RIMS-1765

A note on the geometricity of open homomorphisms between the absolute Galois groups of p-adic local fields

By

Yuichiro HOSHI

November 2012

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES
KYOTO UNIVERSITY, Kyoto, Japan

A NOTE ON THE GEOMETRICITY OF OPEN HOMOMORPHISMS BETWEEN THE ABSOLUTE GALOIS GROUPS OF p-ADIC LOCAL FIELDS

YUICHIRO HOSHI

NOVEMBER 2012

ABSTRACT. In the present paper, we prove that an open continuous homomorphism between the absolute Galois groups of p-adic local fields is geometric [i.e., roughly speaking, arises from an embedding of fields] if and only if the homomorphism is HT-preserving [i.e., roughly speaking, satisfies the condition that the pull-back by the homomorphism of every Hodge-Tate representation is Hodge-Tate].

CONTENTS

Introduction		1
1.	HT-preserving homomorphisms	3
2.	Injectivity result	5
3.	The main results	8
References		12

Introduction

Let p be a prime number. Write \mathbb{Q}_p for the p-adic completion of the field of rational numbers \mathbb{Q} . For $\square \in \{\circ, \bullet\}$, let k_\square be a p-adic local field [i.e., a finite extension of \mathbb{Q}_p] and \overline{k}_\square an algebraic closure of k_\square . Write $G_{k_\square} \stackrel{\mathrm{def}}{=} \mathrm{Gal}(\overline{k}_\square/k_\square)$. Let

$$\alpha \colon G_{k_{\circ}} \longrightarrow G_{k_{\bullet}}$$

be an open continuous homomorphism. In [1], [2], S. Mochizuki discussed the *geometricity* [cf. [2], Definition 3.1, (iv)] of such an α . In particular, Mochizuki proved that the following conditions are equivalent [cf. [2], Theorem 3.5, (i)]:

- (i) α is *geometric*, i.e., arises from an isomorphism of fields $\overline{k}_{\bullet} \stackrel{\sim}{\to} \overline{k}_{\circ}$ that determines an embedding $k_{\bullet} \hookrightarrow k_{\circ}$.
- (ii) α is of CHT-type [cf. [2], Definition 3.1, (iv)], i.e., α is compatible with the respective p-adic cyclotomic characters of $G_{k_{\circ}}$, $G_{k_{\bullet}}$, and, moreover, there exists an isomorphism of topological modules [but not necessarily the topological fields] $\overline{k}_{\circ}^{\wedge} \stackrel{\sim}{\to} \overline{k}_{\bullet}^{\wedge}$ —where, for $\square \in \{\circ, \bullet\}$, we write $\overline{k}_{\square}^{\wedge}$ for the p-adic completion of \overline{k}_{\square} —that is compatible with the respective natural actions of $G_{k_{\circ}}$, $G_{k_{\bullet}}$ on $\overline{k}_{\circ}^{\wedge}$, $\overline{k}_{\bullet}^{\wedge}$ [relative to α].

²⁰¹⁰ Mathematics Subject Classification. Primary 11S20; Secondary 11S31.

This research was supported by Grant-in-Aid for Scientific Research (C), No. 24540016, Japan Society for the Promotion of Science.

(iii) α is of 01-qLT-type [cf. [2], Definition 3.1, (iv)], i.e., for every pair of open subgroups $H_{\circ} \subseteq G_{k_{\circ}}$, $H_{\bullet} \subseteq G_{k_{\circ}}$ of $G_{k_{\circ}}$, $G_{k_{\bullet}}$ such that $\alpha(H_{\circ}) \subseteq H_{\bullet}$, and every character $\phi \colon H_{\bullet} \to E^{\times}$ of qLT-type [cf. [2], Definition 3.1, (iii)] — where E is a p-adic local field all of whose \mathbb{Q}_{p} -conjugates are contained in the fixed fields $\overline{k}_{\circ}^{H_{\circ}}$, $\overline{k}_{\bullet}^{H_{\bullet}}$ — the composite $H_{\circ} \stackrel{\alpha|_{H_{\circ}}}{\to} H_{\bullet} \stackrel{\phi}{\to} E^{\times}$ is Hodge-Tate, and the set of Hodge-Tate weights of this composite is contained in $\{0,1\}$.

We shall say that α is HT-preserving [cf. Definition 1.3, (i)] if α preserves the Hodge-Tate-ness of p-adic representations, i.e., for every finite dimensional continuous representation $\phi \colon G_{k_{\bullet}} \to \operatorname{GL}_n(\mathbb{Q}_p)$ of $G_{k_{\bullet}}$, if ϕ is Hodge-Tate, then the composite $G_{k_{\bullet}} \stackrel{\alpha}{\to} G_{k_{\bullet}} \stackrel{\alpha}{\to} \operatorname{GL}_n(\mathbb{Q}_p)$ is Hodge-Tate. Then it is immediate that

if α is of *CHT-type*, then α is *HT-preserving*.

Moreover, since a character of *qLT-type* is Hodge-Tate, and its set of Hodge-Tate weights is *contained* in $\{0,1\}$, one verifies easily that

if α is not only HT-preserving but also preserves the sets of Hodge-Tate weights of Hodge-Tate representations, then α is of 01-qLT-type.

On the other hand, it does not seem to be clear that the following assertion holds:

If α is *HT-preserving*, then α is either of *CHT-type* or of 01-qLT-type.

In particular, the following question may be regarded as a natural question concerning the *geometricity* of open continuous homomorphisms between the absolute Galois groups of *p*-adic local fields:

Is every *HT-preserving* open continuous homomorphism between the absolute Galois groups of *p*-adic local fields *geometric*?

In the present paper, we answer this question in the affirmative by refining the argument of Mochizuki applied in [1], [2]. The main consequence of the present paper is as follows [cf. Corollaries 3.4; 3.5].

Theorem. Let p be a prime number. For $\square \in \{\circ, \bullet\}$, let k_{\square} be a p-adic local field and \overline{k}_{\square} an algebraic closure of k_{\square} . Write $G_{k_{\square}} \stackrel{\mathrm{def}}{=} \mathrm{Gal}(\overline{k}_{\square}/k_{\square})$. Let

$$\alpha\colon G_{k_0}\longrightarrow G_{k_\bullet}$$

be an open continuous homomorphism. Then α is **geometric** [cf. [2], Definition 3.1, (iv)] if and only if α is **HT-preserving** [cf. Definition 1.3, (i)]. In particular, if we write

$$\operatorname{Emb}(\overline{k}_{\bullet}/k_{\bullet}, \overline{k}_{\circ}/k_{\circ})$$

for the set of isomorphisms of fields $\overline{k}_{\bullet} \stackrel{\sim}{\to} \overline{k}_{\circ}$ that determine embeddings $k_{\bullet} \hookrightarrow k_{\circ}$;

$$\text{Emb}(k_{\bullet}, k_{\circ})$$

for the set of embeddings of fields $k_{\bullet} \hookrightarrow k_{\circ}$;

$$\operatorname{Hom}_{\mathrm{HT}}^{\mathrm{open}}(G_{k_{\circ}}, G_{k_{\bullet}})$$

for the set of **HT-preserving** open continuous homomorphisms $G_{k_{\circ}} \to G_{k_{\bullet}}$, then we have a commutative diagram of natural maps

$$\operatorname{Emb}(\overline{k}_{\bullet}/k_{\bullet}, \overline{k}_{\circ}/k_{\circ}) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{HT}}^{\operatorname{open}}(G_{k_{\circ}}, G_{k_{\bullet}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Emb}(k_{\bullet}, k_{\circ}) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{HT}}^{\operatorname{open}}(G_{k_{\circ}}, G_{k_{\bullet}})/\operatorname{Inn}(G_{k_{\bullet}})$$

— where the vertical arrows are **surjective**, and the horizontal arrows are **bijective**.

1. HT-PRESERVING HOMOMORPHISMS

In the present §1, we define the notion of an HT-preserving [i.e., "Hodge-Tate-preserving"] homomorphism [cf. Definition 1.3, (i), below]. Let p be a prime number. Write \mathbb{Q}_p for the p-adic completion of the field of rational numbers \mathbb{Q} . For $\square \in \{\circ, \bullet, \emptyset\}$, let k_\square be a p-adic local field [i.e., a finite extension of \mathbb{Q}_p] and \overline{k}_\square an algebraic closure of k_\square . Write \mathfrak{o}_{k_\square} for the ring of integers of k_\square , $G_{k_\square} \stackrel{\mathrm{def}}{=} \mathrm{Gal}(\overline{k}_\square/k_\square)$, $I_{k_\square} \subseteq G_{k_\square}$ for the inertia subgroup of G_{k_\square} , and $P_{k_\square} \subseteq I_{k_\square}$ for the wild inertia subgroup of G_{k_\square} . Now let us recall from local class field theory that we have a natural isomorphism

$$G_k^{\mathrm{ab}} \xrightarrow{\sim} (k^{\times})^{\wedge}$$

— where we write $(k^{\times})^{\wedge}$ for the profinite completion of the topological group k^{\times} — that determines an isomorphism

$$(G_k^{\mathrm{ab}} \supseteq) \quad \mathrm{Im}(I_k \hookrightarrow G_k \twoheadrightarrow G_k^{\mathrm{ab}}) \xrightarrow{\sim} \mathfrak{o}_k^{\times} \quad (\subseteq (k^{\times})^{\wedge}).$$

In the following, let us regard \mathfrak{o}_k^{\times} as a closed subgroup of G_k^{ab} by means of this isomorphism, i.e., $\mathfrak{o}_k^{\times} \subseteq G_k^{\mathrm{ab}}$.

Proposition 1.1. Let $\alpha: G_{k_{\circ}} \to G_{k_{\bullet}}$ be an open continuous homomorphism. Then $\alpha(I_{k_{\circ}})$, $\alpha(P_{k_{\circ}}) \subseteq G_{k_{\bullet}}$ are **open** subgroups of $I_{k_{\bullet}}$, $P_{k_{\bullet}}$, respectively. Moreover, it holds that $\operatorname{Ker}(\alpha) \subseteq P_{k_{\circ}}$.

Proof. This follows immediately from [2], Proposition 3.4 [cf. also the proof of [2], Proposition 3.4]. \Box

Definition 1.2.

- (i) Let A be a topological group; $\phi_1, \phi_2 \colon G_k \to A$ continuous homomorphisms. Then we shall say that ϕ_1 is *inertially equivalent* to ϕ_2 if ϕ_1 and ϕ_2 coincide on an open subgroup of $I_k \subseteq G_k$ [cf. the discussion preceding [4], Chapter III, §A.5, Theorem 2].
- (ii) Let E be a finite Galois extension of \mathbb{Q}_p that admits an embedding $\sigma \colon E \hookrightarrow k$. Let $\pi \in \mathfrak{o}_k$ be a uniformizer of \mathfrak{o}_k . Then we shall write

$$\chi_{\sigma,\pi}^{\mathrm{LT}}\colon G_k \longrightarrow E^{\times}$$

for the continuous character obtained by forming the composite

$$G_k \twoheadrightarrow G_k^{\mathrm{ab}} \overset{\sim}{\to} (k^\times)^\wedge \overset{\sim}{\to} \mathfrak{o}_k^\times \times \widehat{\mathbb{Z}} \twoheadrightarrow \mathfrak{o}_k^\times \to \mathfrak{o}_E^\times \overset{\sim}{\to} \mathfrak{o}_E^\times \hookrightarrow E^\times$$

— where the first arrow is the natural surjection, the second arrow is the natural isomorphism arising from *local class field theory*, the third arrow is the isomorphism determined by the uniformizer $\pi \in \mathfrak{o}_k$, the fourth arrow is the first projection, the fifth arrow is the homomorphism induced by the norm map $k^\times \to E^\times$ [with respect to the embedding σ], the sixth arrow is the isomorphism given by mapping a to a^{-1} , and the seventh arrow is the natural inclusion [cf. [4], Chapter

III, $\S A.4$]. Since $I_k \subseteq G_k$ surjects onto $\mathfrak{o}_k \times \{1\} \subseteq \mathfrak{o}_k \times \widehat{\mathbb{Z}}$ [cf. the discussion at the beginning of $\S 1$], one verifies easily that the *inertial equivalence class* [cf. (i)] of $\chi_{\sigma,\pi}^{\mathrm{LT}}$ does *not depend* on the choice of $\pi \in \mathfrak{o}_k$. Thus, we shall often write $\chi_{\sigma}^{\mathrm{LT}}$ to denote $\chi_{\sigma,\pi}^{\mathrm{LT}}$ for some unspecified choice of $\pi \in \mathfrak{o}_k$.

Definition 1.3. Let $\alpha \colon G_{k_{\circ}} \to G_{k_{\bullet}}$ be an open continuous homomorphism.

- (i) We shall say that α is HT-preserving [i.e., "Hodge-Tate-preserving"] if, for every finite dimensional continuous representation $\phi \colon G_{k_{\bullet}} \to \operatorname{GL}_n(\mathbb{Q}_p)$ of $G_{k_{\bullet}}$ that is Hodge-Tate, the composite $G_{k_{\circ}} \stackrel{\alpha}{\to} G_{k_{\bullet}} \stackrel{\phi}{\to} \operatorname{GL}_n(\mathbb{Q}_p)$ is Hodge-Tate.
- (ii) We shall say that α is of HT-qLT-type [i.e., "Hodge-Tate-quasi-Lubin-Tate" type] (respectively, of weakly HT-qLT-type [i.e., "weakly Hodge-Tate-quasi-Lubin-Tate" type]) if, for
 - every pair of respective finite extensions $k'_{\circ} (\subseteq \overline{k}_{\circ}), k'_{\bullet} (\subseteq \overline{k}_{\bullet})$ of k_{\circ} , k_{\bullet} such that $\alpha(G_{k'}) \subseteq G_{k'}$,
 - k_{ullet} such that $\alpha(G_{k'_{ullet}})\subseteq G_{k'_{ullet}}$, • every finite Galois extension E of \mathbb{Q}_p that admits a pair of embeddings $\sigma_{\circ}\colon E\hookrightarrow k'_{\circ}$, $\sigma_{ullet}\colon E\hookrightarrow k'_{ullet}$,

the composite

$$G_{k_{\circ}'} \stackrel{\alpha|_{G_{k_{\circ}'}}}{\longrightarrow} G_{k_{\bullet}'} \stackrel{\chi_{\sigma_{\bullet}}^{\mathrm{LT}}}{\longrightarrow} E^{\times}$$

[cf. Definition 1.2, (ii)] is Hodge-Tate (respectively, is inertially equivalent [cf. Definition 1.2, (i)] to a continuous character $G_{k'_{\circ}} \to E^{\times}$ that factors through the natural open injection $G_{k'_{\circ}} \hookrightarrow \operatorname{Gal}(\overline{k}_{\circ}/E)$ determined by the embeddings $E \stackrel{\sigma_{\circ}}{\hookrightarrow} k'_{\circ} \hookrightarrow \overline{k}_{\circ}$) [cf. Proposition 1.1]. [Here, we note that, as is well-known — cf., e.g., [4], Chapter III, §A.1, Corollary 2 — the issue of whether or not a finite dimensional continuous representation is $Hodge-Tate\ depends\ only$ on the $inertial\ equivalence\ class$ of the given representation.]

Lemma 1.4. Let $\alpha: G_{k_{\circ}} \to G_{k_{\bullet}}$ be an open continuous homomorphism. Consider the following four conditions:

- (1) α is **HT-preserving** [cf. Definition 1.3, (i)].
- (1') For every pair of respective finite extensions $k'_{\circ} (\subseteq \overline{k}_{\circ})$, $k'_{\bullet} (\subseteq \overline{k}_{\bullet})$ of k_{\circ} , k_{\bullet} such that $\alpha(G_{k'_{\circ}}) \subseteq G_{k'_{\bullet}}$, the restriction $\alpha|_{G_{k'_{\circ}}} : G_{k'_{\circ}} \to G_{k'_{\bullet}}$ is **HT-preserving**.
- (2) α is of HT-qLT-type [cf. Definition 1.3, (ii)].
- (3) α is of weakly HT-qLT-type [cf. Definition 1.3, (ii)].

Then we have an equivalence and implications

$$(1) \iff (1') \implies (2) \implies (3)$$
.

Proof. The implication $(1') \Rightarrow (1)$ is immediate. First, we verify the implication $(1) \Rightarrow (1')$. Let $k'_{\circ} (\subseteq \overline{k}_{\circ}), k'_{\bullet} (\subseteq \overline{k}_{\bullet})$ be respective finite extensions of k_{\circ}, k_{\bullet} such that $\alpha(G_{k'_{\circ}}) \subseteq G_{k'_{\bullet}}$; $\phi \colon G_{k'_{\bullet}} \to \operatorname{GL}_n(\mathbb{Q}_p)$ a finite dimensional continuous representation of $G_{k_{\bullet}}$ that is Hodge-Tate. Now let us observe [cf., e.g., [4], Chapter III, §A.1, Corollary 2] that, to verify that the composite $\phi \circ \alpha|_{G_{k'_{\circ}}}$ is Hodge-Tate — by replacing k'_{\circ}, k'_{\bullet} by suitable finite extensions of k'_{\circ}, k'_{\bullet} , respectively — we may assume without loss of generality that k'_{\circ}, k'_{\bullet} are Galois over k_{\circ}, k_{\bullet} , respectively. Write $\phi_{k_{\bullet}}$ for the finite dimensional continuous representation of $G_{k_{\bullet}}$ obtained by inducing ϕ from $G_{k'_{\bullet}}$ to $G_{k_{\bullet}}$. Then since [one verifies easily that] $\phi_{k_{\bullet}}|_{G_{k'_{\bullet}}}$ is isomorphic to the direct product of $[k'_{\bullet}:k_{\bullet}]$ copies of ϕ , it holds that $\phi_{k_{\bullet}}$ is Hodge-Tate. Thus, since α is HT-preserving, it holds that $\phi_{k_{\bullet}} \circ \alpha$,

hence also $(\phi_{k_{\bullet}} \circ \alpha)|_{G_{k'_{\circ}}}$, is Hodge-Tate. On the other hand, one verifies easily that $\phi \circ \alpha|_{G_{k'_{\circ}}}$ is isomorphic to a subrepresentation of $(\phi_{k_{\bullet}} \circ \alpha)|_{G_{k'_{\circ}}}$. In particular, we conclude that $\phi \circ \alpha|_{G_{k'_{\circ}}}$ is Hodge-Tate. This completes the proof of the implication $(1) \Rightarrow (1')$.

The implication $(1') \Rightarrow (2)$ follows from the fact that " $\chi_{\sigma,\pi}^{\rm LT}$ " defined in Definition 1.2, (ii), is Hodge-Tate [cf. [4], Chapter III, §A.5, Corollary]. Finally, we verify the implication $(2) \Rightarrow (3)$. We shall apply the notational conventions established in Definition 1.3, (ii). Then since α is of HT-qLT-type, the character $\chi\colon G_{k'_{\alpha}}\to E^{\times}$ obtained by forming the composite

$$G_{k_{\circ}'} \stackrel{\alpha|_{G_{k_{\circ}'}}}{\longrightarrow} G_{k_{\bullet}'} \stackrel{\chi_{\sigma_{\bullet}}^{\operatorname{LT}}}{\longrightarrow} E^{\times}$$

is *Hodge-Tate*. Thus, since E is *Galois* over \mathbb{Q}_p , it follows immediately from [4], Chapter III, $\S A.5$, Corollary, that χ is *inertially equivalent* [cf. Definition 1.2, (i)] to the character

$$\prod_{\sigma \in \operatorname{Gal}(E/\mathbb{Q}_p)} (\chi_{\sigma_{\circ} \circ \sigma}^{\operatorname{LT}})^{n_{\sigma}} \colon G_{k'_{\circ}} \longrightarrow E^{\times}$$

for some choices of integers n_{σ} . On the other hand, one verifies easily from local class field theory that this character is inertially equivalent to the restriction to $G_{k'_{\alpha}} \subseteq \operatorname{Gal}(\overline{k}_{\alpha}/E)$ of the character

$$\prod_{\sigma \in \operatorname{Gal}(E/\mathbb{Q}_p)} (\chi_{\sigma}^{\operatorname{LT}})^{n_{\sigma}} \colon \operatorname{Gal}(\overline{k}_{\circ}/E) \longrightarrow E^{\times}.$$

This completes the proof of the implication (2) \Rightarrow (3), hence also of Lemma 1.4.

Remark 1.4.1. In the notation of Lemma 1.4, consider the following four conditions:

- (4) α is of qLT-type [cf. [2], Definition 3.1, (iv)].
- (5) α is of 01-qLT-type [cf. [2], Definition 3.1, (iv)].
- (6) α is of CHT-type [cf. [2], Definition 3.1, (iv)].
- (7) α is of HT-type [cf. [2], Definition 3.1, (iv)].

Then we have equivalences and implications

$$(7) \Longleftrightarrow (4) \Longleftrightarrow (5) \Longleftrightarrow (6) (\Longrightarrow (1) \Longleftrightarrow (1') \Longrightarrow (2) \Longrightarrow (3)).$$

Indeed, the equivalences (4) \Leftrightarrow (5) \Leftrightarrow (6) follow from [2], Theorem 3.5, (i); the implications (6) \Rightarrow (1) and (6) \Rightarrow (7) are immediate. If, moreover, α is *injective*, then we have equivalences and implications

$$(4) \Longleftrightarrow (5) \Longleftrightarrow (6) \Longleftrightarrow (7) (\Longrightarrow (1) \Longleftrightarrow (1') \Longrightarrow (2) \Longrightarrow (3)).$$

Indeed, the implication $(7) \Rightarrow (6)$ follows immediately from [1], Proposition 1.1.

2. Injectivity result

In the present $\S 2$, we prove that every open continuous homomorphism *of* weakly HT-qLT-type is *injective* [cf. Proposition 2.4 below]. We maintain the notation of the preceding $\S 1$.

Definition 2.1.

(i) Let G be a profinite group. Then we shall write

$$(G \twoheadrightarrow)$$
 $G^{p\text{-ab-free}}$

for the maximal pro-p abelian torsion-free quotient of G.

(ii) Let A be an abelian topological group and $\phi\colon G_k\to A$ a continuous homomorphism. Then we shall write

$$\operatorname{iner-dim}(\phi) \stackrel{\text{def}}{=} \dim_{\mathbb{Q}_p}(\phi(I_k)^{p\text{-ab-free}} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$$

[cf. (i)] and refer to iner-dim(ϕ) as the inertial dimension of ϕ .

Lemma 2.2. Let A be an abelian topological group and $\phi: G_k \to A$ a continuous homomorphism. Then the following hold:

(i) It holds that

$$0 \leq \operatorname{iner-dim}(\phi) \leq [k : \mathbb{Q}_p]$$

[cf. Definition 2.1, (ii)].

(ii) Let $H \subseteq I_k$ be a closed subgroup of I_k . Suppose that H contains an open subgroup of P_k [e.g., H is an open subgroup of I_k or P_k]. Then

$$\operatorname{iner-dim}(\phi) = \dim_{\mathbb{Q}_p}(\phi(H)^{p\text{-ab-free}} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$$

[cf. Definition 2.1, (i)].

(iii) Let $\phi' \colon G_k \to A$ be a continuous homomorphism that is **inertially** equivalent to ϕ [cf. Definition 1.2, (i)]. Then

$$\operatorname{iner-dim}(\phi) = \operatorname{iner-dim}(\phi')$$
.

(iv) In the notation of Definition 1.2, (ii), it holds that

iner-dim
$$(\chi_{\sigma}^{\mathrm{LT}}) = [E : \mathbb{Q}_p]$$

[cf. (iii)].

(v) Let $\alpha \colon G_{k_o} \to G_k$ be an **open** continuous homomorphism. Then it holds that

$$\operatorname{iner-dim}(\phi) = \operatorname{iner-dim}(\phi \circ \alpha)$$
.

Proof. First, I claim that the following assertion holds:

Claim 2.2.A: The natural surjection $I_k \twoheadrightarrow \phi(I_k)^{p\text{-ab-free}}$ factors through the natural surjection $I_k \twoheadrightarrow \mathfrak{o}_k^{\times} \twoheadrightarrow (\mathfrak{o}_k^{\times})^{p\text{-ab-free}}$ [cf. the discussion at the beginning of $\S 1$].

Indeed, this follows immediately from our assumption that A is abelian. This completes the proof of Claim 2.2.A.

Assertion (i) follows immediately from Claim 2.2.A, together with the fact that $(\mathfrak{o}_k^\times)^{p\text{-ab-free}} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is of dimension $[k:\mathbb{Q}_p]$. Assertion (ii) follows immediately from Claim 2.2.A, together with the [easily verified] fact that the composite $P_k \hookrightarrow I_k \twoheadrightarrow \mathfrak{o}_k^\times$ is open. Assertion (iii) follows immediately from assertion (ii). Assertion (iv) follows immediately from the definition of the character χ_σ^{LT} , together with the fact that $(\mathfrak{o}_E^\times)^{p\text{-ab-free}} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is of dimension $[E:\mathbb{Q}_p]$. Finally, we verify assertion (v). Let us first observe that it follows from Proposition 1.1 that α determines an open homomorphism $P_{k_\circ} \to P_k$. Thus, assertion (v) follows immediately from assertion (ii). This completes the proof of assertion (v).

Lemma 2.3. Let $N \subseteq G_k$ be a **nontrivial** normal closed subgroup of G_k . Then there exists an open subgroup $H \subseteq G_k$ of G_k such that the image of the composite $N \cap H \hookrightarrow H \twoheadrightarrow H^{p\text{-ab-free}}$ [cf. Definition 2.1, (i)] is **nontrivial**.

Proof. Assume that, for every open subgroup $H\subseteq G_k$ of G_k , the image of the composite $N\cap H\hookrightarrow H\twoheadrightarrow H^{p\text{-}ab\text{-}free}$ is trivial, i.e., if we write $J_H\subseteq H$ for the kernel of the natural surjection $H\twoheadrightarrow H^{p\text{-}ab\text{-}free}$, then $N\cap H\subseteq J_H$. Now since N is nontrivial, it is immediate that there exists a normal open subgroup $H\subseteq G_k$ such that the composite $N\hookrightarrow G_k\twoheadrightarrow G_k/H$ is nontrivial. In particular, one verifies easily that, to verify Lemma 2.3, by replacing G_k by the inverse image

of the image of N in G_k/H via $G_k \twoheadrightarrow G_k/H$, we may assume without loss of generality that the composite $N \hookrightarrow G_k \twoheadrightarrow G_k/H$ is [nontrivial and] *surjective*. Thus, since [we have assumed that] $N \cap H \subseteq J_H$, it follows immediately that the composite $N \hookrightarrow G_k \twoheadrightarrow G_k/J_H$ determines a *splitting* of the exact sequence of profinite groups

$$1 \longrightarrow H^{p\text{-ab-free}} \longrightarrow G_k/J_H \longrightarrow G_k/H \longrightarrow 1$$
.

[Here, we note that since $H\subseteq G_k$ is normal, and $J_H\subseteq H$ is characteristic, one verifies easily that J_H is normal in G_k .] In particular, since $N\subseteq G_k$ is normal, the natural action [determined by the above exact sequence] of G_k/H on $H^{p\text{-ab-free}}$, hence also on $H^{p\text{-ab-free}}\otimes_{\mathbb{Z}_p}\mathbb{Q}_p$, is trivial. On the other hand, if we write k' ($\subseteq \overline{k}$) for the finite Galois extension of k corresponding to $H\subseteq G_k$, then it follows immediately from $local\ class\ field\ theory$ that there exists a G_k/H ($=\operatorname{Gal}(k'/k)$)-equivariant injection of \mathbb{Q}_p -vector spaces $k'\hookrightarrow H^{p\text{-ab-free}}\otimes_{\mathbb{Z}_p}\mathbb{Q}_p$, which contradicts the fact that the action of G_k/H on $H^{p\text{-ab-free}}\otimes_{\mathbb{Z}_p}\mathbb{Q}_p$ is trivial. This completes the proof of Lemma 2.3.

Proposition 2.4. Let $\alpha: G_{k_{\circ}} \to G_{k_{\bullet}}$ be an open continuous homomorphism. Suppose that α is **of weakly HT-qLT-type** [cf. Definition 1.3, (ii)]. Then α is **injective**.

Proof. Assume that the homomorphism α is *not injective*. Then it follows immediately from Lemma 2.3 that there exists a finite Galois extension E of \mathbb{Q}_p that admits a pair of embeddings $E \hookrightarrow \overline{k}_{\circ}$, $E \hookrightarrow \overline{k}_{\bullet}$ such that if we write $E_{\circ} \subseteq \overline{k}_{\circ}$, $E_{\bullet} \subseteq \overline{k}_{\bullet}$ for the respective images of these embeddings [so $E_{\circ} \overset{\sim}{\leftarrow} E \overset{\sim}{\rightarrow} E_{\bullet}$], then $k_{\circ} \subseteq E_{\circ}$, $k_{\bullet} \subseteq E_{\bullet}$, and, moreover, the image of the composite $\operatorname{Ker}(\alpha) \cap G_{E_{\circ}} \hookrightarrow G_{E_{\circ}} \xrightarrow{\sim} G_{E_{\circ}}^{p-\operatorname{ab-free}}$ [cf. Definition 2.1, (i)] is *nontrivial*.

Let $k'_{\circ} (\subseteq \overline{k}_{\circ})$ be a finite extension of k_{\circ} such that $E_{\circ} \subseteq k'_{\circ}$, and, moreover, $\alpha(G_{k'_{\circ}}) \subseteq G_{E_{\bullet}}$. Write χ for the composite

$$G_{k_0'} \stackrel{\alpha|_{G_{k_0'}}}{\longrightarrow} G_{E_{\bullet}} \stackrel{\chi_{\mathrm{id}}^{\mathrm{LT}}}{\longrightarrow} E_{\bullet}^{\times} \quad (\stackrel{\sim}{\leftarrow} E^{\times} \stackrel{\sim}{\rightarrow} E_{\circ}^{\times})$$

[cf. Definition 1.2, (ii)]. Then since $\alpha|_{G_{k'_{\circ}}}$ is *open*, it follows from Lemma 2.2, (iv), (v), that

$$\operatorname{iner-dim}(\chi) = \operatorname{iner-dim}(\chi_{\operatorname{id}}^{\operatorname{LT}}) = [E_{\bullet} : \mathbb{Q}_p]$$

[cf. Definition 2.1, (ii)]. On the other hand, since α is of weakly HT-qLT-type, the character χ is inertially equivalent to the continuous character factors as the composite

$$G_{k_{\circ}'} \longrightarrow G_{E_{\circ}} \xrightarrow{\chi_{E_{\circ}}} E_{\circ}^{\times} \quad (\stackrel{\sim}{\leftarrow} E^{\times} \stackrel{\sim}{\rightarrow} E_{\bullet}^{\times})$$

of the natural open injection $G_{k_o'} \hookrightarrow G_{E_o}$ and a continuous character $\chi_{E_o} : G_{E_o} \to E_o^{\times}$. Thus, it follows from Lemma 2.2, (iii), (v), that

$$([E_{\bullet}:\mathbb{Q}_p]=)$$
 iner-dim $(\chi)=$ iner-dim (χ_{E_0}) .

Now let us recall from Proposition 1.1 that $\operatorname{Ker}(\alpha) \subseteq P_{k_\circ}$. In particular, it holds that $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\alpha) \cap I_{k_\circ}$, which thus implies that $\operatorname{Ker}(\alpha) \cap I_{k_\circ'}$ is *open* in $\operatorname{Ker}(\alpha)$. On the other hand, it follows from the definition of χ that $\operatorname{Ker}(\alpha) \cap I_{k_\circ'}$ ($= \operatorname{Ker}(\alpha) \cap G_{k_\circ'}$) $\subseteq \operatorname{Ker}(\chi)$. Thus, since χ is *inertially equivalent* to $\chi_{E_\circ}|_{G_{k_\circ'}}$, we conclude that there exists an *open* subgroup $J \subseteq \operatorname{Ker}(\alpha)$ of $\operatorname{Ker}(\alpha)$ such that $J \subseteq \operatorname{Ker}(\chi_{E_\circ}) \subseteq G_{E_\circ}$. Now since $J \subseteq \operatorname{Ker}(\alpha)$ is *open* in $\operatorname{Ker}(\alpha)$, and [we have assumed that] the image of the composite $\operatorname{Ker}(\alpha) \cap G_{E_\circ} \hookrightarrow G_{E_\circ} \twoheadrightarrow G_{E_\circ}^{p\text{-ab-free}}$ is *nontrivial*, it follows that the image of the composite $J \hookrightarrow G_{E_\circ} \twoheadrightarrow G_{E_\circ}^{p\text{-ab-free}}$ is *nontrivial*. Thus, one verifies easily that the image of the homomorphism $J \to \mathfrak{o}_{E_\circ}^{\chi}$ ($\subseteq G_{E_\circ}^{ab}$) [cf. the discussion at the beginning of §1] determined by

the composite $J \hookrightarrow G_{E_{\circ}} \twoheadrightarrow G_{E_{\circ}}^{\mathrm{ab}}$ [where we recall that $J \subseteq I_{E_{\circ}}$] is *infinite*. In particular, since $J \subseteq \mathrm{Ker}(\chi_{E_{\circ}})$, we conclude that the kernel of the character $(I_{E_{\circ}} \twoheadrightarrow) \mathfrak{o}_{E_{\circ}}^{\times} \to E_{\circ}^{\times}$ determined by the restriction of $\chi_{E_{\circ}}$ to $I_{E_{\circ}} \subseteq G_{E_{\circ}}$ is *infinite*. Thus, we obtain an inequality

$$([E_{\bullet}:\mathbb{Q}_p]=)\quad \mathrm{iner\text{-}dim}(\chi_{E_{\circ}})< \dim_{\mathbb{Q}_p}((\mathfrak{o}_{E_{\circ}}^{\times})^{p\text{-ab-free}}\otimes_{\mathbb{Z}_p}\mathbb{Q}_p)=[E_{\circ}:\mathbb{Q}_p]\,,$$

which *contradicts* the fact that $E_{\circ} \stackrel{\sim}{\leftarrow} E \stackrel{\sim}{\rightarrow} E_{\bullet}$. This completes the proof of Proposition 2.4.

3. The main results

In the present $\S 3$, we prove the main theorem of the present paper [cf. Theorem 3.3 below]. We maintain the notation of $\S 1$.

Definition 3.1. Let $\alpha \colon G_{k_{\circ}} \xrightarrow{\sim} G_{k_{\bullet}}$ be a continuous *isomorphism* and $\beta \colon k_{\bullet} \xrightarrow{\sim} k_{\circ}$ an isomorphism of fields. Then we shall say that β is *inertially compatible* with α if the composite

$$\mathfrak{o}_{k_{\bullet}}^{\times} \hookrightarrow k_{\bullet}^{\times} \xrightarrow{\sim} k_{\circ}^{\times} \hookrightarrow (k_{\circ}^{\times})^{\wedge}$$

— where the second arrow is the isomorphism determined by β — and the composite

$$\mathfrak{o}_{k_{\bullet}}^{\times} \hookrightarrow G_{k_{\bullet}}^{\mathrm{ab}} \stackrel{\sim}{\to} G_{k_{\circ}}^{\mathrm{ab}} \stackrel{\sim}{\to} (k_{\circ}^{\times})^{\wedge}$$

— where the first arrow is the natural inclusion arising from local class field theory [cf. the discussion at the beginning of $\S 1$], the second arrow is the isomorphism determined by α^{-1} , and the third arrow is the isomorphism arising from local class field theory — coincide on an open subgroup of $\mathfrak{o}_{k}^{\times}$.

Lemma 3.2. Let $\alpha: G_{k_{\bullet}} \stackrel{\sim}{\to} G_{k_{\bullet}}$ be a continuous isomorphism; $\beta_1, \beta_2: k_{\bullet} \stackrel{\sim}{\to} k_{\circ}$ isomorphisms of fields. Suppose that β_1, β_2 are inertially compatible with α [cf. Definition 3.1]. Then $\beta_1 = \beta_2$.

Proof. Since β_1 , β_2 are *inertially compatible* with α , one verifies easily from the various definitions involved that there exists an open subgroup $S_{\bullet} \subseteq \mathfrak{o}_{k_{\bullet}}^{\times}$ of $\mathfrak{o}_{k_{\bullet}}^{\times}$ such that $\beta_1|_{S_{\bullet}} = \beta_2|_{S_{\bullet}}$. On the other hand, let us recall from [1], Lemma 4.1, that the sub- \mathbb{Q}_p -vector space of k_{\bullet} generated by S_{\bullet} coincides with k_{\bullet} . Thus, the equality $\beta_1|_{S_{\bullet}} = \beta_2|_{S_{\bullet}}$ implies the equality $\beta_1 = \beta_2$. This completes the proof of Lemma 3.2.

Theorem 3.3. Let p be a prime number. For $\square \in \{\circ, \bullet\}$, let k_{\square} be a p-adic local field and \overline{k}_{\square} an algebraic closure of k_{\square} . Write $G_{k_{\square}} \stackrel{\mathrm{def}}{=} \mathrm{Gal}(\overline{k}_{\square}/k_{\square})$. Let

$$\alpha\colon G_{k_{\circ}}\longrightarrow G_{k_{\bullet}}$$

be an open continuous homomorphism. Suppose that α is **of HT-qLT-type** [cf. Definition 1.3, (ii)]. Then α is **geometric** [cf. [2], Definition 3.1, (iv)], i.e., arises from an isomorphism of fields $\overline{k}_{\bullet} \stackrel{\sim}{\to} \overline{k}_{\circ}$ that determines an embedding $k_{\bullet} \hookrightarrow k_{\circ}$.

Proof. First, let us observe that it follows from Proposition 2.4, together with the implication (2) \Rightarrow (3) of Lemma 1.4, that α is *injective*. Next, let us observe that, to verify Theorem 3.3, by replacing $G_{k_{\bullet}}$ by the image of α , we may assume without loss of generality that α is an *isomorphism*.

The following argument is essentially the same as the argument applied in [1] to prove the main theorem of [1]. Now I claim that the following assertion holds:

Claim 3.3.A: Suppose that k_{\circ} is *Galois* over \mathbb{Q}_p . Then there exists a(n) [necessarily *unique* — cf. Lemma 3.2] isomorphism of fields $\beta_{k_{\bullet},k_{\circ}} : k_{\bullet} \xrightarrow{\sim} k_{\circ}$ that is *inertially compatible* with α [cf. Definition 3.1].

Indeed, let E be a finite Galois extension of \mathbb{Q}_p that admits embeddings $E \hookrightarrow \overline{k}_{\circ}$, $E \hookrightarrow \overline{k}_{\bullet}$ such that if we write $E_{\circ} \subseteq \overline{k}_{\circ}$, $E_{\bullet} \subseteq \overline{k}_{\bullet}$ for the respective images of these embeddings [so $E_{\circ} \stackrel{\sim}{\leftarrow} E \stackrel{\sim}{\to} E_{\bullet}$], then $k_{\circ} \subseteq E_{\circ}$, $k_{\bullet} \subseteq E_{\bullet}$. Let $k'_{\circ} (\subseteq \overline{k}_{\circ})$ be a finite Galois extension of k_{\circ} such that k'_{\circ} contains E_{\circ} , and, moreover, the finite [necessarily Galois] extension $k'_{\bullet} (\subseteq \overline{k}_{\bullet})$ of k_{\bullet} corresponding to the open subgroup $\alpha(G_{k'_{\circ}}) \subseteq G_{k_{\bullet}}$ contains E_{\bullet} . For $\square \in \{\circ, \bullet\}$, write $\sigma_{\square} \colon E_{\square} \hookrightarrow k'_{\square}$ for the natural inclusion. Write χ for the composite

$$G_{k_{\diamond}'} \overset{\alpha|_{G_{k_{\diamond}'}}}{\longrightarrow} G_{k_{\bullet}'} \overset{\chi_{\sigma_{\bullet}}^{\mathrm{LT}}}{\longrightarrow} E_{\bullet}^{\times} \quad (\stackrel{\sim}{\leftarrow} E^{\times} \overset{\sim}{\rightarrow} E_{\circ}^{\times}).$$

Then since α is of HT-qLT-type, it holds that χ is Hodge-Tate. Thus, since E_{\circ} is Galois over \mathbb{Q}_p , it follows from [4], Chapter III, $\S A.5$, Corollary, that χ is inertially equivalent to the character

$$\prod_{\sigma \in \operatorname{Gal}(E_{\circ}/\mathbb{Q}_{p})} (\chi_{\sigma_{\circ} \circ \sigma}^{\operatorname{LT}})^{n_{\sigma}} \colon G_{k'_{\circ}} \longrightarrow E_{\circ}^{\times} \quad (\stackrel{\sim}{\leftarrow} E^{\times} \stackrel{\sim}{\rightarrow} E_{\bullet}^{\times})$$

for some choices of integers n_{σ} .

For $\Box \in \{ \circ, \bullet \}$, write $\operatorname{Ver}_{k'_{\Box}} : G^{\operatorname{ab}}_{k_{\Box}} \to G^{\operatorname{ab}}_{k'_{\Box}}$ for the *Verlagerung map* with respect to the finite Galois extension k'_{\Box}/k_{\Box} . Then since χ is *inertially equivalent* to $\prod_{\sigma \in \operatorname{Gal}(E_{\circ}/\mathbb{Q}_{p})} (\chi^{\operatorname{LT}}_{\sigma_{\circ} \circ \sigma})^{n_{\sigma}}$, and [one verifies easily from *local class field theory* that] $\operatorname{Ver}_{k'_{\Box}}/k_{\Box}$ maps $\mathfrak{o}_{k_{\Box}}^{\times} \subseteq G^{\operatorname{ab}}_{k_{\Box}}$ [cf. the discussion at the beginning of §1] to $\mathfrak{o}_{k'_{\Box}}^{\times} \subseteq G^{\operatorname{ab}}_{k'_{\Box}}$, we conclude that there exists an open subgroup $S_{\circ} \subseteq \mathfrak{o}_{k_{\circ}}^{\times}$ ($\subseteq G^{\operatorname{ab}}_{k_{\circ}}$) of $\mathfrak{o}_{k_{\circ}}^{\times}$ such that if we write $S_{\bullet} \subseteq \mathfrak{o}_{k_{\bullet}}^{\times}$ for the image of $S_{\circ} \subseteq \mathfrak{o}_{k_{\circ}}^{\times}$ by the isomorphism

$$(G_{k_{\bullet}}^{\mathrm{ab}}\supseteq)$$
 $\mathfrak{o}_{k_{\bullet}}^{\times}\stackrel{\sim}{\longrightarrow}\mathfrak{o}_{k_{\bullet}}^{\times}$ $(\subseteq G_{k_{\bullet}}^{\mathrm{ab}})$

induced by α [where let us recall from Proposition 1.1 that α induces an isomorphism $I_{k_{\circ}} \stackrel{\sim}{\to} I_{k_{\bullet}}$], then the diagram of topological modules

— where the left-hand vertical arrow is the isomorphism induced by α , and the left-hand horizontal arrows are the natural inclusions — commutes. On the other hand, it follows immediately from $local\ class\ field\ theory$, together with Definition 1.2, (ii), that, for $\square \in \{\circ, \bullet\}$, if we write $\operatorname{Im}(I_{k_\square}) \subseteq G_{k_\square}^{\operatorname{ab}}$ for the image of the composite $I_{k_\square} \hookrightarrow G_{k_\square} \twoheadrightarrow G_{k_\square}^{\operatorname{ab}}$ [i.e., " $\mathfrak{o}_{k_\square}^{\times}$ " $\subseteq G_{k_\square}^{\operatorname{ab}}$ — cf. the discussion at the beginning of $\S 1$], then we have commutative diagrams of topological modules

— where the left-hand and middle vertical arrows are isomorphisms that arise from *local class field theory*; the lower left-hand horizontal arrows are the homomorphisms induced by the natural inclusions $k_{\circ} \hookrightarrow k'_{\circ}$, $k_{\bullet} \hookrightarrow k'_{\bullet}$, respectively; we write "Nm" for the *norm map*. In particular, if, for $\square \in \{\circ, \bullet\}$, we write $\operatorname{Im}(S_{\square}) \subseteq E_{\square}^{\wedge}$ for the image of S_{\square} in E_{\square}^{\wedge} , then the following hold:

(a) Since $k_{\circ} \subseteq E_{\circ} \subseteq k'_{\circ}$, and k_{\circ} is *Galois* over \mathbb{Q}_p [which thus implies that every $\sigma \in \operatorname{Gal}(E_{\circ}/\mathbb{Q}_p)$ preserves $k_{\circ} \subseteq E_{\circ}$], it holds that

$$\operatorname{Im}(S_{\circ}) = \prod_{\sigma \in \operatorname{Gal}(E_{\circ}/\mathbb{Q}_{p})} (\sigma^{-1} \circ \operatorname{Nm}_{k'_{\circ}/E_{\circ}})(S_{\circ})^{n_{\sigma}} = \prod_{\sigma \in \operatorname{Gal}(E_{\circ}/\mathbb{Q}_{p})} \sigma^{-1}(S_{\circ}^{n_{\sigma} \cdot [k'_{\circ} : E_{\circ}]}) \subseteq k_{\circ}^{\times},$$

i.e., that the subgroup $\operatorname{Im}(S_{\circ}) \subseteq E_{\circ}^{\times}$ is *contained* in $k_{\circ}^{\times} \subseteq E_{\circ}^{\times}$.

(b) Since $k_{\bullet} \subseteq E_{\bullet} \subseteq k'_{\bullet}$, it holds that the subgroup $\operatorname{Im}(S_{\bullet}) \subseteq E_{\bullet}^{\times}$ coincides with the subgroup $(\mathfrak{o}_{k_{\bullet}}^{\times})^{[k'_{\bullet}:E_{\bullet}]} \subseteq E_{\bullet}^{\times}$, which thus implies that the subgroup $\operatorname{Im}(S_{\bullet}) \subseteq E_{\bullet}^{\times}$ is an open subgroup of $\mathfrak{o}_{k_{\bullet}}^{\times} \subseteq E_{\bullet}^{\times}$.

For each $\square \in \{\circ, \bullet\}$, write $V_{\square} \subseteq E_{\square}$ for the sub- \mathbb{Q}_p -vector space of E_{\square} generated by $\mathrm{Im}(S_{\square}) \subseteq E_{\square}$. Now we have a commutative diagram of topological modules

$$\operatorname{Im}(S_{\circ}) \longrightarrow E_{\circ}^{\times} \stackrel{\sim}{\longleftarrow} E^{\times}$$

$$\downarrow \downarrow \qquad \qquad \qquad \parallel$$

$$\operatorname{Im}(S_{\bullet}) \longrightarrow E_{\bullet}^{\times} \stackrel{\sim}{\longleftarrow} E^{\times}$$

— where the left-hand vertical arrow is the isomorphism induced by α , and the left-hand horizontal arrows are the natural inclusions. Thus, it is immediate that the isomorphisms of fields $E_{\bullet} \overset{\sim}{\leftarrow} E \overset{\sim}{\rightarrow} E_{\circ}$ determine an isomorphism $V_{\bullet} \overset{\sim}{\rightarrow} V_{\circ}$, which thus implies that $\dim_{\mathbb{Q}_p}(V_{\circ}) = \dim_{\mathbb{Q}_p}(V_{\bullet})$. Moreover, it follows from (a) (respectively, (b), together with [1], Lemma 4.1) that $V_{\circ} \subseteq k_{\circ} \subseteq E_{\circ}$ (respectively, $V_{\bullet} = k_{\bullet} \subseteq E_{\bullet}$). Thus, since $[k_{\circ} : \mathbb{Q}_p] = [k_{\bullet} : \mathbb{Q}_p]$ [cf. [1], Proposition 1.2], we conclude that $V_{\circ} = k_{\circ}$, $V_{\bullet} = k_{\bullet}$, and, moreover, the isomorphism of \mathbb{Q}_p -vector spaces $V_{\bullet} \overset{\sim}{\rightarrow} V_{\circ}$ [determined by the isomorphisms of fields $E_{\bullet} \overset{\sim}{\leftarrow} E \overset{\sim}{\rightarrow} E_{\circ}$] is compatible with the structures of fields of k_{\circ} , k_{\bullet} . In particular, we obtain an isomorphism of fields $\beta_{k_{\bullet},k_{\circ}}$: $k_{\bullet} = V_{\bullet} \overset{\sim}{\rightarrow} V_{\circ} = k_{\circ}$. On the other hand, it follows from the definition of $\beta_{k_{\bullet},k_{\circ}}$, together with the above discussion concerning $Im(S_{\square})$, that $\beta_{k_{\bullet},k_{\circ}}$ is inertially compatible with α . This completes the proof of Claim 3.3.A.

Next, I claim that the following assertion holds:

Claim 3.3.B: For every pair of respective finite extensions k'_{\circ} ($\subseteq \overline{k}_{\circ}$), k'_{\bullet} ($\subseteq \overline{k}_{\bullet}$) of k_{\circ} , k_{\bullet} such that $\alpha(G_{k'_{\circ}}) = G_{k'_{\bullet}}$, there exists a(n) [necessarily unique — cf. Lemma 3.2] isomorphism of fields $\beta_{k'_{\bullet},k'_{\circ}} : k'_{\bullet} \stackrel{\sim}{\to} k'_{\circ}$ that is $inertially \ compatible$ with the restriction $\alpha|_{G_{k'_{\bullet}}} : G_{k'_{\circ}} \stackrel{\sim}{\to} G_{k'_{\bullet}}$.

Indeed, let k''_{\circ} ($\subseteq \overline{k}_{\circ}$) be a finite extension of k'_{\circ} that is *Galois* over \mathbb{Q}_p . Write k''_{\bullet} ($\subseteq \overline{k}_{\bullet}$) for the finite [necessarily Galois] extension of k'_{\bullet} corresponding to the open subgroup $\alpha(G_{k''_{\circ}})\subseteq G_{k_{\bullet}}$. Then it follows from Claim 3.3.A that there exists an isomorphism of fields $\beta_{k''_{\bullet},k''_{\circ}}\colon k''_{\bullet}\stackrel{\sim}{\to} k''_{\circ}$ that is *inertially compatible* with the restriction $\alpha|_{G_{k''_{\circ}}}\colon G_{k''_{\circ}}\stackrel{\sim}{\to} G_{k''_{\bullet}}$. Then one verifies easily from

Lemma 3.2, together with the fact that $\beta_{k''_{\bullet},k''_{\circ}}$ is inertially compatible with the restriction $\alpha|_{G_{k''_{\circ}}}$, that $\beta_{k''_{\bullet},k''_{\circ}}$ is compatible with the respective natural actions of $\operatorname{Gal}(k''_{\circ}/k'_{\circ})$, $\operatorname{Gal}(k''_{\bullet}/k'_{\bullet})$ on k''_{\circ} , k''_{\bullet} [relative to the isomorphism $\operatorname{Gal}(k''_{\circ}/k'_{\circ}) = G_{k'_{\circ}}/G_{k''_{\circ}} \stackrel{\sim}{\to} G_{k'_{\bullet}}/G_{k''_{\bullet}} = \operatorname{Gal}(k''_{\bullet}/k'_{\bullet})$ induced by $\alpha|_{G_{k'_{\circ}}}$]. Thus, we conclude that the isomorphism $\beta_{k'_{\bullet},k'_{\circ}}: k'_{\bullet} \stackrel{\sim}{\to} k'_{\circ}$. On the other hand, again by Lemma 3.2, together with the fact that $\beta_{k''_{\bullet},k''_{\circ}}: is$ inertially compatible with the restriction $\alpha|_{G_{k''_{\circ}}}$, it follows immediately that this isomorphism $\beta_{k'_{\bullet},k'_{\circ}}: is$ inertially compatible with the restriction $\alpha|_{G_{k''_{\circ}}}$. This completes the proof of Claim 3.3.B.

Now, by applying Claim 3.3.B to the various finite extensions of k_{\circ} , we obtain an isomorphism of fields $\beta_{\overline{k}_{\bullet},\overline{k}_{\circ}}:\overline{k}_{\bullet}\stackrel{\sim}{\to}\overline{k}_{\circ}$ that determines an isomorphism $k_{\bullet}\stackrel{\sim}{\to}k_{\circ}$. Moreover, again by applying Claim 3.3.B, one verifies easily that α arises from this isomorphism $\beta_{\overline{k}_{\bullet},\overline{k}_{\circ}}$. This completes the proof of Theorem 3.3

Remark 3.3.1. Theorem 3.3 leads naturally to the following observation:

Let p be an odd prime number and $\overline{\mathbb{Q}}_p$ an algebraic closure of the p-adic completion \mathbb{Q}_p of the field of rational numbers \mathbb{Q} . Write $G_{\mathbb{Q}_p} \stackrel{\mathrm{def}}{=} \mathrm{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$. Then there exist an automorphism α of $G_{\mathbb{Q}_p}$ and a finite dimensional continuous representation $\phi \colon G_{\mathbb{Q}_p} \to \mathrm{GL}_n(\mathbb{Q}_p)$ of $G_{\mathbb{Q}_p}$ such that ϕ is potentially locally algebraic, i.e., the restriction of ϕ to an open subgroup of $G_{\mathbb{Q}_p}$ is locally algebraic [cf. [4], Chapter III, §1, Definition] [hence Hodge-Tate], the set of Hodge-Tate weights of ϕ is contained in $\{0,1\}$, but $\phi \circ \alpha$ is not Hodge-Tate.

Indeed, let us first observe that it follows immediately from the discussion given at the final part of [3], Chapter VII, §5, that we have an automorphism α of $G_{\mathbb{Q}_p}$ that is not geometric [cf. [2], Definition 3.1, (iv)]. Thus, it follows from Theorem 3.3 that α is not of HT-qLT-type [cf. Definition 1.3, (ii)]. In particular, since the character " $\chi_{\sigma}^{\mathrm{LT}}$ " defined in Definition 1.2, (ii), is locally algebraic [cf. [4], Chapter III, §1, Example (2)], and the set of Hodge-Tate weights is contained in $\{0,1\}$ [cf., e.g., [4], Chapter III, §A.5, Theorem 2], it follows from the definition of a homomorphism of HT-qLT-type that there exist normal open subgroups $H_1, H_2 \subseteq G_{\mathbb{Q}_p}$ and a finite dimensional continuous representation $\phi_{H_2} \colon H_2 \to \mathrm{GL}_n(\mathbb{Q}_p)$ of H_2 such that $\alpha(H_1) \subseteq H_2$, ϕ_{H_2} is locally algebraic, the set of Hodge-Tate weights of ϕ_{H_2} is contained in $\{0,1\}$, and, moreover, $\phi_{H_2} \circ \alpha \colon H_1 \to \mathrm{GL}_n(\mathbb{Q}_p)$ is not Hodge-Tate. Thus, it follows immediately from a similar argument to the argument applied in the proof of the implication (1) \Rightarrow (1') of Lemma 1.4 that if we write ϕ for the finite dimensional continuous representation of $G_{\mathbb{Q}_p}$ obtained by inducing ϕ_{H_2} from H_2 to $G_{\mathbb{Q}_p}$, then ϕ is potentially locally algebraic [cf. also [4], Chapter III, §A.7, Theorem 3], the set of Hodge-Tate weights of ϕ is contained in $\{0,1\}$, but $\phi \circ \alpha$ is not Hodge-Tate.

Corollary 3.4. In the notation of Theorem 3.3, consider the following nine conditions:

```
(1) \alpha is HT-preserving [cf. Definition 1.3, (i)].
```

- (2) α is of HT-qLT-type [cf. Definition 1.3, (ii)].
- (3) α is **geometric** [cf. [2], Definition 3.1, (iv)].
- (4) α is of qLT-type [cf. [2], Definition 3.1, (iv)].
- (5) α is of 01-qLT-type [cf. [2], Definition 3.1, (iv)].
- (6) α is of CHT-type [cf. [2], Definition 3.1, (iv)].
- (7) α is **of HT-type** [cf. [2], Definition 3.1, (iv)].
- (8) α is [an isomorphism and] **RF-preserving** [cf. [2], Definition 3.6, (iii)].

(9) α is [an isomorphism and] uniformly toral [cf. [2], Definition 3.6, (iii)].

Then we have equivalences and implications

$$(8) \Longleftrightarrow (9) \Longrightarrow (1) \Longleftrightarrow (2) \Longleftrightarrow (3) \Longleftrightarrow (4) \Longleftrightarrow (5) \Longleftrightarrow (6) \Longrightarrow (7)$$
.

If, moreover, α is an **isomorphism**, then the above nine conditions are **equivalent**.

Proof. Let us recall from Remark 1.4.1 that we have implications

$$(4) \Longrightarrow (5) \Longrightarrow (6) \Longrightarrow (1) \Longrightarrow (2)$$
 and $(6) \Longrightarrow (7)$.

The implication $(2) \Rightarrow (3)$ follows from Theorem 3.3. The implication $(3) \Rightarrow (4)$ follows from [2], Theorem 3.5, (i). The equivalence $(8) \Leftrightarrow (9)$ and the implication $(8) \Rightarrow (3)$ follow from [2], Corollary 3.7. Finally, the implication $(7) \Rightarrow (6)$ (respectively, $(3) \Rightarrow (8)$) in the case where α is an *isomorphism* follows immediately from [1], Proposition 1.1 (respectively, [2], Corollary 3.7). This completes the proof of Corollary 3.4.

Corollary 3.5. Let p be a prime number. For $\square \in \{\circ, \bullet\}$, let k_\square be a p-adic local field and \overline{k}_\square an algebraic closure of k_\square . Write $G_{k_\square} \stackrel{\mathrm{def}}{=} \operatorname{Gal}(\overline{k}_\square/k_\square)$; $\operatorname{Emb}(\overline{k}_\bullet/k_\bullet,\overline{k}_\circ/k_\circ)$ for the set of isomorphisms of fields $\overline{k}_\bullet \stackrel{\sim}{\to} \overline{k}_\circ$ that determine embeddings $k_\bullet \hookrightarrow k_\circ$; $\operatorname{Emb}(k_\bullet,k_\circ)$ for the set of embeddings of fields $k_\bullet \hookrightarrow k_\circ$; $\operatorname{Hom}_{\operatorname{HT}}^{\operatorname{open}}(G_{k_\circ},G_{k_\bullet})$ for the set of open continuous homomorphisms $\alpha\colon G_{k_\circ} \to G_{k_\bullet}$ that are HT-preserving [cf. Definition 1.3, (i)], i.e., for every finite dimensional continuous representation $\phi\colon G_{k_\bullet} \to \operatorname{GL}_n(\mathbb{Q}_p)$ of G_{k_\bullet} , if ϕ is Hodge-Tate, then $\phi\circ\alpha$ is Hodge-Tate. Then we have a commutative diagram of natural maps

$$\operatorname{Emb}(\overline{k}_{\bullet}/k_{\bullet}, \overline{k}_{\circ}/k_{\circ}) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{HT}}^{\operatorname{open}}(G_{k_{\circ}}, G_{k_{\bullet}})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Emb}(k_{\bullet}, k_{\circ}) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{HT}}^{\operatorname{open}}(G_{k_{\circ}}, G_{k_{\bullet}})/\operatorname{Inn}(G_{k_{\bullet}})$$

— where the vertical arrows are **surjective**, and the horizontal arrows are **bijective**.

Proof. The *injectivity* of the horizontal arrows follow immediately from the *injectivity* portion of [1], Theorem 4.2 [cf. also the proof of [1], Theorem 4.2]. The *surjectivity* of the horizontal arrows follow immediately from Theorem 3.3, together with the implication $(1) \Rightarrow (2)$ of Lemma 1.4. This completes the proof of Corollary 3.5.

REFERENCES

- [1] S. Mochizuki, A version of the Grothendieck conjecture for p-adic local fields, Internat. J. Math. 8 (1997), 499–506.
- [2] S. Mochizuki, Topics in absolute anabelian geometry I: Generalities, J. Math. Sci. Univ. Tokyo. 19 (2012), 139–242.
- [3] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, Second edition, Grundlehren der Mathematischen Wissenschaften, 323, Springer-Verlag, Berlin, 2008.
- [4] J. P. Serre, Abelian l-adic representations and elliptic curves, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute W. A. Benjamin, Inc., New York-Amsterdam 1968.

(Yuichiro Hoshi) RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN

E-mail address: yuichiro@kurims.kyoto-u.ac.jp