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ABSTRACT. In the present paper, we prove that an open continuous homomor-
phism between the absolute Galois groups of p-adic local fields is geometric
[i.e., roughly speaking, arises from an embedding of fields] if and only if the
homomorphism is HT-preserving [i.e., roughly speaking, satisfies the condition
that the pull-back by the homomorphism of every Hodge-Tate representation
is Hodge-Tate].
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INTRODUCTION

Let p be a prime number. Write Qp for the p-adic completion of the field of
rational numbers Q. For � ∈ {◦, •}, let k� be a p-adic local field [i.e., a finite
extension of Qp] and k� an algebraic closure of k�. Write Gk�

def= Gal(k�/k�).
Let

α : Gk◦ −→ Gk•

be an open continuous homomorphism. In [1], [2], S. Mochizuki discussed the
geometricity [cf. [2], Definition 3.1, (iv)] of such an α. In particular, Mochizuki
proved that the following conditions are equivalent [cf. [2], Theorem 3.5, (i)]:

(i) α is geometric, i.e., arises from an isomorphism of fields k•
∼→ k◦ that

determines an embedding k• ↪→ k◦.
(ii) α is of CHT-type [cf. [2], Definition 3.1, (iv)], i.e., α is compatible with

the respective p-adic cyclotomic characters of Gk◦ , Gk• , and, moreover,
there exists an isomorphism of topological modules [but not necessarily
the topological fields] k

∧
◦

∼→ k
∧
• — where, for � ∈ {◦, •}, we write k

∧
� for

the p-adic completion of k� — that is compatible with the respective
natural actions of Gk◦ , Gk• on k

∧
◦ , k

∧
• [relative to α].
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(iii) α is of 01-qLT-type [cf. [2], Definition 3.1, (iv)], i.e., for every pair of
open subgroups H◦ ⊆ Gk◦ , H• ⊆ Gk• of Gk◦ , Gk• such that α(H◦) ⊆ H•,
and every character φ : H• → E× of qLT-type [cf. [2], Definition 3.1,
(iii)] — where E is a p-adic local field all of whose Qp-conjugates are

contained in the fixed fields k
H◦
◦ , k

H•
• — the composite H◦

α|H◦→ H•
φ→

E× is Hodge-Tate, and the set of Hodge-Tate weights of this composite
is contained in {0, 1}.

We shall say that α is HT-preserving [cf. Definition 1.3, (i)] if α preserves
the Hodge-Tate-ness of p-adic representations, i.e., for every finite dimensional
continuous representation φ : Gk• → GLn(Qp) of Gk• , if φ is Hodge-Tate, then
the composite Gk◦

α→ Gk•
φ→ GLn(Qp) is Hodge-Tate. Then it is immediate that

if α is of CHT-type, then α is HT-preserving.

Moreover, since a character of qLT-type is Hodge-Tate, and its set of Hodge-Tate
weights is contained in {0, 1}, one verifies easily that

if α is not only HT-preserving but also preserves the sets of
Hodge-Tate weights of Hodge-Tate representations, then α is
of 01-qLT-type.

On the other hand, it does not seem to be clear that the following assertion
holds:

If α is HT-preserving, then α is either of CHT-type or of 01-
qLT-type.

In particular, the following question may be regarded as a natural question
concerning the geometricity of open continuous homomorphisms between the
absolute Galois groups of p-adic local fields:

Is every HT-preserving open continuous homomorphism be-
tween the absolute Galois groups of p-adic local fields geomet-
ric?

In the present paper, we answer this question in the affirmative by refining
the argument of Mochizuki applied in [1], [2]. The main consequence of the
present paper is as follows [cf. Corollaries 3.4; 3.5].

Theorem. Let p be a prime number. For � ∈ {◦, •}, let k� be a p-adic local field
and k� an algebraic closure of k�. Write Gk�

def= Gal(k�/k�). Let

α : Gk◦ −→ Gk•

be an open continuous homomorphism. Then α is geometric [cf. [2], Definition
3.1, (iv)] if and only if α is HT-preserving [cf. Definition 1.3, (i)]. In particular,
if we write

Emb(k•/k•, k◦/k◦)

for the set of isomorphisms of fields k•
∼→ k◦ that determine embeddings k• ↪→

k◦;

Emb(k•, k◦)

for the set of embeddings of fields k• ↪→ k◦;

Homopen
HT (Gk◦ , Gk•)
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for the set of HT-preserving open continuous homomorphisms Gk◦ → Gk• ,
then we have a commutative diagram of natural maps

Emb(k•/k•, k◦/k◦)
∼−−−−→ Homopen

HT (Gk◦ , Gk•)y y
Emb(k•, k◦)

∼−−−−→ Homopen
HT (Gk◦ , Gk•)/Inn(Gk•)

— where the vertical arrows are surjective, and the horizontal arrows are
bijective.

1. HT-PRESERVING HOMOMORPHISMS

In the present §1, we define the notion of an HT-preserving [i.e., “Hodge-
Tate-preserving”] homomorphism [cf. Definition 1.3, (i), below]. Let p be a
prime number. Write Qp for the p-adic completion of the field of rational num-
bers Q. For � ∈ {◦, •, ∅}, let k� be a p-adic local field [i.e., a finite extension of
Qp] and k� an algebraic closure of k�. Write ok�

for the ring of integers of k�,
Gk�

def= Gal(k�/k�), Ik�
⊆ Gk�

for the inertia subgroup of Gk�
, and Pk�

⊆ Ik�

for the wild inertia subgroup of Gk�
. Now let us recall from local class field

theory that we have a natural isomorphism

Gab
k

∼−→ (k×)∧

— where we write (k×)∧ for the profinite completion of the topological group
k× — that determines an isomorphism

(Gab
k ⊇) Im(Ik ↪→ Gk � Gab

k ) ∼−→ o×k (⊆ (k×)∧) .

In the following, let us regard o×k as a closed subgroup of Gab
k by means of this

isomorphism, i.e., o×k ⊆ Gab
k .

Proposition 1.1. Let α : Gk◦ → Gk• be an open continuous homomorphism.
Then α(Ik◦), α(Pk◦) ⊆ Gk• are open subgroups of Ik• , Pk• , respectively. More-
over, it holds that Ker(α) ⊆ Pk◦ .

Proof. This follows immediately from [2], Proposition 3.4 [cf. also the proof of
[2], Proposition 3.4]. �

Definition 1.2.
(i) Let A be a topological group; φ1, φ2 : Gk → A continuous homomor-

phisms. Then we shall say that φ1 is inertially equivalent to φ2 if φ1

and φ2 coincide on an open subgroup of Ik ⊆ Gk [cf. the discussion
preceding [4], Chapter III, §A.5, Theorem 2].

(ii) Let E be a finite Galois extension of Qp that admits an embedding
σ : E ↪→ k. Let π ∈ ok be a uniformizer of ok. Then we shall write

χLT
σ,π : Gk −→ E×

for the continuous character obtained by forming the composite

Gk � Gab
k

∼→ (k×)∧ ∼→ o×k × Ẑ � o×k → o×E
∼→ o×E ↪→ E×

— where the first arrow is the natural surjection, the second arrow
is the natural isomorphism arising from local class field theory, the
third arrow is the isomorphism determined by the uniformizer π ∈ ok,
the fourth arrow is the first projection, the fifth arrow is the homo-
morphism induced by the norm map k× → E× [with respect to the
embedding σ], the sixth arrow is the isomorphism given by mapping a
to a−1, and the seventh arrow is the natural inclusion [cf. [4], Chapter
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III, §A.4]. Since Ik ⊆ Gk surjects onto ok × {1} ⊆ ok × Ẑ [cf. the discus-
sion at the beginning of §1], one verifies easily that the inertial equiva-
lence class [cf. (i)] of χLT

σ,π does not depend on the choice of π ∈ ok. Thus,
we shall often write χLT

σ to denote χLT
σ,π for some unspecified choice of

π ∈ ok.

Definition 1.3. Let α : Gk◦ → Gk• be an open continuous homomorphism.
(i) We shall say that α is HT-preserving [i.e., “Hodge-Tate-preserving”]

if, for every finite dimensional continuous representation φ : Gk• →
GLn(Qp) of Gk• that is Hodge-Tate, the composite Gk◦

α→ Gk•
φ→ GLn(Qp)

is Hodge-Tate.
(ii) We shall say that α is of HT-qLT-type [i.e., “Hodge-Tate-quasi-Lubin-

Tate” type] (respectively, of weakly HT-qLT-type [i.e., “weakly Hodge-
Tate-quasi-Lubin-Tate” type]) if, for
• every pair of respective finite extensions k′◦ (⊆ k◦), k′• (⊆ k•) of k◦,

k• such that α(Gk′◦) ⊆ Gk′• ,
• every finite Galois extension E of Qp that admits a pair of embed-

dings σ◦ : E ↪→ k′◦, σ• : E ↪→ k′•,
the composite

Gk′◦

α|G
k′◦−→ Gk′•

χLT
σ•−→ E×

[cf. Definition 1.2, (ii)] is Hodge-Tate (respectively, is inertially equiv-
alent [cf. Definition 1.2, (i)] to a continuous character Gk′◦ → E× that
factors through the natural open injection Gk′◦ ↪→ Gal(k◦/E) deter-
mined by the embeddings E

σ◦
↪→ k′◦ ↪→ k◦) [cf. Proposition 1.1]. [Here,

we note that, as is well-known — cf., e.g., [4], Chapter III, §A.1, Corol-
lary 2 — the issue of whether or not a finite dimensional continuous
representation is Hodge-Tate depends only on the inertial equivalence
class of the given representation.]

Lemma 1.4. Let α : Gk◦ → Gk• be an open continuous homomorphism. Con-
sider the following four conditions:

(1) α is HT-preserving [cf. Definition 1.3, (i)].
(1′) For every pair of respective finite extensions k′◦ (⊆ k◦), k′• (⊆ k•) of k◦,

k• such that α(Gk′◦
) ⊆ Gk′•

, the restriction α|Gk′◦
: Gk′◦

→ Gk′•
is HT-

preserving.
(2) α is of HT-qLT-type [cf. Definition 1.3, (ii)].
(3) α is of weakly HT-qLT-type [cf. Definition 1.3, (ii)].

Then we have an equivalence and implications

(1)⇐⇒ (1′) =⇒ (2) =⇒ (3) .

Proof. The implication (1′)⇒ (1) is immediate. First, we verify the implication
(1)⇒ (1′). Let k′◦ (⊆ k◦), k′• (⊆ k•) be respective finite extensions of k◦, k• such
that α(Gk′◦) ⊆ Gk′• ; φ : Gk′• → GLn(Qp) a finite dimensional continuous repre-
sentation of Gk• that is Hodge-Tate. Now let us observe [cf., e.g., [4], Chapter
III, §A.1, Corollary 2] that, to verify that the composite φ ◦ α|Gk′◦

is Hodge-Tate
— by replacing k′◦, k′• by suitable finite extensions of k′◦, k′•, respectively —
we may assume without loss of generality that k′◦, k′• are Galois over k◦, k•,
respectively. Write φk• for the finite dimensional continuous representation of
Gk• obtained by inducing φ from Gk′• to Gk• . Then since [one verifies easily
that] φk• |Gk′•

is isomorphic to the direct product of [k′• : k•] copies of φ, it holds
that φk• is Hodge-Tate. Thus, since α is HT-preserving, it holds that φk• ◦ α,
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hence also (φk• ◦ α)|Gk′◦
, is Hodge-Tate. On the other hand, one verifies easily

that φ ◦ α|Gk′◦
is isomorphic to a subrepresentation of (φk• ◦ α)|Gk′◦

. In partic-
ular, we conclude that φ ◦ α|Gk′◦

is Hodge-Tate. This completes the proof of the
implication (1)⇒ (1′).

The implication (1′) ⇒ (2) follows from the fact that “χLT
σ,π” defined in Defi-

nition 1.2, (ii), is Hodge-Tate [cf. [4], Chapter III, §A.5, Corollary]. Finally, we
verify the implication (2)⇒ (3). We shall apply the notational conventions es-
tablished in Definition 1.3, (ii). Then since α is of HT-qLT-type, the character
χ : Gk′◦ → E× obtained by forming the composite

Gk′◦

α|G
k′◦−→ Gk′•

χLT
σ•−→ E×

is Hodge-Tate. Thus, since E is Galois over Qp, it follows immediately from [4],
Chapter III, §A.5, Corollary, that χ is inertially equivalent [cf. Definition 1.2,
(i)] to the character ∏

σ∈Gal(E/Qp)

(χLT
σ◦◦σ)nσ : Gk′◦ −→ E×

for some choices of integers nσ. On the other hand, one verifies easily from local
class field theory that this character is inertially equivalent to the restriction
to Gk′◦ ⊆ Gal(k◦/E) of the character∏

σ∈Gal(E/Qp)

(χLT
σ )nσ : Gal(k◦/E) −→ E× .

This completes the proof of the implication (2)⇒ (3), hence also of Lemma 1.4.
�

Remark 1.4.1. In the notation of Lemma 1.4, consider the following four con-
ditions:

(4) α is of qLT-type [cf. [2], Definition 3.1, (iv)].
(5) α is of 01-qLT-type [cf. [2], Definition 3.1, (iv)].
(6) α is of CHT-type [cf. [2], Definition 3.1, (iv)].
(7) α is of HT-type [cf. [2], Definition 3.1, (iv)].

Then we have equivalences and implications

(7)⇐= (4)⇐⇒ (5)⇐⇒ (6) (=⇒ (1)⇐⇒ (1′) =⇒ (2) =⇒ (3)) .

Indeed, the equivalences (4) ⇔ (5) ⇔ (6) follow from [2], Theorem 3.5, (i); the
implications (6)⇒ (1) and (6)⇒ (7) are immediate. If, moreover, α is injective,
then we have equivalences and implications

(4)⇐⇒ (5)⇐⇒ (6)⇐⇒ (7) (=⇒ (1)⇐⇒ (1′) =⇒ (2) =⇒ (3)) .

Indeed, the implication (7)⇒ (6) follows immediately from [1], Proposition 1.1.

2. INJECTIVITY RESULT

In the present §2, we prove that every open continuous homomorphism of
weakly HT-qLT-type is injective [cf. Proposition 2.4 below]. We maintain the
notation of the preceding §1.

Definition 2.1.
(i) Let G be a profinite group. Then we shall write

(G �) Gp-ab-free

for the maximal pro-p abelian torsion-free quotient of G.
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(ii) Let A be an abelian topological group and φ : Gk → A a continuous
homomorphism. Then we shall write

iner-dim(φ) def= dimQp(φ(Ik)p-ab-free ⊗Zp Qp)

[cf. (i)] and refer to iner-dim(φ) as the inertial dimension of φ.

Lemma 2.2. Let A be an abelian topological group and φ : Gk → A a continu-
ous homomorphism. Then the following hold:

(i) It holds that
0 ≤ iner-dim(φ) ≤ [k : Qp]

[cf. Definition 2.1, (ii)].
(ii) Let H ⊆ Ik be a closed subgroup of Ik. Suppose that H contains an

open subgroup of Pk [e.g., H is an open subgroup of Ik or Pk]. Then

iner-dim(φ) = dimQp
(φ(H)p-ab-free ⊗Zp

Qp)

[cf. Definition 2.1, (i)].
(iii) Let φ′ : Gk → A be a continuous homomorphism that is inertially

equivalent to φ [cf. Definition 1.2, (i)]. Then

iner-dim(φ) = iner-dim(φ′) .

(iv) In the notation of Definition 1.2, (ii), it holds that

iner-dim(χLT
σ ) = [E : Qp]

[cf. (iii)].
(v) Let α : Gk◦ → Gk be an open continuous homomorphism. Then it holds

that
iner-dim(φ) = iner-dim(φ ◦ α) .

Proof. First, I claim that the following assertion holds:
Claim 2.2.A: The natural surjection Ik � φ(Ik)p-ab-free factors
through the natural surjection Ik � o×k � (o×k )p-ab-free [cf. the
discussion at the beginning of §1].

Indeed, this follows immediately from our assumption that A is abelian. This
completes the proof of Claim 2.2.A.

Assertion (i) follows immediately from Claim 2.2.A, together with the fact
that (o×k )p-ab-free ⊗Zp Qp is of dimension [k : Qp]. Assertion (ii) follows immedi-
ately from Claim 2.2.A, together with the [easily verified] fact that the compos-
ite Pk ↪→ Ik � o×k is open. Assertion (iii) follows immediately from assertion
(ii). Assertion (iv) follows immediately from the definition of the character χLT

σ ,
together with the fact that (o×E)p-ab-free ⊗Zp Qp is of dimension [E : Qp]. Finally,
we verify assertion (v). Let us first observe that it follows from Proposition 1.1
that α determines an open homomorphism Pk◦ → Pk. Thus, assertion (v) fol-
lows immediately from assertion (ii). This completes the proof of assertion
(v). �

Lemma 2.3. Let N ⊆ Gk be a nontrivial normal closed subgroup of Gk. Then
there exists an open subgroup H ⊆ Gk of Gk such that the image of the composite
N ∩H ↪→ H � Hp-ab-free [cf. Definition 2.1, (i)] is nontrivial.

Proof. Assume that, for every open subgroup H ⊆ Gk of Gk, the image of the
composite N ∩ H ↪→ H � Hp-ab-free is trivial, i.e., if we write JH ⊆ H for the
kernel of the natural surjection H � Hp-ab-free, then N ∩H ⊆ JH . Now since N
is nontrivial, it is immediate that there exists a normal open subgroup H ⊆ Gk

such that the composite N ↪→ Gk � Gk/H is nontrivial. In particular, one
verifies easily that, to verify Lemma 2.3, by replacing Gk by the inverse image
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of the image of N in Gk/H via Gk � Gk/H, we may assume without loss of
generality that the composite N ↪→ Gk � Gk/H is [nontrivial and] surjective.
Thus, since [we have assumed that] N ∩ H ⊆ JH , it follows immediately that
the composite N ↪→ Gk � Gk/JH determines a splitting of the exact sequence
of profinite groups

1 −→ Hp-ab-free −→ Gk/JH −→ Gk/H −→ 1 .

[Here, we note that since H ⊆ Gk is normal, and JH ⊆ H is characteristic,
one verifies easily that JH is normal in Gk.] In particular, since N ⊆ Gk is
normal, the natural action [determined by the above exact sequence] of Gk/H
on Hp-ab-free, hence also on Hp-ab-free ⊗Zp Qp, is trivial. On the other hand, if we
write k′ (⊆ k) for the finite Galois extension of k corresponding to H ⊆ Gk, then
it follows immediately from local class field theory that there exists a Gk/H
(= Gal(k′/k))-equivariant injection of Qp-vector spaces k′ ↪→ Hp-ab-free ⊗Zp Qp,
which contradicts the fact that the action of Gk/H on Hp-ab-free⊗Zp Qp is trivial.
This completes the proof of Lemma 2.3. �

Proposition 2.4. Let α : Gk◦ → Gk• be an open continuous homomorphism.
Suppose that α is of weakly HT-qLT-type [cf. Definition 1.3, (ii)]. Then α is
injective.

Proof. Assume that the homomorphism α is not injective. Then it follows
immediately from Lemma 2.3 that there exists a finite Galois extension E
of Qp that admits a pair of embeddings E ↪→ k◦, E ↪→ k• such that if we
write E◦ ⊆ k◦, E• ⊆ k• for the respective images of these embeddings [so
E◦

∼← E
∼→ E•], then k◦ ⊆ E◦, k• ⊆ E•, and, moreover, the image of the com-

posite Ker(α) ∩GE◦ ↪→ GE◦ � Gp-ab-free
E◦

[cf. Definition 2.1, (i)] is nontrivial.
Let k′◦ (⊆ k◦) be a finite extension of k◦ such that E◦ ⊆ k′◦, and, moreover,

α(Gk′◦) ⊆ GE• . Write χ for the composite

Gk′◦

α|G
k′◦−→ GE•

χLT
id−→ E×

• (∼← E× ∼→ E×
◦ )

[cf. Definition 1.2, (ii)]. Then since α|Gk′◦
is open, it follows from Lemma 2.2,

(iv), (v), that
iner-dim(χ) = iner-dim(χLT

id ) = [E• : Qp]
[cf. Definition 2.1, (ii)]. On the other hand, since α is of weakly HT-qLT-type,
the character χ is inertially equivalent to the continuous character factors as
the composite

Gk′◦ −→ GE◦

χE◦−→ E×
◦ (∼← E× ∼→ E×

• )
of the natural open injection Gk′◦

↪→ GE◦ and a continuous character χE◦ : GE◦ →
E×
◦ . Thus, it follows from Lemma 2.2, (iii), (v), that

([E• : Qp] =) iner-dim(χ) = iner-dim(χE◦) .

Now let us recall from Proposition 1.1 that Ker(α) ⊆ Pk◦ . In particular, it
holds that Ker(α) = Ker(α)∩Ik◦ , which thus implies that Ker(α)∩Ik′◦ is open in
Ker(α). On the other hand, it follows from the definition of χ that Ker(α) ∩ Ik′◦
(= Ker(α) ∩ Gk′◦

) ⊆ Ker(χ). Thus, since χ is inertially equivalent to χE◦ |Gk′◦
,

we conclude that there exists an open subgroup J ⊆ Ker(α) of Ker(α) such that
J ⊆ Ker(χE◦) ⊆ GE◦ . Now since J ⊆ Ker(α) is open in Ker(α), and [we have
assumed that] the image of the composite Ker(α) ∩ GE◦ ↪→ GE◦ � Gp-ab-free

E◦

is nontrivial, it follows that the image of the composite J ↪→ GE◦ � Gp-ab-free
E◦

is nontrivial. Thus, one verifies easily that the image of the homomorphism
J → o×E◦

(⊆ Gab
E◦

) [cf. the discussion at the beginning of §1] determined by



8 YUICHIRO HOSHI

the composite J ↪→ GE◦ � Gab
E◦

[where we recall that J ⊆ IE◦ ] is infinite. In
particular, since J ⊆ Ker(χE◦), we conclude that the kernel of the character
(IE◦ �) o×E◦

→ E×
◦ determined by the restriction of χE◦ to IE◦ ⊆ GE◦ is infinite.

Thus, we obtain an inequality

([E• : Qp] =) iner-dim(χE◦) < dimQp
((o×E◦

)p-ab-free ⊗Zp Qp) = [E◦ : Qp] ,

which contradicts the fact that E◦
∼← E

∼→ E•. This completes the proof of
Proposition 2.4. �

3. THE MAIN RESULTS

In the present §3, we prove the main theorem of the present paper [cf. The-
orem 3.3 below]. We maintain the notation of §1.

Definition 3.1. Let α : Gk◦
∼→ Gk• be a continuous isomorphism and β : k•

∼→
k◦ an isomorphism of fields. Then we shall say that β is inertially compatible
with α if the composite

o×k• ↪→ k×•
∼→ k×◦ ↪→ (k×◦ )∧

— where the second arrow is the isomorphism determined by β — and the
composite

o×k• ↪→ Gab
k•

∼→ Gab
k◦

∼→ (k×◦ )∧

— where the first arrow is the natural inclusion arising from local class field
theory [cf. the discussion at the beginning of §1], the second arrow is the iso-
morphism determined by α−1, and the third arrow is the isomorphism arising
from local class field theory — coincide on an open subgroup of o×k• .

Lemma 3.2. Let α : Gk◦
∼→ Gk• be a continuous isomorphism; β1, β2 : k•

∼→ k◦
isomorphisms of fields. Suppose that β1, β2 are inertially compatible with α
[cf. Definition 3.1]. Then β1 = β2.

Proof. Since β1, β2 are inertially compatible with α, one verifies easily from the
various definitions involved that there exists an open subgroup S• ⊆ o×k• of o×k•
such that β1|S• = β2|S• . On the other hand, let us recall from [1], Lemma 4.1,
that the sub-Qp-vector space of k• generated by S• coincides with k•. Thus, the
equality β1|S• = β2|S• implies the equality β1 = β2. This completes the proof of
Lemma 3.2. �

Theorem 3.3. Let p be a prime number. For � ∈ {◦, •}, let k� be a p-adic local
field and k� an algebraic closure of k�. Write Gk�

def= Gal(k�/k�). Let

α : Gk◦ −→ Gk•

be an open continuous homomorphism. Suppose that α is of HT-qLT-type [cf.
Definition 1.3, (ii)]. Then α is geometric [cf. [2], Definition 3.1, (iv)], i.e., arises
from an isomorphism of fields k•

∼→ k◦ that determines an embedding k• ↪→ k◦.

Proof. First, let us observe that it follows from Proposition 2.4, together with
the implication (2)⇒ (3) of Lemma 1.4, that α is injective. Next, let us observe
that, to verify Theorem 3.3, by replacing Gk• by the image of α, we may assume
without loss of generality that α is an isomorphism.

The following argument is essentially the same as the argument applied in
[1] to prove the main theorem of [1]. Now I claim that the following assertion
holds:
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Claim 3.3.A: Suppose that k◦ is Galois over Qp. Then there
exists a(n) [necessarily unique — cf. Lemma 3.2] isomorphism
of fields βk•,k◦ : k•

∼→ k◦ that is inertially compatible with α [cf.
Definition 3.1].

Indeed, let E be a finite Galois extension of Qp that admits embeddings E ↪→
k◦, E ↪→ k• such that if we write E◦ ⊆ k◦, E• ⊆ k• for the respective images
of these embeddings [so E◦

∼← E
∼→ E•], then k◦ ⊆ E◦, k• ⊆ E•. Let k′◦ (⊆ k◦)

be a finite Galois extension of k◦ such that k′◦ contains E◦, and, moreover, the
finite [necessarily Galois] extension k′• (⊆ k•) of k• corresponding to the open
subgroup α(Gk′◦) ⊆ Gk• contains E•. For � ∈ {◦, •}, write σ� : E� ↪→ k′� for the
natural inclusion. Write χ for the composite

Gk′◦

α|G
k′◦

∼−→ Gk′•

χLT
σ•−→ E×

• (∼← E× ∼→ E×
◦ ) .

Then since α is of HT-qLT-type, it holds that χ is Hodge-Tate. Thus, since E◦
is Galois over Qp, it follows from [4], Chapter III, §A.5, Corollary, that χ is
inertially equivalent to the character∏

σ∈Gal(E◦/Qp)

(χLT
σ◦◦σ)nσ : Gk′◦ −→ E×

◦ (∼← E× ∼→ E×
• )

for some choices of integers nσ.
For � ∈ {◦, •}, write Verk′

�
/k�

: Gab
k�
→ Gab

k′
�

for the Verlagerung map with re-
spect to the finite Galois extension k′�/k�. Then since χ is inertially equivalent
to

∏
σ∈Gal(E◦/Qp)(χ

LT
σ◦◦σ)nσ , and [one verifies easily from local class field theory

that] Verk′
�

/k�
maps o×k�

⊆ Gab
k�

[cf. the discussion at the beginning of §1] to
o×k′

�
⊆ Gab

k′
�

, we conclude that there exists an open subgroup S◦ ⊆ o×k◦ (⊆ Gab
k◦

) of
o×k◦ such that if we write S• ⊆ o×k• for the image of S◦ ⊆ o×k◦ by the isomorphism

(Gab
k◦ ⊇) o×k◦

∼−→ o×k• (⊆ Gab
k•)

induced by α [where let us recall from Proposition 1.1 that α induces an iso-
morphism Ik◦

∼→ Ik• ], then the diagram of topological modules

S◦ −−−−→ Gab
k◦

Verk′◦/k◦−−−−−−→ Gab
k′◦

Q
σ∈Gal(E◦/Qp)(χ

LT
σ◦◦σ)nσ

−−−−−−−−−−−−−−−−→ E×
◦

∼←−−−− E×

o
y ∥∥∥
S• −−−−→ Gab

k•

Verk′•/k•−−−−−−→ Gab
k′•

χLT
σ•−−−−→ E×

•
∼←−−−− E×

— where the left-hand vertical arrow is the isomorphism induced by α, and the
left-hand horizontal arrows are the natural inclusions — commutes. On the
other hand, it follows immediately from local class field theory, together with
Definition 1.2, (ii), that, for � ∈ {◦, •}, if we write Im(Ik�

) ⊆ Gab
k�

for the image
of the composite Ik�

↪→ Gk�
� Gab

k�
[i.e., “o×k�

”⊆ Gab
k�

— cf. the discussion at the
beginning of §1], then we have commutative diagrams of topological modules

Im(Ik◦)
Verk′◦/k◦−−−−−−→ Im(Ik′◦)

Q
σ∈Gal(E◦/Qp)(χ

LT
σ◦◦σ)nσ

−−−−−−−−−−−−−−−−→ E×
◦

∼← E×

o
y o

y ∥∥∥
o×k◦ −−−−→ o×k′◦

Q
σ∈Gal(E◦/Qp)(σ

−1◦Nmk′◦/E◦ )nσ

−−−−−−−−−−−−−−−−−−−−−−→ E×
◦

∼← E× ,
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Im(Ik•)
Verk′•/k•−−−−−−→ Im(Ik′•)

χLT
σ•−−−−→ E×

•
∼← E×

o
y o

y ∥∥∥
o×k• −−−−→ o×k′•

Nmk′•/E•−−−−−−→ E×
•

∼← E×

— where the left-hand and middle vertical arrows are isomorphisms that arise
from local class field theory; the lower left-hand horizontal arrows are the ho-
momorphisms induced by the natural inclusions k◦ ↪→ k′◦, k• ↪→ k′•, respec-
tively; we write “Nm” for the norm map. In particular, if, for � ∈ {◦, •}, we
write Im(S�) ⊆ E×

� for the image of S� in E×
� , then the following hold:

(a) Since k◦ ⊆ E◦ ⊆ k′◦, and k◦ is Galois over Qp [which thus implies that
every σ ∈ Gal(E◦/Qp) preserves k◦ ⊆ E◦], it holds that

Im(S◦) =
∏

σ∈Gal(E◦/Qp)

(σ−1◦Nmk′◦/E◦)(S◦)
nσ =

∏
σ∈Gal(E◦/Qp)

σ−1(Snσ·[k′◦:E◦]
◦ ) ⊆ k×◦ ,

i.e., that the subgroup Im(S◦) ⊆ E×
◦ is contained in k×◦ ⊆ E×

◦ .
(b) Since k• ⊆ E• ⊆ k′•, it holds that the subgroup Im(S•) ⊆ E×

• coin-
cides with the subgroup (o×k•)

[k′•:E•] ⊆ E×
• , which thus implies that the

subgroup Im(S•) ⊆ E×
• is an open subgroup of o×k• ⊆ E×

• .
For each � ∈ {◦, •}, write V� ⊆ E� for the sub-Qp-vector space of E� generated
by Im(S�) ⊆ E�. Now we have a commutative diagram of topological modules

Im(S◦) −−−−→ E×
◦

∼←−−−− E×

o
y ∥∥∥

Im(S•) −−−−→ E×
•

∼←−−−− E×

— where the left-hand vertical arrow is the isomorphism induced by α, and
the left-hand horizontal arrows are the natural inclusions. Thus, it is immedi-
ate that the isomorphisms of fields E•

∼← E
∼→ E◦ determine an isomorphism

V•
∼→ V◦, which thus implies that dimQp

(V◦) = dimQp
(V•). Moreover, it follows

from (a) (respectively, (b), together with [1], Lemma 4.1) that V◦ ⊆ k◦ ⊆ E◦
(respectively, V• = k• ⊆ E•). Thus, since [k◦ : Qp] = [k• : Qp] [cf. [1], Proposition
1.2], we conclude that V◦ = k◦, V• = k•, and, moreover, the isomorphism of Qp-
vector spaces V•

∼→ V◦ [determined by the isomorphisms of fields E•
∼← E

∼→ E◦]
is compatible with the structures of fields of k◦, k•. In particular, we obtain an
isomorphism of fields βk•,k◦ : k• = V•

∼→ V◦ = k◦. On the other hand, it follows
from the definition of βk•,k◦ , together with the above discussion concerning
Im(S�), that βk•,k◦ is inertially compatible with α. This completes the proof of
Claim 3.3.A.

Next, I claim that the following assertion holds:
Claim 3.3.B: For every pair of respective finite extensions k′◦
(⊆ k◦), k′• (⊆ k•) of k◦, k• such that α(Gk′◦) = Gk′• , there ex-
ists a(n) [necessarily unique — cf. Lemma 3.2] isomorphism
of fields βk′•,k′◦ : k′•

∼→ k′◦ that is inertially compatible with the
restriction α|Gk′◦

: Gk′◦

∼→ Gk′• .

Indeed, let k′′◦ (⊆ k◦) be a finite extension of k′◦ that is Galois over Qp. Write
k′′• (⊆ k•) for the finite [necessarily Galois] extension of k′• corresponding to
the open subgroup α(Gk′′◦ ) ⊆ Gk• . Then it follows from Claim 3.3.A that
there exists an isomorphism of fields βk′′• ,k′′◦ : k′′•

∼→ k′′◦ that is inertially com-
patible with the restriction α|Gk′′◦

: Gk′′◦

∼→ Gk′′•
. Then one verifies easily from
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Lemma 3.2, together with the fact that βk′′• ,k′′◦ is inertially compatible with the
restriction α|Gk′′◦

, that βk′′• ,k′′◦ is compatible with the respective natural actions
of Gal(k′′◦/k′◦), Gal(k′′•/k′•) on k′′◦ , k′′• [relative to the isomorphism Gal(k′′◦/k′◦) =
Gk′◦/Gk′′◦

∼→ Gk′•/Gk′′• = Gal(k′′•/k′•) induced by α|Gk′◦
]. Thus, we conclude that

the isomorphism βk′′• ,k′′◦ determines an isomorphism βk′•,k′◦ : k′•
∼→ k′◦. On the

other hand, again by Lemma 3.2, together with the fact that βk′′• ,k′′◦ is inertially
compatible with the restriction α|Gk′′◦

, it follows immediately that this isomor-
phism βk′•,k′◦ is inertially compatible with the restriction α|Gk′◦

. This completes
the proof of Claim 3.3.B.

Now, by applying Claim 3.3.B to the various finite extensions of k◦, we obtain
an isomorphism of fields βk•,k◦

: k•
∼→ k◦ that determines an isomorphism k•

∼→
k◦. Moreover, again by applying Claim 3.3.B, one verifies easily that α arises
from this isomorphism βk•,k◦

. This completes the proof of Theorem 3.3 �

Remark 3.3.1. Theorem 3.3 leads naturally to the following observation:
Let p be an odd prime number and Qp an algebraic closure of
the p-adic completion Qp of the field of rational numbers Q.
Write GQp

def= Gal(Qp/Qp). Then there exist an automorphism
α of GQp and a finite dimensional continuous representation
φ : GQp → GLn(Qp) of GQp such that φ is potentially locally
algebraic, i.e., the restriction of φ to an open subgroup of GQp

is locally algebraic [cf. [4], Chapter III, §1, Definition] [hence
Hodge-Tate], the set of Hodge-Tate weights of φ is contained
in {0, 1}, but φ ◦ α is not Hodge-Tate.

Indeed, let us first observe that it follows immediately from the discussion
given at the final part of [3], Chapter VII, §5, that we have an automorphism
α of GQp

that is not geometric [cf. [2], Definition 3.1, (iv)]. Thus, it follows from
Theorem 3.3 that α is not of HT-qLT-type [cf. Definition 1.3, (ii)]. In particu-
lar, since the character “χLT

σ ” defined in Definition 1.2, (ii), is locally algebraic
[cf. [4], Chapter III, §1, Example (2)], and the set of Hodge-Tate weights is
contained in {0, 1} [cf., e.g., [4], Chapter III, §A.5, Theorem 2], it follows from
the definition of a homomorphism of HT-qLT-type that there exist normal open
subgroups H1, H2 ⊆ GQp

and a finite dimensional continuous representation
φH2 : H2 → GLn(Qp) of H2 such that α(H1) ⊆ H2, φH2 is locally algebraic,
the set of Hodge-Tate weights of φH2 is contained in {0, 1}, and, moreover,
φH2 ◦ α : H1 → GLn(Qp) is not Hodge-Tate. Thus, it follows immediately from
a similar argument to the argument applied in the proof of the implication (1)
⇒ (1′) of Lemma 1.4 that if we write φ for the finite dimensional continuous
representation of GQp obtained by inducing φH2 from H2 to GQp , then φ is po-
tentially locally algebraic [cf. also [4], Chapter III, §A.7, Theorem 3], the set of
Hodge-Tate weights of φ is contained in {0, 1}, but φ ◦ α is not Hodge-Tate.

Corollary 3.4. In the notation of Theorem 3.3, consider the following nine
conditions:

(1) α is HT-preserving [cf. Definition 1.3, (i)].
(2) α is of HT-qLT-type [cf. Definition 1.3, (ii)].
(3) α is geometric [cf. [2], Definition 3.1, (iv)].
(4) α is of qLT-type [cf. [2], Definition 3.1, (iv)].
(5) α is of 01-qLT-type [cf. [2], Definition 3.1, (iv)].
(6) α is of CHT-type [cf. [2], Definition 3.1, (iv)].
(7) α is of HT-type [cf. [2], Definition 3.1, (iv)].
(8) α is [an isomorphism and] RF-preserving [cf. [2], Definition 3.6, (iii)].
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(9) α is [an isomorphism and] uniformly toral [cf. [2], Definition 3.6,
(iii)].

Then we have equivalences and implications

(8)⇐⇒ (9) =⇒ (1)⇐⇒ (2)⇐⇒ (3)⇐⇒ (4)⇐⇒ (5)⇐⇒ (6) =⇒ (7) .

If, moreover, α is an isomorphism, then the above nine conditions are equiv-
alent.

Proof. Let us recall from Remark 1.4.1 that we have implications

(4) =⇒ (5) =⇒ (6) =⇒ (1) =⇒ (2) and (6) =⇒ (7) .

The implication (2)⇒ (3) follows from Theorem 3.3. The implication (3)⇒ (4)
follows from [2], Theorem 3.5, (i). The equivalence (8) ⇔ (9) and the implica-
tion (8) ⇒ (3) follow from [2], Corollary 3.7. Finally, the implication (7) ⇒ (6)
(respectively, (3)⇒ (8)) in the case where α is an isomorphism follows immedi-
ately from [1], Proposition 1.1 (respectively, [2], Corollary 3.7). This completes
the proof of Corollary 3.4. �

Corollary 3.5. Let p be a prime number. For � ∈ {◦, •}, let k� be a p-adic local
field and k� an algebraic closure of k�. Write Gk�

def= Gal(k�/k�); Emb(k•/k•, k◦/k◦)
for the set of isomorphisms of fields k•

∼→ k◦ that determine embeddings k• ↪→
k◦; Emb(k•, k◦) for the set of embeddings of fields k• ↪→ k◦; Homopen

HT (Gk◦ , Gk•)
for the set of open continuous homomorphisms α : Gk◦ → Gk• that are HT-
preserving [cf. Definition 1.3, (i)], i.e., for every finite dimensional continuous
representation φ : Gk• → GLn(Qp) of Gk• , if φ is Hodge-Tate, then φ ◦ α is
Hodge-Tate. Then we have a commutative diagram of natural maps

Emb(k•/k•, k◦/k◦)
∼−−−−→ Homopen

HT (Gk◦ , Gk•)y y
Emb(k•, k◦)

∼−−−−→ Homopen
HT (Gk◦ , Gk•)/Inn(Gk•)

— where the vertical arrows are surjective, and the horizontal arrows are
bijective.

Proof. The injectivity of the horizontal arrows follow immediately from the in-
jectivity portion of [1], Theorem 4.2 [cf. also the proof of [1], Theorem 4.2]. The
surjectivity of the horizontal arrows follow immediately from Theorem 3.3, to-
gether with the implication (1) ⇒ (2) of Lemma 1.4. This completes the proof
of Corollary 3.5. �
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