$\operatorname{RIMS-1768}$

On the field-theoreticity of homomorphisms between the multiplicative groups of number fields

By

Yuichiro HOSHI

January 2013

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

On the Field-theoreticity of Homomorphisms Between the Multiplicative Groups of Number Fields

Yuichiro Hoshi

JANUARY 2013

ABSTRACT. — In the present paper, we discuss the *field-theoreticity* of homomorphisms between the multiplicative groups of *number fields*. We prove that, for instance, for a given isomorphism between the multiplicative groups of number fields, it holds that either the given isomorphism or its multiplicative inverse arises from an *isomorphism of fields* if and only if the given isomorphism is *SPU-preserving* [i.e., roughly speaking, preserves the subgroups of principal units with respect to various nonarchimedean primes].

Contents

INTRODUCTION		. 1
§1.	PU-preserving Homomorphisms	. 3
§2.	FIELD-THEORETICITY FOR CERTAIN PU-PRESERVING HOMOMORPHISMS	.7
§3.	Uchida's Lemma for Number Fields	11
References		14

INTRODUCTION

In the present paper, we discuss the *field-theoreticity* of homomorphisms between the multiplicative groups of fields. Let us consider the following problem.

For a homomorphism $\alpha: {}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$ between the multiplicative groups of fields ${}^{\circ}k$ and ${}^{\bullet}k$, when does the homomorphism α arise from a *homomorphism of fields* ${}^{\circ}k \to {}^{\bullet}k$? In other words, when is the *additive structure of* ${}^{\circ}k$ compatible with the *additive structure of* ${}^{\bullet}k$ relative to the homomorphism α ?

At a more philosophical level:

²⁰¹⁰ Mathematics Subject Classification. - 11R04.

KEY WORDS AND PHRASES. — number field, multiplicative group, field-theoreticity, PU-preserving homomorphism.

This research was supported by Grant-in-Aid for Scientific Research (C), No. 24540016, Japan Society for the Promotion of Science.

How can one understand the *additive structure* of a field by the language of the *multiplicative structure* of the field?

Now let us recall the following consequence of "Uchida's lemma" [reviewed in [1], Proposition 1.3] that is implicit in the argument of [4], Lemmas 8-11 [cf. also [3], Lemma 4.7].

For $\Box \in \{\circ, \bullet\}$, let $\Box k$ be an algebraically closed field and $\Box C$ a projective smooth curve over $\Box k$. Write $\Box K$ for the function field of $\Box C$ and $\Box C^{cl}$ for the set of closed points of $\Box C$. For each closed point $\Box x \in \Box C^{cl}$ of $\Box C$, write $\mathcal{O}_{\Box_C,\Box_x} \subseteq \Box K$ for the local ring of $\Box C$ at $\Box x$, $\mathfrak{m}_{\Box_C,\Box_x} \subseteq \mathcal{O}_{\Box_C,\Box_x}$ for the maximal ideal of $\mathcal{O}_{\Box_C,\Box_x}$, and $\operatorname{ord}_{\Box_x} \colon \Box K^{\times} \to \mathbb{Z}$ for the valuation of $\Box K$ given by mapping $f \in \Box K^{\times}$ to the order of f at $\Box x \in \Box C$. [Thus, one verifies easily that $1 + \mathfrak{m}_{\Box_C,\Box_x} \subseteq \operatorname{Ker}(\operatorname{ord}_{\Box_x}) = \mathcal{O}_{\Box_C,\Box_x}^{\times} \subseteq \Box K^{\times}$.] Let

$$\alpha \colon {}^{\circ}K^{\times} \xrightarrow{\sim} {}^{\bullet}K^{\times}$$

be an isomorphism between the multiplicative groups of ${}^{\circ}K$, ${}^{\bullet}K$. Then it holds that the isomorphism α arises from an *isomorphism of fields* ${}^{\circ}K \xrightarrow{\sim} {}^{\bullet}K$ if and only if there exists a bijection $\phi \colon {}^{\bullet}C^{\text{cl}} \xrightarrow{\sim} {}^{\circ}C^{\text{cl}}$ such that, for every ${}^{\bullet}x \in {}^{\bullet}C^{\text{cl}}$ and ${}^{\circ}x \stackrel{\text{def}}{=} \phi({}^{\bullet}x) \in {}^{\circ}C^{\text{cl}}$, it holds that $\operatorname{ord}_{{}^{\circ}x} = \operatorname{ord}_{{}^{\bullet}x} \circ \alpha$, and, moreover, $1 + \mathfrak{m}_{{}^{\circ}C} \circ x = \alpha^{-1}(1 + \mathfrak{m}_{{}^{\bullet}C} \circ x)$.

In the present paper, we discuss an *analogue for number fields* of the above result. In the remainder of Introduction, let \mathfrak{Primes} be the set of all prime numbers, $\Box \in \{\circ, \bullet\}$, $\Box k$ a *number field* [i.e., a finite extension of the field of rational numbers], $\Box \circ \subseteq \Box k$ the ring of integers of $\Box k$, $\Box \mathcal{V}$ the set of maximal ideals of $\Box \circ$ [i.e., the set of nonarchimedean primes of $\Box k$], and $\Box \mathcal{Q} \subseteq \Box k$ the [uniquely determined] subfield of $\Box k$ that is isomorphic to the *field of rational numbers*. For $\Box \mathfrak{p} \in \Box \mathcal{V}$, write $\Box \circ_{\Box \mathfrak{p}}$ for the localization of $\Box \circ a$ at $\Box \mathfrak{p}$, $\mathfrak{c}(\Box \mathfrak{p})$ for the residue characteristic of $\Box \mathfrak{p}$ [thus, we have a map $\mathfrak{c} \colon \Box \mathcal{V} \to \mathfrak{Primes}$], and $\operatorname{ord}_{\Box \mathfrak{p}} \colon \Box k^{\times} \twoheadrightarrow \mathbb{Z}$ for the [uniquely determined] surjective valuation of $\Box k$ associated to $\Box \mathfrak{p}$ [cf. Definition 1.1]. Let

$$\alpha \colon {}^{\circ}k^{\times} \longrightarrow {}^{\bullet}k^{\times}$$

be a homomorphism between the multiplicative groups of ${}^{\circ}k$, ${}^{\bullet}k$. Then the main result of the present paper may be stated as follows [cf. Theorem 2.5].

THEOREM A. — The following conditions are equivalent:

(1) The homomorphism α arises from a homomorphism of fields ${}^{\circ}k \rightarrow {}^{\bullet}k$.

(2) The homomorphism α is **CPU-preserving** [i.e., there exists a map $\phi: {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$ over \mathfrak{Primes} relative to \mathfrak{c} such that the inclusion $1 + {}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ\mathfrak{p}} \subseteq \alpha^{-1}(1 + {}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\bullet\mathfrak{p}})$, where we write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$, holds for all but finitely many ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$ — cf. Definition 1.3, (ii)], and, moreover, there exists an $x \in \mathbb{Q}^{\times} \setminus \mathbb{Z}^{\times}$ such that the "x" in ${}^{\circ}k$ maps, via α , to the "x" in ${}^{\bullet}k$. (3) The homomorphism α is **PU-preserving** [i.e., there exists a map $\phi: {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$ such that the inclusion $1 + {}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ\mathfrak{p}} \subseteq \alpha^{-1}(1 + {}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\circ\mathfrak{p}})$, where we write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$, holds for all but finitely many ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V} - cf$. Definition 1.3, (i)], and, moreover, the restriction ${}^{\circ}\mathbb{Q}^{\times} \to {}^{\bullet}k^{\times}$ of α to ${}^{\circ}\mathbb{Q}^{\times} \subseteq {}^{\circ}k^{\times}$ arises from a homomorphism of fields ${}^{\circ}\mathbb{Q} \to {}^{\bullet}k$.

By concentrating on *surjections*, we obtain the following result [cf. Corollary 3.2].

THEOREM B. — Suppose that the homomorphism α is surjective. Then it holds that either α or the composite $(-)^{-1} \circ \alpha$ [i.e., the surjection $\circ k^{\times} \to \bullet k^{\times}$ obtained by mapping $x \in \circ k^{\times}$ to $\alpha(x)^{-1} \in \bullet k^{\times}$] arises from an isomorphism of fields $\circ k \to \bullet k$ if and only if the surjection α is SPU-preserving [i.e., there exists a map $\phi: \bullet \mathcal{V} \to \circ \mathcal{V}$ such that the equality $1 + \circ \mathfrak{p} \circ \mathfrak{o}_{\circ \mathfrak{p}} = \alpha^{-1}(1 + \bullet \mathfrak{p} \bullet \mathfrak{o}_{\bullet \mathfrak{p}})$, where we write $\circ \mathfrak{p} \stackrel{\text{def}}{=} \phi(\bullet \mathfrak{p}) \in \circ \mathcal{V}$, holds for all but finitely many $\bullet \mathfrak{p} \in \bullet \mathcal{V}$ — cf. Definition 1.3, (i)].

As corollaries of Theorem A, we also prove the following results, that may be regarded as *analogues of Uchida's lemma for number fields* [cf. Theorem 3.1; Corollary 3.3].

THEOREM C. — The homomorphism α arises from a homomorphism of fields ${}^{\circ}k \rightarrow {}^{\circ}k$ if and only if there exists a map $\phi : {}^{\bullet}\mathcal{V} \rightarrow {}^{\circ}\mathcal{V}$ over \mathfrak{Primes} [relative to \mathfrak{c}] such that, for ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$, if we write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$, then the equality

$$\operatorname{ord}_{\circ_n} = \operatorname{ord}_{\bullet_n} \circ \alpha$$

holds for infinitely many ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$, and, moreover, the inclusion

$$\mathsf{l} + {}^{\circ}\mathfrak{p}^{\circ}\mathfrak{o}_{\circ\mathfrak{p}} \subseteq \alpha^{-1}(1 + {}^{\bullet}\mathfrak{p}^{\bullet}\mathfrak{o}_{\bullet\mathfrak{p}})$$

holds for all but finitely many ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$.

THEOREM D. — Suppose that the homomorphism α is surjective. Then the surjection α arises from an isomorphism of fields ${}^{\circ}k \xrightarrow{\sim} {}^{\bullet}k$ if and only if there exists a map $\phi: {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$ such that, for ${}^{\bullet}\mathfrak{p} \in S$, if we write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$, then the equality

$$1 + {}^{\circ}\mathfrak{p}^{\circ}\mathfrak{o}_{\circ\mathfrak{p}} = \alpha^{-1}(1 + {}^{\bullet}\mathfrak{p}^{\bullet}\mathfrak{o}_{\bullet\mathfrak{p}})$$

holds for all but finitely many ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$, and, moreover, there exist a maximal ideal ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$ of ${}^{\bullet}\mathfrak{o}$ and a **positive** integer n such that

$$n \cdot \operatorname{ord}_{\circ \mathfrak{p}} = \operatorname{ord}_{\bullet \mathfrak{p}} \circ \alpha$$
.

1. PU-preserving Homomorphisms

In the present §1, we define and discuss the notion of a *PU-preserving* homomorphism [cf. Definition 1.3, (i), below]. In the present §1, write **Primes** for the set of all prime numbers. For $\Box \in \{\circ, \bullet, \emptyset\}$, let $\Box k$ be a *number field* [i.e., a finite extension of the field of

rational numbers]; write $\Box \mathfrak{o} \subseteq \Box k$ for the ring of integers of $\Box k$, $\Box \mathcal{V}$ for the set of maximal ideals of $\Box \mathfrak{o}$ [i.e., the set of nonarchimedean primes of $\Box k$], and $\Box \mathbb{Q} \subseteq \Box k$ for the [uniquely determined] subfield of $\Box k$ that is isomorphic to the *field of rational numbers*.

DEFINITION 1.1. — Let $\mathfrak{p} \in \mathcal{V}$ be a maximal ideal of \mathfrak{o} .

(i) We shall write

 $\mathfrak{o}_\mathfrak{p}$

for the localization of \mathfrak{o} at \mathfrak{p} ,

 $\kappa(\mathfrak{p}) \stackrel{\mathrm{def}}{=} \mathfrak{o}/\mathfrak{p} \stackrel{\sim}{\to} \mathfrak{o}_\mathfrak{p}/\mathfrak{p}\mathfrak{o}_\mathfrak{p}$

for the residue field of \mathfrak{o} at \mathfrak{p} , and

 $\mathfrak{c}(\mathfrak{p}) \stackrel{\text{def}}{=} \operatorname{char}(\kappa(\mathfrak{p}))$

for the characteristic of $\kappa(\mathfrak{p})$. Thus, we have a map

 $\mathfrak{c}\colon \mathcal{V} \longrightarrow \mathfrak{Primes}$.

(ii) We shall write

$$\operatorname{ord}_{\mathfrak{p}} \colon k^{\times} \twoheadrightarrow \mathbb{Z}$$

for the [uniquely determined] surjective valuation of k associated to \mathfrak{p} . Thus, one verifies easily that the kernel Ker(ord_{\mathfrak{p}}) $\subseteq k^{\times}$ of ord_{\mathfrak{p}} coincides with the group $\mathfrak{o}_{\mathfrak{p}}^{\times} \subseteq k^{\times}$ of invertible elements of $\mathfrak{o}_{\mathfrak{p}}$ [cf. (i)], i.e.,

$$\operatorname{Ker}(\operatorname{ord}_{\mathfrak{p}}) = \mathfrak{o}_{\mathfrak{p}}^{\times} \subseteq k^{\times}$$

Moreover, we have a natural exact sequence of abelian groups

$$1 \longrightarrow 1 + \mathfrak{po}_{\mathfrak{p}} \longrightarrow \operatorname{Ker}(\operatorname{ord}_{\mathfrak{p}}) \longrightarrow \kappa(\mathfrak{p})^{\times} \longrightarrow 1.$$

REMARK 1.1.1. — By the map \mathfrak{c} [cf. Definition 1.1, (i)], let us identify \mathfrak{Primes} with the " \mathcal{V} " that occurs in the case where we take the "k" to be a number field that is isomorphic to the *field of rational numbers* [e.g., the field $\Box \mathbb{Q}$].

DEFINITION 1.2. — Let $\phi: {}^{\circ}\mathcal{V} \to {}^{\circ}\mathcal{V}$ be a map of sets. Then we shall say that ϕ is *characteristic-compatible* if ϕ is a map over \mathfrak{Primes} [relative to \mathfrak{c} — cf. Definition 1.1, (i)].

DEFINITION 1.3. — Let $\alpha: {}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$ be a homomorphism of groups.

(i) Let $\phi: {}^{\circ}\mathcal{V} \to {}^{\circ}\mathcal{V}$ be a map of sets. Then we shall say that the homomorphism α is $[\phi]PU$ -preserving [i.e., "principal-unit-preserving"] (respectively, $[\phi]SPU$ -preserving [i.e., "strictly principal-unit-preserving"]) if the inclusion $1 + {}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ\mathfrak{p}} \subseteq \alpha^{-1}(1 + {}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\circ\mathfrak{p}})$ (respectively, the equality $1 + {}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ\mathfrak{p}} = \alpha^{-1}(1 + {}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\circ\mathfrak{p}})$) [cf. Definition 1.1, (i)], where we write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$, holds for all but finitely many ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$. If, in this situation, for a maximal ideal ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$ of ${}^{\bullet}\mathfrak{o}$, the inclusion $1 + {}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ\mathfrak{p}} \subseteq \alpha^{-1}(1 + {}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\circ\mathfrak{p}})$ (respectively, the equality $1 + {}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ\mathfrak{p}} = \alpha^{-1}(1 + {}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\circ\mathfrak{p}})$) does not hold, then we shall say that ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$ is *PU*-exceptional (respectively, *SPU*-exceptional) for (α, ϕ) .

(ii) We shall say that the homomorphism α is *CPU-preserving* [i.e., "characteristiccompatibly principal-unit-preserving"] if α is ϕ -PU-preserving [cf. (i)] for some characteristiccompatible [cf. Definition 1.2] map $\phi: {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$.

REMARK 1.3.1. — In the notation of Definition 1.3, one verifies easily that if α is ϕ -PUpreserving, and the equality $\mathfrak{c}(\bullet \mathfrak{p}) = \mathfrak{c}(\phi(\bullet \mathfrak{p}))$ holds for all but finitely many $\bullet \mathfrak{p} \in \bullet \mathcal{V}$, then — by replacing ϕ by a suitable extension [to a map $\bullet \mathcal{V} \to \circ \mathcal{V}$] of the restriction of ϕ to the subset of $\bullet \mathcal{V}$ consisting of $\bullet \mathfrak{p} \in \bullet \mathcal{V}$ such that $\mathfrak{c}(\bullet \mathfrak{p}) = \mathfrak{c}(\phi(\bullet \mathfrak{p})) - \alpha$ is CPU-preserving.

LEMMA 1.4. — Let $\iota: \circ k \to \bullet k$ be a homomorphism of fields. Write $\iota^{\times}: \circ k^{\times} \to \bullet k^{\times}$ for the homomorphism between the multiplicative groups induced by ι and $\mathcal{V}_{\iota}: \bullet \mathcal{V} \to \circ \mathcal{V}$ for the [necessarily surjective and characteristic-compatible — cf. Definition 1.2] map obtained by mapping $\bullet \mathfrak{p} \in \bullet \mathcal{V}$ to $\iota^{-1}(\bullet \mathfrak{p}) \cap \circ \mathfrak{o} \in \circ \mathcal{V}$. Then, for every $\bullet \mathfrak{p} \in \bullet \mathcal{V}$, the equality

$$1 + \mathcal{V}_{\iota}({}^{\bullet}\mathfrak{p})^{\circ}\mathfrak{o}_{\mathcal{V}_{\iota}}({}^{\bullet}\mathfrak{p}) = (\iota^{\times})^{-1}(1 + {}^{\bullet}\mathfrak{p}^{\bullet}\mathfrak{o}_{{}^{\bullet}\mathfrak{p}})$$

holds. In particular, the homomorphism ι^{\times} is \mathcal{V}_{ι} -SPU-preserving and CPU-preserving [cf. Definition 1.3].

PROOF. — This follows immediately from the various definitions involved.

LEMMA 1.5. — Let $\alpha: {}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$ be a homomorphism of groups, $\phi: {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$ a map of sets, and ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$ a maximal ideal of ${}^{\bullet}\mathfrak{o}$. Write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$. Then the following hold:

(i) Suppose that α is ϕ -PU-preserving, and that ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$ is not PU-exceptional for (α, ϕ) [cf. Definition 1.3, (i)]. Then it holds that $\operatorname{Ker}(\operatorname{ord}_{\circ\mathfrak{p}}) \subseteq \alpha^{-1}(\operatorname{Ker}(\operatorname{ord}_{\circ\mathfrak{p}}))$. In particular, α determines homomorphisms of groups

$$\begin{aligned} \operatorname{Ker}(\operatorname{ord}_{\circ_{\mathfrak{p}}})/(1+{}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ_{\mathfrak{p}}}) & (\simeq \kappa({}^{\circ}\mathfrak{p})^{\times}) \longrightarrow \operatorname{Ker}(\operatorname{ord}_{\bullet_{\mathfrak{p}}})/(1+{}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\bullet_{\mathfrak{p}}}) & (\simeq \kappa({}^{\bullet}\mathfrak{p})^{\times}); \\ {}^{\circ}k^{\times}/\operatorname{Ker}(\operatorname{ord}_{\circ_{\mathfrak{p}}}) & (\simeq \mathbb{Z}) \longrightarrow {}^{\bullet}k^{\times}/\operatorname{Ker}(\operatorname{ord}_{\bullet_{\mathfrak{p}}}) & (\simeq \mathbb{Z}). \end{aligned}$$

(ii) Suppose that α is ϕ -SPU-preserving, and that ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$ is not SPU-exceptional for (α, ϕ) [cf. Definition 1.3, (i)]. Suppose, moreover, that α is surjective. Then the two displayed homomorphisms of (i) are isomorphisms. Moreover, the surjection α is CPU-preserving [cf. Definition 1.3, (ii)].

PROOF. — Assertion (i) follows immediately from the [easily verified] fact that, for each $\Box \in \{\circ, \bullet\}$, the subgroup Ker(ord_p)/(1 + $\Box \mathfrak{p} \Box \mathfrak{o}_{\Box \mathfrak{p}}) \subseteq \Box k^{\times}/(1 + \Box \mathfrak{p} \Box \mathfrak{o}_{\Box \mathfrak{p}})$ coincides with the maximal torsion subgroup of $\Box k^{\times}/(1 + \Box \mathfrak{p} \Box \mathfrak{o}_{\Box \mathfrak{p}})$. Next, we verify assertion (ii). The assertion that the two displayed homomorphisms of (i) are isomorphisms follows immediately from the various definitions involved, together with the [easily verified] fact that every surjective endomorphism of \mathbb{Z} is an isomorphism. The assertion that the surjection α is *CPU-preserving* follows immediately from Remark 1.3.1, together with the [easily verified] fact that if $\kappa(\circ \mathfrak{p})^{\times}$ is isomorphic to $\kappa(\bullet \mathfrak{p})^{\times}$, then it holds that $\mathfrak{c}(\circ \mathfrak{p}) = \mathfrak{c}(\bullet \mathfrak{p})$. This completes the proof of Lemma 1.5.

LEMMA 1.6. — Let $\phi: {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$ be a map of sets and α , $\beta: {}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$ homomorphisms of groups. Suppose that α and β are ϕ -PU-preserving [cf. Definition 1.3, (i)]. Then the homomorphism $\alpha \cdot \beta: {}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$ obtained by forming the product of α and β [i.e., the homomorphism ${}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$ given by mapping $x \in {}^{\circ}k^{\times}$ to $\alpha(x) \cdot \beta(x) \in {}^{\bullet}k^{\times}$] is ϕ -PU-preserving.

PROOF. — This follows immediately from the various definitions involved.

REMARK 1.6.1. — In the situation of Lemma 1.6:

(i) In general, the product of two ϕ -SPU-preserving [cf. Definition 1.3, (i)] homomorphisms is not ϕ -SPU-preserving. Indeed, although the identity automorphism $\mathrm{id}_{\mathbb{Q}^{\times}}$ of \mathbb{Q}^{\times} is $\mathrm{id}_{\mathfrak{Primes}}$ -SPU-preserving [cf. Remark 1.1.1], [one verifies easily that] the product of two $\mathrm{id}_{\mathbb{Q}^{\times}}$ [i.e., the endomorphism of \mathbb{Q}^{\times} given by mapping $x \in \mathbb{Q}^{\times}$ to $x^2 \in \mathbb{Q}^{\times}$] is not $\mathrm{id}_{\mathfrak{Primes}}$ -SPU-preserving.

(ii) Moreover, in general, the product of CPU-preserving [cf. Definition 1.3, (ii)] homomorphisms is not CPU-preserving. Indeed, suppose that k is Galois over \mathbb{Q} . Then it follows from Lemma 1.4 that the automorphism g^{\times} of k^{\times} determined by an element $g \in \operatorname{Gal}(k/\mathbb{Q})$ of $\operatorname{Gal}(k/\mathbb{Q})$ is CPU-preserving. Assume that the product Nm of all such automorphisms g^{\times} [i.e., Nm is the composite of the norm map $k^{\times} \to \mathbb{Q}^{\times}$ and the natural inclusion $\mathbb{Q}^{\times} \hookrightarrow k^{\times}$] is CPU-preserving. Then one verifies immediately that Nm and the endomorphism of k^{\times} given by mapping $x \in k^{\times}$ to $x^{[k:\mathbb{Q}]} \in k^{\times}$ coincide on the subgroup $\mathbb{Q}^{\times} \subseteq k^{\times}$. Thus, it follows immediately from Proposition 2.4, (i), below that we obtain a contradiction.

DEFINITION 1.7. — Let $\phi: {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$ be a map of sets. Then we shall write

 $\operatorname{Hom}({}^{\circ}k^{\times}, {}^{\bullet}k^{\times})$

for the [abelian] group consisting of homomorphisms of groups ${}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$ and

$$\operatorname{Hom}^{\phi\operatorname{-PU}}({}^{\circ}k^{\times}, {}^{\bullet}k^{\times}) \subseteq \operatorname{Hom}({}^{\circ}k^{\times}, {}^{\bullet}k^{\times})$$

for the subgroup [cf. Lemma 1.6] of ϕ -PU-preserving homomorphisms ${}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$.

LEMMA 1.8. — Let $\phi: {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$ be a map of sets. Then the homomorphism of groups Hom ${}^{\phi-\mathrm{PU}}({}^{\circ}k^{\times}, {}^{\bullet}k^{\times}) \longrightarrow \mathrm{Hom}({}^{\circ}\mathbb{Q}^{\times}, {}^{\bullet}k^{\times})$

[cf. Definition 1.7] induced by the natural inclusion $^{\circ}\mathbb{Q}^{\times} \hookrightarrow ^{\circ}k^{\times}$ factors through the subgroup $\operatorname{Hom}^{(\mathfrak{c}\circ\phi)\operatorname{-PU}}(^{\circ}\mathbb{Q}^{\times}, ^{\bullet}k^{\times}) \subseteq \operatorname{Hom}(^{\circ}\mathbb{Q}^{\times}, ^{\bullet}k^{\times})$ [cf. Remark 1.1.1]. In particular, we obtain a homomorphism of groups

$$\operatorname{Hom}^{\phi\operatorname{-PU}}({}^{\circ}k^{\times},{}^{\bullet}k^{\times})\longrightarrow\operatorname{Hom}^{(\mathfrak{co}\phi)\operatorname{-PU}}({}^{\circ}\mathbb{Q}^{\times},{}^{\bullet}k^{\times})$$

PROOF. — This follows immediately from the various definitions involved.

6

2. FIELD-THEORETICITY FOR CERTAIN PU-PRESERVING HOMOMORPHISMS

In the present $\S2$, we prove the *field-theoreticity* for certain *PU-preserving* homomorphisms [cf. Theorem 2.5 below]. We maintain the notation of preceding $\S1$.

LEMMA 2.1. — Let $\phi: {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$ be a map of sets, n a positive integer, and $x_1, \ldots, x_n \in {}^{\circ}k^{\times}$ elements of ${}^{\circ}k^{\times}$. Suppose that the image of the composite ${}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V} \to {}^{\circ}\mathcal{P}$ finnes is of density one. Then the subset $S[\phi; x_1, \ldots, x_n] \subseteq {}^{\bullet}\mathcal{V}$ consisting of maximal ideals ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$ of ${}^{\bullet}\mathfrak{o}$ that satisfy the following condition is infinite: If we write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$, then $x_i \in \text{Ker}(\text{ord}_{\circ}\mathfrak{p})$ for each $i \in \{1, \ldots, n\}$, and, moreover, $\sharp \kappa({}^{\circ}\mathfrak{p}) = \mathfrak{c}({}^{\circ}\mathfrak{p})$.

PROOF. — Let us observe that one verifies immediately that, to verify Lemma 2.1, it suffices to verify that the set of prime numbers $p \in \mathfrak{Primes}$ that *split completely* in the finite extension $k/{\mathbb{Q}}$ contains a subset of \mathfrak{Primes} of *positive density*. On the other hand, this follows immediately, by considering the *Galois closure* of $k/{\mathbb{Q}}$, by *Čhebotarev's density theorem*. This completes the proof of Lemma 2.1.

LEMMA 2.2. — For $p \in \mathfrak{Primes}$, write $\operatorname{ord}_p \colon \mathbb{Q}^{\times} \twoheadrightarrow \mathbb{Z}$ for the surjective p-adic valuation. Let $x, y \in \mathbb{Q}^{\times}$ be such that $y \notin \{1, -1\}$. Then the subset $S_{x,\langle y \rangle} \subseteq \mathfrak{Primes}$ consisting of prime numbers $p \in \mathfrak{Primes}$ that satisfy the following condition is infinite: $x, y \in \operatorname{Ker}(\operatorname{ord}_p)$, and, moreover, the image of x in \mathbb{F}_p^{\times} is contained in the subgroup of \mathbb{F}_p^{\times} generated by the image of y in \mathbb{F}_p^{\times} .

PROOF. — This follows from [the argument given in the proof of] [2], Theorem 1. For the reader's convenience [and, moreover, in order to make it clear that the argument given in the proof of [2], Theorem 1, works under only our assumption that " $y \notin \{1, -1\}$ "], however, we review the argument as follows:

Let us first observe that since $y \notin \{1, -1\}$, it is immediate that, to verify Lemma 2.2, by replacing y by y^{-1} if necessary, we may assume without loss of generality that the absolute value |y| of y is greater than one. Write (x_1, x_2) , (y_1, y_2) for the [uniquely determined] pairs of nonzero rational integers such that $x_1\mathbb{Z} + x_2\mathbb{Z} = \mathbb{Z}$; $y_1\mathbb{Z} + y_2\mathbb{Z} = \mathbb{Z}$; $x_2, y_2 > 0$; $x = x_1/x_2$; $y = y_1/y_2$. For each nonnegative integer n, write $a_n \stackrel{\text{def}}{=} x_1 \cdot y_2^n - x_2 \cdot y_1^n$. Now if $a_n = 0$ for some n, then Lemma 2.2 is immediate. Thus, we may assume without loss of generality that $a_n \neq 0$ for every n. Next, let us observe that one verifies easily that $S_{x,\langle y \rangle}$ coincides with the set of prime numbers $p \in \mathfrak{Primes}$ such that $x, y \in \text{Ker}(\text{ord}_p)$ but $a_n \notin \text{Ker}(\text{ord}_p)$ for some n. To verify Lemma 2.2, assume that $S_{x,\langle y \rangle}$ is finite. Write $n_0 \stackrel{\text{def}}{=} \sharp \left(\mathbb{Z}/(\prod_{p \in S_{x,\langle y \rangle}} p^{\text{ord}_p(a_0)+1})\mathbb{Z}\right)^{\times}$. [Thus, one verifies easily that, for every $p \in S_{x,\langle y \rangle}$ and $z \in \mathbb{Q}^{\times}$, if $z \in \text{Ker}(\text{ord}_p)$, then $z^{n_0} \equiv 1 \pmod{p^{\text{ord}_p(a_0)+1}}$.]

Now I claim that the following assertion holds:

Claim 2.2.A: For each nonnegative integer n and $p \in S_{x,\langle y \rangle}$, it holds that $\operatorname{ord}_p(a_{n_0 \cdot n}) \leq \operatorname{ord}_p(a_0)$.

Indeed, let us first observe that since $y \in \operatorname{Ker}(\operatorname{ord}_p)$, it holds that $y_1, y_2 \in \operatorname{Ker}(\operatorname{ord}_p)$, which thus implies that $y_1^{n_0}, y_2^{n_0} \equiv 1 \pmod{p^{\operatorname{ord}_p(a_0)+1}}$ [cf. the discussion at the final portion of the preceding paragraph]. Thus, we conclude that $a_{n_0 \cdot n} - a_0 = x_1 \cdot (y_2^{n_0 \cdot n} -$ 1) $-x_2 \cdot (y_1^{n_0 \cdot n} - 1) \equiv 0 \pmod{p^{\operatorname{ord}_p(a_0)+1}}$, i.e., $\operatorname{ord}_p(a_0) < \operatorname{ord}_p(a_{n_0 \cdot n} - a_0)$. In particular, it holds that $\operatorname{ord}_p(a_{n_0 \cdot n}) \leq \operatorname{ord}_p(a_0)$, as desired. This completes the proof of Claim 2.2.A.

Next, let us observe that one verifies immediately from Claim 2.2.A that $|a_{n_0 \cdot n}| \leq |a_0|$ for every nonnegative integer n. Thus, since $|y|^n - |x| \leq |x - y^n| = |a_n|/|x_2 \cdot y_2^n| \leq |a_n|$, and 1 < |y|, we obtain a *contradiction*. This completes the proof of Lemma 2.2.

REMARK 2.2.1. — If, in the situation of Lemma 2.2, one omits our assumption that " $y \neq \{1, -1\}$ ", then the conclusion no longer hold. More precisely, for $x \in \mathbb{Q}^{\times}$ and $y \in \{1, -1\}$, it holds that the set " $S_{x,\langle y \rangle}$ " discussed in Lemma 2.2 is *infinite* if and only if $(x, y) \in \{(1, 1), (1, -1), (-1, -1)\}$. Indeed, the *sufficiency* is immediate. To verify the *necessity*, let us observe that since $1^2 = (-1)^2 = 1$, it holds that $x^2 \equiv 1 \pmod{p}$ for every $p \in S_{x,\langle y \rangle}$. Thus, since $S_{x,\langle y \rangle}$ " that occurs in the case where we take the "(x, y)" to be (-1, 1) coincides with $\{2\}$ [hence finite], the necessity under consideration follows.

LEMMA 2.3. — Let $x \in k^{\times}$ be an element of k^{\times} . Then it holds that $x \in \mathbb{Q}^{\times}$ if and only if $x^{\mathfrak{c}(\mathfrak{p})-1} \in 1 + \mathfrak{po}_{\mathfrak{p}}$ for all but finitely many $\mathfrak{p} \in \mathcal{V}$.

PROOF. — Let us first observe that one verifies easily that the condition that $x^{\mathfrak{c}(\mathfrak{p})-1} \in 1+\mathfrak{po}_{\mathfrak{p}}$ implies the condition that $x \in \operatorname{Ker}(\operatorname{ord}_{\mathfrak{p}})$. Thus, one verifies immediately that the condition that $x^{\mathfrak{c}(\mathfrak{p})-1} \in 1+\mathfrak{po}_{\mathfrak{p}}$ is equivalent to the condition that $x \in \operatorname{Ker}(\operatorname{ord}_{\mathfrak{p}})$, and, moreover, the image of $x \in \operatorname{Ker}(\operatorname{ord}_{\mathfrak{p}})$ in $\operatorname{Ker}(\operatorname{ord}_{\mathfrak{p}})/(1+\mathfrak{po}_{\mathfrak{p}})$ is annihilated by $\mathfrak{c}(\mathfrak{p})-1$, i.e., that the image of $x \in \operatorname{Ker}(\operatorname{ord}_{\mathfrak{p}})$ in $\operatorname{Ker}(\operatorname{ord}_{\mathfrak{p}})/(1+\mathfrak{po}_{\mathfrak{p}}) \xrightarrow{\sim} \kappa(\mathfrak{p})^{\times}$ is contained in the prime subfield [i.e., $\simeq \mathbb{Z}/\mathfrak{c}(\mathfrak{p})\mathbb{Z}$] of $\kappa(\mathfrak{p})$. Thus, Lemma 2.3 follows immediately from *Čhebotarev's density theorem*. This completes the proof of Lemma 2.3.

PROPOSITION 2.4. — Let $\phi: {}^{\circ}\mathcal{V} \to {}^{\circ}\mathcal{V}$ be a map of sets. Then the following hold:

(i) Suppose that the image of the composite ${}^{\bullet}\mathcal{V} \xrightarrow{\phi} {}^{\circ}\mathcal{V} \xrightarrow{c} \mathfrak{Primes}$ is of density one. Then the homomorphism of groups

$$\operatorname{Hom}^{\phi\operatorname{-PU}}({}^{\circ}k^{\times},{}^{\bullet}k^{\times})\longrightarrow\operatorname{Hom}^{(\mathfrak{c}\circ\phi)\operatorname{-PU}}({}^{\circ}\mathbb{Q}^{\times},{}^{\bullet}k^{\times})$$

of Lemma 1.8 is injective.

(ii) Suppose, moreover, that the image of the composite ${}^{\bullet}\mathcal{V} \xrightarrow{\phi} {}^{\circ}\mathcal{V} \xrightarrow{\circ} \mathfrak{Primes}$ is cofinite [i.e., its complement in \mathfrak{Primes} is finite]. Let ${}^{\circ}J \subseteq {}^{\circ}\mathbb{Q}^{\times}$ be an infinite subgroup of ${}^{\circ}\mathbb{Q}^{\times}$. Write $\operatorname{Hom}({}^{\circ}J, {}^{\bullet}k^{\times})$ for the [abelian] group consisting of homomorphisms of groups ${}^{\circ}J^{\times} \to {}^{\bullet}k^{\times}$. Then the homomorphism of groups

 $\operatorname{Hom}^{\phi\operatorname{-PU}}({}^{\circ}k^{\times},{}^{\bullet}k^{\times})\longrightarrow\operatorname{Hom}({}^{\circ}J,{}^{\bullet}k^{\times})$

induced by the natural inclusion $^{\circ}J \hookrightarrow ^{\circ}k^{\times}$ is injective.

(iii) The homomorphism of groups

$$\operatorname{Hom}^{\operatorname{id}_{\operatorname{\mathfrak{Primes}}}\operatorname{-PU}}(^{\circ}\mathbb{Q}^{\times}, {}^{\bullet}\mathbb{Q}^{\times}) \longrightarrow \operatorname{Hom}^{\mathfrak{c}\operatorname{-PU}}(^{\circ}\mathbb{Q}^{\times}, {}^{\bullet}k^{\times})$$

induced by the natural inclusion ${}^{\bullet}\mathbb{Q}^{\times} \hookrightarrow {}^{\bullet}k^{\times}$ is bijective.

PROOF. — First, we verify assertion (i). Let $\alpha: {}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$ be a ϕ -PU-preserving homomorphism such that $\alpha({}^{\circ}\mathbb{Q}^{\times}) = \{1\}$. To verify that $\alpha({}^{\circ}k^{\times}) = \{1\}$, let us take $x \in {}^{\circ}k^{\times}$ and ${}^{\bullet}\mathfrak{p} \in S[\phi; x]$ [cf. the notation of Lemma 2.1] that is not PU-exceptional for (α, ϕ) [cf. Definition 1.3, (i)]. Write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$ and $\alpha_{\mathfrak{p}} \colon \kappa({}^{\circ}\mathfrak{p})^{\times} \to \kappa({}^{\bullet}\mathfrak{p})^{\times}$ for the homomorphism induced by α [cf. Lemma 1.5, (i)]. Then since $\sharp\kappa({}^{\circ}\mathfrak{p}) = \mathfrak{c}({}^{\circ}\mathfrak{p})$ [cf. the definition of $S[\phi; x]$], and $\alpha({}^{\circ}\mathbb{Q}^{\times}) = \{1\}$, one verifies easily that $\alpha_{\mathfrak{p}}(\kappa({}^{\circ}\mathfrak{p})^{\times}) = \{1\}$, which thus implies that

$$\alpha(x) \pmod{\bullet \mathfrak{p}} = \alpha_{\mathfrak{p}}(x \pmod{\circ \mathfrak{p}}) = 1$$
.

Thus, by allowing ${}^{\bullet}\mathfrak{p}$ to *vary*, it follows immediately from Lemma 2.1 that $\alpha(x) = 1$. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows from assertion (i) that, to verify assertion (ii), by replacing ${}^{\circ}k$ by ${}^{\circ}\mathbb{Q}$, we may assume without loss of generality that ${}^{\circ}k = {}^{\circ}\mathbb{Q}$. Let $\alpha : {}^{\circ}k^{\times} = {}^{\circ}\mathbb{Q}^{\times} \to {}^{\bullet}k^{\times}$ be a ϕ -PU-preserving homomorphism such that $\alpha({}^{\circ}J) = \{1\}$. To verify that $\alpha({}^{\circ}k^{\times}) = \{1\}$, let us take $x \in {}^{\circ}k^{\times} = {}^{\circ}\mathbb{Q}^{\times}$ and $y \in {}^{\circ}J \setminus ({}^{\circ}J \cap \{1, -1\})$. Then let us observe that it follows immediately from Lemma 2.2, together with our assumption that the image of $\phi : {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V} = \mathfrak{Primes}$ is cofinite, that the subset $T \subseteq {}^{\bullet}\mathcal{V}$ consisting of maximal ideals ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$ of ${}^{\bullet}\mathfrak{o}$ that satisfy the following condition is infinite: If we write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p})$, then

- • \mathfrak{p} is not *PU*-exceptional for (α, ϕ) ,
- $x, y \in \text{Ker}(\text{ord}_{\circ p})$, and

• the image of x in Ker(ord_{\mathfrak{p}})/(1+ $\mathfrak{po}_{\mathfrak{p}}$) is *contained* in the subgroup of Ker(ord_{\mathfrak{p}})/(1+ $\mathfrak{po}_{\mathfrak{p}}$) generated by the image of y in Ker(ord_{\mathfrak{p}})/(1+ $\mathfrak{po}_{\mathfrak{p}}$).

Let ${}^{\bullet}\mathfrak{p} \in T$ be an element of T. Then it follows immediately from the definition of T that there exists an integer n such that $x \cdot y^n \in 1 + {}^{\circ}\mathfrak{po}_{\circ\mathfrak{p}}$. Thus, since [we have assumed that] $\alpha({}^{\circ}J) = \{1\}$, it follows that $\alpha(x) = \alpha(x \cdot y^n) \in 1 + {}^{\bullet}\mathfrak{po}_{\circ\mathfrak{p}}$. In particular, since T is *infinite*, we conclude that $\alpha(x) \in \bigcap_{\bullet\mathfrak{p}\in T}(1 + {}^{\bullet}\mathfrak{po}_{\bullet\mathfrak{p}}) = \{1\}$, i.e., $\alpha(x) = 1$. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). The *injectivity* of the homomorphism under consideration follows immediately from the *injectivity* of the natural inclusion ${}^{\circ}\mathbb{Q}^{\times} \hookrightarrow {}^{\circ}k^{\times}$. Next, to verify the *surjectivity* of the homomorphism under consideration, let us take a \mathfrak{c} -PUpreserving homomorphism $\alpha : {}^{\circ}\mathbb{Q}^{\times} \to {}^{\circ}k^{\times}$. Then it follows immediately from Lemma 2.3 that α factors through the subgroup ${}^{\circ}\mathbb{Q}^{\times} \subseteq {}^{\circ}k^{\times}$ of ${}^{\circ}k^{\times}$; thus, we obtain a homomorphism ${}^{\circ}\mathbb{Q}^{\times} \to {}^{\circ}\mathbb{Q}^{\times}$. On the other hand, since α is \mathfrak{c} -PU-preserving, one verifies immediately from Lemma 1.4 that this homomorphism ${}^{\circ}\mathbb{Q}^{\times} \to {}^{\circ}\mathbb{Q}^{\times}$ is $\mathrm{id}_{\mathfrak{Ptimes}}$ -PU-preserving. This completes the proof of assertion (iii). \Box

REMARK 2.4.1. — If, in the situation of Proposition 2.4, (ii), one replaces our assumption that " $^{\circ}J$ is *infinite*" by the assumption that " $^{\circ}J$ is *nontrivial*", then the conclusion no longer hold. Indeed, one verifies easily that the *distinct* two endomorphisms of \mathbb{Q}^{\times} obtained by mapping $x \in \mathbb{Q}^{\times}$ to $x \in \mathbb{Q}^{\times}$, $x^3 \in \mathbb{Q}^{\times}$, respectively, are *contained* in Hom^{idprimes-PU}($\mathbb{Q}^{\times}, \mathbb{Q}^{\times}$) and *coincide* on the *nontrivial* subgroup $\{1, -1\} \subseteq \mathbb{Q}^{\times}$.

THEOREM 2.5. — For $\Box \in \{\circ, \bullet\}$, let $\Box k$ be a **number field** [i.e., a finite extension of the field of rational numbers]; write $\Box \mathcal{V}$ for the set of maximal ideals of the ring of integers of $\Box k$ [i.e., the set of nonarchimedean primes of $\Box k$] and $\Box \mathbb{Q} \subseteq \Box k$ for the [uniquely determined] subfield of $\Box k$ that is isomorphic to the field of rational numbers. Let

$$\alpha \colon {}^{\circ}k^{\times} \longrightarrow {}^{\bullet}k^{\times}$$

be a homomorphism between the multiplicative groups of $^{\circ}k$, $^{\bullet}k$. Then the following conditions are equivalent:

(1) The homomorphism α arises from a homomorphism of fields ${}^{\circ}k \rightarrow {}^{\bullet}k$.

(2) The homomorphism α is **CPU-preserving** [cf. Definition 1.3, (ii)], and, moreover, there exists an $x \in \mathbb{Q}^{\times} \setminus \mathbb{Z}^{\times}$ such that the "x" in °k maps, via α , to the "x" in •k.

(3) The homomorphism α is **PU-preserving** [cf. Definition 1.3, (i)], and, moreover, the restriction ${}^{\circ}\mathbb{Q}^{\times} \to {}^{\bullet}k^{\times}$ of α to ${}^{\circ}\mathbb{Q}^{\times} \subseteq {}^{\circ}k^{\times}$ arises from a homomorphism of fields ${}^{\circ}\mathbb{Q} \to {}^{\bullet}k$.

PROOF. — The implication $(1) \Rightarrow (2)$ follows immediately from Lemma 1.4, together with the various definitions involved. Next, we verify the implication $(2) \Rightarrow (3)$. Suppose that condition (2) is satisfied. Let us first observe that it follows from Lemma 1.8 that, to verify the implication under consideration, by replacing ${}^{\circ}k$ by ${}^{\circ}\mathbb{Q}$, we may assume without loss of generality that ${}^{\circ}k = {}^{\circ}\mathbb{Q}$. Next, let us observe that it follows from Proposition 2.4, (iii), that, to verify the implication under consideration, by replacing ${}^{\bullet}k$ by ${}^{\bullet}\mathbb{Q}$, we may assume without loss of generality that ${}^{\bullet}k = {}^{\bullet}\mathbb{Q}$. Then since the isomorphism ${}^{\circ}\mathbb{Q}^{\times} \xrightarrow{\sim} {}^{\bullet}\mathbb{Q}^{\times}$ determined by the *identity automorphism* of \mathbb{Q}^{\times} is *contained* in Hom^{idprimes-PU}(${}^{\circ}\mathbb{Q}^{\times}, {}^{\bullet}\mathbb{Q}^{\times}$), the implication under consideration follows immediately from Proposition 2.4, (ii). This completes the proof of the implication (2) \Rightarrow (3).

Finally, we verify the implication $(3) \Rightarrow (1)$. Suppose that condition (3) is satisfied. Let $\phi: {}^{\circ}\mathcal{V} \rightarrow {}^{\circ}\mathcal{V}$ be such that α is ϕ -*PU*-preserving. Now let us observe that one verifies easily that, to verify the implication $(3) \Rightarrow (1)$, it suffices to verify that the following assertion holds:

Claim 2.5.A: For $x, y \in {}^{\circ}k^{\times}$, if x + y = 0 (respectively, $x + y \neq 0$), then $\alpha(x) + \alpha(y) = 0$ (respectively, $\alpha(x + y) = \alpha(x) + \alpha(y)$).

The remainder of the proof of the implication $(3) \Rightarrow (1)$ is devoted to verifying Claim 2.5.A.

Now let us observe that since the restriction $\alpha|_{\circ \mathbb{Q}^{\times}} : \circ \mathbb{Q}^{\times} \to \bullet k^{\times}$ arises from a homomorphism of fields $\circ \mathbb{Q} \to \bullet k$, one verifies easily that the "-1" in $\circ k^{\times}$ maps, via α , to the "-1" in $\bullet k^{\times}$; in particular, if x + y = 0 [i.e., y = -x], then $\alpha(x) + \alpha(y) = 0$ [i.e., $\alpha(y) = -\alpha(x)$]. Thus, we may assume without loss of generality that $x + y \neq 0$. Then, to complete the verification of Claim 2.5.A, I claim that the following assertion holds:

Claim 2.5.B: Let ${}^{\bullet}\mathfrak{p} \in S[\phi; x, y, x + y]$ [cf. the notation of Lemma 2.1] be such that ${}^{\bullet}\mathfrak{p}$ is not *PU*-exceptional for (α, ϕ) [cf. Definition 1.3, (i)]. Then it holds that

$$\alpha(x+y) \pmod{1+{}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\bullet}} = \alpha(x) + \alpha(y) \pmod{1+{}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\bullet}}$$

Indeed, write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\circ}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$. Then let us observe that since $\sharp \kappa({}^{\circ}\mathfrak{p}) = \mathfrak{c}({}^{\circ}\mathfrak{p})$, there exist $x_{\mathbb{Q}}, y_{\mathbb{Q}} \in {}^{\circ}\mathbb{Q}^{\times}$ such that $x_{\mathbb{Q}}, y_{\mathbb{Q}}, x_{\mathbb{Q}} + y_{\mathbb{Q}} \in \text{Ker}(\text{ord}_{{}^{\circ}\mathfrak{p}})$, and, moreover, the images of $x_{\mathbb{Q}}, y_{\mathbb{Q}}$ in $\text{Ker}(\text{ord}_{{}^{\circ}\mathfrak{p}})/(1 + {}^{\circ}\mathfrak{p}^{\circ}\mathfrak{o}_{{}^{\circ}\mathfrak{p}})$ coincide with the images of x, y in $\text{Ker}(\text{ord}_{{}^{\circ}\mathfrak{p}})/(1 + {}^{\circ}\mathfrak{p}^{\circ}\mathfrak{o}_{{}^{\circ}\mathfrak{p}})$, respectively. Thus, the following equalities hold:

$$\begin{aligned} \alpha(x+y) \pmod{1+{}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\bullet_{\mathfrak{p}}}} &= \alpha_{\mathfrak{p}}(x+y \pmod{1+{}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ_{\mathfrak{p}}}})) \\ &= \alpha_{\mathfrak{p}}(x_{\mathbb{Q}} + y_{\mathbb{Q}} \pmod{1+{}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ_{\mathfrak{p}}}})) \\ &= \alpha(x_{\mathbb{Q}} + y_{\mathbb{Q}}) \pmod{1+{}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\bullet_{\mathfrak{p}}}} \\ &= \alpha(x_{\mathbb{Q}}) + \alpha(y_{\mathbb{Q}}) \pmod{1+{}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\bullet_{\mathfrak{p}}}}) \\ &= \alpha_{\mathfrak{p}}(x_{\mathbb{Q}} \pmod{1+{}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ_{\mathfrak{p}}}}) + \alpha_{\mathfrak{p}}(y_{\mathbb{Q}} \pmod{1+{}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ_{\mathfrak{p}}}})) \\ &= \alpha_{\mathfrak{p}}(x \pmod{1+{}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ_{\mathfrak{p}}}}) + \alpha_{\mathfrak{p}}(y \pmod{1+{}^{\circ}\mathfrak{p}{}^{\circ}\mathfrak{o}_{\circ_{\mathfrak{p}}}})) \\ &= \alpha(x) \pmod{1+{}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\bullet_{\mathfrak{p}}}} + \alpha(y) \pmod{1+{}^{\bullet}\mathfrak{p}{}^{\bullet}\mathfrak{o}_{\bullet_{\mathfrak{p}}}} \end{aligned}$$

— where we write $\alpha_{\mathfrak{p}} \colon \kappa({}^{\circ}\mathfrak{p})^{\times} \to \kappa({}^{\bullet}\mathfrak{p})^{\times}$ for the homomorphism induced by α [cf. Lemma 1.5, (i)]; the first, third, fifth, and seventh equalities follow immediately from the definition of $\alpha_{\mathfrak{p}}$; the second and sixth equalities follow immediately from the choices of $x_{\mathbb{Q}}, y_{\mathbb{Q}}$; the fourth equality follows immediately from our assumption that $\alpha|_{\circ\mathbb{Q}^{\times}}$ arises from a *homomorphism of fields* ${}^{\circ}\mathbb{Q} \to {}^{\bullet}k$; the eighth equality follows immediately from the various definitions involved. This completes the proof of Claim 2.5.B.

Thus, by allowing ${}^{\bullet}\mathfrak{p}$ to *vary*, it follows immediately from Claim 2.5.B, together with Lemma 2.1, that Claim 2.5.A holds. This completes the proof of Claim 2.5.A, hence also of the implication (3) \Rightarrow (1).

REMARK 2.5.1. — If, in the situation of Theorem 2.5, one replaces " $\mathbb{Q}^{\times} \setminus \mathbb{Z}^{\times}$ " in condition (2) by either " \mathbb{Q}^{\times} " or " $\mathbb{Q}^{\times} \setminus \{1\}$ ", then the conclusion no longer hold. Indeed, one verifies easily that the automorphism of \mathbb{Q}^{\times} obtained by mapping $x \in \mathbb{Q}^{\times}$ to $x^{-1} \in \mathbb{Q}^{\times}$ is *CPU*-preserving, maps $-1 \in \mathbb{Q}^{\times}$ to $-1 \in \mathbb{Q}^{\times}$, but does not arise from a homomorphism of fields $\mathbb{Q} \to \mathbb{Q}$.

3. Uchida's Lemma for Number Fields

In the present §3, we prove analogues of *Uchida's lemma* reviewed in Introduction for *number fields* [cf. Theorem 3.1; Corollary 3.3 below].

THEOREM 3.1. — For $\Box \in \{\circ, \bullet\}$, let $\Box k$ be a **number field** [i.e., a finite extension of the field of rational numbers]; write $\Box o \subseteq \Box k$ for the ring of integers of $\Box k$ and $\Box V$ for the set of maximal ideals of $\Box o$ [i.e., the set of nonarchimedean primes of $\Box k$]. Write \mathfrak{Primes} for the set of all prime numbers. Let

$$\alpha \colon {}^{\circ}k^{\times} \longrightarrow {}^{\bullet}k^{\times}$$

be a homomorphism between the multiplicative groups of $^{\circ}k$, $^{\bullet}k$. Then the following conditions are equivalent:

(1) The homomorphism α arises from a homomorphism of fields ${}^{\circ}k \to {}^{\bullet}k$.

(2) There exists a map $\phi: {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$ over \mathfrak{Primes} [relative to, for each $\Box \in \{\circ, \bullet\}$, the map $\Box \mathcal{V} \to \mathfrak{Primes}$ obtained by mapping $\Box \mathfrak{p} \in \Box \mathcal{V}$ to the residue characteristic of $\Box \mathfrak{p}$ such that, for ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$, if we write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$, then the following hold:

(a) For $\Box \in \{\circ, \bullet\}$, if we write $\operatorname{ord}_{\Box_p} : \Box k^{\times} \twoheadrightarrow \mathbb{Z}$ for the [uniquely determined] surjective valuation of $\Box k$ associated to $\Box \mathfrak{p}$, then it holds that

$$\operatorname{ord}_{\circ\mathfrak{p}} = \operatorname{ord}_{\mathfrak{s}} \circ \alpha$$

for infinitely many ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$.

(b) For $\Box \in \{\circ, \bullet\}$, if we write $\Box \mathfrak{o}_{\Box \mathfrak{p}} \subseteq \Box k$ for the localization of $\Box \mathfrak{o}$ at the maximal ideal $\Box \mathfrak{p} \subset \Box \mathfrak{o}$, then it holds that

$$1 + {}^{\circ}\mathfrak{p}^{\circ}\mathfrak{o}_{\circ\mathfrak{p}} \subseteq \alpha^{-1}(1 + {}^{\bullet}\mathfrak{p}^{\bullet}\mathfrak{o}_{\bullet\mathfrak{p}})$$

for all but finitely many $\bullet \mathfrak{p} \in \bullet \mathcal{V}$.

PROOF. — The implication $(1) \Rightarrow (2)$ follows immediately from Lemma 1.4, together with the well-known fact that the finite extension $k/^{\circ}k$ [determined by the homomorphism of fields ${}^{\circ}k \rightarrow {}^{\bullet}k$] is unramified at all but finitely many nonarchimedean primes. Next, we verify the implication $(2) \Rightarrow (1)$. Suppose that condition (2) is satisfied. Now since α is *CPU-preserving* [cf. conditions (b)], it follows from the equivalence (1) \Leftrightarrow (2) of Theorem 2.5 that, to verify the implication $(2) \Rightarrow (1)$, it suffices to verify that the following assertion holds:

Claim 3.1.A: There exists an $x \in \mathbb{Q}^{\times} \setminus \mathbb{Z}^{\times}$ such that the "x" in k maps, via α , to the "x" in •k.

The remainder of the proof of the implication $(2) \Rightarrow (1)$ is devoted to verifying Claim 3.1.A.

Now let us observe that since α is *CPU-preserving* [cf. condition (b)], it follows immediately from Lemma 1.8, together with the well-known fact that the finite extension $^{\circ}k/^{\circ}\mathbb{Q}$ is unramified at all but finitely many nonarchimedean primes, that, to verify Claim 3.1.A, by replacing $^{\circ}k$ by $^{\circ}\mathbb{Q}$, we may assume without loss of generality that $^{\circ}k = ^{\circ}\mathbb{Q}$. Next, let us observe that again by the fact that α is *CPU-preserving* [cf. condition (b)], it follows immediately from Proposition 2.4, (iii), that, by replacing $\bullet k$ by $\bullet \mathbb{Q}$, we may assume without loss of generality that $\bullet k = \bullet \mathbb{Q}$. In particular, one verifies immediately from Remark 1.1.1 that ϕ is the *identity automorphism* of **Primes**.

Let $S_{(b)} \subseteq \mathfrak{Primes}$ be a *cofinite* [i.e., its complement in \mathfrak{Primes} is *finite*] subset of \mathfrak{Primes} such that the displayed inclusion of condition (b) for ${}^{\bullet}\mathfrak{p} \in S_{(b)} \subseteq \mathfrak{Primes} = {}^{\bullet}\mathcal{V}$ holds and $S_{(a),(b)} \subseteq S_{(b)}$ an *infinite* subset of $S_{(b)}$ such that the displayed equality of condition (a) for $\bullet \mathfrak{p} \in S_{(a),(b)} \subseteq \mathfrak{Primes} = \bullet \mathcal{V}$ holds. Then it follows immediately from Lemma 1.5, (i), that, for each ${}^{\bullet}\mathfrak{p} \in S_{(b)}$, there exists a [uniquely determined] [not necessarily positive] integer $n_{\bullet,\mathfrak{p}}$ such that the equality

$$n_{\bullet,\mathfrak{p}} \cdot \operatorname{ord}_{\circ,\mathfrak{p}} = \operatorname{ord}_{\bullet,\mathfrak{p}} \circ \alpha$$

holds. [Thus, if ${}^{\bullet}\mathfrak{p} \in S_{(a),(b)}$, then $n_{{}^{\bullet}\mathfrak{p}} = 1$.] For $\Box \in \{\circ, \bullet\}$ and ${}^{\Box}\mathfrak{p} \in {}^{\Box}\mathcal{V}$, write $J_{\Box_{\mathfrak{p}}} (\simeq \mathbb{Z}) \subseteq {}^{\Box}k^{\times}$ for the subgroup of ${}^{\Box}k^{\times}$ generated by the [element of $\Box k^{\times} = \Box \mathbb{Q}^{\times}$ corresponding to the] residue characteristic $\mathfrak{c}(\Box \mathfrak{p})$ of $\Box \mathfrak{p}$ [i.e., $J_{\Box_{\mathfrak{p}}} = \text{``}\mathfrak{c}(\Box_{\mathfrak{p}})^{\mathbb{Z}^{"}}$]. Then one verifies easily that the various inclusions $J_{\Box_{\mathfrak{p}}} \hookrightarrow \Box_{k^{\times}}$ and

the inclusion $\Box k_{\text{tor}}^{\times} \hookrightarrow \Box k^{\times}$ [where we write $\Box k_{\text{tor}}^{\times} \subseteq \Box k^{\times}$ for the maximal torsion subgroup of $\Box k^{\times}$, i.e., $\Box k^{\times} = "\{1, -1\}"$] determine an isomorphism of abelian groups

$${}^{\Box}k_{\mathrm{tor}}^{\times} \oplus \left(\bigoplus_{\Box_{\mathfrak{p}} \in \Box_{\mathcal{V}}} J_{\Box_{\mathfrak{p}}}\right) \xrightarrow{\sim} {}^{\Box}k^{\times}$$

Write $\beta: {}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$ for the homomorphism defined as follows [cf. the above displayed isomorphism]:

- β maps the "-1" in ${}^{\circ}k^{\times}$ to the "-1" in ${}^{\bullet}k^{\times}$.
- If ${}^{\bullet}\mathfrak{p} \notin S_{(b)}$, then β maps the " $\mathfrak{c}(\phi({}^{\circ}\mathfrak{p}))$ " in ${}^{\circ}k^{\times}$ to the " $\mathfrak{c}({}^{\bullet}\mathfrak{p})$ " in ${}^{\bullet}k^{\times}$.

• If $\bullet \mathfrak{p} \in S_{(b)}$, then β maps the " $\mathfrak{c}(\phi(\circ \mathfrak{p}))$ " in $\circ k^{\times}$ to the " $\mathfrak{c}(\bullet \mathfrak{p})^{n \bullet_{\mathfrak{p}}}$ " in $\bullet k^{\times}$ [where we refer to the discussion at the final portion of the preceding paragraph concerning " $n \bullet_{\mathfrak{p}}$ "].

Write, moreover, $\gamma \stackrel{\text{def}}{=} \alpha \cdot \beta^{-1} \colon {}^{\circ}k^{\times} \to {}^{\bullet}k^{\times}$ for the product of α and β^{-1} . Then one verifies immediately from the definition of β , together with the various definitions involved, that

(i) the composite

$${}^{\circ}k^{\times} \xrightarrow{\gamma} {}^{\bullet}k^{\times} \xrightarrow{\bigoplus_{{}^{\mathfrak{o}} {}^{\mathfrak{o}} } \bigoplus_{{}^{\bullet} {}^{\mathfrak{p}} {}^{\in} S_{(\mathrm{b})}} \mathbb{Z}$$

is trivial, i.e., the homomorphism γ factors through the kernel ${}^{\bullet}k_{tor}^{\times} \oplus \left(\bigoplus_{\bullet_{\mathfrak{p}\notin S_{(b)}}} J_{\bullet_{\mathfrak{p}}}\right) \subseteq {}^{\bullet}k^{\times}$ of $\bigoplus_{\bullet_{\mathfrak{p}\in S_{(b)}}} \operatorname{ord}_{\bullet_{\mathfrak{p}}}$, and, moreover,

(ii) the kernel $\operatorname{Ker}(\gamma) \subseteq {}^{\circ}k^{\times}$ of γ coincides with the subgroup of ${}^{\circ}k^{\times}$ consisting of elements $x \in {}^{\circ}k^{\times}$ such that $\alpha(x) = \beta(x)$.

Now let us observe that the kernel ${}^{\bullet}k_{tor}^{\times} \oplus \left(\bigoplus_{{}^{\bullet}\mathfrak{p}\notin S_{(b)}} J_{{}^{\bullet}\mathfrak{p}}\right) \subseteq {}^{\bullet}k^{\times}$ discussed in (i) is of *finite rank*, and $S_{(a),(b)}$ is *infinite*. Thus, by considering the composite of the natural inclusion $\bigoplus_{{}^{\bullet}\mathfrak{p}\in S_{(a)},(b)} J_{\phi({}^{\bullet}\mathfrak{p})} \hookrightarrow {}^{\circ}k^{\times}$ and the homomorphism γ , we conclude from (i), (ii), together with the various definitions involved, that there exists a *nontorsion* element $x \in (\bigoplus_{{}^{\bullet}\mathfrak{p}\in S_{(a)},(b)} J_{\phi({}^{\bullet}\mathfrak{p})} \subseteq) {}^{\circ}k^{\times}$ such that $\alpha(x) = x$. This completes the proof of Claim 3.1.A, hence also of Theorem 3.1.

COROLLARY 3.2. — For $\Box \in \{\circ, \bullet\}$, let $\Box k$ be a number field [i.e., a finite extension of the field of rational numbers]. Let

$$\alpha \colon {}^{\circ}k^{\times} \twoheadrightarrow {}^{\bullet}k^{\times}$$

be a surjection between the multiplicative groups of ${}^{\circ}k$, ${}^{\bullet}k$. Then it holds that either α or the composite $(-)^{-1} \circ \alpha$ [i.e., the surjection ${}^{\circ}k^{\times} \rightarrow {}^{\bullet}k^{\times}$ obtained by mapping $x \in {}^{\circ}k^{\times}$ to $\alpha(x)^{-1} \in {}^{\bullet}k^{\times}$] arises from an isomorphism of fields ${}^{\circ}k \rightarrow {}^{\bullet}k$ if and only if the surjection α is SPU-preserving [cf. Definition 1.3, (i)].

PROOF. — The necessity follows from Lemma 1.4. Next, we verify the sufficiency. Suppose that α is SPU-preserving. Then one verifies immediately from Lemma 1.5, (ii), that either α or the composite $(-)^{-1} \circ \alpha$ satisfies condition (2) of the statement of Theorem 3.1. In particular, the sufficiency under consideration follows from Theorem 3.1. This completes the proof of Corollary 3.2. **COROLLARY 3.3.** — For $\Box \in \{\circ, \bullet\}$, let $\Box k$ be a number field [i.e., a finite extension of the field of rational numbers]; write $\Box \mathfrak{o} \subseteq \Box k$ for the ring of integers of $\Box k$ and $\Box \mathcal{V}$ for the set of maximal ideals of $\Box \mathfrak{o}$ [i.e., the set of nonarchimedean primes of $\Box k$]. Let

 $\alpha \colon {}^{\circ}k^{\times} \twoheadrightarrow {}^{\bullet}k^{\times}$

be a surjection between the multiplicative groups of $^{\circ}k$, $^{\bullet}k$. Then the following conditions are equivalent:

(1) The surjection α arises from an isomorphism of fields ${}^{\circ}k \xrightarrow{\sim} {}^{\bullet}k$.

(2) There exists a map $\phi \colon {}^{\bullet}\mathcal{V} \to {}^{\circ}\mathcal{V}$ such that, for ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$, if we write ${}^{\circ}\mathfrak{p} \stackrel{\text{def}}{=} \phi({}^{\bullet}\mathfrak{p}) \in {}^{\circ}\mathcal{V}$, then the following hold:

(a) For $\Box \in \{\circ, \bullet\}$, if we write $\operatorname{ord}_{\Box_{\mathfrak{p}}} : \Box k^{\times} \twoheadrightarrow \mathbb{Z}$ for the [uniquely determined] surjective valuation of $\Box k$ associated to $\Box_{\mathfrak{p}}$, then there exist a maximal ideal $\bullet_{\mathfrak{p}} \in \bullet_{\mathcal{V}}$ of $\bullet_{\mathfrak{o}}$ and a positive integer n such that

$$n \cdot \operatorname{ord}_{\circ \mathfrak{p}} = \operatorname{ord}_{\bullet \mathfrak{p}} \circ \alpha$$
.

(b) For $\Box \in \{\circ, \bullet\}$, if we write $\Box \mathfrak{o}_{\Box \mathfrak{p}}$ for the localization of $\Box \mathfrak{o}$ at the maximal ideal $\Box \mathfrak{p} \subseteq \Box \mathfrak{o}$, then it holds that

$$1 + {}^{\circ}\mathfrak{p}^{\circ}\mathfrak{o}_{\circ\mathfrak{p}} = \alpha^{-1}(1 + {}^{\bullet}\mathfrak{p}^{\bullet}\mathfrak{o}_{\bullet\mathfrak{p}})$$

for all but finitely many ${}^{\bullet}\mathfrak{p} \in {}^{\bullet}\mathcal{V}$.

PROOF. — This follows immediately from Corollary 3.2, together with the various definitions involved. $\hfill \Box$

References

- S. Mochizuki, Topics in Absolute Anabelian Geometry III: Global Reconstruction Algorithms, RIMS Preprint 1626 (March 2008).
- [2] P. Moree and P. Stevenhagen, A two-variable Artin conjecture, J. Number Theory 85 (2000), 291-304.
- [3] A. Tamagawa, The Grothendieck conjecture for affine curves, Compositio Math. 109 (1997), 135-194.
- [4] K. Uchida, Isomorphisms of Galois groups of algebraic function fields, Ann. of Math. 106 (1977), 589-598.

(Yuichiro Hoshi) RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN

E-mail address: yuichiro@kurims.kyoto-u.ac.jp