n = 2, which
implies that r ≥ 2 [cf. the statement of assertion (iii)]. To verify
assertion (iii) in the case where n = 2, it is immediate that it suffices
to verify that

AutFwC(Π2) = AutF(Π2) .

Let α ∈ AutF(Π2). Let us assign the cusps of X the labels a1, · · · , ar.
Now, for each i ∈ {1, · · · , r}, recall that there is a uniquely determined



32 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

cusp of the geometric generic fiber X2/1 of the projection X2 → X to
the factor labeled 1 that corresponds naturally to the cusp of X labeled
ai; we assign to this uniquely determined cusp the label bi. Thus,
there is precisely one cusp of X2/1 that has not been assigned a label
∈ {b1, · · · , br}; we assign to this uniquely determined cusp the label
br+1. Then since the automorphism of Π1 induced by α relative to either
p1 or p2 — where we write p1, p2 for the surjections Π2 ³ Π1 induced
by the projections X2 → X to the factors labeled 1, 2, respectively
— is FC-admissible [cf. [CbTpI], Theorem A, (ii)], it follows from the
various definitions involved that, to verify that α ∈ AutFwC(Π2), it
suffices to verify the following assertion:

Claim 2.3.A: For any b ∈ {b1, · · · , br}, if Ib ⊆ Π2/1
def
=

Ker(p1) ⊆ Π2 is a cuspidal inertia subgroup associated
to the cusp labeled b, then α(Ib) is a cuspidal inertia
subgroup.

Now observe that to verify Claim 2.3.A, by replacing α by the compos-
ite of α with a suitable element of AutFC(Π2) [cf. [CmbCsp], Lemma
2.4], we may assume without loss of generality that the [necessarily FC-
admissible] automorphism of Π1 induced by α relative to p1, hence also
relative to p2 [cf. [CbTpI], Theorem A, (i)], induces the identity auto-
morphism on the set of conjugacy classes of cuspidal inertia subgroups
of Π1.

To verify Claim 2.3.A, let us fix b ∈ {b1, · · · , br}, together with a
cuspidal inertia subgroup Ib ⊆ Π2/1 associated to the cusp labeled b of
Π2/1. Also, let us fix

• a ∈ {a1, · · · , ar} such that if b = bi and a = aj, then i 6= j [cf.
the assumption that r ≥ 2!];

• a cuspidal inertia subgroup Ia ⊆ Π1 associated to the cusp
labeled a of Π1.

Now observe that since the [necessarily FC-admissible] automorphism
of Π1 induced by α relative to p1 induces the identity automorphism
on the set of conjugacy classes of cuspidal inertia subgroups of Π1, to
verify the fact that α(Ib) is a cuspidal inertia subgroup, we may assume
without loss of generality [by replacing α by a suitable Π2-conjugate of
α] that the automorphism of Π1 induced by α relative to p1 fixes Ia. Let
ΠFa ⊆ Π2/1 be a major verticial subgroup at a [cf. [CmbCsp], Definition
1.4, (ii)] such that Ib ⊆ ΠFa . Then it follows from Lemma 2.2, (ii),

that α fixes the Π2/1-conjugacy class of ΠFa , i.e., that Π†
Fa

def
= α(ΠFa)

is a Π2/1-conjugate of ΠFa . Thus, one verifies easily that, to verify
that α(Ib) is a cuspidal inertia subgroup, it suffices to verify that the

isomorphism ΠFa

∼→ Π†
Fa

induced by α is group-theoretically cuspidal
— cf. [CmbGC], Definition 1.4, (iv). [Note that it follows immediately
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from the various definitions involved that ΠFa and Π†
Fa

may be regarded
as pro-Σ fundamental groups of semi-graphs of anabelioids of pro-Σ
PSC-type.] On the other hand, it follows immediately from the various
definitions involved that this isomorphism factors as the composite

ΠFa

∼−→ Π1
∼−→ Π1

∼←− Π†
Fa

— where the first and third arrows are the isomorphisms induced by
p2 : Π2 ³ Π1 [cf. [CmbCsp], Definition 1.4, (ii)], and the second ar-
row is the automorphism induced by α relative to p2 — and that the
three arrows appearing in this composite are group-theoretically cuspi-
dal. Thus, we conclude that α(Ib) is a cuspidal inertia subgroup. This
completes the proof of Claim 2.3.A, hence also of assertion (iii) in the
case where n = 2.

Next, we verify assertion (ii) in the case where (g, r, n) = (0, 3, 2).
In the following, we shall use the notation “ai” [for i = 1, 2, 3] and
“bj” [for j = 1, 2, 3, 4] introduced in the proof of assertion (iii) in
the case where n = 2. Now, to verify assertion (ii) in the case where
(g, r, n) = (0, 3, 2), it is immediate that it suffices to verify that

AutFC(Π2) = AutF(Π2) .

Let α ∈ AutF(Π2). Then let us observe that to verify that α ∈
AutFC(Π2), by replacing α by the composite of α with a suitable ele-
ment of AutFC(Π2) [cf. [CmbCsp], Lemma 2.4], we may assume without
loss of generality that the [necessarily FC-admissible — cf. [CbTpI],
Theorem A, (ii)] automorphism of Π1 induced by α relative to p1, hence
also relative to p2 [cf. [CbTpI], Theorem A, (i)] — where we write p1,
p2 for the surjections Π2 ³ Π1 induced by the projections X2 → X to
the factors labeled 1, 2, respectively — induces the identity automor-
phism on the set of conjugacy classes of cuspidal inertia subgroups of
Π1. Now it follows from assertion (iii) in the case where n = 2 that α
is FwC-admissible; thus, to verify the fact that α is FC-admissible, it
suffices to verify the following assertion:

Claim 2.3.B: If Ib4 ⊆ Π2/1
def
= Ker(p1) ⊆ Π2 is a cuspi-

dal inertia subgroup associated to the cusp labeled b4,
then α(Ib4) is a cuspidal inertia subgroup.

On the other hand, as is well-known [cf. e.g., [CbTpI], Lemma 6.10,
(ii)], there exists an automorphism of X2 over X relative to the pro-
jection pr1 to the factor labeled 1 which switches the cusps on the
geometric generic fiber X2/1 labeled b1 and b4. In particular, there ex-
ists an automorphism ι of Π2 over Π1 relative to p1 which switches the
respective Π2/1-conjugacy classes of cuspidal inertia subgroups associ-
ated to b1 and b4. Write β = ι−1 ◦ α ◦ ι.

Now let us verify that Claim 2.3.B follows from the following asser-
tion:

Claim 2.3.C: β ∈ AutF(Π2).
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Indeed, if Claim 2.3.C holds, then it follows from assertion (iii) in the
case where n = 2 that, for any cuspidal inertia subgroup Ib1 ⊆ Π2/1

associated to the cusp labeled b1, β(Ib1) is a cuspidal inertia subgroup.
Thus, it follows immediately from our choice of ι that, for any cuspidal
inertia subgroup Ib4 ⊆ Π2/1 associated to the cusp labeled b4, α(Ib4) is
a cuspidal inertia subgroup. This completes the proof of the assertion
that Claim 2.3.C implies Claim 2.3.B.

Finally, we verify Claim 2.3.C. Since α and ι, hence also β, preserve
Π2/1 ⊆ Π2, it follows immediately from [CmbCsp], Proposition 1.2, (i),
that, to verify Claim 2.3.C, it suffices to verify that β preserves Ξ2 ⊆ Π2

[cf. [CmbCsp], Definition 1.1, (iii)], i.e., the normal closed subgroup
of Π2 topologically normally generated by a cuspidal inertia subgroup
associated to b4. On the other hand, this follows immediately from
the fact that α preserves the Π2/1-conjugacy class of cuspidal inertia
subgroups associated to b1 [cf. assertion (iii) in the case where n = 2],
together with our choice of ι. This completes the proof of Claim 2.3.C,
hence also of assertion (ii) in the case where (g, r, n) = (0, 3, 2).

Next, we verify assertion (ii) in the case where (g, r, n) 6= (0, 3, 2).

Thus, n ≥ 3. Write Π†
3 (respectively, Π†

2; Π†
1) for the kernel of the

surjection Πn ³ Πn−3 (respectively, Πn−1 ³ Πn−3; Πn−2 ³ Πn−3)
induced by the projection obtained by forgetting the factor(s) labeled
n, n − 1, n − 2 (respectively, n − 1, n − 2; n − 2). Here, if n = 3, then

we set Πn−3 = Π0
def
= {1}. Then recall [cf., e.g., the proof of [CmbCsp],

Theorem 4.1, (i)] that we have natural isomorphisms

Πn ' Π†
3

out
o Πn−3 ; Πn−1 ' Π†

2

out
o Πn−3 ; Πn−2 ' Π†

1

out
o Πn−3

[cf. the discussion entitled “Topological groups” in [CbTpI], §0]. Also,
we recall [cf. [MzTa], Proposition 2.4, (i)] that one may interpret the

surjections Π†
3 ³ Π†

2 ³ Π†
1 induced by the surjections Πn ³ Πn−1 ³

Πn−2 as the surjections “Π3 ³ Π2 ³ Π1” that arise from the projec-
tions X3 → X2 → X in the case of an “X” of type (g, r + n − 3).
Moreover, one verifies easily that this interpretation is compatible with
the definition of the various “Out(−)’s” involved. Thus, since nFC = 4
if r = 0, the above natural isomorphisms, together with [CbTpI], The-
orem A, (ii), allow one to reduce the equality in question to the case
where n = 3 and r 6= 0.

Now one verifies easily that, to verify the equality in question in the
case where n = 3 and r 6= 0, it is immediate that it suffices to verify
that

AutFC(Π3) = AutF(Π3) .

Let α ∈ AutF(Π3). Then let us observe that to verify α ∈ AutFC(Π3),
by replacing α by the composite of α with a suitable element of AutFC(Π3)
[cf. [CmbCsp], Lemma 2.4], we may assume without loss of general-
ity that the [necessarily FC-admissible — cf. [CbTpI], Theorem A,
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(ii)] automorphism of Π1 induced by α relative to q1, hence also rel-
ative to either q2 or q3 [cf. [CbTpI], Theorem A, (i)] — where we
write q1, q2, q3 for the surjections Π3 ³ Π1 induced by the projections
X3 → X to the factors labeled 1, 2, 3, respectively — induces the iden-
tity automorphism on the set of conjugacy classes of cuspidal inertia
subgroups of Π1; in particular, one verifies easily that the [necessarily
FC-admissible — cf. [CbTpI], Theorem A, (ii)] automorphism of Π2/1

— where we write p1 : Π2 ³ Π1 for the surjection induced by the pro-

jection X2 → X to the factor labeled 1 and Π2/1
def
= Ker(p1) ⊆ Π2 —

induced by α induces the identity automorphism on the set of conjugacy
classes of cuspidal inertia subgroups of Π2/1. Write X2/1 (respectively,
X3/2; X3/1) for the geometric generic fiber of the projection X2 → X
(respectively, X3 → X2; X3 → X) to the factor(s) labeled 1 (respec-
tively, 1, 2; 1). Let us assign the cusps of X the labels a1, · · · , ar. For
each i ∈ {1, · · · , r}, we assign to the cusp of X2/1 that corresponds nat-
urally to the cusp of X labeled ai the label bi. Thus, there is precisely
one cusp of X2/1 that has not been assigned a label ∈ {b1, · · · , br};
we assign to this uniquely determined cusp the label br+1. For each
i ∈ {1, · · · , r + 1}, we assign to the cusp of X3/2 that corresponds nat-
urally to the cusp of X2/1 labeled bi the label ci. Thus, there is precisely
one cusp of X3/2 that has not been assigned a label ∈ {c1, · · · , cr+1}; we
assign to this uniquely determined cusp the label cr+2. Now it follows
from assertion (iii) in the case where n = 2, applied to the restriction of

α to Π3/1
def
= Ker(q1), together with [CbTpI], Theorem A, (ii), that α is

FwC-admissible. Write q12 : Π3 ³ Π2 for the surjection induced by the

projection X3 → X2 to the factors labeled 1, 2; Π3/2
def
= Ker(q12) ⊆ Π3.

Thus, to verify the fact that α is FC-admissible, it suffices to verify the
following assertion:

Claim 2.3.D: If Icr+2 ⊆ Π3/2 is a cuspidal inertia sub-
group associated to the cusp labeled cr+2, then α(Icr+2)
is a cuspidal inertia subgroup.

To verify Claim 2.3.D, let us fix a cusp labeled b ∈ {b1, · · · , br}
[where we recall that r 6= 0], a cuspidal inertia subgroup Icr+2 ⊆ Π3/2

associated to the cusp labeled cr+2 of Π3/2, and a cuspidal inertia sub-
group Ib ⊆ Π2/1 associated to the cusp labeled b of X2/1. Now observe
that since the [necessarily FC-admissible] automorphism of Π2/1 in-
duced by α induces the identity automorphism on the set of conjugacy
classes of cuspidal inertia subgroups of Π2/1, to verify the assertion
that α(Icr+2) is a cuspidal inertia subgroup, we may assume without
loss of generality [by replacing α by a suitable Π3-conjugate of α] that
the automorphism of Π2/1 induced by α fixes Ib. Let ΠEb

⊆ Π3/2 be a
minor verticial subgroup, relative to the two-dimensional configuration
space X3/1 associated to the hyperbolic curve X2/1, at the cusp labeled



36 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

b [cf. [CmbCsp], Definition 1.4, (ii)] such that Icr+2 ⊆ ΠEb
. Then it fol-

lows immediately from Lemma 2.2, (ii), that α fixes the Π3/2-conjugacy

class of ΠEb
, i.e., that Π†

Eb

def
= α(ΠEb

) is a Π3/2-conjugate of ΠEb
. Thus,

one verifies easily that, to verify that α(Icr+2) is a cuspidal inertia sub-

group, it suffices to verify that the isomorphism ΠEb

∼→ Π†
Eb

induced by
α is group-theoretically cuspidal — cf. [CmbGC], Definition 1.4, (iv).
[Note that it follows immediately from the various definitions involved

that ΠEb
and Π†

Eb
may be regarded as pro-Σ fundamental groups of

semi-graphs of anabelioids of pro-Σ PSC-type.] On the other hand, it
follows immediately from a similar argument to the argument applied
in the discussion concerning the isomorphism of the second display of
[CmbCsp], Definition 1.4, (ii), that the composites

ΠEb
, Π†

Eb
↪→ Π3/2 ³ Π2/1

— where the second arrow is the surjection determined by the surjec-
tion q13 : Π3 ³ Π2 induced by the projection X3 → X2 to the factors
labeled 1, 3 — are injective, and that the Π2/1-conjugacy class of the
image in Π2/1 of either of these composite injections coincides with the
Π2/1-conjugacy class of a minor verticial subgroup at the cusp labeled
ai [where we write b = bi — cf. [CmbCsp], Definition 1.4, (ii)]. In
particular, since the automorphism of Π2 induced by α relative to q13

is FC-admissible [cf. [CbTpI], Theorem A, (ii)], it follows immediately

that the isomorphism ΠEb

∼→ Π†
Eb

induced by α is group-theoretically
cuspidal. This completes the proof of Claim 2.3.D, hence also of asser-
tion (ii).

Now assertion (iii) in the case where n 6= 2 follows immediately
from assertion (ii), together with the natural inclusions OutFC(Πn) ⊆
OutFwC(Πn) ⊆ OutF(Πn) [cf. Remark 2.1.1]. This completes the proof
of assertion (iii).

Next, we verify assertion (i). The bijectivity portion of assertion
(i) follows from assertion (ii), together with the bijectivity portion of
[NodNon], Theorem B. Thus, it suffices to verify the injectivity portion
of assertion (i). First, we observe that injectivity in the case where
(g, r) = (0, 3) follows from assertion (ii), together with the injectiv-

ity portion of [NodNon], Theorem B. Write Π†
2 (respectively, Π†

1) for
the kernel of the surjection Πn+1 ³ Πn−1 (respectively, Πn ³ Πn−1)
induced by the projection obtained by forgetting the factor(s) labeled

n+1, n (respectively, n). Here, if n = 1, then we set Πn−1 = Π0
def
= {1}.

Then recall [cf. e.g., the proof of [CmbCsp], Theorem 4.1, (i)] that we
have natural isomorphisms

Πn+1 ' Π†
2

out
o Πn−1 ; Πn ' Π†

1

out
o Πn−1

[cf. the discussion entitled “Topological groups” in [CbTpI], §0]. Also,
we recall [cf. [MzTa], Proposition 2.4, (i)] that one may interpret the
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surjection Π†
2 ³ Π†

1 induced by the surjection Πn+1 ³ Πn in question as
the surjection “Π2 ³ Π1” that arises from the projection pr2 : X2 → X
in the case of an “X” of type (g, r+n−1). Moreover, one verifies easily
that this interpretation is compatible with the definition of the various
“Out(−)’s” involved. Thus, since ninj = 2 if r = 0, the above natural
isomorphisms allow one to reduce the injectivity in question to the
case where n = 1 and r 6= 0. On the other hand, this injectivity follows
immediately from a similar argument to the argument used in the proof
of [CmbCsp], Corollary 2.3, (ii), by replacing [CmbCsp], Proposition
1.2, (iii) (respectively, the non-resp’d portion of [CmbCsp], Proposition
1.3, (iv); [CmbCsp], Corollary 1.12, (i)), in the proof of [CmbCsp],
Corollary 2.3, (ii), by Lemma 2.2, (i) (respectively, Lemma 2.2, (ii);
the injectivity in question in the case where (g, r) = (0, 3), which was
verified above). This completes the proof of the injectivity portion of
assertion (i), hence also of assertion (i).

Finally, assertion (iv) follows immediately from assertion (i), to-
gether with a similar argument to the argument applied in the proof
of [CmbCsp], Theorem 4.1, (iv). This completes the proof of Theo-
rem 2.3. ¤

Corollary 2.4 (PFC-admissibility of outomorphisms). In the no-
tation of Theorem 2.3, write

OutPF(Πn) ⊆ Out(Πn)

for the subgroup of PF-admissible outomorphisms [i.e., roughly speak-
ing, outomorphisms that preserve the fiber subgroups up to a possible
permutation of the factors — cf. [CbTpI], Definition 1.4, (i)] and

OutPFC(Πn) ⊆ OutPF(Πn)

for the subgroup of PFC-admissible outomorphisms [i.e., roughly speak-
ing, outomorphisms that preserve the fiber subgroups and the cuspidal
inertia subgroups up to a possible permutation of the factors — cf.
[CbTpI], Definition 1.4, (iii)]. Let us regard the symmetric group on n
letters Sn as a subgroup of Out(Πn) via the natural inclusion of The-
orem 2.3, (iv). Finally, suppose that (g, r) 6∈ {(0, 3); (1, 1)}. Then the
following hold:

(i) We have an equality

Out(Πn) = OutPF(Πn) .

If, moreover, (r, n) 6= (0, 2), then we have equalities

Out(Πn) = OutPF(Πn) = OutF(Πn) × Sn

[cf. the notational conventions introduced in Theorem 2.3].
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(ii) If either

r > 0 , n ≥ 3

or

n ≥ 4 ,

then we have equalities

Out(Πn) = OutPFC(Πn) = OutFC(Πn) × Sn

[cf. the notational conventions introduced in Theorem 2.3].

Proof. First, we verify assertion (i). The equality in the first display
of assertion (i) follows from [MzTa], Corollary 6.3, together with the
assumption that (g, r) 6∈ {(0, 3); (1, 1)}. The second equality in the
second display of assertion (i) follows from Theorem 2.3, (iv). This
completes the proof of assertion (i). Next, we verify assertion (ii). The
first equality of assertion (ii) follows immediately from Theorem 2.3,
(ii), together with the first equality of assertion (i). The second equality
of assertion (ii) follows from [NodNon], Theorem B. This completes the
proof of assertion (ii). ¤

Corollary 2.5 (Anabelian properties of hyperbolic curves and
associated configuration spaces I). Let Σ be a set of prime numbers
which is either equal to the set of all prime numbers or of cardinality
one; m ≤ n positive integers; (g, r) a pair of nonnegative integers such
that 2g − 2 + r > 0; k a field of characteristic 6∈ Σ; k a separable
closure of k; X a hyperbolic curve of type (g, r) over k. Write

Gk
def
= Gal(k/k). For each positive integer i, write Xi for the i-th

configuration space of X; (Xi)k
def
= Xi ×k k; ∆Xi

for the maximal
pro-Σ quotient of the étale fundamental group of (Xi)k;

ρΣ
Xi

: Gk −→ Out(∆Xi
)

for the pro-Σ outer Galois representation associated to Xi; Si for the
symmetric group on i letters;

Φi : Si −→ Out(∆Xi
)

for the outer representation arising from the permutations of the factors
of Xi. Suppose that the following conditions are satisfied:

(1) (g, r) 6∈ {(0, 3); (1, 1)}.
(2) If (r, n,m) ∈ {(0, 2, 1); (0, 2, 2); (0, 3, 1)}, then there exists an

l ∈ Σ such that k is l-cyclotomically full, i.e., the l-adic
cyclotomic character of Gk has open image.

Then the following hold:
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(i) Let α ∈ Out(∆Xn). Then there exists a unique element σα ∈
Sn such that α ◦ Φn(σα) ∈ OutF(∆Xn) [cf. the notational
conventions introduced in Theorem 2.3]. Write

αm ∈ OutF(∆Xm)

for the outomorphism of ∆Xm induced by α ◦ Φn(σα), relative
to the quotient ∆Xn ³ ∆Xm by a fiber subgroup of colength m
of ∆Xn. [Note that it follows from [CbTpI], Theorem A, (i),
that αm does not depend on the choice of fiber subgroup of
colength m of ∆Xn.]

(ii) If (r, n,m) ∈ {(0, 2, 1); (0, 2, 2); (0, 3, 1)}, then

COut(∆Xn)(Im(ρΣ
Xn

)) ⊆ OutPFC(∆Xn)

[cf. the notational conventions introduced in Corollary 2.4].

(iii) The map

Out(∆Xn) −→ Out(∆Xm)
α 7→ αm

[cf. (i)] determines an exact sequence of homomorphisms of
profinite groups

1 −→ Sn
Φn−→ OutPFC(∆Xn) −→ Out(∆Xm)

— where the second arrow is a split injection whose image
commutes with OutFC(∆Xn) and has trivial intersection
with Im(ρΣ

Xn
). If (r, n) 6= (0, 2), then the map α 7→ αm deter-

mines a sequence of homomorphisms of profinite groups

1 −→ Sn
Φn−→ Out(∆Xn) −→ Out(∆Xm)

— where the second arrow is a split injection whose im-
age commutes with OutF(∆Xn) and has trivial intersec-
tion with Im(ρΣ

Xn
) — which is exact if, moreover, (r, n,m) 6=

(0, 3, 1).

(iv) Let α ∈ Out(∆Xn). If (r, n,m) ∈ {(0, 2, 1); (0, 3, 1)}, then we
suppose further that α ∈ OutPFC(∆Xn), which is the case if,
for instance, α ∈ COut(∆Xn)(Im(ρΣ

Xn
)) [cf. (ii)]. Then it holds

that

α ∈ ZOut(∆Xn )(Im(ρΣ
Xn

))

(respectively, NOut(∆Xn )(Im(ρΣ
Xn

)) ; COut(∆Xn )(Im(ρΣ
Xn

)))

if and only if

αm ∈ ZOut(∆Xm )(Im(ρΣ
Xm

))

(respectively, NOut(∆Xm )(Im(ρΣ
Xm

)) ; COut(∆Xm )(Im(ρΣ
Xm

))) .
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(v) For each positive integer i, write Autk(Xi) for the group of au-
tomorphisms of Xi over k. Then if the natural homomorphism

Autk(Xm) −→ ZOut(∆Xm )(Im(ρΣ
Xm

))

is bijective, then the natural homomorphism

Autk(Xn) −→ ZOut(∆Xn )(Im(ρΣ
Xn

))

is bijective.

(vi) For each positive integer i, write Aut((Xi)k/k) for the group
of automorphisms of (Xi)k that are compatible with some au-
tomorphism of k; Autρ(Gk) for the group of automorphisms
of Gk that preserve Ker(ρΣ

X1
) ⊆ Gk [where we note that, by

[NodNon], Corollary 6.2, (i), for any positive integer i, it holds
that Ker(ρΣ

X1
) = Ker(ρΣ

Xi
)]. Then if the natural homomorphism

Aut((Xm)k/k) −→ Autρ(Gk)×Aut(Im(ρΣ
Xm

))NOut(∆Xm )(Im(ρΣ
Xm

))

is bijective, then the natural homomorphism

Aut((Xn)k/k) −→ Autρ(Gk) ×Aut(Im(ρΣ
Xn

)) NOut(∆Xn )(Im(ρΣ
Xn

))

is bijective.

Proof. First, we verify assertion (i). The existence of such a σα follows
from the fact that Out(∆Xn) = OutPF(∆Xn) [cf. Corollary 2.4, (i), to-
gether with assumption (1)]. The uniqueness of such a σα follows imme-
diately from the easily verified faithfulness of the action of Sn, via Φn,
on the set of fiber subgroups of ∆Xn . This completes the proof of asser-
tion (i). Next, we verify assertion (ii). Since Out(∆Xn) = OutPF(∆Xn)
[cf. Corollary 2.4, (i), together with assumption (1)], assertion (ii)
follows immediately from [CmbGC], Corollary 2.7, (i), together with
condition (2). This completes the proof of assertion (ii).

Next, we verify assertion (iii). First, let us observe that it fol-
lows immediately from the various definitions involved that Im(Φn) ⊆
OutPFC(∆Xn). Now since Out(∆Xn) = OutPF(∆Xn) [cf. Corollary 2.4,
(i), together with assumption (1)], and OutF(∆Xn) is normalized by
OutPF(∆Xn), one verifies easily [i.e., by considering the action of ele-
ments of OutPF(∆Xn) on the set of fiber subgroups of ∆Xn ] that the
second arrow in either of the two displayed sequences is a split injec-
tion. Moreover, since [as is easily verified] the outer action of Gk, via
ρΣ

Xn
, on ∆Xn fixes every fiber subgroup of ∆Xn , it follows immediately

from the faithfulness of the action of Sn, via Φn, on the set of fiber
subgroups of ∆Xn that the image of the second arrow in either of the
two displayed sequences has trivial intersection with Im(ρΣ

Xn
). Now

it follows from [NodNon], Theorem B, that the image of the second
arrow of the first displayed sequence commutes with OutFC(∆Xn); in
particular, one verifies easily from the various definitions involved that
the third arrow of the first displayed sequence is a homomorphism. If
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(r, n) 6= (0, 2), then it follows from Corollary 2.4, (i), that the image
of the second arrow of the second displayed sequence commutes with
OutF(∆Xn); in particular, one verifies easily from the various definitions
involved that the third arrow of the second displayed sequence is a ho-
momorphism. Now if (r,m) 6= (0, 1), then it follows immediately from
the injectivity portion of Theorem 2.3, (i), together with the equality
Out(∆Xn) = OutPF(∆Xn) [cf. Corollary 2.4, (i), together with assump-
tion (1)], that the kernel of the third arrow in either of the two displayed
sequences is Im(Φn). Moreover, if (r, n,m) ∈ {(0, 2, 1); (0, 3, 1)}, then
it follows immediately from the injectivity portion of [NodNon], Theo-
rem B, that the kernel of the third arrow in the first displayed sequence
is Im(Φn). On the other hand, if (r,m) = (0, 1) and n 6∈ {2, 3}, then it
follows immediately from the injectivity portion of [NodNon], Theorem
B, together with Corollary 2.4, (ii), that the kernel of the third arrow
in either of the two displayed sequences is Im(Φn). This completes the
proof of assertion (iii).

Next, we verify assertion (iv). Now since the permutations of the
factors of Xn give rise to automorphisms of Xn over k, it follows im-
mediately that Im(Φn) ⊆ ZOut(∆Xn )(Im(ρΣ

Xn
)). In particular, to ver-

ify assertion (iv), we may assume without loss of generality — by re-
placing α by αn [cf. assertion (i)] — that α ∈ OutF(∆Xn), and that
m < n. Then necessity follows immediately. On the other hand, suffi-
ciency follows immediately from the exact sequences of assertion (iii).
This completes the proof of assertion (iv). Assertion (v) (respectively,
(vi)) follows immediately from assertions (i), (ii), (iii), together with
Lemma 2.7, (iii), below (respectively, Lemma 2.7, (iv), below). This
completes the proof of Corollary 2.5. ¤

Corollary 2.6 (Anabelian properties of hyperbolic curves and
associated configuration spaces II). Let Σ be a set of prime num-
bers which is either equal to the set of all prime numbers or of cardi-
nality one; m ≤ n positive integers; (gX , rX), (gY , rY ) pairs of non-
negative integers such that 2gX − 2 + rX , 2gY − 2 + rY > 0; kX , kY

fields; kX , kY separable closures of kX , kY , respectively; X, Y hy-
perbolic curves of type (gX , rX), (gY , rY ) over kX , kY , respectively.

Write GkX

def
= Gal(kX/kX); GkY

def
= Gal(kY /kY ). For each positive

integer i, write Xi, Yi for the i-th configuration spaces of X, Y ,

respectively; (Xi)kX

def
= Xi ×kX

kX ; (Yi)kY

def
= Yi ×kY

kY ; πΣ
1 ((Xi)kX

),

πΣ
1 ((Yi)kY

) for the maximal pro-Σ quotients of the étale fundamental

groups π1((Xi)kX
), π1((Yi)kY

) of (Xi)kX
, (Yi)kY

, respectively; π
(Σ)
1 (Xi),

π
(Σ)
1 (Yi) for the geometrically pro-Σ étale fundamental groups of Xi, Yi,

respectively, i.e., the quotients of the étale fundamental groups π1(Xi),
π1(Yi) of Xi, Yi by the respective kernels of the natural surjections
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π1((Xi)kX
) ³ πΣ

1 ((Xi)kX
), π1((Yi)kY

) ³ πΣ
1 ((Yi)kY

). Suppose that the
following conditions are satisfied:

(1) {(gX , rX); (gY , rY )} ∩ {(0, 3); (1, 1)} = ∅.
(2) If (rX , n,m) (respectively, (rY , n,m)) is contained in the set

{(0, 2, 1); (0, 2, 2); (0, 3, 1)}, then there exists an l ∈ Σ such
that kX (respectively, kY ) is l-cyclotomically full, i.e., the l-
adic cyclotomic character of GkX

(respectively, GkY
) has open

image.

Then the following hold:

(i) Let θ : kX
∼→ kY be an isomorphism of fields that determines

an isomorphism kX
∼→ kY . For each positive integer i, write

Isomθ(Xi, Yi) for the set of isomorphisms of Xi with Yi that

are compatible with the isomorphism kX
∼→ kY determined

by θ; Isomθ(π
(Σ)
1 (Xi), π

(Σ)
1 (Yi)) for the set of isomorphisms of

π
(Σ)
1 (Xi) with π

(Σ)
1 (Yi) that are compatible with the isomorphism

GkX

∼→ GkY
determined by θ. Then if the natural map

Isomθ(Xm, Ym) −→ Isomθ(π
(Σ)
1 (Xm), π

(Σ)
1 (Ym))/Inn(πΣ

1 ((Ym)kY
))

is bijective, then the natural map

Isomθ(Xn, Yn) −→ Isomθ(π
(Σ)
1 (Xn), π

(Σ)
1 (Yn))/Inn(πΣ

1 ((Yn)kY
))

is bijective.

(ii) For each positive integer i, write Isom((Xi)kX
/kX , (Yi)kY

/kY )
for the set of isomorphisms of (Xi)kX

with (Yi)kY
that are com-

patible with some field isomorphism of kX with kY ;

Isom(π
(Σ)
1 (Xi)/GkX

, π
(Σ)
1 (Yi)/GkY

)

for the set of isomorphisms of π
(Σ)
1 (Xi) with π

(Σ)
1 (Yi) that are

compatible with some isomorphism of GkX
with GkY

. Then if
the natural map

Isom((Xm)kX
/kX , (Ym)kY

/kY )

−→ Isom(π
(Σ)
1 (Xm)/GkX

, π
(Σ)
1 (Ym)/GkY

)/Inn(πΣ
1 ((Ym)kY

))

is bijective, then the natural map

Isom((Xn)kX
/kX , (Yn)kY

/kY )

−→ Isom(π
(Σ)
1 (Xn)/GkX

, π
(Σ)
1 (Yn)/GkY

)/Inn(πΣ
1 ((Yn)kY

))

is bijective.
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Proof. Consider assertion (i) (respectively, (ii)). If the set

Isomθ(π
(Σ)
1 (Xn), π

(Σ)
1 (Yn))/Inn(πΣ

1 ((Yn)kY
))

(respectively,

Isom(π
(Σ)
1 (Xn)/GkX

, π
(Σ)
1 (Yn)/GkY

)/Inn(πΣ
1 ((Yn)kY

)) )

is empty, then assertion (i) (respectively, (ii)) is immediate. Thus, we
may suppose without loss of generality that this set is nonempty. Then
one verifies easily from [MzTa], Corollary 6.3, together with condition
(1), that the set

Isomθ(π
(Σ)
1 (Xm), π

(Σ)
1 (Ym))/Inn(πΣ

1 ((Ym)kY
))

(respectively,

Isom(π
(Σ)
1 (Xm)/GkX

, π
(Σ)
1 (Ym)/GkY

)/Inn(πΣ
1 ((Ym)kY

)) )

is nonempty. Thus, it follows immediately from the bijectivity assumed
in assertion (i) (respectively, (ii)) that there exists an isomorphism

Xm
∼→ Ym that is compatible with the isomorphism kX

∼→ kY deter-
mined by θ (respectively, an isomorphism (Xm)kX

∼→ (Ym)kY
that is

compatible with some isomorphism kX
∼→ kY ). In particular, it follows

immediately from Lemma 2.7, (iii), below (respectively, Lemma 2.7,

(iv), below) that there exists an isomorphism X
∼→ Y that is compatible

with the isomorphism kX
∼→ kY determined by θ (respectively, an iso-

morphism X×kX
kX

∼→ Y ×kY
kY that is compatible with some isomor-

phism kX
∼→ kY ). Thus, by pulling back the various objects involved

via this isomorphism, to verify assertion (i) (respectively, (ii)), we may
assume without loss of generality that (X, kX , kX , θ) = (Y, kY , kY , idkX

)

(respectively, (X, kX , kX) = (Y, kY , kY )). Then assertion (i) (respec-
tively, (ii)) follows from Corollary 2.5, (v) (respectively, Corollary 2.5,
(vi)). This completes the proof of Corollary 2.6. ¤

Lemma 2.7 (Isomorphisms between configuration spaces of
hyperbolic curves). Let n be a positive integer; (gX , rX), (gY , rY )
pairs of nonnegative integers such that 2gX − 2+ rX , 2gY − 2+ rY > 0;
kX , kY fields; kX , kY separable closures of kX , kY , respectively; X, Y
hyperbolic curves of type (gX , rX), (gY , rY ) over kX , kY , respectively.
Write Xn, Yn for the n-th configuration spaces of X, Y , respectively;

XkX

def
= X ×kX

kX ; YkY

def
= Y ×kY

kY ; (Xn)kX

def
= Xn ×kX

kX ; (Yn)kY

def
=

Yn ×kY
kY ; Sn for the symmetric group on n letters; AutkX

(Xn) for
the group of automorphisms of Xn over kX ;

Ψn : Sn −→ AutkX
(Xn)
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for the action of Sn on Xn over kX obtained by permuting the factors
of Xn. Suppose that (gX , rX), (gY , rY ) 6∈ {(0, 3); (1, 1)}. Then the
following hold:

(i) Let α : Xn
∼→ Yn be an isomorphism. Then there exists a

unique isomorphism α0 : kY
∼→ kX that is compatible with α

relative to the structure morphisms of Xn, Yn.

(ii) Let α : Xn
∼→ Yn be an isomorphism. Then there exist a unique

permutation σ ∈ Ψn(Sn) ⊆ AutkX
(Xn) and a unique isomor-

phism α1 : X
∼→ Y that is compatible with α ◦ σ relative to the

projections Xn → X, Yn → Y to each of the n factors.

(iii) Write Isom(Xn, Yn) for the set of isomorphisms of Xn with Yn;

Isom(X,Y )
def
= Isom(X1, Y1). Then the natural map

Isom(X,Y ) × Ψn(Sn) −→ Isom(Xn, Yn)

is bijective.

(iv) Write Isom((Xn)kX
/kX , (Yn)kY

/kY ) for the set of isomorphisms

(Xn)kX

∼→ (Yn)kY
that are compatible with some isomorphism

kY
∼→ kX ; Isom(XkX

/kX , YkY
/kY )

def
= Isom((X1)kX

/kX , (Y1)kY
/kY ).

Then the natural map

Isom(XkX
/kX , YkY

/kY ) × Ψn(Sn) −→ Isom((Xn)kX
/kX , (Yn)kY

/kY )

is bijective.

Proof. First, we verify assertion (i). Write (CX
n )log, (CY

n )log for the
n-th log configuration spaces [cf. the discussion entitled “Curves” in
[CbTpI], §0] of [the smooth log curves over kX , kY determined by] X,
Y , respectively. Then recall [cf. the discussion at the beginning of
[MzTa], §2] that (CX

n )log, (CY
n )log are log regular log schemes whose

interiors are naturally isomorphic to Xn, Yn, respectively, and that the
underlying schemes CX

n , CY
n of (CX

n )log, (CY
n )log are proper over kX ,

kY , respectively. Thus, by applying [ExtFam], Theorem A, (1), to the
composite

Xn
α→ Yn ↪→ CY

n ↪→ MgY ,rY +n

— where we refer to the discussion entitled “Curves” in [CbTpI], §0,
concerning the notation “MgY ,rY +n”; the third arrow is the natural
(1-)morphism arising from the definition of CY

n — we conclude that
the composite

Xn
α→ Yn ↪→ CY

n ↪→ MgY ,rY +n → (MgY ,rY +n)c

— where we write (MgY ,rY +n)c for the coarse moduli space associated
to MgY ,rY +n — factors through the natural open immersion Xn ↪→
CX

n . On the other hand, one verifies immediately that the composite
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CY
n ↪→ MgY ,rY +n → (MgY ,rY +n)c is proper and quasi-finite, hence fi-

nite. In particular, if we write CΓ ⊆ CX
n ×kCY

n for the scheme-theoretic

closure of the graph of the composite Xn
α→ Yn ↪→ CY

n , then the com-

posite CΓ ↪→ CX
n ×k CY

n

pr1→ CX
n is a finite morphism from an irreducible

scheme to a normal scheme which induces an isomorphism between the
respective function fields. Thus, we conclude that this composite is an
isomorphism, hence that α extends uniquely to a morphism CX

n → CY
n .

Now recall that CX
n is proper, geometrically normal, and geometrically

connected over kX . Thus, it follows immediately, by considering global
sections of the respective structure sheaves, that there exists a unique
homomorphism α0 : kY → kX that is compatible with α. Moreover, by
applying a similar argument to α−1, it follows that α0 is an isomor-
phism. This completes the proof of assertion (i).

Next, we verify assertion (ii). First, let us observe that, by replacing

Y by the result of base-changing Y via α0 : kY
∼→ kX [cf. assertion (i)],

we may assume without loss of generality that kY = kX , kY = kX ,
and that α is an isomorphism over kX . Next, let us observe that the
fact that σ and α1 as in the statement of assertion (ii) are unique is
immediate; thus, it remains to verify the existence of such σ and α1.
Next, let us observe that it follows immediately from [MzTa], Corollary
6.3, that there exists a permutation σ ∈ Ψn(Sn) such that if we identify
the respective sets of fiber subgroups of ∆Xn , ∆Yn — where we write
∆Xn , ∆Yn for the maximal pro-l quotients of the étale fundamental
groups of (Xn)kX

, (Yn)kX
, respectively, for some prime number l that

is invertible in kX — with the set 2{1,··· ,n} [cf. the discussion entitled
“Sets” in [CbTpI], §0] in the evident way, then the automorphism of

the set 2{1,··· ,n} induced by the composite β
def
= α ◦ σ is the identity

automorphism. Write prX : Xn → X, prY : Yn → Y for the projections
to the factor labeled n, respectively. Then we claim that the following
assertion holds:

Claim 2.7.A: There exists an isomorphism α1 : X
∼→ Y

that is compatible with β relative to prX , prY .

Indeed, write Γ ⊆ X ×kX
Y for the scheme-theoretic image via Xn ×kX

Y
(prX ,idY )−→ X ×kX

Y of the graph of the composite Xn
β→ Yn

prY→ Y .
Next, let us observe that if Z is an irreducible scheme of finite type
over kX , then any nonconstant [i.e., dominant] kX-morphism Z → YkX

induces an open homomorphism between the respective fundamental
groups. Thus, since the automorphism of the set 2{1,··· ,n} induced by
β is the identity automorphism, it follows immediately that, for any
kX-valued geometric point x of X, if we write F for the geometric

fiber of prX : Xn → X at x, then the composite F → (Xn)kX

βkX→

(Yn)kX

(prY )kX→ YkX
is constant. In particular, one verifies immediately
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that Γ is an integral, separated scheme of dimension 1. Thus, since
prX is surjective, geometrically connected, smooth, and factors through

the composite Γ ↪→ X ×kX
Y

pr1→ X, it follows immediately that this
composite morphism Γ → X is surjective and induces an isomorphism
between the respective function fields. Therefore, one concludes easily,
by applying Zariski’s main theorem, that the composite Γ ↪→ X ×kX

Y
pr1→ X is an isomorphism, hence that there exists a unique morphism

α1 : X → Y such that prY ◦ β = α1 ◦ prX . Moreover, by applying a
similar argument to β−1, it follows that α1 is an isomorphism. This
completes the proof of Claim 2.7.A.

Write γ for the composite of β with the isomorphism Yn
∼→ Xn de-

termined by α−1
1 . Then it is immediate that γ is an automorphism

of Xn over X relative to prX ; in particular, the outomorphism of
∆Xn induced by γ is contained in the kernel of the homomorphism
OutF(∆Xn) → OutF(∆X) — where we write ∆X for the maximal pro-l
quotient of the étale fundamental group of XkX

— induced by prX .
Now, by applying a similar argument to the argument of the proof of
Claim 2.7.A, one verifies easily that, for each i ∈ {1, · · · , n}, there ex-
ists an automorphism γ1,i of X that is compatible with γ relative to the
projection Xn → X to the factor labeled i. [Thus, γ1,n = idX .] More-
over, since, by applying induction on n, we may assume that assertion
(ii) has already been verified for n − 1, it follows immediately that
the outomorphism of ∆Xn induced by γ is contained in OutFC(∆Xn),
hence in the kernel of the homomorphism OutFC(∆Xn) → OutFC(∆X)
induced by the projections Xn → X to each of the n factors [cf.
[CmbCsp], Proposition 1.2, (iii)]. Therefore, it follows immediately
from the argument of the first paragraph of the proof of [LocAn], The-
orem 14.1, that, for each i ∈ {1, · · · , n}, γ1,i is the identity automor-
phism of X, hence also that γ is the identity automorphism of Xn. This
completes the proof of assertion (ii).

Assertions (iii), (iv) follow immediately from assertion (ii), together
with the various definitions involved. This completes the proof of
Lemma 2.7. ¤
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3. Synchronization of tripods

In the present §3, we introduce and study the notion of a tripod of
the log fundamental group of the log configuration space of a stable
log curve [cf. Definition 3.3, (i), below]. In particular, we discuss the
phenomenon of synchronization among the various tripods of the log
fundamental group [cf. Theorems 3.17; 3.18, below]. One interesting
consequence of this phenomenon of tripod synchronization is a certain
non-surjectivity result [cf. Corollary 3.22 below]. Finally, we apply
the theory of synchronization of tripods to show that, under certain
conditions, commuting profinite Dehn multi-twists are “co-Dehn” [cf.
Corollary 3.25 below] and to compute the commensurator of certain
purely combinatorial/group-theoretic groups of profinite Dehn multi-
twists in terms of scheme theory [cf. Corollary 3.27 below].

In the present §3, let (g, r) be a pair of nonnegative integers such
that 2g − 2 + r > 0; n a positive integer; Σ a set of prime numbers
which is either the set of all prime numbers or of cardinality one; k
an algebraically closed field of characteristic 6∈ Σ; (Spec k)log the log
scheme obtained by equipping Spec k with the log structure determined
by the fs chart N → k that maps 1 7→ 0; X log = X log

1 a stable log
curve of type (g, r) over (Spec k)log. For each [possibly empty] subset
E ⊆ {1, · · · , n}, write

X log
E

for the E]-th log configuration space of the stable log curve X log [cf.
the discussion entitled “Curves” in [CbTpI], §0] whose factors we think
as being labeled by the elements of E ⊆ {1, · · · , n};

ΠE

for the maximal pro-Σ quotient of the kernel of the natural surjection
π1(X

log
E ) ³ π1((Spec k)log). Thus, by applying a suitable specializa-

tion isomorphism — cf. the discussion preceding [CmbCsp], Definition
2.1, as well as [CbTpI], Remark 5.6.1 — one verifies easily that ΠE is
equipped with a natural structure of pro-Σ configuration space group
— cf. [MzTa], Definition 2.3, (i). For each 1 ≤ m ≤ n, write

X log
m

def
= X log

{1,··· ,m} ; Πm
def
= Π{1,··· ,m} .

Thus, for subsets E′ ⊆ E ⊆ {1, · · · , n}, we have a projection

plog
E/E′ : X log

E → X log
E′

obtained by forgetting the factors that belong to E \E ′. For 1 ≤ m′ ≤
m ≤ n, we shall write

pΠ
E/E′ : ΠE ³ ΠE′

for the surjection induced by plog
E/E′ ;

ΠE/E′
def
= Ker(pΠ

E/E′) ⊆ ΠE ;
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plog
m/m′

def
= plog

{1,··· ,m}/{1,··· ,m′} : X log
m −→ X log

m′ ;

pΠ
m/m′

def
= pΠ

{1,··· ,m}/{1,··· ,m′} : Πm ³ Πm′ ;

Πm/m′
def
= Π{1,··· ,m}/{1,··· ,m′} ⊆ Πm .

Definition 3.1. Let i ∈ E ⊆ {1, · · · , n}; x ∈ Xn(k) a k-valued geo-
metric point of the underlying scheme Xn of X log

n .

(i) Let E′ ⊆ {1, · · · , n} be a subset. Then we shall write xE′ ∈
XE′(k) for the k-valued geometric point of XE′ obtained by
forming the image of x ∈ Xn(k) via p{1,··· ,n}/E′ : Xn → XE′ ;

xlog
E′

def
= xE′ ×XE′ X log

E′ .

(ii) We shall write

G
for the semi-graph of anabelioids of pro-Σ PSC-type deter-
mined by the stable log curve X log over (Spec k)log [cf. [CmbGC],
Example 2.5];

G
for the underlying semi-graph of G;

ΠG

for the [pro-Σ] fundamental group of G. Thus, we have a nat-
ural outer isomorphism

Π1
∼−→ ΠG .

(iii) We shall write

Gi∈E,x

for the semi-graph of anabelioids of pro-Σ PSC-type deter-
mined by the geometric fiber of the projection plog

E/(E\{i}) : X log
E →

X log
E\{i} over xlog

E\{i} → X log
E\{i} [cf. (i)];

ΠGi∈E,x

for the [pro-Σ] fundamental group of Gi∈E,x. Thus, we have a
natural identification

G = Gi∈{i},x

and a natural ΠE-orbit [i.e., relative to composition with au-
tomorphisms induced by conjugation by elements of ΠE] of
isomorphisms

(ΠE ⊇) ΠE/(E\{i})
∼−→ ΠGi∈E,x

.
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For the remainder of the present §3, let us fix an outer isomor-
phism

ΠE/(E\{i})
∼−→ ΠGi∈E,x

whose constituent isomorphisms belong to the ΠE-orbit of iso-
morphisms just discussed.

(iv) Let v ∈ Vert(Gi∈E,x) (respectively, e ∈ Cusp(Gi∈E,x); e ∈
Node(Gi∈E,x); e ∈ Edge(Gi∈E,x); z ∈ VCN(Gi∈E,x)). Then we
shall refer to the image [in ΠE] of a verticial (respectively, a
cuspidal; a nodal; an edge-like; a VCN-) subgroup of ΠGi∈E,x

associated to v ∈ Vert(Gi∈E,x) (respectively, e ∈ Cusp(Gi∈E,x);
e ∈ Node(Gi∈E,x); e ∈ Edge(Gi∈E,x); z ∈ VCN(Gi∈E,x)) via the

inverse ΠGi∈E,x

∼→ ΠE/(E\{i}) ⊆ ΠE of any isomorphism that
lifts the fixed outer isomorphism discussed in (iii) as a verti-
cial (respectively, a cuspidal; a nodal; an edge-like; a VCN-)
subgroup of ΠE associated to v ∈ Vert(Gi∈E,x) (respectively,
e ∈ Cusp(Gi∈E,x); e ∈ Node(Gi∈E,x); e ∈ Edge(Gi∈E,x); z ∈
VCN(Gi∈E,x)). Thus, the notion of a verticial (respectively, a
cuspidal; a nodal; an edge-like; a VCN-) subgroup of ΠE as-
sociated to v ∈ Vert(Gi∈E,x) (respectively, e ∈ Cusp(Gi∈E,x);
e ∈ Node(Gi∈E,x); e ∈ Edge(Gi∈E,x); z ∈ VCN(Gi∈E,x)) de-
pends on the choice of the fixed outer isomorphism of (iii) [but
cf. Lemma 3.2, (i), below, in the case of cusps!].

(v) We shall say that a vertex v ∈ Vert(Gi∈E,x) of Gi∈E,x is a(n)
[E-]tripod of X log

n if v is of type (0, 3) [cf. [CbTpI], Definition
2.3, (iii)]. If, in this situation, C(v) 6= ∅, then we shall say that
the tripod v is cusp-supporting.

(vi) We shall say that a cusp c ∈ Cusp(Gi∈E,x) of Gi∈E,x is diagonal
if c does not arise from a cusp of the copy of X log given by the
factor of X log

E labeled i ∈ E.

Lemma 3.2 (Cusps of various fibers). Let i ∈ E ⊆ {1, · · · , n};
x ∈ Xn(k). Then the following hold:

(i) Let c ∈ Cusp(Gi∈E,x) and Πc ⊆ ΠGi∈E,x

∼← ΠE/(E\{i}) a cuspi-

dal subgroup of ΠGi∈E,x

∼← ΠE associated to c ∈ Cusp(Gi∈E,x).
Then any ΠE-conjugate of Πc is, in fact, a ΠE/(E\{i})-conju-
gate of Πc.

(ii) Each diagonal cusp of Gi∈E,x [cf. Definition 3.1, (vi)] admits
a natural label ∈ E \ {i}. More precisely, for each j ∈ E \ {i},
there exists a unique diagonal cusp of Gi∈E,x that arises
from the divisor of the fiber product over k of E] copies of X
consisting of the points whose i-th and j-th factors coincide.
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(iii) Let α ∈ AutF(Πn) [cf. [CmbCsp], Definition 1.1, (ii)]. Sup-
pose that either E 6= {1, · · · , n} or n ≥ nFC [cf. Theorem 2.3,

(ii)]. Then the outomorphism of ΠGi∈E,x

∼← ΠE/(E\{i}) deter-
mined by α is group-theoretically cuspidal [cf. [CmbGC],
Definition 1.4, (iv)].

(iv) Let α ∈ AutF(Πn) and c ∈ Cusp(Gi∈E,x) a diagonal cusp of

Gi∈E,x. Suppose that the outomorphism of ΠGi∈E,x

∼← ΠE/(E\{i})
determined by α is group-theoretically cuspidal. Then
this outomorphism preserves the ΠGi∈E,x

-conjugacy class of

cuspidal subgroups of ΠGi∈E,x

∼← ΠE/(E\{i}) associated to c ∈
Cusp(Gi∈E,x).

Proof. Assertion (i) follows immediately from the [easily verified] fact
that the restriction of pΠ

E/(E\{i}) : ΠE ³ ΠE\{i} to the normalizer of Πc

in ΠE is surjective. Assertion (ii) follows immediately from the various
definitions involved. Next, we verify assertion (iii). If E 6= {1, · · · , n}
(respectively, n ≥ nFC), then assertion (iii) follows immediately from
[CbTpI], Theorem A, (ii) (respectively, Theorem 2.3, (ii), of the present
paper), together with assertion (i). This completes the proof of asser-
tion (iii). Finally, assertion (iv) follows immediately from the definition
of F-admissibility [cf. also assertion (ii)]. This completes the proof of
Lemma 3.2. ¤

Definition 3.3. Let E ⊆ {1, · · · , n}.

(i) We shall say that a closed subgroup H ⊆ ΠE of ΠE is a(n)
[E-]tripod of Πn if H is a verticial subgroup of ΠE [cf. Def-
inition 3.1, (iv)] associated to a(n) [E-]tripod v of X log

n [cf.
Definition 3.1, (v)]. If, in this situation, the tripod v is cusp-
supporting [cf. Definition 3.1, (v)], then we shall say that the
tripod H is cusp-supporting.

(ii) We shall say that an E-tripod of Πn [cf. (i)] is trigonal if, for
every j ∈ E, the image of the tripod via pΠ

E/{j} : ΠE ³ Π{j} is
trivial.

(iii) Let T ⊆ ΠE be an E-tripod of Πn [cf. (i)] and E ′ ⊆ E. Then
we shall say that T is E ′-strict if the image pΠ

E/E′(T ) ⊆ ΠE′ of

T via pΠ
E/E′ : ΠE ³ ΠE′ is an E ′-tripod of Πn, and, moreover,

for every E ′′ ( E ′, the image of the E′-tripod pΠ
E/E′(T ) via

pΠ
E′/E′′ : ΠE′ ³ ΠE′′ is not a tripod of Πn.

(iv) Let h be a positive integer. Then we shall say that an E-
tripod T of Πn [cf. (i)] is h-descendable if there exists a subset
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E ′ ⊆ E such that the image of T via pΠ
E/E′ : ΠE ³ ΠE′ is an E ′-

tripod of Πn, and, moreover, (E ′)] ≤ n−h. [Thus, one verifies
immediately that an E-tripod T ⊆ ΠE of Πn is 1-descendable
if and only if either E 6= {1, · · · , n} or T fails to be E-strict
— cf. (iii).]

Remark 3.3.1. In the notation of Definition 3.1, let v ∈ Vert(Gi∈E,x)
be an E-tripod of X log

n [cf. Definition 3.1, (v)]. Write T ⊆ ΠE for the E-
tripod of Πn associated to v [cf. Definition 3.3, (i)]; Fv for the irreducible
component of the geometric fiber of pE/(E\{i}) : XE → XE\{i} at xE\{i}
corresponding to v; F log

v for the log scheme obtained by equipping Fv

with the log structure induced by the log structure of X log
E ; nv for the

rank of the group-characteristic of F log
v [cf. [MzTa], Definition 5.1, (i)]

at the generic point of Fv. Then it is immediate that the nv-interior
Uv ⊆ Fv of F log

v [cf. [MzTa], Definition 5.1, (i)] is a nonempty open
subset of Fv which is isomorphic to P1

k \ {0, 1,∞} over k. Moreover,
one verifies easily that if we write U log

v for the log scheme obtained by

equipping Uv with the log structure induced by the log structure of X log
E ,

then the natural morphism U log
v → Uv [obtained by forgetting the log

structure of U log
v ] determines a natural outer isomorphism T

∼→ πΣ
1 (Uv)

— where we write “πΣ
1 (−)” for the maximal pro-Σ quotient of the étale

fundamental group of “(−)”. In particular, we obtain a natural outer
isomorphism

T
∼−→ πΣ

1 (P1
k \ {0, 1,∞})

that is well-defined up to composition with an outomorphism of πΣ
1 (P1

k\
{0, 1,∞}) that arises from an automorphism of P1

k \ {0, 1,∞} over k.

Definition 3.4. Let E ⊆ {1, · · · , n}.

(i) Let T ⊆ ΠE be an E-tripod of Πn [cf. Definition 3.3, (i)].
Then T may be regarded as the “Π1” that occurs in the case
where we take “X log” to be the smooth log curve associated to
P1

k \ {0, 1,∞} [cf. Remark 3.3.1]. We shall write

OutC(T ) ⊆ Out(T )

for the [closed] subgroup of Out(T ) consisting of C-admissible
outomorphisms of T [cf. [CmbCsp], Definition 1.1, (ii)];

OutC(T )cusp ⊆ OutC(T )

for the [closed] subgroup of Out(T ) consisting of C-admissible
outomorphisms of T that induce the identity automorphism of
the set of T -conjugacy classes of cuspidal inertia subgroups;

Out(T )∆ ⊆ Out(T )
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for the centralizer of the subgroup [' S3, where we write S3

for the symmetric group on 3 letters] of Out(T ) consisting of
the outer modular symmetries [cf. [CmbCsp], Definition 1.1,
(vi)];

Out(T )+ ⊆ Out(T )

for the [closed] subgroup of Out(T ) given by the image of the
natural homomorphism OutF(T2) = OutFC(T2) → Out(T ) [cf.
Theorem 2.3, (ii); [CmbCsp], Proposition 1.2, (iii)] — where
we write T2 for the “Π2” that occurs in the case where we take
“X log” to be the smooth log curve associated to P1

k \{0, 1,∞};

OutC(T )∆ def
= OutC(T ) ∩ Out(T )∆ ;

OutC(T )∆+ def
= OutC(T )∆ ∩ Out(T )+

[cf. [CmbCsp], Definition 1.11, (i)].

(ii) Let E′ ⊆ {1, · · · , n}; let T ⊆ ΠE, T ′ ⊆ ΠE′ be E-, E′-tripods of
Πn [cf. Definition 3.3, (i)], respectively. Then we shall say that

an outer isomorphism α : T
∼→ T ′ is geometric if the composite

πΣ
1 (P1

k \ {0, 1,∞}) ∼←− T
α
∼−→ T ′ ∼−→ πΣ

1 (P1
k \ {0, 1,∞})

— where the first and third arrows are natural outer isomor-
phisms of the sort discussed in Remark 3.3.1 — arises from an
automorphism of P1

k \ {0, 1,∞} over k.

Remark 3.4.1. In the notation of Definition 3.4, (ii), one verifies easily

that every geometric outer isomorphism α : T
∼→ T ′ preserves cuspidal

inertia subgroups and outer modular symmetries [cf. [CmbCsp], Defi-

nition 1.1, (vi)], and, moreover, lifts to an outer isomorphism T2
∼→ T ′

2

[i.e., of the corresponding “Π2’s”] that arises from an isomorphism of
two-dimensional configuration spaces. In particular, the isomorphism
Out(T )

∼→ Out(T ′) induced by α determines isomorphisms

OutC(T )
∼−→ OutC(T ′) , OutC(T )cusp ∼−→ OutC(T ′)cusp ,

Out(T )∆ ∼−→ Out(T ′)∆ , Out(T )+ ∼−→ Out(T ′)+

[cf. Definition 3.4, (i)].

Lemma 3.5 (Triviality of the action on the set of cusps). In the
notation of Definition 3.4, it holds that OutC(T )∆ ⊆ OutC(T )cusp.

Proof. This follows immediately from the [easily verified] fact that S3

is center-free, together with the various definitions involved. ¤
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Lemma 3.6 (Vertices, cusps, and nodes of various fibers). Let i,
j ∈ E be two distinct elements of a subset E ⊆ {1, · · · , n}; x ∈ Xn(k).
Write zi,j,x ∈ VCN(Gj∈E\{i},x) for the element of VCN(Gj∈E\{i},x) on
which xE\{i} lies, that is to say: If xE\{i} is a cusp or node of the geo-

metric fiber of the projection plog
(E\{i})/(E\{i,j}) : X log

E\{i} → X log
E\{i,j} over

xlog
E\{i,j} corresponding to an edge e ∈ Edge(Gj∈E\{i},x), then zi,j,x

def
= e;

if xE\{i} is neither a cusp nor a node of the geometric fiber of the pro-

jection plog
(E\{i})/(E\{i,j}) : X log

E\{i} → X log
E\{i,j} over xlog

E\{i,j}, but lies on the

irreducible component of the geometric fiber corresponding to a vertex

v ∈ Vert(Gj∈E\{i},x), then zi,j,x
def
= v. Then the following hold:

(i) The automorphism of X log
E determined by permuting the factors

labeled i, j induces natural bijections

Vert(Gj∈E\{i},x)
∼−→ Vert(Gi∈E\{j},x) ;

Cusp(Gj∈E\{i},x)
∼−→ Cusp(Gi∈E\{j},x) ;

Node(Gj∈E\{i},x)
∼−→ Node(Gi∈E\{j},x) .

(ii) Let us write

cdiag
i,j,x ∈ Cusp(Gi∈E,x)

for the diagonal cusp of Gi∈E,x [cf. Definition 3.1, (vi)] la-

beled j ∈ E\{i} [cf. Lemma 3.2, (ii)]. Then plog
E/(E\{j}) : X log

E →
X log

E\{j} induces a bijection

Cusp(Gi∈E,x) \ {cdiag
i,j,x}

∼−→ Cusp(Gi∈E\{j},x) .

(iii) Suppose that zi,j,x ∈ Vert(Gj∈E\{i},x). Then plog
E/(E\{j}) : X log

E →
X log

E\{j} induces a bijection

Vert(Gi∈E,x)
∼→ Vert(Gi∈E\{j},x) .

(iv) Suppose that zi,j,x ∈ Edge(Gj∈E\{i},x). Then there exists a
unique vertex

vnew
i,j,x ∈ Vert(Gi∈E,x)

such that plog
E/(E\{j}) : X log

E → X log
E\{j} induces a bijection

Vert(Gi∈E,x) \ {vnew
i,j,x}

∼→ Vert(Gi∈E\{j},x) .

Moreover, vnew
i,j,x is of type (0, 3) [i.e., vnew

i,j,x is an E-tripod

of X log
n — cf. Definition 3.1, (v)], and cdiag

i,j,x ∈ C(vnew
i,j,x) [cf.

(ii)]. Finally, any verticial subgroup of ΠE associated to vnew
i,j,x

surjects, via pΠ
E/(E\{j}), onto an edge-like subgroup of ΠE\{j}
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associated to the edge ∈ Edge(Gi∈E\{j},x) determined by zi,j,x ∈
Edge(Gj∈E\{i},x) via the bijections of (i).

(v) Suppose that E] = 3. Write h ∈ E \ {i, j} for the unique

element of E \ {i, j}. Suppose, moreover, that zi,j,x = cdiag
j,h,x ∈

Cusp(Gj∈E\{i},x) [cf. (ii)]. Then the ΠE-conjugacy class of
a verticial subgroup of ΠE associated to the vertex vnew

i,j,x ∈
Vert(Gi∈E,x) [cf. (iv)] does not depend on the choice of the
triple (i, j, x). Moreover, this ΠE-conjugacy class may also be
characterized uniquely as the ΠE-conjugacy class of subgroups
of ΠE associated to some trigonal E-tripod of Πn [cf. Defi-
nition 3.3, (ii)].

Proof. First, we verify assertions (i), (ii), (iii), and (iv). To verify as-

sertions (i), (ii), (iii), and (iv) — by replacing X log
E by the base-change

of plog
E\{i,j} : X log

E → X log
E\{i,j} via a suitable morphism of log schemes

(Spec k)log → X log
E\{i,j} whose image lies on xE\{i,j} ∈ XE\{i,j}(k) [cf.

Definition 3.1, (i)] — we may assume without loss of generality that
E] = 2. Then one verifies easily from the various definitions involved
that assertions (i), (ii), (iii), and (iv) hold. This completes the proof
of assertions (i), (ii), (iii), and (iv). Finally, we consider assertion (v).
First, we observe the easily verified fact [cf. assertions (iii), (iv)] that
the irreducible component corresponding to an E-tripod of X log

n [cf.
Definition 3.1, (v)] that gives rise to a trigonal E-tripod of Πn neces-
sarily collapses to a point upon projection to XE′ for any E ′ ⊆ E of
cardinality ≤ 2. In light of this observation, it follows immediately [cf.
assertions (i), (ii), (iii), (iv)] that any E-tripod of X log

n that gives rise to
a trigonal E-tripod of Πn arises as a vertex “vnew

i,j,x” as described in the
statement of assertion (v). Now the remainder of assertion (v) follows
immediately from the various definitions involved [cf. also the situa-
tion discussed in [CmbCsp], Definition 1.8, Proposition 1.9, Corollary
1.10, as well as the discussion, concerning specialization isomorphisms,
preceding [CmbCsp], Definition 2.1; [CbTpI], Remark 5.6.1]. This com-
pletes the proof of Lemma 3.6. ¤

Definition 3.7. Let E ⊆ {1, · · · , n}.

(i) Let v be an E-tripod of X log
n [cf. Definition 3.1, (v)]; thus, v

belongs to Vert(Gi∈E,x) for some choice of i ∈ E and x ∈ Xn(k).
Let j ∈ E \ {i} and e ∈ Edge(Gj∈E\{i},x). Then we shall say
that v, or equivalently, an E-tripod of Πn associated to v [cf.
Definition 3.3, (i)], arises from e if e = zi,j,x [cf. the statement
of Lemma 3.6], and v = vnew

i,j,x [cf. Lemma 3.6, (iv)].
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(ii) We shall say that an E-tripod of Πn is central if E] = 3, and,
moreover, the tripod is a verticial subgroup of the sort dis-
cussed in Lemma 3.6, (v), i.e., the unique, up to ΠE-conjugacy,
trigonal E-tripod of Πn.

Lemma 3.8 (Strict tripods). Let E ⊆ {1, · · · , n} and T ⊆ ΠE an
E-tripod of Πn [cf. Definition 3.3, (i)]. Then the following hold:

(i) There exists a [not necessarily unique!] subset E ′ ⊆ E such
that T is E′-strict [cf. Definition 3.3, (iii)]. Moreover, in this

situation, pΠ
E/E′ : ΠE ³ ΠE′ induces an isomorphism T

∼→
TE′ onto an E ′-tripod TE′ of Πn.

(ii) T is E-strict if and only if one of the following conditions is
satisfied:

(1) E] = 1.

(2C) E] = 2; T ⊆ ΠE is a verticial subgroup of ΠE associated
to the vertex vnew

i,j,x ∈ Vert(Gi∈E,x) of Lemma 3.6, (iv), for
some choice of (i, j, x) such that zi,j,x ∈ Cusp(Gj∈E\{i},x).
[In particular, T arises from zi,j,x ∈ Cusp(Gj∈E\{i},x) —
cf. Definition 3.7, (i).]

(2N) E] = 2; T ⊆ ΠE is a verticial subgroup of ΠE associated
to the vertex vnew

i,j,x ∈ Vert(Gi∈E,x) of Lemma 3.6, (iv), for
some choice of (i, j, x) such that zi,j,x ∈ Node(Gj∈E\{i},x).
[In particular, T arises from zi,j,x ∈ Node(Gj∈E\{i},x) —
cf. Definition 3.7, (i).]

(3) E] = 3, and T is central [cf. Definition 3.7, (ii)].

(iii) Suppose that T is trigonal [cf. Definition 3.3, (ii)]. Then
there exists a [not necessarily unique!] subset E ′ ⊆ E such
that (E ′)] = 3, and, moreover, the image of T ⊆ ΠE via
pΠ

E/E′ : ΠE ³ ΠE′ is a central tripod.

Proof. Assertion (i) follows immediately from the various definitions
involved by applying induction on E], together with the well-known
elementary fact that any surjective endomorphism of a topologically
finitely generated profinite group is necessarily bijective. Next, we ver-
ify assertion (ii). First, let us observe that sufficiency is immediate.
Thus, it remains to verify necessity. Suppose that T is E-strict. Let
i ∈ E; x ∈ Xn(k); v ∈ Vert(Gi∈E,x) a vertex of type (0, 3) such that
T is a verticial subgroup of ΠE associated to v. [Thus, we have an
inclusion T ⊆ ΠE/(E\{i}) ⊆ ΠE — cf. Definition 3.1, (iv).] Now one
verifies easily that if there exists a diagonal cusp c ∈ Cusp(Gi∈E,x) [cf.
Definition 3.1, (vi)] such that c 6∈ C(v), then it follows immediately
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that there exists an element j ∈ E \{i} such that the image of T ⊆ ΠE

via pΠ
E/(E\{j}) : ΠE ³ ΠE\{j} is an (E \{j})-tripod [cf. also Lemma 3.2,

(ii); Lemma 3.6, (iii), (iv)]. Thus, since T is E-strict, we conclude
that every cusp of Gi∈E,x that is 6∈ C(v) is non-diagonal. In particular,
since v is of type (0, 3), it follows immediately from Lemma 3.2, (ii),
that 0 ≤ E] − 1 ≤ C(v)] ≤ 3. If C(v)] = 0, then it follows from the
inequality E] − 1 ≤ C(v)] that E] = 1, i.e., condition (1) is satisfied.
If C(v)] = 3, then one verifies easily that E] = 1, i.e., condition (1)
is satisfied. Thus, it remains to verify assertion (ii) in the case where
C(v)] ∈ {1, 2}.

Suppose that C(v)] = 1 and E] 6= 1. Then it follows immediately
from the inequality E] − 1 ≤ C(v)] that E] = 2. Now let us recall
[cf. Lemma 3.2, (ii)] that the number of the diagonal cusps of Gi∈E,x is
= E] − 1 = 1. Moreover, the unique cusp on v is the unique diagonal
cusp of Gi∈E,x [cf. the argument of the preceding paragraph]. Thus,
one verifies easily that T satisfies condition (2N). Next, suppose that
C(v)] = 2 and E] 6= 1. Then it follows immediately from the inequality
E] − 1 ≤ C(v)] that E] ∈ {2, 3}. Now let us recall [cf. Lemma 3.2, (ii)]
that if E] = 2 (respectively, E] = 3), then the number of the diagonal
cusps of Gi∈E,x is = E] − 1, i.e., 1 (respectively, 2). Moreover, the set
of diagonal cusp(s) of Gi∈E,x is contained in (respectively, is equal to)
C(v) [cf. the argument of the preceding paragraph]. Thus, one verifies
easily that T satisfies condition (2C) (respectively, (3)). This completes
the proof of assertion (ii).

Finally, we verify assertion (iii). It follows from assertion (i) that
there exists a subset E ′ ⊆ E such that T is E′-strict. Moreover, it
follows immediately from the definition of a trigonal tripod that the
E ′-tripod given by the image pΠ

E/E′(T ) ⊆ ΠE′ is trigonal. On the

other hand, if the E′-tripod pΠ
E/E′(T ) satisfies any of the conditions

(1), (2C), (2N) of assertion (ii), then one verifies easily that pΠ
E/E′(T ) is

not trigonal [cf. the final portion of Lemma 3.6, (iv)]. Thus, pΠ
E/E′(T )

satisfies condition (3) of assertion (ii); in particular, pΠ
E/E′(T ) is central.

This completes the proof of assertion (iii). ¤

Lemma 3.9 (Generalities on normalizers and commensura-
tors). Let G be a profinite group, N ⊆ G a normal closed subgroup
of G, and H ⊆ G a closed subgroup of G. Then the following hold:

(i) It holds that CG(H) ⊆ CG(H ∩ N).

(ii) It holds that CG(H) ⊆ NG(Z loc
G (H)) [cf. the discussion entitled

“Topological groups” in §0].
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(iii) Suppose that H ⊆ N . Then it holds that CG(H) ⊆ NG(CN(H)).
In particular, if, moreover, H is commensurably terminal
in N , then it holds that CG(H) = NG(H).

(iv) Write H
def
= H/(H ∩ N) ⊆ G

def
= G/N . If H ∩ N is commen-

surably terminal in N , and the image of CG(H) ⊆ G in G
is contained in NG(H), then CG(H) = NG(H).

Proof. Assertion (i) follows immediately from the various definitions
involved. Next, we verify assertion (ii). Let g ∈ CG(H) and a ∈
Z loc

G (H). Since Z loc
G (H) = Z loc

G (H ∩ (g−1 · H · g)) = Z loc
G (g−1 · H · g),

there exists an open subgroup U ⊆ H of H such that a ∈ ZG(g−1 ·U ·g).
But this implies that gag−1 ∈ ZG(U) ⊆ Z loc

G (H). This completes the
proof of assertion (ii). Next, we verify assertion (iii). Let g ∈ CG(H)
and a ∈ CN(H). Since CN(H) ⊆ CG(H) = CG(H ∩ (g−1 · H · g)) =
CG(g−1 · H · g), we conclude that ag−1 · H · ga−1 is commensurate
with g−1 · H · g. In particular, gag−1 · H · ga−1g−1 is commensurate
with H, i.e., gag−1 ∈ CG(H) ∩ N = CN(H). This completes the
proof of assertion (iii). Finally, we verify assertion (iv). First, we
observe that since H ∩N is commensurably terminal in N , one verifies
easily that H = NH·N(H ∩ N). Let g ∈ CG(H). Then since the
image of CG(H) ⊆ G in G is contained in NG(H), it is immediate that
g ·H · g−1 ⊆ H ·N . On the other hand, again by applying the fact that
H ∩N is commensurably terminal in N , we conclude immediately from
assertions (i), (iii), that CG(H) ⊆ CG(H ∩ N) = NG(H ∩ N). Thus,
we obtain that (g · H · g−1) ∩ N = H ∩ N ; in particular, g · H · g−1 ⊆
NH·N((g · H · g−1) ∩ N) = NH·N(H ∩ N) = H, i.e., g ∈ NG(H). This
completes the proof of assertion (iv). ¤

Lemma 3.10 (Restrictions of outomorphisms). Let G be a profi-
nite group, H ⊆ G a closed subgroup of G. Write OutH(G) ⊆ Out(G)
for the group of outomorphisms of G that preserve the G-conjugacy
class of H. Suppose that the homomorphism NG(H) → Aut(H) de-
termined by conjugation factors through Inn(H) ⊆ Aut(H). Then the
following hold:

(i) For α ∈ OutH(G), let us write α|H for the outomorphism of H
determined by the restriction to H ⊆ G of a lifting α̃ ∈ Aut(G)
of α such that α̃(H) = H. Then α|H does not depend on the
choice of the lifting “α̃”, and the map

OutH(G) −→ Out(H)

given by assigning α 7→ α|H is a group homomorphism.

(ii) The homomorphism

OutH(G) −→ Out(H)
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of (i) depends only on the G-conjugacy class of the closed

subgroup H ⊆ G, i.e., if we write Hγ def
= γ · H · γ−1 for γ ∈ G,

then the diagram

OutH(G) −−−→ Out(H)∥∥∥ y
OutHγ

(G) −−−→ Out(Hγ)

— where the upper (respectively, lower) horizontal arrow is
the homomorphism given by mapping α 7→ α|H (respectively,
α 7→ α|Hγ), and the right-hand vertical arrow is the isomor-

phism obtained by conjugation via the isomorphism H
∼→ Hγ

determined by conjugation by γ ∈ G — commutes.

Proof. Assertion (i) follows immediately from our assumption that the
homomorphism NG(H) → Aut(H) determined by conjugation factors
through Inn(H) ⊆ Aut(H), together with the various definitions in-
volved. Assertion (ii) follows immediately from the various definitions
involved. This completes the proof of Lemma 3.10. ¤

Lemma 3.11 (Commensurator of a tripod arising from an
edge). In the notation of Lemma 3.6, suppose that (j, i) = (1, 2);
E = {i, j}; zi,j,x ∈ Edge(Gj∈E\{i},x). [Thus, Gj∈E\{i},x = Gi∈E\{j},x = G;

Π2 = ΠE; Π1 = Π{j}
∼→ ΠGj∈E\{i},x

= ΠG; Π2/1 = ΠE/(E\{i})
∼→ ΠGi∈E,x

.]

Write G2/1
def
= Gi∈E,x; G1\2

def
= Gj∈E,x; pΠ

1\2
def
= pΠ

E/{2} : Π2 ³ Π{2};

Π1\2
def
= Ker(pΠ

1\2) = ΠE/{2}
∼→ ΠG1\2; zx

def
= zi,j,x ∈ Edge(G); cdiag def

=

cdiag
i,j,x ∈ Cusp(G2/1) [cf. Lemma 3.6, (ii)]; vnew def

= vnew
i,j,x ∈ Vert(G2/1)

[cf. Lemma 3.6, (iv)]. Let Πzx ⊆ Π1 be an edge-like subgroup as-
sociated to zx ∈ Edge(G); Πvnew ⊆ Π2/1 a verticial subgroup asso-
ciated to vnew; Πcdiag ⊆ Π2/1 a cuspidal subgroup associated to cdiag

that is contained in Πvnew [cf. Lemma 3.6, (iv)]. Write Π2|zx

def
=

Π2 ×Π1 Πzx ⊆ Π2; Dcdiag
def
= NΠ2(Πcdiag); Ivnew |zx

def
= ZΠ2|zx

(Πvnew) ⊆
Dvnew |zx

def
= NΠ2|zx

(Πvnew). Then the following hold:

(i) It holds that Dcdiag ∩Π2/1 = Dcdiag ∩Π1\2 = CΠ2(Πcdiag)∩Π2/1 =
CΠ2(Πcdiag) ∩ Π1\2 = Πcdiag .

(ii) It holds that CΠ2(Πcdiag) = Dcdiag .

(iii) The surjections pΠ
2/1 : Π2 ³ Π1, pΠ

1\2 : Π2 ³ Π{2} determine

isomorphisms Dcdiag/Πcdiag
∼→ Π1, Dcdiag/Πcdiag

∼→ Π{2}, re-
spectively, such that the resulting composite outer isomorphism
Π1

∼→ Π{2} is the identity outer isomorphism.
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(iv) The natural inclusions Πvnew , Ivnew |zx ↪→ Dvnew |zx determine an

isomorphism Πvnew × Ivnew |zx

∼→ Dvnew |zx = CΠ2|zx
(Πvnew).

(v) It holds that CΠ2(Dvnew |zx) ⊆ CΠ2(Πvnew).

(vi) Dvnew |zx is commensurably terminal in Π2.

(vii) It holds that ZΠ2(Πvnew) = Z loc
Π2

(Πvnew) = Ivnew |zx.

(viii) CΠ2(Πvnew) = Dvnew |zx = Πvnew × ZΠ2(Πvnew).

Proof. First, we verify assertion (i). Now it is immediate that we have
inclusions Πcdiag ⊆ Dcdiag ⊆ CΠ2(Πcdiag). In particular, since Πcdiag is
commensurably terminal in Π2/1 and Π1\2 [cf. [CmbGC], Proposition
1.2, (ii)], we obtain that Πcdiag ⊆ Dcdiag ∩ Π2/1 ⊆ CΠ2(Πcdiag) ∩ Π2/1 =
CΠ2/1

(Πcdiag) = Πcdiag ; Πcdiag ⊆ Dcdiag ∩ Π1\2 ⊆ CΠ2(Πcdiag) ∩ Π1\2 =

CΠ1\2(Πcdiag) = Πcdiag . This completes the proof of assertion (i). As-

sertions (ii), (iii) follow immediately from assertion (i), together with

the [easily verified] fact that the composites Dcdiag ↪→ Π2

pΠ
2/1

³ Π1 and

Dcdiag ↪→ Π2

pΠ
1\2
³ Π{2} are surjective.

Next, we verify assertion (iv). It follows immediately from the vari-
ous definitions involved — by considering a suitable stable log curve of
type (g, r) over (Spec k)log and applying a suitable specialization iso-
morphism [cf. the discussion preceding [CmbCsp], Definition 2.1, as
well as [CbTpI], Remark 5.6.1] — that, to verify assertion (iv), we
may assume without loss of generality that Cusp(G)∪{zx} = Edge(G).
Then, in light of the well-known local structure of X log in a neigh-
borhood of the node or cusp corresponding to zx, one verifies easily
that the outer action Πzx → Out(Π2/1)

∼→ Out(ΠG2/1
) arising from the

natural exact sequence

1 −→ Π2/1 −→ Π2|zx −→ Πzx −→ 1

is of SNN-type [cf. [NodNon], Definition 2.4, (iii)]. Thus, assertion (iv)
follows immediately from [NodNon], Remark 2.7.1, together with the
commensurable terminality of Πvnew in Π2/1 [cf. [CmbGC], Proposition
1.2, (ii)] and the fact that the composite Dvnew |zx ↪→ Π2|zx ³ Πzx is
surjective [cf. [NodNon], Lemma 2.7, (i)]. This completes the proof of
assertion (iv).

Next, we verify assertion (v). It follows immediately from asser-
tion (iv), together with the commensurable terminality of Πvnew in Π2/1

[cf. [CmbGC], Proposition 1.2, (ii)], that Dvnew |zx ∩ Π2/1 = Πvnew .
Thus, since Π2/1 is normal in Π2, assertion (v) follows immediately
from Lemma 3.9, (i). This completes the proof of assertion (v).

Next, we verify assertion (vi). Since the image of the composite

Dvnew |zx ↪→ Π2

pΠ
2/1

³ Π1 coincides with Πzx ⊆ Π1 [cf. [NodNon], Lemma
2.7, (i)], and Πzx ⊆ Π1 is commensurably terminal in Π1 [cf. [CmbGC],
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Proposition 1.2, (ii)], it follows immediately that CΠ2(Dvnew |zx) ⊆ Π2|zx .
In particular, it follows immediately from assertions (iv), (v) that
Dvnew |zx ⊆ CΠ2(Dvnew |zx) ⊆ CΠ2(Πvnew) ∩ Π2|zx = CΠ2|zx

(Πvnew) =
Dvnew |zx . This completes the proof of assertion (vi).

Next, we verify assertion (vii). It follows from the various definitions
involved that we have inclusions Ivnew |zx ⊆ ZΠ2(Πvnew) ⊆ Z loc

Π2
(Πvnew).

Thus, to verify assertion (vii), it suffices to verify that Z loc
Π2

(Πvnew) ⊆
Ivnew |zx . To this end, let us observe that it follows immediately from
the final portion of Lemma 3.6, (iv), that the image pΠ

1\2(Πvnew) ⊆
Π{2}

∼→ ΠG is an edge-like subgroup of Π{2}
∼→ ΠG associated to

zx ∈ Edge(G). Thus, since every edge-like subgroup is commensu-
rably terminal [cf. [CmbGC], Proposition 1.2, (ii)], it follows that

the image pΠ
1\2(Z

loc
Π2

(Πvnew)) ⊆ Π{2}
∼→ ΠG is contained in an edge-

like subgroup of Π{2}
∼→ ΠG associated to zx ∈ Edge(G). On the

other hand, since Πcdiag ⊆ Πvnew , we have Z loc
Π2

(Πvnew) ⊆ Z loc
Π2

(Πcdiag) ⊆
CΠ2(Πcdiag) = Dcdiag [cf. assertion (ii)]. In particular, it follows im-
mediately from assertion (iii), together with the fact [cf. the proof of
assertion (iv)] that Ivnew |zx ⊆ Z loc

Π2
(Πvnew) surjects onto Πzx [cf. also

[NodNon], Lemma 1.5], that pΠ
2/1(Z

loc
Π2

(Πvnew)) ⊆ Π1 is contained in

Πzx ⊆ Π1, i.e., Z loc
Π2

(Πvnew) ⊆ Π2|zx . Thus, it follows immediately from
assertion (iv), together with the slimness of Πvnew [cf. [CmbGC], Re-
mark 1.1.3], that Z loc

Π2
(Πvnew) ⊆ Ivnew |zx . This completes the proof of

assertion (vii).
Finally, we verify assertion (viii). It follows from assertion (vii),

together with Lemma 3.9, (ii), that CΠ2(Πvnew) ⊆ NΠ2(Ivnew |zx). In
particular, since Dvnew |zx is topologically generated by Πvnew , Ivnew |zx [cf.
assertion (iv)], it follows immediately that (Dvnew |zx ⊆) CΠ2(Πvnew) ⊆
CΠ2(Dvnew |zx). Thus, the first equality of assertion (viii) follows from
assertion (vi); the second equality of assertion (viii) follows immediately
from assertions (iv), (vii). This completes the proof of assertion (viii).

¤

The following result is, along with its proof, a routine generalization
of [CmbCsp], Corollary 1.10, (ii).

Lemma 3.12 (Commensurator of a tripod). Let E ⊆ {1, · · · , n}
and T ⊆ ΠE an E-tripod of Πn [cf. Definition 3.3, (i)]. Then it
holds that CΠE

(T ) = T × ZΠE
(T ). Thus, if an outomorphism α of ΠE

preserves the ΠE-conjugacy class of T , then one may define α|T ∈
Out(T ) [cf. Lemma 3.10, (i)].

Proof. Let i ∈ E; x ∈ Xn(k); v ∈ Vert(Gi∈E,x) be such that v is of
type (0, 3), and, moreover, T is a verticial subgroup of ΠE associated
to v ∈ Vert(Gi∈E,x). [Thus, we have an inclusion T ⊆ ΠE/(E\{i}) ⊆ ΠE
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— cf. Definition 3.1, (iv).] Since T ⊆ ΠE/(E\{i}) ⊆ ΠE, and T is
commensurably terminal in ΠE/(E\{i}) [cf. [CmbGC], Proposition 1.2,
(ii)], it follows from Lemma 3.9, (iii), that CΠE

(T ) = NΠE
(T ). Thus,

in light of the slimness of T [cf. [CmbGC], Remark 1.1.3], to ver-
ify Lemma 3.12, it suffices to verify that the natural outer action of
NΠE

(T ) on T is trivial. To this end, let E′ ⊆ E be such that T is
E ′-strict [cf. Lemma 3.8, (i)]; write TE′ ⊆ ΠE′ for the image of T via
pΠ

E/E′ : ΠE ³ ΠE′ . Then it is immediate that the image of NΠE
(T )

via pΠ
E/E′ : ΠE ³ ΠE′ is contained in NΠE′ (TE′), and that the natural

surjection T ³ TE′ is an isomorphism [cf. Lemma 3.8, (i)]. Thus, one
verifies easily — by replacing E, T by E ′, TE′ , respectively — that,
to verify that the natural outer action of NΠE

(T ) on T is trivial, we
may assume without loss of generality that T is E-strict. If T satis-
fies condition (1) of Lemma 3.8, (ii), then Lemma 3.12 follows from
the commensurable terminality of T in ΠE [cf. [CmbGC], Proposition
1.2, (ii)]. If T satisfies either (2C) or (2N) of Lemma 3.8, (ii), then
Lemma 3.12 follows immediately from Lemma 3.11, (viii). If T sat-
isfies condition (3) of Lemma 3.8, (ii), then one verifies easily from
the various definitions involved — by considering a suitable stable log
curve of type (g, r) over (Spec k)log and applying a suitable specializa-
tion isomorphism [cf. the discussion preceding [CmbCsp], Definition
2.1, as well as [CbTpI], Remark 5.6.1] — that, to verify Lemma 3.12,
we may assume without loss of generality that Node(G) = ∅. Thus,
Lemma 3.12 follows immediately from [CmbCsp], Corollary 1.10, (ii).
This completes the proof of Lemma 3.12. ¤

Lemma 3.13 (Preservation of verticial subgroups). In the nota-
tion of Lemma 3.11, let α̃ be an F-admissible automorphism of ΠE =
Π2, v ∈ Vert(G). Write v◦ ∈ Vert(G2/1) for the vertex of G2/1 that
corresponds naturally to v ∈ Vert(G) via the bijections of Lemma 3.6,
(i), (iv); α̃1, α̃2/1 for the automorphisms of Π1, Π2/1 determined by α̃;
α, α1, α2/1 for the outomorphisms of Π2, Π1, Π2/1 determined by α̃,
α̃1, α̃2/1, respectively. Then the following hold:

(i) Recall the edge-like subgroup Πzx ⊆ Π1
∼→ ΠG associated to the

edge zx ∈ Edge(G). Suppose that

α̃1(Πzx) = Πzx .

Suppose, moreover, either that

(a) the outomorphism α2/1 of ΠG2/1

∼← Π2/1 maps some cusp-

idal inertia subgroup of ΠG2/1

∼← Π2/1 to a cuspidal inertia

subgroup of ΠG2/1

∼← Π2/1, or that
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(b) zx ∈ Cusp(G).

[For example, condition (a) holds if the outomorphism α2/1 of

ΠG2/1

∼← Π2/1 is group-theoretically cuspidal — cf. [CmbGC],

Definition 1.4, (iv).] Then α2/1 preserves the Π2/1-conjugacy

class of the verticial subgroup Πvnew ⊆ Π2/1
∼→ ΠG2/1

associated

to the vertex vnew ∈ Vert(G2/1). If, moreover, α2/1 is group-
theoretically cuspidal, then the induced outomorphism of
Πvnew [cf. Lemma 3.12] is itself group-theoretically cuspi-
dal.

(ii) In the situation of (i), suppose, moreover, that there exists

a verticial subgroup Πv ⊆ ΠG
∼← Π1 of ΠG

∼← Π1 associ-
ated to v ∈ Vert(G) such that α̃1 preserves the Π1-conjugacy
class of Πv. Then α2/1 preserves the Π2/1-conjugacy class of

verticial subgroups of ΠG2/1

∼← Π2/1 associated to the vertex

v◦ ∈ Vert(G2/1).

(iii) In the situation of (i), suppose, moreover, that X log is of type

(0, 3) [which implies that Πv
def
= ΠG

∼← Π1 is the unique verti-
cial subgroup of ΠG associated to v], and that α1 ∈ OutC(Πv)

cusp

[cf. Definition 3.4, (i)]. Then there exists a geometric [cf.

Definition 3.4, (ii)] outer isomorphism Πvnew
∼→ Πv (= ΠG

∼←
Π1) which satisfies the following condition:

If either α1 ∈ Out(Π1) = Out(Πv) is contained
in Out(Πv)

∆ [cf. Definition 3.4, (i)] or α|Πvnew ∈
Out(Πvnew) [cf. (i); Lemma 3.12] is contained in
Out(Πvnew)∆, then the outomorphisms α|Πvnew , α1 of
Πvnew , Πv are compatible relative to the outer iso-
morphism in question Πvnew

∼→ Πv.

Proof. First, we verify assertions (i), (ii). Write S
def
= Node(G2/1) \

N (vnew). Then it follows immediately from the well-known local struc-
ture of X log in a neighborhood of the edge corresponding to zx that if
zx ∈ Node(G) (respectively, zx ∈ Cusp(G)), then the outer action of
Πzx on Π(G2/1)ÃS

[cf. [CbTpI], Definition 2.8] obtained by conjugating

the natural outer action Πzx ↪→ Π1 → Out(Π2/1)
∼→ Out(ΠG2/1

) —
where the second arrow is the outer action determined by the exact
sequence of profinite groups

1 −→ Π2/1 −→ Π2

pΠ
2/1−→ Π1 −→ 1

— by the natural outer isomorphism Φ(G2/1)ÃS
: Π(G2/1)ÃS

∼→ ΠG2/1
[cf.

[CbTpI], Definition 2.10] is of SNN-type [cf. [NodNon], Definition 2.4,
(iii)] (respectively, IPSC-type [cf. [NodNon], Definition 2.4, (i)]). Thus,
it follows immediately [in light of the various assumptions made in the
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statement of assertion (i)!] in the case of condition (a) (respectively,
condition (b)) from Theorem 1.9, (i) (respectively, Theorem 1.9, (ii)),
that the outomorphism α(G2/1)ÃS

of Π(G2/1)ÃS
obtained by conjugat-

ing α2/1 by the composite Π2/1
∼→ ΠG2/1

Φ(G2/1)ÃS
∼← Π(G2/1)ÃS

is group-

theoretically verticial [cf. [CmbGC], Definition 1.4, (iv)] and group-
theoretically nodal [cf. [NodNon], Definition 1.12]. On the other hand,
it follows immediately from condition (3) of [CbTpI], Proposition 2.9,

(i), that the image via Φ(G2/1)ÃS
: Π(G2/1)ÃS

∼→ ΠG2/1
of any verticial

subgroup of Π(G2/1)ÃS
associated to the vertex of (G2/1)ÃS correspond-

ing to vnew is a verticial subgroup of ΠG2/1
associated to vnew. Thus,

since α(G2/1)ÃS
is group-theoretically verticial, it follows immediately

that α2/1 preserves the Π2/1-conjugacy class of the verticial subgroup

Πvnew ⊆ Π2/1
∼→ ΠG2/1

associated to vnew. [Here, we observe in passing

the following easily verified fact: a vertex of (G2/1)ÃS corresponds to
vnew if and only if the verticial subgroup of Π(G2/1)ÃS

associated to this

vertex maps, via the composite Π(G2/1)ÃS

∼→ Π2/1

pΠ
1\2
³ Π{2}, to an abelian

subgroup of Π{2}.] If, moreover, α2/1 is group-theoretically cuspidal,
then the group-theoretic cuspidality of the resulting outomorphism of
Πvnew follows immediately from the group-theoretic cuspidality of α2/1

and the group-theoretic nodality of α(G2/1)ÃS
. This completes the proof

of assertion (i).
To verify assertion (ii), let us first observe that it follows immedi-

ately from [CbTpI], Theorem A, (i), that — after possibly replacing α̃
by the composite of α̃ with an inner automorphism of Π2 determined
by conjugation by an element of Π2/1 — we may assume without loss
of generality that, if we write α̃{2} for the automorphism of Π{2} deter-
mined by α̃, then

α̃{2}(Πv) = Πv

— where, by abuse of notation, we write Πv for some fixed subgroup of
Π{2} whose image in ΠG

∼← Π{2} is a verticial subgroup associated to v.

Next, let us fix a verticial subgroup Πv◦ ⊆ Π2/1
∼→ ΠG2/1

of ΠG2/1
as-

sociated to the vertex v◦ ∈ Vert(G2/1) such that the composite Πv◦ ↪→

Π2/1

pΠ
1\2
³ Π{2} determines an isomorphism Πv◦

∼→ Πv. Then let us ob-
serve that one verifies easily from condition (3) of [CbTpI], Proposition
2.9, (i), together with [NodNon], Lemma 1.9, (ii), that there exists a
unique vertex w◦ ∈ Vert((G2/1)ÃS) such that the image Πw◦ ⊆ Π2/1

via the composite Π(G2/1)ÃS

Φ(G2/1)ÃS
∼→ ΠG2/1

∼← Π2/1 of some verticial
subgroup of Π(G2/1)ÃS

associated to w◦ contains the verticial subgroup

Πv◦ ⊆ Π2/1
∼→ ΠG2/1

. Then it follows immediately from the various
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definitions involved that the composite Πw◦ ↪→ Π2/1

pΠ
1\2
³ Π{2} is an

injective homomorphism whose image Πw ⊆ Π{2} maps via the com-

posite Π{2}
∼→ ΠG

ΦGÃS
∼← ΠGÃS

— where we write S
def
= Node(G) \

(Node(G) ∩ {zx}) — to a verticial subgroup of ΠGÃS
associated to a

vertex w ∈ Vert(GÃS). Here, we note that the vertex w may also
be characterized as the unique vertex of GÃS such that the image via

the natural outer isomorphism ΦGÃS
: ΠGÃS

∼→ ΠG of some verticial
subgroup associated to w contains a verticial subgroup associated to
v ∈ Vert(G). Thus, we obtain an isomorphism Πw◦

∼→ Πw, hence also

an isomorphism α̃2/1(Πw◦)
∼→ α̃{2}(Πw).

Next, let us observe that since α(G2/1)ÃS
is group-theoretically ver-

ticial [cf. the argument given in the proof of assertion (i)], it fol-

lows immediately that α̃2/1(Πw◦) ⊆ Π2/1
∼→ Π(G2/1)ÃS

is a verticial
subgroup of Π(G2/1)ÃS

that maps isomorphically to a verticial sub-

group α̃{2}(Πw) ⊆ Π{2}
∼→ ΠGÃS

of ΠGÃS
that contains α̃{2}(Πv) =

Πv. On the other hand, in light of the unique characterization of w
given above, this implies that α̃{2}(Πw) ⊆ Π{2}

∼→ ΠGÃS
is a verti-

cial subgroup associated to w, and hence [as is easily verified] that

α̃2/1(Πw◦) ⊆ Π2/1
∼→ Π(G2/1)ÃS

is a verticial subgroup associated to
w◦. In particular, one may apply the natural outer isomorphisms
Π((G2/1)|Hw◦ )ÂTw◦

∼→ α̃2/1(Πw◦); Π(G|Hw )ÂTw

∼→ α̃{2}(Πw) arising from

condition (3) of [CbTpI], Proposition 2.9, (i); moreover, one veri-

fies easily that the resulting outer isomorphism Π((G2/1)|Hw◦ )ÂTw◦

∼→
Π(G|Hw )ÂTw

[induced by the above isomorphism α̃2/1(Πw◦)
∼→ α̃{2}(Πw)]

arises from scheme theory, hence is graphic [cf. [CmbGC], Definition
1.4, (i)]. Therefore, we conclude that the closed subgroup α̃2/1(Πv◦) ⊆
(α̃2/1(Πw◦) ⊆) Π2/1

∼→ ΠG2/1
is a verticial subgroup of ΠG2/1

associated

to v◦. This completes the proof of assertion (ii).
Finally, we verify assertion (iii). First, we recall from [CmbCsp],

Corollary 1.14, (ii), that there exists an outer modular symmetry σ ∈

(S5 ⊆) Out(Π2) such that the composite Πvnew ↪→ Π2

σ
∼→ Π2

pΠ
2/1

³
Π1 = Πv determines a(n) [necessarily geometric] outer isomorphism

Πvnew
∼→ Πv. The rest of the proof of assertion (iii) is devoted to ver-

ifying that this outer isomorphism Πvnew
∼→ Πv satisfies the condition

of assertion (iii). First, suppose that α1 ∈ Out(Π1)
∆. Then since

OutF(Π2) = OutFC(Π2) = OutFCP(Π2) [cf. [CmbCsp], Definition 1.1,
(iv); Theorem 2.3, (ii), (iv), of the present paper; our assumption that
X log is of type (0, 3)], it follows from [CmbCsp], Corollary 1.14, (i), to-
gether with the injectivity portion of [CmbCsp], Theorem A, (i), that α
commutes with every modular outer symmetry on Π2; in particular, α
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commutes with σ. Thus, it follows immediately from [CmbCsp], Corol-

lary 1.14, (iii), that the above outer isomorphism Πvnew
∼→ Πv satisfies

the condition of assertion (iii).

Next, suppose that α|Πvnew ∈ Out(Πvnew)∆. If we write ασ def
= σ ◦

α ◦ σ−1 (∈ OutFC(Π2)
cusp — cf. [CmbCsp], Corollary 1.14, (i); Theo-

rem 2.3, (ii), and Lemma 3.5 of the present paper) and (ασ)1 ∈ Out(Πv)
for the outomorphism of Πv determined by ασ, then it follows imme-
diately from [CmbCsp], Corollary 1.14, (iii), that the outomorphisms
α|Πvnew , (ασ)1 of Πvnew , Πv are compatible relative to the outer isomor-

phism Πvnew
∼→ Πv discussed above. Thus, since α|Πvnew ∈ Out(Πvnew)∆,

we conclude that (ασ)1 ∈ Out(Πv)
∆. In particular, [since OutF(Π2) =

OutFC(Π2) = OutFCP(Π2) — cf. [CmbCsp], Definition 1.1, (iv); Theo-
rem 2.3, (ii), (iv), of the present paper; our assumption that X log is of
type (0, 3)] it follows from [CmbCsp], Corollary 1.14, (i), together with
the injectivity portion of [CmbCsp], Theorem A, (i), that ασ commutes
with every modular outer symmetry on Π2. Thus, we conclude that ασ

commutes with σ−1, which implies that α = ασ. This completes the
proof of assertion (iii). ¤

Lemma 3.14 (Commensurator of the closed subgroup arising
from a certain second log configuration space). Let i ∈ E, j ∈ E,
x, and zi,j,x be as in Lemma 3.6; let v ∈ Vert(Gj∈E\{i},x). Then, by ap-
plying a similar argument to the argument used in [CmbCsp], Definition
2.1, (iii), (vi), or [NodNon], Definition 5.1, (ix), (x) [i.e., by consider-

ing the portion of the underlying scheme XE of X log
E corresponding to

the underlying scheme (Xv)2 of the 2-nd log configuration space (Xv)
log
2

of the stable log curve X log
v determined by Gj∈E\{i},x|v — cf. [CbTpI],

Definition 2.1, (iii)], one obtains a closed subgroup

(Πv)2 ⊆ ΠE/(E\{i,j})

[which is well-defined up to ΠE-conjugation]. Write

(Πv)2/1
def
= (Πv)2 ∩ ΠE/(E\{i}) ⊆ (Πv)2 .

[Thus, one verifies easily that there exists a natural commutative dia-
gram

1 −−−→ (Πv)2/1 −−−→ (Πv)2 −−−→ Πv −−−→ 1y y y
1 −−−→ ΠE/(E\{i}) −−−→ ΠE

pΠ
E/(E\{i})−−−−−−→ ΠE\{i} −−−→ 1

— where we use the notation Πv to denote a verticial subgroup of
ΠGj∈E\{i},x

∼← Π(E\{i})/(E\{i,j}) associated to v ∈ Vert(Gj∈E\{i},x), the
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horizontal sequences are exact, and the vertical arrows are injective.]
Then the following hold:

(i) Suppose that zi,j,x ∈ VCN(Gj∈E\{i},x) is contained in E(v).
Write v◦ ∈ Vert(Gi∈E,x) for the vertex of Gi∈E,x that corre-
sponds to v ∈ Vert(Gj∈E\{i},x) via the bijections of Lemma 3.6,

(i), (iv). Let Πv◦, Πvnew
i,j,x

⊆ ΠGi∈E,x

∼← ΠE/(E\{i}) be verti-

cial subgroups of ΠGi∈E,x

∼← ΠE/(E\{i}) associated to the ver-
tices v◦, vnew

i,j,x ∈ Vert(Gi∈E,x), respectively, such that Πvnew
i,j,x

⊆
(Πv)2/1, and, moreover, Πv◦∩Πvnew

i,j,x
6= {1}. Let us say that two

ΠE/(E\{i})-conjugates Πγ
v◦, Πδ

vnew
i,j,x

[i.e., where γ, δ ∈ ΠE/(E\{i})]

of Πv◦, Πvnew
i,j,x

are conjugate-adjacent if Πγ
v◦ ∩ Πδ

vnew
i,j,x

6= {1}.
Let us say that a finite sequence of ΠE/(E\{i})-conjugates of Πv◦,
Πvnew

i,j,x
is a conjugate-chain if any two adjacent members of

the finite sequence are conjugate-adjacent. Let us say that a
subgroup of ΠE/(E\{i}) is conjugate-tempered if it appears
as the first member of a conjugate-chain whose final mem-
ber is equal to Πvnew

i,j,x
. Then (Πv)2/1 is equal to the subgroup

of ΠE/(E\{i}) topologically generated by the conjugate-tempered
subgroups and the elements δ ∈ ΠE/(E\{i}) such that Πδ

vnew
i,j,x

is

conjugate-tempered.

(ii) If NΠE\{i}(Πv) = CΠE\{i}(Πv), then NΠE
((Πv)2) = CΠE

((Πv)2).

(iii) If CΠE\{i}(Πv) = Πv ×ZΠE\{i}(Πv), then CΠE
((Πv)2) = (Πv)2 ×

ZΠE
((Πv)2).

(iv) Suppose that v is of type (0, 3), i.e., that Πv is an (E \
{i})-tripod of Πn [cf. Definition 3.3, (i)]. Then it holds that
CΠE

((Πv)2) = (Πv)2 × ZΠE
((Πv)2). Thus, if an outomorphism

α of ΠE preserves the ΠE-conjugacy class of (Πv)2, then one
may define α|(Πv)2 ∈ Out((Πv)2) [cf. Lemma 3.10, (i)].

Proof. First, we verify assertion (i). We begin by observing that it
follows immediately from [NodNon], Lemma 1.9, (ii), together with
the commensurable terminality of Πvnew

i,j,x
⊆ ΠE/(E\{i}) [cf. [CmbGC],

Proposition 1.2, (ii)], that the subgroup described in the final portion
of the statement of assertion (i) is contained in (Πv)2/1. If (N (v◦) ∩
N (vnew

i,j,x))
] = 1, then assertion (i) follows immediately from a similar

argument to the argument applied in the proof of [CmbCsp], Propo-
sition 1.5, (iii), together with the various definitions involved [cf. also
[NodNon], Lemma 1.9, (ii)]. Thus, we may assume without loss of
generality that (N (v◦) ∩N (vnew

i,j,x))
] = 2.

Write



COMBINATORIAL ANABELIAN TOPICS II 67

• e1 ∈ N (v◦) ∩ N (vnew
i,j,x) for the [uniquely determined — cf.

[NodNon], Lemma 1.5] node such that Πv◦ ∩ Πvnew
i,j,x

(6= {1})
is a nodal subgroup associated to e1 [cf. [NodNon], Lemma
1.9, (i)];

• e2 for the unique element of N (v◦)∩N (vnew
i,j,x) such that e2 6= e1

[so N (v◦) ∩N (vnew
i,j,x) = {e1, e2}];

• H for the sub-semi-graph of PSC-type [cf. [CbTpI], Definition
2.2, (i)] of the underlying semi-graph of Gi∈E,x whose set of
vertices = {v◦, vnew

i,j,x};

• S
def
= Node(Gi∈E,x|H)\{e1, e2} [cf. [CbTpI], Definition 2.2, (ii)];

• H def
= (Gi∈E,x|H)ÂS [which is well-defined since, as is easily ver-

ified, S is not of separating type as a subset of Node(Gi∈E,x|H)
— cf. [CbTpI], Definition 2.5, (i), (ii)].

Then it follows immediately from the construction of H that HÃ{e1}
[cf. [CbTpI], Definition 2.8], where we observe that one verifies eas-
ily that the node e1 of Gi∈E,x may be regarded as a node of H, is
cyclically primitive [cf. [CbTpI], Definition 4.1]. Moreover, it follows
immediately from [NodNon], Lemma 1.9, (ii), together with the vari-

ous definitions involved, that (Πv)2/1 ⊆ ΠE/(E\{i})
∼→ ΠGi∈E,x

may be
characterized uniquely as the closed subgroup of ΠGi∈E,x

that contains
Πvnew

i,j,x
⊆ ΠGi∈E,x

and, moreover, belongs to the ΠGi∈E,x
-conjugacy class

of closed subgroups of ΠGi∈E,x
obtained by forming the image of the

composite of outer homomorphisms

ΠHÃ{e1}

ΦHÃ{e1}
∼→ ΠH ↪→ ΠGi∈E,x

[cf. [CbTpI], Definition 2.10] — where the second arrow is the outer in-
jection discussed in [CbTpI], Proposition 2.11. In particular, it follows
from the commensurable terminality of (Πv)2/1 in ΠGi∈E,x

[cf. [CmbGC],
Proposition 1.2, (ii)] that this characterization of (Πv)2/1 determines an

outer isomorphism ΠHÃ{e1}

∼→ (Πv)2/1.
On the other hand, it follows immediately from a similar argument

to the argument applied in the proof of [CmbCsp], Proposition 1.5,
(iii), together with the various definitions involved [cf. also [NodNon],
Lemma 1.9, (ii)], that the image of the closed subgroup of (Πv)2/1 topo-

logically generated by Πv◦ and Πvnew
i,j,x

via the inverse (Πv)2/1
∼→ ΠHÃ{e1}

of this outer isomorphism is a verticial subgroup of ΠHÃ{e1}
associated

to the unique vertex of HÃ{e1}. Thus, since HÃ{e1} is cyclically primi-
tive, assertion (i) follows immediately from [CmbGC], Lemma 1.2, (ii);
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[NodNon], Lemma 1.9, (ii), together with the description of the struc-
ture of a certain tempered covering of HÃ{e1} given in [CbTpI], Lemma
4.3. This completes the proof of assertion (i).

Next, we verify assertion (ii). Since (Πv)2/1 = (Πv)2 ∩ ΠE/(E\{i}) is
commensurably terminal in ΠE/(E\{i}) [cf. [CmbGC], Proposition 1.2,
(ii)], assertion (ii) follows immediately from Lemma 3.9, (iv). This
completes the proof of assertion (ii). Next, we verify assertion (iii).
First, let us observe that if E(v) = ∅, then one verifies immediately
that the vertical arrows of the commutative diagram in the statement
of Lemma 3.14 are isomorphisms, and hence that assertion (iii) holds.
Thus, we may assume that E(v) 6= ∅. Next, let us observe that it follows
from assertion (ii) that NΠE

((Πv)2) = CΠE
((Πv)2). Thus, in light of the

slimness of (Πv)2 [cf. [MzTa], Proposition 2.2, (ii)], to verify assertion
(iii), it suffices to verify that the natural outer action of NΠE

((Πv)2)
on (Πv)2 is trivial. On the other hand, since [one verifies easily that]
the natural outer action NΠE

((Πv)2) → Out((Πv)2) factors through
OutF((Πv)2) ⊆ Out((Πv)2), it follows from the injectivity portion of
Theorem 2.3, (i) [cf. our assumption that E(v) 6= ∅], that to verify the
triviality in question, it suffices to verify that the natural outer action
of NΠE

((Πv)2) on Πv is trivial. But this follows from the equality
CΠE\{i}(Πv) = Πv × ZΠE\{i}(Πv). This completes the proof of assertion

(iii). Assertion (iv) follows immediately from assertion (iii), together
with Lemma 3.12. This completes the proof of Lemma 3.14. ¤

Lemma 3.15 (Preservation of various subgroups of geomet-
ric origin). In the notation of Lemma 3.14, let α̃ be an F-admissible
automorphism of ΠE. Write α̃E\{i}, α̃E/(E\{i}) for the automorphisms
of ΠE\{i}, ΠE/(E\{i}) determined by α̃; α, αE\{i}, αE/(E\{i}) for the outo-
morphisms of ΠE, ΠE\{i}, ΠE/(E\{i}) determined by α̃, α̃E\{i}, α̃E/(E\{i}),
respectively. Suppose that there exist an edge e ∈ Edge(Gj∈E\{i},x) of
Gj∈E\{i},x that belongs to E(v) ⊆ Edge(Gj∈E\{i},x) and a pair Πe ⊆
Πv ⊆ ΠGj∈E\{i},x

∼← Π(E\{i})/(E\{i,j}) of VCN-subgroups associated to

e ∈ Edge(Gj∈E\{i},x), v ∈ Vert(Gj∈E\{i},x), respectively, such that

α̃E\{i}(Πe) = Πe ⊆ α̃E\{i}(Πv) = Πv .

Suppose, moreover, either that

(a) the outomorphism αE/(E\{i}) of ΠGi∈E,x

∼← ΠE/(E\{i}) maps some

cuspidal inertia subgroup of ΠGi∈E,x

∼← ΠE/(E\{i}) to a cuspidal

inertia subgroup of ΠGi∈E,x

∼← ΠE/(E\{i}), or that

(b) e ∈ Cusp(Gj∈E\{i},x).

[For example, condition (a) holds if the outomorphism αE/(E\{i}) of

ΠGi∈E,x

∼← ΠE/(E\{i}) is group-theoretically cuspidal — cf. [CmbGC],
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Definition 1.4, (iv).] Write T ⊆ ΠE for the E-tripod of Πn arising
from e ∈ Edge(Gj∈E\{i},x) [cf. Definition 3.7, (i)]. Then the following
hold:

(i) The outomorphism α preserves the ΠE-conjugacy classes of
T , (Πv)2 ⊆ ΠE. If, moreover, the outomorphism αE/(E\{i})

of ΠGi∈E,x

∼← ΠE/(E\{i}) is group-theoretically cuspidal [cf.
[CmbGC], Definition 1.4, (iv)], then the outomorphism α|T [cf.
Lemma 3.12] of T is contained in OutC(T )cusp.

(ii) Suppose, moreover, that v is of type (0, 3) — i.e., that Πv

is an (E \ {i})-tripod of Πn [cf. Definition 3.3, (i)] — and
that αE\{i}|Πv ∈ OutC(Πv)

cusp [cf. Lemma 3.12]. Then there
exists a geometric [cf. Definition 3.4, (ii)] outer isomorphism

T
∼→ Πv which satisfies the following condition:

If either αE\{i}|Πv ∈ Out(Πv)
∆ or α|T ∈ Out(T )∆

[cf. (i); Lemma 3.12], then the outomorphisms α|T ,
αE\{i}|Πv of T , Πv are compatible relative to the

outer isomorphism in question T
∼→ Πv.

If, moreover, Πv is (E \ {i})-strict [cf. Definition 3.3, (iii)],
then the following hold:

(1) If (E\{i})] = 1 [i.e., Πv satisfies condition (1) of Lemma 3.8,
(ii)], then T is E-strict [i.e., T satisfies one of the two
conditions (2C), (2N) of Lemma 3.8, (ii)].

(2) If (E \ {i})] = 2 [i.e., Πv satisfies one of the two con-
ditions (2C), (2N) of Lemma 3.8, (ii)], and the edge e ∈
Edge(Gj∈E\{i},x) is the unique diagonal cusp of Gj∈E\{i},x
[cf. Lemma 3.2, (ii)], then T is E-strict [i.e., T satisfies
condition (3) of Lemma 3.8, (ii)], hence also central [cf.
Definition 3.7, (ii)].

Proof. First, let us observe that one verifies easily — by replacing x
by a suitable k-valued geometric point of Xn(k) that lifts xE\{i,j} ∈
XE\{i,j}(k) [note that this does not affect “Gj∈E\{i},x”!] — that, to
verify Lemma 3.15, we may assume without loss of generality that
zi,j,x = e ∈ Edge(Gj∈E\{i},x).

Now we verify assertion (i). First, let us observe that one verifies eas-

ily — by replacing X log
E by the base-change of plog

E\{i,j} : X log
E → X log

E\{i,j}

by a suitable morphism of log schemes (Spec k)log → X log
E\{i,j} that lies

on xE\{i,j} ∈ XE\{i,j}(k) [cf. Definition 3.1, (i)] — that, to verify asser-
tion (i), we may assume without loss of generality that E] = 2. Then
it follows immediately from Lemma 3.13, (i), that αE/(E\{i}) preserves
the ΠE/(E\{i})-conjugacy class of T (= Πvnew

i,j,x
) ⊆ ΠE/(E\{i}). More-

over, it follows immediately from Lemma 3.13, (i), (ii), together with
Lemma 3.14, (i), that αE/(E\{i}) preserves the ΠE/(E\{i})-conjugacy class
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of (Πv)2/1 ⊆ ΠE/(E\{i}). In particular, since α̃(Πv) = Πv, by considering

the natural isomorphism (Πv)2
∼→ (Πv)2/1

out
o Πv [cf. the upper exact

sequence of the commutative diagram in the statement of Lemma 3.14;
the discussion entitled “Topological groups” in [CbTpI], §0], we con-
clude that αE preserves the ΠE-conjugacy class of (Πv)2 ⊆ ΠE.

Next, suppose that the outomorphism αE/(E\{i}) of ΠGi∈E,x

∼← ΠE/(E\{i})
is group-theoretically cuspidal. Then it follows from Lemma 3.13, (i),
that α|T ∈ OutC(T ). Moreover, since αE/(E\{i}) is group-theoretically
cuspidal, it follows immediately from Lemma 3.2, (iv), that αE/(E\{i})
fixes the ΠE/(E\{i})-conjugacy class of cuspidal inertia subgroups asso-

ciated to each element ∈ C(vnew
i,j,x) (3 cdiag

i,j,x). Thus, to verify that α|T ∈
OutC(T )cusp, it suffices to verify that αE/(E\{i}) fixes the ΠE/(E\{i})-

conjugacy class of nodal subgroups of ΠGi∈E,x

∼← ΠE/(E\{i}) associated
to each element of N (vnew

i,j,x) ∩ N (v◦). On the other hand, this fol-
lows immediately, in light of our assumption that α̃E\{i}(Πe) = Πe ⊆
α̃E\{i}(Πv) = Πv, from the final portion of Lemma 3.6, (iv), together
with [NodNon], Lemma 1.9, (i). This completes the proof of assertion
(i).

Next, we verify assertion (ii). Since v is of type (0, 3), it follows
from assertion (i), together with Lemma 3.14, (iv), that one may de-
fine α|(Πv)2 ∈ Out((Πv)2). Thus, by applying Lemma 3.13, (iii), to
α|(Πv)2 ∈ Out((Πv)2), one verifies easily that the first portion of asser-
tion (ii) holds. The final portion of assertion (ii) follows immediately
from the descriptions given in the four conditions of Lemma 3.8, (ii),
together with the various definitions involved. This completes the proof
of assertion (ii). ¤

Theorem 3.16 (Outomorphisms preserving tripods). In the no-
tation of the beginning of the present §3, let E ⊆ {1, · · · , n} and
T ⊆ ΠE an E-tripod of Πn [cf. Definition 3.3, (i)]. Let us write

OutF(Πn)[T ] ⊆ OutF(Πn)

for the [closed] subgroup of OutF(Πn) [cf. [CmbCsp], Definition 1.1,
(ii)] consisting of F-admissible outomorphisms α of Πn such that the
outomorphism of ΠE determined by α preserves the ΠE-conjugacy class
of T ⊆ ΠE. Then the following hold:

(i) It holds that

CΠE
(T ) = T × ZΠE

(T ) .

Thus, by applying Lemma 3.10, (i), to outomorphisms of ΠE

determined by elements of OutF(Πn)[T ], one obtains a natural
homomorphism

TT : OutF(Πn)[T ] −→ Out(T ) .
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Let us write

OutF(Πn)[T : {C}] , OutF(Πn)[T : {|C|}] , OutF(Πn)[T : {∆}] ,

OutF(Πn)[T : {+}] ⊆ OutF(Πn)[T ]

for the [closed] subgroups of OutF(Πn)[T ] obtained by forming
the respective inverse images via TT of the closed subgroups
OutC(T ), OutC(T )cusp, Out(T )∆, Out(T )+ ⊆ Out(T ) [cf. Def-
inition 3.4, (i)]. For a subset A ⊆ {C, |C|, ∆, +}, let us write

OutF(Πn)[T : A]
def
=

⋂
¤∈A

OutF(Πn)[T : {¤}] ⊆ OutF(Πn)[T ] ;

OutFC(Πn)[T : A]
def
= OutF(Πn)[T : A] ∩ OutFC(Πn) ⊆ OutFC(Πn) .

(ii) It holds that

OutF(Πn)[T : {C, ∆}] = OutF(Πn)[T : {|C|, ∆}] .

(iii) Suppose that T is 1-descendable [cf. Definition 3.3, (iv)].
Then it holds that

OutFC(Πn)[T : {|C|}] = OutFC(Πn)[T : {|C|, +}] .

If, moreover, one of the following conditions is satisfied, then
it holds that

OutF(Πn)[T : {|C|}] = OutF(Πn)[T : {|C|, +}] :

(iii-1) T is 2-descendable [cf. Definition 3.3, (iv)].

(iii-2) There exists a subset E ′ ⊆ E such that:

(iii-2-a) E ′ 6= {1, · · · , n};
(iii-2-b) the image pΠ

E/E′(T ) ⊆ ΠE′ is a cusp-supporting

E′-tripod of Πn [cf. Definition 3.3, (i)].

(iv) Let i, j ∈ E be two distinct elements of E; e ∈ Edge(Gj∈E\{i},x)

[cf. Definition 3.1, (iii)]; α ∈ OutF(Πn). Suppose that T
arises from e ∈ Edge(Gj∈E\{i},x) [cf. Definition 3.7, (i)], and
that the outomorphism of ΠE\{i} determined by α preserves
the ΠE\{i}-conjugacy class of an edge-like subgroup of ΠE\{i}
associated to e ∈ Edge(Gj∈E\{i},x) [cf. Definition 3.1, (iv)].
Suppose, moreover, that one of the following conditions is sat-
isfied:

(iv-1) α ∈ OutFC(Πn).

(iv-2) E] ≤ n − 1.

(iv-3) e ∈ Cusp(Gj∈E\{i},x).



72 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

Then α ∈ OutF(Πn)[T ]. Suppose, further, that either condition
(iv-1) or condition (iv-2) is satisfied. Then α ∈ OutF(Πn)[T :
{C}]; if, in addition, condition (iv-3) is satisfied, then α ∈
OutF(Πn)[T : {|C|}].

(v) Suppose that T is central [cf. Definition 3.7, (ii)]. If n ≥ 4
[i.e., T is 1-descendable], then it holds that

OutF(Πn) = OutFC(Πn)[T : {|C|, ∆, +}] .
If n = 3 [i.e., T is not 1-descendable], then it holds that

OutFC(Πn) = OutFC(Πn)[T : {|C|, ∆}]

⊆ OutF(Πn) = OutF(Πn)[T : {∆}] ;
if, moreover, r 6= 0, then

OutF(Πn) = OutFC(Πn)[T : {|C|, ∆, +}] .

Proof. Assertion (i) (respectively, (ii)) follows from Lemma 3.12 (re-
spectively, 3.5). Next, we claim that the following assertion holds:

Claim 3.16.A: Let E ′ ⊆ E be a subset such that the
image TE′ of T via pΠ

E/E′ : ΠE ³ ΠE′ is an E ′-tripod;

thus, one verifies easily that one obtains a(n) [necessar-
ily geometric — cf. Definition 3.4, (ii)] outer isomor-

phism T
∼→ TE′ [induced by pΠ

E/E′ ]. Then we have an

inclusion OutF(Πn)[T ] ⊆ OutF(Πn)[TE′ ], and, more-
over, the diagram

OutF(Πn)[T ] ⊆ OutF(Πn)[TE′ ]

TT ↓ ↓ TTE′

Out(T )
∼−→ Out(TE′)

— where the lower horizontal arrow is the isomorphism
determined by the isomorphism T

∼→ TE′ induced by
pΠ

E/E′ — commutes.

Indeed, this follows immediately from the various definitions inovlved.
This completes the proof of Claim 3.16.A.

Next, we verify assertion (iii). First, to verify the first displayed
equality of assertion (iii), let us observe that since T is 1-descendable,
there exists a subset E ′ ⊆ E such that the image of T ⊆ ΠE via
pΠ

E/E′ : ΠE ³ ΠE′ is an E ′-tripod, and, moreover, (E′)] ≤ n − 1. Thus,
it follows immediately from Claim 3.16.A, together with Remark 3.4.1
— by replacing T , E, by pΠ

E/E′(T ), E ′, respectively — that, to verify the

first displayed equality of assertion (iii), we may assume without loss
of generality that E 6= {1, · · · , n}. Then the first displayed equality of
assertion (iii) follows immediately from Lemma 3.14, (iv); the portion of
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Lemma 3.15, (i), concerning “(Πv)2” [cf. condition (a) of Lemma 3.15].
This completes the proof of the first displayed equality of assertion (iii).

Next, suppose that condition (iii-1) is satisfied; thus, there exists a
subset E ′ ⊆ E such that the image pΠ

E/E′(T ) ⊆ ΠE is an E ′-tripod, and,

moreover, (E′)] ≤ n − 2. Then — by replacing T , E by pΠ
E/E′(T ), E ′,

respectively [and applying Claim 3.16.A] — we may assume without
loss of generality that E] ≤ n−2. Thus, by applying [CbTpI], Theorem
A, (ii), we conclude that the second displayed equality of assertion (iii)
follows immediately from the first displayed equality of assertion (iii).

Next, suppose that condition (iii-2) is satisfied. Then — by re-
placing T , E by the pΠ

E/E′(T ), E ′ in condition (iii-2) [and applying

Claim 3.16.A] — we may assume without loss of generality that E 6=
{1, · · · , n}, and, moreover, that T is a cusp-supporting E-tripod. Then
it follows immediately from Lemma 3.14, (iv); the portion of Lemma 3.15,
(i), concerning (Πv)2 [cf. condition (b) of Lemma 3.15], that the second
displayed equality of assertion (iii) holds. This completes the proof of
assertion (iii).

Next, we verify assertion (iv). If either condition (iv-1) or condi-
tion (iv-3) is satisfied, then one reduces immediately to the case where
n = 2, in which case it follows immediately from Lemma 3.13, (i), that
α ∈ OutF(Πn)[T ]. If condition (iv-1) is satisfied, then one reduces im-
mediately to the case where n = 2, in which case it follows immediately
from Lemma 3.13, (i), that α ∈ OutF(Πn)[T : {C}]. If both condition
(iv-1) and condition (iv-3) is satisfied, then — by applying a suit-
able specialization isomorphism [cf. the discussion preceding [CmbCsp],
Definition 2.1, as well as [CbTpI], Remark 5.6.1] — one reduces imme-
diately to the case where n = 2 and Node(G) = ∅, in which case it fol-
lows immediately from Lemma 3.15, (i), that α ∈ OutF(Πn)[T : {|C|}].
Finally, if condition (iv-2) is satisfied, then, by applying [CbTpI], The-
orem A, (ii), one reduces immediately to the case where “n” is taken
to be n− 1, and condition (iv-1) is satisfied. This completes the proof
of assertion (iv).

Finally, we verify assertion (v). First, we claim that the following
assertion holds:

Claim 3.16.B: OutF(Πn) = OutF(Πn)[T ].

Indeed, to verify Claim 3.16.B, by reordering the factors of Xn, we
may assume without loss of generality that E = {1, 2, 3}. Let α̃ ∈
AutF(Πn). Then since n ≥ 3, it follows immediately from [CbTpI],
Theorem A, (ii), together with Lemma 3.2, (iv), that the outomorphism
of Π2/1 determined by α̃ preserves the Π2/1-conjugacy class of cuspidal
subgroups of Π2/1 associated to the [unique — cf. Lemma 3.2, (ii)]
diagonal cusp. Thus, it follows immediately from assertion (iv) in the
case where condition (iv-3) is satisfied that the outomorphism of Π3
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determined by α̃ preserves the Π3-conjugacy class of T ⊆ Π3. This
completes the proof of Claim 3.16.B.

Next, we claim that the following assertion holds:

Claim 3.16.C: OutF(Πn)[T ] = OutF(Πn)[T : {∆}].
Indeed, since n ≥ 3, this follows immediately from Theorem 2.3, (iv),
together with a similar argument to the argument used in the proof of
[CmbCsp], Corollary 3.4, (i). This completes the proof of Claim 3.16.C.

Now it follows immediately from Claims 3.16.B, 3.16.C that we have
an equality OutF(Πn) = OutF(Πn)[T : {∆}]. Thus, it follows from
assertion (ii) and the first displayed equality of assertion (iii), together
with Theorem 2.3, (ii), that, to complete the proof of the content of
the first two displays of assertion (v), it suffices to verify the equality
OutFC(Πn) = OutFC(Πn)[T : {C}]. On the other hand, this follows im-
mediately from the portion of Lemma 3.15, (i), concerning α|T . [Note
that one verifies easily that every central tripod arises from a cusp.]

Thus, it remains to verify the equality of the final display of assertion
(v). In light of what has already been verified [cf. also assertion (ii);
Theorem 2.3, (ii)], to verify the final equality of assertion (v), it suffices
to verify the condition “+” on the right-hand side of this equality. On
the other hand, it follows immediately — by replacing an element of
the left-hand side of the equality under consideration by a composite
of the element with a suitable outomorphism arising from an element
of OutFC(Π4) [cf. the equality of the first display of assertion (v)] —
from [CmbCsp], Lemma 2.4, that it suffices to verify the condition “+”
on an element of the left-hand side of the equality under consideration
that induces the identity automorphism on Cusp(G). Then the equality
under consideration follows immediately, in light of the assumption that
r 6= 0, from Lemma 3.15, (i) [applied in the case where we take the
“E” of loc. cit. to be a subset of E of cardinality two], (ii) [applied in
the case where we take the “E” of loc. cit. to be E]. This completes
the proof of assertion (v). ¤

Remark 3.16.1. Theorem 3.16, (i), may be regarded as a general-
ization of [CmbCsp], Corollary 1.10, (ii). On the other hand, Theo-
rem 3.16, (v), may be regarded as a more precise version of [CmbCsp],
Corollary 3.4.

Theorem 3.17 (Synchronization of tripods in two dimensions).
In the notation of Theorem 3.16, suppose that n = 2, and that E] = 1;
thus, one may regard the E-tripod T of Πn as a verticial subgroup
of ΠE

∼→ ΠG associated to a vertex vT ∈ Vert(G) of type (0, 3) [cf.
Definition 3.1, (ii)]. Let E ′ ⊆ {1, · · · , n} and T ′ ⊆ ΠE′ an E′-tripod
of Πn. Then the following hold:
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(i) Suppose that there exists an edge e ∈ E(vT ) from which T ′

arises [cf. Definition 3.7, (i)]. [Thus, it holds that E ′ =
{1, 2}.] Then it holds that

OutFC(Πn)[T : {|C|, ∆}] ⊆ OutFC(Πn)[T ′ : {|C|, ∆, +}]
[cf. the notational conventions of Theorem 3.16, (i)]. More-
over, there exists a geometric [cf. Definition 3.4, (ii)] outer

isomorphism T
∼→ T ′ such that the diagram

OutFC(Πn)[T : {|C|, ∆}] ⊆ OutFC(Πn)[T ′ : {|C|, ∆, +}]

TT ↓ ↓ TT ′

Out(T )
∼−→ Out(T ′)

[cf. the notation of Theorem 3.16, (i)] — where the lower
horizontal arrow is the isomorphism induced by the outer iso-
morphism in question T

∼→ T ′ — commutes.

(ii) Suppose that (E′)] = 1; thus, one may regard the E ′-tripod

T ′ of Πn as a verticial subgroup of ΠE′
∼→ ΠG associated to a

vertex vT ′ ∈ Vert(G) of type (0, 3). Suppose, moreover, that
N (vT )∩N (vT ′) 6= ∅. Then there exists a geometric [cf. Def-

inition 3.4, (ii)] outer isomorphism T
∼→ T ′ such that if we

write

OutFC(Πn)[T, T ′ : {|C|, ∆}]
def
= OutFC(Πn)[T : {|C|, ∆}] ∩ OutFC(Πn)[T ′ : {|C|, ∆}] ,

then the diagram

OutFC(Πn)[T, T ′ : {|C|, ∆}] OutFC(Πn)[T, T ′ : {|C|, ∆}]

TT

y yTT ′

Out(T )
∼−−−→ Out(T ′)

— where the lower horizontal arrow is the isomorphism induced
by the outer isomorphism in question T

∼→ T ′ — commutes.

Proof. First, we verify assertion (i). Let us observe that the inclu-
sion OutFC(Πn)[T : {|C|}] ⊆ OutFC(Πn)[T ′], hence also the inclusion
OutFC(Πn)[T : {|C|, ∆}] ⊆ OutFC(Πn)[T ′], follows immediately from
Theorem 3.16, (iv), in the case where condition (iv-1) is satisfied. Thus,
one verifies easily from Lemma 3.15, (i), (ii) [cf. also Lemma 3.14, (iv)],
that the remainder of assertion (i) holds. This completes the proof of
assertion (i). Next, we verify assertion (ii). It follows immediately
from [CmbCsp], Proposition 1.2, (iii), that we may assume without
loss of generality that E′ = E. Write T ′′ ⊆ Πn for the {1, 2}-tripod of
Πn arising from e ∈ N (vT ) ∩ N (vT ′). Then it follows from assertion
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(i) that there exist geometric outer isomorphisms T
∼→ T ′′, T ′ ∼→ T ′′

that satisfy the condition of assertion (i) [i.e., for the pairs (T, T ′′) and
(T ′, T ′′)]. Thus, one verifies easily that the [necessarily geometric] outer

isomorphism T
∼→ T ′′ ∼← T ′ obtained by forming the composite of these

two outer isomorphisms satisfies the condition of assertion (ii). This
completes the proof of assertion (ii). ¤

Theorem 3.18 (Synchronization of tripods in three or more
dimensions). In the notation of Theorem 3.16, suppose that n ≥ 3.
Then the following hold:

(i) It holds that

OutFC(Πn)[T : {|C|}] = OutFC(Πn)[T : {|C|, ∆}]
[cf. the notational conventions of Theorem 3.16, (i)]. If, more-
over, n ≥ 4 or r 6= 0, then it holds that

OutFC(Πn)[T : {|C|}] = OutFC(Πn)[T : {|C|, ∆, +}]
[cf. the notational conventions of Theorem 3.16, (i)].

(ii) Let E ′ ⊆ {1, · · · , n} and T ′ ⊆ ΠE′ an E′-tripod of Πn. Then
there exists a geometric [cf. Definition 3.4, (ii)] outer iso-

morphism T
∼→ T ′ such that if we write

OutFC(Πn)[T, T ′ : {|C|}]
def
= OutFC(Πn)[T : {|C|}] ∩ OutFC(Πn)[T ′ : {|C|}] ,

then the diagram

OutFC(Πn)[T, T ′ : {|C|}] OutFC(Πn)[T, T ′ : {|C|}]

TT

y yTT ′

Out(T )
∼−−−→ Out(T ′)

[cf. the notation of Theorem 3.16, (i)] — where the lower
horizontal arrow is the isomorphism induced by the outer iso-
morphism in question T

∼→ T ′ — commutes.

Proof. First, we verify the first displayed equality of assertion (i). Ob-
serve that it follows immediately from Lemma 3.8, (i), together with a
similar argument to the argument applied in the proof of the first dis-
played equality of Theorem 3.16, (iii), that we may assume without loss
of generality that T is E-strict, which thus implies that E] ∈ {1, 2, 3}
[cf. Lemma 3.8, (ii)]. Now we apply induction on 3−E] ∈ {0, 1, 2}. If
3 − E] = 0, i.e., T is central [cf. Lemma 3.8, (ii)], then the first dis-
played equality of assertion (i) follows immediately from Theorem 3.16,
(v). Now suppose that 3 − E] > 0, and that the induction hypothesis
is in force. Let α ∈ OutFC(Πn)[T : {|C|}]. Then it follows immediately
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from Lemma 3.15, (i), (ii) [cf. also conditions (1), (2) of Lemma 3.15,
(ii)], that there exist a subset E ⊆ E ′ ⊆ {1, · · · , n} and an E′-tripod
T ′ ⊆ ΠE′ such that 3 − (E′)] < 3 − E], T ′ ⊆ ΠE′ is E′-strict, and α ∈
OutFC(Πn)[T ′ : {|C|}] [cf. Lemma 3.15, (i)]. Thus, it follows immedi-
ately from the induction hypothesis that α ∈ OutFC(Πn)[T ′ : {|C|, ∆}].
In particular, it follows immediately from Lemma 3.15, (ii), that the
actions of α on T and T ′ may be related by means of a geometric outer
isomorphism, which thus implies that α ∈ OutFC(Πn)[T : {|C|, ∆}] [cf.
Remark 3.4.1]. This completes the proof of the first displayed equality
of assertion (i).

Next, we verify assertion (ii). First, we claim that the following
assertion holds:

Claim 3.18.A: If T is E-central, and T ′ is E ′-central,
then the pair (T, T ′) satisfies the property stated in
assertion (ii).

Indeed, since the ΠE-conjugacy class of the central E-tripod T is com-
pletely determined [cf. Lemma 3.6, (v)] by the subset [of cardinality 3]
E ⊆ {1, · · · , n}, it follows easily that there exist a {1, · · · , n}-tripod
T ′′ ⊆ Πn of Πn and an element σ ∈ Sn of the symmetric group on n
letters [which acts, via outomorphisms, on Πn by permuting the factors
of X log

n ] such that the images of the composites

T ′′ ↪→ Πn

pΠ
{1,··· ,n}/E

³ ΠE , T ′′ ↪→ Πn

σ
∼→ Πn

pΠ
{1,··· ,n}/E′

³ ΠE′

are Πn-conjugates of T , T ′, respectively. Thus, we obtain a(n) [neces-

sarily geometric] outer isomorphism T
∼← T ′′ ∼→ T ′. Now since every

element of OutFC(Πn) commutes with σ [cf. [NodNon], Theorem B],
it follows immediately from the various definitions involved that this
outer isomorphism T

∼← T ′′ ∼→ T ′ satisfies the property stated in asser-
tion (ii). This completes the proof of Claim 3.18.A.

Next, we claim that the following assertion holds:

Claim 3.18.B: Suppose that T is E-strict, and that
E] 6= 3 [i.e., E] ∈ {1, 2} — cf. Lemma 3.8, (ii)].
Then there exist a subset E ( E′′ ⊆ {1, · · · , n} and
an E ′′-tripod T ′′ ⊆ ΠE′′ such that T ′′ is E′′-strict,
OutFC(Πn)[T : {|C|}] ⊆ OutFC(Πn)[T ′′ : {|C|}], and,
moreover, the pair (T, T ′′) satisfies the property stated
in assertion (ii) [i.e., where one takes “T ′” to be T ′′].

Indeed, this follows immediately from Lemma 3.15, (i), (ii) [cf. also
conditions (1), (2) of Lemma 3.15, (ii)], together with the first displayed
equality of assertion (i). This completes the proof of Claim 3.18.B.

To verify assertion (ii), let us observe that it follows immediately
from Lemma 3.8, (i), together with a similar argument to the argument
applied in the proof of the first displayed equality of Theorem 3.16, (iii),
that we may assume without loss of generality that T is E-strict; in
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particular, E] ∈ {1, 2, 3} [cf. Lemma 3.8, (ii)]. Next, let us observe
that, by comparing two arbitrary tripods of Πn to a fixed central tripod
of Πn [and applying Theorem 3.16, (v)], one may reduce immediately
to the case where T ′ is central. Moreover, by successive application
of Claim 3.18.B, one reduces immediately to the case where T is E-
central [and T ′ is E′-central], which was verified in Claim 3.18.A. This
completes the proof of assertion (ii). Finally, the second displayed
equality of assertion (i) follows immediately from assertion (ii), together
with Theorem 3.16, (v). This completes the proof of Theorem 3.18. ¤

Definition 3.19. Suppose that n ≥ 3. Let us write

Πtpd

for the central {1, 2, 3}-tripod of Πn [cf. Definitions 3.3, (i); 3.7, (ii)].
Then it follows from Theorem 3.16, (i), (v), that one has a natural
homomorphism

TΠtpd : OutFC(Πn) = OutFC(Πn)[Πtpd : {|C|, ∆}] −→ OutC(Πtpd)∆

[cf. Definition 3.4, (i)]. We shall refer to this homomorphism as the
tripod homomorphism associated to Πn and write

OutFC(Πn)geo ⊆ OutFC(Πn)

for the kernel of this homomorphism [cf. Remark 3.19.1 below]. Note
that it follows from Theorem 3.16, (v), that if n ≥ 4 or r 6= 0, then the
image of the tripod homomorphism is contained in OutC(Πtpd)∆+ ⊆
OutC(Πtpd)∆ [cf. Definition 3.4, (i)]. If n ≥ 4 or r 6= 0, then TΠtpd

may also be regarded as a homomorphism defined on OutF(Πn) (=
OutFC(Πn) — cf. Theorem 2.3, (ii)); in this case, we shall write

OutF(Πn)geo def
= OutFC(Πn)geo.

Remark 3.19.1. Let us recall that if we write π1((Mg,[r])Q) for the
étale fundamental group of the moduli stack (Mg,[r])Q of hyperbolic
curves of type (g, r) over Q [cf. the discussion entitled “Curves” in §0],
then we have a natural outer homomorphism

π1((Mg,[r])Q) −→ OutFC(Πn) .

Suppose that n ≥ 4. Then OutFC(Πn) = OutF(Πn) does not de-
pend on n [cf. Theorem 2.3, (ii); [NodNon], Theorem B]. Morever,
one verifies easily that the image of the geometric fundamental group
π1((Mg,[r])Q) ⊆ π1((Mg,[r])Q) — where we use the notation Q to denote
an algebraic closure of Q — via the above displayed outer homomor-
phism is contained in the kernel OutFC(Πn)geo ⊆ OutFC(Πn) of the
tripod homomorphism associated to Πn [cf. Definition 3.19]. Thus,
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the outer homomorphism of the above display fits into a commutative
diagram of profinite groups

1 −−−→ π1((Mg,[r])Q) −−−→ π1((Mg,[r])Q) −−−→ Gal(Q/Q) −−−→ 1y y y
1 −−−→ OutF(Πn)geo −−−→ OutF(Πn)

T
Πtpd−−−→ OutC(Πtpd)∆+

— where the horizontal sequences are exact. In §4 below, we shall ver-
ify that the lower right-hand horizontal arrow is surjective [cf. Corol-
lary 4.15]. On the other hand, if Σ is the set of all prime num-
bers, then it follows from Belyi’s Theorem that the right-hand ver-
tical arrow is injective; moreover, the surjectivity of the right-hand
vertical arrow has been conjectured in the theory of the Grothendieck-
Teichmüller group. From this point of view, one may regard the quo-

tient OutF(Πn)
T

Πtpd

³ OutC(Πtpd)∆+ as a sort of arithmetic quotient
of OutF(Πn) and the subgroup OutF(Πn)geo ⊆ OutF(Πn) as a sort of
geometric portion of OutF(Πn).

Definition 3.20. Let m be a positive integer and Y log a stable log
curve over (Spec k)log. For each nonnegative integer i, write YΠi for the
“Πi” that occurs in the case where we take “X log” to be Y log. Then
we shall say that an isomorphism (respectively, outer isomorphism)

Π1
∼→ YΠ1 is m-cuspidalizable if it arises from a [necessarily unique,

up to a permutation of the m factors, by [NodNon], Theorem B] PFC-

admissible [cf. [CbTpI], Definition 1.4, (iii)] isomorphism Πm
∼→ YΠm.

Proposition 3.21 (Tripod homomorphisms and finite étale cov-
erings). Let Y log be a stable log curve over (Spec k)log and Y log →
X log a finite log étale covering over (Spec k)log. For each positive inte-

ger i, write Y log
i (respectively, YΠi) for the “X log

i ” (respectively, “Πi”)
that occurs in the case where we take “X log” to be Y log. Suppose that
Y log → X log is geometrically pro-Σ and geometrically Galois,
i.e., Y log → X log determines an injection YΠ1 ↪→ Π1 [that is well-
defined up to Π1-conjugation] whose image is normal. Let α̃ be an
automorphism of Π1 that preserves YΠ1 ⊆ Π1. Suppose, moreover, that
the outomorphism α of Π1 determined by α̃ is n-cuspidalizable [cf.
Definition 3.20]. Then the following hold:

(i) The outomorphism αY of YΠ1 determined by α̃ is n-cuspidali-
zable [cf. Definition 3.20].

(ii) Suppose that n ≥ 3. Let Πtpd ⊆ Π3,
YΠtpd ⊆ YΠ3 be cen-

tral [{1, 2, 3}-]tripods [cf. Definitions 3.3, (i); 3.7, (ii)] of Πn,
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YΠn, respectively. Then there exists a geometric [cf. Def-

inition 3.4, (ii)] outer isomorphism φtpd : Πtpd ∼→ YΠtpd such
that the outomorphism TΠtpd(α) [cf. Definition 3.19] of Πtpd is
compatible with the outomorphism TYΠtpd(αY ) [cf. (i); Defi-
nition 3.19] of YΠtpd relative to φtpd.

Proof. First, let us observe that, to verify Proposition 3.21 — by apply-
ing a suitable specialization isomorphism [cf. the discussion preceding
[CmbCsp], Definition 2.1, as well as [CbTpI], Remark 5.6.1] — we
may assume without loss of generality that X log and Y log are smooth
log curves over (Spec k)log. Write (UX)n, (UY )n for the 1-interior [cf.
[MzTa], Definition 5.1, (i)] of X log

n , Y log
n , respectively. [Here, we note

that in the present situation, the 0-interior of (Spec k)log, hence also

of X log
n , Y log

n , is empty!] Thus, one verifies easily that UX
def
= (UX)1,

UY
def
= (UY )1 are hyperbolic curves over k, and that (UX)n, (UY )n are

naturally isomorphic to the n-th configuration spaces of UX , UY , re-
spectively. Write U×n

X , U×n
Y for the respective fiber products of n

copies of UX , UY over k; Π×n
1 , YΠ×n

1 for the respective direct prod-
ucts of n copies of Π1,

YΠ1; Vn for the fiber product of the natu-
ral open immersion (UX)n ↪→ U×n

X and the natural finite étale cov-
ering U×n

Y → U×n
X . Then one verifies easily that the resulting open

immersion Vn ↪→ U×n
Y factors through the natural open immersion

(UY )n ↪→ U×n
Y , i.e., we obtain an open immersion Vn ↪→ (UY )n. That

is to say, whereas (UY )n is the open subscheme of U×n
Y obtained by re-

moving the various diagonals of U×n
Y , the scheme Vn may be thought of

as the open subscheme of U×n
Y obtained by removing the various Galois

conjugates of these diagonals, relative to the action of the Galois group
Gal(U×n

Y /U×n
X ) = Gal(UY /UX)×n. In particular, we obtain a natural

outer isomorphism and outer surjection

Πn ×Π×n
1

YΠ×n
1

∼← ΠVn ³ YΠn

— where we write ΠVn for the maximal pro-Σ quotient of the étale
fundamental group of Vn.

Now we verify assertion (i). Let α̃n be an automorphism of Πn

that lies over the automorphism α̃ of Π1 with respect to each of the
n natural projections Πn ³ Π1. Then one verifies easily, in light of
the description given above of (UY )n and Vn, that the outomorphism
of Πn×Π×n

1

YΠ×n
1 induced by α̃n and αY preserves the inertia subgroups

of the irreducible components of the complement (UY )n \ Vn. Thus,
we conclude, by applying the morphisms of the above display, that the
outomorphism of Πn ×Π×n

1

YΠ×n
1 induced by α̃n and αY determines an

outomorphism of YΠn. Moreover, one verifies easily that the resulting
outomorphism of YΠn lies over the outomorphism αY of YΠ1. This
completes the proof of assertion (i).
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Next, we verify assertion (ii). First, let us observe that the natural
inclusion Πtpd ↪→ Π3, together with the trivial homomorphism Πtpd →
({1} ↪→) YΠ×3

1 , determines an injection Πtpd ↪→ Π3 ×Π×3
1

YΠ×3
1

∼← ΠV3 .

Moreover, it follows immediately from the fact that the blow-up oper-
ation that gives rise to a central tripod is compatible with étale local-
ization [cf. the discussion of [CmbCsp], Definition 1.8] that — after
possibly replacing YΠtpd ⊆ YΠ3 by a suitable YΠ3-conjugate of YΠtpd —
the composite of this injection Πtpd ↪→ ΠV3 with the natural outer sur-
jection ΠV3 ³ YΠ3 of the above display determines a geometric outer
[cf. Lemma 3.12] isomorphism φtpd : Πtpd ∼→ YΠtpd ⊆ YΠ3. On the
other hand, one verifies easily that this outer isomorphism φtpd satis-
fies the property stated in assertion (ii). This completes the proof of
assertion (ii). ¤

Corollary 3.22 (Non-surjectivity result). In the notation of The-
orem 3.16, suppose that (g, r) 6∈ {(0, 3); (1, 1)}. Then the natural in-
jection

OutFC(Π2) ↪→ OutFC(Π1)

of [NodNon], Theorem B, is not surjective.

Proof. First, let us observe — by considering a suitable stable log
curve of type (g, r) over (Spec k)log and applying a suitable special-
ization isomorphism [cf. the discussion preceding [CmbCsp], Defini-
tion 2.1, as well as [CbTpI], Remark 5.6.1] — that, to verify Corol-
lary 3.22, we may assume without loss of generality that G is totally
degenerate [cf. [CbTpI], Definition 2.3, (iv)], i.e., that every vertex
of G is a tripod of X log

n [cf. Definition 3.1, (v)]. Note that [since
(g, r) 6∈ {(0, 3); (1, 1)}] this implies that Vert(G)] ≥ 2. Let us fix a ver-

tex v0 ∈ Vert(G) and write αv0

def
= idG|v0

∈ Aut|grph|(G|v0) [cf. [CbTpI],
Definitions 2.1, (iii), and 2.6, (i); Remark 4.1.2 of the present paper].

For each v ∈ Vert(G) \ {v0}, let αv ∈ Aut|grph|(G|v) be a nontriv-
ial automorphism of G|v such that αv ∈ OutC(ΠG|v)

∆, and, moreover,
χG|v(αv) = 1 [cf. [CbTpI], Definition 3.8, (ii)]. Here, we note that
since the image of the natural outer Galois representation of the ab-
solute Galois group of Q associated to P1

Q \ {0, 1,∞} is contained in

“OutC(−)∆”, by considering a nontrivial element of this image whose
image via the cyclotomic character is trivial, one verifies immediately
that such an automorphism αv ∈ Aut|grph|(G|v) always exists. Then it
follows immediately from [CbTpI], Theorem B, (iii), that there exists

an automorphism α ∈ Aut|grph|(G) such that ρVert
G (α) = (αv)v∈Vert(G).

Now assume that there exists an outomorphism α2 ∈ OutFC(Π2) such

that α ∈ Aut|grph|(G) (⊆ Out(ΠG)
∼← Out(Π1)) is equal to the image

of α2 via the injection in question OutFC(Π2) ↪→ OutFC(Π1). Then,
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for each v ∈ Vert(G), since αv ∈ OutC(ΠG|v)
∆, and α ∈ Aut|grph|(G),

it follows immediately from the various definitions involved that α2 ∈
OutFC(Π2)[Πv : {|C|, ∆}] — where we use the notation Πv to denote a

verticial subgroup of ΠG
∼← Π1 associated to v ∈ Vert(G). Thus, since

αv0

def
= idG|v0

, it follows from Theorem 3.17, (ii), that αv = idG|v for ev-
ery v ∈ Vert(G), in contradiction to the fact that for v ∈ Vert(G)\{v0}
(6= ∅), the automorphism αv ∈ Aut|grph|(G|v) is nontrivial. This com-
pletes the proof of Corollary 3.22. ¤

Remark 3.22.1.

(i) Let us recall from [NodNon], Corollary 6.6, that, in the dis-
crete case, the homomorphism that corresponds to the homo-
morphism discussed in Corollary 3.22 is, in fact, surjective;
moreover, this surjectivity may be regarded as an immediate
consequence of the Dehn-Nielsen-Baer theorem — cf. the proof
of [CmbCsp], Theorem 5.1, (ii). This phenomenon illustrates
that, in general, analogous constructions in the discrete and
profinite cases may in fact exhibit quite different behavior.

(ii) In the context of (i), we recall another famous example of sub-
stantially different behavior in the discrete and profinite cases:
As is well-known, in classical algebraic topology, singular co-
homology with coefficients in Z yields a “good” cohomology
theory with coefficients in Z. On the other hand, in the 1960’s,
Serre gave an argument involving supersingular elliptic curves
in positive characteristic which shows that such a “good” co-
homology theory with coefficients in Z [or even in Zp!] cannot
exist for smooth varieties of positive characteristic.

(iii) In [Lch], various conjectures concerning [in the notation of the
present paper] the profinite group “Out(Π1)” were introduced.
However, at the time of writing, the authors of the present
paper were unable to find any justification for the validity of
these conjectures that goes beyond the observation that the
discrete analogues of these conjectures are indeed valid. That
is to say, there does not appear to exist any justification for
excluding the possibility that — just as in the case of the exam-
ples discussed in (i), (ii), i.e., the Dehn-Nielsen-Baer theorem
and singular cohomology with coefficients in Z — the discrete
and profinite cases exhibit substantially different behavior. In
particular, it appears to the authors that it is desirable that
this issue be addressed in a satisfactory fashion in the context
of these conjectures.
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Remark 3.22.2. As discussed in Remark 3.22.1, (i), in the discrete
case, the homomorphism that corresponds to the homomorphism dis-
cussed in Corollary 3.22 is, in fact, bijective. The proof of Corollary 3.22
fails in the discrete case for the following reason. The pro-Σ “Π1” of
a tripod admits nontrivial C-admissible outomorphisms that commute
with the outer modular symmetries, and, moreover, lie in the kernel of
the cyclotomic character [cf. the proof of Corollary 3.22]. By contrast,
the discrete “Π1” of a tripod does not admit such outomorphisms. In-
deed, it follows from a classical result of Nielsen [cf. [CmbCsp], Remark
5.3.1] that the discrete “OutC(Π1)

cusp” in the case of a tripod is a finite
group of order 2 whose unique nontrivial element arises from complex
conjugation.

Remark 3.22.3. It follows from [NodNon], Theorem B, together with
Corollary 3.22, that if (g, r) 6∈ {(0, 3); (1, 1)}, then the homomorphism
OutFC(Πn+1) → OutFC(Πn) of [NodNon], Theorem B, fits into the
following sequences of homomorphisms of profinite groups: If r 6= 0,
then for any n ≥ 3,

OutFC(Πn)
∼→ OutFC(Π3)

' ?
↪→ OutFC(Π2)

6'
↪→ OutFC(Π1) .

If r = 0, then for any n ≥ 4,

OutFC(Πn)
∼→ OutFC(Π4)

' ?
↪→ OutFC(Π3)

' ?
↪→ OutFC(Π2)

6'
↪→ OutFC(Π1) .

Definition 3.23. Let Σ0 be a nonempty set of prime numbers and
G0 a semi-graph of anabelioids of pro-Σ0 PSC-type. Write ΠG0 for the
[pro-Σ0] fundamental group of G0.

(i) Let H be a semi-graph of anabelioids of pro-Σ0 PSC-type,

S ⊆ Node(H), and φ : HÃS
∼→ G0 [cf. [CbTpI], Definition

2.8, for more on this notation] an isomorphism [of semi-graphs
of anabelioids of PSC-type]. Then we shall refer to the triple
(H, S, φ) as a degeneration structure on G0.

(ii) Let (H1, S1, φ1), (H2, S2, φ2) be two degeneration structures on
G0 [cf. (i)]. Then we shall write

(H2, S2, φ2) ¹ (H1, S1, φ1)

if there exist a subset S2,1 ⊆ S2 of S2 and a(n) [uniquely de-
termined, by φ1 and φ2! — cf. [CmbGC], Proposition 1.5, (ii)]

isomorphism φ2,1 : (H2)ÃS2,1

∼→ H1 [i.e., a degeneration struc-
ture (H2, S2,1, φ2,1) on H1] such that φ2,1 maps S2 \ S2,1 onto
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S1, and the diagram

((H2)ÃS2,1)ÃS2\S2,1

∼−−−→ (H1)ÃS1

o
y o

yφ1

(H2)ÃS2

φ2−−−→
∼

G0

— where the upper horizontal arrow is the isomorphism in-
duced by φ2,1, and the left-hand vertical arrow is the natural
isomorphism — commutes. [Here, we note that the subset S2,1

is also uniquely determined by φ1 and φ2 — cf. [CmbGC],
Proposition 1.2, (i).]

(iii) Let (H1, S1, φ1), (H2, S2, φ2) be two degeneration structures on
G0 [cf. (i)]. Then we shall say that (H1, S1, φ1) is co-Dehn to
(H2, S2, φ2) if there exists a degeneration structure (H3, S3, φ3)
on G0 such that

(H3, S3, φ3) ¹ (H1, S1, φ1) ; (H3, S3, φ3) ¹ (H2, S2, φ2)

[cf. (ii)].

(iv) Let (H, S, φ) be a degeneration structure on G0 [cf. (i)] and
α ∈ Out(ΠG0). Then we shall say that α is an (H, S, φ)-Dehn
multi-twist of G0 if α is contained in the image of the composite

Dehn(H) ↪→ Out(ΠH)
∼← Out(ΠHÃS

)
∼→ Out(ΠG0)

— where the first arrow is the natural inclusion [cf. [CbTpI],
Definition 4.4], the second arrow is the isomorphism deter-
mined by ΦHÃS

[cf. [CbTpI], Definition 2.10], and the third
arrow is the isomorphism determined by φ. We shall say that
α is a nondegenerate (respectively, positive definite) (H, S, φ)-
Dehn multi-twist of G0 if α is the image of a nondegenerate [cf.
[CbTpI], Definition 5.8, (ii)] (respectively, positive definite [cf.
[CbTpI], Definition 5.8, (iii)]) profinite Dehn multi-twist of H
via the above composite.

(v) Let m be a positive integer and Y log a stable log curve over
(Spec k)log. If m ≥ 2, then suppose that Σ0 is either equal
to Primes or of cardinality one. For each nonnegative integer
i, write YΠi (respectively, H) for the “Πi” (respectively, “G”)
that occurs in the case where we take “X log” to be Y log. Then
we shall say that a degeneration structure (H, S, φ) on G [cf.
(i)] is m-cuspidalizable if the composite

YΠ1
∼−→ ΠH

ΦHÃS
∼←− ΠHÃS

φ
∼−→ ΠG

∼←− Π1

— where the first and fourth arrows are the natural outer iso-
morphisms [cf. Definition 3.1, (ii)], and the second arrow ΦHÃS
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is the natural outer isomorphism of [CbTpI], Definition 2.10 —
is m-cuspidalizable [cf. Definition 3.20].

Remark 3.23.1. One interesting open problem in the theory of profi-
nite Dehn multi-twists developed in [CbTpI], §4, is the following: In
the notation of Definition 3.23, for i = 1, 2, let (Hi, Si, φi) be a de-
generation structure on G0 [cf. Definition 3.23, (i)]; αi ∈ Out(ΠG0) a
nondegenerate (Hi, Si, φi)-Dehn multi-twist [cf. Definition 3.23, (iv)].
Then:

Suppose that α1 commutes with α2. Then is (H1, S1, φ1)
co-Dehn to (H2, S2, φ2) [cf. Definition 3.23, (iii)]?

It is not clear to the authors at the time of writing whether or not this
question may be answered in the affirmative. Nevertheless, we are able
to obtain a partial result in this direction [cf. Corollary 3.25 below].

Proposition 3.24 (Compatibility of tripod homomorphisms).
Suppose that n ≥ 3. Then the following hold:

(i) Let Y log be a stable log curve over (Spec k)log. For each non-
negative integer i, write YΠi (respectively, H) for the “Πi” (re-
spectively, “G”) that occurs in the case where we take “X log” to
be Y log. Let (H, S, φ) be an n-cuspidalizable degeneration

structure on G [cf. Definition 3.23, (i), (v)]; φn : YΠn
∼→ Πn

a PFC-admissible outer isomorphism [cf. [CbTpI], Defini-
tion 1.4, (iii)] that lies over the displayed composite isomor-
phism of Definition 3.23, (v); Πtpd ⊆ Π3,

YΠtpd ⊆ YΠ3 cen-
tral [{1, 2, 3}-]tripods [cf. Definitions 3.3, (i); 3.7, (ii)] of
Πn,

YΠn, respectively. Then there exists an outer isomorphism
φtpd : YΠtpd ∼→ Πtpd such that the diagram

OutFC(YΠn)
∼−−−→ OutFC(Πn)

TYΠtpd

y yT
Πtpd

Out(YΠtpd)
∼−−−→ Out(Πtpd)

[cf. Definition 3.19] — where the upper and lower horizontal
arrows are the isomorphisms induced by φn, φtpd, respectively
— commutes, up to inner automorphisms of Out(Πtpd). In
particular, φn determines an isomorphism

OutFC(YΠn)geo ∼−→ OutFC(Πn)geo

[cf. Definition 3.19].

(ii) If we regard OutFC(Πn) as a closed subgroup of OutFC(Π1) by
means of the natural injection OutFC(Πn) ↪→ OutFC(Π1) of
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[NodNon], Theorem B, then the closed subgroup Dehn(G) ⊆
(Aut(G) ⊆) Out(ΠG)

∼← Out(Π1) [cf. [CbTpI], Definition 4.4]
is contained in OutFC(Πn)geo ⊆ OutFC(Πn), i.e.,

Dehn(G) ⊆ OutFC(Πn)geo .

Proof. First, we verify assertion (i). Let us observe that if the outer
isomorphism φn arises scheme-theoretically as a specialization isomor-
phism — cf. the discussion preceding [CmbCsp], Definition 2.1, as well
as [CbTpI], Remark 5.6.1 — then the commutativity in question follows
immediately from the various definitions involved [cf. also the discus-
sion preceding [CmbCsp], Definition 2.1]. Now the general case follows
from the observation that the scheme-theoretic case treated above al-
lows one to reduce to the case where Y log = X log, and φn is an FC-
admissible outomorphism, in which case the commutativity in question
is a tautology. This completes the proof of assertion (i).

Next, we verify assertion (ii). The inclusion Dehn(G) ⊆ OutFC(Πn)
follows immediately from the fact that every profinite Dehn multi-
twist arises scheme-theoretically. Next, we observe that the inclusion
Dehn(G) ⊆ OutFC(Πn)geo may be regarded either as a consequence
of the fact that every profinite Dehn multi-twist arises “Q-scheme-
theoretically”, i.e., from scheme theory over Q [cf. the commutative
diagram of Remark 3.19.1], or as a consequence of the following argu-
ment: Observe that it follows immediately from assertion (i), together
with [CbTpI], Theorem 4.8, (ii), (iv), that, by applying a suitable spe-
cialization isomorphism — cf. the discussion preceding [CmbCsp], Def-
inition 2.1, as well as [CbTpI], Remark 5.6.1 — we may assume with-
out loss of generality that G is totally degenerate. Then the inclusion
Dehn(G) ⊆ OutFC(Πn)geo follows immediately from Theorem 3.18, (ii)
[cf. also Theorem 3.16, (v); [CbTpI], Definition 4.4!]. This completes
the proof of assertion (ii). ¤

Corollary 3.25 (Co-Dehn-ness of degeneration structures in
the totally degenerate case). In the notation of Theorem 3.16, for

i = 1, 2, let Y log
i be a stable log curve over (Spec k)log; Hi the “G” that

occurs in the case where we take “X log” to be Y log
i ; (Hi, Si, φi) a 3-

cuspidalizable degeneration structure on G [cf. Definition 3.23,
(i), (v)]; αi ∈ Out(ΠG) a nondegenerate (Hi, Si, φi)-Dehn multi-twist
of G [cf. Definition 3.23, (iv)]. Suppose that α1 commutes with α2,
and that H2 is totally degenerate [cf. [CbTpI], Definition 2.3, (iv)].
Suppose, moreover, that one of the following conditions is satisfied:

(a) r 6= 0.

(b) α1 and α2 are positive definite [cf. Definition 3.23, (iv)].
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Then (H1, S1, φ1) is co-Dehn to (H2, S2, φ2) [cf. Definition 3.23,
(iii)], or, equivalently [since H2 is totally degenerate], (H2, S2, φ2) ¹
(H1, S1, φ1) [cf. Definition 3.23, (ii)].

Proof. For i = 1, 2, write ψi : ΠG
∼→ ΠHi

for the composite outer
isomorphism

ψi : ΠG

φi
∼← Π(Hi)ÃSi

Φ(Hi)ÃSi
∼→ ΠHi

and ψ
def
= ψ1 ◦ ψ−1

2 . Write α1[H2] ∈ Out(ΠH2) for the outomorphism
obtained by conjugating α1 by ψ2. First, we claim that the following
assertion holds:

Claim 3.25.A: There exists a positive integer a such

that β
def
= α1[H2]

a ∈ Dehn(H2).

Indeed, since α1 is an (H1, S1, φ1)-Dehn multi-twist of G, the outomor-
phism α1[H2] of ΠH2 is group-theoretically cuspidal. Thus, since α1

commutes with α2, it follows, in the case of condition (a) (respectively,
(b)), from Theorem 1.9, (i) (respectively Theorem 1.9, (ii)), which
may be applied in light of [CbTpI], Corollary 5.9, (ii) (respectively,
[CbTpI], Corollary 5.9, (iii)), that α1[H2] ∈ Aut(H2). In particular,
since the underlying semi-graph of H2 is finite, there exists a positive
integer a such that α1[H2]

a ∈ Aut|grph|(H2) [cf. [CbTpI], Definition
2.6, (i); Remark 4.1.2 of the present paper]. On the other hand, since
α1 is an (H1, S1, φ1)-Dehn multi-twist of G, it follows immediately from
Proposition 3.24, (i), (ii), that the image of α1 via the tripod homo-
morphism associated to Π3 [cf. Definition 3.19] is trivial. Thus, since

H2 is totally degenerate, and α1[H2]
a ∈ Aut|grph|(H2), by applying The-

orem 3.18, (ii), together with Proposition 3.24, (i), we conclude that
α1[H2]

a ∈ Dehn(H2). This completes the proof of Claim 3.25.A.

Next, let us fix an element l ∈ Σ. For i ∈ {1, 2}, write H{l}
i for the

semi-graph of anabelioids of pro-l PSC-type obtained by forming the
pro-l completion of Hi [cf. [SemiAn], Definition 2.9, (ii)]. Then it fol-
lows immediately from Claim 3.25.A, together with [CbTpI], Theorem
4.8, (ii), (iv), that there exists a subset S ⊆ Node(H2) [which may

depend on l!] such that the automorphism β{l} ∈ Aut(H{l}
2 ) induced

by β is contained in Dehn((H{l}
2 )ÃS) ⊆ Dehn(H{l}

2 ) ⊆ Aut(H{l}
2 ) [i.e.,

β{l} is a profinite Dehn multi-twist of (H{l}
2 )ÃS], and, moreover, β{l}

is nondegenerate as a profinite Dehn multi-twist of (H{l}
2 )ÃS. Write

α
{l}
1 for the outomorphism of the pro-l group ΠH{l}

1
[which is naturally

isomorphic to the maximal pro-l quotient of ΠH1 ] induced by α1 and

ψ{l} : ΠH{l}
2

∼→ ΠH{l}
1

for the outer isomorphism induced by ψ [cf. the

discussion preceding Claim 3.25.A].
Next, we claim that the following assertion holds:
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Claim 3.25.B: The composite outer isomorphism

ψS : Π(H2)ÃS

Φ(H2)ÃS
∼→ ΠH2

ψ
∼→ ΠH1

is graphic, i.e., arises from an isomorphism (H2)ÃS
∼→

H1.

Indeed, let ψ̃S : Π(H2)ÃS

∼→ ΠH1 be an isomorphism that lifts ψS.
Then it follows immediately from [CmbGC], Proposition 1.5, (ii) —
by considering the functorial bijections between the sets “VCN” [cf.
[NodNon], Definition 1.1, (iii)] of various connected finite étale cover-
ings of H1, (H2)ÃS — that, to verify Claim 3.25.B, it suffices to verify
the following:

Let I2 → (H2)ÃS be a connected finite étale cov-
ering of (H2)ÃS that corresponds to a characteristic
open subgroup ΠI2 ⊆ Π(H2)ÃS

. Write I1 → H1 for
the connected finite étale covering of H1 that corre-
sponds to the [necessarily characteristic] open sub-

group ΠI1

def
= ψ̃S(ΠI2) ⊆ ΠH1 and I{l}

1 , I{l}
2 for the

semi-graphs of anabelioids of pro-l PSC-type obtained
by forming the pro-l completions of I1, I2, respec-
tively. Then the outer isomorphism ΠI{l}

2

∼→ ΠI{l}
1

de-

termined by ψ̃S is graphic.

To verify this graphicity, let us first recall that the automorphisms

β{l} ∈ Aut((H{l}
2 )ÃS) and α1 ∈ Aut(H1) are nondegenerate profinite

Dehn multi-twists. Thus, it follows immediately from Lemma 3.26, (i),

(ii), below, that there exist liftings β̃ ∈ Aut(Π(H2)ÃS
), α̃1 ∈ Aut(ΠH1)

of β, α1, respectively, and a positive integer b such that the outomor-

phisms γ2, γ1 of ΠI{l}
2

, ΠI{l}
1

determined by β̃b, α̃b
1 are nondegenerate

profinite Dehn multi-twists of I{l}
2 , I{l}

1 , respectively, and, moreover,
γ2 and γa

1 are compatible relative to the outer isomorphism in ques-
tion ΠI{l}

2

∼→ ΠI{l}
1

. Moreover, if condition (b) is satisfied, then γ1 is

a positive definite profinite Dehn multi-twist of I{l}
1 [cf. Lemma 3.26,

(ii), below]. Thus, it follows, in the case of condition (a) (respectively,
(b)), from Theorem 1.9, (i) (respectively Theorem 1.9, (ii)), which
may be applied in light of [CbTpI], Corollary 5.9, (ii) (respectively,
[CbTpI], Corollary 5.9, (iii)), that the outer isomorphism in question

ΠI{l}
2

∼→ ΠI{l}
1

is graphic. This completes the proof of Claim 3.25.B.

On the other hand, one verifies easily from the various definitions in-
volved that Claim 3.25.B implies that (H2, S2, φ2) ¹ (H1, S1, φ1). This
completes the proof of Corollary 3.25. ¤
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Lemma 3.26 (Profinite Dehn multi-twists and pro-Σ comple-
tions of finite étale coverings). Let Σ1 ⊆ Σ0 be nonempty sets of
prime numbers, G0 a semi-graph of anabelioids of pro-Σ0 PSC-type,
H0 → G0 a connected finite étale Galois covering that arises from a
normal open subgroup ΠH0 ⊆ ΠG0 of ΠG0, and α̃ ∈ Aut(ΠG0). Write
G1, H1 for the semi-graphs of anabelioids of pro-Σ1 PSC-type obtained
by forming the pro-Σ1 completions of G0, H0, respectively [cf. [SemiAn],
Definition 2.9, (ii)]. Suppose that α̃ ∈ Aut(ΠG0) preserves the normal
open subgroup ΠH0 ⊆ ΠG0 corresponding to H0 → G0. Write αG0, αH0,
αG1, αH1 for the respective outomorphisms of ΠG0, ΠH0, ΠG1, ΠH1 in-
duced by α̃. Suppose, moreover, that αG0 ∈ Dehn(G0) [cf. [CbTpI],
Definition 4.4]. Then the following hold:

(i) It holds that αG1 ∈ Dehn(G1). Moreover, there exists a positive
integer a such that

αa
H0

∈ Dehn(H0) , αa
H1

∈ Dehn(H1) .

(ii) If, moreover, αG1 ∈ Dehn(G1) [cf. (i)] is nondegenerate (re-
spectively, positive definite) [cf. [CbTpI], Definition 5.8,
(ii), (iii)], then αa

H1
∈ Dehn(H1) [cf. (i)] is nondegenerate

(respectively, positive definite).

Proof. First, we verify assertion (i). One verifies easily from [NodNon],
Lemma 2.6, (i), together with [CbTpI], Corollary 5.9, (i), that there
exists a positive integer a such that αa

H0
∈ Dehn(H0). Now since

αG0 ∈ Dehn(G0), αa
H0

∈ Dehn(H0), it follows immediately from the
various definitions involved that αG1 ∈ Dehn(G1), αa

H1
∈ Dehn(H1).

This completes the proof of assertion (i). Assertion (ii) follows imme-
diately from [CbTpI], Corollary 5.9, (v) [applied, via [CbTpI], Theorem
4.8, (ii), (iv), to each of the Dehn coordinates — cf. [CbTpI], Definition
5.8, (i) — of the profinite Dehn multi-twists under consideration]. This
completes the proof of Lemma 3.26. ¤

Corollary 3.27 (Commensurator of profinite Dehn multi-twists
in the totally degenerate case). In the notation of Theorem 3.16,
Definition 3.19 [so n ≥ 3], suppose further that G is totally degener-

ate [cf. [CbTpI], Definition 2.3, (iv)]. Write s : Spec k → (Mg,[r])k
def
=

(Mg,[r])Spec k [cf. the discussion entitled “Curves” in §0] for the under-
lying (1-)morphism of algebraic stacks of the classifying (1-)morphism

(Spec k)log → (Mlog
g,[r])k

def
= (Mlog

g,[r])Spec k [cf. the discussion entitled

“Curves” in §0] of the stable log curve X log over (Spec k)log; Ñ log
s for

the log scheme obtained by equipping Ñs
def
= Spec k with the log structure

induced, via s, by the log structure of (Mlog
g,[r])k; N log

s for the log stack

obtained by forming the [stack-theoretic] quotient of the log scheme Ñ log
s
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by the natural action of the finite [k-]group “s×(Mg,[r])k
s”, i.e., the fiber

product over (Mg,[r])k of two copies of s; Ns for the underlying stack
of the log stack N log

s ; INs ⊆ π1(N log
s ) for the closed subgroup of the log

fundamental group π1(N log
s ) of N log

s given by the kernel of the natural
surjection π1(N log

s ) ³ π1(Ns) [induced by the (1-)morphism N log
s → Ns

obtained by forgetting the log structure]; π
(Σ)
1 (N log

s ) for the quotient of
π1(N log

s ) by the kernel of the natural surjection from INs to its maximal
pro-Σ quotient IΣ

Ns
. Then the following hold:

(i) The natural homomorphism π1(N log
s ) → Out(Π1) factors through

the quotient π1(N log
s ) ³ π

(Σ)
1 (N log

s ) and the natural inclusion
NOutFC(Πn)geo(Dehn(G)) ↪→ Out(Π1) [cf. Proposition 3.24, (ii)].
In particular, we obtain a homomorphism

π
(Σ)
1 (N log

s ) −→ NOutFC(Πn)geo(Dehn(G)) ,

hence also a homomorphism

π
(Σ)
1 (N log

s ) −→ COutFC(Πn)geo(Dehn(G)) .

(ii) The second displayed homomorphism of (i) fits into a natural
commutative diagram of profinite groups

1 −−−→ IΣ
Ns

−−−→ π
(Σ)
1 (N log

s ) −−−→ π1(Ns) −−−→ 1y y y
1 −−−→ Dehn(G) −−−→ COutFC(Πn)geo(Dehn(G)) −−−→ Aut(G) −−−→ 1

[cf. Definition 3.1, (ii), concerning the notation “G”] — where
the horizontal sequences are exact, and the vertical arrows are
isomorphisms.

(iii) Dehn(G) is open in COutFC(Πn)geo(Dehn(G)).

(iv) We have an equality

NOutFC(Πn)geo(Dehn(G)) = COutFC(Πn)geo(Dehn(G)) .

Proof. First, we verify assertion (i). The fact that the image of the
homomorphism in question is contained in OutFC(Πn)geo follows imme-
diately from the [tautological!] fact that this image arises “Q-scheme-
theoretically”, i.e., from scheme theory over Q [cf. the commutative
diagram of Remark 3.19.1]. Thus, assertion (i) follows immediately
from the fact that the natural homomorphism π1(N log

s ) → Out(Π1)

determines an isomorphism IΣ
Ns

∼→ Dehn(G) [cf. [CbTpI], Proposition
5.6, (ii)]. This completes the proof of assertion (i).

Next, we verify assertion (ii). First, let us observe that it follows from
[CbTpI], Theorem 5.14, (iii), that COutFC(Πn)geo(Dehn(G)) ⊆ Aut(G).
Thus, we obtain a natural homomorphism COutFC(Πn)geo(Dehn(G)) →
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Aut(G), whose kernel contains Dehn(G) [cf. the definition of a profi-
nite Dehn multi-twist given in [CbTpI], Definition 4.4]. On the other
hand, if an element α ∈ COutFC(Πn)geo(Dehn(G)) acts trivially on G,
then, since G is totally degenerate, it follows immediately from The-
orem 3.18, (ii), that α ∈ Dehn(G). This completes the proof of the
existence of the lower exact sequence in the diagram of assertion (ii),
except for the surjectivity of the third arrow of this sequence. Thus,
it follows immediately from the proof of assertion (i) that, to com-
plete the proof of assertion (ii), it suffices to verify that the right-hand
vertical arrow π1(Ns) → Aut(G) of the diagram is an isomorphism.
Write Aut(Spec k)log(X

log) for the group of automorphisms of X log over

(Spec k)log. Then since X log is totally degenerate, one verifies easily
that the natural homomorphism Aut(Spec k)log(X

log) → Aut(G) is an
isomorphism. Thus, it follows immediately from the various defini-
tions involved that the right-hand vertical arrow π1(Ns) → Aut(G) of
the diagram is an isomorphism. This completes the proof of assertion
(ii).

Assertion (iii) follows immediately from the exactness of the lower
sequence of the diagram of assertion (ii), together with the finiteness
of G. Assertion (iv) follows immediately from the fact that the middle
vertical arrow of the diagram of assertion (ii) is an isomorphism which
factors through NOutFC(Πn)geo(Dehn(G)) ⊆ COutFC(Πn)geo(Dehn(G)) [cf.
assertion (i)]. This completes the proof of Corollary 3.27. ¤

Remark 3.27.1. One interesting consequence of Corollary 3.27 is the
following: The profinite group OutFC(Πn)geo [which, as discussed in
Remark 3.19.1, may be regarded as the geometric portion of the group
of FC-admissible outomorphisms of the configuration space group Πn],
hence also the commensurator COutFC(Πn)geo(Dehn(G)), is defined in a
purely combinatorial/group-theoretic fashion. In particular, it follows
from the commutative diagram of Corollary 3.27, (ii), that this com-
mensurator COutFC(Πn)geo(Dehn(G)) yields a purely combinatorial/group-
theoretic algorithm for reconstructing the profinite groups of scheme-
theoretic origin that appear in the upper sequence of this diagram.
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4. Glueability of combinatorial cuspidalizations

In the present §4, we discuss the glueability of combinatorial cuspidal-
izations. The resulting theory may be regarded as a higher-dimensional
analogue of the displayed exact sequence of [CbTpI], Theorem B, (iii)
[cf. Theorem 4.14, (iii), below, of the present paper]. This theory im-
plies a certain key surjectivity property of the tripod homomorphism
[cf. Corollary 4.15 below]. Finally, we apply this result to construct
cuspidalizations of the log fundamental group of a stable log curve over
a finite field [cf. Corollary 4.16 below] and to compute certain com-
mensurators of the corresponding Galois image in the totally degenerate
case [cf. Corollary 4.17 below].

In the present §4, we maintain the notation of the preceding §3 [cf.
also Definition 3.1]. In addition, let Σ0 be a nonempty set of prime
numbers and G0 a semi-graph of anabelioids of pro-Σ0 PSC-type. Write
G0 for the underlying semi-graph of G0 and ΠG0 for the [pro-Σ0] funda-
mental group of G0.

Definition 4.1.

(i) We shall write

Aut|Brch(G0)|(G0) ⊆ (Aut|Vert(G0)|(G0) ∩ Aut|Node(G0)|(G0) ⊆) Aut(G0)

[cf. [CbTpI], Definition 2.6, (i)] for the [closed] subgroup of
Aut(G0) consisting of automorphisms α of G0 that induce the
identity automorphism of Vert(G0), Node(G0), and, moreover,
fix each of the branches of every node of G0. Thus, we have a
natural exact sequence of profinite groups

1 −→ Aut|grph|(G0) −→ Aut|Brch(G0)|(G0) −→ Aut(Cusp(G0))

[cf. [CbTpI], Definition 2.6, (i); Remark 4.1.2 of the present
paper].

(ii) Let v ∈ Vert(G0). Then we shall write

E(G0|v : G0) ⊆ Edge(G0|v) (= Cusp(G0|v))

[cf. [CbTpI], Definition 2.1, (iii)] for the subset of Edge(G0|v)
(= Cusp(G0|v)) consisting of cusps of G0|v that arise from nodes
of G0.

(iii) We shall write

Glubrch(G0) ⊆
∏

v∈Vert(G0)

Aut|E(G|v :G)|(G0|v)

[cf. (ii); [CbTpI], Definition 2.6, (i)] for the [closed] subgroup of∏
v∈Vert(G0) Aut|E(G|v :G)|(G0|v) consisting of “glueable” collections
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of automorphisms of the various G0|v, i.e., the subgroup con-
sisting of (αv)v∈Vert(G0) such that, for every v, w ∈ Vert(G0), it
holds that χv(αv) = χw(αw) [cf. [CbTpI], Definition 3.8, (ii)].

Remark 4.1.1. In the notation of Definition 4.1, one verifies easily
from the various definitions involved that

Glu(G0) = Glubrch(G0) ∩
( ∏

v∈Vert(G0)

Aut|grph|(G0|v)
)

[cf. [CbTpI], Definitions 2.6, (i), and 4.9; Remark 4.1.2 of the present
paper].

Remark 4.1.2. Here, we take the opportunity to correct a minor
error in the exposition of [CbTpI]. In [CbTpI], Definition 2.6, (i),

“Aut|grph|(G)” should be defined as the subgroup of Aut(G) of automor-
phisms of G which induce the identity automorphism on the underlying
semi-graph of G [cf. the definition given in [CbTpI], Theorem B]. In a

similar vein, in [CbTpI], Definition 2.6, (iii), “Aut|H|(G)” should be de-
fined as the subgroup of Aut(G) of automorphisms of G which preserve
the sub-semi-graph H of the underlying semi-graph of G and, moreover,
induce the identity automorphism of H. Since the correct definitions
are applied throughout the exposition of [CbTpI], these errors in the
statement of the definitions have no substantive effect on the exposition
of [CbTpI], except for the following two instances [which themselves do
not have any substantive effect on the exposition of [CbTpI]]:

(i) In [CbTpI], Proposition 2.7, (ii), “Aut|grph|(G)” should be re-

placed by “Aut|VCN(G)|(G)”.

(ii) In [CbTpI], Proposition 2.7, (iii), the phrase “In particular”
should be replaced by the word “Finally”.

Theorem 4.2 (Glueability of combinatorial cuspidalizations in
the one-dimensional case). Let Σ0 be a nonempty set of prime num-
bers and G0 a semi-graph of anabelioids of pro-Σ0 PSC-type. Write ΠG0

for the [pro-Σ0] fundamental group of G0. Then the following hold:

(i) The closed subgroup Dehn(G0) ⊆ Aut(G0) [cf. [CbTpI], Def-

inition 4.4] is contained in Aut|Brch(G0)|(G0) ⊆ Aut(G0) [cf.

Definition 4.1, (i)], i.e., Dehn(G0) ⊆ Aut|Brch(G0)|(G0).

(ii) The natural homomorphism

Aut|Brch(G0)|(G0) −→
∏

v∈Vert(G0) Aut(G0|v)
α 7→ (αG0|v)v∈Vert(G0)
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[cf. [CbTpI], Definition 2.14, (ii); [CbTpI], Remark 2.5.1,
(ii)] factors through

Glubrch(G0) ⊆
∏

v∈Vert(G0)

Aut(G0|v)

[cf. Definition 4.1, (iii)].

(iii) The natural inclusion Dehn(G0) ↪→ Aut|Brch(G0)|(G0) of (i) and

the natural homomorphism ρbrch
G0

: Aut|Brch(G0)|(G0) → Glubrch(G0)
[cf. (ii)] fit into an exact sequence of profinite groups

1 −→ Dehn(G0) −→ Aut|Brch(G0)|(G0)
ρbrch
G0−→ Glubrch(G0) −→ 1 .

Proof. Assertions (i) follows immediately from the various definitions
involved. Assertion (ii) follows immediately from [CbTpI], Corollary
3.9, (iv). Assertion (iii) follows from the exact sequence of [CbTpI],
Theorem B, (iii), together with the existence of automorphisms of G0

that induce arbitrary permutations of the cusps and, moreover, restrict
to automorphisms of each G0|v that lie in the kernel of χv [cf. the
automorphisms constructed in the proof of [CmbCsp], Lemma 2.4]. ¤

Definition 4.3. Let H be a sub-semi-graph of PSC-type [cf. [CbTpI],
Definition 2.2, (i)] of G [cf. Definition 3.1, (ii)] and S ⊆ Node(G|H)
[cf. [CbTpI], Definition 2.2, (ii)] a subset of Node(G|H) that is not of
separating type [cf. [CbTpI], Definition 2.5, (i)]. Then, by applying
a similar argument to the argument applied in [CmbCsp], Definition
2.1, (iii), (vi), or [NodNon], Definition 5.1, (ix), (x) [i.e., by considering
the portion of the underlying scheme Xn of X log

n corresponding to the
underlying scheme (XH,S)n of the n-th log configuration space (XH,S)log

n

of the stable log curve X log
H,S determined by (G|H)ÂS — cf. [CbTpI],

Definition 2.5, (ii)], one obtains a closed subgroup

(ΠH,S)n ⊆ Πn

[which is well-defined up to Πn-conjugation]. We shall refer to (ΠH,S)n ⊆
Πn as a configuration space subgroup [associated to (H, S)]. For each
0 ≤ i ≤ j ≤ n, we shall write

(ΠH,S)n/i
def
= (ΠH,S)n ∩ Πn/i ⊆ Πn/i

[which is well-defined up to Πn-conjugation];

(ΠH,S)j/i
def
= (ΠH,S)n/i/(ΠH,S)n/j ⊆ Πj/i

[which is well-defined up to Πj-conjugation];

(ΠH,S)j
def
= (ΠH,S)j/0 ⊆ Πj
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[which is well-defined up to Πj-conjugation]. Thus, each (ΠH,S)j/i is a
pro-Σ configuration space group [cf. [MzTa], Definition 2.3, (i)], and
we have natural exact sequences of profinite groups

1 −→ (ΠH,S)j/i −→ (ΠH,S)j −→ (ΠH,S)i −→ 1 .

Finally, let v ∈ Vert(G). Then the semi-graph of anabelioids of PSC-
type G|v [cf. [CbTpI], Definition 2.1, (iii)] may be naturally identified
with (G|Hv)ÂSv for suitable choices of Hv, Sv [cf. [CbTpI], Remark
2.5.1, (ii)]. We shall refer to

(Πv)n
def
= (ΠHv ,Sv)n ⊆ Πn

as a configuration space subgroup associated to v. Thus, (Πv)1 ⊆ Π1 is
a verticial subgroup associated to v ∈ Vert(G), i.e., a subgroup that is
typically denoted “Πv”. We shall write

(Πv)j/i
def
= (ΠHv ,Sv)j/i ⊆ Πj/i ; (Πv)j

def
= (ΠHv ,Sv)j ⊆ Πj .

Remark 4.3.1. In the notation of Definition 4.3, one verifies easily
— by applying a suitable specialization isomorphism [cf. the discus-
sion preceding [CmbCsp], Definition 2.1, as well as [CbTpI], Remark
5.6.1] — that there exist a stable log curve Y log over (Spec k)log and
an n-cuspidalizable degeneration structure (G, S, φ) on YG [cf. Defini-
tion 3.23, (i), (v)] — where we write YG for the “G” that occurs in the
case where we take “X log” to be Y log — which satisfy the following:
Write YΠn for the “Πn” that occurs in the case where we take “X log”
to be Y log. Then:

The image of a configuration space subgroup of Πn

associated to (H, S) [cf. Definition 4.3] via a PFC-

admissible outer isomorphism Πn
∼→ YΠn that lies over

the displayed composite isomorphism of Definition 3.23,
(v) [where we note that, in loc. cit., the roles of “YΠn”
and “Πn” are reversed!], is a configuration space sub-
group of YΠn associated to a vertex of YG.

Lemma 4.4 (Commensurable terminality and slimness). Every
configuration space subgroup [cf. Definition 4.3] of Πn is topo-
logically finitely generated, slim, and commensurably terminal
in Πn.

Proof. Since any configuration space subgroup is, in particular, a con-
figuration space group, the fact that such a subgroup is topologically
finitely generated and slim follows from [MzTa], Proposition 2.2, (ii).
Thus, it remains to verify commensurable terminality. By applying
the observation of Remark 4.3.1, we reduce immediately to the case
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of a configuration space subgroup associated to a vertex. But then
the desired commensurable terminality follows, in light of Lemma 4.5
below, by induction on n, together with the corresponding fact for
n = 1 [cf. [CmbGC], Proposition 1.2, (ii)]. This completes the proof of
Lemma 4.4. ¤

Lemma 4.5 (Extensions and commensurable terminality). Let

1 −−−→ NH −−−→ H −−−→ QH −−−→ 1y y y
1 −−−→ N −−−→ G −−−→ Q −−−→ 1

be a commutative diagram of profinite groups, where the horizontal se-
quences are exact, and the vertical arrows are injective. Suppose
that NH ⊆ N , QH ⊆ Q are commensurably terminal in N , Q,
respectively. Then H ⊆ G is commensurably terminal in G.

Proof. This follows immediately from Lemma 3.9, (i). ¤

Definition 4.6.

(i) We shall write

OutFC(Πn)brch ⊆ OutFC(Πn)

for the closed subgroup of OutFC(Πn) given by the inverse im-
age of

Aut|Brch(G)|(G) ⊆ (Aut(G) ⊆) Out(ΠG)
∼← Out(Π1)

[cf. Definition 4.1, (i)] via the natural injection OutFC(Πn) ↪→
OutFC(Π1) ⊆ Out(Π1) of [NodNon], Theorem B.

(ii) Let v ∈ Vert(G); write Πv
def
= (Πv)1 [cf. Definition 4.3]. Then

we shall write

OutFC((Πv)n)G-node ⊆ OutFC((Πv)n)

for the [closed] subgroup of OutFC((Πv)n) given by the inverse
image of

Aut|E(G|v :G)|(G|v) ⊆ (Aut(G|v) ⊆) Out(Πv)

[cf. Definition 4.1, (ii); [CbTpI], Definition 2.6, (i)] via the
natural injection OutFC((Πv)n) ↪→ OutFC(Πv) ⊆ Out(Πv) of
[NodNon], Theorem B.
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Theorem 4.7 (Graphicity of outomorphisms of certain subquo-
tients). In the notation of the preceding §3 [cf. also Definition 3.1],
let x ∈ Xn(k). Write

Cx ⊆ Cusp(G)

for the [possibly empty] set consisting of cusps c of G such that, for
some i ∈ {1, · · · , n}, x{i} ∈ X{i}(k) = X(k) [cf. Definition 3.1, (i)]
lies on the cusp of X log corresponding to c ∈ Cusp(G). For each i ∈
{1, · · · , n}, write

Gi/i−1,x
def
= Gi∈{1,··· ,i},x

[cf. Definition 3.1, (iii)] and

zi/i−1,x ∈ VCN(Gi/i−1,x)

for the element of VCN(Gi/i−1,x) on which x{1,··· ,i} lies, that is to say:
If x{1,··· ,i} ∈ Xi(k) [cf. the notation given in the discussion preceding
Definition 3.1] is a cusp or node of the geometric fiber of the projec-

tion plog
i/i−1 : X log

i → X log
i−1 over xlog

{1,··· ,i−1} corresponding to an edge e ∈
Edge(Gi/i−1,x), then zi/i−1,x

def
= e; if x{1,··· ,i} ∈ Xi(k) is neither a cusp

or a node of the geometric fiber of the projection plog
i/i−1 : X log

i → X log
i−1

over xlog
{1,··· ,i−1}, but lies on the irreducible component of the geometric

fiber corresponding to a vertex v ∈ Edge(Gi/i−1,x), then zi/i−1,x
def
= v.

Let

α ∈ OutFC(Πn)brch

[cf. Definition 4.6, (i)]. Suppose that the element of

Aut|Brch(G)|(G) ⊆ (Aut(G) ⊆) Out(ΠG)
∼← Out(Π1)

[cf. Definition 4.1, (i)] determined by α ∈ OutFC(Πn)brch [cf. Defini-
tion 4.6, (i)] is contained in

Aut|Cx|(G) ⊆ Aut(G)

[cf. [CbTpI], Definition 2.6, (i)]. Then there exist

• a lifting α̃ ∈ Aut(Πn) of α, and,

• for each i ∈ {1, · · · , n}, a VCN-subgroup Πzi/i−1,x
⊆ Πi/i−1

∼→
ΠGi/i−1,x [cf. Definition 3.1, (iii)] associated to the element

zi/i−1,x ∈ VCN(Gi/i−1,x)

such that the following properties hold:

(a) For each i ∈ {1, · · · , n}, the automorphism of Πi/i−1
∼→ ΠGi/i−1,x

determined by α̃ fixes the VCN-subgroup Πzi/i−1,x
⊆ Πi/i−1

∼→
ΠGi/i−1,x

.
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(b) For each i ∈ {1, · · · , n}, the outomorphism of Πi/i−1
∼→ ΠGi/i−1,x

induced by α̃ is contained in

Aut|Brch(Gi/i−1,x)|(Gi/i−1,x) ⊆ Out(ΠGi/i−1,x
)

∼← Out(Πi/i−1) .

Proof. We verify Theorem 4.7 by induction on n. If n = 1, then Theo-
rem 4.7 follows immediately from the various definitions involved. Now
suppose that n ≥ 2, and that the induction hypothesis is in force. In
particular, [since the homomorphism pΠ

n/n−1 : Πn ³ Πn−1 is surjective]

we have a lifting α̃ ∈ Aut(Πn) of α and, for each i ∈ {1, · · · , n − 1},
a VCN-subgroup Πzi/i−1,x

⊆ Πi/i−1
∼→ ΠGi/i−1,x associated to the ele-

ment zi/i−1,x ∈ VCN(Gi/i−1,x) such that, for each i ∈ {1, · · · , n − 1},
the automorphism of Πi determined by α̃ fixes Πzi/i−1,x

⊆ Πi/i−1 ⊆ Πi,
and, moreover, the automorphism of Πn−1 determined by α̃ satisfies
the property (b) in the statement of Theorem 4.7. Now we claim that
the following assertion holds:

Claim 4.7.A: The outomorphism of Πn/n−1
∼→ ΠGn/n−1,x

induced by the lifting α̃ is contained in

Aut|Brch(Gn/n−1,x)|(Gn/n−1,x) ⊆ Out(ΠGn/n−1,x
)

∼← Out(Πn/n−1) .

To this end, let us first observe that it follows immediately — by re-
placing X log

n by the base-change of plog
n/n−2 : X log

n → X log
n−2 via a suit-

able morphism of log schemes (Spec k)log → X log
n−2 whose image lies on

x{1,··· ,n−2} ∈ Xn−2(k) — from Lemma 3.2, (iv), that, to verify Claim
4.7.A, we may assume without loss of generality that n = 2. Also, one
verifies easily, by applying Lemma 3.14, (i) [cf. also [CbTpI], Proposi-
tion 2.9, (i)], that we may assume without loss of generality that x{1}
is a cusp or node of X log [i.e., z1/0,x ∈ Edge(G1/0,x)].

Next, let us recall that the automorphism of Π1
∼→ ΠG1/0,x

determined

by α̃ fixes the edge-like subgroup Πz1/0,x
⊆ Π1

∼→ ΠG1/0,x
associated to

the edge z1/0,x of G1/0,x [cf. the discussion preceding Claim 4.7.A].

Thus, since [we have assumed that] α ∈ OutFC(Π2)
brch [which implies

that the outomorphism of Π1
∼→ ΠG1/0,x

determined by α preserves the

Π1-conjugacy class of each verticial subgroup of Π1
∼→ ΠG1/0,x

], it fol-

lows immediately from Lemma 3.13, (i), (ii), that the outomorphism

of ΠG2/1,x

∼← Π2/1 induced by α̃ is group-theoretically verticial, hence

[cf. [NodNon], Proposition 1.13; [CmbGC], Proposition 1.5, (ii); the
fact that α is C-admissible] graphic, i.e., ∈ Aut(G2/1,x). Moreover, since

the outomorphism of ΠG2∈{2},x

∼← Π1 induced by α̃ is, by assumption,

contained in Aut|Brch(G)|(G) [cf. [CmbCsp], Proposition 1.2, (iii)], one
verifies easily, by considering the map on vertices/nodes/branches in-
duced by the projection

pΠ
{1,2}/{2}|Π2/1

: Π2/1 ³ Π{2}
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[cf. Lemma 3.6, (i), (iv)], that the outomorphism of ΠG2/1,x

∼← Π2/1

induced by α̃ is contained in the subgroup Aut|Brch(G2/1,x)|(G2/1,x). This
completes the proof of Claim 4.7.A.

On the other hand, one verifies easily from Claim 4.7.A, together with

the various definitions involved, that there exist a Πn/n−1-conjugate β̃

of α̃ and a VCN-subgroup Πzn/n−1,x ⊆ Πn/n−1
∼→ ΠGn/n−1,x

associated to

zn/n−1,x ∈ VCN(Gn/n−1,x) such that α̃ fixes Πzn/n−1,x. In particular, the

lifting β̃ of α and the VCN-subgroups Πzi/i−1,x [where i ∈ {1, · · · , n}]
satisfy the properties (a), (b) in the statement of Theorem 4.7. This
completes the proof of Theorem 4.7. ¤

Lemma 4.8 (Preservation of configuration space subgroups).
The following hold:

(i) Let α ∈ OutFC(Πn)brch [cf. Definition 4.6, (i)]. Then α pre-
serves the Πn-conjugacy class of each configuration space sub-
group [cf. Definition 4.3] of Πn. Thus, by applying the portion
of Lemma 4.4 concerning commensurable terminality, to-
gether with Lemma 3.10, (i), we obtain a natural homomor-
phism

OutFC(Πn)brch −→
∏

v∈Vert(G)

Out((Πv)n) .

(ii) The displayed homomorphism of (i) factors through∏
v∈Vert(G)

OutFC((Πv)n)G-node ⊆
∏

v∈Vert(G)

Out((Πv)n)

[cf. Definition 4.6, (ii)].

Proof. First, we verify assertion (i). We begin by observing that, in
light of the observation of Remark 4.3.1 [cf. also [CbTpI], Proposition
2.9, (ii)], to complete the verification of assertion (i), it suffices to verify
the following assertion:

Claim 4.8.A: For each v ∈ Vert(G), α preserves the
Πn-conjugacy class of configuration space subgroups
(Πv)n ⊆ Πn of Πn associated to v.

We verify Claim 4.8.A by induction on n. If n = 1, then Claim 4.8.A
follows immediately from the various definitions involved. Now suppose
that n ≥ 2, and that the induction hypothesis is in force. Then it follows
from the induction hypothesis that the outomorphism of Πn−1 induced
by α preserves the Πn−1-conjugacy class of configuration space sub-
groups (Πv)n−1 ⊆ Πn−1 associated to each v. On the other hand, it fol-
lows immediately from Theorem 4.7 that α preserves the Πn-conjugacy
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class of (Πv)n/n−1 ⊆ Πn. In particular, by considering the natural iso-

morphism (Πv)n
∼→ (Πv)n/n−1

out
o (Πv)n−1 [cf. the displayed exact se-

quence of Definition 4.3; the discussion entitled “Topological groups”
in [CbTpI], §0] for a suitable choice of the pair ((Πv)n/n−1, (Πv)n−1)
[whose existence is a consequence of the existence of the closed sub-
group (Πv)n of Πn], we conclude that α preserves the Πn-conjugacy
class of (Πv)n ⊆ Πn. This completes the proof of Claim 4.8.A, hence
also of assertion (i)

Next, we verify assertion (ii). Let α ∈ OutFC(Πn)brch, v ∈ Vert(G).
Write αv for the outomorphism of (Πv)n induced by α [cf. (i)]. Then
the F-admissibility of αv follows immediately from the F-admissibility
of α. The C-admissibility of αv follows immediately from Theorem 4.7;
[CmbGC], Proposition 1.5, (i), together with the definition of C-admissi-
bility. Finally, the fact that αv ∈ OutFC((Πv)n)G-node follows immedi-
ately from the fact that α ∈ OutFC(Πn)brch. This completes the proof
of assertion (ii). ¤

Definition 4.9. We shall write

Glu(Πn) ⊆
∏

v∈Vert(G)

OutFC((Πv)n)G-node

for the [closed] subgroup of
∏

v∈Vert(G) OutFC((Πv)n)G-node consisting of

“glueable” collections of outomorphisms of (Πv)n, i.e., the subgroup
defined as follows:

(i) Suppose that n = 1. Then Glu(Πn) consists of those collections
(αv)v∈Vert(G) such that, for every v, w ∈ Vert(G), it holds that
χv(αv) = χw(αw) [cf. [CbTpI], Definition 3.8, (ii)] — where
we note that one verifies easily that αv may be regarded as an
element of Aut(G|v).

(ii) Suppose that n = 2. Then Glu(Πn) consists of those collections
(αv)v∈Vert(G) that satisfy the following condition: Let v, w ∈
Vert(G); e ∈ N (v) ∩ N (w); T ⊆ Π2/1 ⊆ Π2 = Πn the {1, 2}-
tripod of Πn arising from e ∈ N (v) ∩ N (w) [cf. Definitions
3.3, (i); 3.7, (i)]. Then one verifies easily from the various
definitions involved that there exist Πn-conjugates Tv, Tw of T
such that Tv, Tw are contained in (Πv)n, (Πw)n, respectively,
and, moreover,

Tv ⊆ (Πv)2/1 ⊆ (Πv)2 = (Πv)n ,

Tw ⊆ (Πw)2/1 ⊆ (Πw)2 = (Πw)n

are the tripods of (Πv)n, (Πw)n arising from [the cusps of G|v,
G|w corresponding to] the node e, respectively. Moreover, since
αv ∈ OutFC((Πv)n)G-node, αw ∈ OutFC((Πw)n)G-node, it follows
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from Theorem 3.16, (iv), that αv ∈ OutFC((Πv)n)[Tv], αw ∈
OutFC((Πw)n)[Tw]; thus, we obtain that TTv(αv) ∈ Out(Tv)

∼→
Out(T ); TTw(αw) ∈ Out(Tw)

∼→ Out(T ) [cf. Theorem 3.16,
(i)]. Then we require that TTv(αv) = TTw(αw).

(iii) Suppose that n ≥ 3. Then Glu(Πn) consists of those collec-
tions (αv)v∈Vert(G) that satisfy the following condition: Write
Πtpd ⊆ Π3 for the central {1, 2, 3}-tripod of Πn [cf. Definitions
3.3, (i); 3.7, (ii)]. Then one verifies easily from the various
definitions involved that, for every v ∈ Vert(G), there exists a
Π3-conjugate Πtpd

v of Πtpd such that Πtpd
v ⊆ (Πv)3 is the cen-

tral tripod of (Πv)3. Thus, since αv ∈ OutFC((Πv)n)G-node, we

obtain TΠtpd
v

(αv) ∈ Out(Πtpd
v )

∼→ Out(Πtpd) [cf. Theorem 3.16,

(i), (v)]. Then, for every v, w ∈ Vert(G), we require that
TΠtpd

v
(αv) = TΠtpd

w
(αw).

Remark 4.9.1. In the notation of Definition 4.9, one verifies eas-
ily from the various definitions involved that the natural outer iso-
moprhism Π1

∼→ ΠG determines a natural isomorphism Glu(Π1)
∼→

Glubrch(G) [cf. Definition 4.1, (iii)].

Lemma 4.10 (Basic properties concerning groups of glueable
collections). For n ≥ 1, the following hold:

(i) The natural injections

OutFC((Πv)n+1) ↪→ OutFC((Πv)n)

of [NodNon], Theorem B — where v ranges over the vertices
of G — determine an injection

Glu(Πn+1) ↪→ Glu(Πn) .

(ii) The displayed homomorphism of Lemma 4.8, (i),

OutFC(Πn)brch −→
∏

v∈Vert(G)

Out((Πv)n)

factors through

Glu(Πn) ⊆
∏

v∈Vert(G)

Out((Πv)n) .

Proof. First, we verify assertion (i). The fact that the image of the
composite

Glu(Πn+1) ↪→
∏

v∈Vert(G)

OutFC((Πv)n+1) ↪→
∏

v∈Vert(G)

OutFC((Πv)n)
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is contained in∏
v∈Vert(G)

OutFC((Πv)n)G-node ⊆
∏

v∈Vert(G)

OutFC((Πv)n)

follows immediately from the various definitions involved. The fact
that the image of the composite

Glu(Πn+1) ↪→
∏

v∈Vert(G)

OutFC((Πv)n+1) ↪→
∏

v∈Vert(G)

OutFC((Πv)n)

is contained in

Glu(Πn) ⊆
∏

v∈Vert(G)

OutFC((Πv)n)

follows immediately from the various definitions involved when n ≥ 3
and from Theorems 3.16, (iv), (v); 3.18, (ii) [applied to each (Πv)n+1!],
when n = 2. Thus, it remains to verify assertion (i) in the case
where n = 1. Suppose that n = 1. Let (αv)v∈Vert(G) ∈ Glu(Π2).

Write ((αv)1)v∈Vert(G) ∈
∏

v∈Vert(G) OutFC((Πv)1)
G-node for the image of

(αv)v∈Vert(G). Since G is connected, to verify assertion (i) in the case
where n = 1, it suffices to verify that, for any two vertices v, w of G
such that N (v) ∩ N (w) 6= ∅, it holds that χv((αv)1) = χw((αw)1). Let
x ∈ X2(k) be a k-valued geometric point of X2 such that x{1} ∈ X(k)
[cf. Definition 3.1, (i)] is a node of X log corresponding to an element of
N (v)∩N (w) 6= ∅. Then by applying Theorem 4.7 to a suitable lifting
α̃v (∈ AutFC((Πv)2)) of the outomorphism αv of (Πv)2 [where we take
the “Πn” in the statement of Theorem 4.7 to be (Πv)2], we conclude

that the outomorphism (αv)2/1 of Π(G|v)2∈{1,2},x

∼← (Πv)2/1 [cf. Defini-

tion 3.1, (iii)] determined by α̃v is graphic and fixes each of the vertices
of (G|v)2∈{1,2},x. Thus, if we write (αv){2} for the outomorphism of the
“Π{2}” that occurs in the case where we take “Π2” to be (Πv)2, and
Tv ⊆ (Πv)2 for the [{1, 2}-]tripod arising from the cusp x{1} of G|v [cf.
Definitions 3.3, (i); 3.7, (i)], then it follows from [CmbCsp], Proposi-
tion 1.2, (iii), together with the C-admissibility of (αv)1, that (αv){2} is
C-admissible, i.e., ∈ Aut(G|v). Now we compute:

χG|v((αv)1) = χG|v((αv){2}) [cf. [CmbCsp], Proposition 1.2, (iii)]
= χ(G|v)2∈{1,2},x

((αv)2/1) [cf. [CbTpI], Corollary 3.9, (iv)]
= χTv((αv)2/1|Tv) [cf. [CbTpI], Corollary 3.9, (iv)]

[where we refer to Lemma 3.12 concerning “(αv)2/1|Tv”, and we write
χTv for the “χ” associated to the vertex of (G|v)2∈{1,2},x corresponding
to Tv]. Moreover, by applying a similar argument to the above argu-
ment, we conclude that there exists a lifting α̃w of αw such that the
outomorphism (αw)2/1 of Π(G|w)2∈{1,2},x

∼← (Πw)2/1 determined by α̃w is

graphic [and fixes each of the vertices of (G|w)2∈{1,2},x], and, moreover,
if we write Tw ⊆ (Πw)2 for the [{1, 2}-]tripod arising from the cusp x{1}
of G|w, then it holds that χG|w((αw)1) = χTw((αw)2/1|Tw). On the other
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hand, since (αv)v∈Vert(G) ∈ Glu(Π2), it holds that χTv((αv)2/1|Tv) =
χTw((αw)2/1|Tw). In particular, we obtain that χG|v((αv)1) = χG|w((αw)1).
This completes the proof of assertion (i).

Next, we verify assertion (ii). If n = 1, then assertion (ii) amounts
to Theorem 4.2, (ii) [cf. also Remark 4.9.1]. If n ≥ 2, then assertion
(ii) follows immediately from Lemma 4.8, (ii), together with the fact
that the homomorphism “TT ” of Theorem 3.16, (i), does not depend
on the choice of “T” among its conjugates. This completes the proof
of assertion (ii). ¤

Definition 4.11. We shall write ρbrch
n for the homomorphism

OutFC(Πn)brch −→ Glu(Πn)

determined by the factorization of Lemma 4.10, (ii).

Lemma 4.12 (Glueable collections in the case of precisely one

node). Suppose that n = 2, and that Node(G) = 1. Let ṽ, w̃ ∈ Vert(G̃)

be distinct elements such that N (ṽ) ∩ N (w̃) 6= ∅. Write ẽ ∈ Node(G̃)
for the unique element of N (ṽ) ∩ N (w̃) [cf. [NodNon], Lemma 1.8];

Π
ev, Π

ew, Π
ee ⊆ ΠG

∼← Π1 for the VCN-subgroups of ΠG
∼← Π1 asso-

ciated to ṽ, w̃, ẽ ∈ VCN(G̃), respectively; v
def
= ṽ(G); w

def
= w̃(G);

e
def
= ẽ(G). [Thus, one verifies easily that Π

ee
def
= Π

ev ∩Π
ew [cf. [NodNon],

Lemma 1.9, (i)], that Vert(G) = {v, w}, and that if G is noncycli-
cally primitive (respectively, cyclically primitive) [cf. [CbTpI],
Definition 4.1], then v 6= w (respectively, v = w).] Let x ∈ X2(k) be
a k-valued geometric point of X2 such that x{1} ∈ X(k) [cf. Defini-
tion 3.1, (i)] lies on the unique node of X log [i.e., which corresponds

to e]. Write G2/1
def
= G2∈{1,2},x [cf. Definition 3.1, (iii)]; G̃2/1 → G2/1

for the profinite étale covering corresponding to ΠG2/1

∼← Π2/1; vnew

for the “vnew
2,1,x” of Lemma 3.6, (iv). For each z ∈ Vert(G), write

z◦ ∈ Vert(G2/1) for the vertex of G2/1 that corresponds to z via the
bijection of Lemma 3.6, (iv). [Thus, it follows from Lemma 3.6, (iv),
that Vert(G2/1) = {vnew, v◦, w◦}.] Then the following hold [cf. also
Figures 2, 3, below]:

(i) Let (Π
ev)2 ⊆ Π2 be a configuration space subgroup of Π2 as-

sociated to v [cf. Definition 4.3] such that the image of the

composite (Π
ev)2 ↪→ Π2

pΠ
2/1

³ Π1 coincides with Π
ev ⊆ ΠG

∼← Π1.

Also, let us fix a verticial subgroup Π
evnew ⊆ ΠG2/1

∼← Π2/1 of

ΠG2/1

∼← Π2/1 associated to a ṽnew ∈ Vert(G̃2/1) that lies over

vnew ∈ Vert(G2/1) and is contained in (Π
ev)2. Then there
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exists a unique configuration space subgroup (Π
ew)2 ⊆ Π2 of

Π2 associated to w [cf. Definition 4.3] such that Π
evnew =

(Π
ev)2/1 ∩ (Π

ew)2/1 — where we write (Π
ev)2/1

def
= Π2/1 ∩ (Π

ev)2;

(Π
ew)2/1

def
= Π2/1 ∩ (Π

ew)2 — and, moreover, the image of the

composite (Π
ew)2 ↪→ Π2

pΠ
2/1

³ Π1 coincides with Π
ew ⊆ Π1.

(ii) In the situation of (i), the natural homomorphism

lim−→(Π
ev ←↩ Π

ee ↪→ Π
ew) −→ Π1

— where the inductive limit is taken in the category of pro-
Σ groups — is injective, and its image is commensurably
terminal in Π1. Write Π

ev, ew ⊆ Π1 for the image of the above

homomorphism; Π2|Π
ev, ew

(⊆ Π2) for the fiber product of Π2

pΠ
2/1

³
Π1 and Π

ev, ew ↪→ Π1. Thus, we have an exact sequence of
profinite groups

1 −→ Π2/1 −→ Π2|Π
ev, ew

−→ Π
ev, ew −→ 1 .

(iii) In the situation of (ii), for each z̃ ∈ {ṽ, w̃}, let Π
ez◦ ⊆ ΠG2/1

∼←
Π2/1 be a verticial subgroup of ΠG2/1

∼← Π2/1 associated to

z◦ def
= z̃(G)◦ ∈ ({v◦, w◦} ⊆) Vert(G2/1) such that Π

ez◦ ⊆ (Π
ez)2/1

[cf. (i)], and, moreover, Π
ez◦ ∩ Π

evnew 6= {1}. Thus, Π
ee

ez◦
def
=

Π
ez◦ ∩ Π

evnew is the nodal subgroup of ΠG2/1

∼← Π2/1 associated

to the unique element ẽ
ez◦ of N (z̃◦) ∩ N (ṽnew) [cf. [NodNon],

Lemma 1.9, (i)]. Write ez◦
def
= ẽ

ez◦(G2/1). Then the natural
homomorphism

lim−→(Π
ez◦ ←↩ Π

ee
ez◦ ↪→ Π

evnew) −→ (Π
ez)2/1

— where the inductive limit is taken in the category of pro-
Σ groups — is an isomorphism. Write G†

z◦ for the sub-
semi-graph of PSC-type [cf. [CbTpI], Definition 2.2, (i)]
of the underlying semi-graph of G2/1 whose set of vertices =

{z̃(G)◦, vnew}; Tz◦
def
= (Node(G2/1) \ {ez◦}) ∩ Node(G2/1|G†

z◦
) ⊆

Node(G2/1) [cf. [CbTpI], Definition 2.2, (ii)]. Then the natu-
ral homomorphism of the above display allows one to identify
(Π

ez)2/1 with the [pro-Σ] fundamental group ΠH
ez◦ of

Hz◦
def
= (G2/1|G†

z◦
)ÂTz◦

[cf. [CbTpI], Definition 2.5, (ii)].
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G2/1

• • •· · · · · ·
︷ ︸︸ ︷︷ ︸︸ ︷
ṽ◦ ṽnew w̃◦

ẽṽ◦ ẽw̃◦

(Πṽ)2/1 (Πw̃)2/1

ΠHṽ◦ ΠHw̃◦

| | | |

↓
··
··
··
··
··

∨
··
··
··
··
··

∨

• • •
v◦ vnew w◦ev◦ ew◦

G = G1

• •· · · · · ·
︷ ︸︸ ︷
ṽ w̃ẽ

Πṽ,w̃

↓

• •
v we

Figure 2 : the noncyclically primitive case
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G2/1

• • •· · · · · ·
︷ ︸︸ ︷︷ ︸︸ ︷
ṽ◦ ṽnew w̃◦

ẽṽ◦ ẽw̃◦

(Πṽ)2/1 (Πw̃)2/1

ΠHṽ◦ ΠHw̃◦

| | | |

↓

··
··
··
··
··
··
··
·

··<
··
··
··
··
··
··
··
·

· ·>

•

•

v◦ = w◦

vnew

ev◦ ew◦

G = G1

• •· · · · · ·
︷ ︸︸ ︷
ṽ w̃ẽ

Πṽ,w̃

↓

•
v = w

e

Figure 3 : the cyclically primitive case
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(iv) In the situation of (iii), let (αz)z∈Vert(G) ∈ Glu(Π2). Write
((αz)1)z∈Vert(G) ∈ Glu(Π1) for the image of (αz)z∈Vert(G) ∈ Glu(Π2)

via the injection of Lemma 4.10, (i). Let α1 ∈ Aut|Brch(G)|(G)
be such that ρbrch

1 (α1) = ((αz)1)z∈Vert(G) ∈ Glu(Π1) [cf. Theo-
rem 4.2, (iii); Definition 4.11]. Then the outomorphism α1 of
Π1 preserves the Π1-conjugacy class of Π

ev, ew ⊆ Π1. Thus, by
applying the portion of (ii) concerning commensurable termi-
nality, we obtain [cf. Lemma 3.10, (i)] a restricted outomor-
phism α1|Π

ev, ew
∈ Out(Π

ev, ew).

(v) In the situation of (iv), there exists an outomorphism β
ev, ew[α1]

of Π2|Π
ev, ew

that satisfies the following conditions:

(1) β
ev, ew[α1] preserves Π2/1 ⊆ Π2|Π

ev, ew
and the Π2|Π

ev, ew
-conjugacy

classes of (Π
ev)2, (Π

ew)2 ⊆ Π2|Π
ev, ew

.

(2) There exists an automorphism β̃
ev, ew[α1] of Π2|Π

ev, ew
that lifts

the outomorphism β
ev, ew[α1] such that the outomorphism of

ΠG2/1

∼← Π2/1 determined by β̃
ev, ew[α1] [cf. (1)] is con-

tained in Aut|Brch(G2/1)|(G2/1) ⊆ Out(ΠG2/1
).

(3) For each z̃ ∈ {ṽ, w̃}, the outomorphism β
ev, ew[α1]|(Π

ez)2 of
(Π

ez)2 determined by β
ev, ew[α1] [i.e., obtained by applying

(1) and Lemma 3.10, (i) — where we note that (Π
ez)2 is

commensurably terminal in Π2 [cf. Lemma 4.4], hence
also in Π2|Π

ev, ew
] coincides with α

ez(G) [cf. the notation of
(iv)].

(4) The outomorphism of Π
ev, ew induced by β

ev, ew[α1] [cf. (1)]
coincides with α1|Π

ev, ew
[cf. (iv)].

Here, we observe, in the context of (2), that the outer iso-

morphism Π2/1
∼→ ΠG2/1

[i.e., which gives rise to “the” closed

subgroup Aut|Brch(G2/1)|(G2/1) ⊆ Out(ΠG2/1
)] may be character-

ized, up to composition with elements of Aut|Brch(G2/1)|(G2/1) ⊆
Out(ΠG2/1

), as the outer isomorphism such that the semi-graph
of anabelioids structure on G2/1 is the semi-graph of anabelioids
structure determined [cf. [NodNon], Theorem A] by the result-
ing composite

Π
ee ↪→ ΠG

∼← Π1 → Out(Π2/1)
∼→ Out(ΠG2/1

)

— where the third arrow is the outer action determined by the

exact sequence 1 → Π2/1 → Π2

pΠ
2/1→ Π1 → 1 — in a fashion

compatible with the projection pΠ
{1,2}/{2}|Π2/1

: Π2/1 ³ Π{2} and

the given outer isomorphisms Π{2}
∼→ Π1

∼→ ΠG.
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Proof. First, we verify assertion (i). The existence of such a (Π
ew)2 ⊆ Π2

follows immediately from the various definitions involved. Thus, it
remains to verify the uniqueness of such a (Π

ew)2. Let (Π
ew)2 ⊆ Π2 be as

in assertion (i) and γ ∈ Π2 an element such that the conjugate (Π
ew)γ

2

of (Π
ew)2 by γ satisfies the condition on “(Π

ew)2” stated in assertion
(i). Then since Π

ew is commensurably terminal in Π1 [cf. [CmbGC],
Proposition 1.2, (ii)], it holds that the image of γ via pΠ

2/1 is contained in

Π
ew. Thus — by multiplying γ by a suitable element of (Π

ew)2 — we may
assume without loss of generality that γ ∈ Π2/1. In particular, since

Π
evnew ⊆ (Π

ew)2/1∩(Π
ew)γ

2/1 — where we write (Π
ew)γ

2/1

def
= Π2/1∩(Π

ew)γ
2 —

is not abelian [cf. [CmbGC], Remark 1.1.3], it follows immediately from
[NodNon], Lemma 1.9, (i), that (Π

ew)2/1 = (Π
ew)γ

2/1. Thus, since (Π
ew)2/1

is commensurably terminal in Π2/1 [cf. [CmbGC], Proposition 1.2, (ii)],
it holds that γ ∈ (Π

ew)2/1. This completes the proof of assertion (i).
Assertions (ii), (iii), (iv) follow immediately from the various def-

initions involved [cf. also [CmbGC], Propositions 1.2, (ii), and 1.5,
(i), as well as the proofs of [CmbCsp], Proposition 1.5, (iii); [CbTpI],
Proposition 2.11].

Finally, we verify assertion (v). It follows immediately from the
definition of “OutFC((Π(−))2)

G-node” [cf. Definition 4.6, (ii)] that, for
each z̃ ∈ {ṽ, w̃}, there exists a lifting α̃

ez ∈ Aut((Π
ez)2) of α

ez(G) such
that if we write (α̃

ez)1 for the automorphism of Π
ez determined by α̃

ez,
then (α̃

ez)1(Πee) = Π
ee. Now we claim that the following assertion holds:

Claim 4.12.A: Write (α
ez)2/1 for the outomorphism of

(Π
ez)2/1 determined by α̃

ez. Then — relative to the

natural identification ΠH
ez◦

∼→ (Π
ez)2/1 of assertion (iii)

— it holds that

(α
ez)2/1 ∈ Aut|Brch(Hz◦ )|(Hz◦)

(⊆ Out(ΠH
ez◦ )

∼→ Out((Π
ez)2/1)) .

Indeed, careful inspection of the various definitions involved reveals
that Claim 4.12.A follows immediately from Theorem 4.7 [together
with the commensurable terminality of the subgroup Π

ee ⊆ Π
ez — cf.

[CmbGC], Proposition 1.2, (ii)]. Thus — by replacing α̃
ez by a suit-

able (Π
ez)2/1-conjugate — we may assume without loss of generality

that α̃
ez(Πee

ez◦ ) = Π
ee

ez◦ . Moreover, since [cf. Claim 4.12.A] α̃
ez preserves

the (Π
ez)2/1-conjugacy classes of Π

ez◦ and Π
evnew , and the verticial sub-

groups Π
ez◦ , Π

evnew ⊆ ΠG2/1

∼← Π2/1 are the unique verticial subgroups of

ΠG2/1

∼← Π2/1 associated to z̃(G)◦, vnew ∈ Vert(G2/1), respectively, such

that Π
ee

ez◦ = Π
ez◦ ∩ Π

evnew [cf. [CmbGC], Proposition 1.5, (i)], we thus
conclude that α̃

ez(Πez◦) = Π
ez◦ , α̃

ez(Πevnew) = Π
evnew .

Next, write (α
ez)ez◦ , (α

ez)evnew for the respective outomorphisms of Π
ez◦ ,

Π
evnew determined by α̃

ez. Now we claim that the following assertion
holds:
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Claim 4.12.B: It holds that

(α
ev)evnew = (α

ew)
evnew .

Moreover, if v = w, i.e., G is cyclically primitive, then
— relative to the natural outer isomorphism Π

ev◦
∼→

Π
ew◦ [where we note that if v = w, then Π

ev◦ is a Π2/1-
conjugate of Π

ew◦ ] — it holds that

(α
ev)ev◦ = (α

ew)
ew◦ .

Indeed, the equality (α
ev)evnew = (α

ew)
evnew follows from the definition of

Glu(Π2). Next, suppose that G is cyclically primitive. To verify the
equality (α

ev)ev◦ = (α
ew)

ew◦ , let us observe that, for each z̃ ∈ {ṽ, w̃}, the

composite Π
ez◦ ↪→ Π2

pΠ
{1,2}/{2}

³ Π{2}
∼→ ΠG is injective [and its image is a

verticial subgroup of ΠG associated to z̃(G) ∈ Vert(G)]. Thus, to verify
the equality (α

ev)ev◦ = (α
ew)

ew◦ , it suffices to verify that the outomor-
phism of the image of Π

ev◦ in Π{2} induced by (α
ev)ev◦ coincides with the

outomorphism of the image of Π
ew◦ in Π{2} induced by (α

ew)
ew◦ . On the

other hand, this follows immediately from the fact that both α̃
ev and α̃

ew

are liftings of the same outomorphism αv = αw of “(Πv)2”=“(Πw)2” [cf.
[CmbCsp], Proposition 1.2, (iii)]. This completes the proof of Claim
4.12.B.

Next, let us observe that it follows immediately from the various
definitions involved that if G is noncyclically primitive (respectively,
cyclically primitive), then Vert((G2/1)Ã{ev◦})

] = 2 (respectively, = 1),
and that, relative to the correspondence discussed in [CbTpI], Propo-
sition 2.9, (i), (3), Hv◦ , G2/1|w◦(G) (respectively, Hv◦) correspond(s) to
the two vertices (respectively, the unique vertex) of (G2/1)Ã{ev◦}.

Next, let us observe the following equalities [cf. the notation of
[CbTpI], Definition 3.8, (ii)]:

χHv◦ ((αev)2/1) = χHz◦ |vnew ((α
ev)evnew) [cf. [CbTpI], Corollary 3.9, (iv)]

= χHv◦ |vnew ((α
ew)

evnew) [cf. Claim 4.12.B]
= χHw◦ ((α ew)2/1) [cf. [CbTpI], Corollary 3.9, (iv)]
= χG2/1|w◦(G)

((α
ew)

ew◦) [cf. [CbTpI], Corollary 3.9, (iv)].

Now it follows immediately from these equalities, together with Claim
4.12.A, that the data

((α
ev)2/1, (α ew)

ew◦) ∈ Aut(Hv◦) × Aut(G2/1|w◦(G))

(respectively, (α
ev)2/1 ∈ Aut(Hv◦) )

may be regarded as an element of Glubrch((G2/1)Ã{ev◦}) [cf. Defini-
tion 4.1, (iii)]. Thus, by applying the exact sequence of Theorem 4.2,
(iii) [cf. also Remark 4.9.1], we obtain an element

α2/1[ṽ] ∈ Aut|Brch((G2/1)Ã{ev◦})|((G2/1)Ã{ev◦})
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that [cf. [CbTpI], Definition 2.10] belongs to a collection of outomor-
phisms of

Π(G2/1)Ã{ev◦}

Φ(G2/1)Ã{ev◦}
∼−→ ΠG2/1

∼−→ Π2/1

[i.e., contained in Aut((G2/1)Ã{ev◦}) ↪→ Out(Π2/1)] that admits a natu-
ral structure of torsor over

Dehn((G2/1)Ã{ev◦}) (⊆ Aut((G2/1)Ã{ev◦})) .

A similar argument yields an element

α2/1[w̃] ∈ Aut|Brch((G2/1)Ã{ew◦})|((G2/1)Ã{ew◦})

that [cf. [CbTpI], Definition 2.10] belongs to a collection of outomor-
phisms of

Π(G2/1)Ã{ew◦}

Φ(G2/1)Ã{ew◦}
∼−→ ΠG2/1

∼−→ Π2/1

[i.e., contained in Aut((G2/1)Ã{ew◦}) ↪→ Out(Π2/1)] that admits a nat-
ural structure of torsor over

Dehn((G2/1)Ã{ew◦}) (⊆ Aut((G2/1)Ã{ew◦})) .

Now we claim that the following assertion holds:

Claim 4.12.C: For each z̃ ∈ {ṽ, w̃}, the automorphism
(α̃

ez)1 of Π
ez is compatible with the outomorphism α2/1[z̃]

of Π2/1 relative to the homomorphism Π
ez ↪→ Π1 →

Out(Π2/1) — where the second arrow is the natural
outer action determined by the exact sequence

1 −→ Π2/1 −→ Π2

pΠ
2/1−→ Π1 −→ 1 .

Indeed, to verify the compatibility of (α̃
ev)1 and α2/1[ṽ], it follows im-

mediately from the various definitions involved that it suffices to verify

that, for each σ ∈ Π
ev, if we write τ

def
= (α̃

ev)1(σ) ∈ Π
ev, then there exist

liftings σ̃, τ̃ ∈ Π2 of σ, τ ∈ Π
ev, respectively, such that the equality

[which is in fact independent of the choice of liftings]

α2/1[ṽ] ◦ [Inn(σ̃)] ◦ α2/1[ṽ]−1 = [Inn(τ̃)] ∈ Out(Π2/1)

— where we write “Inn(−)” for the automorphism of Π2/1 determined
by conjugation by “(−)” and “[Inn(−)]” for the outomorphism of Π2/1

determined by this automorphism — holds. To this end, let σ̃ ∈ (Π
ev)2

be a lifting of σ ∈ Π
ev. Then since (Π

ev)2/1 ⊆ (Π
ev)2 is normal, Inn(σ̃)

preserves (Π
ev)2/1.

Next, let us observe that the semi-graph of anabelioids structure of
(G2/1)Ã{ev◦} [with respect to which w◦ is a vertex!] may be thought
of as the semi-graph of anabelioids structure on the fiber subgroup
Π2/1 [cf. Definition 3.1, (iii)] arising from a point of X log that lies in
the interior of the irreducible component of X log corresponding to v.
Now it follows immediately from this obervation that Inn(σ̃) preserves
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the Π2/1-conjugacy class of Π
ew◦ , as well as the Π2/1-conjugacy class of

Π
ee

ew◦ = (Π
ev)2/1 ∩ Π

ew◦ . By considering the various Π2/1-conjugates of
Π

ee
ew◦ and Π

ew◦ and applying [CmbGC], Propositions 1.2, (ii); 1.5, (i),
we thus conclude that Inn(σ̃) preserves the (Π

ev)2/1-conjugacy classes
of Π

ee
ew◦ , Π

ew◦ . In particular — by multiplying σ̃ by a suitable element
of (Π

ev)2/1 — we may assume without loss of generality that Inn(σ̃)
preserves (Π

ev)2/1, Π
ew◦ , and Π

ee
ew◦ .

Next, let us observe that one verifies easily [cf. Lemma 3.6, (iv)]

that the composite Π
ee

ew◦ ↪→ Π2

pΠ
{1,2}/{2}

³ Π{2} surjects onto a nodal

subgroup of ΠG
∼← Π{2} associated to e ∈ Node(G). Thus, since Inn(σ̃)

preserves Π
ee

ew◦ , it follows [cf. [CmbGC], Proposition 1.2, (ii)] that the

image of σ̃ ∈ Π2 via Π2

pΠ
{1,2}/{2}

³ Π{2} is contained in the image of the

composite Π
ee

ew◦ ↪→ Π2

pΠ
{1,2}/{2}

³ Π{2}. In particular — by multiplying σ̃
by a suitable element of Π

ee
ew◦ (⊆ (Π

ev)2/1) — we may assume without
loss of generality that σ̃ ∈ Ker(pΠ

{1,2}/{2}). A similar argument implies

that there exists a lifting τ̃ ∈ (Π
ev)2 of τ

def
= (α̃

ev)1(σ) ∈ Π
ev such that

Inn(τ̃) preserves (Π
ev)2/1, Π

ew◦ , Π
ee

ew◦ , and, moreover, τ̃ ∈ Ker(pΠ
{1,2}/{2}).

Now since the automorphisms (α̃
ev)2/1, (α̃

ev)1 of (Π
ev)2/1, Π

ev, respec-
tively, arise from the automorphism α̃

ev of (Π
ev)2, it follows immediately

from the construction of α2/1[ṽ] that the equality

α2/1[ṽ] ◦ [Inn(σ̃)] ◦ α2/1[ṽ]−1 = [Inn(τ̃)]

holds upon restriction to [an equality of outomorphisms of] (Π
ev)2/1.

Moreover, since the composite Π
ew◦ ↪→ Π2

pΠ
{1,2}/{2}

³ Π{2} is injective

[and its image is a verticial subgroup of ΠG
∼← Π{2} associated to w ∈

Vert(G) — cf. Lemma 3.6, (iv)], to verify the restriction of the equality

α2/1[ṽ] ◦ [Inn(σ̃)] ◦ α2/1[ṽ]−1 = [Inn(τ̃)]

to [an equality of outomorphisms of] Π
ew◦ , it suffices to verify that the

outomorphism of the image of Π
ew◦ in Π{2} induced by the product

α2/1[ṽ] ◦ [Inn(σ̃)] ◦ α2/1[ṽ]−1 ◦ [Inn(τ̃)]−1

is trivial. On the other hand, this follows immediately from the fact
that σ̃, τ̃ ∈ Ker(pΠ

{1,2}/{2}).

Thus, in summary, the restrictions of the equality in question [i.e.,
in Claim 4.12.C] to [equalities of outomorphisms of] (Π

ev)2/1 and Π
ew◦

hold. In particular, it follows immediately from the displayed exact
sequence of Theorem 4.2, (iii) [cf. also Remark 4.9.1], that the product

α2/1[ṽ] ◦ [Inn(σ̃)] ◦ α2/1[ṽ]−1 ◦ [Inn(τ̃)]−1
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is contained in Dehn((G2/1)Ã{ev◦}). Thus — by considering the outo-
morphism of Π{2} induced by the above product — one verifies eas-
ily from [CbTpI], Theorem 4.8, (iv), together with the fact that σ̃,
τ̃ ∈ Ker(pΠ

{1,2}/{2}), that the equality in question holds. This completes

the proof of the compatibility of (α̃
ev)1 and α2/1[ṽ]. The compatibility of

(α̃
ew)1 and α2/1[w̃] follows from a similar argument. This completes the

proof of Claim 4.12.C.
Next, we claim that the following assertion holds:

Claim 4.12.D: The difference α2/1[ṽ]◦α2/1[w̃]−1 ∈ Out(Π2/1)

is contained in Dehn(G2/1) (⊆ Out(ΠG2/1
)

∼← Out(Π2/1)).

Indeed, this follows immediately from the two displayed equalities of
Claim 4.12.B, together with the construction of α2/1[ṽ], α2/1[w̃]. This
completes the proof of Claim 4.12.D.

Thus, it follows immediately from Claim 4.12.D, together with the
existence of the natural isomorphism

Dehn((G2/1)Ã{ev◦}) ⊕ Dehn((G2/1)Ã{ew◦})
∼−→ Dehn(G2/1)

[cf. [CbTpI], Theorem 4.8, (ii), (iv)], that — by replacing α2/1[ṽ],
α2/1[w̃] by the composites of α2/1[ṽ], α2/1[w̃] with suitable elements
of Dehn((G2/1)Ã{ew◦}), Dehn((G2/1)Ã{ev◦}), respectively [where we re-
call that the outomorphisms α2/1[ṽ], α2/1[w̃] belong to torsors over
Dehn((G2/1)Ã{ev◦}), Dehn((G2/1)Ã{ew◦}), respectively] — we may as-
sume without loss of generality that

α2/1[ṽ] = α2/1[w̃] .

Write β2/1
def
= α2/1[ṽ] = α2/1[w̃]. Then it follows immediately from

Claim 4.12.C, together with the fact that Π
ev, ew is topologically gener-

ated by Π
ev, Π

ew ⊆ Π
ev, ew [cf. assertion (ii)], that the outomorphism β2/1

of Π2/1 is compatible with the automorphism α̃1|Π
ev, ew

of Π
ev, ew [i.e., the

automorphism induced by (α̃
ev)1, (α̃

ew)1 — cf. assertion (ii)], relative
to the composite Π

ev, ew ↪→ Π1 → Out(Π2/1) — where the second ar-
row is the outer action determined by the displayed exact sequence
of Claim 4.12.C. In particular, by considering the natural isomorphism

Π2|Π
ev, ew

∼→ Π2/1

out
o Π

ev, ew [cf. the discussion entitled “Topological groups”
in [CbTpI], §0], we obtain an outomorphism β

ev, ew of Π2|Π
ev, ew

which, by
construction, satisfies the four conditions listed in assertion (v). This
completes the proof of assertion (v). ¤

Lemma 4.13 (Glueability of combinatorial cuspidalizations in
the case of precisely one node). Suppose that n = 2, and that
Node(G)] = 1. Then ρbrch

2 [cf. Definition 4.11] is surjective.

Proof. If G is noncyclically primitive [cf. [CbTpI], Definition 4.1], then
the surjectivity of ρbrch

2 follows immediately from Lemma 4.12, (v),
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together with the [easily verified] fact that the natural injection Π
ev, ew ↪→

Π1 [cf. Lemma 4.12, (ii)] is an isomorphism. Thus, it remains to verify
the surjectivity of ρbrch

2 in the case where G is cyclically primitive [cf.
[CbTpI], Definition 4.1]. Since we are in the situation of [CbTpI],
Lemma 4.3, we shall apply the notational conventions established in
[CbTpI], Lemma 4.3. Also, we shall write Vert(G) = {v}, Node(G) =
{e}. Let x ∈ X2(k) be a k-rational geometric point of X2 such that
x{1} ∈ X(k) [cf. Definition 3.1, (i)] lies on the unique node of X log [i.e.,
which corresponds to e].

Recall from [CbTpI], Lemma 4.3, (i), that we have a natural exact
sequence

1 −→ πtemp
1 (G∞) −→ πtemp

1 (G) −→ πtop
1 (G) −→ 1 .

Let γ∞ ∈ πtop
1 (G) be a generator of πtop

1 (G) (' Z) and γ̃∞ ∈ πtemp
1 (G) a

lifting of γ∞. By abuse of notation, write γ̃∞ ∈ ΠG
∼← Π1 for the image

of γ̃∞ ∈ πtemp
1 (G) via the natural injection πtemp

1 (G) ↪→ ΠG
∼← Π1 [cf.

the evident pro-Σ generalization of [SemiAn], Proposition 3.6, (iii)].
Next, let us fix a verticial subgroup

Πtemp
ev(0) ⊆ (πtemp

1 (G∞) ⊆) πtemp
1 (G)

of πtemp
1 (G) that corresponds to a vertex ṽ(0) ∈ Vert(G̃) that lifts the

vertex V (0) ∈ Vert(G∞) [cf. [CbTpI], Lemma 4.3, (iii)]. Thus, for each
integer a ∈ Z, by forming the conjugate of Πtemp

ev(0) by γ̃a
∞, we obtain a

verticial subgroup

Πtemp
ev(a) ⊆ (πtemp

1 (G∞) ⊆) πtemp
1 (G)

of πtemp
1 (G) associated to some vertex ṽ(a) ∈ Vert(G̃) that lifts the

vertex V (a) ∈ Vert(G∞) [cf. [CbTpI], Lemma 4.3, (iii), (vi)]. Write

Π
ev(a) ⊆ ΠG

for the image of Πtemp
ev(a) ⊆ πtemp

1 (G) in ΠG.

Next, let us suppose that γ̃∞ was chosen in such a way that, for
each a ∈ Z, the intersection N (ṽ(a))∩N (ṽ(a+1)) consists of a unique

node ñ(a + 1) ∈ Node(G̃) that lifts the node N(a + 1) ∈ Node(G∞) [cf.
[CbTpI], Lemma 4.3, (iii)]. [One verifies easily that such a γ̃∞ always
exists.] Then let us observe that, for each a ≤ b ∈ Z, we have a nat-
ural morphism of semi-graphs of anabelioids G[a,b] → G∞ [cf. [CbTpI],
Lemma 4.3, (iv)], which induces injections [cf. the evident pro-Σ gen-
eralizations of [SemiAn], Example 2.10; [SemiAn], Proposition 2.5, (i);
[SemiAn], Proposition 3.6, (iii)]

πtemp
1 (G[a,b]) ↪→ πtemp

1 (G∞) , ΠG[a,b]
↪→ ΠG

— where we write πtemp
1 (G[a,b]), ΠG[a,b]

for the tempered, pro-Σ funda-
mental groups of the semi-graph of anabelioids G[a,b] of pro-Σ PSC-type,
respectively — which are well-defined up to composition with inner
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automorphisms. By choosing appropriate basepoints, these inner auto-
morphism indeterminacies may be eliminated in such a way that, for
each a ≤ c ≤ b, the resulting injections are compatible with one another
and, moreover, their images contain the subgroups Πtemp

ev(c) ⊆ πtemp
1 (G∞),

Π
ev(c) ⊆ ΠG

∼← Π1, respectively. Then, relative to the resulting in-

clusions, Πtemp
ev(c) , Π

ev(c) form verticial subgroups of πtemp
1 (G[a,b]), ΠG[a,b]

associated to the vertex of G[a,b] corresponding to V (c) [cf. [CbTpI],
Lemma 4.3, (iii)]. In particular, we have a natural isomorphism

Π[a,a+1]
def
= Π

ev(a),ev(a+1)
∼−→ ΠG[a,a+1]

[cf. Lemma 4.12, (ii)]. Let us write

Π2|[a,a+1]
def
= Π2|Π[a,a+1]

⊆ Π2

[cf. Lemma 4.12, (ii)];

Π[a]
def
= Π

ev(a) ;

Π2|[a]
def
= Π2 ×Π1 Π[a] ⊆ Π2|[a−1,a] , Π2|[a,a+1] .

Next, we claim that the following assertion holds:

Claim 4.13.A: The profinite group ΠG is topologically
generated by Π[0] ⊆ ΠG and γ̃∞ ∈ ΠG.

Indeed, let us first observe that it follows immediately from a similar
argument to the argument applied in the proof of [CmbCsp], Propo-
sition 1.5, (iii) [i.e., in essence, from the “van Kampen Theorem” in
elementary algebraic topology], that the image of the natural homo-
morphism

lim−→
a≥0

πtemp
1 (G[−a,a]) −→ πtemp

1 (G∞)

— where the inductive limit is taken in the category of tempered groups
[cf. [SemiAn], Definition 3.1, (i); [SemiAn], Example 2.10; [SemiAn],
Proposition 3.6, (i)] — is dense. In particular, it follows immediately
from the exact sequence of [CbTpI], Lemma 4.3, (i), that the tempered
group πtemp

1 (G) [cf. [SemiAn], Example 2.10; [SemiAn], Proposition 3.6,
(i)] is topologically generated by Πtemp

ev(0) ⊆ πtemp
1 (G) and γ̃∞ ∈ πtemp

1 (G).

Thus, Claim 4.13.A follows immediately from the fact that the image
of the natural injection πtemp

1 (G) ↪→ ΠG is dense. This completes the
proof of Claim 4.13.A.

For a ∈ Z, let us write

G [a,a+1]
2/1

def
= G2∈{1,2},x

[cf. Definition 3.1, (iii)], where we take the “fixed” outer isomorphism

Π2/1
∼−→ ΠG[a,a+1]

2/1
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of Definition 3.1, (iii), to be an outer isomorphism [cf. the discussion of
the final portion of Lemma 4.12, (v)] such that the semi-graph of an-

abelioids structure on G [a,a+1]
2/1 is the semi-graph of anabelioids structure

determined by the resulting composite

Π
en(a+1) ↪→ ΠG

∼← Π1 → Out(Π2/1)
∼→ Out(ΠG[a,a+1]

2/1

)

— where we write Π
en(a+1) ⊆ ΠG for the nodal subgroup of ΠG asso-

ciated to the unique element ñ(a + 1) ∈ N (ṽ(a)) ∩ N (ṽ(a + 1)), and
the third arrow arises from the outer action determined by the exact

sequence 1 → Π2/1 → Π2

pΠ
2/1→ Π1 → 1 — in a fashion compatible with

the projection pΠ
{1,2}/{2}|Π2/1

: Π2/1 ³ Π{2} and the given outer isomor-

phisms Π{2}
∼→ Π1

∼→ ΠG. Here, we note that, for a, b ∈ Z, there

exist isomorphisms G [a,a+1]
2/1

∼→ G2∈{1,2},x
∼→ G[b,b+1]

2/1 of semi-graphs of

anabelioids of pro-Σ PSC-type. On the other hand, it is not difficult
to show [although we shall not use this fact in the present proof!] that
the well-known injectivity of the homomorphism Π1 → Out(Π2/1) of
the above display [cf. [Asd], Theorem 1; [Asd], the Remark following
the proof of Theorem 1] implies that when a 6= b, the composite

ΠG[a,a+1]
2/1

∼← Π2/1
∼→ ΠG[b,b+1]

2/1

in fact fails to be graphic!

•
•

• •
•

···········∨

···········∨

···········∨

G [a−1,a]
2/1 G [a]

2/1 G [a,a+1]
2/1

Ã Ã

• • •· · · · · ·
ṽ(a − 1) ṽ(a + 1)ṽ(a)︸ ︷︷ ︸

Π[a−1,a]

︸ ︷︷ ︸
Π[a,a+1]

Figure 4: G [a−1,a]
2/1 , G [a]

2/1, and G [a,a+1]
2/1
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For each a ∈ Z, let us write

G [a,a+1]Ã[a]
2/1

def
= (G [a,a+1]

2/1 )Ã{ev(a)◦} , G [a,a+1]Ã[a+1]
2/1

def
= (G [a,a+1]

2/1 )Ã{ev(a+1)◦}

— where we write ev(a)◦ , ev(a+1)◦ for the nodes “ez◦” of Lemma 4.12,
(iii), that occur, respectively, in the cases where the pair “(G2/1, z̃

◦)”

is taken to be (G [a,a+1]
2/1 , ṽ(a)◦); (G [a,a+1]

2/1 , ṽ(a + 1)◦). Then one verifies

easily that the composite

ΠG[a−1,a]Ã[a]
2/1

∼→ ΠG[a−1,a]
2/1

∼← Π2/1
∼→ ΠG[a,a+1]

2/1

∼← ΠG[a,a+1]Ã[a]
2/1

— where the first and fourth arrows are the natural specialization outer
isomorphisms [cf. [CbTpI], Definition 2.10], and the second and third
arrows are the outer isomorphisms fixed above — is graphic. In light
of this observation, it makes sense to write

G [a]
2/1

def
= G [a−1,a]Ã[a]

2/1

∼→ G [a,a+1]Ã[a]
2/1

[cf. Figure 4 above].
Next, let us observe that one verifies easily that the composites

Π[a] ↪→ ΠG
∼← Π1 → Out(Π2/1)

∼→ Out(ΠG[a,a+1]
2/1

)
∼← Out(ΠG[a]

2/1

)

Π[a+1] ↪→ ΠG
∼← Π1 → Out(Π2/1)

∼→ Out(ΠG[a,a+1]
2/1

)
∼← Out(ΠG[a+1]

2/1

)

— where the third arrows on each line of the display arise from the

outer action determined by the exact sequence 1 → Π2/1 → Π2

pΠ
2/1→

Π1 → 1, the fourth arrows are the isomorphisms induced by the outer
isomorphism Π2/1

∼→ ΠG[a,a+1]
2/1

fixed above, and the fifth arrows are the

isomorphisms induced by the natural specialization outer isomorphisms
[cf. [CbTpI], Definition 2.10] — factor through

Aut(G [a]
2/1) ⊆ Out(ΠG[a]

2/1

) , Aut(G [a+1]
2/1 ) ⊆ Out(ΠG[a+1]

2/1

) ,

respectively.
Now we turn to the verification of the surjectivity of the homomor-

phism ρbrch
2 . Let αv ∈ Glu(Π2) (⊆ OutFC((Πv)2)

G-node). Write (αv)1 ∈
Glu(Π1) for the image of αv ∈ Glu(Π2) via the injection of Lemma 4.10,

(i). Let α1 ∈ Aut|Brch(G)|(G) be such that ρbrch
1 (α1) = (αv)1 ∈ Glu(Π1)

[cf. Theorem 4.2, (iii); Definition 4.11]. Now, by applying Lemma 4.12,
(v), in the case where we take the pair “(ṽ, w̃)” to be (ṽ(0), ṽ(1)), we

obtain an outomorphism β[0,1]
def
= β

ev(0),ev(1)[α1] [cf. Lemma 4.12, (v)] of
Π2|[0,1] [cf. the notation of the discussion preceding Claim 4.13.A]. Let

β̃[0,1] ∈ Aut(Π2|[0,1]) be an automorphism that lifts β[0,1] ∈ Out(Π2|[0,1])

and ˜̃γ∞ ∈ Π2 a lifting of γ̃∞ ∈ Π1. Then since [as is easily verified]
Π2|[1,2] [cf. the notation of the discussion preceding Claim 4.13.A] is

the conjugate of Π2|[0,1] by ˜̃γ∞, by conjugating β̃[0,1] by ˜̃γ∞, we obtain



COMBINATORIAL ANABELIAN TOPICS II 117

an automorphism β̃[1,2] of Π2|[1,2]. On the other hand, it follows imme-
diately from [CmbGC], Proposition 1.2, (ii), together with Lemma 4.5,
that Π2|[1] [cf. the notation of the discussion preceding Claim 4.13.A]
is commensurably terminal in Π2|[0,1], Π2|[1,2], which thus implies [cf.
Lemma 3.10, (i); condition (4) of Lemma 4.12, (v)] that — by restrict-

ing β̃[0,1], β̃[1,2] to Π2|[1] ⊆ Π2|[0,1], Π2|[1,2] — we obtain two restricted
outomorphisms

β[0,1]|[1] , β[1,2]|[1]
of Π2|[1]. Now we claim that the following assertion holds:

Claim 4.13.B: There exist automorphisms β̃[0,1]|[1], β̃[1,2]|[1]
of Π2|[1] that lift β[0,1]|[1], β[1,2]|[1], respectively, such
that the outomorphisms of Π2/1 ⊆ Π2|[1] determined

by β̃[0,1]|[1], β̃[1,2]|[1] coincide.

Indeed, it follows from condition (2) of Lemma 4.12, (v), together

with the definition of β[1,2], that there exist automorphisms β̃[0,1]|[1],
β̃[1,2]|[1] of Π2|[1] that lift β[0,1]|[1], β[1,2]|[1], respectively, such that the

outomorphisms (β̃[0,1]|[1])2/1, (β̃[1,2]|[1])2/1 of Π2/1 determined by β̃[0,1]|[1],
β̃[1,2]|[1] are contained in Aut|Brch(G[0,1]

2/1
)|(G [0,1]

2/1 ), Aut|Brch(G[1,2]
2/1

)|(G [1,2]
2/1 ) (⊆

Out(Π2/1)), respectively. In particular, it follows that, relative to the

specialization outer isomorphisms ΠG[1]
2/1

∼→ ΠG[0,1]
2/1

, ΠG[1]
2/1

∼→ ΠG[1,2]
2/1

that

appeared in the discussion following the proof of Claim 4.13.A, together
with the natural inclusion of [CbTpI], Proposition 2.9, (ii), it holds that

(β̃[0,1]|[1])2/1 , (β̃[1,2]|[1])2/1 ∈ Aut|Brch(G[1]
2/1

)|(G [1]
2/1) (⊆ Out(Π2/1)) .

Moreover, it follows immediately from condition (3) of Lemma 4.12,
(v), applied in the case of β[0,1], together with the definition of β[1,2],
that the outomorphisms of the configuration space subgroup(

Π2 ⊇ Π2|[0,1] ⊇
)

(Π
ev(1))2

(
⊆ Π2|[1,2] ⊆ Π2

)
associated to the vertex ṽ(1) determined by β[0,1], β[1,2] coincide with
αv. Now let us recall from the above discussion that the composite

Π[1] ↪→ Π1 → Out(Π2/1)
∼→ Out(ΠG[1]

2/1

)

factors through

Aut(G [1]
2/1) ⊆ Out(ΠG[1]

2/1

) .

Thus, it follows immediately from the displayed exact sequence of The-
orem 4.2, (iii) [cf. also Remark 4.9.1], that — after possibly replacing

β̃[1,2]|[1] by a suitable Π2|[1]-conjugate — if we write

δ
def
= (β̃[0,1]|[1])2/1 ◦ (β̃[1,2]|[1])−1

2/1 ∈ Aut|Brch(G[1]
2/1

)|(G [1]
2/1) (⊆ Out(Π2/1)) ,

then it holds that δ ∈ Dehn(G [1]
2/1).
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Next, let us observe that, for a ∈ {0, 1}, since β̃[a,a+1] preserves the
Π2/1-conjugacy class of cuspidal inertia subgroups associated to the di-
agonal cusp [cf. condition (2) of Lemma 4.12, (v)], it follows from a
similar argument to the argument applied in the proof of [CmbCsp],

Proposition 1.2, (iii), that the outomorphism (β̃[a,a+1]){2} of Π{2} in-

duced by β̃[a,a+1] on the quotient

ΠG[1]
2/1

∼← Π2/1 ↪→ Π2

pΠ
{1,2}/{2}

³ Π{2}

is compatible, relative to the natural outer inclusion Π[a,a+1] ↪→ Π1
∼→

Π{2}, with the outomorphism α1|Π[a,a+1]
[cf. condition (4) of Lemma 4.12,

(v)]. Since an element of Aut|Brch(G)|(G) is completely determined by
its restriction to Aut(G[a,a+1]) [cf. [CbTpI], Definition 4.4; [CbTpI],
Remark 4.8.1], we thus conclude that, relative to the natural outer

isomorphisms Π{2}
∼→ Π1

∼→ ΠG, it holds that

(β̃[a,a+1]){2} = α1 .

In particular, we thus conclude that the element of Aut|Brch(G)|(G) in-

duced by δ ∈ Aut|Brch(G[1]
2/1

)|(G [1]
2/1) on the quotient ΠG[1]

2/1

∼← Π2/1 ↪→

Π2

pΠ
{1,2}/{2}

³ Π{2}
∼→ ΠG is trivial. On the other hand, let us observe

that one verifies easily from [CbTpI], Theorem 4.8, (iii), (iv), that this

composite ΠG[1]
2/1

∼← Π2/1 ↪→ Π2

pΠ
{1,2}/{2}

³ Π{2}
∼→ ΠG determines an

isomorphism

Dehn(G [1]
2/1)

∼−→ Dehn(G) .

Thus, we conclude that δ is the identity outomorphism of Π2/1. This
completes the proof of Claim 4.13.B. In the following, we shall suppose

that the automorphism β̃[0,1] of Π2|[0,1] was chosen so as to satisfy the
following condition:

β̃[0,1] preserves the subgroup Π2|[1] ⊆ Π2|[0,1], and its

restriction to Π2|[1] is equal to the lifting “β̃[0,1]|[1]” of
Claim 4.13.B.

Next, let us fix an automorphism α̃1 ∈ Aut(Π1) that lifts α1 ∈
Aut|grph|(G) ⊆ Out(ΠG)

∼← Out(Π1) and preserves the subgroups Π[0],
Π[1], Π[0,1] ⊆ Π1, and whose restriction to Π[0,1] ⊆ Π1 coincides with

the automorphism of Π[0,1] determined by the automorphism β̃[0,1] of
Π2|[0,1]. [One verifies easily that such an α̃1 always exists.] Write
β2/1 ∈ Out(Π2/1) for the outomorphism of Π2/1 ⊆ Π2|[0,1] determined

by β̃[0,1]. Now we claim that the following assertion holds:

Claim 4.13.C: Write ρ : Π1 → Out(Π2/1) for the ho-
momorphism determined by the exact sequence 1 →
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Π2/1 → Π2

pΠ
2/1→ Π1 → 1. Then

ρ(α̃1(γ̃∞)) = β2/1 ◦ ρ(γ̃∞) ◦ β−1
2/1 ∈ Out(Π2/1) .

Indeed, let us first observe that it follows from Claim 4.13.B, together

with the definition of β̃[1,2], that there exists an element ε ∈ Π[1] such
that

ρ(γ̃∞) ◦ β2/1 ◦ ρ(γ̃−1
∞ ) ◦ β−1

2/1 = ρ(ε−1) (∗1) .

Next, let us observe that if we write

η
def
= α̃1(γ̃∞) ◦ γ̃−1

∞ ∈ Π[1] (∗2)

[cf. our choice of α̃1!], then it follows immediately from our choices
of α̃1 and γ̃∞ that η ∈ Π[1]. Thus, to verify Claim 4.13.C, it suffices
to verify that ρ(ε) = ρ(η). To this end, let ζ ∈ Π[0]. Then, by our
choice of γ̃∞, it follows that γ̃∞ ◦ ζ ◦ γ̃−1

∞ ∈ Π[1]. In particular, since

the outomorphism β2/1 arises from an automorphism β̃[0,1] of Π2|[0,1],
which is an automorphism over the restriction of α̃1 to Π[0,1], it follows
immediately that

β2/1 ◦ ρ(ζ) = ρ(α̃1(ζ)) ◦ β2/1 (∗3) .

β2/1 ◦ ρ(γ̃∞ ◦ ζ ◦ γ̃−1
∞ ) = ρ(α̃1(γ̃∞ ◦ ζ ◦ γ̃−1

∞ )) ◦ β2/1 (∗4) .

Thus, if we write

Θε
def
= ρ(ε ◦ γ̃∞ ◦ α̃1(ζ) ◦ γ̃−1

∞ ◦ ε−1) ◦ β2/1 ∈ Out(Π2/1) ,

Θη
def
= ρ(η ◦ γ̃∞ ◦ α̃1(ζ) ◦ γ̃−1

∞ ◦ η−1) ◦ β2/1 ∈ Out(Π2/1) ,

then

Θε = ρ(ε ◦ γ̃∞ ◦ α̃1(ζ)) ◦ β2/1 ◦ ρ(γ̃−1
∞ ) [cf. (∗1)]

= ρ(ε ◦ γ̃∞) ◦ β2/1 ◦ ρ(ζ ◦ γ̃−1
∞ ) [cf. (∗3)]

= β2/1 ◦ ρ(γ̃∞ ◦ ζ ◦ γ̃−1
∞ ) [cf. (∗1)]

= ρ(α̃1(γ̃∞ ◦ ζ ◦ γ̃−1
∞ )) ◦ β2/1 [cf. (∗4)]

= Θη [cf. (∗2)]

— which thus implies that ρ(η−1◦ε) commutes with ρ(γ̃∞◦α̃1(ζ)◦ γ̃−1
∞ ).

In particular, since γ̃∞ ◦ α̃1(Π[0]) ◦ γ̃−1
∞ = γ̃∞ ◦ Π[0] ◦ γ̃−1

∞ = Π[1], by
allowing “ζ” to vary among the elements of Π[0], it follows that ρ(η−1◦ε)
centralizes ρ(Π[1]). On the other hand, it follows from [Asd], Theorem 1;
[Asd], the Remark following the proof of Theorem 1, that ρ is injective.
Thus, since ε, η ∈ Π[1], we conclude that η−1 ◦ ε ∈ Z(Π[1]) = {1} [cf.
[CmbGC], Remark 1.1.3]. This completes the proof of Claim 4.13.C.

Now let us recall that the outomorphism β2/1 of Π2/1 of Claim 4.13.C

arises from an automorphism β̃[0,1] of Π2|[0,1]. Thus, it follows immedi-
ately from Claims 4.13.A, 4.13.C that the outomorphism β2/1 of Π2/1

is compatible with the automorphism α̃1 ∈ Aut(Π1) relative to the
homomorphism Π1 → Out(Π2/1) determined by the exact sequence
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1 → Π2/1 → Π2

pΠ
2/1→ Π1 → 1. In particular — by considering the nat-

ural isomorphism Π2
∼→ Π2/1

out
o Π1 [cf. the discussion entitled “Topo-

logical groups” in [CbTpI], §0] — we conclude that the outomorphism
β2/1 ∈ Out(Π2/1) extends to an outomorphism α2 of Π2. On the other
hand, it follows immediately from the various definitions involved that
α2 ∈ OutFC(Π2)

brch, and that ρbrch
2 (α2) = αv ∈ Glu(Π2) [cf. condition

(3) of Lemma 4.12, (v)]. This completes the proof of Lemma 4.13 in
the case where G is cyclically primitive, hence also of Lemma 4.13. ¤

Theorem 4.14 (Glueability of combinatorial cuspidalizations).
Let (g, r) be a pair of nonnegative integers such that 2g − 2 + r > 0;
n a positive integer; Σ a set of prime numbers which is either equal to
the set of all prime numbers or of cardinality one; k an algebraically
closed field of characteristic 6∈ Σ; (Spec k)log the log scheme obtained by
equipping Spec k with the log structure determined by the fs chart N → k
that maps 1 7→ 0; X log = X log

1 a stable log curve of type (g, r) over
(Spec k)log. Write G for the semi-graph of anabelioids of pro-Σ PSC-
type determined by the stable log curve X log. For each positive integer
i, write X log

i for the i-th log configuration space of the stable log
curve X log [cf. the discussion entitled “Curves” in [CbTpI], §0]; Πi

for the maximal pro-Σ quotient of the kernel of the natural surjection
π1(X

log
i ) ³ π1((Spec k)log). Then the following hold:

(i) There exists a natural commutative diagram of profinite
groups

OutFC(Πn+1)
brch

ρbrch
n+1−−−→ Glu(Πn+1)y y

OutFC(Πn)brch ρbrch
n−−−→ Glu(Πn)

[cf. Definitions 4.6, (i); 4.9; 4.11] — where the vertical arrows
[cf. Lemma 4.10, (i)] are injective.

(ii) The closed subgroup Dehn(G) ⊆ (Aut(G) ⊆) Out(Π1) [cf. [CbTpI],
Definition 4.4] is contained in the image of the injection
OutFC(Πn)brch ↪→ OutFC(Π1)

brch [cf. the left-hand vertical ar-
rows of the diagrams of (i), for varying n]. Thus, one may
regard Dehn(G) as a closed subgroup of OutFC(Πn)brch, i.e.,
Dehn(G) ⊆ OutFC(Πn)brch.

(iii) The homomorphism ρbrch
n : OutFC(Πn)brch → Glu(Πn) of (i)

and the inclusion Dehn(G) ↪→ OutFC(Πn)brch of (ii) fit into
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an exact sequence of profinite groups

1 −→ Dehn(G) −→ OutFC(Πn)brch ρbrch
n−→ Glu(Πn) −→ 1 .

In particular, the commutative diagram of (i) is cartesian,
and the horizontal arrows of this diagram are surjective.

Proof. Assertion (i) follows immediately from Lemma 4.10, (i), together
with the injectivity portion of [NodNon], Theorem B. Assertion (ii)
follows immediately from Proposition 3.24, (ii); Theorem 4.2, (i).

Finally, we verify assertion (iii). First, we claim that the following
assertion holds:

Claim 4.14.A: Ker(ρbrch
n ) = Dehn(G) [cf. assertion

(ii)].

Indeed, it follows immediately from Theorem 4.2, (iii) [cf. also Re-
mark 4.9.1], together with assertion (i), that we have a natural com-
mutative diagram

1 −−−→ Ker(ρbrch
n ) −−−→ OutFC(Πn)brch ρbrch

n−−−→ Glu(Πn)y y y
1 −−−→ Dehn(G) −−−→ OutFC(Π1)

brch ρbrch
1−−−→ Glu(Π1) −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows
are injective. Thus, Claim 4.14.A follows immediately. In particular,
to complete the verification of assertion (iii), it suffices to verify the
surjectivity of ρbrch

n . The remainder of the proof of assertion (iii) is
devoted to verifying this surjectivity.

Next, we claim that the following assertion holds:

Claim 4.14.B: If n = 2, then ρbrch
n is surjective.

We verify Claim 4.14.B by induction on Node(G)]. If Node(G)] = 0,
then Claim 4.14.B is immediate. If Node(G)] = 1, then Claim 4.14.B
follows from Lemma 4.13. Now suppose that Node(G)] > 1, and that
the induction hypothesis is in force. Let (αv)v∈Vert(G) ∈ Glu(Π2). Write
((αv)1)v∈Vert(G) ∈ Glu(Π1) for the element of Glu(Π1) determined by
(αv)v∈Vert(G) [i.e., the image of (αv)v∈Vert(G) via the right-hand vertical
arrow of the diagram of assertion (i) in the case where n = 1]. Let
e ∈ Node(G). Write H for the unique sub-semi-graph of PSC-type [cf.
[CbTpI], Definition 2.2, (i)] of the underlying semi-graph of G whose set

of vertices is V(e). Then one verifies easily that S
def
= Node(G|H) \ {e}

[cf. [CbTpI], Definition 2.2, (ii)] is not of separating type [cf. [CbTpI],
Definition 2.5, (i)] as a subset of Node(G|H). Thus, since (G|H)ÂS [cf.
[CbTpI], Definition 2.5, (ii)] has precisely one node, and (αv)v∈V(e) may
be regarded as an element of Glu((ΠH,S)2) — where we use the notation
(ΠH,S)2 to denote a configuration space subgroup of Π2 associated to
(H, S) [cf. Definition 4.3], to which the notation “Glu(−)” is applied
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in the evident sense — it follows from Lemma 4.13 that there exists an
outomorphism βH,S of (ΠH,S)2 ⊆ Π2 that lifts (αv)v∈V(e) ∈ Glu((ΠH,S)2).

Next, let us observe that it follows immediately from the various
definitions involved that

γ
def
= (βH,S, (αv)v 6∈V(e)) ∈ Out((ΠH,S)2) ×

∏
v 6∈V(e)

Out((Πv)2)

may be regarded as an element of the “Glu(Π2)” that occurs in the case
where we take the stable log curve “X log” to be a stable log curve over
(Spec k)log obtained by deforming the node corresponding to e. Thus,
since the number of nodes of such a stable log curve is = Node(G)] −
1 < Node(G)], by applying the induction hypothesis, we conclude that
the above γ arises from an outomorphism αγ ∈ OutFC(Π2)

brch. On
the other hand, it follows immediately from the various definitions
involved that the image of αγ via ρbrch

2 coincides with (αv)v∈Vert(G).
This completes the proof of Claim 4.14.B.

Finally, we verify the surjectivity of ρbrch
n [for arbitrary n] by in-

duction on n. If n ≤ 2, then the surjectivity of ρbrch
n follows from

Theorem 4.2, (iii) [cf. also Remark 4.9.1], Claim 4.14.B. Now sup-
pose that n ≥ 3, and that the induction hypothesis is in force. Let
(αv)v∈Vert(G) ∈ Glu(Πn). First, let us observe that it follows from the in-

duction hypothesis that there exists an element αn−1 ∈ OutFC(Πn−1)
brch

such that ρbrch
n−1(αn−1) coincides with the element of Glu(Πn−1) deter-

mined by (αv)v∈Vert(G) ∈ Glu(Πn) [cf. assertion (i)]. Let α̃n−1 be an
automorphism of Πn−1 that lifts αn−1. Write αn−1/n−2 for the outomor-
phism of Πn−1/n−2 determined by α̃n−1 and α̃n−2 for the automorphism
of Πn−2 determined by α̃n−1.

Next, let us observe that one verifies easily from the various defi-
nitions involved that Πn/n−2 ⊆ Πn may be regarded as the “Π2” as-
sociated to some stable log curve “X log” over (Spec k)log. Moreover,
this stable log curve may be taken to be a geometric fiber of the sort
discussed in Definition 3.1, (iii), in the case of the projection plog

n−1/n−2,

relative to a point “x ∈ Xn(k)” that maps to the interior of the same
irreducible component of X log, relative to the n projections to X log. In
particular, by fixing such a stable log curve, together with a suitable
choice of lifting α̃n−1 [cf. Theorem 4.7], it makes sense to speak of
Glu(Πn/n−2). Moreover, it follows immediately from our choice of “x”
that every configuration space subgroup that appears in the definition
[cf. Definition 4.9, (ii)] of Glu(Πn/n−2) either

• occurs as a configuration space subgroup of the intersection
with Πn/n−2 of some configuration space subgroup that appears
in the definition [cf. Definition 4.9, (iii)] of Glu(Πn) or

• projects isomorphically, via the projection Πn → Π2 to the
factors labeled n and n− 1, to a configuration space subgroup
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of Π2, i.e., a configuration space subgroup that appears in the
definition [cf. Definition 4.9, (ii)] of Glu(Π2).

In particular, every tripod that appears in the definition [cf. Defini-
tion 4.9, (ii)] of Glu(Πn/n−2) occurs as a tripod of a configuration space
subgroup that appears either in the definition [cf. Definition 4.9, (iii)] of
Glu(Πn) or in the definition [cf. Definition 4.9, (ii)] of Glu(Π2). More-
over, it follows from Theorem 4.7; Lemma 3.2, (iv); Lemma 4.8, (i),
that the various αv’s preserve these configuration space subgroups and
tripods — as well as each conjugacy class of cuspidal inertia subgroups
of each of these tripods! — that appear in the definition [cf. Defini-
tion 4.9, (ii)] of Glu(Πn/n−2). Thus, we conclude from Theorem 3.18,
(ii), together with Definition 4.9, (iii), in the case of Glu(Πn), and Defi-
nition 4.9, (ii), in the case of Glu(Π2), that (αv)v ∈ Vert(G) determines
an element ∈ Glu(Πn/n−2), hence, by Claim 4.14.B, an element

αn/n−2 ∈ OutFC(Πn/n−2)

that lifts the element αn−1/n−2 ∈ Out(Πn−1/n−2).
Now we claim that the following assertion holds:

Claim 4.14.C: This outomorphism αn/n−2 of Πn/n−2 is
compatible with the automorphism α̃n−2 of Πn−2 rel-
ative to the homomorphism Πn−2 → Out(Πn/n−2) in-
duced by the natural exact sequence of profinite groups

1 −→ Πn−2/n −→ Πn

pΠ
n/n−2−→ Πn−2 −→ 1 .

Indeed, this follows immediately from the corresponding fact for αn−1/n−2

[which follows from the existence of α̃n−1], together with the injectivity
of the natural homomorphism OutFC(Πn/n−2) → OutFC(Πn−1/n−2) [cf.
[NodNon], Theorem B]. This completes the proof of Claim 4.14.C.

Thus, by applying Claim 4.14.C and the natural isomorphism Πn
∼→

Πn/n−2

out
o Πn−2 [cf. the discussion entitled “Topological groups” in

[CbTpI], §0], we obtain an outomorphism αn of Πn that lifts the outo-
morphism αn−1 of Πn−1. Thus, it follows immediately from Lemma 4.10,
(i), that ρbrch

n (αn) = (αv)v∈Vert(G). This completes the proof of the sur-
jectivity of ρbrch

n , hence also of assertion (iii). ¤

Remark 4.14.1. In the notation of Theorem 4.14, observe that the
data of collections of smooth log curves that [by gluing at prescribed
cusps] give rise to a stable log curve whose associated semi-graph of
anabelioids [of pro-Σ PSC-type] is isomorphic to G form a smooth,
connected moduli stack. In particular, by considering a suitable path
in the étale fundamental groupoid of this moduli stack, one verifies
immediately that one may reduce the verification of an “isomorphism
version” — i.e., concerning PFC-admissible [cf. [CbTpI], Definition
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1.4, (iii)] outer isomorphisms between the pro-Σ fundamental groups
of the configuration spaces associated to two a priori distinct stable
log curves “X log” and “Y log” — of Theorem 4.14 to the “automorphism
version” given in Theorem 4.14 [cf. [CmbCsp], Remark 4.1.4]. A similar
statement may be made concerning Theorem 4.7. We leave the routine
details to the interested reader. In the present paper, we restricted our
attention to the “automorphism versions” of these results in order to
simplify the [already somewhat complicated!] notation.

Remark 4.14.2. One may regard [CmbCsp], Corollary 3.3, as a special
case of the surjectivity of ρbrch

n discussed in Theorem 4.14, i.e., the case
in which X log is obtained by gluing a tripod to a smooth log curve
along a cusp of the smooth log curve.

Corollary 4.15 (Surjectivity result). In the notation of Theorem 3.16,
suppose that n ≥ 3. If r = 0, then we suppose further that n ≥ 4. Then
the tripod homomorphism

TΠtpd : OutF(Πn) −→ OutC(Πtpd)∆+

[cf. Definition 3.19; Theorem 3.16, (v)] is surjective.

Proof. Let α ∈ OutC(Πtpd)∆+. First, let us observe that — by consider-
ing a suitable stable log curve of type (g, r) over (Spec k)log and apply-
ing a suitable specialization isomorphism [cf. Proposition 3.24, (i); the
discussion preceding [CmbCsp], Definition 2.1, as well as [CbTpI], Re-
mark 5.6.1] — to verify Corollary 4.15, we may assume without loss of
generality that G is totally degenerate [cf. [CbTpI], Definition 2.3, (iv)],
i.e., that every vertex of G is a tripod of X log

n [cf. Definition 3.1, (v)].
Then since α ∈ OutC(Πtpd)∆+, it follows immediately from [CmbCsp],
Corollary 4.2, (ii), that there exists an element αn ∈ OutFC(Πtpd

n ) —
where we write Πtpd

n for the “Πn” that occurs in the case where we take
“X log” to be a tripod — such that α arises as the image of αn via the
natural injection OutFC(Πtpd

n ) ↪→ OutFC(Πtpd) of [NodNon], Theorem
B. Thus, it follows immediately from Theorem 4.14, (iii), that there
exists an element β ∈ OutFC(Πn)brch that lifts — relative to ρbrch

n —
the element of Glu(Πn) determined by αn ∈ OutFC(Πtpd

n ). [Here, recall
that we have assumed that G is totally degenerate.] Now it follows from
Theorem 3.18, (ii), that TΠtpd(β) = α, i.e., that α is contained in the
image of TΠtpd . This completes the proof of Corollary 4.15. ¤

Corollary 4.16 (Absolute anabelian cuspidalization for stable
log curves over finite fields). Let p, lX , lY be prime numbers such
that p 6∈ {lX , lY }; (gX , rX), (gY , rY ) pairs of nonnegative integers such
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that 2gX −2+rX , 2gY −2+rY > 0; kX , kY finite fields of characteris-
tic p; kX , kY algebraic closures of kX , kY ; (Spec kX)log (Spec kY )log the
log schemes obtained by equipping Spec kX , Spec kY with the log struc-
tures determined by the fs charts N → kX , N → kY that map 1 7→ 0;
X log, Y log stable log curves [cf. the discussion entitled “Curves” in
[CbTpI], §0] of type (gX , rX), (gY , rY ) over (Spec kX)log, (Spec kY )log;

Glog
kX

def
= π1((Spec kX)log) ³ GkX

def
= Gal(kX/kX) ;

Glog
kY

def
= π1((Spec kY )log) ³ GkY

def
= Gal(kY /kY ) ;

sX : GkX
→ Glog

kX
, sY : GkY

→ Glog
kY

sections of the above natural sur-

jections Glog
kX

³ GkX
, Glog

kY
³ GkY

. For each positive integer n, write

X log
n , Y log

n for the n-th log configuration spaces [cf. the discus-
sion entitled “Curves” in [CbTpI], §0] of X log, Y log; XΠn,

YΠn for the
maximal pro-lX , pro-lY quotients of the kernels of the natural surjec-
tions π1(X

log
n ) ³ Glog

kX
, π1(Y

log
n ) ³ Glog

kY
. Then the sections sX , sY

determine outer actions of GkX
, GkY

on XΠn,
YΠn. Thus, we obtain

profinite groups

XΠn

out
o sX

GkX
, YΠn

out
o sY

GkY

[cf. [MzTa], Proposition 2.2, (ii); the discussion entitled “Topological
groups” in [CbTpI], §0]. Let

α1 : XΠ1

out
o sX

GkX

∼−→ YΠ1

out
o sY

GkY

be an isomorphism of profinite groups. Then lX = lY ; there exists a
unique collection of isomorphisms of profinite groups{

αn : XΠn

out
o sX

GkX

∼−→ YΠn

out
o sY

GkY

}
n≥1

— well-defined up to composition with an inner automorphism of YΠn

out
o sY

GkY
by an element of the intersection YΞn ⊆ YΠn of the fiber subgroups

of YΠn of co-length 1 [cf. [CmbCsp], Definition 1.1, (iii)] — such that
each diagram

XΠn+1

out
o sX

GkX

αn+1−−−→ YΠn+1

out
o sY

GkYy y
XΠn

out
o sX

GkX

αn−−−→ YΠn

out
o sY

GkY

— where the vertical arrows are the surjections induced by the pro-
jections X log

n+1 → X log
n , Y log

n+1 → Y log
n obtained by forgetting the factors

labeled j, for some j ∈ {1, · · · , n+1} — commutes, up to composition
with a YΞn-inner automorphism.
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Proof. First, let us observe that it follows from [AbsTpI], Corollary

2.8, (i), that α1 maps XΠ1 ⊆ XΠ1

out
o sX

GkX
bijectively onto YΠ1 ⊆

YΠ1

out
o sY

GkY
. In particular, lX = lY ; α1 induces isomorphisms of

profinite groups

αΠ
1 : XΠ1

∼−→ YΠ1 , α0 : GkX

∼−→ GkY
.

Write l
def
= lX = lY . For ¤ ∈ {X,Y }, write G

(l)
k¤

⊆ Gk¤ for the maximal

pro-l closed subgroup of Gk¤ ; G
(6=l)
k¤

for the maximal pro-prime-to-l

closed subgroup of Gk¤ . Then since Gk¤ is isomorphic to Ẑ as an
abstract profinite group, we have a natural decomposition

G
(l)
k¤

× G
(6=l)
k¤

∼−→ Gk¤ .

Thus, the isomorphism α0 naturally decomposes into a pair of isomor-
phisms

α
(l)
0 : G

(l)
kX

∼−→ G
(l)
kY

, α
(6=l)
0 : G

(6=l)
kX

∼−→ G
(6=l)
kY

.

Next, let us observe that since ¤Π1 is topologically finitely generated
and pro-l, one verifies easily that [by replacing Gk¤ by a suitable open
subgroup] we may assume without loss of generality that the outer
action of Gk¤ on ¤Π1 — hence [cf. the injectivity portion of [NodNon],
Theorem B] also on ¤Πn for each positive integer n — factors through

the quotient Gk¤
∼← G

(l)
k¤

× G
(6=l)
k¤

³ G
(l)
k¤

. Thus, it follows immediately

from the slimness of ¤Πn [cf. [MzTa], Proposition 2.2, (ii)] that the
composite

Z¤Πn
out
o s¤ Gk¤

(¤Πn) ↪→ ¤Πn

out
o s¤ Gk¤ ³ Gk¤

determines an isomorphism

Z¤Πn
out
o s¤ Gk¤

(¤Πn)
∼−→ G 6=l

k¤
.

In particular, if we identify Z¤Πn
out
o s¤ Gk¤

(¤Πn) with G 6=l
k¤

by means of

this isomorphism, then we obtain a natural isomorphism(
¤Πn

out
o s¤ G

(l)
k¤

)
× G

(6=l)
k¤

∼−→ ¤Πn

out
o s¤ Gk¤ .

Next, let us observe that the following assertion holds:

Claim 4.16.A: There exists a power q of p such that
logp(q) is divisible by logp(k

]
X), logp(k

]
Y ), and, more-

over,

α
(l)
0 ((Frq)

(l)
kX

) = (Frq)
(l)
kY

— where we write (Frq)kX
∈ GkX

, (Frq)kY
∈ GkY

for

the q-power Frobenius elements of GkX
, GkY

; (Frq)
(l)
kX

∈
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G
(l)
kX

, (Frq)
(l)
kY

∈ G
(l)
kY

for the respective images of (Frq)kX
∈

GkX
, (Frq)kY

∈ GkY
in G

(l)
kX

, G
(l)
kY

.

Indeed, let us first observe that it follows immediately from [CmbGC],
Corollary 2.7, (ii) [cf. also the proof of [CmbGC], Proposition 2.4,
(v)], that αΠ

1 is graphic. In particular, we have an equality rX = rY ,
which thus implies [cf. the well-known fact that, for ¤ ∈ {X,Y }, the
abelianization of ¤Π1 is a free Zl-module of rank 2g¤ + max{0, r¤ − 1}
— cf., e.g., [CmbGC], Remark 1.1.3] that (gX , rX) = (gY , rY ). Next,
let us observe that, for ¤ ∈ {X,Y }, it follows immediately from the
definition of the filtration on the abelianization of ¤Π1 given in the
second display of [CmbGC], Definition 1.1, (ii) [cf. also the duality
property reviewed in [CmbGC], Proposition 1.3], that the character

det¤ : G
(l)
k¤

→ Z∗
l determined by the square of the determinant of the

abelianization [which is a free Zl-module of finite rank] of ¤Π1 coincides
with the 2t¤-th tensor power of the l-adic cyclotomic character of Gk¤ ,

where we write t¤
def
= g¤ + max{0, r¤ − 1}. Thus, for a suitable power

q of p such that logp(q) is divisible by logp(k
]
X), logp(k

]
Y ), it follows

immediately from the [easily verified] injectivity of det¤ that (Frq)
(l)
k¤

may be characterized uniquely by the condition that det¤((Frq)
(l)
k¤

) =

q2t¤ . In particular, since detX is compatible, relative to α0, with detY ,

and tX = tY , we conclude that α
(l)
0 ((Frq)

(l)
kX

) = (Frq)
(l)
kY

. This completes
the proof of Claim 4.16.A.

Write HkX
⊆ GkX

, HkY
⊆ GkY

for the open subgroups of GkX
, GkY

topologically generated by (Frq)kX
∈ GkX

, (Frq)kY
∈ GkY

[cf. Claim
4.16.A]; UkY

⊆ GkY
for the open subgroup of GkY

topologically gener-

ated by α0((Frq)kX
) ∈ GkY

; H
(l)
kX

⊆ G
(l)
kX

for the image of HkX
⊆ GkX

in

G
(l)
kX

; H
(l)
kY

, U
(l)
kY

⊆ G
(l)
kY

for the images of HkY
, UkY

⊆ GkY
in G

(l)
kY

. Then

it follows from Claim 4.16.A that we have an equality H
(l)
kY

= U
(l)
kY

, and,

moreover, that the isomorphism HkX

∼→ UkY
induced by α0 induces

an isomorphism H
(l)
kX

∼→ U
(l)
kY

= H
(l)
kY

. Thus, again by Claim 4.16.A,

one verifies easily that if we write αH
0 : HkX

∼→ HkY
for the [uniquely

determined] isomorphism of profinite groups which

(a) preserves the respective q-power Frobenius elements of HkX
,

HkY
,

then

(b) the isomorphism H
(l)
kX

∼→ H
(l)
kY

induced by αH
0 coincides with

the above isomorphism H
(l)
kX

∼→ U
(l)
kY

= H
(l)
kY

induced by α0.
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Moreover, it follows immediately from condition (b), together with the
existence of the natural isomorphisms(

XΠn

out
o sX

G
(l)
kX

)
× G

(6=l)
kX

∼−→ XΠn

out
o sX

GkX
,(

YΠn

out
o sY

G
(l)
kY

)
× G

(6=l)
kY

∼−→ YΠn

out
o sY

GkY
,

that there exists an isomorphism

αH
1 : XΠ1

out
o sX

HkX

∼−→ YΠ1

out
o sY

HkY

such that

(c) the isomorphism “α0” of HkX
with HkY

that occurs in the
case where we take the “α1” to be αH

1 coincides with αH
0 , and,

moreover,

(d) the isomorphism “αΠ
1 ” of XΠ1 with YΠ1 that occurs in the case

where we take the “α1” to be αH
1 coincides with [the original]

αΠ
1 .

In particular, we conclude, again by the existence of the natural iso-
morphisms (

XΠn

out
o sX

G
(l)
kX

)
× G

(6=l)
kX

∼−→ XΠn

out
o sX

GkX
,(

YΠn

out
o sY

G
(l)
kY

)
× G

(6=l)
kY

∼−→ YΠn

out
o sY

GkY
,

together with the injectivity portion of [NodNon], Theorem B, that,
to verify Corollary 4.16 — by replacing GkX

, GkY
, α1 by HkX

, HkY
,

αH
1 — we may assume without loss of generality that α0 preserves

the respective Frobenius elements of GkX
, GkY

[cf. condition (a)]. By
choosing the power q of p in Claim 4.16.A in an appropriate fashion, we
may also assume without loss of generality that the following condition
holds:

(e) for ¤ ∈ {X,Y }, Gk¤ acts trivially on the underlying semi-
graph of the semi-graph of anabelioids of pro-l PSC-type de-
termined by ¤log.

Next, let us recall that the isomorphism αΠ
1 is graphic [cf. the proof

of Claim 4.16.A]. In particular, by applying the observation of Re-
mark 4.14.1, we reduce immediately to the case where X log = Y log,
and the outomorphism β1 of Π1 determined by α1 determines an ele-
ment of Aut|Brch(G)|(G) (⊆ Out(ΠG)

∼← Out(Π1)) [where we omit the
various superscript “X’s” that occur in the notation of the statement
of Corollary 4.16]. Then the uniqueness portion of Corollary 4.16 fol-
lows immediately from the injectivity portion of [NodNon], Theorem B,
together with the slimness of Π1.
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Thus, it remains to verify the existence of a collection of αn’s as in
the statement of Corollary 4.16. To this end, for each positive inte-
ger i and each v ∈ Vert(G), let us fix a configuration space subgroup

(Πv)i ⊆ Πn of Πn associated to v ∈ Vert(G). Write (βv)v∈Vert(G)
def
=

ρbrch
G (β1) ∈ Glubrch(G) [cf. Definition 4.1, (iii); Theorem 4.2, (iii)].

Then it follows immediately from the various definitions involved that,
for each v ∈ Vert(G), the outomorphism βv of (Πv)1 is compatible with
the natural outer action of Gk [cf. condition (e)]. Thus, by applying
[Wkb], Theorem C, we obtain an outomorphism βv,n of (Πv)n which
is compatible with the natural outer action of Gk. Moreover, since
(βv)v∈Vert(G) ∈ Glubrch(G), one verifies easily from the injectivity dis-
cussed in [Hsh], Remark 6, (iv) [i.e., applied to the outomorphisms
of the various tripods of (Πv)n induced by βv,n] that (βv,n)v∈Vert(G) ∈
Glu(Πn) [cf. Definition 4.9]. In particular, since the diagram of The-
orem 4.14, (i), is cartesian [cf. Theorem 4.14, (iii)], it follows that

β1 ∈ Aut|Brch(G)|(G) and (βv,n)v∈Vert(G) ∈ Glu(Πn) determine an ele-

ment of OutFC(Πn)brch, which — by the injectivity portion of [NodNon],
Theorem B — is compatible with the natural outer action of Gk on Πn

determined by s. Finally, one verifies immediately that the resulting
αn’s satisfy the properties stated in Corollary 4.16. This completes the
proof of the existence of the αn’s, hence also of Corollary 4.16. ¤

Remark 4.16.1. Corollary 4.16 may be regarded as a generalization
of [AbsCsp], Theorem 3.1; [Hsh], Theorem 0.1; [Wkb], Theorem C.

Corollary 4.17 (Commensurator of the image of the absolute
Galois group of a finite field in the totally degenerate case).
Let n be a positive integer; p, l two distinct prime numbers; (g, r)
a pair of nonnegative integers such that 2g − 2 + r > 0; k a finite
field of characteristic p; k an algebraic closure of k; (Spec k)log the log
scheme obtained by equipping Spec k with the log structure determined
by the fs chart N → k that maps 1 7→ 0; X log a stable log curve
[cf. the discussion entitled “Curves” in [CbTpI], §0] of type (g, r) over
(Spec k)log. Write G for the semi-graph of anabelioids of pro-l PSC-type
associated to the stable log curve X log; G for the underlying semi-graph
of G; ΠG for the [pro-l] fundamental group of G;

Glog
k

def
= π1((Spec k)log) ³ Gk

def
= Gal(k/k)

for the natural surjection. For each positive integer i, write X log
i for the

i-th log configuration space [cf. the discussion entitled “Curves” in
[CbTpI], §0] of X log; Πi for the maximal pro-l quotient of the kernel of

the natural surjection π1(X
log
i ) ³ Glog

k . Thus, we have a natural outer
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isomorphism Π1
∼→ ΠG and a natural outer action

ρXlog
i

: Glog
k −→ OutFC(Πi)

[cf. the notation of [CmbCsp], Definition 1.1, (ii)]. Let H ⊆ Glog
k be

a closed subgroup of Glog
k whose image in Gk is open. Write IH ⊆ H

for the kernel of the composite H ↪→ Glog
k ³ Gk. We shall say that H

is of l-Dehn type if the maximal pro-l quotient of IH is nontrivial.
Suppose that the stable log curve X log is totally degenerate [i.e., that
the smooth locus of any irreducible component of X forms a tripod].
Then the following hold:

(i) The image ρXlog
1

(IH) ⊆ Out(Π1) is contained in Dehn(G) ⊆
Out(ΠG)

∼← Out(Π1) [cf. the notation of [CbTpI], Definition
4.4]. Moreover, the image ρXlog

1
(IH) is nontrivial if and only

if H is of l-Dehn type. Write

I
C(ρ)
H

def
= (ρXlog

1
(IH) ⊗Zl

Ql) ∩ Dehn(G) ⊆ Dehn(G)

[considered in Dehn(G) ⊗Zl
Ql — cf. [CbTpI], Theorem 4.8,

(iv)].

(ii) For any positive integer m ≤ n, the natural injection OutFC(Πn)
↪→ OutFC(Πm) of [NodNon], Theorem B, induces isomor-
phisms

ZOutFC(Πn)(ρXlog
n

(H))
∼−→ ZOutFC(Πm)(ρXlog

m
(H)) ,

Z loc
OutFC(Πn)

(ρXlog
n

(H))
∼−→ Z loc

OutFC(Πm)
(ρXlog

m
(H))

[cf. the discussion entitled “Topological groups” in §0],

NOutFC(Πn)(ρXlog
n

(H))
∼−→ NOutFC(Πm)(ρXlog

m
(H)) ,

COutFC(Πn)(ρXlog
n

(H))
∼−→ COutFC(Πm)(ρXlog

m
(H)) .

(iii) Relative to the natural inclusion Aut(G) (⊆ Out(ΠG)
∼← Out(Π1)),

the following equality holds:

COutFC(Π1)(ρXlog
1

(H)) = CAut(G)(ρXlog
1

(H)) .

In particular, we have natural homomorphisms of profinite groups

COutFC(Πn)(ρXlog
n

(H))
∼→ COutFC(Π1)(ρXlog

1
(H)) → Aut(G) ,

COutFC(Πn)(ρXlog
n

(H))
∼→ COutFC(Π1)(ρXlog

1
(H))

χG→ Z∗
l

[cf. the notation of [CbTpI], Definition 3.8, (ii)] — where the
first arrow on each line is the isomorphism of (ii). By abuse
of notation [i.e., since ρXlog

n
(H) is not necessarily contained in
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Aut|grph|(G) — cf. the notation of [CbTpI], Definition 2.6, (i);
Remark 4.1.2 of the present paper], write

ZAut|grph|(G)(ρXlog
n

(H)) ⊆ ZOutFC(Πn)(ρXlog
n

(H)) ,

Z loc
Aut|grph|(G)

(ρXlog
n

(H)) ⊆ Z loc
OutFC(Πn)

(ρXlog
n

(H)) ,

NAut|grph|(G)(ρXlog
n

(H)) ⊆ NOutFC(Πn)(ρXlog
n

(H)) ,

CAut|grph|(G)(ρXlog
n

(H)) ⊆ COutFC(Πn)(ρXlog
n

(H))

for the kernels of the restrictions of the composite homomor-
phism of the first line of the second display [of the present (iii)]
to

ZOutFC(Πn)(ρXlog
n

(H)) , Z loc
OutFC(Πn)

(ρXlog
n

(H)) ,

NOutFC(Πn)(ρXlog
n

(H)) , COutFC(Πn)(ρXlog
n

(H)) ,

respectively.

(iv) Suppose that H is not of l-Dehn type. Then we have equal-
ities

ZAut|grph|(G)(ρXlog
n

(H)) = Z loc
Aut|grph|(G)

(ρXlog
n

(H))

= NAut|grph|(G)(ρXlog
n

(H))

= CAut|grph|(G)(ρXlog
n

(H))

[cf. the notation of (iii)]. Moreover, each of the four groups
appearing in these equalities is, in fact, independent of n [cf.
(ii)].

(v) Suppose that H is of l-Dehn type. Then the composite ho-
momorphism of the first line of the second display of (iii) de-
termines an injection of profinite groups

Z loc
OutFC(Πn)

(ρXlog
n

(H)) ↪→ Aut(G) .

(vi) Write k|grph| (⊆ k) for the [finite] subfield of k consisting of the

invariants of k with respect to [the natural action on k of] the
kernel of the natural action of H on G. Then the composite
homomorphism of the second line of the second display of (iii)
determines natural exact sequences of profinite groups

1 −→ I
N(ρ)
H −→ NAut|grph|(G)(ρXlog

n
(H)) −→ Z∗

l ,

1 −→ I
C(ρ)
H −→ CAut|grph|(G)(ρXlog

n
(H)) −→ Z∗

l

[cf. the notation of (i), (iii)] — where

(ρXlog
n

(IH) ⊆) I
N(ρ)
H

def
= NAut|grph|(G)(ρXlog

n
(H)) ∩ Dehn(G)

[cf. (ii), (iii)] is an open subgroup of I
C(ρ)
H ; the image of the

third arrow on each line contains k]
|grph| ∈ Z∗

l and does not

depend on the choice of n. In particular, these images are
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open; if, moreover, k]
|grph| ∈ Z∗

l topologically generates Z∗
l ,

then the third arrows on each line are surjective.

(vii) The closed subgroup ρXlog
n

(H), hence also NOutFC(Πn)(ρXlog
n

(H)),

is open in COutFC(Πn)(ρXlog
n

(H)).

(viii) Consider the following conditions [cf. Remark 4.17.1 below]:

(1) Write Aut(Spec k)log(X
log) for the group of automorphisms

of X log over (Spec k)log. Then the natural homomorphism

Aut(Spec k)log(X
log) −→ Aut(G)

is surjective.

(2) k]
|grph| ∈ Z∗

l topologically generates Z∗
l .

If condition (1) is satisfied, and H is of l-Dehn type, then
we have an equality

ZOutFC(Πn)(ρXlog
n

(H)) = Z loc
OutFC(Πn)

(ρXlog
n

(H)) ,

and, moreover, the composite homomorphism of the first line
of the second display of (iii) determines an isomorphism

Z loc
OutFC(Πn)

(ρXlog
n

(H))
∼−→ Aut(G) .

If conditions (1) and (2) are satisfied, then the composite ho-
momorphisms of the two lines of the second display of (iii)
determine natural exact sequences of profinite groups

1 −→ I
N(ρ)
H −→ NOutFC(Πn)(ρXlog

n
(H)) −→ Aut(G)×Z∗

l −→ 1 ,

1 −→ I
C(ρ)
H −→ COutFC(Πn)(ρXlog

n
(H)) −→ Aut(G) × Z∗

l −→ 1 .

Proof. Assertion (i) follows immediately from the various definitions
involved, together with [CbTpI], Proposition 5.6, (ii). Assertion (ii)
follows immediately from Corollary 4.16, together with the openness
of the image of H in Gk. Assertion (iii) follows immediately from
[CmbGC], Corollary 2.7, (ii) [cf. also the proof of [CmbGC], Proposi-
tion 2.4, (v)], together with the openness of the image of H in Gk.

For ¤ ∈ {Z,Z loc, N, C} and v ∈ Vert(G), write

¤ def
= ¤OutFC(Π1)(ρXlog

1
(H)) ⊆ Out(Π1)

∼→ Out(ΠG) ;

¤|grph|
def
= ¤ ∩ Aut|grph|(G) ⊆ Out(ΠG)

[cf. the notation of [CbTpI], Definition 2.6, (i); Remark 4.1.2 of the
present paper];

prv : Aut|grph|(G) −→ Aut|grph|(G|v)
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for the homomorphism determined by restriction to G|v [cf. [CbTpI],
Definition 2.14, (ii); [CbTpI], Remark 2.5.1, (ii)];

¤v ⊆ Aut|grph|(G|v)

for the image of ¤|grph| ⊆ Aut|grph|(G) via prv. Then we claim that the
following assertion holds:

Claim 4.17.A: Let v ∈ Vert(G). Then

Cv ∩ Ker(χG|v) = {1}

[cf. the notation of [CbTpI], Definition 3.8, (ii)].

Indeed, let us first observe that it follows immediately from a similar
argument to the argument applied in the proof of Claim 4.16.A [in the

proof of Corollary 4.16] that Cv ⊆ Aut|grph|(G|v) is contained in the local
centralizer [cf. the discussion entitled “Topological groups” in §0] of the

natural image of Gk in Aut|grph|(G|v) [cf. the fact that G|v is of type
(0, 3)]. Thus, Claim 4.17.A follows immediately from the injectivity
discussed in [Hsh], Remark 6, (iv). This completes the proof of Claim
4.17.A.

Next, we claim that the following assertion holds:

Claim 4.17.B: Let v ∈ Vert(G). Then

C|grph| ∩ Ker(prv) = C|grph| ∩ Dehn(G) ;

Z|grph| ∩ Ker(prv) = Z loc
|grph| ∩ Ker(prv) = {1} .

In particular, we obtain natural isomorphisms

Z|grph|
∼−→ Zv , Z loc

|grph|
∼−→ Z loc

v

and a natural exact sequence of profinite groups [cf.
[CbTpI], Corollary 3.9, (iv)]

1 −→ C|grph| ∩ Dehn(G) −→ C|grph|
χG−→ Z∗

l .

Indeed, let us first observe that the first displayed equality of Claim
4.17.B follows immediately from Claim 4.17.A, together with [CbTpI],
Corollary 3.9, (iv). On the other hand, since the image of H in Gk is
open, the second displayed equality of Claim 4.17.B follows immediately
from [CbTpI], Theorem 4.8, (iv), (v), together with the first displayed
equality of Claim 4.17.B. This completes the proof of Claim 4.17.B.

Next, we verify assertion (iv). Let us first observe that it follows from
Lemma 3.9, (ii), that C|grph| ⊆ NOutFC(Π1)(Z

loc), which thus implies

that we have a natural action of C|grph| on Z loc, hence also on Z loc
|grph|,

as well as a natural [trivial!] action of C|grph| on Aut(G). Moreover, by
considering the inclusion

(C|grph| ⊇) Z loc
|grph|

∼→ Z loc
v ↪→ Z∗

l
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induced by χG|v [cf. Claims 4.17.A, 4.17.B], we conclude that the ho-
momorphisms of the two lines of the second display of assertion (iii)
determine a natural [C|grph|-equivariant!] injection

Z loc ↪→ Aut(G) × Z∗
l .

Thus, since Z∗
l is abelian, it follows that C|grph| acts trivially on Z loc,

i.e., that C|grph| ⊆ ZOutFC(Π1)(Z
loc). On the other hand, since H is not

of l-Dehn type, one verifies easily from assertion (i) that ρXlog
1

(H) is

abelian, hence that ρXlog
1

(H) ⊆ Z ⊆ Z loc. Thus, we conclude that

C|grph| ⊆ ZOutFC(Π1)(Z
loc) ∩ Aut|grph|(G)

⊆ ZOutFC(Π1)(ρXlog
1

(H)) ∩ Aut|grph|(G)

= Z ∩ Aut|grph|(G) = Z|grph| .

This completes the proof of assertion (iv).
Next, we verify assertion (v). First, let us observe that it follows

immediately from Claims 4.17.A, 4.17.B, together with assertion (ii),
that, to verify assertion (v), it suffices to verify that χG(Z loc

|grph|) =

{1}. On the other hand, since H is of l-Dehn type, by considering
the conjugation action of Z loc

|grph| on ρXlog
1

(IH) [which is nontrivial by

assertion (i)], we conclude from [CbTpI], Theorem 4.8, (iv), (v), that
χG(Z loc

|grph|) = {1}, as desired. This completes the proof of assertion (v).

Next, we verify assertion (vi). First, we observe that it follows from

assertions (ii), (iii) that the definition of I
N(ρ)
H is indeed independent

of n [as the notation suggests!]. Next, we claim that the following
assertion holds:

Claim 4.17.C:

ρXlog
1

(IH) ⊆ N|grph| ∩ Dehn(G) = I
N(ρ)
H ⊆ C|grph| ∩ Dehn(G) = I

C(ρ)
H .

Indeed, the final equality follows immediately from an elementary com-
putation [in which we apply [CbTpI], Theorem 4.8, (iv), (v)], together
with assertion (i); the remainder of Claim 4.17.C follows immediately
from the various definitions involved, together with assertion (i). This
completes the proof of Claim 4.17.C. Now it follows immediately from
Claims 4.17.B, 4.17.C, together with assertion (ii), that the composite
homomorphism of the second line of the second display of (iii) deter-
mines the two displayed exact sequences of assertion (vi), and that

ρXlog
1

(IH), hence also I
N(ρ)
H , is an open subgroup of I

C(ρ)
H . The fact that

the image of the third arrow on each line of the displayed sequences of
assertion (vi) contains k]

|grph| ∈ Z∗
l follows immediately from the fact

that the image, via ρXlog
n

, of the kernel of the natural action of H on G
is contained in N|grph|. The fact that the image of the third arrow on
each line of the displayed sequences of assertion (vi) does not depend
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on the choice of n follows from assertion (ii). This completes the proof
of assertion (vi).

Assertion (vii) follows immediately from assertions (iii) and (vi),
together with the finiteness of Aut(G). Assertion (viii) follows im-
mediately from assertions (v) and (vi). This completes the proof of
Corollary 4.17. ¤

Remark 4.17.1.

(i) One verifies easily that condition (1) of Corollary 4.17, (viii),
holds if, for instance, k = k|grph|, and, moreover, the lengths [cf.
[CbTpI], Definition 5.3, (ii)] of the various nodes of X log [whose
base-change from k to k may be thought of as the special fiber
log stable curve of [CbTpI], Definition 5.3] coincide.

(ii) In a similar vein, one verifies easily that condition (2) of Corol-
lary 4.17, (viii), holds if, for instance, k|grph| = Fp, and, more-

over, p remains prime in the cyclotomic extension Q(e2πi/l2),
where i =

√
−1, and we assume that l is odd.

Remark 4.17.2. The computation of the centralizer (respectively,
normalizer and commensurator) in Corollary 4.17, (viii), may be thought
of as a sort of relative geometrically pro-l (respectively, [semi-]
absolute geometrically pro-l) version of the Grothendieck Con-
jecture for totally degenerate log stable curves over finite fields.
In fact, the proofs of these computations of Corollary 4.17, (viii), only
involve the theory of [CbTpI]. On the other hand, these computations
of Corollary 4.17, (viii), can only be performed under certain relatively
restrictive conditions [cf. Remark 4.17.1]. It is precisely for this reason
that Corollary 4.17, (ii), which may be thought of as an application of
the theory of the present paper, is of interest in the context of these
computations of Corollary 4.17, (viii).
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