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—Abstract—

Turbulence is a ‘disordered’ state of fluid motion but shows robust and
universal statistical properties including Kolmogorov -5/3 law and Prandtl
logarithmic law, which we can observe in laboratory experiments, numerical
experiments, and observations. It is important for a wide range of sciences
and engineering to understand mechanisms of turbulence which produce such
robust statistical properties. However, at present, our understanding is far
from complete.

Turbulence can be interpreted as a chaotic dynamical system and this
point of view is expected to provide a broader perspective to understand
turbulence. In this thesis, we focus our attention on an orbital instability
which is one of the important properties of chaos. Particularly, we employ
covariant Lyapunov analysis recently developed by Ginelli et al. (2007),
which gives Lyapunov vectors associated with Lyapunov exponents.

First of all, we study the orbital instability of chaotic Kolmogorov flows.
Kolmogorov flow is a fluid flow on a two-dimensional torus governed by the
incompressible Navier-Stokes equation and its bifurcation and stability have
been under intense study (Okamoto, 1998). We study relations between
hyperbolic property and physical property of the chaotic Kolmogorov flow.
Hyperbolicity is one of the fundamental properties of dynamical systems
related to the orbital instability. Recently, hyperbolicity of the chaotic Kol-
mogorov flow was studied by employing the covariant Lyapunov analysis,
where the hyperbolic-nonhyperbolic transition was observed as the Reynolds
number is increased (Inubushi et al., 2012). Here, our interest lies in relations
between the hyperbolic properties and physical properties of fluid motions.
We study correlation decay of vorticity at several Reynolds numbers across
the hyperbolic-nonhyperbolic transition point. We find that an oscillation
in time-correlation function vanishes at the transition point. Furthermore,
examining the energy dissipation rate and the angle between the stable and
unstable manifolds θ, we show that the angle θ tends to be small when the
energy dissipation rate is large in a statistical sense.

Next, we study the orbital instability of Couette turbulence. Couette
turbulence is fluid turbulence between moving walls governed by the three-
dimensional incompressible Navier-Stokes equation, often being studied with
interests in the transition to turbulence and coherent structures in turbu-
lence. Particularly we examine regeneration cycles which are important phe-
nomenon observed in a wide variety of wall-turbulence including the Couette
turbulence. The regeneration cycle is consisting of breakdown (in the first
half period of the cycle) and reformation (in the last half period of the cy-
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cle) of streaks which are well-known coherent structures. Here, a goal of this
study is to characterize the regeneration cycle with the orbital instability
by employing the covariant Lyapunov analysis. Firstly, we present the Lya-
punov spectrum of the Couette turbulence, and we discuss the dimension of
unstable manifold, the dimension of the attractor, and the Kolmogorov-Sinai
entropy. To see the orbital instability of the regeneration cycle in more de-
tail, we study the local Lyapunov exponents and the associated Lyapunov
modes. With these quantities, we find that (1) at the breakdown of the
streaks, the Lyapunov modes indicate a sinuous instability which makes the
streaks meander, (2) when the streamwise vorticity is highly localized, the
local Lyapunov exponents appear to attain their maxima in the regeneration
cycle, and (3) the local Lyapunov exponents decrease rapidly and become
negative after the localization of the streamwise vorticity. These results sug-
gest that the ‘most unstable’ instability during the regeneration cycle is the
instability associated with the strong localization of the streamwise vorticity
rather than the sinuous instability. Also, instabilities are found only in a
very early stage of the cycle and after that there are no exponential instabil-
ity at all. Finally, we reconsider the regeneration cycle from the viewpoint
of the orbital instability. There, we argue the physical mechanisms of the
streak meandering (breakdown) and the localization of the streamwise vor-
ticity, which can be characterized by the Lyapunov modes. Then, examining
the evolution equation of the modal energy, we discuss the mechanism of
the streak reformation which closes the cycle. We find that the streaks are
reformed by interactions with mean flows and furthermore the energy is in-
jected into a ‘streak mode’ from the mean flows almost constantly throughout
the regeneration cycle. There, a natural question arises : what controls the
development of the streaks (i.e. the regeneration cycle)? Finding an answer
to the question, we study the energy flows in the system during the regener-
ation cycle in detail and detect an interaction between the streak mode and
a ‘meandering mode’ that controls the regeneration cycle.
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Chapter 1

Introduction

Turbulence as a chaotic dynamical system.— Is dynamical system the-
ory useful to understand turbulence? Turbulence is a ‘disordered’ state of
fluid motion but shows robust and universal statistical properties including
Kolmogorov -5/3 law in energy spectra of isotropic homogeneous turbulence
and the Prandtl logarithmic law in mean velocity profiles of wall turbulence.
We can observe such statistical properties in laboratory experiments, numer-
ical experiments, and observations. These properties appear to be indepen-
dent of the details of the system such as the way of excitation of turbulence
and the boundary condition [1, 2]. It is important to understand turbulence
mechanisms of producing such robust statistical properties for a wide range
of sciences and engineering field. However, at present, our understanding is
far from complete.

Dynamical system theory gives general concepts to study asymptotic
states of a dynamical system, and gives tools to quantify the degree of ‘dis-
order’ of the states [3, 4]. From this point of view, the theory is expected to
provide a broader perspective to understand turbulence, where we consider
turbulence as a state point on a chaotic attractor in a phase space and gain
new insights into turbulence by using such concepts and tools as bifurca-
tions, periodic orbits, Lyapunov exponents and so on [5]. At the same time,
understanding of the turbulence at this viewpoint may provide an impor-
tant bridge between fluid system and high-dimensional dynamical systems in
other fields.

One of the pioneer works on turbulence from a mathematical standpoint
was done by Ruelle and Takens [6]. They considered definition of turbu-
lence by discussing bifurcations of a (quasi-)periodic orbit and showed1that

1See Proposition (9.2) in [6].
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1 Introduction

a chaotic attractor appears by adding an arbitrary small perturbation to a
quasi-periodic system2. Then, they proposed an idea that turbulence can be
described in terms of a chaotic attractor rather than a quasi-periodic attrac-
tor with a large number of (rationally independent) frequencies as proposed
by Landau [10]3. This idea has been verified both experimentally and nu-
merically in many studies. For instance, Gollub and Swinney [12] examined
bifurcations in a rotating fluid in detail by employing power spectra, and
demonstrated that the onset of turbulence is consistent not with the Lan-
dau picture but with Ruelle and Takens picture. Nowadays, most of the
researchers have reached a consensus, following Ruelle and Takens idea, and
there are many studies on turbulence considering it as a chaotic attractor4.

Chaos is often characterized by the following concepts: denseness of un-
stable periodic orbits (UPOs) and orbital instability (cf. Devaney’s definition
of chaos5). Considering turbulence as chaos, invariant solutions including
UPOs and orbital instability of the Navier-Stoles equation are important,
and they have been studied numerically with an increase in computing power.

Invariant solutions within turbulence.— A number of the invariant so-
lutions of the Navier-Stoles equation, numerically discovered recently, such
as steady solutions, traveling wave solutions, and periodic solutions, are use-
ful for understanding bifurcations of solutions, global structures of the phase
space, and statistical properties of turbulence. Okamoto [17] studied bifur-
cations of Kolmogorov flow (see chapter 5 in [18] and chapter 2 in this thesis)
and considered singular-limit flows in association with turbulence. Schneider

2In addition to this scenario (Ruelle-Takens scenario), we now know that there are
some scenarios leading to chaotic attractor (route to chaos) : Feigenbaum scenario through
period doubling and Pomeau-Manneville scenario through intermittency. See Eckmann [7]
and Ott [8] for details. Inubushi et al. [9] studied Kolmogorov flow and found that chaotic
fluid motion appears with Pomeau-Manneville scenario, in particular Type-I intermittency
(see appendix A.1).

3See [11] for a description of view of turbulence at that time.
4In this thesis, we refer to fluid turbulence as ‘turbulence’, although sometimes the term

‘turbulence’ is used to describe disordered state found in general dynamical systems, in-
cluding coupled map lattices, Kuramoto-Sivashinsky equation, complex Ginzburg-Landau
equation, and so on [13].

5Roughly speaking, dynamical system f on an invariant set V is called to be chaotic
in Devaney’s sense if (1) f is transitive, (2) periodic points of f are dense in V , and (3) f
has sensitive dependence on initial condition (see p.50 in [14]). However, now it is known
that these conditions are not isolated, i.e. the condition (3) is followed by the conditions
(1) and (2) [15]. Here we refer to the condition (3) as orbital instability. See §2.3 in Oono
[16] for the definition of chaos from an interesting perspective.
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et al. [19] found spatially localized solutions in Couette flow (see chapter
3) and argued a ‘snakes-and-ladders’ structure in their bifurcation diagram.
On global structures in the phase space, invariant solutions play important
roles in understanding of transition to shear turbulence, where a stable man-
ifold of an invariant solution (‘lower branch solution’ or a ‘gentle’ UPO) is
considered as a separatrix between basin of attraction of laminar flow and
that of turbulent flow (see Itano and Toh [21], Waleffe [20], and Kawahara
[22]). Halcrow et al. [23] showed several heteroclinic connections between
these invariant solutions and discussed changes of coherent structures along
the heteroclinic connections. In a relation with statistical properties of tur-
bulence, a concept and a method of a cycle expansion are significant, by
which we can calculate statistical quantities of turbulence in principle if the
attractor of the turbulence is hyperbolic (see chapter 2) and we have some
knowledge of the attractor (e.g. Floquet exponents of UPOs embedded in the
attractor. see Cvitanovic [24]). Although the cycle expansion provides the
statistical quantities by an infinite weighted sum of information of UPOs,
Kawahara and Kida [25] found that statistical quantities such as a mean
velocity profile and root mean square velocity profiles can be well approxi-
mated by a single UPO with low period embedded in Couette turbulence6.
van Veen and Kawahara [26] recently computed homoclinic orbit to a time-
periodic edge state (the gentle UPO) in Couette turbulence. They showed
that the homoclinic orbit is related to bursting events in both spatiotemporal
and statistical senses. Kato and Yamada [27] found a UPO in a shell model7

of three-dimensional turbulence (GOY model8), which reproduces not only
the Kolmogorov -5/3 law but also interimttency observed in turbulence, and
suggested that averaged properties on the attractor can be described by the
UPO as far as lower-order quantities are concerned. These findings on the
invariant solutions make us realize fundamental questions and offer intrigu-
ing hints for understanding of turbulence.

Orbital instability.— In contrast to invariant solutions of the Navier-
Stokes equation, which is actively investigated as seen above and reviewed by
Kawahara [29], chaotic properties of the Navier-Stokes turbulence itself (e.g.

6Why can a single UPO with low period give an good approximation to the statistical
properties of the turbulence? Saiki and Yamada [28] argued this fundamental and intrigu-
ing question by studying the statistical properties of more than 1000 UPOs and those of
chaotic orbits in low-dimensional dynamical systems.

7They referred to this UPO as ‘intermittency solution’ [27].
8Gledzer-Ohkitani-Yamada model.
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1 Introduction

Fig. 1.1: Illustration of an orbit in a phase space. Red (u
(1)
0 ) and blue (u

(m)
0 )

arrows denote Lyapunov vectors associated with the Lyapunov exponents
λ1(> 0) and λm(< 0) respectively. u

(1)
0 indicates unstable direction and u

(m)
0

indicates stable direction along the orbit.

the properties of the orbital instability) appear to be attracting less interest
in spite of their importance. One of the fundamental quantities characteriz-
ing the orbital instability is Lyapunov (or characteristic) exponents and their
associated vectors (Lyapunov vectors). Considering a dynamical system de-
fined by a map f : Rm → Rm (equipped with some norm || · ||), we write
time evolution of a state point in a phase space xn ∈ Rm as xn+1 = f(xn).

An infinitesimal perturbation vectors (tangent vectors) u
(j)
n (j = 1, 2, · · · ,m)

added to the state point xn evolves, obeying the linearized equation:

u(j)
n = Dfxn−1

u
(j)
n−1, (1.1)

where Dfxn
is a m×m Jacobian matrix. By using the chain rule of differ-

entiation, we write

u(j)
n = Dfxn−1

u
(j)
n−1 = Dfxn−1

Dfxn−2
· · ·Dfx0

u
(j)
0 = Dfnu

(j)
0 . (1.2)

where u
(j)
0 denotes an initial perturbation vector at an initial point x0. Then

j-th Lyapunov exponent λj (λ1 ≥ λ2 ≥ · · · ≥ λm) is defined as

±λj = lim
n→±∞

1

|n|
ln ||Dfnu

(j)
0 ||, (1.3)

and the associated j-th Lyapunov vector at xn is defined as u
(j)
n . The set of

Lyapunov exponents {λ1, λ2, · · · , λm} are referred to as Lyapunov spectrum.
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In physical systems, such as a system describing turbulence, the Lyapunov
exponents are considered to be independent of the choice of the initial point9

x0. The Lyapunov exponent λj quantifies an exponential growth (or decay)
rate of the norm of the perturbation added to the orbit, and correspondingly,
the Lyapunov vector points to the direction of the perturbation vector (see
Fig.1.1). Once we obtain the Lyapunov exponents λj (j = 1, 2, · · · ,m), we
can calculate also attractor dimension DL (Lyapunov dimension) through
Kaplan-Yorke formula : DL = K + 1

|λK+1|
∑K

j=1 λj where K is the largest in-

teger such that
∑K

j=1 λj ≥ 0 and Kolmogorov-Sinai (or metric) entropy hKS
through Pesin identity : hKS =

∑
λj>0 λj [5, 8]. To Study the instability of

the dynamics in more detail, local (or finite-time) Lyapunov exponents are

sometimes useful, which is defined as λ̃j(k, s) =
1
|k| ln ||Df ku

(j)
s ||. The local

Lyapunov exponents λ̃j(k, s) depend on state point xs and ‘local mean time’
k, which captures local orbital instabilities (see chapter 3). A numerical
algorithm to compute Lyapunov exponents was first proposed by Shimada
and Nagashima [30], who employed Gram-Schmidt orthogonalization of the
tangent vectors. The orthogonalized tangent vectors obtained by the algo-
rithm are referred to as Gram-Schmidt vectors. Note that the Gram-Schmidt
vectors differ from Lyapunov vectors in general except the Lyapunov vector
associated with the largest Lyapunov exponent λ1.

Characterization of turbulene with orbital instability.— Using this
algorithm for GOY model, Yamada and Ohkitani [32] obtained an asymp-
totic scaling law of the Lyapunov spectrum by using the Kolmogorov scal-
ing theory. Karimi and Paul [33] characterized Rayleigh-Bénard convection
with the Lyapunov vector associated with the largest Lyapunov exponent.
They demonstrated statistically that a transition from ‘boundary-dominated’
dynamics to ‘bulk-dominated’ dynamics occurs when the system size is in-
creased. Keefe et al. [34] calculated the Lyapunov spectrum of turbulent
Poiseuille flow at Reynolds number Re = 3200 and found that the dimen-
sion of the attractor is ‘dauntingly high’, estimating the attractor dimension
DL ≃ 780 by using Lyapunov spectra. Recently, Nikitin [35] studied the

9Given some ergodic invariant measure ρ, the limit (1.3) exists for ρ-almost all x0 in
a great generality (multiplicative ergodic theorem). See §9 in Ruelle [5] for more precise
statements. Recently, Ott and Yorke [31] constructed two dynamical systems on R2 and
showed that in these dynamical systems the Lyapunov exponent does not exist when we
choose x0 in the basin that is not on the attractor. However, as mentioned in their paper,
the flows defined by these dynamical systems are not generic in the space of smooth flows
on R2 and far from physical systems.

5



1 Introduction

largest Lyapunov exponent λ1 of turbulent flows in a circular tube and in a
plane channel over a range of Reynolds number 4000 ≤ Re ≤ 10700 (140 ≤
Reτ ≤ 320) and showed that the largest Lyapunov exponent normalized by
the ‘wall time scale’10 appears to be a constant value independent of the
Reynolds number and the type of the wall turbulence. While these findings
on the statistical quantities are important for understanding of the chaotic
properties of the turbulence, it is also expected to use the Lyapunov analysis
to elucidate the dynamics of turbulence (e.g. regeneration cycle of wall tur-
bulence. See chapter 3). However it remains out of reach.

Covariant Lyapunov analysis.— As well as Lyapunov exponents, Lya-
punov vectors may possess essential information of turbulent dynamics since
they point to unstable directions of an orbit which indicate instability mecha-
nisms to generate the turbulence. Although the conventional Lyapunov anal-
ysis employing numerical algorithms based on the method of the Shimada
and Nagashima [30] gives the proper Lyapunov exponents, it only gives the
Gram-Schmidt vectors instead of the Lyapunov vectors. It is difficult to find
the physical meaning of the Gram-Schmidt vectors, since these vectors (i) de-
pend on a definition of an inner product and (ii) are different from those in
the backward time evolution (i.e. they are not invariant under time reversal).
Both of these properties (i) and (ii) are not consistent with the definition of
the Lyapunov vectors. On the other hand, in a finite dimensional smooth dy-
namical system, the Lyapunov vectors are the tangent vectors which do not
depend on the definition of the inner product and give the same Lyapunov
exponents except for their signs in the forward or backward time evolution.
The Lyapunov vectors are bases of the local stable and unstable tangent
spaces according to the signs of the Lyapunov exponents. Recently Ginelli et
al. [36] proposed an algorithm, which is called covariant Lyapunov analysis,
to obtain the Lyapunov vectors. The covariant Lyapunov analysis employs
the conventional Lyapunov analysis as a first part of the algorithm, where
the Gram-Schmidt vectors are computed in the forward time evolution. We
then compute the tangent space dynamics confined to suitable subspaces in
backward time evolution by using the stored Gram-Schmidt vectors. In the
backward time evolution, the vectors in the subspaces converge generically to
the Lyapunov vectors after sufficiently long time. Besides the covariant Lya-
punov analysis, Wolfe et al. [37] proposed another computational method
to calculate the Lyapunov vectors, what is called characteristic Lyapunov

10The time scale tτ which is determined by the near-wall physics (i.e. defined by the
‘wall friction’ velocity uτ and length lτ as tτ = lτ/uτ ). See chapter 3 for more details.
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vectors11. These vectors, which have been applied to some chaotic systems
such as coupled-map lattices [38], are also independent of the inner product
and covariant under the tangent space dynamics (for the detailed comparison
between these methods, see Kuptsov et al. [39]).

Thanks for the development of these numerical algorithms, the Lyapunov
vectors have been used to study both conservative and dissipative dynamical
systems. Yang and Radons [40] calculated the Lyapunov vectors of coupled
maps lattice. They examined hydrodynamic Lyapunov modes (HLMs)12 ,
what they call, in relation to non-equilibrium statistical mechanics, which
supports their hypothesis : a certain hyperbolic property13 is crucial for ob-
serving the HLMs. Employing the covariant Lyapunov vectors, Yang et
al. [42] found an approach to study inertial manifolds which are finite-
dimensional manifolds attracting trajectories exponentially [43]. While the
inertial manifold is considered to be an important concept, it has been dif-
ficult to construct the inertial manifold of the partial differential equation
in a concrete way. Yang et al. [42] divided Lyapunov vectors into ‘physical’
and ‘isolated’ modes in the case of the Kuramoto-Sivashinsky equation and
complex Ginzburg-Landau equation and then speculated that there is some
relation between the number of the physical mode and the dimension of the
inertial manifold. These findings have a great importance since the existence
of the inertial manifold and its dimension would justify numerical simulations
of the dissipative partial differential equations with finite resolution14.

Hyperbolicity and relation to physical property.— As mentioned
above, Lyapunov vectors are tangent to stable and unstable manifolds of
an invariant set, and we can study hyperbolicity of the invariant set by the
Lyapunov vectors. Hyperbolicity is one of the fundamental properties of dy-
namical systems. A dynamical system is called to be hyperbolic if the tangent
space of the phase space can be decomposed into stable and unstable sub-

11Ginelli et al. [36] called the covariant Lyapunov vectors by simply ‘the Lyapunov
vectors’. In this thesis, we refer to the covariant (or characteristic) Lyapunov vector as
simply ‘Lyapunov vector’ in distinction from Gram-Schmidt vector.

12Hydrodynamic Lyapunov modes are long-wavelength Lyapunov modes associated with
near-zero Lyapunov exponents, which is expected to give a novel insight into a many-body
problem. See Yang and Radons [40] for details.

13The hyperbolic property they studied in [40] is ‘partial domination of the Oseledec
splitting’ with respect to subspaces associated with near-zero Lyapunov exponents.

14Futhermore, Yang and Radons [44] proposed a method to compute the dimension and
to study the geometry of the inertial manifolds of spatially extended dissipative dynamical
systems by using Gram-Schmidt vectors.
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1 Introduction

spaces, i.e., the stable and unstable manifolds intersect at nonzero angles.
When a dynamical system possesses the hyperbolic property, its theoretical
analysis is easier in general compared with nonhyperbolic cases. Also, hy-
perbolicity is deeply connected to the structural stability of the dynamical
systems [45]. Measurement of the angle between the local stable and the lo-
cal unstable manifolds along the solution orbit shows whether the attractor
is hyperbolic or not, and how far the hyperbolic attractor is from the nonhy-
perbolic state. (sometimes referred to as degree of hyperbolicity). Although
there are some algorithms to compute global stable and unstable manifolds
of steady solutions or periodic solutions and these algorithms have been ap-
plied to the solutions of fluid system [46, 47], it is still difficult to compute
the stable and unstable manifolds of chaotic solutions. Saiki and Kobayashi
[48] calculated angles between stable and unstable manifolds of Lorenz at-
tractor by using the covariant Lyapunov analysis and identified a hyperbolic
parameter region15. Also, by the covariant Lyapunov analysis, Kuptsov et
al. [50] identified the hyperbolic parameter regions of the coupled Ginzburg-
Landau equations. They found that the system becomes nonhyperbolic at the
same parameter value where the third Lyapunov exponent becomes positive,
and furthermore, argued that the system exhibits an extensive spatiotempo-
ral chaos after the hyperbolic-nonhyperbolic transition. Artuso et al. [51]
showed that a fixed point of some two-dimensional area-preserving map loses
its hyperbolicity at certain control parameter values, which is associated with
changes of the asymptotic decay rate of time correlation: when the system is
hyperbolic the time correlation decays exponentially, and when the system is
nonhyperbolic the time correlation decays algebraically. These findings are
interesting in the way that they suggest that the change of the hyperbolic
property has a physical interpretation as well. Considering these findings,
It is natural to ask if the hyperbolic properties of physical systems such as
fluids governed by the Navier-Stokes equation are related to their physical
propertes. One of the goals of this thesis is to obtain the answer to this
question.

What we study in this thesis.— In this thesis, we study orbital instabil-
ity of turbulence through the covariant Lyapunov analysis. Here we focus our
attention on the orbital instability of the chaotic Kolmogorov flow and the
Couette turbulence. Kolmogorov flow is a fluid flow on the two-dimensional

15Recently they also studied manifold structures of UPOs embedded in the Lorenz at-
tractor, and found that the angles between stable and unstable manifolds of them are
related to appearance of periodic windows in a bifurcation diagram [49].
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torus governed by the Navier-Stokes equation and its bifurcation and stabil-
ity have been under intense study as it has been considered as a simplest
example which contains essential elements of the Navier-Stokes flows. Cou-
ette turbulence is fluid turbulence between moving walls governed by the
three-dimensional Navier-Stokes equation, and is sometimes referred to as a
‘canonical example’ of the wall-turbulence, often being studied with interests
in the transition to turbulence and coherent structures in turbulence.

Recently, hyperbolicity of the chaotic Kolmogorov flow was studied by em-
ploying the covariant Lyapunov analysis, where the hyperbolic-nonhyperbolic
transition was observed (§IV of [52]). In §2 of this thesis, we review the result
of hyperbolic-nonhyperbolic transition appearing in the chaotic Kolmogorov
flows. Here, our interest lies in relations between the hyperbolic proper-
ties and such physical properties of fluid motions as time correlation of the
vorticity and the energy dissipation rate. First, we study the correlation
decay of the vorticity at several Reynolds numbers across the hyperbolic-
nonhyperbolic transition point. We find that the hyperbolic-nonhyperbolic
transition is reflected in the qualitative change of the long-time correlation
functions : before the transition the time-correlation function decays expo-
nentially with oscillation and after the transition it decays purely exponen-
tial (i.e. the oscillation in time-correlation function vanishes at the transition
point). Furthermore, examining the energy dissipation rate and the angle be-
tween the stable and unstable manifolds θ, we report that the angle θ tends
to be small when the energy dissipation rate is large in a statistical sense.

In §3, we study the orbital instability of the Couette turbulence. Par-
ticularly we examine regeneration cycles observed in a wide variety of wall-
turbulence including the Couette turbulence. The regeneration cycle is an
important phenomenon consisting of breakdown (in the first half period of
the cycle) and reformation (in the last half period of the cycle) of streaks
which are well-known coherent structures (see §3 for a detailed description).
The goal of this chapter is to characterize the regeneration cycle with the
orbital instability by employing the covariant Lyapunov analysis.

First in §3, we present the Lyapunov spectrum of the Couette turbulence.
From the Lyapunov spectrum, we obtain the dimension of the unstable mani-
fold, the dimension of the attractor, and the Kolmogorov-Sinai entropy. Then
we compare these information on the chaotic attractor with results reported
in previous studies on the Floquet exponents of UPOs embedded in the tur-
bulent attractor [69, 70], the normalized maximum Lyapunov exponent of the
wall turbulence at the high Reynolds number [35], the attractor dimension
of the Poiseuille turbulence [34], and the dimension of the dynamical system

9



1 Introduction

models of the regeneration cycle [62].
Next, to see the orbital instability of the regeneration cycle in more detail,

we study the local Lyapunov exponents and the associated Lyapunov modes.
With these quantities, we find that (1) at the breakdown of the streaks,
the Lyapunov modes indicate a sinuous instability which makes the streaks
meander, (2) when the streamwise vorticity is highly localized, the local
Lyapunov exponents appear to attain their maxima in the regeneration cycle,
and (3) the local Lyapunov exponents decrease rapidly and become negative
after the localization of the streamwise vorticity (i.e. they appear to be
positive only in a very early stage of the cycle). These results suggest that
the ‘most unstable’ instability during the regeneration cycle is the instability
associated with strong localization of the streamwise vorticity rather than
the sinuous instability. Also, instabilities are found only in a very early stage
of the cycle and after that there are no exponential instability at all.

In the final part of §3, we reconsider the regeneration cycle from the view-
point of the orbital instability. There, we argue the physical mechanisms of
the streak meandering (breakdown) and the localization of the streamwise
vorticity, which can be characterized by the Lyapunov modes. Particularly,
we conclude that the localization of the streamwise vorticity is caused by the
vortex stretching and propose a detailed mechanisms of it. Then, examining
the evolution equation of the modal energy, we discuss the mechanism of the
streak reformation which closes the cycle. We find that the streaks are re-
formed by interactions with mean flows and furthermore the energy is injected
into the ‘streak mode’ from the mean flows almost constantly throughout the
regeneration cycle. In other words, the interactions with mean flows reform
the streaks throughout the cycle steadily. There, a natural question arises :
what controls the development of the streaks (i.e. the regeneration cycle)?
Finding an answer to the question, we study the energy flows in the system
during the regeneration cycle in detail and detect the interaction between
the streak mode and a ‘meandering mode’ that controls the regeneration cy-
cle. The regeneration cycle in the wall turbulence is important not only for
science but also for engineering, thus there are a great deal of research on
the regeneration cycle. However, as far as we know, the orbital instability
picture of the regeneration cycle described above has been never proposed.

Finally, in §4 we summarize the whole thesis and discuss future issues.

10



Chapter 2

Relations between hyperbolic
properties and physical
properties of chaotic
Kolmogorov flow

2.1 Introduciton

Hyperbolicity is one of fundamental properties of dynamical system as men-
tioned in §1. Despite the importance of hyperbolic property, there are few ex-
amples of concrete dynamical systems whose hyperbolic properties are known
in a rigorous manner. At present, we know the some exact results of hyper-
bolic properties of low-dimensional dynamical systems at best such as real
Hénon family studied by Arai [53]. However recently, the covariant Lyapunov
analysis gave us a new way to estimate hyperbolicity of even high-dimensional
dynamical systems (Ginelli et al. [36]).

Fluid turbulence is often viewed as a typical example of chaos appear-
ing in high-dimensional dynamical systems and hence hyperbolic property
of turbulence can be important in understanding of it from the viewpoint
of dynamical system. As a first step to obtain knowledge of the hyperbolic
property of turbulence, Inubushi et al. [52] studied the degree of hyperbolic-
ity of the Kolmogorov flows. This fluid system was proposed by Kolmogorov
to study the stability and bifurcation of the solutions of the Navier-Stokes
equation [17] and the route to chaos [54]. As shown in Fig.2.1, the Lyapunov
exponents increase with the Reynolds number and the Kolmogorov flows be-
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2 Relations between hyperbolic properties and physical properties of
chaotic Kolmogorov flow

come chaotic (λ1 > 0)1 at the Reynolds number2R/Rcr ≃ 18.2, under which
the fluid motion is quasi-periodic (λ1 = λ2 = 0) (see §III in [52] and §2.3
for details). Employing the covariant Lyapunov analysis, Inubushi et al.
showed probability density functions of the angle between the local stable
and unstable manifolds along the solution orbit and they found hyperbolic-
nonhyperbolic transition at a certain Reynolds number (see §IV in [52] and
§2.4).

The hyperbolic-nonhyperbolic transition may be expected to influence
long-time statistical property of the flow. In order to study the physical
properties of chaotic Kolmogorov flows, we here focus our attention on two
physical quantities; the time-correlation of the vorticity and the enstrophy
(the energy dissipation rate). This chapter is organized as follows. In §2.2,
we describe Kolmogorov flow system and numerical method. Then in §2.3,
we summarize briefly chaotic solution of Kolmogorov flows whose behavior
is studied in later sections. We show the main result in this chapter in §2.4:
relations between the hyperbolic properties and the physical properties of
the system. §2.4.1 and §2.4.2 are devoted respectively to descriptions of
relations between the degree of hyperbolicity and time correlation functions
and relations between the angle θ and enstrophy. Finally, we summarize and
discuss the obtained results in §2.5.

2.2 Kolmogorov flow system and numerical

method

Kolmogorov flows are fluid flows governed by the two-dimensional incom-
pressible Navier-Stokes equation and the vorticity equation which we solve
numerically is

∂tζ + u · ∇ζ = 1

R

(
∆ζ − n3 cosny

)
, (2.1)

where u = u(x, y, t) = (u, v) is the velocity, ζ = ζ(x, y, t) = ∂xv − ∂yu the
vorticity, R the Reynolds number, n the wave number of the external forcing.
Because of this simple form of external forcing, Kolmogorov flow has two
kinds of symmetries ; if ζ(x, y) is a solution of the vorticity equation (2.1),

1In the Kolmogorov flow system, Pomeau-Manneville scenario leads to chaotic attractor
with Type-I intermittency. See appendix A.1 and Inubushi et al. [9]

2Rcr is critical Reynolds number of “trivial solution”. See later sections for details.
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Fig. 2.1: Lyapunov exponents λi (i = 1, 2, · · · 5, λ1 ≥ λ2 ≥ · · · ≥ λ5), the
horizontal axis is Reynolds number R/Rcr (18.0 ≤ R/Rcr ≤ 25.0). Inset ;
Lyapunov dimension DL. It is found that 3.5 ≲ DL ≲ 5.5 in this range of
the Reynolds number

then Gjζ(x, y) (j = 1, 2, · · · , 2n − 1 , Gj = G ◦ · · · ◦G︸ ︷︷ ︸
j

) and Tαζ(x, y) (α ∈

[0, 2π)) are also a solution, where

Gζ(x, y) = −ζ(−x, y − π
n
) (2.2)

Tαζ(x, y) = ζ(x− α, y). (2.3)

Roughly speaking, G represents a discrete “shift” by π/n in y direction and
Tα represents a continuous “shift” by α in x direction.

The governing equation (1) possesses a steady solution ζ = −n cosny (so-
called the trivial solution) and we denote byRcr(= n

√
2) the critical Reynolds

number beyond which the trivial solution becomes linearly unstable in the
domain x ∈ [0, 2π) (periodic) and y ∈ (−∞,∞). Iudovich showed that for
the forcing wavenumber n = 1, the trivial solution is globally and asymptot-
ically stable [55]. Here we focus our attention on the chaotic solution of the
Kolmogorov flows, in the case of the forcing wavenumber n = 2.

Direct numerical simulations of the vorticity equation (1) are performed
by means of the standard 2/3 dealiased spectral method on the periodic
domain T2 = [0, 2π)× [0, 2π) where the number of the grid points is 24× 24,
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Fig. 2.2: The projection of the solution orbit onto (ζR0,1, ζ
I
0,1) plane at

(a) R/Rcr = 18.0, (b) R/Rcr = 20.0, (c) R/Rcr = 24.0 (1.0 × 104 ≤ t ≤
3.0 × 104). Only at (a) R/Rcr = 18.0, there are four solution orbits arising
from four different initial conditions.

and truncated wave numbers were 7× 7 as

ζ(x, y, t) =

K,L∑
k=−K,
l=−L

ζk,l(t)e
i(kx+ly) (2.4)

where K = L = 7. A state of the Kolmogorov flows is represented by a set
of the Fourier coefficients

(ζR−K,−L(t), ζ
I
−K,−L(t), · · · , ζRK,L(t), ζIK,L(t)) ∈ RN ′

(N ′ = 2(2K + 1)(2L+ 1)),
(2.5)

where ζRk,l(t) and ζIk,l(t) (−K ≤ k ≤ K,−L ≤ l ≤ L) are respectively the
real and imaginary parts of the complex Fourier coefficients ζk,l(t) satisfying
the Hermitian symmetry, ζk,l(t) = ζ∗−k−l(t) where ∗ denotes the complex
conjugate. In addition, ζ00 vanishes, and therefore the dimension of the phase
space (degrees of freedom) of the truncated system is N = (2K + 1)(2L +
1) − 1 = 224. We used the library for spectral transform ISPACK [66],
its Fortran90 wrapper library SPMODEL library [67] and the subroutine of
LAPACK. For time integration, we used the 4th order Runge-Kutta method
with the time step ∆t = 5.0× 10−3. For drawing the figures, the products of
the Dennou Ruby project [68] and gnuplot were used.

2.3 Chaotic behavior of Kolmogorov flow

In this section, we summarize briefly the chaotic solution of Kolmogorov
flows making use of the Lyapunov analysis. The time integration of the
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2.3 Chaotic behavior of Kolmogorov flow

vorticity equation (2.1) shows that the flows are quasi-periodic at R/Rcr ≲
18.2 and chaotic at R/Rcr ≳ 18.2. To clarify the instability of the flows, we
calculate the Lyapunov exponents λi (i = 1, 2, · · · 5, λ1 ≥ λ2 ≥ · · · ≥ λ5) of
Kolmogorov flow at different Reynolds numbers (Fig.2.1). Also, to illustrate
the solution orbit in the phase space, in Fig.2.2 we show a projection of the
solution orbit in the phase space onto (ζR0,1, ζ

I
0,1) plane at R/Rcr = (a) 18.0,

(b) 20.0, (c) 24.0 (1.0 × 104 ≤ t ≤ 3.0 × 104). We use four different initial

conditions ζ
(j)
k,l (j = 0, 1, 2, 3)

ζ
(j)
k,l =

{
0 (k = l = 0),

ζ
(j)
01 δ0,kδ1,l + (1 + i) 10−3

k2+l2
(otherwise),

(2.6)

where ζ
(j)
0,1 = 0.2(1 + i) e

π
2
ij at R/Rcr = 18.0.

At R/Rcr = 18.0, there are four stable quasi-periodic solutions (λ1 = λ2 =
0 > λi(i = 3, 4, · · ·N) Fig.2.2 (a)) due to the symmetry (2) of the system :
G rotates the phase of Fourier component ζ0,1 by π/2 [rad], i.e. Gζ0,1 = iζ0,1.
The quasi-periodic solution is composed of two plus/minus rapidly oscillating
vortices (the period of oscillating motion T1 ≃ 35) slowly traveling to x
direction (the period of traveling motion T2 ≃ 1241), which is confirmed by
a power spectrum (see Fig.2.11). The two zero Lyapunov exponents λ1 =
λ2 = 0 (Fig.2.1) are due to the property of the autonomous system and the
translational symmetry in x direction of this system corresponding to Tα in
the equation (2.3).

The Lyapunov exponents increase monotonically with Reynolds number
(Fig.2.1). And atR/Rcr ≳ 18.2, the quasi-periodic solutions become unstable
(λ1 > 0) and merge into a large chaotic attractor composed of the four (unsta-
ble) quasi-periodic solutions and their connecting orbits (Fig.2.2 (b)). This
route to chaos observed in the Kolmogorov flow can be characterized by so-
called Type-I intermittency (see appendix A.1) [9]. The chaotic solution then
wanders around the unstable quasi-periodic solutions and “jumps” between
them intermittently. The energy (E = 1

2
||u||2L2) and the energy dissipation

rate (ε = 2Q/R where Q = 1
2
||ζ||2L2 is the enstrophy) also undergo intermit-

tent bursts simultaneously with the “jumps” (Fig.2.3). The time series of the
energy E and the energy dissipation rate ε are quite similar, bursting almost
simultaneously. The energy injected by the external forcing dissipates so
quickly, which implies the absence of the inertial subrange and the energy cas-
cade in wavenumber space, in contrast with fully developed turbulence. Actu-
ally, the flow fields is in a state of not spatiotemporal but temporal chaos, con-
sisting of two plus/minus large vortices oscillating chaotically in time. The
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Fig. 2.3: Time series of the energy E and the energy dissipation rate ε at
R/Rcr = 20.0 (1.0× 104 ≤ t ≤ 3.0× 104).

Lyapunov dimension DL = K + 1
|λK+1|

∑K
i=1 λi (K = max{m|

∑m
j=1 λj ≥ 0})

(inset of Fig.2.1) is found to be rather small (3.5 ≲ DL ≲ 5.5) in harmony
with the observation of the temporal chaos. At R/Rcr ≃ 23.0, the 2nd
positive Lyapunov exponent emerges, and at higher Reynolds number the
solution orbit appears less trapped by the unstable quasi-periodic solutions
(Fig.2.2 (c) at R/Rcr = 24.0).

2.4 Covariant Lyapunov analysis of chaotic

Kolmogorov flow

In this section, we review the covariant Lyapunov analysis of chaotic Kol-
mogorov flow, in particular the study on degree of hyperbolicity3.

Localization of the Lyapunov vector in physical space and wavenumber
space is often related to characteristic physical properties of a chaotic behav-
ior. In the “spiral defect” chaos in Rayleigh-Benard convection, the spatially
localized pattern of the first Lyapunov vector is associated with the creation
and annihilation of the defects [56], while in a shell model of turbulence (GOY
model), an asymptotic scaling law of the Lyapunov spectrum can be obtained
by using the localization property of Lyapunov vectors in wave number space

3Published in Inubushi et al. [52].
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Fig. 2.4: Stream functions at t = 1.0× 104 of (a) solution, Lyapunov vectors
corresponding to (b) λ1 and (c) λ200 at R/Rcr = 20.0. The contours in (b),(c)
shows the stream function of the solution.

and Kolmogorov scaling theory [32].
Now we can calculate the whole of the Lyapunov vectors by the covari-

ant Lyapunov analysis for the chaotic Kolmogorov flows. Fig.2.4 (a) is the
snapshot of the stream function of the chaotic solution as stated above and
Fig.2.4 (b) and (c) are the stream functions of the Lyapunov vectors corre-
sponding respectively to the Lyapunov exponent λ1 and λ200 at t = 1.0×104,
R/Rcr = 20.0. The norm of the perturbation by the Lyapunov vector in
Fig.2.4 (b) grows nearly exponentially (λ1 > 0), while that in Fig.2.4 (c) de-
cays nearly exponentially (λ200 < 0). The spatial scale of the first Lyapunov
vector is nearly the same as the solution, and that of the 200th Lyapunov
vector is smaller. This implies that the Lyapunov vectors corresponding to
λ1 (λ200) is composed of low (high) wavenumber Fourier modes. Then we
define the time averaged energy spectra E(j, n) = E(j, n, t) of the j-th Lya-

punov vector q(j) where the overline denotes time average ·̄ = 1
T

∫ T
0
· dt,

n = 1, 2, ...,
√
K2 + L2 the total Fourier wavenumber, and

E(j, n, t) =
1

2∆n

∑
n2≤k2+l2<(n+1)2

(
|û(j)k,l (t)|

2 + |v̂(j)k,l (t)|
2
)
.

Here (û
(j)
k,l , v̂

(j)
k,l ) is the complex Fourier coefficient of the velocity u(j) =

(u(j)(x, y), v(j)(x, y)) of the j-th Lyapunov vector q(j) and ∆n = π{(n +
1)2 − n2}. We use T = 16.0 × 104 for the time average and the Lyapunov
vector q(j) is normalized with respect to the energy norm as 1

2
||u(j)||2L2 =∑

nE(j, n, t)∆n = 1. Fig.2.5 (a) shows log10E(j, n) at R/Rcr = 20.0, where
we confirmed that the qualitative properties do not depend on the Reynolds
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Fig. 2.5: (color online) (a) Energy spectra of Lyapunov vectors. The hori-
zontal axis is the Lyapunov indices j, the vertical axis is Fourier wavenumber
n and the contour is the energy spectra log10E(j, n) at R/Rcr = 20.0. (b)
the cross section of (a) fixed Lyapunov indices (j = 1, 50, 100, 150, 200).

number (20.0 ≤ R/Rcr ≤ 24.0). The energy spectra E(j, n) for fixed Lya-
punov index j = 1, 50, 100, 150, 200 are also shown in Fig.2.5 (b). It is found
that the peak of energy spectrum shifts toward higher wavenumber with
the increase of Lyapunov index. This is consistent with the dominance of
small structures in Fig.2.4(c). This localization of Lyapunov vectors at high
wavenumbers is in accidence with the correspondence between the Lyapunov
exponents and the viscous dissipation, λ ∼ − 1

R
k2, where k is the localized

wavenumber of the Lyapunov vector [32].

In order to evaluate the hyperbolicity of the chaotic motion, we calcu-
late the probability density functions of the angle θ between the local sta-
ble and unstable manifolds along the solution orbit. Fig.2.6 is the closeup
around zero angle (0[rad] ≤ θ ≤ 0.1[rad]) of the PDF P (θ) at R/Rcr =
20.0, 21.0, 22.0, 23.0, 24.0 from top to bottom with error bars (see APPENDIX
B in [52] for details).

We find that at the small Reynolds number (R/Rcr ≃ 20.0) the distribu-
tion of the angle vanishes at zero angle (P (0) = 0), which indicates that the
attractor is hyperbolic. However, as the Reynolds number is increased, the
angles θ has more chance to take smaller values and the distribution extends
toward the zero angle. And at a certain Reynolds number (R/Rcr ≃ 23.0)
the distribution of the angles is observed to reach the zero angle (P (0) > 0),
which implies that the attractor becomes non-hyperbolic. It should be re-
marked that R/Rcr ≃ 23.0 is near the Reynolds number where the 2nd
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Fig. 2.6: (color online) Close-up (0[rad] ≤ θ ≤ 0.1[rad]) of the PDF P (θ) at
R/Rcr = 20.0, 21.0, 22.0, 23.0, 24.0 from top to bottom (linear-log plot) with
error bars (see APPENDIX B in [52] for details).
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Fig. 2.7: The time-correlation function ρ(τ) (linear-log plot). Inset is an
close-up of the time-correlation function in 0 ≤ τ ≤ 10 (the arrow indicates
increase of the Reynolds number).

Lyapunov exponent become positive (Fig.2.1).

2.5 Relations between hyperbolic properties

and physical properties of chaotic Kol-

mogorov flow

We expect that the hyperbolic-nonhyperbolic transition affects long-time sta-
tistical property of the flow, as mentioned in §2.1. In this section, the main
part of this chapter, we focus our attention on two physical quantities; the
time-correlation of the vorticity and the enstrophy (the energy dissipation
rate).

2.5.1 Hyperbolicity and correlation fuction

The time-correlation function of the vorticity ζ(t) = ζ(x′, y′, t) is defined as

ρ̃(τ) = ζ(t)ζ(t− τ)− ζ
2
. (2.7)
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Fig. 2.8: Dependence of the fitting parameter ω on the Reynolds number
(19.0 ≤ R/Rcr ≤ 25.0)

Fig.2.7 shows the normalized time-correlation function ρ(τ) = ⟨ρ̃(τ)⟩/⟨ρ̃(0)⟩
at (x′, y′) = (π/4, π/4) where ⟨·⟩ denotes ensemble average over M different
initial conditions. In the inset of the figure a close-up of the correlation
function ρ(τ) in the short-time range (0 ≤ τ ≤ 10) is presented. Each initial
condition is the trivial solution with a random perturbation as

ζ
(i)
k,l =

{
0 (k = l = 0)

−n
2
δk,0(δl,n + δl,−n) + P (i) (otherwise),

where P (i) = r(i)(1 + i) 10−3

k2+l2
and r(i)(r = 1, 2, · · ·M) is uniform random

numbers in an interval [0, 1). We use T = 2.0 × 105 and M = 30 and
confirmed that the qualitative properties of correlation do not depend on the
T , M and the observation point (x′, y′).

In a short-time range (0 ≤ τ ≤ 10), chaotic Kolmogorov flows exhibit an
algebraic decay (ρ(τ) ∼ 1− cτ 2, c ≃ 0.0012) of the time-correlation function
independently of the Reynolds number. However, in long-time range (τ ≳
100) the decay of the time-correlation changes at R/Rcr ≃ 22.0 ; the time-
correlation function at R/Rcr = 20.0, 21.0 decays super-exponentially, and
changes its sign, while the time-correlation function at R/Rcr = 23.0, 24.0
has an exponential tail ρ(τ) ∼ e−τ/T .

We employ the least-square method to fit the time-correlation function
with ρ(τ) = ae−τ/T cosωτ via three fitting parameters (a, T, ω) in long-time

21



2 Relations between hyperbolic properties and physical properties of
chaotic Kolmogorov flow

 0  200  400  600  800  1000  1200  1400

R/Rcr=18.0

R/Rcr=18.2

R/Rcr=18.4
R/Rcr=18.6

R/Rcr=19.0

Fig. 2.9: The time-correlation function ρ(τ) (linear-log plot) at different
Reynolds numbers R/Rcr = 18.0 (quasi-periodic solution) and R/Rcr =
18.2, · · · , 19.0 (chaotic solution). The correlation function at R/Rcr = 18.0
oscillates and does not decay to zero as τ → ∞ because of the (quasi-
)periodicity of the solution.

region (100 ≤ τ ≤ 900). While the fitting parameters a and T are found to
be almost independent of the Reynolds number (these change the value by
20% at most, see Fig.2.10, the fitting parameter ω depends strongly on the
Reynolds number, as shown in Fig.2.8. Apparently, the value of the fitting
parameter ω shows a clear transition from finite (ω ≃ 0.0015) to 0 at R/Rcr ≃
22.0. The qualitative change of the time-correlation of vorticity occurs at
R/Rcr ≃ 22.0 close to that of the hyperbolic-nonhyperbolic transition and of
the emergence of the 2nd positive Lyapunov exponent, suggesting that the
asymptotic exponential decay of the time-correlation reflects the transition
to nonhyperbolicity and/or the increase of the instability of the flow.

Oscillation of the correlation function.—We found that the long-time
correlation function of the vorticity loses its oscillating part (i.e. ω → 0) at
the Reynolds number close to the hyperbolic-nonhyperbolic transition point
and to the Reynolds number where the 2nd positive Lyapunov exponent
emerge. Here we study the origin of this oscillating part of the correlation
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Fig. 2.10: Dependence of the fitting parameters (a, T, ω) on the Renolds num-
bers for (a) a, (b) T , (c) ω, where the asymptotic time-correlation functions
are fit via the function form ρ(τ) = ae−τ/T cosωτ .

function. Fig.2.9 shows the correlation functions at different Reynolds num-
bers R/Rcr = 18.0, 18.2, · · · , 19.0. The quasi-periodic solutions are stable at
R/Rcr = 18.0 and unstable at R/Rcr ≥ 18.2. Correspondingly, the correla-
tion function at R/Rcr = 18.0 oscillates and does not decay as τ → ∞. And
at R/Rcr ≥ 18.2, the correlation function also oscillates but decays to zero
as τ → ∞, which is observed until R/Rcr ∼ 22.0. This implies that this os-
cillation observed in the correlation functions comes from the quasi-periodic
solutions. As a check of this scenario, we employ the least-square method to
fit the time-correlation function with ρ(τ) = ae−τ/T cosωτ . Fig.2.10 shows
the dependence of fitting parameters (a, T, ω) on the Reynolds numbers. Ap-
parently, in Fig.2.10 (a), the value of the fitting parameters a changes con-
tinuously with the increasing Reynolds numbers, which are reflected by the
continuous change of the correlation functions. In Fig.2.10 (b), the value
of the fitting parameters T change continuously with the Reynolds numbers
except at R/Rcr ∼ 18.0. Since the quasi-periodic solutions are stable at
R/Rcr = 18.0, the value of the parameter T drastically changes from a large
value at R/Rcr = 18.0 to smaller values at R/Rcr ≥ 18.2 where the quasi-
periodic solution is unstable. In Fig.2.10 (c), the value of the fitting parame-
ters ω continuously decreases from ω∗ ≃ 0.005 to zero. At R/Rcr = 18.0, the
angular velocities of the solution are respectively ω1 = 0.18 and ω2 = 0.0051
(Fig.2.11), the latter of which agrees with ω∗ found in Fig.2.10 (c). The
angular velocity ω1 is not observed in Fig.2.10 (c) , probably because of its
small amplitude.

These observations are summarized as follows; at R/Rcr ∼ 18.0, ρ(τ) ∼
a cosω1τ+b cosω2τ (quasi-periodic solution), at 18.0 ≲ R/Rcr ≲ 22.0, ρ(τ) ∼
ae−τ/T cosωτ (chaotic solution) and at R/Rcr ≳ 22.0, ρ(τ) ∼ ae−τ/T (chaotic
solution).
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Fig. 2.11: Power spectrum S(ω) of the real part of the Fourier component ζR1,0
of the quasi-periodic solution at R/Rcr = 18.0. The vertical lines indicate
ω1 = 0.18 and ω2 = 0.0051.

The correlation function loses its oscillating part at R/Rcr ≃ 22.0, which
is close to the Reynolds number where the 2nd positive Lyapunov exponent
emerge. While the oscillation of the correlation function comes from the
quasi-periodic solutions, the appearance of “unstable mode” (corresponding
to 2nd positive Lyapunov exponent) of the chaotic attractor may break the
oscillating part of the correlation. This is a possible connection between
the appearance of 2nd positive Lyapunov exponent and the change of the
correlation function.

2.5.2 Angle between stable and unstable manifolds and
enstrophy

Here we study the relation of the angle between the local stable and un-
stable manifolds, θ, and the enstrophy Q (the energy dissipation rate ε).
Fig.2.12 shows the joint probability density functions (joint PDF) P (θ,Q)
of the angle θ and the enstrophy Q measured along the solution orbit at (a)
R/Rcr = 20.0, (b),R/Rcr = 21.0, (c) R/Rcr = 22.0, (d) R/Rcr = 23.0, (e)
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2.6 Discussions and Conclutions

R/Rcr = 24.0. The joint PDF P (θ,Q) was obtained in the form of a his-
togram with 200×200 bins over the range [0, π/2)× [0.0, 0.3] and normalized
so as

∫ ∫
P (θ,Q)dθdQ = 1. At R/Rcr = 20.0, 21.0, 22.0, the enstrophy takes

0.3

0
0 1

θ

Q

(a) (b)

(c) (d) (e)

50

0

Fig. 2.12: Joint probability density functions of the enstrophy Q and the
angle θ. The horizontal axis is the angle θ, the vertical axis is the enstrophy
Q and the contour is the joint PDF at R/Rcr = (a) 20.0, (b) 21.0, (c) 22.0,
(d) 23.0, (e) 24.0.

both large and small values at large angles. However, at R/Rcr = 23.0, 24.0,
it is observed that the enstrophy does not take large values at large angles.
It may be worth noting that the change of the relation between the angle
and the enstrophy takes place at the Reynolds number close to that of the
hyperbolic-nonhyperbolic transition of the attractor.

2.6 Discussions and Conclutions

In the chaotic Kolmogorov flows, Inubushi et al. [52] observed the hyperbolic-
nonhyperbolic transition (in §IV. of [52]) employing the covariant Lyapunov
analysis [36]. Therefore In this chapter, we focused our attention on the
relations between the hyperbolic and physical properties.

We studied the correlation decay of vorticity for several Reynolds numbers
across the hyperbolic-nonhyperbolic transition point. In lower-dimensional
dynamical systems hyperbolic/nonhyperbolic properties are known to be re-
lated to decay of correlations, especially, nonhyperbolicity usually leads to
non-exponential decay of correlations. We found that the qualitative change
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Fig. 2.13: Joint probability density functions of the angle θ and (a) the energy
dissipation rate E and (b) energy E.

of the long-time correlation function occurs at the Reynolds number close
to the hyperbolic-nonhyperbolic transition point and to the Reynolds num-
ber where the 2nd positive Lyapunov exponent emerge, suggesting that the
asymptotic decay of the time-correlation reflects the transition to nonhy-
perbolicity and/or the emergence of “unstable mode” of the flow. Also, we
reported that the angle θ is relevant to the enstrophy Q (the energy dissipa-
tion rate ε) ; the enstrophy is small when the angle is large, which holds at
Reynolds numbers where the attractor is nonhyperbolic. A similar relation
between the angle and the energy dissipation rate is also observed in GOY
shell model (Kobayashi and Yamada [57]). They studied GOY model em-
ploying the covariant Lyapunov analysis and found that the angle between
the stable and unstable manifolds θ is related to the energy dissipation rate
in a similar manner (i.e. the angle θ tends to be small when the energy
dissipation rate is large). Interestingly, this relation can not hold between
the angle θ and the energy (in GOY model, the energy is not necessary cor-
related to energy dissipation rate as in fully developed turbulence). It will
be intriguing future work to see how these properties relate to each other
and whether this relation holds in general dissipative systems including fully
developed Navier-Stokes turbulence.
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Chapter 3

Orbital instability of the
regeneration cycle in minimal
Couette turbulence

3.1 Introduciton

As one of ‘generic’ properties of near-wall turbulence, a scaling law (known
as Prandtl wall law) is observed in near wall region of a wide variety of wall
turbulence such as turbulence in pipes, channels, ducts, and boundary layers,
where a scaled mean velocity profile ū(z) is logarithmic: ū(z) ∝ log z (z is a
scaled distance from the wall) 1. A number of researchers have studied this
statistical property, and flow structures (so-called coherent structures) have
been recognized as key elements to understand near-wall turbulence (Jiménez
and Moin [58], Hamilton et al. [59]). In order to find out mechanisms pro-
ducing the wall turbulence, they searched numerically the minimal size of
periodic box (minimal flow unit) in which we can observe the turbulence. As
a result, in the minimal flow units, they found regeneration cycle consisting
of breakdown and reformation of the coherent structures such as streamwise
vortices and streaks which are high/low speed regions2 in Poiseuille turbu-
lence [58] and in Couette turbulence [59]. The regeneration cycle has been
observed in many types of turbulence (Panton [60]) and was recently observed

1The streamwise mean flow profile scales with the kinetic viscosity ν and the wall

friction velocity uτ , where the wall friction velocity is uτ =
√
ν⟨|∂Ux

∂z |⟩wall (the bracket

⟨·⟩wall denotes long-time and horizontal direction spatial mean at the walls and Ux is the
streamwise mean velocity. ).

2See Fig.3.5 and description of it for details.
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3 Orbital instability of the regeneration cycle in minimal Couette
turbulence

(a) (b)

(d)(c)

Fig. 3.1: Perturbation streamwise vorticity ωx for sinuous streak instability
mode of the model streak at (a) αx = 0, (b) αx = π/2, (c) αx = π, and
(d) αx = 3π/2 shown in Fig.9 in Schoppa and Hussain [71], where α denotes
the streamwise number. Positive and negative ωx are shown as solid and
dotted contours respectively, and the bell-shaped line denotes the phase speed
contour U = σi/α, where σi denotes the imaginary part of the eigenvalue.
The shading shows the regions of induced spanwise flow (in the direction of
the thick arrow).

in experiments of boundary layer turbulence by Duriez et al. [61].

In order to describe the regeneration cycle, Hamilton et al. [59] and
Waleffe [62] proposed a mechanisms (what they call self-sustaining process)
which consists of streak instability, regeneration of the streamwise vortices,
and formation of the streaks, by modeling the streaks and the streamwise
vortices. On the streak instability, Schoppa and Hussain [71] investigated
linear stability of models of the streaks numerically and found that these
models are linearly unstable to sinuous instability mode (Fig.3.1. See also
Figure 9 in [71]) which causes meandering of the straight streak as observed
by Hamilton et al. [59]. Linear stability of a corrugated vortex sheet, which is
an inviscid model of the streak, is studied by Kawahara et al.[72]. They found
the vortex sheet is linearly unstable equally to both sinuous and varicose
disturbances (i.e. their growth rates are identical) in a long-wave limit and
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3.1 Introduciton

(a) (b)

Fig. 3.2: Unstable fundamental eigenstructures of a corrugated vortex sheet
shown in Figure 3 (c,d) in Kawahara [72] for (a) sinuous mode and (b) vari-
cose mode. The streamwise circulation density (see [72] for details) in the
perturbed vortex sheet is shown for ξ0 = 1/3π where ξ0 denotes positions of
the sheet. Red is positive (clockwise) and blue is negative (counterclockwise).
The disturbance velocity vectors, in a frame of reference moving with the real
part of the phase velocity, are shown in the plane x = 0. One wavelength is
shown both in the x- and in the z-directions.

discussed similarities between the obtained sinuous eigenfunction (Fig.3.2.
See also Figure 3 in [72]) and the invariant solutions of the Poiseuille flows and
the Couette flows. There are numerous studies on linear stability of model
streaks including the above models (see [72] and references therein) and most
of them suggest that the sinuous mode is the most unstable (often referred
to as the most ‘dangerous’) perturbations. Characteristics of the sinuous
instability modes are (A) appearances of different signs streamwise vorticity
alternatively, (B) localizations of streamwise vorticity near the low-speed
streak ‘crest’ and the high-speed ‘trough’ regions (see Fig.3.1 and Fig.3.2).
However these models are not solutions of the full Navier-Stokes equation
and it is unclear how the linear stability analyses of these models of steady
solutions are crucial for understanding of the stability of the streak in the
actual turbulent flows.

Following the meanderings of the straight streaks, the flow changes into
fully three-dimensional turbulence, and streamwise vortices are expected to
be generated. Toward an understanding of this process, many mechanisms
has been proposed such as Waleffe [62] and Jiménez and Moin [58] (See Kawa-
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3 Orbital instability of the regeneration cycle in minimal Couette
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hara [69] for review of regeneration mechanisms of streamwise vortices). Once
the streamwise vortices are generated by some sort of mechanism, these vor-
tices advect the gradient of the streamwise velocity in the cross-streamwise
plane, which forms the streak structures. In other words, the streamwise
vortices lift up low-velocity fluid from the bottom wall, and lifted down high-
velocity fluid from the top wall. Kawahara [69] showed that an analytical
model of the streamwise vortex forms the streak structures by the above
mechanism. The formation of the streaks closes the regeneration cycle. Wal-
effe [62] derived a low-dimensional model for understanding of the regenera-
tion cycle (self-sustaining process) from the viewpoint of dynamical system
theory, which has been modified and used to study transitions to turbulence
over a wide parameter region (Kim and Moehlis [75]). While these descrip-
tions and models are suggestive, the mechanisms composing the regeneration
cycle, particularly the generation mechanism of the streamwise vortices, re-
main unclear. Moreover, the whole of the regeneration cycle is expected
to be understood not on the basis of the models and the phenomenological
arguments but on the full Navier-Stokes equation.

One of the crucial steps toward understanding of the regeneration cycle
on the basis of the full Navier-Stokes equation is finding of the UPO by
Kawahara and Kida [25] which approximates turbulent statistics very well
as mentioned in §1. Also, they found that temporal variations of spatial
structures along the UPO exhibit the regeneration cycle. Recently, a lot of
invariant solutions of the full Navier-Stokes equation and the (homoclinic
and heteroclinic) connections between them have been found numerically
and used to clarify the state space structures for understanding mechanisms
of transition to turbulence and the regeneration cycle (see §1 for the brief
review and Kawahara [29] for the detailed review).

We here focus our attention on the properties of the orbital instabilities
of minimal Couette turbulence employing the covariant Lyapunov analysis,
by which we can study ‘linear stability’ of the streaks in actual turbulence
instead of the model streaks. Moreover, the covariant Lyapunov analysis is
expected to capture not only the streak instability but also the other expo-
nential instabilities in the whole of the regeneration cycle. Understanding
of the instabilities of the cycle can be useful for a control of turbulence as
well (Kawahara [22]). Also, some fundamental information on the attrac-
tor can be obtained by the analysis such as the attractor dimension3 and

3The attractor dimension of the minimal Couette turbulence is considered to be not
high since the regeneration cycle can be characterized by only two coherent structures (i.e.
the streak and the streamwise vortex) and dynamics of several low-dimensional models
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3.2 Couette flow system and numerical method

Kolmogorov-Sinai entropy. The goals of this chapter are to characterize the
mechanisms composing the regeneration cycle in terms of the orbital insta-
bility and contribute toward an understanding of the cycle on the basis of
the full Navier-Stokes equation.

In §3.2 we describe problem setting, equation of motion, and numerical
methods used in this chapter. The results of time integration are shown in
§3.3, where we observe the regeneration cycle discussed in the previous stud-
ies. There, we see localization events of streamwise vorticities in detail, which
play an important role in later sections. In §3.4, we present main results of
this chapter, namely characterization of the regeneration cycle through the
covariant Lyapunov analysis; Lyapunov spectrum, local Lyapunov exponents,
and associated Lyapunov vectors. Based on the results above section, we dis-
cuss in detail the regeneration cycle in a manner consistent with properties
of orbital instabilities. In §3.5, discussions and conclusions are given.

3.2 Couette flow system and numerical method

3.2.1 Problem setting

Plane Couette flow is a fluid system where incompressible viscose fluid is
in between upper and lower walls (the width is 2h) and the fluid motion
is driven by the walls moving in the opposite direction (the velocity of the
walls are ±U0, respectively). As shown in Fig.3.3, we refer to the direction
which the wall is moving along as streamwise or x-direction, the direction
which is normal to the walls as wall-normal or z-direction, and the direction
which is normal to x-z plane as spanwise or y-direction4. The domain is
(x, y, z) ∈ Ω = [0, Lxh]×[0, Lyh]×[−h, h]. Kawahara [22] sets the streamwise
flux and the spanwise mean pressure gradient to be zero and we here employ
the same conditions.

3.2.2 Equation of motion

We non-dimensionalize lengths in units of h, velocity in units of U0, pressure
in units of U2

0ρ where ρ is the fluid density. Reynolds number is Re =

can resemble those of the actual regeneration cycles (for instance the 8-dimensional model
proposed by Waleffe [62]). However, Keefe et al. [34] found that the attractor dimension
of the wall-turbulence at relatively high Reynolds number is D ≃ 780. Thus it is not
trivial how large the attractor dimension of the turbulence is.

4This coordinate setting is the same as Clever and Busse [64]
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Fig. 3.3: Illustration of plane Couette flow system. x, y, z-direction are re-
ferred to as streamwise, spanwise, wall-normal direction, respectively.

U0h/ν where ν is the kinematic viscosity. Non-dimensionalised Navier-Stokes
equation and the incompressible condition is

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∇2u, (3.1)

∇ · u = 0 (3.2)

where u = (ux, uy, uz) is the non-dimensionalised velocity, p is the non-
dimensionalised pressure defined in the domain (x, y, z) ∈ [0, Lx]× [0, Ly]×
[−1, 1].

We use non-slip boundary condition on the walls (z = ±1);

ux(x, y,±1) = ±1, (3.3)

uz(x, y,±1) = uy(x, y,±1) = 0, (3.4)

and periodic boundary condition in a horizontal direction;

u(x, y, z) = u(x+ Lx, y, z) = u(x, y + Ly, z), (3.5)

∇p(x, y, z) = ∇p(x+ Lx, y, z) = ∇p(x, y + Ly, z). (3.6)

Here, we describe procedures for obtaining evolution equations which we
actually solve numerically. First, we decompose the velocity and pressure
field to the mean part and the fluctuation part respectively (appendix B.1.1).
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3.2 Couette flow system and numerical method

Then, we derive the evolution equations of the mean filed and the fluctuation
field (appendix B.1.2). Next, we set the mean pressure gradient and the
mean flux (appendix B.1.3). Finally, boundary conditions of the means and
fluctuation flows are fixed (appendix B.1.4).

Employing toroidal and poloidal potential (see appendix B.1.2), these
procedures lead to the equation of motion as the forms of vorticity equa-
tions (evolution equations of toroidal and poloidal potential) and mean flow
equations;

∂
∂t
∇2

Hψ̃ + ez ·∇× (u× ω) = 1
Re
∇2

H∇2ψ̃
∂
∂t
∇2

H∇2ϕ̃− ez ·∇×∇× (u× ω) = 1
Re
∇2

H∇2∇2ϕ̃

∂
∂t
U + ∂

∂z
⟨uzu⟩H = − 1

Re

⟨
∂2Ux

∂z2

⟩
V

ex +
1
Re

∂2U
∂z2

.

(3.7)

where ω denotes the vorticity vector (ω = ∇ × u), ψ̃ and ϕ̃ denote respec-
tively the toroidal and poloidal potential of the fluctuation velocity field,
∇2

H denotes the horizontal Laplacian (∇2
H = ∂2x + ∂2y), and ⟨·⟩H denotes the

horizontal mean and ⟨·⟩V denotes the volume mean such that

⟨
·
⟩
H

=
1

LxLy

∫ Ly

0

∫ Lx

0

· dxdy, (3.8)⟨
·
⟩
V

=
1

2LxLy

∫ z=+1

z=−1

∫ y=Ly

y=0

∫ x=Lx

x=0

· dxdydz. (3.9)

Correspondingly the boundary conditions of the potentials and the mean
flows are 

ϕ̃(x, y,±1) = ∂ϕ̃
∂z
(x, y,±1) = ψ̃(x, y,±1) = 0

ψ̃(x, y, z) = ψ̃(x+ Lx, y, z) = ψ̃(x, y + Ly, z)

ϕ̃(x, y, z) = ϕ̃(x+ Lx, y, z) = ϕ̃(x, y + Ly, z)

Ux(z = ±1, t) = ±1

Uy(z = ±1, t) = 0.

(3.10)

It is to be noted that the streamwise volume flux must be zero initially;

⟨ux(x, y, z, 0)⟩V = 0. (3.11)
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3.2.3 Numerical method

Direct numerical simulation of Couette flow

Following the setting of the minimal Couette flow, the domain sizes are set
to be Lx = 1.755π and Ly = 1.2π for the domain (x, y, z) ∈ [0, Lx]× [0, Ly]×
[−1, 1] and the Reynolds number is set to be Re = 400 [22]. The dealiased
Fourier expansions are employed in the horizontal (x-y) directions, and the
Chebyshev tau methods are employed in the wall-normal (z) direction. The
toroidal potential, for example, is expanded as follows

ψ(x, y, z) =
KM∑

k=−KM

LM∑
l=−LM

MM∑
m=0

ψ̂(k,l,m)e
i(αkx+βly)Tm(z) (3.12)

where ψ̂(k,l,m) is the expansion coefficient, α = 2π/Lx and β = 2π/Ly is the
fundamental streamwise and spanwise wavenumbers respectively, and Tm(z)
is the m-th order Chebyshev-polynomial. We set the truncation mode num-
bers KM = 8(x-direction), LM = 8(y-direction), MM = 32(z-direction)
and the grid points are 32 × 32 × 33 (in x, y, andz). The time integration
is performed with the 2nd order Adams-Bashford method with a time step
width ∆t = 1.0 × 10−3. The resolution we use here is almost the same as
(or higher than) the often used resolution [25]. The CFL number is less than
0.1 which is less than Philip and Manneville [65] use in the similar setting.
The friction Reynolds number Reτ (= uτh/ν) is Reτ = 34.0 and the periods
of the domain in streamwise and spanwise direction normalized by lτ = ν/uτ
are L+

x = Lx/lτ = 187 and L+
y = Ly/lτ = 128 respectively, which is in good

agreement with the values reported in Kawahara [25]. The grid spacing in
the x, y and z direction normalized by lτ is ∆x+ = 5.9, ∆y+ = 4.0, and
∆z+ = 0.16-3.3 (the minimum-maximum grid spacing), which is comparable
to those in most direct numerical simulations [59].

We used the library for spectral transform ISPACK [66], its Fortran90
wrapper library SPMODEL library [67] and the subroutine of LAPACK.
For drawing the figures, the products of the Dennou Ruby project [68] and
gnuplot were used.

covariant Lyapunov analysis

Here we describe the numerical methods of covariant Lyapunov analysis
which we use in this paper. We consider the Couette flow as a dynam-
ical system and the state vector X is defined by the spectral coefficients
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3.3 Turbulent behavior of minimal Couette flow

ψ̂(k,l,m), ϕ̂(k,l,m), Ûx(m), Ûy(m) of the potentials ψ, ϕ and the mean flow fields
Ux, Uy as follows

X =
(
ψ̂(−K,−L,0), · · · , ψ̂(K,L,M), ϕ̂(−K,−L,0), · · · , ϕ̂(K,L,M), Ûx(0), · · · , Ûx(M), Ûy(0), · · · , Ûy(M)

)
∈ RN

(3.13)

where N is the number of the degrees of freedom given by N = 2((2KM +
1)(2LM + 1)− 1)(MM + 1) + 2(MM + 1) = 19, 074. Inner product we use
here for Lyapunov analysis is defined by

(X,Y )E =
1

2

⟨
ωX · ωY

⟩
V

(3.14)

where ωX (ωY ) is the vorticity vector field calculated from the state vector
X (Y ). We use an induced norm from the inner product (·, ·)E which is
volume average enstrophy; ||X||2 = (X,X)E .

Linearized evolution equation of this system is given by


∂
∂t
∇2

Hψ
′ + ez ·∇× (u× ω′) + ez ·∇× (u′ × ω) = 1

Re
∇2

H∇2ψ′

∂
∂t
∇2

H∇2ϕ′ − ez ·∇×∇× (u′ × ω)− ez ·∇×∇× (u× ω′) = 1
Re
∇2

H∇2∇2ϕ′

∂
∂t
U ′ + ∂

∂z
⟨uz ′u⟩H + ∂

∂z
⟨uzu′⟩H = − 1

Re

⟨
∂2Ux

′

∂z2

⟩
V

ex +
1
Re

∂2U ′

∂z2

(3.15)

where the prime ′ denotes small perturbations; ψ, ϕ, Ux, Uy → ψ+ψ′, ϕ+
ϕ′, Ux + Ux

′, Uy + Uy
′.

Boundary condition of the perturbation is the same as the base flow ex-
cept the streamwise mean flow U ′

x. It is natural that the boundary condition
of streamwise mean flow of the perturbation flow is set to be zero on the
walls; U ′

x(z = ±1) = 0, while that of the base flow is Ux(z = ±1) = ±1.

We calculate the time evolution of the linearized flows by the same way
as the base flow (2nd order Adams-Bashford method) using the Message
Passing Interface (MPI) where each cpu calculates each linearized flow. We
set the time interval of the QR decomposition TQR = 1 and after the every
QR decompositions we employ the Euler method for just 1 step to calculate
the linearized flows.
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Fig. 3.4: Time series of model RMS velocities
√
⟨|û(k)|2⟩z for (a) multiple

regeneration cycles (b) single regeneration cycle. Solid line (red) : k = (0, 1),
dotted line (blue) : k = (1, 0), dashed dotted (green) : k = (1, 1), thin solid
line (pink) : k = (2, 0), and dashed double-dotted (light blue) : k = (1, 2).

3.3 Turbulent behavior of minimal Couette

flow

Here we see the turbulent behavior of minimal Couette flow briefly. First of
all, we show time series of modal RMS velocities5

√
⟨|û(k, z)|2⟩z in Fig.3.4

where k = (k, l) ∈ Z2 and û(k, z) = û(k, l, z) is the Fourier coefficient
of the velocity filed : û(k, z) = ⟨u(x, y, z)e−i(kxx+kyy)⟩H (kx = αk, ky =
βl). Hereafter we may drop z-dependence of û(k, z) as û(k) for simplicity.
As reported by Hamilton et al. [59], the time series of the modal RMS
velocities oscillate nearly periodically (multiple regeneration cycles in Fig.3.4
(a)) and the period of the oscillation Tp is approximately Tp ≃ 100 (single
regeneration cycle in Fig.3.4 (b)). Specifically, it is found that the amplitude
of y-independet mode (k=(1,0)) increases when that of x-independent mode
(k=(0,1)) decreases.

Corresponding to the time series of the regeneration cycles (Fig.3.4 (b)),
the flow fields change in time nearly periodically. In Fig.3.5 (a-f), we show
snap shots of the streamwise velocity field ux(x) (contour lines) and the
streamwise vorticity field ωx(x) (tone levels) at t = 2730 (a), 2750 (b), 2760

5The definition of the ‘modal RMS velocity’ is slightly different from that of Hamilton
et al. [59] by a factor

√
2.
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3.3 Turbulent behavior of minimal Couette flow

(c), 2770 (d), 2790 (e), 2820 (f). Upper figure of each snap shot is cross-
sectional view taken along z = 0 and lower one is cross-sectional view taken
along x = 1.5 (indicated by a small arrow in Fig.3.5 (a) ) The regeneration
cycle can be observed in these snap shots. At the beginning of the cycle
(t = 2730), flow field is almost x-independent, which corresponds to the
predominance of the modal RMS velocity of the k = (0, 1) mode in the
time series. It is particularly worth noting that the high and low speed
regions form so-called streak structures consisting of an upward shift of the
low streamwise velocity region and a downward shift of the high streamwise
velocity region (see the cross-sectional veiw). The (high and low speed)
streaks are well known as the one of the key structures in trying to understand
the regeneration cycle. The x-independent structures soon break up and the
streaks start to meander (t = 2750, 2760), which corresponds to the growth
of the modal RMS velocity of the k = (1, 0) and the higher modes in the
time series. In a narrow region between the meandering structures of the
streaks, plus and minus streamwise vortices appear strongly along nearly
z = 0 plane (t = 2760). We consider that these localized strong streamwise
vortices are also key structures in understanding regeneration cycle especially
from a point of view of instability in the flow.

In order to characterize the localization of the streamwise vortices, we
show time series of ‘horizontal’ RMS of the streamwise vorticity

√
⟨ω2

x⟩H at
z = 0 in Fig.3.6. When the x-independent streaks begin to meander (t =
2730), the ‘horizontal’ RMS of the streamwise vorticity begins to increase.
Moreover, It is found that the ‘horizontal’ RMS of the streamwise vorticity
achieve a strong and sharp peak just before t = 2760, indicating the strong
localization of the streamwise vortices along z = 0 plane. Almost at the
same time, the modal RMS velocities except k = (0, 1) mode reach maximum
values (see Fig.3.4).

After the disappearing of the streamwise vortices, the x-independent
streaks regenerate (t = 2770, 2790, 2820), which closes the regeneration cycle.

We can divide the regeneration cycle into two phase using the sharp peak
of the ‘horizontal’ RMS of streamwise vorticity; (i) streak meandering phase
(before the peak) and (ii) streak reformation phase (after the peak). In the
time series of the Fig.3.6, the phase (i) shifts to the phase (ii) at the peak
t ≃ 2760 of the ‘horizontal’ RMS of streamwise vorticity.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.5: Snap shots of the streamwise velocity field ux(x, t) (contour lines)
and the streamwise vorticity field ωx(x, t) (tone levels) at (a): t = 2730 ,(b):
t = 2750, (c): t = 2760, (d): t = 2770, (e): t = 2790, (f): t = 2820. Upper
figure of each snap shot is cross-sectional view taken along z = 0 and lower
one is cross-sectional view taken along x = 1.5 (indicated by a small arrow
in (a))
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Fig. 3.6: Time series of ‘horizontal’ RMS of streamwise vorticity
√
⟨ω2

x⟩H of
the single regeneration cycle at the mid-plane (z = 0). Blue circle in the
figure represents the value of

√
⟨ω2

x⟩H at t = 2750 for reference in a later
section.

3.4 Orbital instability of the regeneration cy-

cle in minimal Couette turbulence

For over five decades (see Schoppa and Hussain [71] and references therein),
a number of researchers have discussed the regeneration cycle observed in
the previous section. While their findings are highly suggestive, they are
on the basis of the models and the phenomenological arguments. Here we
study the orbital instability of the regeneration cycle toward characterizing it
quantitatively on the basis of the full Navier-Stokes equation. In particular,
we show the Lyapunov spectrum, local Lyapunov exponents, and associated
Lyapunov mode of the regeneration cycle in the minimal Couette turbulence.

Fig.3.7 shows Lyapunov spectrum λj (j = 1, 2, · · · , 30) of Couette tur-
bulence. It is found that Couette turbulence possesses four positive Lya-
punov exponents (λj > 0 (j = 1, 2, 3, 4)), three zero Lyapunov exponents
(λj = 0 (j = 5, 6, 7)), and minus Lyapunov exponents (λj < 0 (j ≥ 8)).
The zero Lyapunov exponents correspond to the symmetries of the dynam-
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Fig. 3.7: Lyapunov spectrum λj (j = 1, 2, 3, · · · , 30) of the minimal Couette
turbulence. The number of positive Lyapunov exponents is four (λj > 0 (j =
1, 2, 3, 4)) and the number of zero Lyapunov exponents is three (λj = 0 (j =
5, 6, 7)). The maximum Lyapunov exponent is λ1 = 0.021.

ical system; time translational symmetry and spatial translational symme-
tries in horizontal directions (x, y). The maximum Lyapunov exponent λ1
is λ1 = 0.021 and a corresponding time scale (TL = 1/λ1) is nearly half (or
slightly less than) the ‘period’ of regeneration cycle; TL ≃ Tp/2. Interestingly,
the maximum Lyapunov exponent is close to the maximum Floquet expo-
nent µ = 0.019 of the ‘strong’ unstable periodic orbit reported by Kawahara
[69]6. Besides, the Floquet exponents of unstable (relative) periodic orbits
calculated by Viswanath [70] are also near the maximum Lyapunov expo-
nent (µ = 0.023 ∼ 0.035. See the TABLE 1. in Viswanath [70]). Lyapunov
dimension DL

(
= K+ 1

|λK+1|
∑K

j=1 λj
)
is DL = 14.8 where K is the largest in-

6In this paper (p.16 and p.19), they reported that the period of the strong periodic
orbit is T ≃ 65 and the most unstable Floquet multiplier is － 3.4 [69]. Therefore the
Floquet exponent is calculated by µ = ln 3.4/65 = 0.018827....
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Fig. 3.8: Summation of the Lyapunov spectrum
∑

j λj (j = 1, 2, 3, · · · , 30)
of the minimal Couette turbulence. to calculate Lyapunov dimension and
Kolmogorov-Sinai entropy. The Lyapunov dimension is DL = 14.8 and
Kolmogorov-Sinai entropy is hKS = 0.048.

teger such that
∑K

j=1 λj ≥ 0 (Fig.3.8). Kolmogorov-Sinai entropy estimated
by summation of the positive Lyapunov exponents is hKS = 0.048.

The existence of the positive Lyapunov exponents indicates that there
are some instability mechanisms which play an important role in driving the
regeneration cycle. We here study the instability mechanisms in the regener-
ation cycle via local Lyapunov exponents λ̃j(t, τ). Temporal variations of the
local Lyapunov exponents λ̃j(t, τ) (j = 1, 2, 3, 4) are shown in a upper panel
of Fig.3.9 and the temporal variations of the ‘horizontal’ RMS of stream-
wise vorticity is shown in a lower panel of Fig.3.9 (the same time series as
Fig.3.6, but including three regeneration cycles). We set τ = 1 and write
λ̃j(t, 1) = λ̃j(t) hereafter. The local Lyapunov exponents λ̃j(t) (j = 1, 2, 3, 4)
shown in Fig.3.9 are positive after the longtime averaging as shown in Fig.3.7.
It is found that the local Lyapunov exponents tend to be positive during the
phase (i) and negative during (ii), although they fluctuate quickly over time.
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Fig. 3.9: [upper panel] Time series of local Lyapunov exponents λ̃j(t) for solid
line (red) : j = 1, dotted line (green) : j = 2, dashed dotted (blue) : j = 3,
and dashed double-dotted (pink) : j = 4. [lower panel] The ‘horizontal’ RMS
of streamwise vorticity

√
⟨ω2

x⟩H at the mid-plane (z = 0).

Roughly speaking, the period of the fluctuation is about 10 ∼ 20 which in-
dicates that the local stability of the flow is sensitive to the details of the
base flow as observed in Hamilton et al. [59]7. Moreover, the local Lyapunov

7They described the stability of the base flows as follows ; “The principal limitation of
the linear approach is that the ‘base’ flow we are trying to analyse evolves on the same
time scale as the instability. The choice of a base flow corresponding to a peak in M(0, β)
for the stability computation was for this reason somewhat arbitrary. A base flow obtained
from data at t = 753.8, just slightly before the peak at t = 757.5, gives rather different
results. At the earlier time, only the α-modes are unstable, while at the later time, both
the α-and the 2α-modes grow. Clearly, the linear analysis is sensitive to the details of the
base flow.”. See §5 in Hamilton et al. [59] for details.
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Fig. 3.10: Accumulative expanding rate Λ(t0, τ); (a) t0 = 2730, (b) t0 = 2760
for λ̃j(t) for solid line (red) : j = 1, dotted line (green) : j = 2, dashed
dotted (blue) : j = 3, and dashed double-dotted (pink) : j = 4. The black
dot horizontal line denotes Λj(t0, τ) ≡ 1 (i.e. nutral).

exponents appear to reach their maximum values (i.e. most unstable state
in the regeneration cycle) at the peak of the ‘horizontal’ RMS of streamwise
vorticity and suddenly decrease to zero and minus values (i.e. stable period
in the regeneration cycle) after the peak. These observations suggest that
the localized streamwise vortices in the mid-plane have a key influence on
the instability of the flow.

How does the infinitely small perturbation added the flow actually evolve?
By definition, the amplitude of the perturbation along j-th Lyapunov vector
evolves as ||vj(t + τ)|| = ||vj(t)||eλ̃j(t,τ)τ . Thus we define accumulative ex-

panding rate as Λj(t, τ) = eλ̃j(t,τ)τ . When we add the perturbation at time
t = t0, the accumulative expanding rate Λj(t0, τ) measures the ratio of the
norm of the perturbation at t = t0 + τ to that of t = t0, i.e. ||vj(t0 + τ)|| =
||vj(t0)||Λj(t0, τ), as a function τ . Fig.3.10 shows the accumulative expand-
ing rate Λj(t0, τ) where (a) t0 = 2730 (the initial stage of phase (i))and (b)
t0 = 2760 (the final stage of phase (i)) for λ̃j(t) (j = 1, 2, 3, 4). In the ap-
pendix B.2, we show the accumulative expanding rate for λ̃j(t) (1 ≤ j ≤ 20)
which displays almost the same behaviors. In Fig.3.10 (a), clearly small per-
turbations grow until τ ≃ 30 (t0 + τ = 2760) and the peaks of the growth of
the perturbations are close to that of the ‘horizontal’ RMS of the streamwise
vortices. Furthermore, after reaching its maximum, it is considered that the
streamwise vortices never destabilize the flow since the small perturbations
hardly grow and decay until τ ≃ 70; the flow is (neutral) stable (Fig.3.10
(b)). In other words, it suggests that there is no exponential instability in
the phase (ii).
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(a) (b) (c) (d)

Fig. 3.11: Lyapunov modes at the initial stage of the phase (i) (t = 2730).
Streamwise vorticities of the Lyapunov modes δωxj are shown as color tone
for (a); j = 1, (b); j = 2, (c); j = 3, (d); j = 4 and streamwise velocities of
the base flow are shown as counter lines.

Examining the exponential instabilities in the phase (i) more closely, we
next see Lyapunov modes associated to the Lyapunov exponents. Firstly we
show the Lyapunov modes at the initial stage of the phase (i) (t = 2730)
in Fig.3.11. The streamwise vorticities of the Lyapunov modes δωxj are
shown as color tone for (a); j = 1, (b); j = 2, (c); j = 3, (d); j = 4 and
streamwise velocities of the base flow (the turbulent solution) are shown as
counter lines. The Lyapunov modes are normalized by the enstrophy norm
as 1/2⟨|δωj|2⟩V = 1. Tone levels are set |δωxj| ≤ 4.0 for (a),(b),(c) and
|δωxj| ≤ 1.5 for (d). Upper figure of each panel is cross-sectional view taken
along z = 0.8 and lower one is cross-sectional view taken along x = 1.5.
Here we consider the physical significance of the Lyapunov modes except
the fourth Lyapunov mode which is not localized in space and its physical
interpretation is not well understood at this time. The streamwise vorticities
of the Lyapunov modes δωxj (j = 1, 2, 3) are found to be localized near-
wall regions of ux = 0 sheet in the cross-stream plane (lower panel) and
the signs of those appear alternately in streamwise direction (upper panel).
Moreover, The vorticities of the Lyapunov modes δωxj (j = 1, 2, 3) are nearly
even function to the each high and low speed streak; δωj(x, y0 − ∆y, z) ≃
δωj(x, y0 +∆y, z) where y0 ≃ Ly/4 or 3Ly/4 for small ∆y.

The other cross-sectional views of the 1st (i.e. most unstable) Lyapunov
modes at the same time (t = 2730) are shown in Fig.3.12 along (a); x = Lx/4,
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(a) (b)

(c) (d)

Fig. 3.12: Cross-sectional views of the most unstable Lyapunov mode at the
initial stage of the phase (i) (t = 2730) at (a); x = Lx/4, (a); x = Lx/2, (a);
x = 3Lx/4, (a); x = Lx. Streamwise vorticities of the Lyapunov mode δωx1
are shown as color tone and streamwise velocities of the base flow are shown
as counter lines.

(a); x = Lx/2, (a); x = 3Lx/4, (a); x = Lx. Streamwise vorticities of the
Lyapunov mode δωx1 are shown as color tone and streamwise velocities of the
base flow are shown as counter lines. These snap shots are taken at the initial
stage of the phase (i) (t = 2730), thus these Lyapunov modes can be related
to the meandering of the x-independent streaks. In fact, the patterns of the
Lyapunov modes are similar to that of the eigenfunctions (so-called sinuous
streak instability modes) as a result of linear instability analysis of the model
streak calculated by Schoppa and Hussain [71] (Fig.3.1) and the corrugated
sheet calculated by Kawahara et al. [72] (Fig.3.2 (a)). Particularly, we
can see the characteristics of the sinuous instability mode in the patterns
of the Lyapunov modes, i.e. (A) appearances of different signs streamwise
vorticity alternatively, (B) localizations of streamwise vorticity near the low-
speed streak ‘crest’ and the high-speed ‘trough’ regions. Hence we conclude
that the Lyapunov modes observed here correspond to the sinuous mode
appearing in the linear stability analysis of the model streak. Moreover it is
found that the sinuous streak instability mode is important not only in the
linear stability of the stationary solution (models) but also in the asymptotic
stability of the turbulent solution.

Following the growth of the sinuous mode and the meandering of the
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(a) (b) (c) (d)

Fig. 3.13: Lyapunov modes at the final stage of the phase (i) (t = 2760).
Streamwise vorticities of the Lyapunov modes δωxj are shown as color tone
for (a); j = 1, (b); j = 2, (c); j = 3, (d); j = 4 and streamwise velocities of
the base flow are shown as counter lines.

streaks, the observation of the local Lyapunov exponents indicates another
instability mechanism related to the streamwise vortices as mentioned above.
Clarifying the instability mechanism, we show the Lyapunov mode at the final
stage of the phase (i) in Fig.3.13. The streamwise vorticities of the Lyapunov
modes δωxj are shown as color tone for (a); j = 1, (b); j = 2, (c); j = 3,
(d); j = 4 and streamwise velocities of the base flow (the turbulent solution)
are shown as counter lines as well as in Fig.3.11. The Lyapunov modes are
normalized by the enstrophy norm as 1/2⟨|δωj|2⟩V = 1. Tone levels are set
|δωxj| ≤ 4.0 for all panels. Upper figure of each panel is cross-sectional view
taken along z = 0 (mid-plane) and lower one is cross-sectional view taken
along x = 1.5. It is found that the streamwise vorticities of the Lyapunov
modes δωxj (particularly j = 3, 4) localize at the narrow space between the
meandering streaks where the streamwise vorticities of the turbulent solution
also localize seen in Fig.3.5 (c). This observation supports the idea that the
the localization of the streamwise vortices in the final stage of the phase (i)
is a source of the instability of the flow.
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3.5 Regeneration cycle from a viewpoint of

orbital instability

Here we consider the regeneration cycle of Couette turbulence from a stand-
point of orbital instability, which partially overlaps with the self-sustaining
mechanisms proposed by the previous studies. Firstly we describe important
mechanisms in the phase (i); mechanisms of the streak meandering and the
generation of the streamwise vortices. Then we discuss a key mechanism
closing the regeneration cycle in the phase (ii); a reformation mechanism of
the x-independent streak. Finally the regeneration cycle mentioned above is
summarized by examining ‘energy flow’ in the dynamical system.

3.5.1 Phase (i); How do the streaks mender and the
streamwise vortices appear?

From the observation of the domination of k = (0, 1) mode in the modal RMS
velocities

√
⟨|û(k, z)|2⟩z (Fig.3.4) and the snap shot of the flow (Fig.3.5 (a)),

the predominant structure of the flow at the initial stage of the phase (i) is
clearly (almost) x-independent streak. It is well known that large ‘ampli-
tude’ streak steady solution and streak model are linearly unstable and the
most unstable eigenmode is the sinuous mode [72]. Moreover, the covariant
Lyapunov analysis presented here clarified that the sinuous instability causes
not only the meandering of the model streak but also the meandering of the
streak in the turbulent flows.

Following the streak meandering by the sinuous instability, the streamwise
vorticties localize strongly along the mid-plane as shown in Fig.3.5 (c) and
Fig.3.6. Here we consider the mechanism generating the localized streamwise
vortices. Fig.3.14 shows snap shots of the streamwise velocity field ux(x, t)
(contour lines) and the streamwise vorticity field ωx(x, t) (tone levels) at (a):
t = 2748 ,(b): t = 2750, (c): t = 2752, (d): t = 2754. We can see the
streamwise vortices generation in these snap shots: the positive streamwise
vortex appear around (x, y, z) = (3Lx/4, 0, 0) and the negative streamwise
vortex appear around (x, y, z) = (Lx/4, Ly/2, 0) in Fig.3.14 (d). By observ-
ing carefully these snap shots, it is found that there are small amplitude
vorticities already in Fig.3.14 (a)8 and the small amplitude vorticities grow
into the localized streamwise vortices with time. Moreover, the time series

8See the appendix B.3 for a detailed generation mechanism of these small amplitude
vorticities.
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(a) (b) (c) (d)

Fig. 3.14: Snap shots of the streamwise velocity field ux(x, t) (contour lines)
and the streamwise vorticity field ωx(x, t) (tone levels) at (a): t = 2748 ,(b):
t = 2750, (c): t = 2752, (d): t = 2754. Planes of the cross-sectional views
are the same as that of Fig.3.5.

(a) (b)

Fig. 3.15: Illustration of the formation mechanism of the positive gradi-
ent region of the streamwise velocity (∂xux > 0) which triggers the vortex
stretching. Upper and lower panels correspond to the upper and lower pan-
els of the cross-sectional views in Fig.3.14 respectively. Thick lines represent
contour lines defined as ux = 0 and dash lines represent the plane of the
cross-sectional views (a): before the turnover, (b): after the turnover.
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of the local Lyapunov exponents and the Lyapunov modes give a hint that
the growth of the streamwise vortices is exponential with time.

From these observations, the localization of the streamwise vortices is
considered to be driven by the following mechanism;

stage I the small amplitude vorticities appear at the narrow region be-
tween the meandering streaks (see Fig.3.14 (a) and the appendix B.3
for detail),

stage II the small amplitude vorticities wind up and turn over the contour
line of the streamwise velocity ux, which forms the positive gradient
region of the streamwise velocity; ∂xux > 0 (see Fig.3.14 (b)),

stage III by vortex stretching, the small amplitude vorticities grow into the
localized streamwise vortices (see Fig.3.14 (c-d)).

To describe the step II, we show the illustration of the formation mech-
anism of the positive gradient region of the streamwise velocity (∂xux > 0)
in Fig.3.15, focusing on the narrow region between streaks at (x, y, z) =
(Lx/4, Ly/2, 0). Upper and lower panels correspond to the upper and lower
panels of the cross-sectional views in Fig.3.14 respectively. Thick lines rep-
resent contour lines defined as ux = 0 and dash lines represent the plane of
the cross-sectional views (a): before the turnover, (b): after the turnover.
Soon after the streak meandering, streamwise gradient of the the stream-
wise velocity is negative (∂xux < 0: see Fig.3.15 (a)) where the small am-
plitude vorticity appear. Therefore at this stage, the vortex stretching do
not occur considering the streamwise component of the vorticity equation:
Dtωx ∼ (∂xux) ωx

9. However, the small amplitude vorticity winds up and
turns over the contour line of the streamwise velocity ux in a clockwise fashion
in this case as the sign of the small amplitude vorticity is negative. Thus the
positive gradient region of the streamwise velocity (∂xux > 0: see Fig.3.15
(b)) emerges, which triggers the vortex stretching. The localization of the
positive vorticity occurs similarly around (x, y, z) = (3Lx/4, 0, 0).

Corresponding to the occurrence of the vortex stretching, we can see a
qualitative change also in the time series of ‘horizontal’ RMS of streamwise
vorticity

√
⟨ω2

x⟩H at the mid-plane (z = 0). We put a blue circle on the
time series shown in Fig.3.6 where the vortex stretching occurs (t = 2750).
Obviously the qualitative change can be observed around the blue circle.

9We here drop the other terms including vortex tilting terms and viscous term for
simplicity since our interest is in whether the vortex stretching occurs or not.
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The vortex stretching described above appears to occur in most regenera-
tion cycle. As a reference, we show another vortex stretching events following
the event mentioned above in the appendix B.2.

By vortex stretching, the amplitude of the localized vortices grow up ex-
ponentially. Thus if we perturb the vortices, the perturbation also grow up
exponentially. Hence, we can regard the localization process of the stream-
wise vorticities as some kind of a process driven by an exponential instabil-
ity. This is the reason why there are some observations implying the relation
between the localization of the streamwise vorticities and the orbital expo-
nential instability; the time series of the local Lyapunov exponents shown in
Fig.3.9, Fig3.10 (a) and the Lyapunov modes shown in Fig.3.13.

Apparently, the localized streamwise vortices wind up and break large-
scale flow structure to small-scale one. Thus we calculate energy flux function
and verify that the energy cascade coincides with the localization of the
streamwise vortices (see for details in the appendix B.10).

3.5.2 Phase (ii); What regenerates the streaks?

As we see the previous section, the x-independent streaks mender because of
the sinuous instability at the early stage of the regeneration cycle. However
the x-independent streaks are generated again during the phase (ii), which
closes the regeneration cycle. Here we discuss the regeneration mechanism
of the x-independent streaks. We consider the regeneration process of the
x-independent streaks as an energy gain process of the k = (0, 1) mode
(hereafter referred to as ‘streak mode’ ks = (0, 1) and written by û(ks))
whose amplitude increases in the phase (ii) shown in the time series of the
modal RMS velocities (Fig.3.4).

An evolution equation of ‘modal energy’10of the k mode is generally

d

dt

⟨
|û(k)|2

⟩
z

= −
⟨
2Re

[
û∗(k) ·

(
ûz(k)∂z

)
û(0)

]⟩
z

−
⟨ ∑

k′′+k′=k,
k′ ̸=0,k′′ ̸=0

N (û(k), û(k′), û(k′′))

⟩
z

− 2

Re

⟨{
(αk)2 + (βl)2

}
|û(k)|2 + |∂zû(k)|2

⟩
z

, (3.16)

10More precisely, it would be better to refer to it as ‘twice of modal energy’.
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(see appendix B.5 for a detailed derivation)11.The first term of the r.h.s. of
the above equation is an nonlinear interaction term with the mean flow, the
second term is a summation of the other nonlinear terms (triad interaction
ks = k′ + k′′ with k′,k′′ modes except the mean flow mode; k′ ̸= 0,k′′ ̸= 0),
and the third term is the viscous dissipation term. The nonlinear interaction
term with the mean flow can be approximated by⟨

2Re
[
û∗(k) ·

(
ûz(k)∂z

)
û(0)

]⟩
z

≃
⟨
2Re[û∗x(k)ûz(k)∂zûx(0)]

⟩
z

(3.17)

with an assumption about the mean flow: ∂zûx(0) ≫ ∂zûy(0) (see appendix
B.5.2 for a validity of the mean flow assumption). For simplicity, we refer
to the approximated term as “the nonlinear interaction term with the mean
flow” hereafter.

In order to study the energy gain process of the streak mode, we show a
result of budget analysis of the evolution equation of streak mode ‘energy’
(k = ks in the evolution equation (3.16)) in Fig.3.16. The red (solid) line is
the time derivative term of ⟨|û(ks)|2⟩z (l.h.s. of the evolution equation), the
green (dashed) line is the nonlinear interaction term with the mean flow, the
blue (dot) line is the other nonlinear terms, and the pink (dashed-dot) line
is the viscous dissipation term, where the other nonlinear terms is calculated
from the other three terms. The time derivative of ⟨|û(ks)|2⟩z is negative in
the phase (i) and positive in the phase (ii), which correspond to the meander-
ing and regeneration of the streaks. Furthermore It is found that an energy
input term to the streak mode (i.e. the positive term in the r.h.s. of the
evolution equation) is only the mean flow interaction term throughout the
regeneration cycle. Thus we conclude that the regeneration of the streaks is
driven by the mean flow interaction.

11Using horizontal direction Fourier expansion: f(x) =
∑

k f̂(k.z)e
ik·x, square of the

L2 norm of the function f is

||f(x, y, z)||2L2
=

1

2LxLy

∫ z=+1

z=−1

∫ y=Ly

y=0

∫ x=Lx

x=0

f(x, y, z)2dxdydz

=
1

2

∫ z=+1

z=−1

∑
k

|f̂(k, z)|2dz

= ⟨
∑
k

|f̂(k, z)|2⟩z.

Here we consider ⟨|û(k)|2⟩z = ||uk(x)||2L2
, where uk(x) is velocity field consisting of k

mode only.
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Fig. 3.16: Budget analysis of the evolution equation of the ‘modal energy’
(3.16) in the case of the streak mode (i.e. k = ks). The red (solid) line is the
time derivative term (l.h.s. of the evolution equation), the green (dashed)
line is the nonlinear interaction term with the mean flow, the blue (dot) line
is the other nonlinear terms, and the pink (dashed-dot) line is the viscous
dissipation term.
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Fig. 3.17: (a) Wall-normal profile of the mean flow interaction term of the
streak mode; g(ks, z) = −2Re[û∗x(ks)ûz(ks)∂zûx(0)] (red line with closed
circles) and the meandering mode; g(km, z) = −2Re[û∗x(km)ûz(km)∂zûx(0)]
(blue line with open circles) at t = 2800. (b) The cross-sectional view of the
streamwise velocity field consisting of the streak mode only; uks

x (y, z) (color
tone) and that consisting of the all modes (solid lines) at t = 2820.

Wall-normal profiles of the mean flow interaction term are also consistent
with those of streak mode. Fig.3.17 (a) shows the wall-normal direction
profiles of the mean flow interaction term of the streak mode; g(ks, z) =
−2Re[û∗x(ks)ûz(ks)∂zûx(0)] at t = 2800 (red line with closed circles). The
profile is almost the same throughout the regeneration cycle (see appendix
B.2) and g(ks, z) > 0, indicating the energy injection from the mean flow to
the streak mode throughout the regeneration cycle. Fig.3.17 (b) shows the
cross-sectional view of the streamwise velocity field consisting of the streak
mode only; uks

x (y, z) at t = 2820 (color tone). The solid lines in Fig.3.17
(b) are the contour lines of the streamwise velocity field consisting of the all
modes. It is found that the wall-normal direction profile of the streak mode
amplitude has two local maxima at z ≃ ±0.6, which is similar to that of the
mean flow interaction term. This observation also supports our conclusion
that the regeneration of the streaks is driven by the mean flow interaction.

In Fig.3.17 (a), we also show the wall-normal direction profiles of the
mean flow interaction term of the k = (1, 0) mode (hereafter referred to as
‘meandering mode’ km = (1, 0)); g(km, z) = −2Re[û∗x(km)ûz(km)∂zûx(0)] at
t = 2800 (blue line with open circles). Clearly g(km, z) ≃ 0 and this holds
throughout the regeneration cycle (see appendix B.2). Therefore it is found
that the energy of the mean flow is injected not to the meandering mode but
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to the streak mode throughout the regeneration cycle12.

The mean flow interaction term can be interpreted as a tilting of the
spanwise vorticity of the mean flow to wall-normal vorticity. This physical
interpretation of the mean flow interaction term and a relation between this
mechanism and the well-known lift-up mechanism is discussed in appendix
B.6.

3.5.3 Energy flows in the regeneration cycle; Which
interaction does control the cycle?

Finally, here we summarize the regeneration mechanisms illustrated above
by examining energy flows. Fig.3.16 shows that the mean flow interaction
creates the regeneration of the streaks. However, while the mean flow in-
teraction term and the energy dissipation term do not change drastically
throughout the cycle, the other nonlinear terms change their amplitude with
the shift from phase (i) to phase (ii); the summation of the other nonlinear
terms reach a minimum (≃ −0.0015) in the phase (i) and maintain a constant
value (≃ −0.0005) in the phase (ii). Thus, it appears that the other nonlin-
ear interaction terms control the sign of the time derivative of ⟨|û(ks)|2⟩z;
the meandering and regeneration of the streaks (i.e. the regeneration cycle).

When the other nonlinear interaction terms are active (phase (i)) the
energy appears to “leak” from the streak mode, and when the other non-
linear terms are inactive (phase (ii)) the energy appears to “accumulate” in
streak mode, which leads to the next final question: which interaction in the
nonlinear terms does control the regeneration cycle?

At the initial stage of the phase (i), the amplitude of the streak mode
decreases and the amplitude of the meandering mode increases. This obser-
vation implies that the “accumulated” energy “leaks” from the streak mode
to the meandering mode through the nonlinear interaction during the phase
(i). Therefore we focus our attention on the evolution equation of the streak
mode ‘energy’, particularly writing the nonlinear interaction between the

12This is because the streamwise and wall-normal velocity components of the meandering
mode are quite small (when compared to those of the streak mode).
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Fig. 3.18: Budget analysis of the evolution equation of the streak mode
‘energy’ Eq. (3.18). The red (solid) line, the green (dashed) line, and the
pink (dashed-dot) line is the same as in Fig.3.16. The blue (dot) line is
the other nonlinear terms and the navy (dashed double-dotted) line is the
nonlinear interaction terms with the meandering mode in the Eq. (3.18).

55



3 Orbital instability of the regeneration cycle in minimal Couette
turbulence

streak mode ks and the meandering mode km explicitly;

d

dt

⟨
|û(ks)|2

⟩
z

=−
⟨
2Re

[
û∗(ks) ·

(
ûz(ks)∂z

)
û(0)

]⟩
z

−
⟨
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û∗(ks) ·

(
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⟩
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Re

⟨
β2|û(ks)|2 + |∂zû(ks)|2

⟩
z

(3.18)

where kob+ = (1, 1) and kob− = (−1, 1) which close the triad interaction; ks =
k′+k′′ (see appendix B.5.3 for a detailed derivation). Differences between the
above equation and the equation (3.16) are the 2nd–5th terms in the r.h.s.
of the above equation which are extracted from the other nonlinear terms
in the equation (3.16). We refer to the 2nd–5th terms as “the (nonlinear)
interaction terms with the meandering mode”.

In Fig.3.18, the blue (dot) line is the other nonlinear terms and the navy
(dashed double-dotted) line is the nonlinear interaction terms with the me-
andering mode in Eq.(3.18). The red, green, and pink lines are the same as
those in the Fig.3.16. It is found that the interaction terms with the meander-
ing mode is negative (≃ −0.001) during the phase (i) and almost zero during
the phase (ii), while the other nonlinear terms in Eq.(3.18) do not exhibit a
drastic change throughout the cycle. Only in the Phase (i) the interaction
term with meandering mode is working, which makes the time derivative of
⟨|û(ks)|2⟩z be negative (i.e. decrease of the amplitude of the streak mode.)
only in the Phase (i). Hence, we can interpret this observation as mean-
ing that when the interaction between the streak mode and the meandering
mode is “active” (the phase(i)) the energy leaks from the streak mode and
when the interaction is “inactive” (the phase(ii)) the energy accumulates in
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the streak mode. Therefore, we could conclude that the interaction between
the streak mode and the meandering mode control the cycle.

3.6 Discussions and Conclusions

In this chapter, we characterized the regeneration cycle in the minimal Cou-
ette turbulence with the orbital instability. The orbital instability was stud-
ied by using the covariant Lyapunov analysis, which is a step toward under-
standing of turbulence on the basis of the full Navier-Stokes equation without
modelings and phenomenological arguments. Our goal of this chapter was to
tackle ‘linear stability analysis’ of the full regeneration cycle.

In §3.2, we described the problem settings, equations of motion (formu-
lation by using toroidal and poloidal potentials), and numerical methods for
time-integration and covariant Lyapunov analysis.

The results of the time-integrations are shown in §3.3, where we observed
the regeneration cycle as reported by the previous studies [59]. Particularly,
we focused our attention on the localization of the streamwise vortices and
observed the strong and sharp localization in the time series of RMS of the
vorticity. There, we divided roughly the regeneration cycle into two phases,
i.e. phase (i) is the streak meandering period and phase (ii) is the streak
reformation period.

In §3.4, we presented the main results of this chapter: the orbital insta-
bility of the regeneration cycle in the Couette turbulence. First, Lyapunov
spectrum was shown, which produces the following results:
The maximum Lyapunov exponent λ1.— The maximum Lyapunov exponent
is λ1 = 0.021, which appears to be the reciprocal of the half ‘period’ of the
regeneration cycle. Interestingly, the value of λ1 is close to the maximum Flo-
quet exponent (µ = 0.019) of the strong UPO reported by Kawahara [69]. As
mentioned before, Kawahara and Kida [25] showed that the statistics of the
minimal Couette turbulence can be approximated well by the strong UPO.
Saiki and Yamada [28, 74] studied the relation between the statistics on the
segments of the chaotic orbits and that on the UPOs numerically. Remark-
ably, they found that UPO whose Floquet exponent is close to the Lyapunov
exponent of the chaotic attractor gives a good approximation to the statistics
of the chaotic attractor (see Fig.2 in [74])13. Taking into account their results,

13They described this result as follows; “if we choose a special UPO whose Lyapunov
exponent approximates that of a long chaotic orbit, the UPO also gives various macroscopic
statistical quantities of chaos, even if the period is not large enough.”
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it would be natural to conclude that the strong UPO can approximate the
statistics of the minimal Couette turbulence, since the Floquet exponent of it
is close to the maximum Lyapunov exponent of the turbulence. In addition,
the value of λ1 is close to the that of the Flpquet exponents of the unstable
(relative) periodic solutions obtained by Viswanath [70]. Nikitin [35] studied
the maximum Lyapunov exponent of developed wall-turbulence in a circular
tube and a plane channel. They found that the maximum Lyapunov expo-
nent normalized by the wall time scale was estimated to be a constant value
(λ+N ≈ 0.021) which is independent on the Reynolds number in the range of
4000 ≤ Re ≤ 10700 (140 ≤ Reτ ≤ 320) and type of the boundary shape.
In the case of the minimal Couette turbulence studied here, the maximum
Lyapunov exponent normalized by the wall time scale14is λ+1 ≈ 0.007 which
is about one third of the exponent λ+N found by Nikitin. It is considered that
the large difference in the Reynolds number causes this discrepancy between
the exponent of the minimal Couette turbulence and that of the developed
wall-turbulence. Therefore we expect that the exponent λ+1 (Re, Lx, Ly) in-
creases with the parameters such as Reynolds number or system sizes from
the parameters of the minimal flows and asymptotically attains to the con-
stant value λ+N ≈ 0.021 (for instance, lim

Re→∞
λ+1 (Re) = λ+N).

Dimension of the unstable manifold.— Dimension of the unstable manifold
of the attractor is the number of positive Lyapunov exponents. In the case
of the minimal Couette flow, the dimension is four, since we observed four
positive Lyapunov exponents. On the other hand, the strong UPO has one
real and a complex conjugate pair of unstable Floquet multipliers [69], which
means dimension of the unstable manifold of the strong UPO is three. While
the strong UPO approximates the statistics of the turbulence well, the tur-
bulent attractor itself may possess the other unstable direction (instability)
which cannot be captured by the strong UPO only.
Dimension of the attractor.— Dimension of the turbulent attractor was cal-
culated as DL ≃ 14.8 by using Kaplan-Yorke formula15. This is why the
low-dimensional models can reproduce the behaviors like the regeneration
cycle. The attractor dimension of the turbulent Poiseuille flow was estimated

14The wall time scale tτ is tτ = lτ/uτ = Re/Re2τ = 0.346 (Re = 400, Reτ = 34). Thus,
the maximum Lyapunov exponent normalized by the wall time scale is λ+1 = λ1tτ ≈ 0.007.

15Yang et al. [42] conjectured that the dimension of the inertial manifold DIM is related
to the number of ‘physical modes’ which is almost twice the Lyapunov dimension DL (i.e.
DIM ∼ 2DL). Employing this formula directly without consideration of the existence of
such manifold, the dimension of the inertial manifold of the minimal Couette turbulence
is estimated as DIM ∼ 30.
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as DL ≃ 780 at the (not so high) Reynolds number Re = 3200 (Reτ = 80),
therefore the attractor dimension of the wall turbulence is expected to in-
crease drastically with the Reynolds number.
Kolmogorov-Sinai entropy.— Kolmogorov-Sinai entropy was calculated by
the sum of the positive Lyapunov exponents (Pesin entropy formula).

Secondly, we characterized the regeneration cycle with the local Lyapunov
exponents. Roughly speaking, the local Lyapunov exponents become positive
at the initial stage of the phase (i) and attain their maxima at the moment
when the phase shifts to (ii) from (i). After attaining their maxima, the Lya-
punov exponents suddenly decrease and become negative during the phase
(ii). This characterization was supported by observing the accumulative ex-
panding rate Λ(t0, τ), which indicated that if we put the perturbation at
the initial stage of the phase (i), then the perturbation grows exponentially
until the peak of the localization of the streamwise vortices. Moreover, it
indicated that if we put the perturbation at the final stage of the phase (i),
then the perturbation never grows and decays during the phase (ii). These
results obtained here suggest that the localization of the streamwise vortices
controls the instability of the whole of the regeneration cycle.

Finally, the Lyapunov modes associated with the Lyapunov exponents
were shown, which also support the results described above. Namely, we
observed the sinuous instability mode at the initial stage of the phase (i),
and we observed the streamwise vortices instability mode at the final stage
of the phase (i). At the initial stage of the phase (i), the streaks are dom-
inant structures in the flows. Therefore, the sinuous instability mode can
be interpreted as the unstable mode of the streaks. In the previous studies,
it was suggested that the most unstable mode of the streaks is the sinuous
mode [71, 72]. However, these studies employed the linear stability analyses
of the streak models considered as steady solutions. We here showed that
the sinuous instability mode is actually the unstable mode of the streaks in
the turbulent flows. Since all ‘history’ of the successive regeneration cycles
are reflected in the results of the Lyapunov analysis by definition, thus the
sinuous mode captured by the Lyapunov analysis is unstable globally in time
rather than locally in time. Moreover, the growth rate (i.e. local Lyapunov
exponent) of the sinuous mode is smaller than that of the instability mode
associated with the streamwise vortices. Therefore, the instability mode as-
sociated with the streamwise vortices is more important as regarding the
instability of the whole of the regeneration cycle.

Hamilton et al. [59] and Waleffe [62] proposed the self-sustaining mech-
anisms consisting of streak instability, regeneration of the streamwise vor-
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Fig. 3.19: Conceptual diagram of self-sustaining process (SSP) shown in Fig.1
of Waleffe [62].

tices, and formation of the streaks (Fig.3.19), by modeling the streaks and
the streamwise vortices. In §3.5, we discussed the regeneration cycle from
the different point of view from the previous studies [59, 62]. Three questions
about the mechanisms composing the cycle were addressed there: How do
the streaks mender and the streamwise vortices appear? What regenerates
the streaks? Which interaction does control the cycle? Here, we summarize
our answers to these questions.

In §3.5.1, we considered the first question: How do the streaks mender
and the streamwise vortices appear? As mentioned above, the meander-
ing of the streaks are caused by sinuous instability, which is verified by the
previous studies [71, 72] and the covariant Lyapunov analysis. On the local-
ization mechanisms of the streamwise vortices, we divided the mechanisms
into three stages and described the stage II, III in detail (the stage I is argued
in the appendix B.3). There, the small amplitude vorticities form the region
∂xux > 0 (stage II), which trigger the vortex stretching there (stage III).
As a result of the vortex stretching, the localized large amplitude vortices
appear. This generating mechanism of the streamwise vortices are consis-
tent with the time series of the ‘horizontal’ RMS of the streamwise vortices.
Furthermore, the stretching process is considered to intensify the amplitude
of the vortices exponentially, which is also consistent with the results of the
covariant Lyapunov analysis.

The second question — What regenerates the streaks? — was discussed
in §3.5.2. The energy gaining process of the k = ks = (0, 1) mode can be
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interpreted as the regeneration process of the streaks. Therefore, we derived
the evolution equation of the model ‘energy’ Eq. (3.16) and performed budget
analysis, by which we obtained the following results;

• During the regeneration cycle, energy coming from the mean flows only
runs into streak mode (ks = (0, 1)) almost constantly, not into the
meandering mode at all (km = (1, 0)).

• During the regeneration cycle, energy dissipation rate is almost con-
stant.

• In the phase (i), the other nonlinear terms decrease the streak modal
energy (ks = (0, 1)) considerably.

Thus, the answer to the above question is that the mean flow interaction
regenerates the streaks. Physical interpretation of this interaction is argued
in the appendix B.6.

The above budget analysis implies that the increase and decrease of the
streak modal energy (i.e. the regeneration cycle) is governed by the other
nonlinear interactions. In more detail, we asked ‘which interaction does con-
trol the cycle?’. This is the final question in this chapter. In §3.5.3, we
found out that the interaction terms between the streak mode (ks = (0, 1))
and the meandering mode (km = (1, 0)) control the cycle. These interaction
terms can be considered to play a role as a ‘valve’ of the energy flows in
the system, i.e. the energy leaks from the streak mode when the interaction
is active (the valve is open in the phase (i)), the energy accumulate in the
streak mode when the interaction is inactive (the valve is closed in the phase
(ii)).

We illustrate energy flows in the system in a conceptual diagram Fig.3.20
(i) for the phase (i) and (ii) for the phase (ii). The horizontal black lines
represent walls. Energy is injected from the walls into the mean flows directly
(red arrows). The energy flows into the streak mode (‘streaks’ in the diagram)
not into the meandering mode (‘eiαx mode’ in the diagram) at all (green
arrows). In the phase (ii) (Fig.3.20 (ii)), the energy accumulates in the
streak mode and the amplitude of it increases with time16. Eventually, the
streaks become unstable if the amplitude exceeds a certain threshold (the
sinuous instability), which sifts the phase from (ii) to (i). In the phase (i)
(Fig.3.20 (i)), the energy of the streak mode leaks into the meandering mode

16We here draw only the dominant energy flows in the system. Therefore, we skip to
draw the relatively small and constant flows such as the energy dissipation.
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(i) (ii)

Fig. 3.20: Conceptual diagram of the energy flows in the regeneration cycle
for (i); the phase (i) and for (ii); the phase (ii). In the diagrams, ‘Mean
flows’ denotes k = (0, 0) mode, ‘Streaks’ denotes streak mode (k = (0, 1)),
and ‘eiαx mode’ denotes meandering mode (k = (1, 0)).

(navy arrow). As we see in the appendix B.10, the energy cascades to the
higher wavenumber mode (blue arrow) in the phase (i). From the viewpoint
of the orbital instability, the sinuous mode activates the interaction between
the streak and the meandering modes (i.e. opens the ‘valve’, navy arrow),
which results in the localization of the streamwise vortices. The streamwise
vortices grows exponentially, which stretches and breaks the large scale flow
structure into small one (the energy cascade). After the energy cascade, the
interaction between the streak and the meandering modes become inactive
(i.e. the ‘valve’ is closed), which returns the state of the system to the starting
point of the regeneration cycle.

The picture of the regeneration cycle described here is somewhat differ-
ent from the prevailing notion, i.e. self-sustaining process [59, 62] (Fig.3.19).
While the instability mechanism of the streaks is the same (sinuous insta-
bility), the other mechanisms are not. For instance, in the self-sustaining
process [59, 62], the advection of the mean shear regenerates the streaks at
the final period of the cycle only (Fig.3.19). However, as shown in the budget
analysis (Fig.3.16) and the conceptual diagram (Fig.3.20), we showed that
the tilting of the mean vorticity keeps to generate the streaks throughout
the cycle and the interaction between the streak and the meandering modes
controls whether the streaks are actually regenerated or not. Therefore, we
conclude that the picture described here provides a novel (or modified) per-
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spective of the regeneration cycle.
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Chapter 4

Conclusions and future issues

Conclusions.— In this thesis, we considered fluid turbulence from the view-
point of the dynamical system theory. Toward understanding of turbulence
from this viewpoint, many researchers have found a number of invariant solu-
tions of the Navier-Stokes equations numerically whose significance has been
recognized in recent years [29]. Another important property of chaos is the
orbital instability. Here we focused our attention on the orbital instability of
turbulence, particularly that of the Kolmogorov flow and the Couette turbu-
lence. Kolmogorov flow is fluid flow on the two-dimensional torus governed
by the Navier-Stokes equation and its bifurcation and stability have been
under intense study. The Couette turbulence is fluid turbulence between
moving walls governed by the three-dimensional Navier-Stokes equation and
has been studied with interests in the problems such as the transition to
turbulence and the turbulent structures.

In §2, we studied the relations between the hyperbolic properties and the
physical properties of the chaotic Kolmogorov flow. Since the hyperbolicity
is one of fundamental properties of dynamical systems, Inubushi et al. [52]
studied the hyperbolicity of the chaotic Kolmogorov flow and observed the
hyperbolic-nonhyperbolic transition (in §IV. of [52]) employing the covariant
Lyapunov analysis (Fig.2.6). Here, we examined the correlation functions
and enstrophy (energy dissipation rate) as a physical properties. First, we
studied the correlation decay of vorticity for several Reynolds numbers across
the hyperbolic-nonhyperbolic transition point. As a result, we found that the
hyperbolic-nonhyperbolic transition is reflected in the qualitative change of
the long-time correlation functions (Fig.2.7, 2.8). Futhermore, we reported
that the angle between the stable and unstable manifolds θ is relevant to the
enstrophy (energy dissipation rate) (Fig.2.12).
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In §3, we studied the regeneration cycle observed in the various type of
wall-turbulence. Particularly, the goal of this chapter was to characterize
the regeneration cycle in the minimal Couette turbulence with the orbital
instability, employing the covariant Lyapunov analysis. First, we presented
the Lyapunov spectrum (Fig.3.7). There, we obtained the maximum Lya-
punov exponent, the dimension of the unstable manifold, the dimension of the
attractor (Fig.3.8), and the Kolmogorov-Sinai entropy. Then, we compared
these information on the attractor with the results reported by previous stud-
ies such as the Floquet exponents of (relative) UPOs [69, 70], the normalized
maximum Lyapunov exponent of the wall-turbulence at the high Reynolds
number [35], the low-dimensional models [62], and the attractor dimension
of the Poiseuille turbulence [34].

To see the orbital instability of the regeneration cycle in more detail,
we studied the local Lyapunov exponents (Fig.3.9, 3.10) and the associated
Lyapunov mode (Fig.3.11, 3.12,3.13). These quantities indicated mainly that

• the streak instability originates from the sinuous mode which induces
streaks to meander,

• the most unstable instability during the regeneration cycle is the insta-
bility associated with the localization of the streamwise vortices rather
than the sinuous instability,

• Instabilities are found only in a very early stage of the cycle (phase (i))
and after that, there are no exponential instability at all (phase (ii)).

Here we make some comments on the above results. Although the sinuous
instability has been pointed out by the previous studies [71, 72], they ex-
amined linear stability analyses of streak models which is not solution of
the Navier-Stokes equations. On the other hand, the covariant Lyapunov
analysis applied to the Navier-Stokes equation extracted the sinuous insta-
bility as the unstable mode of the streaks in the actual turbulence. Since all
“history” of the successive regeneration cycles are reflected in the results of
the Lyapunov analysis by definition, thus the sinuous mode is unstable glob-
ally in time rather than locally in time. Furthermore, the local Lyapunov
exponent of the sinuous mode is smaller than that of the instability mode
associated with the streamwise vortices localization. Therefore, the instabil-
ity induced by the streamwise vortices is more important than the sinuous
one as regarding the instability of the whole of the regeneration cycle. Fi-
nal comment on the above results is that the minimal turbulence evolves
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over time without any (exponential) instability during more than half1 of
the cycle (the phase (ii)). In other words, it was found that the instabilities
is distributed “inhomogeneously” on the regeneration cycle. The regenera-
tion cycle in wall-turbulence is important not only for science but also for
engineering, thus there are a great deal of research on the regeneration cy-
cle. However, as far as we know, the orbital instability picture of the cycle
described above has been never proposed. Moreover, it may become one of
important keys to untangle the problems of wall-turbulence such as relations
between the regeneration cycle and its statistics.

In the final part of §3, we reconsidered the regeneration cycle from the
viewpoint of the orbital instability. There, we argued the mechanism of the
streak meandering and the localization of the streamwise vortices (phase
(i), Fig.3.14, Fig.3.15) and the mechanism of the streak reformation (phase
(ii), Fig.3.16, Fig.3.17). Besides these arguments, we studied the energy
flows in the system during the regeneration cycle in detail and detected the
interaction between the streak mode (ks = (0, 1)) and the meandering mode
(km = (1, 0)) that controls the regeneration cycle: the energy leaks from
the streak mode when the interaction is “active” (the phase (i)), the energy
accumulate in the streak mode when the interaction is “inactive” (the phase
(ii)). Finally, we proposed the conceptual diagram (Fig.3.20) of the energy
flows in the system during the regeneration cycle.

Future issues.— Finally, we address future issues briefly.

As regards the Kolmogorov flows, it remains open issues whether the
results obtained here hold in general or not. Particularly, the issues are
whether the hyperbolic-nonhyperbolic transition (as observed in the Lorenz
system [48] and the the coupled Ginzburg-Landau equations [50]) occurs in
another fluid system, which is independent of the problem settings such as
the form of the external forcing, the aspect ratio of the system, the bound-
ary condition, and so on. It is natural to ask if the relation between the
hyperbolic and physical properties holds at the case of another fluid system.
Also, it is expected to explain the reason why the hyperbolic properties are
related to the physical properties. More important goal is to know if attrac-
tor of the fully developed turbulence is hyperbolic or not and its hyperbolic
property is related to the physical properties such as the intermittent energy
dissipation of isotropic homogeneous turbulence and the wall friction drag of
wall-turbulence.

1About 70 % of the “period” Tp of the regeneration cycle (Tp ≃ 100).
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As regards the Couette turbulence, we expect the orbital instability found
in the minimal Couette turbulence to be a common characteristic of the re-
generation cycle in the various wall-turbulence at medium Reynolds number.
Future issues on this topic are as follows: How do the properties of the orbital
instability of the cycle change with increasing Reynolds number or system
size? Is it possible to characterize the robust layer in the velocity profiles such
as viscous, buffer, and logarithmic layer (Prandtl’s wall law) with Lyapunov
modes in a statistical way2? How are the properties of the orbital instability
related to the statistics? In this thesis, we can study only the regeneration
cycle. However, as well as the cycle, so-called bursting event also occurs in-
frequently in wall-turbulence and is considered as an important phenomenon
[21, 47, 77]. Hence, it is a challenging to characterize the bursting event from
the standpoint of the orbital instability and clarify the bursting mechanism.
For instance, Kobayashi and Yamada [57] studied intermittency in the GOY
shell model and they characterized the bursting phenomenon in the GOY
shell model with stable and unstable manifold structures via covariat Lya-
punov analysis. Although there would be an essential difference between the
bursting phenomenon in wall-turbulence and that in the GOY model, it is
intriguing to study the bursting phenomenon in wall-turbulence in terms of
changes in such manifold structures.

There are many open problems in physics of turbulence which is expected
to be understood on the basis of the full Navier-Stokes equations [1, 2]. For
instance, it is natural to ask how turbulent motion produces the ‘generic’ sta-
tistical laws, how we calculate eddy viscosity, and how intermittent behaviors
occur in turbulence. Will it become possible to give answers to these ques-
tions with employing the dynamical system theory?3 If we can obtain clear
answers to the above questions, then we are able to say that the dynamical
system theory is useful to understand turbulence.

2Karimi and Paul [33] showed statistically that a transition from ‘boundary-dominated’
dynamics to ‘bulk-dominated’ dynamics occurs as the system size is increased in the
Rayleigh-Bénard convection with the Lyapunov vector associated with the largest Lya-
punov exponent.

3It would be possible to obtain some answer by examining Ruelle’s prediction on the
shape of the Lyapunov spectrum near λj ∼ 0 and Constantin-Foias-Temam’s prediction
on its asymptotic shape j → ∞ (one of the pioneer works was done by Keefe [34] in the
case of Poiseuille turbulence). Otherwise, in fully developed turbulence, detecting UPOs
which represents the vortical motions in each scale and studying their orbital instability
would shed new light on turbulent mechanism.
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Appendix A

Appendix : Kolmogorov flow
problem

A.1 Pomeau-Manneville scenario in chaotic

Kolmogorov flow

Here, we study how the Kolmogorov flows become chaotic examing a criti-
cal exponent and a delay coordinate map which are the usual ways in low
dimensional dynamical system1.

At Reynolds number R = 18.0, there are four stable quasi-periodic solu-
tions due to the symmetry of the Kolmogorov flow system, which is indicated
by projections of the solution orbits, Lyapunov exponents and power spec-
trum (see chapter 2)2. At the critical Reynolds number (RT = 18.1574),
the quasi-periodic solutions become unstable and merge into a large chaotic
attractor composed of the four (unstable) quasi-periodic solutions and their
connecting orbits. The chaotic solution then wanders around the unstable
quasi-periodic solutions and ‘jumps’ between them intermittently. The en-
ergy also undergo intermittent bursts simultaneously with the jumps and the
average interval of time between energy bursts get longer as R → RT + 0.
The type of intermittency can be categorized according to the critical expo-
nent γ which is defined by ⟨τ⟩R ∝ 1

(R−RT )γ
where ⟨τ⟩R is the average time

interval between energy bursts [8]. To study the intermittency appearing in
chaotic Kolmogorov flows, we show ⟨τ⟩R in Fig.A.1 (a) by using three dif-
ferent initial conditions. The horizontal line is R − RT and the green line is

1Published in Inubushi et al. [9].
2Only in this section, we write Reynolds number R/Rcr as simply R.
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Fig. A.1: (a) Dependence of the average time interval between the energy
bursts ⟨τ⟩R on the distance from the critical Reynolds number RT . The three
symbols (square, circle, triangle) denote the data using the different initial
conditions. (b) log-log plot of (a). The pink and green line denote (R−RT )

−1

and (R−RT )
−1/2 respectively.

proportional to (R − RT )
−1/2. Fig.A.1 (b) is log-log plot of Fig.A.1 (a) The

pink line is proportional to (R−RT )
−1 and the green line is proportional to

(R−RT )
−1/2. Each data point appears to lie on the green line, which implies

the intermittency appearing in chaotic Kolmogorov flows is type-I (γ = 1/2).
To see the validity of this categorization, we apply the time delay co-

ordinate embedding methods to the chaotic Kolmogorov flows at R = 18.2
displaying intermittent behavior. As a delay coordinate, we use (En, En+1)
where En denotes the value of the local maxima of the energy at “time” n.
Fig.A.2 shows the delay coordinate map of this system. The red point is
(En, En+1) and the blue line denotes En = En+1.

It is found that the part of red point appears to form a convex function
nearly tangent to the En = En+1 line quadratically. At lower Reynolds
numberR = 18.156 < RT , this map become one fixed point on the En = En+1

line, which corresponds to the quasi-periodic solution. Note that one of the
two oscillations of quasi-periodic solution does not change the energy but
corresponds to the travelling motion to x direction. And also the unclarity
(clarity) of the map may correspond to the high (low) dimensionality of the
stable (unstable) manifolds of the unstable quasi-periodic orbit. All these
observations are consistent with the saddle-node bifurcation of quasi-periodic
solutions, suggesting the type-I intermittency.
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Fig. A.2: Delay coordinate map of the chaotic Kolmogorov flows at R = 18.2.
The blue line denotes En = En+1.
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Appendix B

Appendix : Couette flow
problem

B.1 Formulation of Couette flow problem

B.1.1 Decomposition of velocity field and pressure field

Here we consider a decomposition of the velocity and pressure fields to a
mean part and a fluctuation part. Hereafter we refer to the horizontal mean
⟨·⟩H and the volume mean ⟨·⟩V as⟨

·
⟩
H

=
1

LxLy

∫ Ly

0

∫ Lx

0

· dxdy, (B.1)⟨
·
⟩
V

=
1

2LxLy

∫ z=+1

z=−1

∫ y=Ly

y=0

∫ x=Lx

x=0

· dxdydz. (B.2)

decomposition of the velocity field
The velocity field is decomposed to a mean and a fluctuation part;

u(x, y, z, t) = U (z, t)︸ ︷︷ ︸
mean part

+ ũ(x, y, z, t)︸ ︷︷ ︸
fluctuation part

(B.3)

where

U (z, t) = ⟨u(x, y, z, t)⟩H (B.4)

ũ(x, y, z, t) = u(x, y, z, t)−U(z, t). (B.5)
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B Appendix : Couette flow problem

decomposition of the pressure field

Volume mean of the wall-normal gradient of the pressure is zero1; ⟨ ∂
∂z
p⟩V =

0. Therefore the volume mean of the pressure gradient is⟨
∇p

⟩
V

= Πx(t)ex +Πy(t)ey (B.9)

where Πx(t) is the streamwise (x-direction) mean pressure gradient and Πy(t)
is the spanwise (y-direction) mean pressure gradient. Then the fluctuation
part of the pressure gradient ∇p′can be defined as

∇p′(x, y, z, t) = ∇p(x, y, z, t)− Πx(t)ex − Πy(t)ey (B.10)

and p′ is periodic in the horizontal direction2.

Finally, the decomposition of the pressure field is

p(x, y, z, t) = Πx(t)x+Πy(t)y + p′(x, y, z, t) (B.11)

and the decomposition of the pressure gradient field is

∇p(x, y, z, t) = Πx(t)ex︸ ︷︷ ︸
x-mean pressure grad.

+ Πy(t)ey︸ ︷︷ ︸
y-mean pressure grad.

+ ∇p′(x, y, z, t)︸ ︷︷ ︸
fluctuating pressure grad.

.

(B.12)

1Using z-directional mean of the mean flow equation (B.69) in Appendix with the
incompressibility and the periodicity of the velocity field in the horizontal direction

∂

∂t
⟨uz⟩V = −

⟨
∂p

∂z

⟩
V

+
1

Re

⟨
∂2

∂z2
uz

⟩
V

(B.6)

= −
⟨
∂p

∂z

⟩
V

+
1

Re

⟨
∂

∂z
(−∂ux

∂x
−−∂uy

∂y
)

⟩
V

(B.7)

= −
⟨
∂p

∂z

⟩
V

. (B.8)

Since the left hand side of this equation is zero (see Eq. (B.70)), we can get ⟨∂p∂z ⟩V = 0.
2 The streamwise derivative of the pressure ∂p

∂x is periodic in the horizontal direction, so
p = c1x+ f(x, y, z) (f is periodic function in x-direction). And the spanwise derivative of
the pressure ∂p

∂y is also periodic in the horizontal direction, p = c2y+g(x, y, z) (g is periodic

function in y-direction). Therefore the fluctuation part of the pressure p′ is periodic in the
horizontal direction when we put c1 = Πx, c2 = Πy, h = p′. It is to be noted that c1, c2 do
not depend on z. If c1, c2 depend on z, ∂zp = c′1(z)x+ c′2(z)y+ ∂zh(x, y, z) which violates
the horizontal periodicity of the z-directional pressure gradient.
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B.1.2 Equations of mean flow and fluctuating flow

Substituting the decomposition of velocity and pressure gradient (B.3)，(B.12)
in the Navier-Stokes equations (3.1),

∂

∂z
Uz +∇ · ũ = 0, (B.13)

∂U

∂t
+
∂ũ

∂t
+ (u ·∇)u = −Πx(t)ex − Πy(t)ey −∇p′ +

1

Re

∂2

∂z2
U +

1

Re
∇2ũ

(B.14)

Since the wall-normal mean flow is identical to zero ; Uz(z, t) = 0, the conti-
nuity equation is

∇ · ũ = 0. (B.15)

Therefore the fluctuating velocity field can be decomposed into the toroidal
and the poloidal potentials as follows;

ũ = ∇× (ψ̃ez) +∇×∇× (ϕ̃ez) (B.16)

or

ũx =
∂ψ̃

∂y
+

∂2ϕ̃

∂x∂z
, ũy = −∂ψ̃

∂x
+

∂2ϕ̃

∂y∂z
, ũz = −∇2

H ϕ̃. (B.17)

Inversely operating ez· and ez ·∇× on the equations (B.16) respectively, the
toroidal and poloidal potentials can be written by the wall-normal velocity
and vorticity component as ψ̃ = −∇−2

H ω̃z, ϕ̃ = −∇−2
H ũz.

The mean flows have the horizontal components only, therefore

U =

Ux(z, t)Uy(z, t)
0

 (B.18)

ez ·∇×U = ez ·

−∂zUy
∂zUx
0

 = 0 (B.19)

ez ·∇×∇×U = −ez ·

∂2zUx∂2zUy
0

 = 0. (B.20)
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Thus, operating ez · ∇× and ez · ∇ × ∇× on the Navier-Stokes equations
(B.14), the evolution equation of the potentials are found to be

∂

∂t
∇2

Hψ̃ + ez ·∇× (u× ω) =
1

Re
∇2

H∇2ψ̃, (B.21)

∂

∂t
∇2

H∇2ϕ̃− ez ·∇×∇× (u× ω) =
1

Re
∇2

H∇2∇2ϕ̃, . (B.22)

Evolution equations of the mean flows are

∂

∂t
U +

∂

∂z
⟨uzu⟩H = −⟨∇p⟩H +

1

Re

∂2

∂z2
U (B.23)

(see B.1.5 for details). Decomposing the pressure gradient field and us-
ing the periodicity of p′, the horizontal mean of the pressure gradient is
⟨∇p⟩H = ⟨Πx(t)ex⟩H+ ⟨Πy(t)ey⟩H+ ⟨∇p′⟩H = Πx(t)ex+Πy(t)ey. Therefore
the evolution equation of the mean flows are found to be

∂

∂t
U +

∂

∂z
⟨uzu⟩H = −Πx(t)ex − Πy(t)ey +

1

Re

∂2

∂z2
U . (B.24)

To close the above equations of the mean flows U , we study the relation
between the mean pressure gradient Πx, Πy and the velocity field (volume
flux) in the next section.

B.1.3 Mean pressure gradient and volume flux

x and y direction mean volume fluxes

Fx(x, t) =
1

2Ly

∫ Ly

0

∫ +1

−1

uxdzdy (B.25)

Fy(y, t) =
1

2Lx

∫ Lx

0

∫ +1

−1

uydzdx (B.26)

are independent on the plane where the volume fluxes are defined due to the
incompressibility.

For example, the streamwise derivative of the volume flux gives

∂

∂x
Fx(x, t) =

1

2Ly

∫ Ly

0

∫ +1

−1

∂ux
∂x

dzdy (B.27)

=
1

2Ly

∫ Ly

0

∫ +1

−1

(
− ∂uy

∂y
− ∂uz

∂z

)
dzdy = 0. (B.28)
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Therefore, Fx(x, t) = Fx(t). The same is true for the spanwise direction.
Thus, the mean volume fluxes are equal to the mean momentums;

Fx(x, t) = Fx(t) =
1

Lx

∫ Lx

0

Fx(t)dx = ⟨ux⟩V (B.29)

Fy(y, t) = Fy(t) =
1

Ly

∫ Ly

0

Fy(t)dy = ⟨uy⟩V . (B.30)

Since the equations of the mean momentums are given by

d

dt
⟨u⟩V = −⟨∇p⟩V +

1

Re

⟨
∂2U

∂z2

⟩
V

(B.31)

(see B.1.6 for details), substituting ∇p = Πx(t)ex + Πy(t)ey + ∇p′ in this
equations and using the periodicity of p′ gives the relation between Πx, Πy

and the mean momentums (volume fluxes);

d

dt
Fx(t) = −Πx(t) +

1

Re

⟨
∂2Ux
∂z2

⟩
V

(B.32)

d

dt
Fy(t) = −Πy(t) +

1

Re

⟨
∂2Uy
∂z2

⟩
V

. (B.33)

The viscous terms of the right hand side of the above equations are⟨
∂2U

∂z2

⟩
V

=
1

2LxLy

∫ z=+1

z=−1

∫ y=Ly

y=0

∫ x=Lx

x=0

∂2U

∂z2
dxdydz (B.34)

=
1

2

{(
∂U

∂z

)∣∣∣∣
z=1

−
(
∂U

∂z

)∣∣∣∣
z=−1

}
, (B.35)

which means the time evolutions of the mean momentums (volume fluxes)
depend on the mean pressure gradients and the wall shear stress.

Setting A
Spanwise gradient of the mean pressure and streamwise volume flux can be
set zero respectively, i.e. Fx(t) ≡ 0, Πy(t) ≡ 0. We refer to this setting as
setting A in this thesis.

In this case, the evolution equations of the mean flows are as follows from
Eq.(B.24)

∂

∂t
U +

∂

∂z
⟨uzu⟩H = −Πx(t)ex +

1

Re

∂2

∂z2
U . (B.36)
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Here, from Eq.(B.32)，(B.33), the streamwise mean pressure gradient and
the spanwise volume flux are respectively

Πx(t) =
1

Re

⟨
∂2Ux
∂z2

⟩
V

(B.37)

d

dt
Fy(t) =

1

Re

⟨
∂2Uy
∂z2

⟩
V

. (B.38)

Therefore, Eq. (B.37) gives the streamwise mean pressure gradient Πx(t)
in the evolution equation of the mean flows. Note that if Eq. (B.37) is
satisfied, then d

dt
Fx(t) ≡ 0. Thus, we must employ the initial conditions such

that Fx(0) = 0 so that Fx(0) = 0.

Setting B
Both streamwise and spanwise gradient of the mean pressure can be set zero
respectively, i.e. Πx(t) ≡ 0, Πy(t) ≡ 0. We refer to this setting as setting B
in this thesis.

In this case, the evolution equations of the mean flows are as follows from
Eq.(B.24)

∂

∂t
U +

∂

∂z
⟨uzu⟩H =

1

Re

∂2

∂z2
U . (B.39)

Here, from Eq.(B.32)，(B.33), the streamwise and the spanwise volume flux
are respectively

d

dt
Fx(t) =

1

Re

⟨
∂2Ux
∂z2

⟩
V

(B.40)

d

dt
Fy(t) =

1

Re

⟨
∂2Uy
∂z2

⟩
V

. (B.41)

B.1.4 Boundary conditions

Finally, we consider the boundary conditions of the mean and fluctuation
flows.

boundary conditions of the velocity fields
Corresponding to the boundary conditions Eq.(3.3)，(3.4), the fluctuation
velocities are non-slip on the walls (z = ±1)

ũx(x, y,±1) = ũy(x, y,±1) = ũz(x, y,±1) = 0, (B.42)
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and periodic in horizontal directions

ũ(x, y, z) = ũ(x+ Lx, y, z) = ũ(x, y + Ly, z). (B.43)

The boundary conditions of the mean flows are

Ux(z = ±1, t) = ±1 (B.44)

Uy(z = ±1, t) = 0. (B.45)

boundary conditions of the fluctuation velocity fields
Here we describe the boundary conditions of the fluctuation velocity fields
by using the potentials. If the potentials on the walls are given by

ϕ̃(x, y,±1) = 0, (B.46)

∂ϕ̃

∂z
(x, y,±1) = ψ̃(x, y,±1) = 0, (B.47)

then, the fluctuation velocity fields satisfy the non-slip boundary conditions
Eq.(B.42). Conversely, here we consider the case that the fluctuation velocity
fields satisfy the non-slip boundary conditions on the walls Eq.(B.42), i.e.

ũx =
∂ψ̃

∂y
+

∂2ϕ̃

∂x∂z
= 0 (z = ±1) (B.48)

ũy = −∂ψ̃
∂x

+
∂2ϕ̃

∂y∂z
= 0 (z = ±1) (B.49)

ũz = −∇2
H ϕ̃ = 0 (z = ±1). (B.50)

The addition ∂x(B.48)+∂y(B.49) leads to ∇2
H∂zϕ̃ = 0 (z = ±1) and the

subtraction ∂y(B.48)−∂x(B.49) leads to ∇2
Hψ̃ = 0 (z = ±1). Employing the

property of harmonic function and using Eq.(B.50), it is found that ∂zϕ̃, ψ̃, ϕ̃
are constant on the walls3. The potentials ψ̃, ϕ̃ have redundant degrees of

3Let us consider doubly periodic (in x, y-direction) Harmonic function u(x, y) and its
conjugate harmonic function v(x, y) (∂xu = ∂yv, ∂yu = −∂xv). Then, a complex-valued
function f(z) = u + iv is is holomorphic over the whole complex plane (entire func-
tion) where z = x + iy. Liouville’s theorem states that every bounded entire function
f(z) must be constant. Therefore, u(x, y) = constant. [Sketch of proof of Liouville’s
theorem] There exists a constant M such that |f(z)| ≤ M . Taylor expansion f(z) =∑∞

n=0 anz
n and Cauchy’s integral formula lead to |an| ≤ |

∮
|ζ|=R

f(ζ)/ζn+1dζ/(2πi)| ≤∫ 2π

0
M/Rn+1Rdθ/(2π) =M/Rn. Therefore, with R→ ∞, f(z) = a0 (i.e. constant).
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freedom (cf. gauge transformation);

ψ̃ez → ψ̃ez +∇f(z), (B.51)

ϕ̃ez → ϕ̃ez +∇g(z). (B.52)

Therefore, we can take f, g such that

∂zϕ̃ = 0, ψ̃ = 0, ϕ̃ = 0 (B.53)

on the walls (z = ±1)4．
Boundary conditions of the potentials are periodic in the horizontal di-

rections;

ψ̃(x, y, z) = ψ̃(x+ Lx, y, z) = ψ̃(x, y + Ly, z), (B.58)

ϕ̃(x, y, z) = ϕ̃(x+ Lx, y, z) = ϕ̃(x, y + Ly, z). (B.59)

boundary conditions of the fluctuation pressure fields
Boundary conditions of the fluctuation pressure fields are periodic in hori-
zontal directions;

p′(x, y, z) = p′(x+ Lx, y, z) = p′(x, y + Ly, z) (B.60)

(see the footnote 2).

B.1.5 Derivation of horizontal mean flow equation

We here derive the horizontal mean flow equation. We denote the horizontal
mean as ⟨·⟩H = 1

LxLy

∫ Ly

0

∫ Lx

0
· dxdy. Let us consider the horizontal mean

Navier-Stokes equation

∂

∂t
⟨u⟩H + ⟨(u ·∇)u⟩H = −⟨∇p⟩H +

1

Re
⟨∇2u⟩H . (B.61)

4On the walls (z = ±1), ∂zϕ̃, ψ̃, ϕ̃ are constant. For instance, let us consider the case
that

∂zϕ̃ = c1, ψ̃ = c2, ϕ̃ = c3 (B.54)

on z = +1 where c1, c2, c3 are some constants. In this case, if we set f(z) = −c2z, g(z)−
(c3 − c1)z − c1/2z

2, then

ψez = ψ̃ez +∇f(z) = (ψ̃ − c2)ez, (B.55)

ϕez = ϕ̃ez +∇g(z) = (ϕ̃− (c3 − c1)− c1z)ez (B.56)

∂zϕez = ∂zϕ̃ez +∇g′(z) = (∂zϕ̃− c1)ez, (B.57)

and thus, ψ = 0, ϕ = 0, ∂zϕ = 0 on z = +1.
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Advection term
The i-th component of the horizontal mean advection term is[

⟨(u ·∇)u⟩H
]
i

=
1

LxLy

∫ Ly

0

∫ Lx

0

uj∂jui dxdy (B.62)

=
1

LxLy

∫ Ly

0

∫ Lx

0

∂j(uiuj) dxdy (B.63)

=
1

LxLy

∫ Ly

0

∫ Lx

0

(
∂x(uiux) + ∂y(uiuy) + ∂z(uiuz)

)
dxdy

(B.64)

=
1

LxLy

∫ Ly

0

∫ Lx

0

∂z(uiuz) dxdy. (B.65)

Also, we can rewrite

⟨(u ·∇)u⟩H =
∂

∂z
⟨uzu⟩H . (B.66)

Viscous term
The horizontal mean viscous term is

⟨∇2u⟩H =
1

LxLy

∫ Ly

0

∫ Lx

0

∇2u dxdy (B.67)

=
∂2

∂z2
⟨u⟩H . (B.68)

Therefore, we obtain

∂

∂t
⟨u⟩H +

∂

∂z
⟨uzu⟩H = −⟨∇p⟩H +

1

Re

∂2

∂z2
⟨u⟩H . (B.69)

However, z-directional component of this equation is identically zero (i.e.
⟨uz⟩H = 0)5. We denote ⟨u⟩H = U(z, t) and the horizontal mean flow equa-
tions are

∂

∂t
U +

∂

∂z
⟨uzu⟩H = −⟨∇p⟩H +

1

Re

∂2

∂z2
U . (B.71)

where the nonlinear term is ∂
∂z
⟨uzu⟩H = ∂

∂z
⟨ũz(U + ũ)⟩H .

5Horizontal mean of the incompressible condition (∇ · u = 0) gives

⟨∇ · u⟩H =

⟨
∂uz
∂z

⟩
H

=
d

dz
⟨uz⟩H = 0. (B.70)

Hence, ⟨uz⟩H = 0 because of the boundary conditions ⟨uz⟩H(±1, t) = 0.
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B.1.6 Derivation of momentum equation

We here derive the momentum equations. The evolutions equation of the
horizontal mean flows U (z, t) = ⟨u⟩H are

∂

∂t
U +

∂

∂z
⟨uzu⟩H = −⟨∇p⟩H +

1

Re

∂2

∂z2
U (B.72)

(see B.1.5). A calculation of the z-directional mean of the above equations
gives

1

2

d

dt

∫ 1

−1

U(z, t)dz +
1

2

∫ 1

−1

∂

∂z
⟨uzu⟩Hdz = −1

2

∫ 1

−1

⟨∇p⟩Hdz +
1

2Re

∫ 1

−1

∂2

∂z2
Udz.

(B.73)

Here, the nonlinear term vanishes because of the boundary conditions on the
walls. Since z-directional mean is

1

2

∫ 1

−1

⟨·⟩H dz =
1

2LxLy

∫ z=+1

z=−1

∫ y=Ly

y=0

∫ x=Lx

x=0

· dxdydz = ⟨·⟩V (B.74)

, thus the evolutions equation of the horizontal mean flows are

d

dt
⟨u⟩V = −⟨∇p⟩V +

1

2Re

{(
∂U

∂z

)∣∣∣∣
z=1

−
(
∂U

∂z

)∣∣∣∣
z=−1

}
(B.75)

= −⟨∇p⟩V +
1

Re

⟨
∂2U

∂z2

⟩
V

. (B.76)

B.2 Supplemental data

Mean and RMS velocity profiles of minimal Couette turbulence
Here we show mean and RMS velocity profiles of minimal Couette turbulence
as Fig.3 in Kawahara and Kida [25]. Fig.B.1 (a) shows mean streamwise
velocity profile and Fig.B.1 (b) shows RMS velocity profiles. In Fig.B.1 (b),
circle symbols indicate the streamwise component, squares the wall-normal
component, and triangles the spanwise component. These profiles are in
agreement with Fig.3 in Kawahara and Kida [25].

Accumulative expanding rate of the high index Lyapunov exponents

Here we show the accumulative expanding rate Λj(t, τ) = eλ̃j(t,τ)τ for λ̃j(t) (1 ≤
j ≤ 20) in Fig.B.2. The accumulative expanding rates are found to display
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Fig. B.1: (a) The mean streamwise velocity profile, (b) The RMS velocities
profiles. In (b), circle symbols indicate the streamwise component, squares
the wall-normal component, and triangles the spanwise component.

almost the same behaviors qualitatively. It should be noted that in the phase
(i) (Fig.B.2 (a)) even the high index accumulative expanding rate is larger
than 1 until τ ∼ 60.

Stretching of the streamwise vortices
§3.5.1, we discussed the generation mechanism of the streamwise vortices

and concluded that the streamwise vortices are generated by the vortex
stretching mechanism. There, we showed the snap shots of the velocity and
vorticity fields supporting this mechanism during 2748 ≤ t ≤ 2754. Here
we show another realizations of this mechanism. In the lower panel of the
Fig.3.9, we can observe the three successive regeneration cycles and corre-
spondingly three localization events of the streamwise vortices. The first
event occurs during 2748 ≤ t ≤ 2754 and we showed that the localization
event appears to be explained by the vortex stretching mechanism. Thus,
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Fig. B.2: Accumulative expanding rate Λ(t0, τ); (a) t0 = 2730, (b) t0 = 2760
for λ̃j(t) (1 ≤ j ≤ 20). The black dot horizontal line denotes Λj(t0, τ) ≡ 1
(i.e. nutral).

here we show the second and third events during 2848 ≤ t ≤ 2854 and
2948 ≤ t ≤ 2954 respectively. It is found that these realizations also support
our conclusion that the vortex stretching mechanism causes the localization
of the streamwise vortices.

Wall-normal profile of the mean flow interaction term
In §3.5.2, we discussed the reformation of the streaks and focused our atten-
tion on the nonlinear interaction between the streaks and the mean flows. In
particular, we showed the wall-normal profiles of the mean flow interaction
term of the streak mode; g(ks, z) = −2Re[û∗x(ks)ûz(ks)∂zûx(0)] and the me-
andering mode; g(km, z) = −2Re[û∗x(km)ûz(km)∂zûx(0)] at t = 2800. Here,
we give these profiles throughout the regeneration cycle. Fig.B.5 showed the
profiles at (a) t = 2740, (b) t = 2760, (c) t = 2780, (d) t = 2800, (e) t = 2820.
Clearly, these profiles remain the same qualitatively and there appear to be
no interaction between the meandering mode and the mean flows through-
out the cycle, which also support our conclusion that the energy of the mean
flows injected not into the meandering mode but into the streak mode.
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(a) (b) (c) (d)

Fig. B.3: Snap shots of the streamwise velocity field ux(x, t) (contour lines)
and the streamwise vorticity field ωx(x, t) (tone levels) at (a): t = 2848 ,(b):
t = 2850, (c): t = 2852, (d): t = 2854.

(a) (b) (c) (d)

Fig. B.4: Snap shots of the streamwise velocity field ux(x, t) (contour lines)
and the streamwise vorticity field ωx(x, t) (tone levels) at (a): t = 2948 ,(b):
t = 2950, (c): t = 2952, (d): t = 2954.
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Fig. B.5: Wall-normal profiles of the mean flow interaction term of the streak
mode; g(ks, z) = −2Re[û∗x(ks)ûz(ks)∂zûx(0)] (red line with closed circles)
and the meandering mode; g(km, z) = −2Re[û∗x(km)ûz(km)∂zûx(0)] (blue
line with open circles) at (a) t = 2740, (b) t = 2760, (c) t = 2780, (d)
t = 2800, (e) t = 2820.

84



B.2 Supplemental data

-0.002

-0.001

 0

 0.001

 0.002

 2750  2800  2850  2900  2950  3000

Fig. B.6: Energy budget analysis of the evolution equation of the streak
mode ‘energy’ (3.16) during 2730 ≤ t ≤ 3030 including three regeneration
cycles. The red (solid) line is the time derivative term (l.h.s. of the evolution
equation), the green (dashed) line is the nonlinear interaction term with the
mean flow, the blue (dot) line is the other nonlinear terms, and the pink
(dashed-dot) line is the viscous dissipation term. The navy (dashed double-
dotted) line is the nonlinear interaction terms with the meandering mode in
the equation (3.18).

Budget analysis of the evolution equation of the streak mode ‘energy’
In §3, we showed Energy budget analysis of the evolution equation of the
streak mode ‘energy’ in Fig.3.18 for a single regeneration cycle. Here, we
show the same figure but including three successive cycles in Fig.B.6.
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B.3 Description of the stage I in the phase

(i)

Here we consider the generation of the streamwise vortices. Particularly,
we discuss the stage I in the phase (i), i.e. the mechanism how the small
amplitude vorticities appear at the narrow region between the meandering
streaks. Hereafter, we focus our attention on the area around the reference
point (x, y, z) ∼ (Lx/4, Ly/2, 0) (see Fig.B.7) as an example.

The streamwise vorticity equation is

Dtωx = (ω · ∇) ux = ωx∂xux + ωy∂yux + ωz∂zux

= ωx∂xux + (∂zux − ∂xuz)∂yux + (∂xuy − ∂yux)∂zux

= ωx∂xux − ∂xuz∂yux + ∂xuy∂zux (B.77)

where and the viscous term is omitted for simplicity. Before the stage II (the
‘turn over’ the contour line illustrated in Fig.3.15), the streamwise gradient of
the streamwise velocity is negative (i.e. ∂xux < 0) around the reference point
as shown in Fig.B.7 (a) (see the first term of r.h.s. of Eq.(B.77)). Thus, the
vortex stretching does not occur at this time and this term damps the am-
plitude of the streamwise vortices. Alternatively, it is possible for the second
and third term of r.h.s. of Eq.(B.77) to generate the streamwise vortices. At
this time, it is found that the wall-normal gradient of the streamwise velocity
is negative : ∂zux < 0 as shown in the lower panel of Fig.3.15) (a). Further-
more, the spanwise gradient of the streamwise velocity is positive : ∂yux > 0
as shown in Fig.B.7 (a) and also the streamwise gradient of the spanwise ve-
locity is positive : ∂xuy > 0 as shown in Fig.B.7 (b). Since the the streamwise
gradient of the wall-normal velocity is nearly zero : ∂xuz ∼ 0, the vorticity
equation become Dtωx ≃ ∂xuy∂zux < 0 where and the stretching term is
omitted. As a result, the small amplitude negative vorticity appears at the
narrow region between the meandering streaks, which plays the important
role in the stage II in phase (i) as described in §3.5.1.

B.4 Energy cascade in regeneration cycle

In this section, we briefly study energy cascade in minimal Couette turbu-
lence. Firstly, we define energy spectrum function at z-plane E(K, z) as
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(a) (b) (c)

Fig. B.7: Contour lines: snap shots of (a) the streamwise velocity field
ux(x, t), (b) the spanwise velocity field uy(x, t), and (c) the wall-normal
velocity field uz(x, t) at t = 2744 (just before the time when the snap shots
shown in Fig.3.14 are taken). Tone levels: the streamwise vorticity field
ωx(x, t). The snap shots are cross-sectional view taken along z = 0 plane.
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Fig. B.8: Energy spectrum function at mid-plane E(K, z = 0) during
2730 ≤ t ≤ 3030 including three regeneration cycles. Horizontal axis is
time t, vertical axis is wavenumber K, and color tone is logE(K, z = 0).
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Fig. B.9: Illustration of energy budget in wavenumber space. EK denotes
cumulative energy (energy for the wavenumber range higher than K), ΠK

denotes energy flux (energy coming into the wavenumber range higher thanK
via nonlinear interaction), and DK denotes energy injection and dissipation
(energy coming into the wavenumber range higher than K via viscous term).

follows :

E(K, z) =
1

2

∑
K≤|k̂|<K+1

|û(k̂, z)|2 (B.78)

where k̂ = (kx, ky). We show the energy spectrum function at mid-plane
(z = 0) E(K, z = 0) in Fig.B.8 during 2730 ≤ t ≤ 3030 including three
regeneration cycles. Horizontal axis is time t, vertical axis is wavenumber
K, and color tone is logE(K, z = 0). It is found that at high wavenumber
(K ≳ 4) the energy spectrum drastically change through the cycles. In
particular, large scale structures (low wavenumber modes) contain almost all
energy at the initial stage of the cycle (e.g. t ∼ 2730), and soon after that
(e.g. t ∼ 2760) energy appears to cascade down to small scale structures
(higher wavenumber modes).

Examining energy flow in the minimal Couette turbulence in more deital,
we study scale-by-scale energy budget equation (see §2.4 in Frisch [1]) :

d

dt
EK = ΠK +DK (B.79)
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where

û<K(x, z) =
∑
|k̂|<K

û(k, z)eik̂·x, (B.80)

û>K(x, z) =
∑
|k̂|≥K

û(k, z)eik̂·x, (B.81)

EK =
1

2

⟨
|û>K |2

⟩
V

, (B.82)

ΠK = −
⟨
û>K · (û<K ·∇û<K)

⟩
V

−
⟨
û>K · (û>K ·∇û<K)

⟩
V

, (B.83)

DK =
1

Re

⟨
û>K ·∇2û>K

⟩
V

. (B.84)

In the above equations, û<K denotes low-pass filtered velocity field, û>K denotes
high-pass filtered velocity field, EK denotes cumulative energy, ΠK denotes
energy flux, and DK denotes energy injection and dissipation. As illustrated
in Fig.B.9, the cumulative energy EK is energy for the wavenumber range
higher than K, the energy flux ΠK is energy coming into the wavenumber
range higher than K per unit time via nonlinear interaction, and the energy
injection and dissipation DK is energy coming into the wavenumber range
higher than K per unit time via viscous term.

Fig.B.10 shows time series of (a) the cumulative energy EK , (b) the energy
flux ΠK , and (c) the energy injection and dissipation DK during 2730 ≤ t ≤
3030 including three regeneration cycles for the red line : K = 0, the green
line : K = 1, the blue line : K = 2, the pink line : K = 3, the light blue
line : K = 4, the yarrow line : K = 5, the black line : K = 10, and the
orange line : K = 15. As a reference, time series of the horizontal RMS of
the streamwise vortices

√
⟨ω2

x⟩H is shown in Fig.B.10 (d) (the same figure as
the lower panel of Fig.3.9), which characterizes localization of the streamwise
vortices. Increase and decrease of the cumulative energy EK found in Fig.B.10
(a) are considered to correspond to the formation and breakdown of the
streaks. The energy flux ΠK is positive throughout the regeneration cycles,
indicating that the energy actually cascades down to small structures (higher
wavenumber modes). More importantly, the three sharp peaks of the energy
flux ΠK and the energy injection and dissipation DK clearly correspond to
those of the horizontal RMS of the streamwise vortices

√
⟨ω2

x⟩H . At the
wavenumber K = 0, the energy injection and dissipation DK become positive
after the peaks, which is consistent with the fart that the energy is injected
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Fig. B.10: Time series of (a) the cumulative energy EK , (b) the energy flux
ΠK , and (c) the energy injection and dissipation DK during 2730 ≤ t ≤
3030 including three regeneration cycles for K = 0 (red), K = 1 (green),
K = 2 (blue), K = 3 (pink), K = 4 (light blue), K = 5 (yarrow), K = 10
(black), and K = 15 (orange). (d) Time series of the horizontal RMS of the
streamwise vortices

√
⟨ω2

x⟩H (the same figure as the lower panel of Fig.3.9).
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from walls to mean flows (i.e. K = 0 modes). At the wavenumber range of
K > 0, the energy injection and dissipation DK are negative throughout the
cycles, corresponding to the energy dissipation. These observations support
that the localization of the streamwise vortices induces the energy cascade
and energy dissipation strongly.

B.5 Derivation of evolution equation of modal

energy

Here we derive the the evolution equation of the modal energy with focusing
on the mean flow interactions. First, we consider the horizontal Fourier

coefficient of the velocity fields û(k, z) =

⟨
u(x, y, z)e−ik·x

⟩
H

and derive the

evolution equations of the modal ‘energy’. Hereafter, we write the energy as
û(k, z) = û(k) shortly. The goal of the derivation in this section is to obtain
the evolution equations of the modal ‘energy’;

d

dt

⟨
|û(k)|2

⟩
z

=−
⟨
2Re[û∗(k) ·

(
ûz(k)∂z

)
û(0)]

⟩
z

−
⟨ ∑

k′′+k′=k,
k′ ̸=0,k′′ ̸=0

N (û(k), û(k′), û(k′′))

⟩
z

− 2δk,0

(
⟨ûx(0)⟩zΠx + ⟨ûy(0)⟩zΠy

)
+
δk,0
Re

(
∂zûx(k, z = +1) + ∂zûx(k, z = −1)

)
− 2

Re

⟨
(k2 + l2)|û(k)|2 + |∂zû(k)|2

⟩
z

, (B.85)

where we write the z-directional mean as 1/2
∫ z=+1

z=−1
· dz = ⟨·⟩z and the hori-

zontal mean as 1/(LxLy)
∫ y=Ly

y=0

∫ x=Lx

x=0
· dxdy = ⟨·⟩H .

B.5.1 Derivation

We write the Navier-Stokes equations as

∂tu+ u ·∇u = −∇p+
1

Re
∇2u = f(u). (B.86)
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Substituting the horizontal Fourier expansion of the velocity fields

u(x, y, z) =
∑
k

û(k, z)eik·x (B.87)

into the Navier-Stokes equations;

∂t
∑
k

û(k)eik·x +
∑
k′,k′′

(
ik′ûx(k

′′) + il′ûy(k
′′) + ûz(k

′′)∂z

)
û(k′)ei(k

′+k′′)·x = f(u).

(B.88)

Then, multiplying e−ik·x by the above equations and calculating the horizon-
tal mean give

∂tû(k) = −
∑

k′′+k′=k

(
ik′ûx(k

′′) + il′ûy(k
′′) + ûz(k

′′)∂z

)
û(k′) +

⟨
f(u)e−ik·x

⟩
H

.

(B.89)

Time derivative of the modal energy ∂t|û(k)|2 = û∗(k)·∂tû(k)+û(k)·∂tû∗(k)
can be calculated straightforwardly;

∂t|û(k)|2 = −
∑

k′′+k′=k

û∗(k) ·
(
ik′ûx(k

′′) + il′ûy(k
′′) + ûz(k

′′)∂z

)
û(k′) + c.c.

+û∗(k) ·
⟨
f(u)e−ik·x

⟩
H

+ c.c. (B.90)

where c.c. denotes complex conjugate term.
Next, we consider the term f(u) = −∇p + 1

Re
∇2u in detail. Firstly we

discuss the pressure term, and then we discuss the viscous term.

Pressure term
Considering z-directional mean of the modal energy equation, the pressure
term become as follows

1

2

∫ z=+1

z=−1

û(k)∗ ·
⟨
∇p(x)e−ik·x

⟩
H

+ û(k) ·
⟨
∇p(x)e−ik·x

⟩∗

H

dz (B.91)

= 2δk,0

(
⟨ûx(0)⟩zΠx + ⟨ûy(0)⟩zΠy

)
. (B.92)

In this thesis, we set ⟨ûx⟩z ≡ 0 and Πy ≡ 0, thus the r.h.s. of the above equa-
tion is identically zero. We here derive the above equation. The horizontal
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Fourier expansion of the pressure can be written p(x) =
∑

k p̂(k, z)e
ik·x +

Πxx+Πyy. Therefore, we have⟨
∇p(x)e−ik·x

⟩
H

= ikp̂(k, z)ex + ilp̂(k, z)ey + ∂zp̂(k, z)ez + δk,0(Πxex +Πyey).

(B.93)

where Πx,Πy denote the x, y-directional mean pressure gradient respectively.
Thus,

û(k)∗ ·
⟨
∇p(x)e−ik·x

⟩
H

+ û(k) ·
⟨
∇p(x)e−ik·x

⟩∗

H

=(ikû∗x(k) + ilû∗y(k) + û∗z(k)∂z)p̂(k) + (−ikûx(k)− ilûy(k) + ûz(k)∂z)p̂
∗(k)

+ 2δk,0(ûx(0)Πx + ûy(0)Πy)

=i

(
kû∗x(k) + lû∗y(k)

)
p̂(k)− i

(
kûx(k) + lûy(k)

)
p̂∗(k)

+

(
û∗z∂zp̂(k) + ûz(k)∂zp̂

∗(k)

)
+ 2δk,0(ûx(0)Πx + ûy(0)Πy). (B.94)

Calculating z-directional mean of the above equation Eq.(B.94), the 5, 6-th
terms are as follows;

1

2

∫ +1

−1

(
û∗z∂zp̂(k) + ûz(k)∂zp̂

∗(k)

)
dz

=
1

2

[
û∗z(k)p̂(k) + ûz(k)p̂

∗(k)

]+1

−1

− 1

2

∫ +1

−1

∂zû
∗
zp̂(k) + ∂zûz(k)p̂

∗(k)dz

= −1

2

∫ +1

−1

(
ikû∗x(k) + ilû∗y(k)

)
p̂(k)−

(
ikûx(k) + ilûy(k)

)
p̂∗(k)dz,

(B.95)

where we use the incompressible condition (ikûx(k) + ilûy(k) + ∂zûz(k) =
0) and its complex conjugate. It is found that the r.h.s. of Eq.(B.95) is
the opposite sign of 1, 2, 3, 4-th terms of z-directional mean of Eq.(B.94).
Therefore, these terms cancel out and remaining terms are only the terms
related to the mean pressure gradient 2δk,0(⟨ûx(0)⟩zΠx + ⟨ûy(0)⟩zΠy).

Viscous term
Considering z-directional mean of the modal energy equation as above, the
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viscous terms are as follows

1

2

∫ z=+1

z=−1

û(k)∗ ·
⟨
(∇2u(x))e−ik·x

⟩
H

+ û(k) ·
⟨
(∇2u(x))e−ik·x

⟩∗

H

dz

=

(
∂zûx(k, z = +1) + ∂zûx(k, z = −1)

)
δk,0 − 2

⟨
(k2 + l2)|û(k)|2 + |∂zû(k)|2

⟩
z

.

(B.96)

Here we derive this equation. We have⟨
(∇2u(x))e−ik·x

⟩
H

=

⟨∑
k′

{−(k′2 + l′2)û(k′) + ∂2z û(k
′)}e−i(k−k′)·x

⟩
H

(B.97)

= −(k2 + l2)û(k) + ∂2z û(k). (B.98)

Thus, it follows

û(k)∗ ·
⟨
(∇2u(x))e−ik·x

⟩
H

+ û(k) ·
⟨
(∇2u(x))e−ik·x

⟩∗

H

(B.99)

= −2(k2 + l2)|û(k)|2 + û∗(k) · ∂2z û(k) + û(k) · ∂2z û
∗(k). (B.100)

Here we consider the z-directional mean of the above equation. Particularly,
the 2-nd and 3-rd terms become⟨

û∗(k) · ∂2z û(k) + û(k) · ∂2z û
∗(k)

⟩
z

=
1

2

∫ +1

−1

û∗(k) · ∂2z û(k) + û(k) · ∂2z û
∗(k)dz

=
1

2

[
û∗(k) · ∂zû(k) + û(k) · ∂zû∗(k)

]z=+1

z=−1

−
∫ +1

−1

|∂zû(k)|2dz

=
(
∂zûx(k, z = +1) + ∂zûx(k, z = −1)

)
δk,0 − 2

⟨
|∂zû(k)|2

⟩
z

. (B.101)

As a result, we obtain Eq.(B.96). The first term represents energy injection
(into k = 0 mode only) thorough viscous stress on the walls, and the second
term represents energy dissipation.

Mean flow interaction terms
The nonlinear terms in Eq.(B.90) are

−
∑

k′′+k′=k

û∗(k) ·
(
ik′ûx(k

′′) + il′ûy(k
′′) + ûz(k

′′)∂z

)
û(k′) + c.c. (B.102)
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and we focus our attention on mean flow interaction terms (i.e. interaction
with k = 0 mode). Possible triad interactions with the mean flow are as
follows
(i) k′ = 0,k′′ = k ,
(ii) k′ = k,k′′ = 0.
Therefore, we write down the interaction term in the case (i) and (ii);

− û∗(k) ·
(
ûz(k)∂z

)
û(0)− û(k) ·

(
û∗z(k)∂z

)
û∗(0)

− û∗(k) ·
(
ikûx(0) + ilûy(0) + ûz(0)∂z

)
û(k)

− û(k) ·
(
− ikû∗x(0)− ilû∗y(0) + û∗z(0)∂z

)
û∗(k).

The Fourier coefficient of the mean flows are ûz(0) = 0 and ûx(0) ∈ R.
Therefore, the above equation become simply

−2Re[û∗(k) ·
(
ûz(k)∂z

)
û(0)], (B.103)

where Re[z] denotes the real part of z.

Finally, we obtain the modal energy equation of k mode is as follows

d

dt

⟨
|û(k)|2

⟩
z

=−
⟨
2Re[û∗(k) ·

(
ûz(k)∂z

)
û(0)]

⟩
z

−
⟨ ∑

k′′+k′=k,
k′ ̸=0,k′′ ̸=0

N (û(k), û(k′), û(k′′))

⟩
z

− 2δk,0

(
⟨ûx(0)⟩zΠx + ⟨ûy(0)⟩zΠy

)
+
δk,0
Re

(
∂zûx(k, z = +1) + ∂zûx(k, z = −1)

)
− 2

Re

⟨
(k2 + l2)|û(k)|2 + |∂zû(k)|2

⟩
z

, (B.104)

where the first term of the r.h.s. is the mean flow interaction term, the second
one is the other nonlinear terms, the third one is the mean pressure gradient
and volume flux term which is identically zero in this thesis, the forth one
is the energy injection term from the walls, and the fifth one is the energy
dissipation term.
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Fig. B.11: Comparison between the wall-nomal shear of the streamwise mean
velocity (∂zûx(0)) and that of the spanwise mean velocity (∂zûy(0)) to check
the assumption ∂zûx(0) ≫ ∂zûy(0). The red line with + sign denotes ∂zûx(0)
and the green line with × sign denote ∂zûy(0) at t = 2730. These profiles
appear to be almost the same during the regeneration cycle.

B.5.2 Approximation of mean flow interaction term

Let us consider an assumption that the wall-nomal shear of the streamwise
mean velocity is larger than that of the spanwise mean velocityas

∂zûx(0) ≫ ∂zûy(0), (B.105)

which is found to be reasonable by checking numerical simulations (see Fig.B.11).
Under this assumption, we have

−2Re[û∗(k) ·
(
ûz(k)∂z

)
û(0)] ≃ −2 Re[ûx

∗(k)ûz(k)] ∂zûx(0), (B.106)

which indicates that the energy injection via nonlinear interaction from the
mean flow to the kmode depends on the real part of the term ûx

∗(k)ûz(k)∂zûx(0).

B.5.3 Evolution equation of streak modal energy

Here we refer to the Fourier coefficient û(ks)
(
ks = (0, 1)

)
as streak mode and

û(km)
(
km = (1, 0)

)
as meandering mode. From Eq.(B.85), the evolution
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equation of the streak modal energy is

d

dt

⟨
|û(ks)|2

⟩
z

=−
⟨
2Re[û∗(ks) ·

(
ûz(ks)∂z

)
û(0)]

⟩
z

−
⟨ ∑

k′′+k′=ks,
k′ ̸=0,k′′ ̸=0

N (û(ks), û(k
′), û(k′′))

⟩
z

− 2

Re

⟨
β2|û(ks)|2 + |∂zû(ks)|2

⟩
z

, (B.107)

where β = 2π/Ly. The first term of the r.h.s. of Eq.(B.107) is the nonlinear
interaction term between the streak mode and the mean flows, the second
one is the other nonlinear terms, and the third one is the energy dissipation
term.

Interaction terms with the meandering mode
Next, we consider ‘the other nonlinear terms’ (the second term in the r.h.s.
of Eq.(B.107) in more detail. Particularly, we focus our attention on the in-
teraction terms with the meandering mode (i.e. û(km), û(−km) = û∗(km))
and pick up them so that the triad interaction ks = k′ + k′′ holds. Such
possible interaction terms are as follows
(i) k′ = km = (1, 0), k′′ = kob− = (−1, 1),
(ii) k′ = kob− = (−1, 1), k′′ = km = (1, 0),
(iii) k′ = −km = (−1, 0), k′′ = kob+ = (1, 1),
(iv) k′ = kob+ = (1, 1), k′′ = −km = (−1, 0).
‘The other nonlinear terms’ are

−
∑

k′′+k′=ks,
k′ ̸=0,k′′ ̸=0

û∗(k) ·
(
ik′ûx(k

′′) + il′ûy(k
′′) + ûz(k

′′)∂z

)
û(k′) + c.c. (B.108)

and thus, we write the interaction terms in the order of the case (i), (ii), (iii),
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(iv),

− û∗(ks) ·
(
iαûx(kob−) + ûz(kob−)∂z

)
û(km) + c.c. (B.109)

− û∗(ks) ·
(
− iαûx(km) + iβûy(km) + ûz(km)∂z

)
û(kob−) + c.c. (B.110)

− û∗(ks) ·
(
− iαûx(kob+) + ûz(kob+)∂z

)
û∗(km) + c.c. (B.111)

− û∗(ks) ·
(
iαû∗x(km) + iβû∗y(km) + û∗z(km)∂z

)
û(kob+) + c.c., (B.112)

where α = 2π/Lx.
Therefore, we obtain the streak modal energy equation as follows;

d

dt

⟨
|û(ks)|2

⟩
z

=−
⟨
2Re

[
û∗(ks) ·

(
ûz(ks)∂z

)
û(0)

]⟩
z

−
⟨
2Re

[
û∗(ks) · (iαûx(kob−) + ûz(kob−)∂z)û(km)

]⟩
z

−
⟨
2Re

[
û∗(ks) ·

(
− iαûx(km) + iβûy(km) + ûz(km)∂z

)
û(kob−)

]⟩
z

−
⟨
2Re

[
û∗(ks) ·

(
− iαûx(kob+) + ûz(kob+)∂z

)
û∗(km)

]⟩
z

−
⟨
2Re

[
û∗(ks) ·

(
iαû∗x(km) + iβû∗y(km) + û∗z(km)∂z

)
û(kob+)

]⟩
z

−
⟨ ∑

k′′+k′=ks,
k′ ̸=0,k′′ ̸=0

k′ ̸=±km,k
′′ ̸=±km,

N ′(û(ks), û(k
′), û(k′′))

⟩
z

− 2

Re

⟨
β2|û(ks)|2 + |∂zû(ks)|2

⟩
z

, (B.113)

where the first term of the r.h.s. is the mean flow-streak interaction term,
the second to the fifth terms are the meandering-streak interaction terms,
the sixth terms are the other nonlinear terms, and the seventh term is the
energy dissipation term.
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B.6 Physical interpretation of streak reformation

B.6 Physical interpretation of streak refor-

mation

In §3.5.2, we discussed the streak reformation mechanism and found that the
mean flow interaction reforms the streaks, by using budget analysis of the
modal energy equation Eq.(3.16);

d

dt

⟨
|û(ks)|2

⟩
z

≃−
⟨
2Re[û∗x(ks) ·

(
ûz(ks)∂z

)
ûx(0)]

⟩
z

−
⟨ ∑

k′′+k′=ks,
k′ ̸=0,k′′ ̸=0

N (û(ks), û(k
′), û(k′′))

⟩
z

− 2

Re

⟨
β2|û(ks)|2 + |∂zû(ks)|2

⟩
z

(B.114)

where we used the approximation in §B.5.2. Considering the components
of the above equation, the mean flow interaction term appears only in x-
directional component ûx(ks):

d

dt

⟨
|ûx(ks)|2

⟩
z

=−
⟨
2Re[û∗x(ks) ·

(
ûz(ks)∂z

)
ûx(0)]

⟩
z

−
⟨ ∑

k′′+k′=ks,
k′ ̸=0,k′′ ̸=0

Nx(û(ks), û(k
′), û(k′′))

⟩
z

− 2

Re

⟨
β2|ûx(ks)|2 + |∂zûx(ks)|2

⟩
z

. (B.115)

Therefore, the energy transfers from the mean flows not to the y, z-directional
components ûy(ks), ûz(ks) but to the x-directional component ûx(ks). Actu-
ally, during the reformation period of the streaks (the phase(ii)), ⟨|ûx(ks)|2⟩z
increases while ⟨|ûy(ks)|2⟩z, ⟨|ûz(ks)|2⟩z remain almost constant or decrease
(see Fig.B.12).

Here, we consider the physical interpretation of the mean flow interaction
term
−⟨2Re[û∗x(ks) ·

(
ûz(ks)∂z

)
ûx(0)]⟩z. In the case of the streak mode, a relation

⟨|ω̂z(ks)|2⟩z = β⟨|ûx(ks)|2⟩z holds6. Hence, we here focus on the z-component

6Let us consider the velocity field consisting of the streak mode only us(x) =
2Re[û(ks, z)e

iks·x] = 2Re[û(ks, z)e
iβy] (β = 2π/Ly). Vorticity defined by the veloc-
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Fig. B.12: Modal energy of each directional components of the velocity con-
sisting of the streak mode during a single regeneration cycle. The red solid
line denotes x-directional component ⟨|ûx(ks)|2⟩z, the green dash line de-
notes y-directional component ⟨|ûy(ks)|2⟩z, and the blue dashed-dotted line
denotes z-directional component ⟨|ûz(ks)|2⟩z.

of the vorticity ω̂z(ks) instead of the x-component ûx(ks) of the streak mode.
We can obtain the ‘modal enstrophy’ equation of the z-component of the

ity field (ωs = ∇× us) is

ωs
x =

∂usz
∂y

−
∂usy
∂z

, ωs
y =

∂usx
∂z

− ∂usz
∂x

=
∂usx
∂z

, (B.116)

ωs
z =

∂usy
∂x

− ∂usx
∂y

= −∂u
s
x

∂y

= −2Re[iβûx(ks, z)e
iβy]

= −2βRe[ûx(ks, z)e
i(βy+π/2)]

= −βusx
(
x, y +

π

2β
, z
)
. (B.117)

Particularly, in the z-directional components, a simple relation between L2-norms of the
coefficients holds as ||ωs

z(x, y, z)||L2
= ||βusx

(
x, y + π

2β , z
)
||L2

= β||usx(x, y, z)||L2
.
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vorticity ω̂z(ks) from the vorticity equation;

d

dt

⟨
|ω̂z(ks)|2

⟩
z

= 2

⟨
Re

[
ω̂∗
z(ks) ω̂y(0)

(
iβûz(ks)

)]⟩
z

−
⟨ ∑

k′′+k′=ks,
k′ ̸=0,k′′ ̸=0

Nω(ω̂(ks), ω̂(k′), ω̂(k′′))

⟩
z

− 2

Re

⟨
β2|ω̂z(ks)|2 + |∂zω̂z(ks)|2

⟩
z

(B.118)

(see §B.7). The mean flow interaction term of the above equation,

2

⟨
Re

[
ω̂∗
z(ks) ω̂y(0)

(
iβûz(ks)

)]⟩
z

, (B.119)

originates from the tilting term in the vorticity equation: ωy∂yuz, i.e. tilting
of the y-directional component of the mean flow vorticity toward z-directional
component of the vorticity through the nonlinear interaction.

Substituting the relation between the coefficients of the streak mode
ω̂z(ks, z) = −iβûx(ks, z) into the above modal enstrophy equation;

β2 d

dt

⟨
|ûx(ks)|2

⟩
z

= 2

⟨
Re

[
iβû∗x(ks)

(
iβ∂zûx(0)

)
ûz(ks)

]⟩
z

(B.120)

−
⟨ ∑

k′′+k′=ks,
k′ ̸=0,k′′ ̸=0

Nω(ω̂(ks), ω̂(k′), ω̂(k′′))

⟩
z

(B.121)

−2β2

Re

⟨
β2|ûx(ks)|2 + |∂zûx(ks)|2

⟩
z

, (B.122)

we have the modal energy equation Eq.(B.115) by multiplying 1/β2. Thus,
the mean flow interaction term in the modal energy equation Eq.(B.115) cor-
responds to the vortex tilting term in the modal enstrophy equation Eq.(B.118).
In other words, in the enstrophy equation, the vortex tilting plays an impor-
tant role for growth of ⟨|ω̂z(ks)|2⟩z, which implies the growth of the streak
mode ⟨|ûx(ks)|2⟩z through the relation ⟨|ω̂z(ks)|2⟩z = β⟨|ûx(ks)|2⟩z. To sum-
marize, the physical interpretation of the mean flow interaction is the tilting
of the mean flow vorticity.

B.6.1 Relation to lift-up mechanism

Here, we briefly discuss relation between the vortex tilting mechanism de-
scribed above and so-called lift-up mechanism. Lift-up mechanism illustrates
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the formation of the streaks by the streamwise vortex in a x-independent flow.
The evolution equation of the streamwise velocity in the x-independent (i.e.
∂x = 0) is as follows :

∂tux ∼ −uy∂yux − uz∂zux = (u⊥ ·∇⊥)ux, (B.123)

where we do not consider the viscous term and ⊥ denotes a physical quan-
tity in a cross-streamwise plane (a plane perpendicular to the streamwise
direction, i.e. y-z plane). Thus, the streamwise velocity contour ux can be
a passive scalar advected by the streamwise vortex in the cross-streamwise
plane.

In order to consider the relation between the two mechanisms, we use ωy =
∂zux and ωz = −∂yux under the assumption that the flow is x-independent
(i.e. ∂x = 0). Spanwise derivative (∂y) of the above equation (B.123) gives

∂tωz = −ωz∂yuy − uy∂yωz + ωy∂yuz + uz∂yωy (B.124)

Using incompressible conditions, we have simply a vorticity equation :

∂tωz = −u⊥ ·∇⊥ωz + ω⊥ ·∇⊥uz. (B.125)

In the tilting mechanism we described above, the vorticity tilting term ωy∂yuz
is important (i.e. ∂tωz ∼ ωy∂yuz). More precisely, only the mean flow
interaction of the vorticity tilting term ωy∂yuz is important. Therefore,
the difference between the two mechanisms is, at least, the three terms
−ωz∂yuy − uy∂yωz + uz∂yωy. in Eq.(B.123).

B.7 Derivation of evolution equation of modal

enstrophy

In this section, we derive evolution equation of ‘modal enstrophy’7 ⟨|ω̂z(k)|2⟩z,
i.e. z-directional mean of square amplitude of wall-normal Fourier coefficient
ω̂z(k) (hereafter we write ω̂(k) as ω̂(k, z) for simplicity), which is as follows

7More precisely, it would be better to refer to it as ‘twice of modal enstrophy’.
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:

∂

∂t

⟨
|ω̂z(k)|2

⟩
z

=2

⟨
Re

[
− ikω̂∗

z(k)
∂ûy
∂z

(0)ûz(k) + ilω̂∗
z(k)

∂ûx
∂z

(0)ûz(k)

]⟩
z

+

⟨ ∑
k′′+k′=k,
k′ ̸=0,k′′ ̸=0

N (ω̂(k), ω̂(k′), ω̂(k′′))

⟩
z

− 2

Re

⟨
(k2 + l2)|ω̂z(k)|2 + |∂zω̂z(k)|2

⟩
z

. (B.126)

Wall-normal (z-directional) component of vorticity equation is

∂ωz
∂t

= −u ·∇ωz + ω ·∇uz +
1

Re
∇2ωz. (B.127)

Substituting the Fourier expansion of the wall-normal vorticity field

ωz(x, y, z) =
∑
k

ω̂z(k, z)e
ik·x (B.128)

into the above equation and picking up k mode (⟨ · e−ik·x⟩H), we have

∂tω̂z(k) =−
∑

k′+k′′=k

(
ik′ûx(k

′′) + il′ûy(k
′′) + ûz(k

′′)∂z

)
ω̂z(k

′)

+
∑

k′+k′′=k

(
ik′ω̂x(k

′′) + il′ω̂y(k
′′) + ω̂z(k

′′)∂z

)
ûz(k

′)

+
1

Re

(
− (k2 + l2)ω̂z(k) + ∂2z ω̂z(k)

)
. (B.129)

Particularly, we focus our attention on the interaction terms with the mean
flows, and therefore we pick up them so that the triad interaction k = k′ + k′′

holds. Such possible interaction terms are as follows :
(i) k′ = 0, k′′ = k
(ii) k′′ = 0, k′ = k.
From the first term of the nonlinear terms, we have(

ikûx(0) + ilûy(0)
)
ω̂z(k), (B.130)

and from the second term of the nonlinear terms, we have(
ikω̂x(0) + ilω̂y(0)

)
ûz(k), (B.131)
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where we use the fact that ûz(0) ≡ 0, ω̂z(0) ≡ 0.
Summarizing the above calculation, we obtain

∂tω̂z(k) =−
(
ikûx(0) + ilûy(0)

)
ω̂z(k)

+
(
ikω̂x(0) + ilω̂y(0)

)
ûz(k)

−
∑

k′′+k′=k,
k′ ̸=0,k′′ ̸=0

(
ik′ûx(k

′′) + il′ûy(k
′′) + ûz(k

′′)∂z

)
ω̂z(k

′)

+
∑

k′′+k′=k,
k′ ̸=0,k′′ ̸=0

(
ik′ω̂x(k

′′) + il′ω̂y(k
′′) + ω̂z(k

′′)∂z

)
ûz(k

′)

+
1

Re

(
− (k2 + l2)ω̂z(k) + ∂2z ω̂z(k)

)
, (B.132)

which leads to the evolution equation of the ‘modal enstrophy’ as follows :

∂t|ω̂z(k)|2 =− ω̂∗
z(k)

(
ikûx(0) + ilûy(0)

)
ω̂z(k) + c.c.

+ ω̂∗
z(k)

(
ikω̂x(0) + ilω̂y(0)

)
ûz(k) + c.c.

−
∑

k′′+k′=k,
k′ ̸=0,k′′ ̸=0

Nω(ω̂(k), ω̂(k′), ω̂(k′′))

+
1

Re

(
− (k2 + l2)ω̂z(k) + ∂2z ω̂z(k)

)
. (B.133)

From ûx(0), ûy(0) ∈ R, it follows that the first term of r.h.s. is canceled out
with its complex conjugate term.

Finally, calculating z-directional mean, we have Eq.(B.126), where we
used the facts that ω̂z(k, z = ±1) ≡ 0 and ω̂x(0) = −∂zûy(0), ω̂y(0) =
∂zûx(0).

In the case of the streak mode k = ks = (0, 1), the above equation become

d

dt

⟨
|ω̂z(ks)|2

⟩
z

= 2

⟨
Re

[
ω̂∗
z(ks)

(
iβ∂zûx(0)

)
ûz(ks)

]⟩
z

−
⟨ ∑

k′′+k′=ks,
k′ ̸=0,k′′ ̸=0

Nω(ω̂(ks), ω̂(k′), ω̂(k′′))

⟩
z

− 2

Re

⟨
β2|ω̂z(ks)|2 + |∂zω̂z(ks)|2

⟩
z

. (B.134)
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Derivation from the ‘modal energy’ equation (in the case of k = ks)
As Eq.(B.104), z-directional mean of the modal energy equation of stream-
wise (x-directional) component is given by

d

dt

⟨
|ûx(k)|2

⟩
z

=−
⟨
2Re

[
ûx

∗(k) ·
(
ûz(k)∂z

)
ûx(0)

]⟩
z

(B.135)

−
⟨ ∑

k′′+k′=k,
k′ ̸=0,k′′ ̸=0

N (ûx(k), ûm(k
′), ûn(k

′′))

⟩
z

(B.136)

−
⟨
2Re

[
ikûx(k)p̂(k)

]⟩
z

− 2δk,0⟨ûx(0)⟩zΠx (B.137)

+
δk,0
Re

(
∂zûx(k, z = +1) + ∂zûx(k, z = −1)

)
(B.138)

− 2

Re

⟨
(k2 + l2)|ûx(k)|2 + |∂zûx(k)|2

⟩
z

. (B.139)

f Here, we consider the evolution of the streak mode (k = ks = (0, 1)). Pre-
viously, we derived the relation ⟨|ûx(k)|2⟩z = ||uxk(x)||2L2

and ||ωsz(x)||L2 =
β||usx(x)||L2 which holds only in the case of streak mode (k = ks = (0, 1)).
There relation lean to

⟨|ûx(ks)|2⟩z = ||usx(x)||2L2
= 1/β2||ωsz(x)||2L2

. (B.140)

Therefore, we have

d

dt
||ωsz(x)||2L2

=− β2

⟨
ûx

∗(ks)
(
ûz(ks)∂z

)
ûx(0) + ûx(ks)

(
û∗z(ks)∂z

)
ûx

∗(0)

⟩
z

− β2

⟨ ∑
k′′+k′=ks,
k′ ̸=0,k′′ ̸=0

N (ûx(ks), ûm(k
′), ûn(k

′′))

⟩
z

− 2β2

Re

⟨
β2|ûx(ks)|2 + |∂zûx(ks)|2

⟩
z

. (B.141)

Using the facts that ∂zûx(0) = ω̂y(0, z) and ω̂z(ks, z) = −iβûx(ks, z), the
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r.h.s. of the above equation can be written by

− β2

⟨
ûx

∗(ks)
(
ûz(ks)∂z

)
ûx(0) + ûx(ks)

(
û∗z(ks)∂z

)
ûx

∗(0)

⟩
z

= iβ

⟨
iβûx

∗(ks)ûz(ks)ω̂y(0)− (−iβûx(ks))û∗z(ks)ω̂y(0)
⟩
z

= iβ

⟨
ω̂∗
z(ks)ûz(ks)ω̂y(0)− ω̂z(ks)û

∗
z(ks)ω̂y(0)

⟩
z

=

⟨
ω̂∗
z(ks)

(
iβûz(ks)

)
ω̂y(0) + ω̂z(ks)

(
− iβû∗z(ks)

)
ω̂y(0)

⟩
z

= 2

⟨
Re

[
ω̂∗
z(ks)

(
iβûz(ks)

)
ω̂y(0)

]⟩
z

. (B.142)

This term originates from a tilting term ωy
∂uz
∂y

of the z-directional vorticity
equation and represents the nonlinear interaction between the mean flows
and the streak mode. Using the relation |ω̂z(ks, z)| = β|ûx(ks, z)| and
|∂zω̂z(ks, z)| = β|∂zûx(ks, z)|, we obtain

d

dt
||ωsz(x)||2L2

=2

⟨
Re

[
ω̂∗
z(ks)

(
iβûz(ks)

)
ω̂y(0)

]⟩
z

−β2

⟨ ∑
k′′+k′=ks,
k′ ̸=0,k′′ ̸=0

N (ûx(ks), ûm(k
′), ûn(k

′′))

⟩
z

− 2

Re

⟨
β2|ω̂z(ks)|2 + |∂zω̂z(ks)|2

⟩
z

. (B.143)

vi
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