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Abstract

In planetary atmospheres in Jupiter or Saturn, for example, strong zonal jets have been
observed. The existence of the zonal jet flow has been considered as one of the robust
properties of planetary atmospheres.

The two-dimensional incompressible Navier-Stokes flow on a rotating sphere is con-
sidered to be one of the simplest and most fundamental models of the atmospheric motions
taking into account the effect of the planetary rotation. The Reynolds number of the plan-
etary atmospheres is so large that properties of the Navier-Stokes turbulence on a rotating
sphere should be relevant to some aspect of the dynamics of the atmosphere. However, even
in this simplest model, it is far from straightforward to obtain global properties of fully
nonlinear solutions. In this thesis we discuss the Navier-Stokes flows on a rotating sphere,
with an attention focused on the stability problem, the bifurcation structure of the zonal jet
flows and chaotic solutions at high Reynolds numbers.

First we show the inviscid stability of the zonal jet flows on a rotating sphere. The
semi-circle theorem obtained by Howard (1961) on a non-rotating planer domain is extended
to the rotating sphere. We also study the linear stability of the zonal jet flows (l-jet flow)
the streamfunction of which is expressed by a single spherical harmonics function Y 0

l . This
linear stability problem was first studied by Baines (1976), and his numerical result has been
considered as a standard result for the zonal jet flows. We show that the critical rotation
rates obtained by Baines include numerical errors caused by an emergence of singularities
(critical layers), and we give accurate numerical results for the critical rotation rate by using
a power-series expansion and a shooting methods taking into account the singular points.

Next, we study the viscous stability problem and the bifurcation diagram of the
zonal jet flows, by introducing a forcing term balancing with the viscous dissipation terms.
This setting is similar to the Kolmogorov problem, in which the stability and the bifurcation
diagram of two-dimensional Navier-Stokes flows on a flat torus is considered. We prove
rigorously that the 2-jet zonal flow is globally and asymptotically stable for an arbitrary
Reynolds number and rotation rate. Then we study the linear stability of l-jet zonal flow
for l ≥ 3 and find an interesting phenomenon that the inviscid limit of the critical stability
point does not coincide with the inviscid critical stability point. We also show that this is
not a contradiction because the inviscid limit of the growth rates of the viscous unstable
modes coincides with that of the inviscid unstable mode. In the numerical simulation by
Obuse et al. (2010), the asymptotic states of forced two-dimensional turbulence are only the
2- or 3-jet zonal flows. A discussion is given on their results and our result on stability of
laminar jets.

We study the bifurcation structure arising from the 3-jet zonal flow. In non-rotating
case, at the critical Reynolds number, a steady traveling wave solution arises from the 3-jet
zonal flow through the Hopf bifurcation. As the Reynolds number increases, several traveling
solutions arise only through the pitchfork bifurcations and at high Reynolds numbers the
steady bifurcating solutions become Hopf unstable. For the steady bifurcating solutions in
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the non-rotation case, we find symmetry restoration of the streamfunction at high Reynolds
numbers. Similar phenomenon has been found in Kolmogorov problem by Okamoto and
Shōji (1993) and Kim and Okamoto (2010). In the rotating case, on the other hand, we
find the saddle-node bifurcations and a closed-loop branch. These results show that the
bifurcation structure changes drastically, as the absolute value of the rotation rate increases.

We also carry out time integration of unsteady zonal flows at high Reynolds num-
bers on the non-rotating/rotating sphere. We reproduce the zonal-mean zonal velocity of the
unsteady solution from those of the unstable steady and steady traveling solutions by making
a linear mapping from the solution space to the zonal-mean zonal profiles. In the non-rotating
case, we find that the solutions are chaotic, and the reproduction of the zonal-mean profiles
is satisfactory although the linear mapping assumes the linear inter- and extra-polation of
the profile of the steady and steady traveling solutions in the solution space. However, in
the rotating cases, the solution tends to be less chaotic under the stabilizing effect of rota-
tion, and we find that the reproduced zonal flow by the linear mapping method does not
approximate well the zonal-mean zonal velocity of the solutions. These results suggest that
in the non-rotating case even the chaotic orbits at high Reynolds number lies mostly within
a relatively low-dimensional box, the vertices of which are the steady and steady traveling
solutions, and in the rotating case the relation between the unsteady solutions and the steady
or steady traveling solutions changes as the effect of rotation increases.
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Chapter 1

Introduction

1.1 Planetary atmospheres and two-dimensional fluids

Dynamics of fluid motion of human size have been investigated for over one hundred years,
and fruitful insights in fluid motions have been obtained together with new attractive prob-
lems by experimental and theoretical studies. We now have rich knowledge about a set of
simple fundamental flows which serve as components of complex fluid motions encountered
in daily life. Recently, large-scale fluid phenomena in planetary atmospheres has been ob-
servable by using satellites and high-performance telescopes. However, the observational
data is still quite lacking, and experimental study of most of these flows is impossible. The
understanding the large-scale flows are therefore far from satisfactory compared to the flows
in daily life, and our knowledge is quite limited even about simplest fundamental flows.

In planetary atmospheres in Jupiter or Saturn, for example, strong zonal jets have
been observed, with their zonal-band pattern consisting of the eastward and westward al-
ternating jets. The zonal flow in the atmospheres is observed in other planets in our solar
system, and the existence of the zonal jet flow has been considered as one of the robust prop-
erties of planetary atmospheres. The dynamics of the planetary atmospheres includes such
various effects arising from rotation, stratification, radiation, phase change of gas, topogra-
phy, vegetation, ice and thermal heating. A full model of the atmospheric dynamics should
take into account these complicated factors. However, on the other hand, it is also a problem
whether such robust property of the atmospheres as zonal flows still arises in a simplified
model as two-dimensional fluids on a rotating sphere. In this thesis, we are interested in
the simplified model dealing with fluid flows governed by the two-dimensional incompress-
ible Navier-Stokes equations on a rotating sphere, which may be the simplest model taking
into account the effect of the planetary rotation, neglecting all the effect due to the thermal
heating and the density stratification of atmospheres. In this model, non-dimensional pa-
rameters determining the dynamics are Reynolds number and the Rossby number (inverse
of the non-dimensional rotating rate). In general, as Reynolds number increases, a fluid

9



1 Introduction

motion becomes turbulent and the Reynolds number of the planetary atmospheres is quite
huge, the two-dimensional Navier-Stokes turbulence on a rotating sphere is considered to be
a model of the atmospheric motions.

1.2 Two-dimensional turbulence in a plane

In a non-rotating plane, two-dimensional turbulence is known to produce coherent large vor-
tices through mergers and disappearances of small vortices in the course of time development
(McWilliams [17]) The coherent vortices are considered to be associated with the energy in-
verse cascade, the energy transfer from small-scale to large-scale motions. The energy inverse
cascade was first suggested by Kraichnan [15] together with the enstrophy cascade as an out-
standing feature of the two-dimensional turbulence, in contrast with the energy cascade in
three-dimensional turbulence where the energy transfers from large-scale to small-scale mo-
tions. His scaling theory predicted the k−5/3 energy spectrum for the wavenumber range of
the energy inverse cascade, while k−3 energy spectrum for the enstrophy cascading range,
which has been tested repeatedly by many researchers and mostly accepted. The statisti-
cal properties of the two-dimensional turbulence in forced and freely decaying cases have
attracted many researchers interests (Boffetta and Ecke [3]), where the forcing, if any in
our case, may be interpreted as vorticity forcing and the energy injection by small-scale
thermal convection, while the freely decaying case is studied to find turbulence properties
independent of the form of the forcing.

1.3 Effect of rotation on two-dimensional turbulence

It is well-known that the uniform horizontal rotation has no effect on the planar and in-
compressible two-dimensional turbulence because the Coriolis terms can then be absorbed
in the pressure term. However, the rotation of the Earth, for example, is not uniform over
the Earth’s surface, and this non-uniform effect is, in a simplest way, taken into account by
assuming a position dependence of the Coriolis parameter. The planar two-dimensional tur-
bulence with the variable Coriolis parameter is expected to describe local properties of fluid
motion on a rotating sphere. Eventually the two-dimensional Navier-Stokes equations with
the Coriolis term in which the Coriolis parameter f is a linear function of one coordinate,
i.e. f = f0 + βy, is often employed as a model equation of local fluid motion on a rotating
sphere. The two-dimensional turbulence in this model equation (the β-plane equation) is
called the β-plane turbulence.

The β-plane turbulence has been known to have properties different from the ordi-
nary (non-rotating) two-dimensional turbulence since the pioneer work of Rhines [27], who
found that multiple zonal jet flows emerge in the course of time development and are robustly
maintained for a long time, even if the initial flow field is isotropically turbulent. He then
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1.4 Two-dimensional turbulence on a rotating sphere

suggested that the energy inverse cascade ceases roughly at a characteristic wavenumber kβ
(now called Rhines wavenumber) where the rotation and the nonlinear effects are of the same
order, and that an accumulation of the energy at kβ provides the multiple zonal jet flows.
This mechanism has been extensively studied by many researchers [4, 2, 20], and interpreted
from several points of view as the two-dimensional energy spectrum, the pseudo conserved
quantity and the wave turbulence.

1.4 Two-dimensional turbulence on a rotating sphere

Numerical study of the two-dimensional turbulence on a rotating sphere was first performed
by Williams [38], who investigated the forced two-dimensional turbulence on a rotating
sphere under a symmetry assumption of the flow field, and found that zonal jet flows, sim-
ilar to those of Jovian atmospheres and of the β-plane turbulence, emerges in a turbulent
flow field. His results raised an expectation that the forced two-dimensional flow on a ro-
tating sphere can be a fundamental model to the planetary atmospheres. However, his
computational domain was restricted to 1/16 of the entire sphere under the assumptions of
a longitudinal periodicity and the equatorial symmetry. Later Yamada and Yoden [39] first
studied asymptotic states of freely decaying two-dimensional turbulence on a rotating sphere
with no assumption on the flow field, and showed that circumpolar west-ward strong jets
emerge along with multiple weak jets at the low and middle latitudes. Further Takehiro et al.
[35] showed that as the rotation rate Ω of the sphere increases, the width of the circumpolar
west-ward jets decreases as Ω−1/4 and the velocity of the jets increases as Ω1/4.

As for the forced turbulence on a rotating sphere, Nozawa and Yoden [21] per-
formed numerical simulation with Markovian random forcing, and found that at the final
stage of their computation, the flow field consists of multiple zonal jet flow and/or west-ward
circumpolar jets, depending on the Rhines wavenumber and the forcing wavenumber. How-
ever, recently, Obuse et al. [22] re-calculated the same problem as Nozawa and Yoden with
the numerical integration time being more than 100 times of that of Nozawa and Yoden,
and found that at an early stage of time integration, the multiple zonal jet flows and the
circumpolar jets are observed, but as time goes on, the zonal jets merge with each other,
and at the final stage of time integration, only two or three broad zonal jets are left in the
flow field. The surviving broad jets are found to be quite stable to disturbance even in the
ambient turbulent flows.

1.5 Inviscid stability problem of zonal jets

The zonal flows in planetary atmospheres survives for a long time, and, as seen in the
numerical simulation, some zonal flows are robust even in a turbulent environment. These
observations lead us to the stability problem of the steady zonal flows on a rotating sphere.
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1 Introduction

First we are concerned with the inviscid stability problem of the zonal flows. One
of the fundamental theorems for the inviscid linear instability of a zonal flow on the β-plane
is the (extended) inflection-point theorem which gives so-called Rayliegh-Kuo’s criterion
(Kuo [16]), a necessary conditions for instability of the inviscid zonal flow. This theorem is
extended to a rotating sphere (Baines [1]), and says that the necessary condition of the linear
instability of a zonal flow is that the potential vorticity (as a function of the sine latitude)
has an inflection point.

Another fundamental theorem for the inviscid linear stability is the semi-circle
theorem, which was first derived by Howard [7] in a non-rotating case. This theorem restricts
the possible region of unstable eigenvalues for the linear stability problem of a zonal flow.
The semi-circle theorem was extended to a β-plane by Pedlosky [24, 25], and to a rotating
sphere by Thuburn and Haynes [36]. In this thesis we give a different version of the semi-circle
theorem on a rotating sphere, and compare it to those previously obtained.

On a rotating sphere, Baines [1] studied the inviscid linear stability of typical zonal
jet flows, the streamfunction of which is expressed by a single spherical harmonics Y 0

l , as
well as the inviscid Rossby wave solutions. He solved the eigenvalue problem numerically
with a spectral method using the spherical harmonics with the truncation wavenumber up
to 20. The inflection-point theorem says that the zonal jet is stabilized when the rotation
rate is large enough. Therefore the zonal flow has a critical rotation rates at which the zonal
jets obtain the stability. He obtained numerically the critical rotation rate, and found that it
is only slightly different from the estimates obtained from the inflection-point theorem. The
numerical calculation of the stability eigenvalues by Baines [1] was significantly challenging
at the time prior to the major advance of computational environment, and the obtained
values have been frequently employed by many researchers (Huang et al. [8]). However,
the numerical calculation is difficult even at present because of an emergence of singularities
(critical layers), while Skiba [31] also discussed the difficulty of stable calculation from a
view point of an accumulation of the continuous spectrum. Actually, as shown in this thesis,
the numerical results of Baines [1] included relative errors up to 20%, and we will discuss
accurate calculation of the eigenvalues in Chapter 2.

1.6 Viscous stability of the zonal jets and Kolmogorov

problem

The viscous stability problem of the zonal flows is formulated by introducing a forcing term,
which consists of a single spherical harmonics, to balance with the viscous dissipation term
to keep the flow steady. Our interest lies in the bifurcation structure of the steady or steady
traveling solutions, taking the Reynolds number as a bifurcation parameter. The relation
between the results of the inviscid stability problem and the inviscid limit problem is also
one of the subject of this thesis. Further we are interested in whether the asymptotic state of
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1.6 Viscous stability of the zonal jets and Kolmogorov problem

the two-dimensional turbulence on a rotating sphere (Obuse et al. [22]) can be interpreted
by the stability results of laminar zonal flows. These problems are open so far, although
they are basic problems for the fluid motions on a rotating sphere.

Here we should give a brief overview on a similar problem on a flat plane. This
problem is called Kolmogorov problem which was first proposed by Kolmogorov in his sem-
inar in 1959 as a typical and simplest example to get insight into the solution properties of
the Navier-Stokes equations. Kolmogorov considered a two-dimensional flow (on xy-plane),
which is periodic with respect to both x- and y-directions, and is governed by the incom-
pressible Navier-Stokes equations with an external force (sin ky, 0) where k is an integer.
The Kolmogorov problem is thus concerned with the flows on a flat torus. In our case, on
the other hand, the problem is formulated on a two-dimensional sphere, and with the forcing
term consisting of a single spherical harmonics function which is an eigenfunction of the
Laplacian similar to the forcing term in the Kolmogorov problem. Both the problems are
formulated on a two-dimensional boundary-less compact manifold, and are quite similar to
each other with a difference in the topology of the flow domain (genus 0 for the sphere, and
genus 1 for the torus), and both they are expected to give an insight into the solutions of
the Navier-Stokes equations.

For the Kolmogorov problem, Iudovichi [13] proved that the trivial two-jet flow
(k = 1) 1 is globally stable at any Reynolds number, while Meshalkin and Sinai [18] proved
that the critical modes of the trivial flows are steady (not Hopf), and Iudovich [13] proved
the existence of the bifurcation solution arising at the critical stability point. Gotoh and
Yamada [6] and Gotoh et al. [5] studied the linear stability of a general parallel flow in the
case where the domain is infinite in the flow direction, and obtained the critical Reynolds
number analytically. They also showed that, as the number of jets increases, the critical
Reynolds number increases monotonically.

The bifurcation diagram of steady solutions arising from the 2-jet trivial flow was
studied by Okamoto and Shōji [23] for several aspect ratios of the planar torus. They found a
pitchfork bifurcation arising from the 2-jet trivial flow, and also found that as the aspect ratio
changes, there appear several types of bifurcations including the saddle-node bifurcation,
Hopf bifurcation and the secondary bifurcation. Also Kim and Okamoto[14] studied the
inviscid limit of the steady solutions arising from 4- and 6-jet trivial flows. In each case the
first and the second branches arise through the pitchfork bifurcations, and they found that
the flow fields of the bifurcating steady solutions consists of multiple vortices around the
bifurcation points. However, as the Reynolds number increases along the branches, smaller
vortices merge into larger vortices, and the flow field becomes dominated only by a pair
of a negative and a positive vortices at high Reynolds number. They called this solution
unimodal solution, and suggested that at high Reynolds number there is a steady unimodal
solution independently of the value of k. Similar phenomena were found also by Okamoto
and Shōji [23]. We add that the simplicity of Kolmogorov flows drives other researches on

1We call a parallel steady flow a parallel solution or trivial solution.
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dynamical system properties such as routes to turbulence [26] and the orbital instability of
chaotic flows [9]. We will discuss in this thesis the Navier-Stokes flows on a rotating sphere,
with an attention focused on the viscous stability problem, bifurcation structure of the zonal
jet flows and chaotic solutions at high Reynolds numbers.

1.7 Results of the present study

This thesis consists of two parts; the first part (Chapter 2) is concerned with the inviscid
stability of the zonal jet flows on a rotating sphere. The semi-circle theorem obtained by
Howard [7] on a non-rotating planer domain is extended to the rotating sphere in a different
way from Thuburn and Haynes [36] (Section 2.3). In Section 2.4 we obtain accurate values of
the critical rotation rate, by reconsidering the calculation of Baines [1] for the zonal jet flows
the streamfunction of which is expressed by a single spherical harmonics Y 0

l . We find that the
eigenvalues obtained by the spectral method adopted by Baines [1] included numerical errors
which do not decrease even by increasing the truncation wavenumber as far as practically
available in the computation. Taking a close look at the eigenvalue calculation, we show that
these numerical errors are caused by an emergence of singularities, called as critical layers,
near the north and the south poles when the zonal flow approaches the critical stability state.
To obtain the critical eigenvalues and the critical rotation rates with sufficient accuracy, we
make use of the shooting method together with the power series expansion method, taking
into account the singular points. As a result, we find that the critical rotation rates of Baines
[1] should be corrected by ∼ 10%.

In the second part (Chapter 3), we study the viscous stability and bifurcation
diagram of the zonal jet flow (l-jet flow) the streamfunction of which is expressed by a
single spherical harmonics Y 0

l . In section 3.3 we prove rigorously that the 2-jet zonal flow
is globally and asymptotically stable for arbitrary Reynolds number and rotation rate. In
section 3.4 we discuss the linear stability of l-jet zonal flow (3 ≤ l). In non-rotating case, as
the number of jets increases, the critical Reynolds number increases monotonically, where
each jet is Hopf unstable at its critical point. In the rotating case, when the rotation rate
increases, the critical Reynolds number of each zonal jet flow increases rapidly. We find that
at large Reynolds numbers, the unstable region of the rotation rate is larger than that for
the inviscid zonal flows, and the former does not converge to the latter even in the inviscid
limit. We show that this seeming contradiction between the inviscid limit and inviscid cases
is resolved by an observation that the growth rates of the unstable modes at the rotation
rate which is both in the regions of the viscous instability and the inviscid stability, converge
to zero, when the Reynolds number increases. In the numerical simulation by Obuse et
al. [22], the asymptotic states of forced two-dimensional turbulence are only the 2- or 3-jet
zonal flow. We find that in their calculation, the rotation rate is always larger than the
critical rotation rate of the laminar jet flows, in the course of time development, except for
some initial period. This means that the jet flows found in the intermediate stages would
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1.7 Results of the present study

be mostly stable if the jet flows were laminar, and therefore the route to the asymptotic
state of the forced turbulence is not explained in the framework of the linear stability of
laminar zonal jet flows, while the stability of the resultant 3-jet flow is supported by the
linear stability of the laminar 3-jet flow.

In Section 3.5 we study bifurcation structure arising from the 3-jet zonal flow.
In the non-rotating case, at the critical Reynolds number, a steady traveling wave solution
arises from the 3-jet zonal flow through Hopf bifurcation. As the Reynolds number increases,
several traveling solutions arise only through the pitchfork bifurcations and at high Reynolds
numbers the steady bifurcating solutions become Hopf unstable. For the steady bifurcating
solutions in the non-rotation case, we find the symmetry restoration of the streamfunction
at high Reynolds numbers, while the 3-jet zonal flow does not have this symmetry. Similar
phenomenon has been found in Kolmogorov problem by Okamoto and Shōji [23] and Kim
and Okamoto [14]. In the rotating case, on the other hand, we find the saddle-node bifur-
cations and a closed-loop branch. These results show that the bifurcation structure changes
drastically, as the absolute value of the rotation rate increases. It should be noted that no
symmetry restoration is found in the rotating cases.

In Section 3.6 we carry out time integration of the unstable zonal flows at high
Reynolds numbers on the non-rotating/rotating sphere. In the non-rotating case, we find
that the solutions are chaotic. Observing the streamfunctions, we expect that properties of
the chaotic solutions can be obtained by using unstable steady solutions. As an example,
we reproduce the zonal-mean zonal velocity of the chaotic solutions by using those of the
unstable steady and steady traveling solutions, by making a linear mapping from the solution
space to the zonal-mean zonal profiles. We find that the reproduction of the zonal-mean
profiles is satisfactory, although the linear mapping assumes the linear inter- and extra-
polation of the profile of the steady and steady traveling solutions in the solution space.
This result suggests that even the chaotic orbits at high Reynolds number lies mostly within
a relatively low-dimensional box, the vertices of which are the steady and steady traveling
solutions. In the rotating cases, on the other hand, the solution tends to be less chaotic under
the stabilizing effect of rotation, and we find that the reproduced zonal flow by the linear
mapping method does not approximate well the zonal-mean zonal velocity of the unsteady
solutions at several Reynolds numbers and rotation rates. This result suggests that the
relation between the unsteady solutions and the steady or steady traveling solutions changes
as the effect of rotation increases.
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Chapter 2

Stability of inviscid zonal jet flows on
a rotating sphere

1

2.1 Introduction

Characteristics of two-dimensional barotropic fluid on a rotating sphere, which is one of
the simplest models of planetary atmospheres taking into account the effects of planetary
rotation and density stratification, have long been investigated [35, 22], and on the β-plane
[16, 37]. The stability problem of barotropic zonal flows on a rotating sphere has also been
studied in relation to the existence of large-scale zonal flows in the planetary atmospheres.

The first aim of this chapter is develop a semi-circle theorem for the inviscid in-
stability of zonal flows on a rotating sphere. The semi-circle theorem was first derived by
Howard [7] for zonal flows in the non-rotating case, and was extended to the β-plane by Ped-
losky [24, 25]. We extend the semi-circle theorem to zonal flows on a rotating sphere, where
the radius of the circle depends on the angular velocity of the rotating frame of reference
and we minimize the radius by choosing the most convenient frame of reference. A similar
method was employed by Thuburn and Haynes [36] who obtained a semi-circle theorem in
which the radius does not coincide with that given in this chapter.

The second aim of this chapter is to give corrected values of the critical rotation rate
of stability. Baines [1] numerically studied the linear stability of inviscid barotropic zonal
flow solutions on a rotating sphere, the streamfunction of which is expressed by the zonal
spherical harmonics Y 0

l , as well as inviscid Rossby wave solutions expressed by the spherical
harmonics Y m

l where m 6= 0. He solved the eigenvalue problem numerically with a spectral
method with the truncation wavenumber up to 20. As suggested by the inflection-point
theorem (Rayleigh’s criterion), the zonal jet flows are stabilized when the rotation rate of

1Published in Sasaki et al. [28]
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2.2 Governing equations

the sphere is increased. He obtained for various zonal jet solutions the critical rotation rates
at which the stability of zonal jets changes from unstable to stable. He also argued that the
values of the critical rotation rates are only slightly above those estimated by the inflection-
point theorem. The numerical calculation of eigenvalues by Baines [1] was significantly
challenging at the time prior to the major advance of computational environment, and the
obtained values have been frequently employed by many researchers. However, re-examining
the numerical calculation, we find that the eigenvalues obtained by the spectral method
adopted by Baines [1] include numerical errors which do not decrease even by increasing the
truncation wavenumber as far as practically available in the computation. We should also
note Skiba’s argument that numerical calculation of some eigenvalues is not stable because
of an accumulation of the continuous spectrum [31].

This chapter re-examines the stability of inviscid barotropic zonal flows on a rotat-
ing sphere, especially taking special care with the convergence of the eigenvalues. In section
2.2, the governing equation and its linearized equation are presented. A semi-circle theorem
is derived in section 2.3. Section 2.4 elucidates imperfections of the numerical results of
the stability eigenvalues obtained by a spectral method, and instead a shooting method is
employed to overcome the problems. A conclusion follows in Section 2.5.

2.2 Governing equations

A two-dimensional incompressible barotropic inviscid flow on a rotating sphere is governed
by the equation of vorticity,

∂∆ψ

∂t
+ J(ψ,∆ψ) + 2Ω

∂ψ

∂λ
= 0. (2.1)

Here t is the time, λ and φ are the longitude and the latitude, and µ = sinφ is the sine
latitude; ψ is the streamfunction and ∆ψ is the vorticity, where ∆ is the horizontal Laplacian
on an unit sphere. The longitudinal and latitudinal components of velocity (uλ, uµ) are

given by uλ = −
√
1− µ2(∂ψ/∂µ) and uµ = 1/

√
1− µ2(∂ψ/∂λ), respectively. J(A,B) =

(∂A/∂λ)(∂B/∂µ)−(∂B/∂λ)(∂A/∂µ) is the Jacobian operator, and Ω is the non-dimensional
constant rotation rate of the sphere.

A general zonal flow ψ = ψ0(µ) is a steady solution of the equation of vorticity
(2.1), regardless of the rotation rate. Here we consider steady zonal flow solutions with l jets
described by a 4π normalized spherical harmonic function Y m

l (λ, µ) as

ψ0 = Ψ0(µ) = − 1

l(l + 1)
Y 0
l (µ), (2.2)

which we call l-jet flow. Here, the number of jets is defined as the number of extreme
points of the longitudinal velocity, which is equal to the number of nodes of the latitudinal
distribution of the streamfunction.
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2 Stability of inviscid zonal jet flows on a rotating sphere

In order to examine the linear stability of the inviscid zonal flow ψ0(µ), we substitute
ψ = ψ0(µ) + ψ′(λ, µ, t) into (2.1) and neglect the second order terms of ψ′. Assuming that
ψ′ = ψ̂(µ)eim(λ−ct), we finally have a linearized equation of vorticity

[U(µ)− c]∆mψ̂ +

{
2Ω− d2

dµ2

[
(1− µ2)U(µ)

]}
ψ̂ = 0. (2.3)

Here, U(µ) = −dψ0(µ)/dµ is the angular velocity of the basic zonal flow and ∆m is defined
as ∆m = d

dµ
(1 − µ2) d

dµ
− m2

1−µ2 . The boundary conditions at the north and the south poles
are given by

ψ̂(±1) = 0. (2.4)

Equations (2.3) and (2.4) constitute an eigenvalue problem with the eigenvalue c being the
complex angular phase velocity.

2.3 Semi-circle theorem

We introduce the latitudinal displacement of the perturbation η = η̂(µ) exp[im(λ−ct)]. The
material derivative of η is related to the latitudinal component of the perturbation velocity
u′µ as

u′µ =
Dη

Dt
=

(
∂

∂t
+ U

∂

∂λ

)
η.

Then, ψ̂ can be expressed by η̂ as ψ̂ =
√

1− µ2(U−c)η̂. Substituting η̂ into (2.3) and taking

the inner product with
√
1− µ2η̂∗, where ∗ indicates complex conjugate, we obtain∫

dµ[(U − cr)
2 − c2i ]P = 2(Ω + cr)

∫
dµ(U − cr)Q+ 2c2i

∫
dµQ, (2.5)

cr

∫
dµ(P + 2Q) =

∫
dµU(P +Q)− Ω

∫
dµQ. (2.6)

Here, cr and ci are the real and imaginary parts of c, and P = P (µ) and Q = Q(µ) denote

P (µ) = (1 − µ2)2
∣∣∣ dη̂dµ∣∣∣2 + (m2 − 1)|η̂|2 > 0, and Q(µ) = (1 − µ2)|η̂|2 > 0. Expansion of

φ =
√
1− µ2η̂ by the associated Legendre polynomials, φ =

∑∞
n=m φ

m
n P

m
n (µ) gives∫

dµ(P + 2Q) ≥ m(m+ 1)

∫
dµQ. (2.7)

When Ω ≥ 0, (2.6) yields

cr ≤
∫
dµUmax(P +Q)∫
dµ(P + 2Q)

≤ Umax,

cr ≥
∫
dµUmin(P +Q)∫
dµ(P + 2Q)

− Ω

∫
dµQ∫

dµ(P + 2Q)
≥ Umin −

Ω

m(m+ 1)
,
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2.3 Semi-circle theorem

where we have made an assumption for the angular velocity,

Umax = max
−1≤µ≤1

U(µ) > 0, Umin = min
−1≤µ≤1

U(µ) < 0. (2.8)

Thus, we obtain the following condition for the phase velocity:

Umin −
Ω

m(m+ 1)
≤ cr ≤ Umax, (for Ω ≥ 0). (2.9)

The assumption (2.8) is temporal, and we will remove it at the end of this proof.
An obvious inequality,

0 ≥
∫
dµ(U − Umin)(U − Umax)P =

∫
dµ[U2 − (Umax + Umin)U + UminUmax]P,

with (2.5) and (2.6) yields

0 ≥
∫
dµ(c2r + c2i )(P + 2Q)− (Umax + Umin)UP + UmaxUminP + 2ΩUQ

which leads to [(
cr −

Umax + Umin

2

)2

+ c2i −
(
Umax − Umin

2

)2
]∫

dµ(P + 2Q)

≤ |Ω|(Umax − Umin)

∫
dµQ.

Then, using (2.7), we obtain(
cr −

Umax + Umin

2

)2

+ c2i −
(
Umax − Umin

2

)2

≤ |Ω|
m(m+ 1)

(Umax − Umin). (2.10)

Here we should note that if the angular velocity of the system of coordinates is
changed from Ω to Ω + ω, where Umin ≤ ω ≤ Umax(see(2.8)), then U and cr become U − ω
and cr − ω with ci unchanged, i.e. the left hand side of (2.10) is unchanged. Therefore, by
taking ω which minimizes |Ω + ω| we obtain more restricted ranges for cr and ci as

Umin −
|Ω + U |min

m(m+ 1)
≤ cr ≤ Umax (for Ω > 0),

and (
cr −

Umax + Umin

2

)2

+ c2i ≤
(
Umax − Umin

2

)2

+
|Ω + U |min

m(m+ 1)
(Umax − Umin), (2.11)
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2 Stability of inviscid zonal jet flows on a rotating sphere

which gives the semi-circle theorem. Remarkably this semi-circle theorem is valid even
when U(µ) does not satisfy (2.8), because then we can choose rotating coordinates where
Umin − ω < 0 < Umax − ω. Therefore the assumption (2.8) is unnecessary for the semi-circle
theorem to hold.

A semi-circle theorem has been obtained by Thuburn and Haynes [36], in which
the radius of the circle is different from that obtained here. Our derivation is different
in that the present P and Q allow us to utilize a property of Legendre functions. We
note that the radius of (2.11) is smaller than or equal to that of Thuburn and Haynes [36]
except when 3− 2

√
2 ≤ |Ω + U |min/|Ω + U |max < 1/3 and both |Ω + U |min and |Ω + U |max

are sufficiently small. We should note that another semi-circle theorem was stated in the
Appendix of Ishioka and Yoden [12], where |Ω + U |min/(m(m + 1)) in (2.11) is replaced by
|Ω + U |max/(m

2 + 1 +m2/(2|m|+ 3)).

2.4 Re-examination of the stability of inviscid zonal

flow

In this section, we re-examine the linear stability of the inviscid zonal flow (2.2) on a rotat-
ing sphere. This problem was previously investigated by Baines [1], but we show that some
numerical corrections are necessary, taking into account singular behavior of eigenfunctions.
The 1-jet and 2-jet zonal flows are linearly stable due to conservation laws of angular momen-
tum, energy and enstrophy [1]. However, l-jet zonal flows with l ≥ 3 can be unstable, and we
consider the cases of 3 ≤ l ≤ 9, the same range of l as Baines. The unstable modes of l-jet
zonal flow do not contain the spherical harmonics Y m

n (λ, µ) with |m| ≥ l as proved by Skiba
[30] and Ishioka and Yoden [12]. Also, zonal modes Y 0

n (µ) are all neutral modes. Therefore,
it is sufficient to study disturbances with the azimuthal wavenumber 1 ≤ |m| ≤ l − 1.

2.4.1 Stability analysis with a spectral method

First, we present numerical results of stability obtained by a spectral method, essentially
in the same way as Baines [1]. In order to solve the eigenvalue problem of (2.3) and (2.4)
for a given azimuthal wavenumber m of the disturbance, we assume the streamfunction
ψ̂(µ) =

∑N
n=m ψ

m
n P

m
n (µ) where ψm

n are the expansion coefficients and N is the truncation

wavenumber. On evaluating the terms U(µ)∆mψ̂(µ) and (d2 /dµ2)[(1−µ2)U(µ)]ψ̂(µ) in (2.3),
we adopt a transform method, employing in the physical space the numbers of longitudinal
and latitudinal grid points I and J satisfying I ≥ 3N+1 and J > 3N/2 in order to eliminate
aliasing errors.

Figure 2.1 shows the numerical eigenvalues for m = 1, 2 in the case of the 3-jet
zonal flow. Baines calculated the eigenvalue for the same problem, and concluded that the
3-jet flow is unstable for Ω−

B = −5.35 < Ω < 1.76 = Ω+
B [1]. We show in figure 2.2 the
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2.4 Re-examination of the stability of inviscid zonal flow

Figure 2.1: The eigenvalues of linear stability of 3-jet zonal flow for m = 1 and 2 obtained
with the spectrum method with the truncation wavenumber N = 213: the left and right
figures show the imaginary and real parts of the phase angular velocity ci and cr, respectively.
The horizontal and vertical axes are the rotation rate Ω and the eigenvalues respectively.
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Figure 2.2: The unstable eigenvalues around Ω = Ω−
B, which is the critical rotation rate

obtained by Baines: the left and right figures show the imaginary and real parts of phase
angular velocity, ci and cr, respectively. The horizontal and vertical axes are the truncation
wavenumber N and the eigenvalues, respectively.

eigenvalues obtained in our numerical calculation around Baines’ negative critical rotation
rate Ω−

B = −5.35 as a function of the truncation wavenumberN . The imaginary part of phase
angular velocity ci does not converge even when the truncation wavenumber is increased up
to 10 times of that used by Baines, although the real part cr can be obtained with three-digit
accuracy, which is equal to 1.27 at Ω = Ω−

B.

The eigenfunction at Ω = Ω−
B is shown in figure 2.3 (left). It is observed that the

vorticity diverges near µ = ±1, indicating singularities near the north and south poles. The
critical points, where U(µ) − cr = 0, appear around ±79.7◦ in latitude. The divergence
behavior of ci is caused by lack of resolution around the critical layers of the eigenfunction
emerging near the poles.

On the other hand, when Ω > 0, the eigenvalues converge fairly well. We find
that the positive critical rotation rate Ω+

c is 1.77194, and the critical azimuthal wavenumber
mc = 2. Figure 2.4 shows the eigenvalues around Ω = Ω+

B. The eigenvalues can be obtained
with 0.1% accuracy when the truncation wavenumber is increased up to 63. The slightly
unstable eigenfunction at Ω = 1.7719 is shown in figure 2.5. Obviously, no critical point is
found, in contrast to the cases near the negative critical rotation rate.

2.4.2 Stability analysis with a shooting method

In the previous subsection, it is shown that in the spectral method ci does not converge
even when the truncation wavenumber is increased, because the critical layers appear in the
eigenfunctions. In this subsection, instead of the spectral method, we make use of a shooting
method to overcome the difficulty.
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2.4 Re-examination of the stability of inviscid zonal flow
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Figure 2.3: The vorticity of unstable eigenfunctions in the case of 3-jet zonal flow at Ω = Ω−
B

with azimuthal wavenumber m = 1: the left and right figures are obtained by the spectral
method with truncation wavenumber N = 213 and by the shooting method, respectively.
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Figure 2.5: Same as figure 2.3 but for the vorticity of unstable eigenfunctions of 3-jet zonal
flow Y 0

3 at Ω = 1.7719 with azimuthal wavenumber m = 2 with the truncation wavenumber
N = 213: the left and right figures shows the imaginary part and the real part, respectively.

Equation (2.3) is expressed in the normal form as follows:

d

dµ

(
ψ̂

φ̂

)
=

 0 1

− l(l + 1)U(µ) + 2Ω

{U(µ)− c}(1− µ2)
+

m2

(1− µ2)2
2µ

1− µ2

( ψ̂

φ̂

)
, (2.12)

where φ̂ = dψ̂/dµ.

For a given value of Ω, we obtain the solution ψ̂− and φ̂− by integrating the normal
form of the equation (2.12) from the edge point µ = −1 to a certain point µ0 ∈ (−1, 1) with
the boundary conditions (2.4). Then we obtain the other solution ψ̂+ and φ̂+ by integrating
it from µ = 1 to µ = µ0.

The matching condition consists of continuity of streamfunction ψ̂ and its derivative
φ̂, which is expressed by

f(Ω, cr, ci) =

∣∣∣∣ ψ̂+(µ0) ψ̂−(µ0)

φ̂+(µ0) φ̂−(µ0)

∣∣∣∣ = 0.

The point µ0 can be chosen at any point on the integral path. However, in this problem, the
critical points are expected to exist around both the poles µ = ±1. We then select µ0 as the
end point of each integration and take µ0 = 0.1 which is far from both the poles.

In the above integrations, we should consider the singular points µ = ±1 and
critical points µc such that U(µc)− c = 0.

First, in order to avoid the difficulty arising from the singular points, we change
the starting point of the numerical integration from µ = ±1 to certain nearby points. The
values of ψ̂ and φ̂ are obtained by using a power series expansion of the solution: At the
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2.4 Re-examination of the stability of inviscid zonal flow

south pole µ = −1, ψ̂ is expanded into a power series of z = µ+ 1 as

ψ̂ = zm/2

(
1 +

Jt∑
j=1

ajz
j

)
(2.13)

where Jt is a sufficiently large number and is taken up to 20. The coefficients aj of the series
are successively determined by expanding (2.3) around µ = −1. The starting point should
be close to the south pole to keep the accuracy of the power series expansion. Moreover, near
marginal stability, the critical layer approaches the pole, which means that the convergence
radius becomes small, and therefore we have to pay attention to the choice of the starting
point. The same scenario holds also for the north pole. Second, we have to solve the
singular behavior of the solution around the critical point µ = µc. Near marginal stability,
the critical point approaches the interval [−1, 1], and the numerical integration along the
µ-axis rapidly becomes difficult. Then, in order to find the marginal stability eigenvalue
as the limit of unstable eigenvalues, we deform the integral path in the complex µ-plane to
bypass the critical points in such a way that π ≤ arg µ ≤ 2π or 0 ≤ arg µ ≤ π if U ′(µc) > 0
or U ′(µc) < 0, respectively.

Specifically, we employ a piecewise linear path as shown in figure 2.6. On integrating
the normal form (2.12) from the south pole (A) µ = −1 to (E) µ0, we divide the integration
path into four sections: (A)→(B)→(C)→(D)→(E), where the power series expansion is
employed for the section (A)→(B), and the integrals for the other sections are performed
by the 4th-order Runge-Kutta method with the number of grid points being about 3× 104.
From the north pole (I) µ = 1 to (E), we perform the calculation in a similar way to the
above in the order of (I)→(H)→(G)→(F)→(E).

We perform this shooting method to determine c = cr + ici for given values of Ω by
use of the Newton method. The stopping condition of the Newton method is that the rate
of the correction of the eigenvalues is less than 10−8. The Jacobi matrix ∂Re[f ]

∂cr

∂Re[f ]

∂ci
∂Im[f ]

∂cr

∂Im[f ]

∂ci


is evaluated by the central finite difference method with δcr, δci = 10−6.

We also perform this shooting method to determine Ωc and cr for ci = 0. Skiba [31]
argued that numerical calculation of some eigenvalues is not stable because of the accumu-
lation of the continuous spectrum. In our calculation we checked the numerical convergence
of the eigenvalue by changing the number of grid points to 6×103 and 6×105 and confirmed
that the relative errors of cr and ci (or Ωc and cr) are less than 0.1%. Also, we have changed
the increments of δcr and δci for the evaluation of the Jacobi matrix from 10−6 to 10−5 and
found that the relative errors of the critical rotation rates and the eigenvalues remain less
than 0.1%. Further, we have checked that the obtained eigenvalues and eigenfunctions are
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2 Stability of inviscid zonal jet flows on a rotating sphere

Figure 2.6: Schematic of the integral path on the complex plane µ ∈ C. The solid and
the dashed lines indicate the integrations by the expansion method and the Runge-Kutta
method, respectively.

consistent with the inflection-point theorem and the semi-circle theorem, and that the ratio
of the energy and the enstrophy of the eigenfunction is l(l + 1) as derived by Skiba [32] for
the zonal flow Y 0

l .

Figure 2.7 shows the stability eigenvalues obtained for the 3-jet zonal flow. For
the sake of comparison, the eigenvalues obtained by the spectral method are also shown. It
is seen that the eigenvalues obtained by the shooting method converge better than those
obtained by the spectral method. We find the negative critical rotation rate Ω−

c = −5.45685
and the critical azimuthal wavenumber mc = 1. The unstable eigenfunction at Ω = Ω−

B is
shown in figure 2.3 (right). The vorticity around the critical layers is more accurately shown
in the shooting method solution, compared with the spectral method solution in figure 2.3
(left).

We also show the critical rotation rates of other zonal jet solutions (2.2) in table
3.2. There are a ∼ 10% differences between the critical rotation rates of Baines, Ω±

B, and
of the present study, Ω±

c . When the number of zonal jets l is odd and Ω < 0, the critical
layers emerge around both the north and the south poles. When l is even, the critical layer
arises around the south (north) pole for Ω > 0(< 0). When l is odd and Ω > 0, the critical
eigenfunction does not have a singularity.

The inflection-point theorem states that when the basic flow is unstable, there is at
least one zero point of β̃ = 2Ω+ dY 0

l (µ)/dµ in the interval µ ∈ [−1, 1]. This condition gives
the possible range of the critical rotation rates, the upper and the lower bounds of which are
given in table 3.2 as Ω±

I . However, Ω
±
I do not coincide with Ω±

c , with relative differences up
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2.4 Re-examination of the stability of inviscid zonal flow

l-jet Ω±
c m±

c µ±
c

Baines
Ω±

B m±
B

relative
error Ω±

I

relative
difference

3 -5.4568 1 ±1 -5.35 1 1.95% −3
√
7 45.4%

1.7719 2 - 1.76 2 0.673% 3
√
7/4 11.9%

4 -9.7700 1 1 8.78 1 9.49% -15 53.5%
9.7700 1 -1 8.78 1 9.49% 15 53.5%

5 -19.22 1 ±1 -18.2 1 5.21% −15
√
11/2 29.4%

4.022 3 - 3.90 3 3.03% −15
√
11/16 177%

6 -28.389 1 1 -25.0 1 11.9% −21
√
13/2 33.3%

28.389 1 -1 25.0 1 11.9% 21
√
13/2 33.3%

7 -44.445 1 ±1 -40.0 1 10.0% −14
√
15 24.2%

7.8929 3 - 7.226 3 8.44% 35
√
15/32 86.3%

8 -59.618 1 1 -48.4 1 18.8% −18
√
17 24.4%

59.618 1 -1 48.4 1 18.8% 18
√
17 24.4%

9 -83.340 1 ±1 -69.3 1 16.8% −45
√
19/2 17.6%

13.665 3 - 11.5 1 15.8% −315
√
19/256 139%

Table 2.1: The critical rotation rates of inviscid zonal flows Ψ0 = −Y 0
l (µ)/l(l + 1). Column

1 shows the number of jets l of the basic flows. Columns 2, 3, and 4 indicate the results of
the present study: the critical rotation rate Ω±

c , the critical azimuthal wavenumber m±
c , and

the sine latitude of critical layers µ±
c . Columns 5, 6, and 7 are the results of [1] for the sake

of comparison: the critical rotation rate Ω±
B, the critical azimuthal wavenumber m±

B, and the
relative errors of critical rotation rates between [1] and the present study. Columns 8 and
9 indicate the critical rotation rates Ω±

I estimated by the inflection-point theorem and their
relative difference from the critical rotation rate Ω±

c obtained by the present study.

27



2 Stability of inviscid zonal jet flows on a rotating sphere

 0

 0.005

 0.01

 0.015

 0.02

-5.5 -5.45 -5.4 -5.35 -5.3 -5.25 -5.2

c i

Omega

The imaginary part of phase angular velocity of 3-jet zonal flow 
 m=1 obtained by shooting method

spectrum 
bypassing

 1.15

 1.2

 1.25

 1.3

-5.5 -5.45 -5.4 -5.35 -5.3 -5.25 -5.2

c r

Omega

The real part of phase angular velocity of 3-jet zonal flow 
 m=1 obtained by shooting method

spectrum 
bypassing

Figure 2.7: The stability eigenvalues for the 3-jet zonal flow m = 1 around the negative
critical rotation rate: the left and right figures show the imaginary and real parts of phase
angular velocity ci and cr, respectively. The horizontal and vertical axes indicate the rotation
rate Ω and the eigenvalues, respectively. The black dots are the results by the shooting
method, while the red crosses are those by the spectral method with N = 213.

to ∼ 170%. This suggests that stability characteristics of zonal flows on a rotating sphere
are rather different from those of parallel flows on a plane where the inflection point is often
related to the emergence of instability.

We remark that in the case of the 3-jet flow, the critical rotation rate Ω−
c can be

obtained analytically. In the 3-jet case, under the assumption that the critical point exists
at each pole, we find c = cr =

√
7/2 and U − cr = 5

√
7(µ− 1)(µ+ 1)/8. Substituting these

into equation (2.3) with {(1− µ2)U}′′ = −3(3 + 1)U , we have

d

dµ

{
(1− µ2)

dψ̂

dµ

}
− α

1− µ2
ψ̂ = −3(3 + 1)ψ̂, (2.14)

where α = m2 + 16Ω/5
√
7 + 48/5. If α is a square of an integer number, α = m̃2, the

linear operator of the left hand side of equation (2.14) becomes ∆m̃ and the eigenfunction
is the associated Legendre function P m̃

3 (µ). Figure 2.3 shows the similarity of ψ̂ to P 2
3 (µ),

and we choose m̃ = 2, which yields Ωc = −33
√
7/16 = −5.456862 · · · , in agreement with

the numerical result. The case of m = 2, m̃ = 3 corresponds to Ωc = −3.807 where an
unstable mode arises from the neutral mode. According to the numerical results, for all
other combinations of m, m̃, unstable modes do not arise from the neutral modes.

2.5 Conclusion and Discussion

In this chapter we re-examine the linear stability of inviscid barotropic zonal flows on a
rotating sphere. A semi-circle theorem for zonal flows on a rotating sphere is derived. The
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2.5 Conclusion and Discussion

critical rotation rates for stability of zonal flows are obtained more accurately than the
previous study by Baines [1].

By the spectral method, the critical eigenvalues could not be obtained accurately
for an even number of jets, because of the emergence of the critical layers near the north
and the south poles when the zonal flow approaches the marginal stability state. A similar
difficulty also arises for an odd number of jets with a negative rotation rate. To obtain the
critical eigenvalues and critical rotation rates with sufficient accuracy, we make use of the
shooting method and the power series expansion method, taking into account the singular
points. As a result, we find that the critical rotation rates of Baines [1] should be corrected
by ∼ 10%. On the other hand, in the cases of an odd number of jets, the positive critical
rotation rates are obtained without difficulty by the spectral method, because of the absence
of the critical layers.

So far in this chapter, we have discussed the stability problem of Rossby waves
each streamfunction of which is expressed by a single spherical harmonic of Y 0

l , i.e. zonal
flows. In the aforementioned paper, Baines also studied the stability of non-zonal Rossby
waves, i.e. ψ0 proportional to Y

m
l (λ, µ), (m 6= 0). However, we have found in high-resolution

computations, that some of the stability results for these flows in Baines [1] also suffer from
inaccuracy due to the singular point where the coefficient of the highest-order derivative of
the eigenfunction vanishes. The traditional technique of bypassing the singular point in the
complex plane, which we have employed in this chapter, is applicable only to the problems
of space dimension one. Accurate results of the stability eigenvalues for the two-dimensional
problem is therefore still open to further study.
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Chapter 3

Stability and bifurcation structure of
viscous zonal jet flows on a rotating
sphere

3.1 Introduction

Two-dimensional incompressible Navier-Stokes turbulence on a rotating sphere has been
studied, the planetary atmospheres are considered to be turbulence. Nozawa and Yoden [21]
performed numerical simulation with Markovian random forcing, and found that at the final
stage of their computation, the flow field consists of multiple zonal jet flow and/or west-
ward circumpolar jets, depending on the Rhines wavenumber and the forcing wavenumber.
However, recently, Obuse et al. [22] re-calculated the same problem as Nozawa and Yoden
with the numerical integration time being more than 100 times of that of Nozawa and Yoden,
and found that at an early stage of time integration, multiple zonal jet flow and circumpolar
jets are observed, but at the final stage of time integration, only two or three broad zonal jets
are left in the flow field. The surviving broad jets are found to be quite stable to disturbance
even in the ambient turbulent flows.

The zonal flows in planetary atmospheres survives for a long time, and, as seen
in the numerical simulation, some zonal flows are robust even in a turbulent environment.
These observations lead us to the stability problem of the steady zonal flows on a rotating
sphere. In Chapter 2, we and gave correct values of the critical rotation rate obtained by
Baines [1] taking into account the singularities. In this chapter we study the stability of
viscous zonal jets flows on a rotating sphere.

The viscous stability problem of the zonal flows is formulated by introducing a
forcing term, which consists of a single spherical harmonics Y 0

l , to balance with the viscous
dissipation term to keep the flow steady. This problem setting is similar to so-called Kol-
mogorov problem which has been considered as a typical and simplest example to get insight
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3.2 Governing equations

into the solution properties of the Navier-Stokes equations. On the Kolmogorov problem the
flow field exists two-dimensional and double-periodic domain, flat torus, and is governed by
the incompressible Navier-Stokes equations with an external sine type force. In our case,
on the other hand, the problem is formulated on a two-dimensional sphere, and with the
forcing term consisting of a single spherical harmonics function which is an eigenfunction of
the Laplacian similar to the forcing term in the Kolmogorov problem. Both the problems
are formulated on a two-dimensional boundary-less compact manifold, and are quite similar
to each other with a difference in the topology of the flow domain (genus 0 for the sphere,
and genus 1 for the torus), and both they are expected to give an insight into the solutions
of the Navier-Stokes equations.

For the Kolmogorov problem, Iudovichi [13] proofed that two-jet parallel flow on
the planner torus is globally stable for any Reynolds number. Kim and Okamoto[14] stud-
ied bifurcation structure of steady solutions arising from 4- or 6-jet parallel flows with an
assumption of the streamfunctions have origin-point symmetry. They showed that these
bifurcating steady solutions have multiple vortices around bifurcation points, however, as
Reynolds number increases, multiple vortices marge with each other and one of the steady
solutions constructs only one negative vortex and one positive vortex at high Reynolds num-
ber. They called these solutions unimodal solutions. Similar phenomena were found also by
Okamoto and Shōji [23].

In this chapter, we study stability and bifurcation structure of two-dimensional
incompressible viscous zonal flow. The first aim of this chapter is to explain the transition
of two-dimensional turbulence on a rotating sphere from multiple zonal jets to quasi-steady
zonal jets obtained by Obuse et al. [22] utilizing the stability of the steady viscous zonal flows.
The second aim is to compare the sphere case and the planer torus case on the bifurcation
diagrams and nonlinear steady solutions and study the dependency of the rotation rate on
the bifurcation structure of steady solutions. The third aim is to study chaotic solutions at
high Reynolds number.

This chapter is constructed as below. In section 3.2, the governing equation and its
linearized equation are presented. A global stability of 2-jet zonal flow is shown in section
3.3. In section 3.4 we report linear stability of l-jet zonal flows and compare the stability
property of inviscid limit and that of inviscid flow. Section 3.5 shows bifurcation structure
of 3-jet zonal flows. Discussion and conclusion follow in section 3.6.

3.2 Governing equations

The two-dimensional incompressible viscous flow on a rotating sphere is governed by the
vorticity equation

∂∆ψ

∂t
+ J(ψ,∆ψ) + 2Ω

∂ψ

∂λ
=

1

R

{
(∆ + 2)∆ψ + (l(l + 1)− 2)Y 0

l (µ)
}
, (3.1)
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

where quantities are made non-dimensional and the radius of the sphere is unity. Here t is
the time, λ and µ the longitude and the sine latitude µ = sinφ where φ is the latitude, ψ the
streamfunction and ∆ψ = ζ the vorticity, where ∆ is the horizontal Laplacian on the unit
sphere. The longitudinal and latitudinal components of velocity (uλ, uµ) are given by uλ =

−
√

1− µ2(∂ψ/∂µ) and uµ = 1/
√
1− µ2(∂ψ/∂λ). R and Ω are the Reynolds number and

a non-dimensional rotation rate of the sphere, respectively, J(A,B) := (∂A/∂λ)(∂B/∂µ)−
(∂A/∂µ)(∂B/∂λ) the Jacobian and (l(l+1)−2)Y 0

l (µ)/R the vorticity forcing where Y m
l (λ, µ)

is a 4π normalized spherical harmonics with total wavenumber l and azimuthal wavenumber
m. The term of 2∆ψ/R in the viscosity term is necessary for the conservation of the total
angular momentum of the system[29].

The vorticity equation (3.1) has a steady l-jet zonal flow solution for any Reynolds
number and any rotation rate, expressed by

ψ0(µ) = − 1

l(l + 1)
Y 0
l (µ), ζ0(µ) = Y 0

l (µ), (3.2)

Here, the number of jets is defined as the number of extreme points of the longitudinal
velocity, which is equivalent to the number of nodes of the latitudinal distribution of stream-
function. We note that Kolmogorov problem on a planner torus deals with bifurcated solu-
tions from 2n-jet parallel flow solutions − cos(ny)/n2 driven by vorticity forcing n2 cosny/R.
The trigonometric functions cosny are the eigenfunction of Laplacian on the planner torus
while the spherical harmonics Y 0

l (µ) are the eigenfunction of Laplacian on the sphere. This
problem setting is therefore similar to Kolmogorov problem.

The linear stability of the l-jet zonal flow ψ0(µ) is given by substituting ψ =
ψ0(µ) + ψ̂(µ)eim(λ−ct) into the equation (3.1) and neglecting the second order terms,

{U(µ)− c}∆mψ̂ +

{
2Ω− d2

dµ2

[
(1− µ2)U(µ)

]}
ψ̂ =

1

imR
(∆m + 2)∆mψ̂. (3.3)

Here, U(µ) = −dψ0(µ)/dµ is the angular velocity of the l-jet zonal flow and ∆m is defined
as,

∆m =
d

dµ
(1− µ2)

d

dµ
− m2

1− µ2
.

The solution is continuous on the entire sphere, and therefore satisfies

ψ̂(µ) ∼ (1∓ µ)
m
2 (µ→ ±1), (3.4)

which is actually the boundary condition for ψ̂(µ). The equations (3.3) and (3.4) constitute
an eigenvalue problem with respect to the eigenfunction ψ̂(µ) and the eigenvalue c = cr +
ici (cr, ci ∈ R) being the complex angular phase velocity. The equation (3.3) is invariant
by the transformation m → −m,ψ → ψ∗, c → c∗, where ·∗ indicates complex conjugate. If
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3.3 Global stability of 2-jet zonal flow

U(µ) is even function as in the case of odd l the eigenfunction ψ̂(µ) have anti-/symmetry,
because the equation (3.3) is invariant by the transformation µ → −µ. On the other hand,
if U(µ) is odd as in the case of even l, the equation (3.3) is invariant by the transformation
Ω → −Ω, ψ → ψ∗, µ→ −µ, c→ −c∗.

3.3 Global stability of 2-jet zonal flow

1-jet zonal flow (l = 1) is stable due to the conservation of total angular velocity. As we
will show below, 2-jet zonal flow is globally asymptotic stable for any Reynolds number and
rotation rate. In this section, Ci(i = 1, · · · , 5) indicate constants corresponding to an initial
condition of disturbance.
Theorem
2-jet zonal flow is globally asymptotic stable for any R and Ω.
Proof
Substituting ψ(λ, µ, t) := AY 0

2 (µ)+ ψ̃(λ, µ, t) into the equation (3.1), where A = −1/6, leads
to

∂t∆ψ̃ + J(AY 0
2 , (∆ + 6)ψ̃) + 2Ω∂λψ̃ + J(ψ̃,∆ψ̃)− 1

R
(∆ + 2)∆ψ̃ = 0. (3.5)

The ˜ is omitted below. Considering inner product with ψ and ∆ψ, we obtain

1

2
∂t||∇ψ||2+

1

R

(
||∆ψ||2 − 2||∇ψ||2

)
+

∫
ψA(∂µY

0
2 )(∆∂λψ) = 0, (3.6)

1

2
∂t||∆ψ||2+

1

R

(
||∇∆ψ||2 − 2||∆ψ||2

)
+ 6

∫
ψA(∂µY

0
2 )(∆∂λψ) = 0. (3.7)

Here we use the periodic boundary condition of λ and∫
J(f, g)h =

∫
fJ(g, h). (3.8)

The || · || is defined as

||f(λ, µ)||2 :=
∫
dSf 2(λ, µ) =

∫ 1

−1

dµ

∫ 2π

0

dλf2(λ, µ). (3.9)

The equations (3.6) and (3.7) yield

∂t

{
1

2

(
1

6
||∆ψ||2 − ||∇ψ||2

)}
+

1

R

{
1

6
||∇∆ψ||2 − ||∆ψ||2

}
− 2

R

{
1

6
||∆ψ||2 − ||∇ψ||2

}
= 0 (3.10)
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

We split the disturbance ψ into ψ2 and ψrest defined as

ψ2 =
∑
m

ψm
2 (t)Y

m
2 (λ, µ), ψrest =

∑
n≥3,m

ψm
n (t)Y

m
n (λ, µ).

Substituting ψ(λ, µ, t) = ψ2 + ψrest into the equation (3.10), we obtain

∂t

{
1

2

(
1

6
||∆ψrest||2 − ||∇ψrest||2

)}
+

1

R

{
1

6
||∇∆ψrest||2 − ||∆ψrest||2

}
− 2

R

{
1

6
||∆ψrest||2 − ||∇ψrest||2

}
= 0. (3.11)

The second term of the equation (3.11) can be evaluated

1

6
||∇∆ψrest||2 − ||∆ψrest||2 ≥ 12

∑
n≥3,m

n(n+ 1)

(
n(n+ 1)

6
− 1

)
|ψm

n |2

= 12

(
1

6
||∆ψrest||2 − ||∇ψrest||2

)
, (3.12)

then we obtain

1

6
||∆ψrest||2 − ||∇ψrest||2 ≤ C0 exp

(
−20

R
t

)
. (3.13)

Considering an obvious inequality

||∆ψrest||2 ≥ 12||∇ψrest||2 ≥ 122||ψrest||, (3.14)

leads to

||ψrest|| ≤ C1 exp

(
−10

R
t

)
, (3.15)

Next, taking an inner product between ψ2 and the equation (3.5) we obtain

∂t||ψ2||+
8

R
||ψ2|| =

1

3

{∫
ψ2

||ψ2||
J(AY 0

2 , (∆ + 6)ψrest) +

∫
ψ2

||ψ2||
J(ψrest,∆ψrest)

}
. (3.16)

The first term of right hand side of the equation (3.16) can be evaluated∣∣∣∣∫ ψ2

||ψ2||
J(AY 0

2 , (∆ + 6)ψrest)

∣∣∣∣ ≤ ∣∣∣∣∫ 1

||ψ2||
J(ψ2, AY

0
2 )∆ψrest

∣∣∣∣+ 6

∣∣∣∣∫ 1

||ψ2||
ψ2J(AY

0
2 , ψrest)

∣∣∣∣
≤ 1

||ψ2||
||∇ψ2 ×∇AY 0

2 || · ||∆ψrest||

+ 6
1

||ψ2||
||ψ2|| · ||∇AY 0

2 ×∇ψrest||

≤ ||A∇Y 0
2 ||(

√
6||∆ψrest|| ·+6||∇ψrest||)

≤ C2 exp

(
−10

R
t

)
, (3.17)
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3.4 Linear stability of the l-jet zonal flows

and the second term of right hand side of the equation (3.16) can be also∣∣∣∣∫ ψ2

||ψ2||
J(ψrest,∆ψrest)

∣∣∣∣ ≤ 1

||ψ2||
||∇ψ2 ×∇ψrest|| · ||∆ψrest||

≤
√
6||∇ψrest|| · ||∆ψrest||

≤ C3 exp

(
−20

R
t

)
, (3.18)

here we use the Cauchy-Schwartz inequality and the equation (3.15). Therefore,

∂t||ψ2||+
8

R
||ψ2|| ≤ C4 exp

(
−10

R
t

)
. (3.19)

Finally the estimation of the disturbance ψ = ψ2 + ψrest is given by

||ψ(t)|| ≤ C5 exp

(
− 8

R

)
then ψ(t) → 0 (t→ +∞), (3.20)

Therefore, we can conclude that 2-jet zonal flow is globally asymptotic stable for any
Reynolds number and the rotation rate. �

3.4 Linear stability of the l-jet zonal flows

Then, we investigate l-jet zonal flows with 3 ≤ l ≤ 9, where the same range of l as the study
of stability of inviscid l-jet zonal flows[28]. It can be proved that the unstable modes of l-jet
zonal flows do not contain the spherical harmonics Y m

n (λ, µ) with m ≥ l by extending the
proof of the inviscid case[12]. Also, the zonal modes Y 0

l (µ) are all stable modes. Therefore,
it is sufficient to study disturbances with the azimuthal wavenumber 1 ≤ m ≤ l−1. In order
to solve the eigenvalue problem of (3.3) and (3.4) for a given azimuthal wavenumber m, we
employ the spectral method as same as chapter 2. The streamfunction ψ̂ is expressed by

ψ̂(µ) =
N∑

n=m

ψm
n P

m
n (µ),

where ψm
n are the expansion coefficients and N is the truncation wavenumber. Note that the

boundary condition (3.4) is satisfied by the associated Legendre functions. On evaluating the

terms U(µ)∆mψ̂ and
{
2Ω− d2

dµ2 [(1− µ2)U(µ)]
}
ψ̂ in (3.3), we adopt the transform method,

employing in the physical space the numbers of longitudinal and latitudinal grid points I
and J satisfying I ≥ 3N + 1 and J > 3N/2 in order to eliminate aliasing errors. We have
checked the accuracy by changing the truncation wavenumber up to 213.
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere
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Figure 3.1: The critical Reynolds number of l-jet zonal flow in the non-rotating case. The
horizontal and vertical axes indicate the number of jets and critical Reynolds number, re-
spectively. The red cross and blue line denote the critical Reynolds number and fitting line
given by least-square method, respectively.

Figure 3.1 shows the critical Reynolds numbers of l-jet zonal flow R0
c in the non-

rotation case, Ω = 0, as a function of the number of jets l. We find that, as the number of
jets increases, the critical Reynolds number increases monotonically where each l-jet zonal
flow is Hopf unstable at its critical point the critical azimuthal wavenumbers are mc = 2.

Figure 3.2 shows the neutral curves of the 3- and the 4-jet zonal flow in the rotating
cases together with the real part of phase angular velocity of the critical modes. Note that
the 3-jet zonal flow is symmetric with respect to the equator, while the 4-jet zonal flow is
anti-symmetric. As the rotation rate increases, the real part of angular phase velocities of
neutral mode decrease monotonically from positive to negative values, i.e. the direction of
the propagation of the marginal mode changes from eastward to westward. In the case of
the 3-jet zonal flow, we have smooth the marginal mode is given by modes of m = 1 and
2 depending on the rotation rate Ω, and the neutral curves of these modes are not an even
function of Ω, which reflects the fact that the 3-jet zonal flow does not have the west-east
symmetry even if the transformation µ → −µ is taken into account. On the other hand,
in the case of the 4-jet zonal flow, the neutral curves are even functions of Ω, but has a
discontinuity of the first derivative at Ω = 0 for m = 1 and 2, while the neutral curve is
smooth at Ω = 0 for m = 3. This phenomenon is related to the symmetry of the linearized
equation (3.3), where (−Ω, ψ∗,−µ,−c∗) gives a solution if (Ω, ψ, µ, c) is a solution. This
symmetry means that the neutral curves are all even function of Ω. It also suggests that, the
neutral curve is smooth if ψ(µ) = ψ∗(−µ) and c = −c∗ hold at Ω = 0, while the neutral curve
has a cusp if ψ(µ) 6= ψ∗(−µ) or c 6= −c∗at Ω = 0. Actually we can confirm numerically that
the neutral mode form = 3 has the real phase angular velocity c and satisfies ψ(µ) = ψ∗(−µ)
at Ω = 0, while those for m = 1 and 2 do not. We note that as far as we calculated (Table
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3.4 Linear stability of the l-jet zonal flows

3.1), similar discontinuity of the first derivative of the neutral curve is found for the zonal
flow with the even number of jets anti-symmetric with respect to the equator.

We find in Figure 3.2 and Table 3.1 that the critical Reynolds number takes its
lowest value at non-zero rotation rate; at a small negative rotation rate for the 3-jet zonal
flow, and at a small positive rotation rate for the 4-jet zonal flow, while the critical azimuthal
wavenumber m at R = Rlow

c is 2 in all the cases we have calculated. Table 3.1 also shows that
the difference between the lowest critical Reynolds number Rlow

c and the critical Reynolds
number R0

c in the non-rotating case becomes large as the number of jets increases. We also
note that Ωlow

c is negative for the zonal flows with an odd number of jets, while both the
signs are possible for Ωlow

c because of the symmetry described above. This means that the
effect of small rotation is not always the stabilization of the zonal flows, while the zonal
flows are stabilized by the large rotation rates and appears linearly stable at an arbitrary
Reynolds numbers for Ω < −5.726 and 2.171 < Ω for the 3-jet flow, and for 9.750 < |Ω| for
the 4-jet flow.

# jets Rlow
c Ωlow

c mlow
c R0

c m0
c

3 26.085 -0.1085 2 26.123 2
4 45.957 ±0.7321 2 50.886 2
5 46.721 -0.8488 2 57.263 2
6 71.067 ±0.6549 2 99.824 2
7 75.914 -0.6662 2 112.62 2
8 105.72 ±0.6101 2 144.82 2
9 111.81 -0.6275 2 167.91 2

Table 3.1: The lowest critical Reynolds number of l-jet zonal flow. The first column shows
the number of jets l. The second to fourth columns show respectively the lowest critical
Reynolds number Rlow

c , the rotation rate Ωlow
c and the azimuthal wavenumber mlow

c at Rlow
c .

The fifth and sixth columns show the critical Reynolds number R0
c and the critical azimuthal

wavenumber m0
c at R0

c in the non-rotating case.

Considering the inflection point theorem (see Chapter 2) stabilization by rotation
effect is unsurprising fact. On the 3-jet zonal flow, we find the critical rotation rate Ω+

c =
2.17169 and Ω−

c = −5.72700 at which the 3-jet zonal flow is stable for R ≤ 106. On the
other hand, the critical rotation rates of inviscid 3-jet zonal flow are ΩE+

c = 1.7719(< Ω+
c ),

ΩE−
c = −5.4568(> Ω−

c ) (see Chapter 2 and [28]). The unstable region of the rotation
rate for inviscid zonal flows is smaller than that for the viscous zonal flows. This seeming
contradiction of critical rotation rates between inviscid limit and inviscid cases is resolved as
below. Figure 3.3 shows the growth rate mci of the most unstable mode on the R-Ω plane.
In the regions where the inviscid zonal flow is stable while the viscous zonal flow is unstable
(ΩE+

c < Ω < Ω+
c and ΩE−

c > Ω > Ω−
c ), the growth rate converges to zero as the Reynolds
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

Figure 3.2: The neutral curves and real part of angular phase velocity of the critical mode
in the cases of 3-jet (top) and 4-jet (bottom) profiles. The left and right columns show the
neutral curves and real part of angular phase velocity, respectively. In the left figures, the
horizontal and vertical axes indicate Reynolds number R in log scale and the rotation rate
Ω, respectively. In the right figures, the horizontal and vertical axes indicate Ω and the real
part of angular phase velocity cr, respectively.
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3.4 Linear stability of the l-jet zonal flows

number increases, and the stability properties for the inviscid limit becomes consistent with
that for inviscid case.

Table 3.2 shows the critical rotation rate of the l-jet zonal flows. When the number
of jets is odd, the unstable region of the rotation rate for viscous zonal flows is greater than
that for inviscid zonal flows. In this case, the growth rates of most unstable modes converge
to zero as the Reynolds number increases in the regions where inviscid zonal flows are stable
but viscous zonal flows are unstable, similar to 3-jet zonal flow case. On the other hand,
when the number of jets is even, the absolute value of critical rotation rates of viscous zonal
flows are smaller than that of inviscid zonal flows. We find that as the Reynolds number
increases the absolute values of the rotation rates, where the even-jet zonal flow losses the
stability increases monotonically but less than the critical rotation rate of inviscid zonal
flow. We expect that the inviscid limit of the viscous critical rotation rate coincides with
the inviscid critical rotation rate when the number of jets is even.

# jets Ω±
c m±

c ΩE±
c mE±

c

3 -5.72700 1 -5.4568 1
2.17169 2 1.7719 2

4 -9.750 1 -9.7700 1
9.750 1 9.7700 1

5 -19.44 1 -19.22 1
4.494 3 4.022 3

6 -28.37 1 28.389 1
28.37 1 28.389 1

7 -44.77 1 -44.445 1
8.617 3 7.8929 3

8 -59.58 1 -59.618 1
59.58 1 59.618 1

9 -83.79 1 -83.340 1
14.73 3 13.665 3

Table 3.2: The critical rotation rates of viscous zonal flows. Column 1 shows the number
of jets l of the basic flows. Column 2 and 3 show the critical rotation rate of the viscous
zonal flows Ω±

c and the critical azimuthal wavenumbers m±
c , respectively. Column 4 and 5

shows the critical rotation rate of the inviscid zonal flows ΩE±
c and the critical azimuthal

wavenumbers mE±
c , respectively, which is already shown in Chapter 2.
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

Figure 3.3: Growth rates for the fastest-growing perturbations. The horizontal and vertical
axes indicate the Reynolds number and the rotation rate, respectively. The contour shows
growth rate of most unstable perturbation. The white region indicates that the 3-jet zonal
flow is linearly stable.

Figure 3.4: The growth rates for the fastest-growing perturbations at 1.5 ≤ Ω ≤ 2.2. The left
and right figures show growth rates of most unstable perturbation at R = 103 and R = 106,
respectively. The horizontal and vertical axes indicate the growth rate mci and the rotation
rate, respectively.

40



3.5 Bifurcation structure of nonlinear steady solutions arising from 3-jet zonal flow

3.5 Bifurcation structure of nonlinear steady solutions

arising from 3-jet zonal flow

In this section we show bifurcation diagrams of nonlinear steady solutions arising from 3-jet
zonal flow. Figure 3.5 shows the streamfunction and the longitudinal velocity of 3-jet zonal
flow. As below we call this flow the trivial solution.

Figure 3.5: The 3-jet zonal flow. The left and right figure show the streamfunction and
longitudinal velocity, respectively. In left figure, the horizontal and vertical axes indicate
the longitude and the latitude, respectively. In right figure , the horizontal and vertical axes
indicate the longitudinal velocity and the latitude, respectively.

In order to solve the problem numerically, we employ the spectral method which is
the same as before section but the streamfunction ψ is expressed by

ψ(λ, µ) =
N∑

n=1

n∑
m=−n

ψm
n Y

m
n (λ, µ),

where ψm
n are the expansion coefficient and N is the truncation wavenumber. By use of

Newton method we seek to nonlinear steady solutions R ≤ 106. The stopping condition of
the Newton method is that, if R < 103, the maximum absolute value of correction of the
real/imaginary part of the spectral components is less than 10−8, and if R ≤ 103 that is less
than 10−12. We have checked the accuracy by changing the truncation wavenumber upto
N = 170. We seek nonlinear steady solutions arising from trivial solution at Ω−

c < −5.6 ≤
Ω ≤ 2.1 < Ω+

c and study stability of the nonlinear solutions until R = 104. Moreover, when
Ω = 0,±0.5,±1.0 we find nonlinear steady solutions the bifurcation points of which exist
in 0 < R ≤ 104 and the branches of which finally link to trivial solution along the steady
solution branches.
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

3.5.1 Bifurcation diagram in the non-rotating case

The nonlinear steady solutions arising from the trivial solution are Traveling Wave solutions
thought Hopf bifurcation at the critical Reynolds number of the trivial solution where the
trivial solution become Hopf unstable (see Section 3.4). Furthermore, all nonlinear steady
solutions which we find numerically are traveling wave solutions. Therefore we call these
solutions as TW with serial characters.

We find that TW1 (m = 2) bifurcates from trivial solution at R = 26.123 through
the super-critical Hopf bifurcation. Figure 3.6 shows bifurcation diagram. Tracing TW1
branch, we find two secondary pitchfork bifurcation points. At R = 70.66, where TW1
losses the stability, TW2-N and TW2-S bifurcate though the pitchfork bifurcation. We find
that TW2-N has two negative vortices at the mid-latitudes in the northern hemisphere,
TW2-S has two positive vortices at the mid latitudes in the southern hemisphere, and the
TW2-N and TW2-S are antisymmetric with respect to the equator. Notice that -N and
-S indicate the hemisphere where the solution has large vortices. As the Reynolds number
increases, TW2-N and TW2-S become Hopf unstable at R = 103.2. On TW1 branch we
find that, as the Reynolds number increases, TW1 becomes stable again at R = 203.8 where
TW3-N and TW3-S bifurcate through the pitchfork bifurcation. We confirm that TW3-N
and TW3-S are Hopf unstable for 203.8 ≤ R ≤ 104. TW1 becomes Hopf unstable again
at R = 249.4. On the TW3-N we find that TW6-N bifurcates at R = 2687 though the
pitchfork bifurcation. TW6-N is a single branch because the another pitchfork bifurcation
branch is longitudinal translated TW6-N. We also find that TW6-S bifurcate from TW3-S
at the same Reynolds number (R = 2687) though the pitchfork bifurcation. We confirm
that TW6-N and TW6-S are Hopf unstable for 2687 ≤ R ≤ 104. On the trivial solution we
find that TW4 (m=1) bifurcates at R = 62.51 through Hopf bifurcation (see also figure 3.2),
and TW4 is Hopf unstable for 62.5 ≤ R ≤ 104. On TW4 branch, we find that TW5-N and
TW5-S bifurcate at R = 136.2 through the pitchfork bifurcation, and TW5-N and -S are
Hopf unstable except for the interval 143.5 ≤ R ≤ 161.9, both ends of which are considered
to be associated with bifurcations of time-periodic solutions.

All secondary bifurcation points which we can find are pitchfork and all the non-
linear steady solutions become Hopf unstable until at R = 249.4. Finally we note that, as
Reynolds number increases, the absolute values of phase velocity of the nonlinear solutions
decrease monotonically.

3.5.2 Bifurcation diagrams in the rotating case

First we seek only suppercritical bifurcating branches arising at critical Reynolds number
of trivial/steady traveling solutions. Figure 3.7 shows stable regions of these nonlinear
solutions on R-Ω plane. In the figure 3.7 white regions indicate Hopf unstable regions of
these nonlinear solutions. As the rotation rate increase sufficiently large, critical Reynolds
number of nonlinear solutions increases, i.e., the large rotation effect makes nonlinear steady
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3.5 Bifurcation structure of nonlinear steady solutions arising from 3-jet zonal flow

Figure 3.6: Bifurcation diagram in the non-rotating case, Ω = 0. Blue asterisks and red
crosses denote that the solutions are stable and unstable, respectively. The horizontal and
vertical axes indicate Reynolds number and −12ψ0

2 − 12ψ0
3, respectively. Note is that the

horizontal axis is Log-scale in order to describe all bifurcation points.

solutions stable similar to zonal jet flows. At Ω = ±0.5,±1.0 we seek steady traveling
solutions which bifurcate until R = 104.

In the case of Ω < 0, the properties of the bifurcation diagrams are so different from
the non-rotating case. Figure 3.8 top shows the bifurcation diagram at Ω = −0.5. We find
that as Reynolds number increases the trivial solution become Hopf unstable at R = 26.58
where TW1 (m = 2) bifurcates through the super-critical Hopf bifurcation. As the Reynolds
number further increases TW1 become Hopf unstable at R = 81.08. On the trivial solution
we find a another Hopf bifurcation point at R = 48.15 where TW4 (m = 1) bifurcates. We
confirm that TW4 is Hopf unstable for 48.15 ≤ R ≤ 104. On TW4 branch we find two
secondary pitchfork bifurcation points at R = 98.57 and R = 3099. At R = 98.57, TW5-
N and TW5-S bifurcating, are Hopf unstable for 98.57 ≤ R ≤ 104. As Reynolds number
increases the growth rate of a steady unstable mode of TW4 (no-Hopf mode) becomes positive
to negative at R = 3099, where TW6-N and TW6-S bifurcate. Tracing TW6-N and TW6-S
with Reynolds number decreasing, we find saddle-node bifurcation points at R = 299.517
where the growth rate of steady modes of TW6-N and TW6-S become negative to zero. The
TW6-N and TW6-S branches which connect to TW4 with no bifurcation points are Node
branches while the branches arising from the saddle-node bifurcation points at R = 299.517
are Saddle solutions. Note is that TW6-N and TW6-S are Hopf unstable except for the
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere
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Figure 3.7: Stable regions of nonlinear solutions. The horizontal and vertical axes indicate
Reynolds number and rotation rate, respectively. The red cross, the blue asterisk, the purple
square and the gray triangle indicate stable regions of trivial solution, TW1, TW2-N (-S)
and TW4, respectively. The white regions indicate Hopf unstable regions of trivial solution,
TW1, TW2-N (-S) and TW4.

interval 2175 ≤ R ≤ 2509, both ends of which are considered to be associated with the
bifurcations of time-periodic solutions.

Figure 3.8 bottom shows the bifurcation diagram in the case of Ω = −1.0. We
find that as the Reynolds number increases the trivial solution become Hopf unstable at
R = 28.94 where TW1 (m = 2) bifurcates through the supper-critical Hopf bifurcation.
As the Reynolds number increases TW1 become Hopf unstable at R = 58.29. On the
trivial solution branches we find that the another Hopf bifurcation point at at R = 41.57
where TW4 bifurcates. Tracing TW4 branches we find two saddle-node bifurcation points
at R = 540.05 and 475.33. Tracing TW4 branch from R = 41.57, TW4 obtain the stability
at the second saddle-node point R = 475.33 On TW4 branches we find three pitchfork
bifurcation points at R = 95.72, 274.5 and 542.4, respectively. The two branches arising
at the first pitchfork bifurcation point R = 95.72 connect to TW4 at the second pitchfork
bifurcation point R = 274.5. As a result these two branches construct a closed loop. On
the third pitchfork bifurcation point R = 542.4 we find that TW4 losses stability at this
Reynolds number where TW5-N and TW5-S bifurcate. As the Reynolds number increases
TW5-N and TW5-S become Hopf unstable at R = 614.4.

Figure 3.9 (top) shows the bifurcation diagram in the case of Ω = 0.5. We find that
as the Reynolds number increases the trivial solution becomes Hopf unstable at R = 27.35
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3.5 Bifurcation structure of nonlinear steady solutions arising from 3-jet zonal flow

where TW1 bifurcates through the super-critical Hopf bifurcation. Tracing TW1 branch, we
find that TW1 becomes Hopf unstable at R = 60.16, and a pitchfork bifurcation point at
R = 63.46 where TW2-N and TW2-S bifurcate and TW2-N and TW2-S are Hopf unstable
except for the interval 64.918 ≤ R ≤ 85.036. On the trivial solution we find another Hopf
bifurcation point at R = 113.7, where TW4 bifurcates We confirm that TW4 is also Hopf
unstable for 113.7 ≤ R ≤ 104. As the Reynolds number increases we find that TW5-N and
TW5-S bifurcate from TW4 at R = 983.6 through the pitchfork bifurcation and TW5-N and
TW5-S are also Hopf unstable for 983.6 ≤ R ≤ 104.

Figure 3.9 (bottom) shows the bifurcation diagram in the case of Ω = 1.0. We find
that as the Reynolds number increases the trivial solution becomes Hopf unstable at R =
31.00 where TW1 bifurcates through the super-critical Hopf bifurcation. As the Reynolds
number increases TW1 become unstable at R = 61.11 where TW2-N and TW2-S bifurcate
through the pitchfork bifurcation. We confirm that TW2-N and TW2-S is stable for 61.11 ≤
R ≤ 104 and there is no bifurcation point on trivial solution.

Under the stabilizing effect of rotation, as the absolute value of the rotation rate
increases, the number of nonlinear steady traveling solutions at high Reynolds number de-
creases monotonically. In the case of Ω < 0 we find the saddle-node bifurcation points and a
closed loop branch, while in the case of Ω > 0 the secondary bifurcation branches arise only
through the pitchfork bifurcation. These results show that the bifurcation structure changes
drastically, as the absolute value of the rotation rate increases.
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

Figure 3.8: Same as figure 3.6 but Ω = −0.5 and −1.0. The top and bottom figures show
the case of Ω = −0.5 and −1.0, respectively. The horizontal and vertical axes indicate
Reynolds number and −18ψ0

2−12ψ0
3 in the top figure and −6ψ0

2−12ψ0
3 in the bottom figure,

respectively. Note is that in the top figure the horizontal axis is Log-scale in order to describe
all bifurcation points.
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3.5 Bifurcation structure of nonlinear steady solutions arising from 3-jet zonal flow

Figure 3.9: Same as figure 3.6 , but Ω = 0.5 and 1.0. The top and bottom figures show
in the case of Ω = 0.5 and 1.0, respectively. The horizontal and vertical axes indicate
Reynolds number and −12ψ0

2−12ψ0
3 in the top figure and −6ψ0

2−12ψ0
3 in the bottom figure,

respectively.
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

3.5.3 Characteristics of steady traveling solutions at high Reynolds
number

In this section we discuss the flow flied of the steady traveling solutions at high Reynolds
number. Figure 3.10 shows streamfunctions of TW1 at Ω = 0.0, 0.5, 1.0. The flow field con-
sists of four positive and negative mid-latitude vortices, and as Reynolds number increases,
the stream function becomes more symmetric with respect to the equator with the circum-
polar flows being reduced. We find that the streamfunction of TW1 almost recovers the
equatorial symmetry at R = 106. In the cases of Ω = 0.5 and 1.0, we find that in contrast
with the non-rotating case, the mid-latitude vortices remains non-symmetric with respect
to the equator and the circumpolar vortices survives when R is increased. The flow fields
seem to change little for R & 104. We also find that in the cases of Ω = −0.5 and -1.0, the
streamfunction of TW1 does not have the equatorial symmetry at high Reynolds number,
either. We note that the trivial solution does not have this symmetry. On the other hand,
in the case of Ω = 0.0, each vortex is almost symmetric with respect to a meridian passing
through the counter of the vortex at high Reynolds numbers. However, this symmetry is not
observed for Ω 6= 0 at high Reynolds numbers.

Figure 3.11 shows the zonal-mean zonal velocity profile for TW1 and TW5-N at
Ω = 0.0 together with the trivial solution, where the zonal-mean zonal velocity is defined by

U(µ) :=
1

2π

∫ 2π

0

uλ(λ, µ) dλ,

in which uλ(λ, µ) is the longitudinal component of the velocity. Note that the trivial solution
is always the steady solution irrespective of the Reynolds number. For TW1, we see that as
the Reynolds number increases the magnitude of zonal-mean zonal velocity of TW1 decreases
and it is nearly 1/1000 of that of the trivial solution at R = 106. This phenomena may be
inferred from the fact that the positive and negative vortices for Ω = 0 and R = 106 in
figure 3.10 are almost the same with the sign reversed, and therefore they almost cancel
out with each other when zonally averaged, resulting in a nearly vanishing profile of zonal
velocity. On the other hand, the zonally averaged profiles for TW5-N and TW5-S (figure
3.11) show clear zonal jet flows even at high Reynolds numbers, where the number of the
zonal jets in the zonally averaged profiles changes from 3 to 2 as the Reynolds number is
increased, and the magnitude of the zonal jets is even stronger than the trivial solution.
This result is partially inferred from the streamfunction of TW5-N shown in Figure 3.12,
where, as the Reynolds number increases, the vortices spread and become uniform in the
longitudinal direction, preventing the cancellation when averaged. However, the mechanism
of the reduction of the number of jets in the averaged velocity profile is left open. It should
be added that in the rotating cases the number of jets in the zonal-mean zonal velocity
profile of steady traveling solutions appears to take a constant value (3 in this case) even at
high Reynolds numbers.
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3.5 Bifurcation structure of nonlinear steady solutions arising from 3-jet zonal flow

Figure 3.10: Streamfunctions of TW1: (a) Ω = 0.0, R = 102, (b) Ω = 0.0, R = 103, (c)
Ω = 0.0, R = 106, (d) Ω = 0.5, R = 102, (e) Ω = 0.5, R = 103, (f) Ω = 0.5, R = 106,
(g) Ω = 1.0, R = 102, (h) Ω = 1.0, R = 103, and (i) Ω = 1.0, R = 106, respectively. The
horizontal and vertical axes indicate longitude and latitude, respectively.
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Figure 3.11: zonal-mean zonal velocity of TW1 and TW5 at Ω = 0.0. The left and right
figures show TW1 and TW5-N cases, respectively. In the left figure red cross, blue asterisk
and purple square denote R = 100, 103 and 106 cases, respectively, and in the right figure R =
200, 103 and 106 cases, respectively. The horizontal and vertical axes indicate zonal-mean
zonal flow and latitude, respectively. For comparison the black line denote the longitudinal
velocity of the trivial solution.

Figure 3.12: Streamfunctions of TW5-N at Ω = 0.0: (a) R = 200, (b) R = 103 and (c)
R = 106, respectively. The horizontal and vertical axes indicate longitude and latitude,
respectively.
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3.6 Numerical simulations at high Reynolds number

under 3-jet zonal forcing

To study attractor properties at high Reynolds number, we carry out numerical simu-
lation with varying the Reynolds number and the rotation rate for R = 103, 104 and
Ω = 0.0,±0.5,±1.0. We employ the spectral method as same as before section but the
truncation wavenumber is fixed on N = 53 (for the grid points I = 160 and J = 80). The
time integration is performed with the forth order Runge-Kutta method with a time step
interval δt = 0.05 from several initial conditions which are given by each nonlinear steady
solution added with three different disturbances

ψ(t = 0, λ, µ) = ψN(λ, µ) + δψi(λ, µ) (i = 1, 2, 3),

where ψN and δψi are the steady/steady traveling solutions and the disturbances, respec-
tively. The disturbances are given by

δψi(λ, µ) =
10∑
n=2

n∑
m=−n

δψm
inY

m
n (λ, µ),

where δψm
in is the expansion coefficient in which the uniform random number are substituted

with the energy density of δψi equal to 10−4 times of that of the original steady/steady
traveling solutions. Here the energy density of ψ is defined by

E =
1

8π

∫
|∇ψ|2 dS = − 1

8π

∫
ψ∆ψ dS.

We carry out the time integration until t = 5×105 and calculate statistical quantities at the
interval 5× 104 ≤ t ≤ 5× 105.

3.6.1 Properties of chaotic solutions in the non-rotating case

From the bifurcation analysis (Section 3.5) we find the eleven steady/steady traveling solu-
tions at R = 104, one of which is the trivial solution, and these solutions are already Hopf
unstable since R = 249.5. Figure 3.13 and 3.14 show the streamfunctions and the zonal-
mean zonal velocity of the steady/steady traveling solutions at R = 104, respectively. The
number of initial conditions is 33 obtained by the eleven steady/steady traveling solutions
with 3 disturbances and we take an ensemble average by the 33 solution orbits obtained by
these initial conditions.

Figure 3.15 shows the time series of the energy density of solutions orbits and its
power spectrum. The energy density undergo intermittent bursts and its power spectrum
is broad, that is, the solution orbits are chaotic. Figure 3.16 and 3.17 show the snapshots
of streamfunction and zonal-mean zonal velocity, respectively. We find that there are many
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

Figure 3.13: Streamfunctions of the nonlinear steady solutions at Ω = 0.0 and R = 104:
(a) TW1 (b) TW2-N, (c) TW3-N, (f) TW4 (e) TW5-N and (f) TW6-N, respectively. The
horizontal and vertical axes indicate longitude and latitude, respectively.

Figure 3.14: Zonal-mean zonal velocity of the nonlinear steady solutions at Ω = 0.0 and
R = 104: (a) TW1 (b) TW2, (c) TW3, (f) TW4 (e) TW5 and (f) TW6, respectively. In
figure (b) red cross and blue asterisk indicate TW2-N and TW2-S, respectively. This point
manner is same in the TW3, TW5 and TW6 cases.

52



3.6 Numerical simulations at high Reynolds number under 3-jet zonal forcing

time when the streamfunction of the chaotic solutions is similar to each unstable steady
traveling solution. Then the chaotic orbits are seems to wander around the unstable steady
solutions.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 100000  150000  200000  250000  300000

en
er

gy

time

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1e-05  0.0001  0.001  0.01  0.1  1
po

w
er

sp
ec

tr
um

frequency

Figure 3.15: The time series of energy density and the power spectrum at Ω = 0.0 and
R = 104. The left and right figures show time series of energy density and the power
spectrum of energy density, respectively In the left figure the horizontal and vertical axes
indicate the time and the energy density, respectively. In the right figure the horizontal and
vertical axes indicate the frequency and power spectrum, respectively.

Observing the streamfunctions, we expect that properties of the chaotic solutions
can be obtained by using unstable steady solutions. Here we focus on the zonal-mean zonal
velocity, and try to reproduce the zonal-mean zonal velocity of the chaotic solutions by using
those of the unstable steady/steady traveling solutions. Figure 3.18 shows the time-averaged
zonal-mean zonal velocity U of chaotic flow with the snapshots of zonal-mean zonal velocity.
Here · denotes time-averaged · = 1

T

∫
T

· dt. The zonal-mean zonal velocity is equatorial
asymmetry but the time-averaged zonal-mean zonal velocity has equatorial symmetry. This
means that the chaotic solutions have equatorial asymmetric states with approximately same
frequencies. The number of jets of the time-averaged zonal-mean zonal velocity is 3 which is
equal to that of trivial solution but the magnitude of that is ∼ 1/10 of the trivial solution.

First, we consider a linear combination

Ũ(µ) =
11∑
i=1

aiUi(µ), (3.21)

where ai are constant coefficients and Ui(µ) are the zonal-mean zonal velocities of unstable
steady/steady traveling solutions. The coefficients ai is obtained by the ratios of time-
averaged energy distance, ai = ri/

∑
j rj and recurrence ratios ai = pi defined by the ratio

of the number of times when ψi is the closest solution from the point on the chaotic orbit
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

Figure 3.16: Snapshots of streamfunction of chaotic solutions at Ω = 0.0 and R = 104. The
horizontal and vertical axes indicate longitude and latitude, respectively.

Figure 3.17: Snapshots of zonal-mean zonal velocity of chaotic solutions in the case of Ω = 0.0
and R = 104 at each time of the streamfunction shown in figure 3.16. The line indicates
snapshot of zonal-mean zonal velocity of chaotic solutions. The blue asterisks, purple squares
and aqua squares indicate reproduction by the linear mapping using the eleven unstable
steady/steady traveling solutions, only trivial solution and TW5, respectively
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Figure 3.18: The zonal-mean zonal velocity in Ω = 0.0 and R = 104 case. The red lines
denotes time-averaged zonal-mean zonal velocity of chaotic solution, while the black line
denotes the snapshots of zonal-mean zonal velocity of the chaotic solution, respectively.
The horizontal and vertical axes indicate the zonal-mean zonal velocity and the latitude,
respectively.

to the number of observation times. The energy distance between the chaotic solution ψ(t)
and each steady/steady traveling solution ψi

S given by

r2i (t) = (ψ(t)− ψi
S, ψ(t)− ψi

S)E.

(ψ1, ψ2)E is the energy inner product defined by

(ψ1, ψ2)E =
1

4π

∫
∆1/2ψ∗

1∆
1/2ψ2 dS

=
∑
l,m

l(l + 1)ψm∗
1l ψ

m
2l . (3.22)

Here ψm
1l and ψ

m
2l are the expansion coefficients of ψ1 and ψ2, respectively and if ψ1 = ψ2 = ψ

the energy inner product gives two times of the energy density of ψ.
Figure 3.19 (top) shows the linear combination Ũ . The Ũ , given by the ratios of

time-averaged distance or the recurrence ratios, are not close to the time-averaged zonal-
mean zonal velocity of the chaotic solution. We also calculate ai same as the above manner
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

but using distances between zonal-mean streamfunctions of chaotic solutions and unstable
steady/steady traveling solutions, however we find that the linear combinations do not re-
produce the time-averaged zonal-mean zonal velocity of chaotic solutions. As a results, the
linear combination of the zonal-mean zonal velocity using the energy distances (3.21) can
not reproduce the time-averaged zonal-mean zonal velocity.

Next, we consider a linear mapping defined as below. When the linear mapping
operates the steady/steady traveling solutions ψi, the linear mapping gives the zonal-mean
zonal velocity of ψi, that is Ui(µ), while if the linear mapping operates the orthogonal
compliment of the linear space which is extended by the steady/steady traveling solutions,
the linear mapping gives zero. To obtain the function values of this linear mapping, first,
we consider a member of the linear space extended by the longitudinal velocities of the
steady/steady traveling solutions, which given by

û(λ, µ) =
N∑
i=1

∫
dθ

2π
ci(θ)ui(λ− θ, µ) +

M∑
j=1

diU
S
j (µ),

where ui(λ, µ) are the longitudinal velocities depending on the longitude while US
j (µ) are the

longitudinal velocities independent of the longitude. ci(θ) and dj are expansion coefficients.
Taking zonal mean of û(λ, µ), we obtain∫

û(λ, µ)
dλ

2π
=

N∑
i=1

∫
dθ

2π
ci(θ)Ui(µ) +

M∑
j=1

djU
S
j (µ) = Û(µ) (3.23)

where Û(µ) and Ui(µ) are zonal-mean zonal velocity of û(λ, µ) and ui(λ, µ), respectively.
The coefficients

∫
dθ
2π
ci(θ) and dj can be obtained by∫

dθ

2π
ci(θ) =

∫ 1

−1

dµ

2
U †∗
i (µ)Û(µ) dj =

∫ 1

−1

dµ

2
US†∗
j (µ)Û(µ) (3.24)

where U †
i (µ) and U

S†
j (µ) are dual bases of Ui(µ) and U

S
j (µ), respectively. Here we assume

that Ui(µ) and US
j (µ) are linear independent of each other. And we also define the inner

product of zonal-mean zonal velocity Ui(µ) and Uj(µ) by∫ 1

−1

dµ

2
U∗
i (µ)Uj(µ).

To obtain the dual bases we use Schmidt orthogonalization method. When we obtain U †
i (µ),

for example, in first we carry out Schmidt orthogonalization for zonal-mean zonal velocities
except for Ui(µ), and we employ the orthogonalization to Ui to obtain orthogonal basis
ei(µ) with which the inner product of Uj(µ) is zero except for the case of j = i. Through

an appropriate scaling for ei(µ), we obtain the dual basis U †
i (µ). The function values of
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Figure 3.19: Reproduction of time-averaged zonal-mean zonal velocity in Ω = 0.0 and R =
104 case. The top and bottom figures show reproductions using the linear combination (3.21)
and the linear mapping method (3.23), respectively. The red line denotes time-averaged
zonal-mean zonal velocity of the chaotic solution. In the top-left figure, the blue asterisks
denote the linear combinations the coefficients of which are obtained by the energy distance
ratios while in the top-right figure the purple squares denote that the coefficients of which

obtained by the recurrence ratios. In the bottom figure, the blue asterisks denote Û(µ) using
the eleven steady/steady traveling solutions.
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

the linear mapping are obtained by the equation (3.23) substituting the zonal-mean zonal
velocity of the chaotic solution U(µ, t) in Û(µ).

Figure 3.19 (bottom) shows the time-averaged (3.23) using the eleven steady/steady

traveling solutions for the linear mapping. We find that Û(µ) approximates well the time-
averaged zonal-mean zonal velocity of the chaotic solutions within ∼ 0.3% error. However,

figure 3.20 shows Û(µ) using only trivial solution and only a single pair of TW5-N and

TW5-S, respectively. We find that Û(µ) by using only the single solution also approximate
the time-mean zonal-mean zonal velocity of chaotic solution.

By contrast, there are differences on the time series of the zonal-mean zonal velocity.
Figure 3.21 shows the time series of relative errors between the zonal-mean zonal velocity
of chaotic solutions U(µ, t) and the reproduced zonal-mean zonal velocity by the linear
mapping. Here the relative error is given by

E(t) =

√∫ 1

−1

dµ

2
(U(µ, t)− Û(µ, t))2√∫ 1

−1

dµ

2
U2(µ, t)

.

We find that the time series of the relative errors of linear mapping using the eleven
steady/steady traveling solutions are smaller than that using only the trivial solution or
the TW5, although they give good approximations to the time-averaged zonal mean zonal
velocity. Figure 3.22 shows the time and ensemble average of the relative error for using the
eleven unstable solutions and each single solution. Clearly the relative error of the linear
mapping using the eleven steady/steady traveling solutions is smallest in the other cases.
Then if the eleven steady/steady traveling solutions are taken as the bases of the linear
space, this linear mapping method gives good approximations to not only the time-averaged
but also the time-progressing zonal-mean zonal velocity of the chaotic solutions. On the
figure 3.17 this results can be found partially by that Û(µ) using the eleven steady/steady
traveling solutions are very close to the zonal-mean zonal velocity of the chaotic solutions
for the several times.

This result suggests that the chaotic solutions even at high Reynolds number, which
is 40 times of the critical Reynolds number of the laminar flow (see section 3.5), lay mostly
within a relatively low-dimensional space spanned by the steady/steady traveling solutions.
In addition, we also carry out the time integration at R = 103 and we find that solutions
are also chaotic and the linear mapping method also gives good approximations to the time-
progressing zonal-mean zonal velocity of chaotic solutions. This result suggests that the
properties of chaotic solutions do not change drastically at high Reynolds numbers.

Next considering the contributions from each steady solution in the linear mapping,
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Figure 3.20: time-averaged zonal-mean zonal velocity of Û using only the trivial solution and
TW5. The red line denote time-averaged zonal-mean zonal velocity of the chaotic solutions.
The purple and aqua squares denote approximation using only the trivial solution and the
pair of TW5-N and TW5-S, respectively.
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Figure 3.21: The time series of the error of the approximation E . The blue, purple and aqua
lines denote the error using the eleven steady/steady traveling solutions, only the trivial
solution and TW5-N, respectively. The horizontal and vertical axes indicate the time and
the error of approximation, respectively.
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Figure 3.22: Ensemble-time-averaged of the error of the approximation E . The horizontal
and vertical axes indicate the kinds of the linear mapping and the ensemble-time-averaged
error of approximation, respectively. On the horizontal axes, the characters denote the bases
of the linear mapping using only trivial solution, only TW1, the pair of TW2-N and TW2-S,
the pair of TW3-N and TW3-S, only TW4, the pair of TW5-N and TW5-S, the pair of
TW6-N and TW6-S and the eleven steady/steady traveling solutions, respectively.

we study the time-averaged square of the inner product with Û ,∫
dt

T

(∫ 1

−1

e∗i (µ)Û(µ)dµ

)2

, (3.25)

where ei(µ) is a normalized vector of the dual basis U †
i (µ). This quantity represents the

amount of the contribution of the zonal-mean zonal velocity Ui(µ) for Û(µ); if this quantity
is small the contribution of Ui(µ) is small. We call this quantity the contributing energy of
the nonlinear solution i. Suppose that the linear mapping is constructed by N solutions.
We then exclude a solution the contributing energy of which is the smallest among the N
solutions and construct a new linear mapping using the remaining N−1 solutions. Excluding
solutions one by one starting from the linear mapping using the eleven solutions, we study
a relevance between the number of the solutions used in the linear mapping and the time
average of the absolute error of Û(µ),∫

dt

T

√∫
dµ

2
(U(µ, t)− Û(µ, t))2.
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3.6 Numerical simulations at high Reynolds number under 3-jet zonal forcing

Figure 3.23 shows the time and ensemble average of the absolute error as a function of
the number of the solutions used in the linear mapping. When the eleven solutions are
used for the linear mapping the absolute error is smallest. As the number of solutions
N decreases, at first the absolute error varies only slightly, but when the number of the
solutions is less than 8, the absolute error increases rapidly as N−1.82. Table 3.3 shows the
solutions used in each step. It should be noted that in the 3rd step the time and ensemble
average of the contributing energy of TW2-N is slightly larger than that of TW2-S and
then we exclude TW2-S in the 4th step. We expect that if TW2-N is excluded in the 4th
step the remaining solutions in the 10th step should be TW2-S and TW6-N because the
time average of the chaotic zonal-mean zonal velocity has the equatorial symmetry. When
N < 5 the absolute error increases rapidly and this result suggests that the chaotic solution
should exist disproportionately around TW2 and TW6. In addition we confirm that when
the trivial solution, TW3-N, TW3-S, TW6-N, and TW6-S are used for the linear mapping
where TW3-S is excluded in the 7th step, the absolute error of the linear mapping is greater
than that using the trivial solution, TW2-N, TW3-N, TW6-N and TW6-S.

As an idealized model case, consider a chaotic attractor which uniformly distributes
inM -dimensional sphere with the radius R. The distance between this chaotic attractor and
the subspace which is expanded by the N mutually orthogonal vectors (N < M) is given by

dN =
√∫

VM

dV
VM

∑M−N+1
i=1 x2i =

√
M−N+1
M+2

R, where VM is the volume of the M -dimensional

sphere. Then the absolute error is proportional to
√
12−N , in contrast with N−1.82 in our

case. This result suggests that the chaotic attractor nonuniformaly distributes around the
specific solutions such as TW2.

3.6.2 Properties of solutions orbits in the rotating case

We also carry out time integration at Ω = ±0.5,±1.0 with varying R = 103, 104. Figure 3.24
shows the power spectrum of the energy density of unsteady solutions at each parameter
and Table 3.4 shows the type of unsteady solutions. The solutions are steady traveling or
periodic except for Ω = 0.0 and Ω = −0.5, R = 104 cases where we find chaotic solutions.
When Ω = 1.0 and R = 103, the solutions obtained by time integration are TW2. When
Ω = 0.5 and R = 104 we find the solutions are two kinds of periodic solution. This result
suggests that the solutions tends to be less chaotic under the stabilizing effect of rotation.
Here we show the case of Ω = −1.0, R = 103.

Figure 3.25 shows the streamfunctions of the steady traveling solutions at Ω =
−1.0, R = 103. From the bifurcation analysis we find five steady/steady traveling solutions
at Ω = −1.0, R = 103 as far as our computation, and these solutions are already Hopf
unstable since R = 614.4.

The unsteady solutions obtained by time integration are time-periodic. Figure 3.26
and 3.27 show the snapshots of the streamfunction and zonal-mean zonal velocity of the
time-periodic solution. We find that the streamfunction of the time-periodic solutions is
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3.6 Numerical simulations at high Reynolds number under 3-jet zonal forcing
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Figure 3.23: Ensemble-time-averaged of the relative error for the linear mapping using the
portion steady/traveling solutions. The horizontal and vertical axes indicate the number of
solutions used for the linear mapping and the ensemble-time-averaged relative error, respec-
tively.

dissimilar to that of unstable steady/steady traveling solutions and the reproduced zonal-
mean zonal velocity by the linear mapping using the unstable solutions does not coincide
with the zonal-mean zonal velocity of the periodic solutions. In fact we find that the time
and ensemble average of the relative error of Ω = −1.0, R = 103 is 2.85 × 10−2, while that
of Ω = 0.0, R = 104 is 2.74 × 10−3, i.e. the time and ensemble average of the relative error
of Ω = −1.0, R = 103 is larger about 10 times of that of Ω = 0.0, R = 104. Then the linear
mapping method for the time development reproduces the zonal-mean zonal velocity of time-
periodic solution at the case of Ω = −1.0, R = 103 less well than that of the chaotic solution
at the case of Ω = 0.0, R = 104. Figure 3.28, however, shows the time-averaged zonal-
mean zonal velocity and the linear mapping reproducts the time-averaged zonal-mean zonal
velocity of the periodic solution. The reason why the linear mapping method reproduces
the time-averaged zonal-mean zonal velocity but does not reproduce the time development
is not clear. This result suggests that the relation between the unsteady solutions and the
steady/steady traveling solutions changes as the effect of rotation increases.
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

Figure 3.24: Power spectrum of the energy density of the unsteady solutions. Column 1
and 2 indicate the case of R = 103, 104, respectively. Row 1,2,3,4,5 indicate the case of
Ω = 1.0, 0.5, 0.0,−0.5,−1.0, respectively.

64



3.6 Numerical simulations at high Reynolds number under 3-jet zonal forcing

Figure 3.25: The streamfunction of steady traveling solutions at Ω = −1.0 and R = 103: (a)
TW1 (c) TW4, (d) TW5-N, respectively.

Figure 3.26: Snapshots of streamfunction of time-periodic solutions at Ω = −1.0 and R =
103. The horizontal and vertical axes indicate longitude and latitude, respectively.

Figure 3.27: Snapshots of zonal-mean zonal velocity of time-periodic solutions in the case
of Ω = −1.0 and R = 103 at each time of the streamfunction shown in figure 3.26 The
line indicates snapshot of zonal-mean zonal velocity of chaotic solutions. The blue asterisks
indicates the reproduced zonal-mean zonal velocity by the linear mapping using all unstable
steady/steady traveling solutions.
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

Ω R = 103 R = 104

1.0 TW2 TW2 or P
0.5 P P(2)
0.0 C C
-0.5 P QP or C
-1.0 P P

Table 3.4: The type of solutions. Column 1, 2 and 3 indicate the rotation rate and the
Reynolds number R = 103, 104, respectively. In the row 2∼6, P,QP and C mean time-
periodic solution, quasi-time-periodic solution and chaotic solution, respectively. In the case
of Ω = 0.5 and R = 104, P(2) means that the unsteady solutions are two kinds of periodic
solution.
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Figure 3.28: Reproduction of time-averaged zonal-mean zonal velocity in the case of Ω =
−1.0, R = 103 case. The red line denote time-averaged zonal-mean zonal velocity of the time-
periodic solution. The blue asterisks denote the time-averaged zonal-mean zonal velocity by
the linear mapping method using all steady/steady traveling solutions.
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3.7 Conclusion and Discussion

3.7 Conclusion and Discussion

In this chapter we study stability and bifurcation structure of viscous l-jet zonal flow on a
rotating sphere. We proof rigorously that 2-jet zonal flow is globally asymptotic stable for
any Reynolds number and the rotation rate. In Kolmogorov problem, Iudovisch [13] proved
that 2-jet parallel flow on the flat torus is globally asymptotic stable for any Reynolds
number. This result implies that the globally stability of 2-jet flow is a common property
between the flat torus and the sphere.

The linear stability of l-jet zonal flow with 3 ≤ l ≤ 9 is studied numerically. in the
non-rotating case, we find that, as the number of jets increases, the critical Reynolds number
increases monotonically, the critical modes are Hopf mode, and the critical wavenumbers
mc = 2. On the linear stability of Kolmogorov flow, the critical Reynolds number increases
monotonically as the number of jets increases, while the critical modes are steady mode (not
Hopf) and the critical wavenumbers mc = 1 [5, 14, 18, 23]. It is a similar feature between
the flat torus case and the sphere case that, as the number of jets increases, the critical
Reynolds number increases monotonically.

in the rotating case we find that the critical Reynolds number takes its lowest value
at non-zero rotation rate; at a small negative rotation rate for the odd-jet zonal flow, and at
a small non-zero rotation rate (both positive and negative values) for the even-jet zonal flow,
while This means that the effect of small rotation is not always the stabilization of the zonal
flows, while because the critical Reynolds number of each zonal jet flow increases rapidly
the rotation rate increasing large, the zonal flows are stabilized by the large rotation rates.
On the inviscid limit of the stability, we find that the unstable region of rotation rate for
viscous odd-jet zonal flows is larger than that for inviscid zonal flows, and the former does
not converge to the latter even in the inviscid limit. This seeming contradiction between
inviscid limit and inviscid is resolved by the observation that as Reynolds number increases
the growth rates of the unstable mode converge to zero at the region, where the inviscid
zonal flow is stable but viscous zonal flow unstable. On the other hand, if the number of jets
is even, we find that as the Reynolds number increases the absolute values of the rotation
rates, where the even-jet zonal flow losses the stability, increases monotonically but less than
that of inviscid zonal flow. Then, we expect that the critical rotation rate of the inviscid
limit coincides with inviscid one.

In the numerical simulation by Obuse et al. [22], the asymptotic states of forced
two-dimensional turbulence are only the 2- or 3-jet zonal flow. In the case of that the
asymptotic state is the 3-jet zonal flow, we find that the rotation rate, which they adapted,
is at least Ω ' 27, where the Reynolds number is R ∼ 6.6 × 104, and the rotation rates at
which the resultant flow is 3-jet zonal flow are much greater than the critical rotation rate of
the laminar 3-jet zonal flow, 2.171 or −5.727. However, if the turbulence becomes the 2-jet
zonal flow going through 3-jet zonal flow, we find that the rotation rate at the 3-jet stage is
at least Ω ' 9.1, where the Reynolds number is R ∼ 5.0× 104, and the rotation rates when
the 3-jet zonal flow emerges in the course of time development are also much greater than
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3 Stability and bifurcation structure of viscous zonal jet flows on a rotating sphere

the critical rotation rate of the laminar 3-jet zonal flow. This means that the jet flows found
in the intermediate stages would be mostly stable if the jet flows were laminar, and therefore
the route to the asymptotic state of the forced turbulence is not explained in the framework
of the linear stability of laminar zonal jet flows, while the stability of the resultant 3-jet flow
is supported by the linear stability of the laminar 3-jet flow.

We also study the bifurcation structure arising from the 3-jet trivial zonal flow.
in the non-rotating case, as Reynolds number increases, the steady traveling wave solutions
arises from 3-jet zonal flow through Hopf bifurcation. As Reynolds number more increases,
several traveling wave solutions arise only through the pitchfork bifurcation from the trav-
eling wave solutions and finally the steady traveling solutions become Hopf unstable. When
Ω < 0, we find the saddle-node bifurcations and the closed-loop bifurcation branch while in
the case of Ω > 0 we find only the pitchfork bifurcations. Then the bifurcation structure
changes vastly depending on the rotation.

in the non-rotation case, we find the symmetry restoration of the streamfunction
of the steady traveling solutions at high Reynolds number. Note is that The 3-jet zonal
flow does not have this symmetry. On the torus case, Kim and Okamoto [14] studied the
inviscid limit of the steady solutions arising from 4- and 6-jet trivial flows, and they found
that along the branches the flow field of the steady solution becomes dominated only by
a pair of a negative and a positive vortices at high Reynolds number. They called this
solution unimodal solution, and suggested that at a high Reynolds number there is a steady
unimodal solution independently of the value of k. Similar phenomena were found also by
Okamoto and Shōji [23]. It should be noted that the symmetries of the steady solutions,
which become the unimodal solutions at high Reynolds number, are restored as the Reynolds
number increases. Considering the symmetry restoration in the torus case and the sphere
case, it may be suggested that the symmetry restoration of the steady solutions at high
Reynolds number is a common feature between the flat torus and the sphere. In the rotating
case, on the other hand, we does not find the symmetry restoration of the steady traveling
solutions.

We carry out time integrations at high Reynolds number. in the non-rotating case,
we find that the solutions are chaotic and wander around unstable steady/steady traveling
solutions. Observing the streamfunctions of chaotic solutions we expect that the properties
of chaotic solutions can be obtained by using unstable steady/steady traveling solutions.
As an example, we try to reproduce the zonal-mean zonal velocity of the chaotic solutions
by using those of the unstable steady and steady traveling solutions. First, we consider the
linear combination of the zonal-mean zonal flow of unstable steady/steady traveling solutions
the coefficients of which are given by the properties of the energy distance between chaotic
solutions and unstable steady/steady traveling solutions. This linear combinations, however,
do not give the approximations to the time-averaged zonal-mean zonal flow of the chaotic
solutions.

Next, we consider the linear mapping; if the linear mapping operates the steady/steady
traveling solutions, the linear mapping gives the zonal-mean zonal velocity of the solution
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3.7 Conclusion and Discussion

which the linear mapping operates, while if the linear mapping operates the orthogonal
compliment of the linear space which is extended by the unstable steady/steady traveling
solutions, the linear mapping gives zero. We find that when the unstable steady/steady
traveling solutions, which we obtain by the computational bifurcation analysis, are used for
the linear mapping, the linear mapping gives good approximations to not only the time av-
erage but also the time series of zonal-mean zonal velocity of chaotic solutions. This result
suggests that even the chaotic orbits at high Reynolds number, which is 40 times of the
critical Reynolds number of the laminar flow, lies mostly within a relatively low-dimensional
box, the vertices of which are the steady and steady traveling solutions.

In the rotating cases, on the other hand, the solution tends to be less chaotic under
the stabilizing effect of rotation, and we find that the reproduced zonal flow by the linear
mapping method does not approximate well the zonal-mean zonal velocity of the unsteady
solutions at several Reynolds numbers and rotation rates. This result suggests that the
relation between the unsteady solutions and the steady or steady traveling solutions changes
as the effect of rotation increases.
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Chapter 4

Conclusion

The two-dimensional incompressible Navier-Stokes flow on a rotating sphere is considered
to be one of the simplest and most fundamental models of the atmospheric motions taking
into account the effect of the planetary rotation. The Reynolds number of the planetary
atmosphere is so large that properties of the Navier-Stokes turbulence on a rotating sphere
should be relevant to some aspect of the dynamics of the atmosphere. However, even in this
simplest model, it is far from straightforward to obtain global properties of fully nonlinear
solutions. In this thesis we discuss the Navier-Stokes flows on a rotating sphere, with an
attention focused on the stability problem, the bifurcation structure of the zonal jet flows
and chaotic solutions at high Reynolds numbers.

First we investigate inviscid stability of zonal jet flows on a rotating sphere, shown
in Chapter 2. The semi-circle theorem obtained by Howard [7] on non-rotating planer domain
was expanded to the rotating sphere by Thuburn and Haynes [36]. However we obtained
different results from that of Thuburn and Haynes to utilize a property of Legendre functions.
Furthermore, we obtain corrected values of the critical rotation rate of stability. Baines [1]
numerically studied the linear stability of inviscid zonal jet flow the streamfunction of which
is expressed by the zonal spherical harmonics Y 0

l . Re-examining the numerical calculation,
we find that the eigenvalues obtained by the spectral method adopted by Baines [1] include
numerical errors which do not decrease even by increasing the truncation wavenumber as
far as practically available in the computation. These numerical errors are caused by an
emergence of singularities, called as critical layers, near the north and the south poles when
the zonal flow approaches the marginal stability state. To obtain the critical eigenvalues and
critical rotation rates with sufficient accuracy, we make use of the shooting method and the
power series expansion method, taking into account the singular points. As a result, we find
that the critical rotation rates of Baines [1] should be corrected by ∼ 10%.

In the aforementioned paper, Baines also studied the stability of non-zonal Rossby
waves, i.e. ψ0 proportional to Y

m
l (λ, µ), (m 6= 0). However, we have found in high-resolution

computations, that some of the stability results for these flows in Baines [1] also suffer from
inaccuracy due to the singular point where the coefficient of the highest-order derivative of
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the eigenfunction vanishes. The traditional technique of bypassing the singular point in the
complex plane, which we have employed in this chapter, is applicable only to the problems
of space dimension one. Accurate results of the stability eigenvalues for the two-dimensional
problem is therefore still open to further study.

Second, in Chapter 3, we study stability and bifurcation structure of viscous zonal
flow. This problem is formulated by introducing a forcing term, which consists of a single
spherical harmonics, to balance with the viscous dissipation term to keep the flow steady.
Notice that this problem setting is similar to so-called Kolmogorov problem which has been
considered as a typical and simplest example to get insight into the solution properties of
the Navier-Stokes equations.

We proof that the 2-jet zonal flow is globally asymptotic stable for any Reynolds
number and the rotation rate. In Kolmogorov problem, Iudovisch [13] proved that 2-jet
parallel flow is globally asymptotic stable for any Reynolds number. This result implies
that the globally stability of 2-jet flow is a common property between the flat torus and the
sphere. We study linear stability of l-jet zonal flow in the region 3 ≤ l ≤ 9. In non-rotating
case, we find that as the number of jets increases the critical Reynolds number increases
monotonically, the critical modes are Hopf mode, and the critical wavenumbers mc = 2. In
rotating case we find that the critical Reynolds number takes its lowest value at non-zero
rotation rate; at a small negative rotation rate for the odd-jet zonal flow, and at a small non-
zero rotation rate (both positive and negative values) for the even-jet zonal flow, while This
means that the effect of small rotation is not always the stabilization of the zonal flows, while
because the critical Reynolds number of each zonal jet flow increases rapidly the rotation rate
increasing large, the zonal flows are stabilized by the large rotation rates. On the inviscid
limit of the stability, we find that the unstable region of rotation rate for viscous odd-jet
zonal flows is larger than that for inviscid zonal flows, and the former does not converge to
the latter even in the inviscid limit. This seeming contradiction between the inviscid limit
and the inviscid is resolved by an observation that as the Reynolds number increases the
growth rates of the unstable mode converge to zero at the region, where the inviscid zonal
flow is stable but viscous zonal flow unstable. Obuse et al. [22] reported that the asymptotic
states of forced two-dimensional turbulence are only the 2- or 3-jet zonal flow. We find that
in their calculation, the rotation rate is always larger than the critical rotation rate of the
laminar jet flows, in the course of time development, except for some initial period. This
means that the jet flows found in the intermediate stages would be mostly stable if the jet
flows were laminar, and therefore the route to the asymptotic state of the forced turbulence
is not explained in the framework of the linear stability of laminar zonal jet flows, while the
stability of the resultant 3-jet flow is supported by the linear stability of the laminar 3-jet
flow.

The bifurcation structure arising from the 3-jet zonal flow are studied. In non-
rotating case, as Reynolds number increases, the steady traveling solution arises from 3-jet
zonal flow through the Hopf bifurcation. As the Reynolds number increases, the several trav-
eling solutions arise only through the pitchfork bifurcation from the traveling solutions and
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4 Conclusion

finally the steady solutions become Hopf unstable. In the rotating case, when Ω < 0, we find
saddle-node bifurcation points and the closed-loop bifurcation branch while in Ω > 0 case
only the pitchfork bifurcation points. Then the bifurcation diagrams change significantly de-
pending on the rotation. About the properties of steady traveling solutions at high Reynolds
number, in non-rotation case, we find the symmetry restoration of the streamfunction of the
steady traveling solutions at high Reynolds number. Similar phenomenon has been found in
Kolmogorov problem by Okamoto and Shōji [23] and Kim and Okamoto [14]. On the other
hand, in the rotating cases, no symmetry restoration is found.

We carry out time integrations at high Reynolds number. In non-rotating case, we
find that solution orbits are chaotic, which wander around unstable steady/steady traveling
solutions. Observing the streamfunction of chaotic solutions we expect that the properties
of chaotic solutions can be obtained by using unstable steady/steady traveling solutions.
In order to find out the relationships between the chaotic solutions and the steady/steady
traveling solutions, we try to reproduce the zonal-mean zonal velocity of chaotic solutions
using the unstable steady/steady traveling solutions. First, we consider the linear com-
bination of the zonal-mean zonal flow of unstable steady/steady traveling solutions. The
coefficients of linear combination are given by the properties of the energy distance between
chaotic solutions and unstable steady/steady traveling solutions. This linear combination
however does not give a good approximation to the time-average zonal-mean zonal flow of
chaotic solutions. Next, we consider the linear mapping: if the linear mapping operates the
steady/steady traveling solutions, the linear operator gives the zonal-mean zonal velocity
of the operated steady/steady traveling solutions, while if the linear mapping operates the
orthogonal compliment of the linear space which is extended by the steady/steady traveling
solutions, the linear operator gives zero. We find that this linear mapping reproduces not
only the time average but also the time series of the zonal-mean zonal velocity of chaotic
solutions. This result suggests that even at high Reynolds number, which is 40 times of the
critical Reynolds number of laminar flows, the chaotic solutions exist on the linear space
which is extended by the unstable steady solutions arising from 3-jet zonal flow at low
Reynolds number. This suggestion brings a expectation that as the Reynolds number in-
creases the dynamical dimension of the chaotic solutions of this model converges to finite. It
is necessary for making this expectation clear to research dynamical system properties such
as Lyapunov analysis and routes of turbulence. In the rotating cases, on the other hand,
the solution tends to be less chaotic under the stabilizing effect of rotation, and we find
that the reproduced zonal flow by the linear mapping method does not approximate well the
zonal-mean zonal velocity of the solutions at several Reynolds numbers and rotation rates.
This result suggests that the relation between the chaotic solutions and steady or steady
traveling solutions changes as the effect of rotation increases.
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