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Abstract

Boussinesq thermal convection in rotating spheres or spherical shells has
been investigated for over half a century, not only as one of the fundamen-
tal models for global thermal convection, which is considered to occur in
astronomical bodies, but also as a purely fluid mechanical problem.

There are a lot of researches for this convection problem, but most of the
studies performed so far assume that the inner and outer spheres co-rotate,
that is, both spheres rotate with the same angular velocity. However, the
spheres need not be co-rotating in the actual astronomical bodies. It is a
more natural setup that both spheres rotate freely due to the viscous torques
operating on the surface of these spheres from the fluid. Therefore, in this
thesis, we consider effects of the rotation of the inner and outer spheres on
a fundamental behaviour of convective solutions of this Boussinesq thermal
convection model.

First, we numerically evaluate torques on the inner and outer spheres
induced by thermal convection in a co-rotating system in order to assess to
what extent the convective motion changes the rotation rates of the spheres
(Chap.2). We use stable traveling wave solutions which bifurcate at the criti-
cal points and propagate in the azimuthal direction (Kimura et al., 2011). We
find that the direction of the torque on the inner sphere is prograde when the
rotation rate is small, while it becomes retrograde when the rotation rate is
large. We also find that the torque on the inner sphere can be large enough to
change the angular velocity of the inner sphere significantly even in a period
of rotation. At the same time, using numerical weakly nonlinear analyses, we
also examine generation mechanisms of mean zonal flows excited by thermal
convection, since shear stress of the mean zonal flows on the spheres induces
the axial component of the torques. We find that the nonlinear term in the
energy equation is most effective to generate the global distribution of mean
zonal flows, however, the azimuthal component of the nonlinear term in the
Navier-Stokes equation becomes most important for generation of the torque
on the inner sphere when the rotation rate is large.

Second, we develop a model of Boussinesq thermal convection in a rotat-
ing spherical shell allowing the inner sphere rotation (Chap.3). We obtain a
bifurcation diagram of traveling wave solutions which bifurcate at the critical
point and propagate in the azimuthal direction, by the Newton method and
numerical eigenvalue calculations. These traveling wave solutions are stable
in the region Rc ≤ R . 1.2 − 2Rc depending on the rotation rate, where
R and Rc are the Rayleigh number and the critical value, respectively. The
inner sphere rotates in the prograde direction when the rotation rate is small
while it rotates in the retrograde direction when the rotation rate is large.
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These rotating directions corresponds to directions of torques on inner sphere
in the co-rotating system. The stable region of these traveling wave solutions
is quantitatively similar to that in the co-rotating system. The structures
of convective motions of these solutions, such as the radial component of
velocity, are also quantitatively similar to those in the co-rotating system,
but amplitude of mean zonal flows and propagating velocity of this traveling
wave solutions are effectively changed by the inner sphere rotation. This
tendency can be explained that the nonlinear effect by convective motions is
small because these traveling wave solutions are stable only near the critical
curve.

Third, we construct a model of the Boussinesq thermal convection allow-
ing the rotation of both the inner and outer spheres (Chap.4). We perform
numerical simulations in the range 4Rc . R . 5Rc at moderately rotating
case. In this parameter region finite-amplitude convective solution transits
from an equatorially symmetric pattern to an equatorially asymmetric one
as the Rayleigh number is increased. We find that the route of this tran-
sition in the system allowing rotation of both spheres is different from that
in the co-rotating system: QPS → QPA → CA in the co-rotating system
while QPS → CS → CA in the system allowing rotation of both spheres, as
the Rayleigh number is increased, where QPS is an equatorially symmetric
quasi-periodic solution, QPA an equatorially asymmetric quasi-periodic solu-
tion, CS an equatorially symmetric chaotic solution, and CA an equatorially
asymmetric chaotic solution. The transition route in the system where only
the inner sphere rotation is permitted is exactly same as that in the sys-
tem allowing rotation of both the spheres. Therefore, we conclude that the
inner sphere rotation causes the different transition route from that in the
co-rotating system.
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Chapter 1

Introduction

There are a lot of astronomical bodies in the universe and they possibly show
a great wide variety of their features. However, global thermal convection is
thought to occur commonly in many of these astronomical bodies, due to the
internal heat sources and/or the external cooling. For example, the Sun has
a convective envelope around the radiative core, the band structure observed
in the giant planets is considered to be generated by the internal thermal
convection, and fluid motions in the liquid metallic cores of the terrestrial
planets would be the origin of their intrinsic magnetic fields.

The Boussinesq thermal convection in rotating spheres and spherical
shells, proposed by Chandrasekhar [1], is one of the fundamental frameworks
to investigate behaviour of this kind of global thermal convection. This con-
vection model has been vigorously investigated for over half a century.

The critical Rayleigh numbers, critical frequencies and critical modes
1 have been investigated theoretically and numerically, and now their be-
haviours come to be known in wide parameter ranges. Finite-amplitude con-
vection patterns also have been actively investigated through numerical sim-
ulations. Thanks to the recent remarkable progress of computational ability,
some recent large scale numerical simulations with high-resolutions obtained
finite-amplitude convective solutions similar to the observed flow fields, such
as the zonal-band structures 2 of the solar planets. Although these solutions
could propose possible dynamics realized in the atmospheres of the planets,

1The Rayleigh number means the degree of thermal instability in a thermal convection
system. As the Rayleigh number is increased, thermal convection occurs at a certain
Rayleigh number. This Rayleigh number is called the critical Rayleigh number, and the
emerging convection patterns are referred to the critical modes.

2Zonal-band structure means a structure consists of alternating prograde (eastward)
and retrograde (westward) jets, where prograde means the direction same as the rotation
direction of reference, while retrograde does the opposite direction against the rotation
direction of reference.
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1 Introduction

they may not reproduce the atmospheric flow fields adequately, because con-
trol parameters of these large scale numerical simulations are still far from
the expected values of the parameters in actual astronomical bodies. It is
severe to perform numerical simulations with realistic parameters for actual
astronomical bodies even when computational ability is highly developed in
the near future.

On the other hand, using numerical time integrations, some researchers
have been investigating fundamental behaviour of convection patterns, i.e.,
what kinds of convection patterns appear or disappear as the Rayleigh num-
ber is increased from the critical value. Transition of convective solutions
from critical modes to chaotic solutions has been gradually revealed. Never-
theless, global behaviour of the convective solutions in this system is not yet
well understood. Especially, stability and a bifurcation structure of convec-
tive solutions of this model have not been investigated, which are one of the
fundamental information to understand global behaviour of convective solu-
tions. We consider this is because most of the researchers have used the time
integration method to study the finite-amplitude convection patterns. This
method has two difficulties: (i) the unstable solutions cannot be obtained,
(ii) it requires quite long integration time to find the marginal stability point.
As a result, it is difficult to investigate many cases in wide parameter ranges.

Therefore, in order to investigate the bifurcation structure of this con-
vection model, we used the Newton method instead of the time integration
method, and obtained stability and the bifurcation diagram of traveling wave
solutions propagating in the azimuthal direction which bifurcate at the criti-
cal points (Kimura et al. [2]). The bifurcation structure can be investigated
systematically and efficiently with the Newton method, thanks to the fol-
lowing advantages: (i) not only stable but also unstable solutions can be
obtained, (ii) the number of the steps for convergence of the solutions is
small (less than 10 steps in our calculations).

Based on the results of Kimura et al. (2011) [2], in this thesis, we consider
effects of the rotation of the inner and outer spheres on fundamental be-
haviour of convective solutions of this Boussinesq thermal convection model.
There are many researches to investigate this thermal convection in rotating
spherical shells, but most of the studies performed so far assume that the
inner and outer spheres co-rotate, that is, both spheres rotate with the same
angular velocity. However, the spheres need not be co-rotating in the actual
astronomical bodies. It is a more natural setup that both the spheres rotate
freely due to the torques operating on the surface of these spheres from the
fluid.

Therefore, in this thesis, we construct a model of Boussinesq thermal
convection in a rotating spherical shell allowing rotation of the inner and

2



1.1 Research history of Boussinesq thermal convection in rotating spheres
and spherical shells

outer spheres, and investigate fundamental behaviour of convective solutions
through comparing with those in the co-rotating system.

In the following of the introduction, we briefly summarize previous works
for Boussinesq thermal convection in rotating spheres and spherical shells
in Sec. 1.1. The summary of our previous study, Kimura et al. [2], is
described in Sec. 1.2. The motivation, viewpoint and results in this thesis
are summarized in Sec. 1.3.

1.1 Research history of Boussinesq thermal

convection in rotating spheres and spher-

ical shells

The critical Rayleigh numbers, critical frequency and critical modes of Boussi-
nesq thermal convection in rotating spheres and spherical shells have been
investigated theoretically [3, 4, 5, 6, 7, 8, 9] and numerically [10], since the
pioneering works by Chandrasekhar [1], Roberts [11] and Busse [12, 13], and
their behaviours come to be known in wide parameter ranges.

When the rotation rate is small, retrograde propagating convection pat-
tern bending along the shell emerges as a critical mode [12, 14] except for
the cases of thick shells and large Prandtl numbers, where the axisymmetric
convection pattern appears as a critical mode [15]. When the rotation rate
is large, various convection patterns emerge as critical modes: a prograde
propagating columnar mode [13], a spiralling columnar mode which has a
spiralling structure spreading from inner to outer sphere [16], an equatorially
attached mode which concentrates near the equatorial surface [4, 5, 17], and
a multi-cellular mode which have some convection cells in the radial direc-
tion [18, 19]. However, behaviour of critical parameters and critical modes in
extremely rapid rotation region are still challenging due to necessary massive
computational resources for large scale eigenvalue calculations [20, 21].

Finite-amplitude convection has also been studied actively by using nu-
merical time integrations thanks to the recent massive powerful computers
[22, 23, 24, 25]. Especially, finite-amplitude convection solutions similar to
the observed zonal-band structures of the solar planets were obtained by
recent large scale numerical simulations. Heimpel and Aurnou [23] showed
that the multiple zonal-band structure on the outer sphere can be obtained
in rapidly rotating thin shell cases; this flow structure corresponds to that
in the previous studies by Busse [26, 27, 28]. Their surface flows are simi-
lar to the zonal-band structure observed on the surface of Jupiter [29] and

3



1 Introduction

Radius ratio Prandtl Taylor Rayleigh
Heimpel et al. [23] 0.85− 0.9 0.1 ∼ 1011 . 109

Aurnou et al. [24] 0.75 0.1− 1 . 1010 . 1011

Ice giants 0.80− 1 0.1 1030 1029

Gas giants 0.80− 1 0.1 1036 1033

Table 1.1: Comparison of non-dimensional control parameters of Boussinesq
thermal convection in rotating spherical shells with those of the expected as-
tronomical bodies. The second and third rows show the control parameters
used in Heimpel and Aurnou [23] and Aurnou et al. [24]. The fourth and
fifth rows show the expected values of these parameters for corresponding
astronomical bodies, which are described in Aurnou et al. [24], while the
actual physical values are highly uncertain. Here the radius ratio is defined
as rin/rout, the Prandtl number ν/κ, the Taylor number (2Ωd2/ν)2 and the
Rayleigh number αgout∆Td

3/(νκ). rin and rout are radii of the inner and
outer spheres, respectively. ν is the kinematic viscosity, κ the thermal dif-
fusivity, α the thermal expansion coefficient, gout the gravity given on the
outer sphere, Ω the rotation rate of the reference frame, ∆T the temperature
difference of the inner sphere from the outer sphere.

Saturn [30]. Aurnou et al. [24] showed that retrograde zonal flows 3 can be
generated near the outer sphere around the equatorial region when the shell
is thin and the Rayleigh number is sufficiently large. This zonal flow struc-
ture could explain that in the ice giants, Uranus [31, 32] and Neptune [33].
Note that, however, the parameters used in these numerical simulations are
far from the expected values of the actual planets (Table 1.1), although the
expected value of the parameters for the planets are uncertain. Therefore,
these convective solutions may not represent the flow fields of the planetary
atmospheres adequately.

On the other hand, transition of convective solutions from critical solu-
tions to chaotic solutions has been gradually revealed in the parameter space
[18, 19, 34, 35].

Ardes et al. [18] showed that, as the Rayleigh number is increased, tran-
sition occurs from traveling wave solutions which propagate in the azimuthal
direction to vacillating solutions, quasi-periodic solutions and chaotic solu-
tions succeedingly. Grote and Busse [35] showed that, as the Rayleigh number
is increased larger than that in Ardes et al. [18], localized turbulent convec-

3Zonal flow means the azimuthally averaged azimuthal component of velocity.
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1.2 Summary of Kimura et al. (2011)

tion pattern appears and is sustained. As the Rayleigh number is further
increased, the relaxation oscillation occurs, i.e., kinetic energy slowly decays
periodically after its rapid increasing.

Simitev and Busse [19] showed that, when the Prandtl number is relatively
small, the spiralling columnar convection emerging in rapidly rotating cases
becomes unstable at a certain large Rayleigh number, and found that the
amplitude vacillations, shape vacillations and the chaotic behaviours occur
when the Rayleigh number is further increased. On the other hand, when the
Prandtl number becomes small, the equatorially attached convection pattern
emerging as a critical mode becomes modulate but keeps still concentrated
near the outer sphere at a larger Rayleigh number. As the Rayleigh number is
further increased, the equatorially attached eddies spread into interior region
and are detached in some cases.

Chossat [36] mathematically investigated a bifurcation point of conduc-
tive rest state (basic state) using asymptotic analyses by expanding the gov-
erning equations both with the Rayleigh number and the rotation rate. He
showed that, when the rotation rate is small but positive and the ratio of
the inner and outer radii is 0.3, the degeneracy of solution space can be re-
solved and an axisymmetric solution bifurcates. This bifurcation is slightly
transcritical. He also showed the conditions that the stable region of this
bifurcated solution exists 4 . However, due to limit of the perturbation anal-
yses, the behaviour and stable region of the bifurcated solutions could not
be known.

In the next section we summarize our previous work, Kimura et al. [2],
and show a bifurcation diagram of finite-amplitude convective solutions.

1.2 Summary of Kimura et al. (2011)

In our previous work [2], we obtained the bifurcation diagram of the finite-
amplitude traveling wave solutions with the Newton method in supercritical
and moderately rotating cases, because the convective solutions can be re-
solved with relatively low spatial degree of freedom (Fig. 1.1). We chose the
boundary condition as impermeable, no-slip and isothermal on both spheres.
The ratio of the inner and outer radii of the shell and the Prandtl number are
fixed to 0.4 and 1 respectively, while the Taylor number is varied from 522 to
5002 and the Rayleigh number is from about 1500 to 10000. In this parameter
region, the critical azimuthal wavenumber is always 4. The finite-amplitude

4Chossat [36] also showed that, when a spherical shell do not rotate, the bifurcation
occurs supercritically but the solution space keeps degenerated. He showed the conditions
that the stable region of this supercritically bifurcated solution exists.
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Figure 1.1: A bifurcation diagram of the stable TW4s, which is shown in Fig.
4 of Kimura et al. [2]. The propagating direction of the solution is shown by
a blue circle (retrograde) and a red triangle (prograde). The lower solid curve
shows the marginal stability of the stationary (conductive) solution, where
the blue curve (τ < 340) shows that the propagating direction is retrograde,
and the red curve (τ ≥ 340) prograde. All circles and triangles mean that
the nonlinear solutions are stable. TW4s become unstable above the upper
black solid line. The propagating velocity vp vanishes on the dashed line. The
blue crosses mean that the nonlinear solutions propagating in the retrograde
direction are unstable.

traveling wave solutions, which have four-fold symmetry in the azimuthal
direction, bifurcate supercritically from the critical point. Hereafter we call
these traveling wave solutions TW4s.

Figure 1.1 shows the obtained bifurcation diagram, which indicates stable
TW4s and their propagating directions in τ − R parameter space, where τ
is the square root of the Taylor number and R is the Rayleigh number.
TW4s bifurcate supercritically from the conductive rest state at the critical
points and are stable in the region Rc ≤ R . 1.2 − 2Rc depending on the
rotation rate τ , where Rc is the critical Rayleigh number. TW4s propagate
in the retrograde direction for τ ≤ 330. On the other hand, in τ ≥ 340,
where the propagating direction of the critical modes becomes prograde,
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1.3 Motivation and summary of this thesis

the propagating direction of TW4s changes to retrograde as the Rayleigh
number is increased. These all the transitions of the propagating velocity
are continuous, and the associated transitions of the convection structures
are also continuous.

We also found that the transition of the propagating direction of TW4s
near the critical curve can be interpreted with the vortex stretching/shrinking
mechanism proposed by Takehiro [37]. On the other hand, we confirmed
quantitatively that the transition of the propagating direction of TW4s in
finite-amplitude region can be interpreted with the advection of the vortex
tube by the mean zonal flow, which is generated by the nonlinear effect of
thermal convection. The comprehensive studies in τ − R parameter space
by the Newton method made it possible to find this advection mechanism
through detailed comparison between different solutions in different param-
eters.

1.3 Motivation and summary of this thesis

Based on the results of Kimura et al. (2011) [2] shown in the previous section,
in this thesis, we consider effects of the rotation of the inner and outer spheres
on fundamental behaviour of convective solutions of this Boussinesq thermal
convection model. It is a more natural setup that both the spheres rotate
freely due to the torques operating on the surface of these spheres from the
fluid, because the spheres need not be co-rotating in the actual astronomical
bodies. For instance, it is discussed whether the Earth’s inner core differen-
tially rotates with respect to the mantle in this decade [38, 39, 40]. However,
most of the studies on thermal convection in rotating spherical shells per-
formed so far assume that the inner and outer spheres co-rotate. This is
possibly due to simplification of the configuration of the problem, although
some MHD dynamo models permit differential rotation of the inner sphere
[41, 42, 43, 44, 45]. Araki et al. [46] investigated the bifurcation structure
of the axisymmetric steady thermal convection patterns in a spherical shell
with the inner sphere differential rotation using the Newton method, but
they fixed the rotation rate of the inner sphere.

Therefore, in this thesis, we construct a model of Boussinesq thermal
convection in a rotating spherical shell allowing rotation of the inner and
outer spheres, and investigate fundamental behaviour of convective solutions
comparing with those in the co-rotating system.

In Chap. 2, we first evaluate torques on the inner and outer spheres
induced by thermal convection in a co-rotating system in order to assess to
what extent the convective motion changes the rotation rates of the spheres.

7



1 Introduction

We use stable traveling wave solutions TW4s which bifurcate at critical points
and propagate in the azimuthal direction (shown in Sec.1.2). We find that
the direction of the torque on the inner sphere is prograde when the rotation
rate is small, while it becomes retrograde when the rotation rate is large.
We also find that the torque on the inner sphere can be large enough to
change the angular velocity of the inner sphere significantly even in a period
of rotation. At the same time, we also examine generation mechanisms of
mean zonal flows excited by thermal convection using the numerical weakly
nonlinear analyses proposed by Takehiro and Hayashi [10, 47], since shear
stress of the mean zonal flows on the spheres induces the axial component of
the torques. Weakly nonlinear analyses show that the nonlinear term in the
energy equation is most effective to generate the global distribution of mean
zonal flows, however, the azimuthal component of the nonlinear term in the
Navier-Stokes equation becomes most important for generation of the torque
on the inner sphere when the rotation rate is large.

In Chap. 3, we develop a model of Boussinesq thermal convection al-
lowing the inner sphere rotation and investigate effects of the inner sphere
rotation on a bifurcation structure and convection patterns. We use the New-
ton method and numerical eigenvalue calculations, and obtain a bifurcation
diagram of the finite-amplitude traveling wave solutions TW4s, which bifur-
cate at critical points, have four-fold symmetry in the azimuthal direction
and propagate in the azimuthal direction. These traveling wave solutions are
stable in the region Rc ≤ R . 1.2 − 2Rc depending on the rotation rate,
where R and Rc are the Rayleigh number and the critical value, respectively.
The inner sphere rotates in the prograde direction due to the viscous torque
of the fluid when the rotation rate is small while it rotates in the retrograde
direction when the rotation rate is large. The stable region of these traveling
wave solution TW4s is quantitatively similar to that in the co-rotating sys-
tem, shown in Fig. 1.1. The structures of convective motions of these TW4
solutions, such as the radial component of velocity, are also quantitatively
similar to those in the co-rotating system, but amplitude of mean zonal flows
and propagating velocity of TW4s are effectively changed by the inner sphere
rotation. This tendency can be explained that the nonlinear effect is small
because the traveling wave solutions are stable only near the critical curve.

In Chap. 4, we extend the model of Boussinesq thermal convection to
allow rotation of both the inner and outer spheres. We perform numerical
time integrations in the range 4Rc . R . 5Rc at a moderately rotating case,
and investigate the difference of the convective solutions, especially focusing
on the emergence of the equatorially asymmetric convection patterns. In
this parameter region, the pattern of the finite-amplitude convective solu-
tion transits from equatorial symmetric one to equatorial asymmetric one

8



1.3 Motivation and summary of this thesis

as the Rayleigh number is increased. We find that the route of this tran-
sition in the system allowing rotation of both spheres is different from that
in the co-rotating system: QPS → QPA → CA in the co-rotating system
while QPS → CS → CA in the system allowing rotation of both spheres, as
the Rayleigh number is increased, where QPS is an equatorially symmetric
quasi-periodic solution, QPA an equatorially asymmetric quasi-periodic solu-
tion, CS an equatorially symmetric chaotic solution, and CA an equatorially
asymmetric chaotic solution. The transition route in the system where only
the inner sphere is permitted is exactly same as that in the system allowing
rotation of both the spheres. Therefore, we conclude that the inner sphere
rotation causes the different transition route from that in the co-rotating
system.
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Chapter 2

Torques on the inner and outer
spheres induced by the
Boussinesq thermal convection
in a rotating spherical shell 1

2.1 Introduction

There are many researches to investigate the Boussinesq thermal convection
in rotating spherical shells, however, most of the ones performed so far assume
that the inner and outer spheres co-rotate, that is, both spheres rotate with
the same angular velocity. It is a more natural setup that both the spheres
rotate freely due to the torques operating on the surface of these spheres
from the fluid, because the spheres need not be co-rotating in the actual
astronomical bodies. For instance, it is discussed whether the Earth’s inner
core differentially rotates with respect to the mantle in this decade [38, 39,
40]. Few researches on thermal convection have focused on the torques on
the rotating spheres, although some MHD dynamo models permit differential
rotation of the inner sphere [41, 42, 43, 44, 45].

Accordingly, in this chapter, we evaluate torques on the inner and outer
spheres induced by thermal convection in a rotating spherical shell in order
to assess to what extent the convective motion changes the rotation rates of
the spheres. At the same time, we also examine generation mechanisms of
mean zonal flows excited by thermal convection using the numerical weakly
nonlinear analyses proposed by Takehiro and Hayashi [10, 47], since shear
stress of the mean zonal flows on the spheres induces the axial component of

1Published in Kimura et al. (2012) [48].
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2 Torques on the inner and outer spheres induced by the Boussinesq
thermal convection in a rotating spherical shell

O

Figure 2.1: A schematic picture of the configuration of the Boussinesq ther-
mal convection problem in co-rotating spheres.

the torques.

For the analyses, we use the finite-amplitude nonlinear traveling wave so-
lutions investigated by Kimura et al [2], whose bifurcation structure is shown
in Fig. 1.1. These solutions are obtained systematically by the Newton
method at moderate rotation rates, and their stability and bifurcation dia-
gram is established successfully. Since the solutions have four-fold symmetry
in the azimuthal direction, we call them TW4s (Traveling Wave 4) hereafter.

In the following, the model, governing equations and numerical method
are described in Sec.2.2. In Sec.2.3, we evaluate the torques on the inner and
outer spheres induced by the stable TW4s and estimate the rate-of-change of
the angular velocity of the inner sphere. In Sec.2.4, we perform the weakly
nonlinear analyses numerically to investigate the generation mechanism of
the mean zonal flows and the axial torque operating on the inner sphere.
Conclusions and discussions are given in Sec.2.5.

2.2 Model and numerical method

Let us consider a Boussinesq fluid in a spherical shell whose radii of the inner
and outer spheres are rin and rout, respectively (Figure 2.1). Both spheres

12



2.2 Model and numerical method

are rotating with angular velocity Ω about the fixed unit vector k. Since
the fluid contains the uniform heat source H per unit mass, the temperature
distribution of the basic conductive state Ts(r) is

Ts(r) = −1

2
βr2 + T0, (2.1)

where β ≡ H/(3κCp), κ is the thermal diffusivity, Cp the specific heat capac-
ity, r the distance from the center of the spherical shell and T0 a constant.
We consider the self-gravitational field of homogeneous media whose density
is ρ, that is,

g = −γr, (2.2)

where γ ≡ 4πGρ/3 is a positive constant (G is the universal gravitational
constant) and r the position vector with respect to the center of the shell.

We choose the thickness of the spherical shell d ≡ rout − rin as the length
scale, the viscous dissipation time d2/ν as the time scale, and ν2/(γαd4) as
the temperature scale, where ν is the kinematic viscosity and α the thermal
expansion coefficient. The pressure is normalized with (ρν2)/d2. The non-
dimensional governing equations for the deviations from the conductive state
(rest state) in the rotating frame of reference moving with the spherical shell
are as follows:

∇ · u = 0, (2.3)

∂u

∂t
+ (u · ∇)u+ τk × u = −∇π +Θr +∇2u, (2.4)

P

(
∂Θ

∂t
+ (u · ∇)Θ

)
= Ru · r +∇2Θ, (2.5)

where u is the non-dimensional velocity, π the non-dimensional pressure and
Θ the non-dimensional temperature deviation from the basic state Ts(r). The
non-dimensional parameters in the above equations are

τ =
√
T =

2Ωd2

ν
, P =

ν

κ
, R =

αβγd6

νκ
, (2.6)

where T is the Taylor number, P the Prandtl number and R the Rayleigh
number.

Since the velocity field is solenoidal, it can be represented with the toroidal
and poloidal potentials w and v as follows:

u ≡ ∇× {∇× (rv)}+∇× (rw). (2.7)
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2 Torques on the inner and outer spheres induced by the Boussinesq
thermal convection in a rotating spherical shell

The governing equations for the potentials and Θ become[(
∆− ∂

∂t

)
L̂2 + τ(k × r) · ∇

]
w − τQ̂v

= r · [∇× ((u · ∇)u)] , (2.8)[(
∆− ∂

∂t

)
L̂2 + τ(k × r) · ∇

]
∆v + τQ̂w − L̂2Θ

= −r · [∇×∇× ((u · ∇)u)] , (2.9)

P

(
∂Θ

∂t
+ (u · ∇)Θ

)
= RL̂2v +∆Θ, (2.10)

where L̂2 and Q̂ are the operators defined as

L̂2 = − 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

]
, (2.11)

Q̂ ≡ k · ∇ − 1

2

[
L̂2(k · ∇) + (k · ∇)L̂2

]
. (2.12)

Here, θ is the colatitude (zenith) and φ is the longitude (azimuth) with
respect to the rotation axis. These governing equations are equivalent to
those of Simitev and Busse [19] with Re = 0.

We apply impermeable, no-slip, and fixed temperature conditions at the
inner and outer spheres.

u = Θ = 0, at r =
η

1− η
,

1

1− η
, (2.13)

where η = rin/rout, is the ratio of the inner and outer radii of the shell. The
boundary conditions for potentials are as follows:

v =
∂v

∂r
= w = 0, at r =

η

1− η
,

1

1− η
. (2.14)

We will fix the values of η and P as the standard value η = 0.4 and P = 1,
while the rotation rate is varied in the range of 52 ≤ τ ≤ 500.

The Galerkin-spectral method is applied to the toroidal and poloidal po-
tentials and the temperature disturbance. They are expanded with the spher-
ical harmonics in the horizontal (azimuthal and zenith) directions, and with
the combinations of Chebyshev polynomials which satisfy the boundary con-
ditions in the radial direction. The truncation wavenumber of spherical har-
monics L and the maximum degree of the Chebyshev polynomials N are both
fixed to 16, while (N,L) = (16, 21) or (21, 16) are used in some calculations
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2.3 Torques operating on the inner sphere and its rotation

to spot-check the results and the accuracy is confirmed to be less than 0.5%.
The nonlinear terms are evaluated in the physical space and are converted
back into the spectral space (the spectral transform method). The numbers of
the grid points on the physical space are fixed to (Nr, Nθ, Nφ) = (65, 32, 64) in
order to eliminate the aliasing errors, where Nr, Nθ and Nφ are the number of
grid points in the radial, zenith (colatitudinal) and azimuthal (longitudinal)
directions, respectively. Note that the traveling wave solution propagates
in the azimuthal direction, so denoting the propagating velocity is vp, this
solution becomes the stationary solution in the frame of reference moving
with the azimuthal velocity vp with respect to the rotating frame. Thus we
transform the time t and longitude φ into T ≡ t and Φ ≡ φ − vpt, and seek
the stationary solution in this moving frame of reference. However, one ar-
bitrariness corresponding to the arbitrariness of the origin of the longitude
Φ remains, so we lock the phase of the complex spectral coefficient whose
absolute value is maximum among all the spectral coefficients in the crit-
ical state (actually we lock the phase as 0 [rad]). The detailed numerical
method is described in the Appendices. Torques operating on the spheres
are calculated for each stable TW4s, and the rate-of-change of angular ve-
locity of the inner sphere is evaluated. After that, weakly nonlinear analyses
are performed by using TW4s on the critical points to assess the generation
mechanism of mean zonal flows and the axial torque on the inner sphere.

2.3 Torques operating on the inner sphere

and its rotation

When 52 ≤ τ ≤ 500, TW4s bifurcate supercritically at the critical points
and become unstable when the Rayleigh number is increased up to about
1.2 to 2 times the critical Rayleigh numbers. The bifurcation diagram of
TW4s is shown in Fig. 1.1. Note that TW4s induce only the axial compo-
nent of the torque on the inner sphere because of their equatorial symmetry.
Moreover, since TW4s are stationary waves in the frame of reference moving
with their propagation speed, the summation of the torques on the inner and
outer spheres is equivalent to zero due to the conservation of the angular
momentum. Therefore, we evaluate only the axial component of torque Nin

operating on the inner sphere, which is calculated as,

Nin = 2πr3in

∫ π

0

[
∂ 〈uφ〉
∂r

]
r=rin

sin2 θdθ, (2.15)
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2 Torques on the inner and outer spheres induced by the Boussinesq
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-20

-10

 0

 10

 20

 30

 40

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

The Rayleigh number R

A
x

ia
l 

to
rq

u
es

 o
n

 t
h

e 
in

n
er

 s
p

h
er

e

τ=52

100

200

300

400
500

Figure 2.2: The axial component of torques operating on the inner sphere
Nin induced by the stable TW4s for each τ .

where 〈f〉(r, θ) means the azimuthal (longitudinal or zonal) average defined
as

〈f〉(r, θ) ≡ 1

2π

∫ 2π

0

f(r, θ, φ)dφ. (2.16)

Figure 2.2 shows Nin for each τ induced by the stable TW4s. This figure
shows that when τ = 52 and 100, Nin is positive, that is, the inner sphere
tends to be rotated in the prograde direction, and is strengthened as the
Rayleigh number is increased. However, when τ is increased to 200, Nin

almost vanishes and the torque becomes quite weak. As τ is further increased,
Nin becomes negative, that is, the inner sphere tends to be rotated in the
retrograde direction, and is strengthened again as the Rayleigh number is
increased.

Figure 2.3 shows the distributions of mean zonal flow 〈uφ〉 of the stable
TW4s at slightly supercritical states R = R1 and below the marginal stability
states R = R2. The detailed parameters are shown in Table 2.1. Note that
since these mean zonal flows are generated by the nonlinear effects of TW4s,
the torques at the critical states (R = Rc) are equivalently zero as seen in
Fig. 2.2. From Fig. 2.3, we can find that the distributions of mean zonal
flow at R = R1 and R = R2 are quite similar except for the difference of
their amplitudes. When the rotation rate is small as τ = 52 and 100 (Figs.
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2.3 Torques operating on the inner sphere and its rotation

τ Rc R1 R2 RTW4
c

52 1612.5026 (a) 1636.2 (A) 2100 2133
100 2070.3920 (b) 2100.8 (B) 3600 3675
200 3224.8090 (c) 3262.3 (C) 3800 3902
300 4324.7513 (d) 4373.3 (D) 5000 5044
400 5355.1777 (e) 5413.6 (E) 6900 6924
500 6386.6056 (f) 6453.9 (F) 9200 9590∗

Table 2.1: The values of the Rayleigh number of the panels in Fig. 2.3. Rc

is the critical Rayleigh numbers, RTW4
c is the marginal stability Rayleigh

numbers of TW4s, R1 is the typical Rayleigh numbers near the critical
states (R1 ' 1.01Rc), and R2 is typical Rayleigh numbers slightly below
the marginal states. Values labeled with asterisk appearing in cases τ = 500
are calculated with the truncation wavenumbers (N,L) = (21, 28). Rc and
RTW4

c have already been shown in Table 3 of Kimura et al. (2011) [2], but
these values on this table are more accurate (nearly 0.1% or less).

2.3 (a), (b), (A) and (B)), the prograde zonal flows appear near the whole
surface of the inner sphere. As the rotation rate is increased as τ = 200
and 300, however, the strong retrograde zonal flows appear near the outer
sphere around the equator and move inward (Figs. 2.3 (c), (d), (C) and (D)).
Finally, the strong retrograde zonal flows attach to the equatorial region of
the inner sphere (Figs. 2.3 (e), (f), (E) and (F)). Such transition of the
distribution of mean zonal flows contributes to the transition of the direction
of the torques on the inner sphere with increasing the rotation rate.

In order to examine the significance of the axial torques on the inner
sphere evaluated above, let us calculate the rate-of-change of angular velocity
of the inner sphere in a period of rotation. For this purpose, we have to define
the inertial moment of the inner sphere. Here, we assume that density of the
inner sphere is homogeneous and equivalent to that of fluid in the shell ρ.
Then, the non-dimensional inertial moment of the inner sphere Iin can be
calculated as

Iin =
8

15
π

(
η

1− η

)5

' 0.22, (2.17)

where we choose ρd5 as the scale of the inertial moment. Then, if the order of
magnitude of the torque on the inner sphere is assumed to remain the same
when the inner sphere rotates against the outer sphere, the rate-of-change of
angular velocity of the inner sphere in a period of rotation is estimated as
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2 Torques on the inner and outer spheres induced by the Boussinesq
thermal convection in a rotating spherical shell

(A) (B) (C) (D) (E) (F)

(a) (b) (c) (d) (f)(e)

Figure 2.3: Distributions of mean zonal flow of the stable TW4s at each value
of τ and the Rayleigh number shown in Table 2.1. The upper six panels show
the zonal flows at slightly supercritical states R = R1 ' 1.01Rc, while the
lower six panels show zonal flows slightly below the marginally stable states
R = R2.

follows:

∆Ωin

Ω
∼

(
Nin

Iin
· 2π

τ/2

)/
τ

2
' 0.11

(
Nin

10

)( τ

100

)−2

. (2.18)

Table 2.2 shows the maximum amplitude of the torque on the inner sphere
|Nin|max and the maximum rate-of-change of the angular velocity of the inner
sphere |∆Ωin/Ω|max induced by the stable TW4s for each τ . When the rota-
tion rate is small as τ = 52 and 100, the rate-of-change of the angular velocity
of the inner sphere becomes several tens percent. This means the torque on

τ |Nin|max |∆Ωin/Ω|max

52 +19.5 82%
100 +33.8 39%
200 +0.64 0.18%
300 −1.42 0.18%
400 −6.08 0.43%
500 −18.2 0.83%

Table 2.2: The maximum amplitudes of the torque on the inner sphere
|Nin|max and the maximum rate-of-change of the angular velocity of the inner
sphere |∆Ωin/Ω|max induced by the stable TW4s for each τ .
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2.4 Generation mechanism of mean zonal flows and torques

the inner sphere is sufficiently large enough to rotate the inner sphere. When
the rotation rate is large as τ = 400 and 500, the rate-of-change is less than 1
percent. However, it can be effective for changing the angular velocity of the
inner sphere after 1 non-dimensional time (the viscous diffusion time scale),
because both spheres rotate τ/(4π) times in 1 non-dimensional time.

2.4 Generation mechanism of mean zonal flows

and torques

2.4.1 Results of weakly nonlinear analyses

In this section, we investigate the generation mechanism of mean zonal flows
and the axial torques on the inner sphere through the numerical weakly non-
linear analyses using the critical modes [10, 47]. It is interesting to examine
the mean zonal flow generation mechanisms because their characteristics are
related to several aspects of phenomena in the system. As mentioned in
the previous section, they are directly related to the axial component of the
torque and determine its direction. Kimura et al. [2] shows that advection of
mean zonal flows presumably affects to the propagation direction of TW4s
when the rotation rate is large (τ ≥ 340).

Following the procedure of Takehiro and Hayashi [10, 47], we expand the
dependent variables u, T , π and the Rayleigh number R with the amplitude
ε around the critical state, that is,

u(r, t) = εu(1) + ε2u(2) + · · · , (2.19)

T (r, t) = Ts(r) + εΘ(1) + ε2Θ(2) + · · · , (2.20)

π(r, t) = πs(r) + επ(1) + ε2π(2) + · · · , (2.21)

R = Rc + εR(1) + ε2R(2) + · · · . (2.22)

The axial component of torque on the inner sphere Nin can also be expanded
as

Nin = εN
(1)
in + ε2N

(2)
in + · · · , (2.23)

where

N
(j)
in = 2πr3in

∫ π

0

∂
〈
u
(j)
φ

〉
∂r


r=rin

sin2 θdθ, (2.24)
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2 Torques on the inner and outer spheres induced by the Boussinesq
thermal convection in a rotating spherical shell

here j is an any positive integer. First, we obtain the critical Rayleigh num-
bers and critical modes from the O(ε) equations of the governing equations
(2.3) –(2.5), that is, the linearized equations around the conductive state.
Assuming the solution of the form as eσt and solving the eigenvalue prob-
lem with respect to the growth rate σ repeatedly, we can obtain the critical
Rayleigh numbers and critical modes. Note that in the parameter ranges
of our calculations (η = 0.4, P = 1 and 52 ≤ τ ≤ 860), the critical az-

imuthal wavenumber mc is 4, not zero. Therefore
〈
u
(1)
φ

〉
vanishes due to

sinusoidal oscillation of u
(1)
φ in the azimuthal direction. Then N

(1)
in must be

zero. Secondly, we find the second order zonal mean steady solutions induced
by the critical modes by solving O(ε2) equations. Taking the zonal average
〈·〉 and dropping the time derivative term in the O(ε2) equations, we obtain
the following equations:

1

r2
∂

∂r

(
r2

〈
u(2)r

〉)
+

1

r sin θ

∂

∂θ

(
sin θ

〈
u
(2)
θ

〉)
= 0,

(2.25)〈[
(u(1) · ∇)u(1)

]
r

〉
− τ

〈
u
(2)
φ

〉
sin θ = −

∂
〈
π(2)

〉
∂r

+
〈
Θ(2)

〉
r +

[
∇2

〈
u(2)

〉]
r
,

(2.26)〈[
(u(1) · ∇)u(1)

]
θ

〉
− τ

〈
u
(2)
φ

〉
cos θ = −1

r

∂
〈
π(2)

〉
∂θ

+
[
∇2

〈
u(2)

〉]
θ
,

(2.27)〈[
(u(1) · ∇)u(1)

]
φ

〉
+ τ

(〈
u
(2)
θ

〉
cos θ +

〈
u(2)r

〉
sin θ

)
=

[
∇2

〈
u(2)

〉]
φ
,

(2.28)

P
〈
(u(1) · ∇)Θ(1)

〉
= Rc r

〈
u(2)r

〉
+∇2

〈
Θ(2)

〉
,

(2.29)

where (r, θ, φ) mean the radius, zenith (colatitude) and azimuth (longitude)
of the spherical coordinates. The above equations can be rewritten as

0 = L̂
〈
x(2)

〉
+
〈
n(x(1))

〉
, (2.30)

where x(1) and x(2) are the vectors of dependent variables of O(ε) and O(ε2)
respectively, L̂ a linear operator and n a nonlinear term. Since we have
already obtained the vector x(1) as the critical mode, we can obtain the
vector

〈
x(2)

〉
by solving the above linear equations.

Four nonlinear terms in eqs. (2.26) –(2.29) can be classified into three
groups as follows:
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2.4 Generation mechanism of mean zonal flows and torques

(i) the azimuthal (longitudinal) component of the nonlinear term in the
Navier-Stokes equation (the nonlinear term in eq. (2.28)),

(ii) the zenith (colatitudinal) and radial components of the nonlinear term
of the Navier-Stokes equation (the nonlinear terms in eqs. (2.26) and
(2.27)),

(iii) the nonlinear term in the energy equation (2.29).

Each nonlinear term generates the mean zonal flow through the following
mechanism:

(i): the meridional transfer of the angular momentum by the Reynolds
stress directly generates the mean zonal flow,

(ii): the Coriolis force against the mean meridional flow induced by the
Reynolds stress generates the mean zonal flow,

(iii): the Coriolis force against the mean meridional flow induced by the
zenith (colatitudinal) gradient of the secondary mean temperature dis-
turbance, which is caused by the convective heat transfer, generates
the mean zonal flow.

Considering the conservation of the angular momentum, the mechanism (i)
can be understood more easily. Multiplying r sin θ to eq. (2.28) and taking
the zonal average, we can obtain

∇ ·
[τ
2
r2 sin2 θ

〈
u(2)

〉
+ r sin θ

〈
u
(1)
φ u(1)

〉]
= r sin θ

〈[
∇2u(2)

]
φ

〉
. (2.31)

The first term in the left hand side means the advection flux of the absolute
angular momentum due to the rotation of the shell and the second term
means the Reynolds stress induced by the critical mode. The mechanism (iii)
can be understood more easily through the curl of eqs. (2.26) and (2.27),
that is,

−τ(k · ∇)
〈
u
(2)
φ

〉
= −

∂
〈
Θ(2)

〉
∂θ

+
[
∇×∇2

〈
u(2)

〉]
φ
. (2.32)

Here, we have neglected the nonlinear terms in eqs. (2.26) and (2.27). When
the rotation rate is small, mean meridional flow is induced by the latitudinal
gradient of the secondary mean temperature disturbance through the viscous
term in the above equation (2.32), and the mean zonal flow is generated
due to the Coriolis force against this mean meridional flow. On the other
hand, when the rotation rate is large enough, the latitudinal gradient of
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τ=52 500 800

52 500 800

500 80052

Figure 2.4: The patterns of the critical modes at τ = 52, 500 and 800. The
upper three panels show the distributions of the radial velocity u

(1)
r in the

equatorial plane (θ = 90◦), the middle three panels show the distributions
of the temperature disturbance Θ(1) in the equatorial plane, while the lower
three panels show the axial component of vorticity ωz = k · (∇× u(1)) in a
meridional plane.

the secondary mean temperature disturbance generates the mean zonal flow
directly through thermal wind balance, that is, the balance between the term
in the left hand side and the first term in the right hand side in the equation

(2.32). By comparing the amplitudes of the mean zonal flow
〈
u
(2)
φ

〉
generated

by these three groups of the nonlinear terms, we can quantitatively diagnose
the principal nonlinear effect on the generation of the mean zonal flow.

Figure 2.4 shows the distributions of the radial velocity in the equato-
rial plane and the axial component of vorticity in a meridional plane of the
critical modes at τ = 52, 500 and 800. We find that even τ = 500 the convec-
tion cell already becomes the spiralling columnar shape, which is a typical
characteristic of the convection cell in rapidly rotating cases [13].
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Figure 2.5: The results of the weakly nonlinear analyses at τ = 500. (a) The

mean zonal flow
〈
u
(2)
φ

〉
generated by the all nonlinear terms (i), (ii) and (iii).

(b) The mean zonal flow generated only by the nonlinear term (i). (c) The
mean zonal flow generated only by the nonlinear terms (ii). (d) The mean
zonal flow generated only by the nonlinear term (iii). (e) The latitudinal
(zenith) distributions of the mean zonal flows at r = (rin + rout)/2 generated
by the all nonlinear terms and by each group of the nonlinear terms.

Figure 2.5 shows the mean zonal flow
〈
u
(2)
φ

〉
generated by all the nonlinear

terms (Fig. 2.5(a)), and that only by one group of the nonlinear terms (Figs.
2.5 (b), (c) and (d)). Comparison of the latitudinal (zenith) distributions
of the mean zonal flow at r = (rin + rout)/2 is shown in (e). From Fig.
2.5(e), we find that the amplitude of the mean zonal flow generated by the
nonlinear term (iii) is several times larger than those generated by (i) and (ii)
around the equator. This means that the nonlinear effect (iii) is the principal
generation mechanism of the strong retrograde zonal flow in the middle of
the shell around the equator when τ = 500.

Figures 2.6 and 2.7 compare the meridional distribution of the mean zonal
flows generated by all the nonlinear terms and by each group of nonlinear
terms at τ = 52 and 800, respectively. From these figures, we can find that
the amplitude of the mean zonal flow generated by the nonlinear effect (iii)
is larger than those generated by (i) and (ii) at both τ = 52 and 800. This
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Figure 2.6: Same as Fig. 2.5 but for τ = 52. Note that (e) shows the
latitudinal (zenith) distribution at r = rin + d/4 = η/(1− η) + 0.25.

tendency can be observed at τ = 860. Therefore, we can conclude that the
nonlinear effect (iii) is the principal mechanism on generation of the mean
zonal flow in 52 ≤ τ ≤ 860.

Here we concretely discuss the geometric structures of the zonal flows,
which are shown in Figs. 2.5, 2.6 and 2.7, through the most important mech-
anism (iii) in terms of those of u(1) and Θ(1), shown in Fig. 2.4, especially at
τ = 500.

The geometric structures of the zonal flows, shown in Figs. 2.5, 2.6 and
2.7 can be explained more precisely in terms of those of u(1), Θ(1) and

〈
Θ(2)

〉
as below. Briefly speaking, the latitudinal gradient of

〈
Θ(2)

〉
induced by u(1)

and Θ(1) generates mean zonal flows through the thermal wind balance or
the Coriolis force acting on the secondary mean meridional circulations.

Figure 2.8 shows the results of the weakly nonlinear analyses at τ = 52,
500 and 800. The upper three panels show the mean zonal values of the non-
linear term of the energy equation (iii) P

〈
(u(1) · ∇)Θ(1)

〉
. The middle three

panels show the mean meridional circulation
〈
u
(2)
r

〉
and

〈
u
(2)
θ

〉
generated by

the nonlinear term (iii). The lower three panels show the mean zonal flows
generated by the nonlinear term (iii).

First, the secondary mean temperature disturbance
〈
Θ(2)

〉
is induced by

the thermal flux convergence−
〈
(u(1) · ∇)Θ(1)

〉
= −

〈
∇ · (u(1)Θ(1))

〉
, through
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Figure 2.7: Same as Fig. 2.5 but for τ = 800.

the energy equation (2.29). The thermal flux diverges near the inner sphere
on the equatorial plane while it converges near the outer sphere because
u
(1)
r Θ(1) is positive for almost all region on the equatorial plane and is max-

imum in the middle of the spherical shell (Fig. 2.4). This flux divergence,
balancing mainly with the diffusion term ∇2

〈
Θ(2)

〉
, induces

〈
Θ(2)

〉
. Actu-

ally, as is observed in Fig. 2.8, each pattern of the thermal flux divergence
is similar to that of

〈
Θ(2)

〉
except for its sign.

Second, the mean meridional circulation
(〈
u
(2)
r

〉
,
〈
u
(2)
θ

〉)
is driven by the

latitudinal gradient of the secondary temperature disturbance ∂
〈
Θ(2)

〉
/∂θ,

through the azimuthal component of the curl of Navier-Stokes equation
(2.32). When τ = 500 and 800, the mean zonal flow pattern can be ex-
plained by the thermal wind balance,

−τ(k · ∇)
〈
u
(2)
φ

〉
= −

∂
〈
Θ(2)

〉
∂θ

,

since the rotation rate of the system is sufficiently large so that the Coriolis
term surmounts over the viscous term. For example, ∂

〈
Θ(2)

〉
/∂θ in the

outer layer produces positive shear in the direction of the rotating axis (k ·
∇)

〈
u
(2)
φ

〉
, causing that strong retrograde zonal flow around the equator and

prograde zonal flow near the outer sphere in the mid-latitudes. On the other
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τ All (i) (ii) (iii)
52 +1 +0.01 +0.37 +0.62
500 −1 −4.20 −1.16 +4.36
800 −1 −2.63 −0.67 +2.30

Table 2.3: The ratio of contribution of each group of nonlinear terms to the
axial component of the torque on the inner sphere. These are normalized
with the amplitude of the total torque (described as “All” in this table).
Note that the sign of the values denotes the direction of the torque.

hand, when τ = 52, the mean zonal flow is generated by the Coriolis force
acting on the mean meridional circulations ∇×∇2

〈
u(2)

〉
, which is induced

through the balance

0 = −
∂
〈
Θ(2)

〉
∂θ

+
[
∇×∇2

〈
u(2)

〉]
φ
.

The mean meridional circulations in the polar region is prominent in the left
middle panel in Fig. 2.8, which is caused by the temperature differences
between the warm polar regions and cold mid-latitude regions in the inner
half layer. The Coriolis force acts on these mean meridional circulations
and induces the mean zonal flows in the polar regions. The strong poleward
flows along the inner sphere generate the strong prograde mean zonal flow
in the inner parts of the polar regions, while inverse flows along the outer
sphere generate the retrograde mean zonal flow in the outer parts of the polar
regions.

Figure 2.9 shows the axial component of torque operating on the inner
sphere generated by each group of nonlinear terms at τ = 52, 500 and 800,
respectively. Table 2.3 shows the ratio of contribution of each group of the
nonlinear terms to the axial component of the torque on the inner sphere.
We find that when τ = 52, contribution of the nonlinear term (iii) almost
determines the distribution of the axial torque. However, when τ = 500 and
800, contribution of the nonlinear term (i) is most effective, and determines
the direction of the axial torque.

2.4.2 The validity of the weakly nonlinear analyses at
supercritical regime

In this subsection we confirm the validity of the weakly nonlinear analyses
at supercritical regime where the TW4 solutions are stable. We determine
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2.4 Generation mechanism of mean zonal flows and torques

the value of ε from the amplitude of m = 4 components of the TW4 solution
and the critical mode, and compare uTW4

φ and ε2u
(2)
φ .

Figure 2.10 compares the zonal flow profiles of TW4 with those obtained
by the weakly nonlinear analyses at τ = 500, R = 6453.9(' 1.01Rc) and
τ = 500, R = 9200(' 1.44Rc). It is shown that these profiles are in
good agreement both in the case of R = 6453.9 and R = 9200. The dif-
ference of the minimum values of zonal flows is about 1.5% at R = 6453.9
(min(uTW4

φ ) = −5.03× 10−2 while min(ε2u
(2)
φ ) = −4.95× 10−2) and is about

17% at R = 9200 (min(uTW4
φ ) = −2.16 while min(ε2u

(2)
φ ) = −2.52). There-

fore, the perturbation solution is valid even in the finite amplitude supercrit-
ical regime.

We also evaluate the torques on inner sphere by comparing the weakly
nonlinear analyses ε2N

(2)
in with the torques of the TW4sNTW4

in . When τ = 500

and R = 6453.9, NTW4
in = −9.78 × 10−2 and ε2N

(2)
in = −8.49 × 10−2. The

difference of these values is about 13%. When τ = 500 and R = 9200,
NTW4

in = −15.0 and ε2N
(2)
in = −4.33. The difference of these values is about

70%. The differences of the values of the torque calculated with the weakly
nonlinear analyses from those of TW4 are relatively large compared with the
difference of the minimum values of the mean zonal flow. This is due to
differences of the radial derivative of the mean zonal flow at the inner sphere
although the gross structures of mean zonal flows are sufficiently described
by the weakly nonlinear analysis (see Figs. 2.10 (c) and (f)).
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52 500 800

52 500 800

52 500 800

Figure 2.8: The results of the weakly nonlinear analyses at τ = 52, 500 and
800. The upper three panels show the nonlinear term of the energy equation
(iii) P

〈
(u(1) · ∇)Θ(1)

〉
. The middle three panels show the mean meridional

circulation
〈
u
(2)
r

〉
and

〈
u
(2)
θ

〉
(arrows) and zonal mean temperature

〈
Θ(2)

〉
(tone) generated by the nonlinear term (iii). The lower three panels show
the mean zonal flows generated by the nonlinear term (iii), which are same
as the panels (d) in Figs. 2.5, 2.6 and 2.7.
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Figure 2.9: The axial component of torque operating on the inner sphere
generated by each group of nonlinear terms at τ = 52 (left), 500 (middle)
and 800 (right).
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Figure 2.10: Comparison of the zonal flow profiles of TW4 with those ob-
tained by weakly nonlinear analyses. The upper and lower panels show
the cases with τ = 500, R = 6453.9(' 1.01Rc) and and τ = 500,
R = 9200(' 1.44Rc), respectively. (a) and (d):

〈
uTW4
φ

〉
. (b) and (e):

ε2
〈
u
(2)
φ

〉
. (c) and (f): Comparison of zonal flow profiles at the equator.

Blue solid and red dashed curves denote
〈
uTW4
φ

〉
and ε2

〈
u
(2)
φ

〉
, respectively.

(a) and (d) are same as (f) and (F) in Fig. 2.3, respectively.
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2.5 Conclusion and discussion

We have investigated the directions and amplitudes of torques on the inner
and outer spheres induced by the stable finite-amplitude traveling wave so-
lutions (TW4s) which bifurcate supercritically at the critical points under
the impermeable, no-slip and fixed-temperature boundary conditions for the
ratio of inner and outer radii of the shell η = 0.4 and the Prandtl number
P = 1. Due to the equatorial symmetry of TW4 patterns, only the axial
component of torques is induced. Moreover, since TW4 is a stationary solu-
tion in the frame of reference moving with the propagating velocity of TW4,
summation of torques on the inner and outer spheres vanishes due to the con-
servation of angular momentum. Then the axial torque on the outer sphere
has the same amplitude as that on the inner sphere, but has the opposite
signature.

When the rotation rate is small as τ = 52 and 100, the axial torque tends
to rotate the inner sphere in the prograde direction, and stable TW4s can
generate so strong axial torque that can change the angular velocity of the
inner sphere significantly even in a period of rotation. When the rotation rate
is increased as τ ' 200, the axial torque induced by stable TW4s becomes
very weak even increasing the Rayleigh number. However, as the rotation
rate is further increased, the axial torque tends to rotate the inner sphere
in the retrograde direction, and its amplitude is large enough to change the
angular velocity of the inner sphere significantly after the viscous diffusion
time scale. The transition of the direction of torque on the inner sphere is
caused by the transition of the structure of the mean zonal flows of TW4s.

In order to find the generation mechanism of the mean zonal flows, the
weakly nonlinear analyses are performed. By splitting the nonlinear terms
into three groups (i), (ii) and (iii) defined in Sec. 2.4, calculating the sec-
ondary mean zonal flow induced by each nonlinear effect, the principal gen-
eration mechanism of mean zonal flows is determined quantitatively. It is
revealed that the nonlinear term of the energy equation P

〈(
u(1) · ∇

)
Θ(1)

〉
(iii) most effectively contributes to the gross distribution of mean zonal flows
compared to the other nonlinear terms (i) and (ii) when 52 ≤ τ ≤ 860 where
the critical azimuthal wavenumber mc = 4. Especially, contribution of the
nonlinear term (iii) to the strong retrograde zonal flow at the middle on the
equatorial plane in moderately rotating cases (τ ≥ 300) is several times larger
than the other nonlinear terms (i) and (ii).

However, relative strength of contributions of these three groups of non-
linear terms to the axial torque on the inner sphere is somewhat different.
When the rotation rate is small, the nonlinear term (iii) contributes to the
prograde torque most effectively, while when the rotation rate is large, the
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2.5 Conclusion and discussion

nonlinear term (i) contributes to the retrograde torque most effectively. The
reason for this difference is that the axial torque on the inner sphere is not
related to the mean zonal flow distribution inside the shell, but is induced
by its shear stress on the inner sphere.

Takehiro and Hayashi [10, 47] show that when η = 0.4 and P = 1, the
most effective mechanism on generating the mean zonal flow on the outer
sphere is the nonlinear term (i), which seems to be inconsistent with our
study. This difference may be due to the dynamical boundary condition.
They use the free-slip boundary condition, while the no-slip boundary con-
dition is adopted in the present study. When the Prandtl number is O(1),
the relative contributions of these three nonlinear effects are comparable and
seem to be sensitive to the dynamical boundary conditions. At the moment,
we cannot find the reason why the dynamical nonlinear effects are weakened
when the no-slip boundary condition is adopted. Further detailed analyses
are needed to solve this problem.

We have confirmed the validity of the weakly nonlinear analyses in the
supercritical regime where the TW4 solutions are stable. Not only near the
critical point but also near the marginal point of TW4 solutions, the result of
weakly nonlinear analyses and TW4 solutions are in good agreement. There-
fore we conclude that not only in the slightly supercritical regime but also in
the finite amplitude supercritical regime the nonlinear term (iii) contributes
to generate the mean zonal flow more effectively than the other nonlinear
terms.
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Chapter 3

Stability and a bifurcation
diagram of Boussinesq thermal
convection in a moderately
rotating spherical shell allowing
rotation of the inner sphere

3.1 Introduction

In the previous chapter, we evaluated torques on the inner and outer spheres
induced by the stable traveling wave solutions TW4s, which bifurcate at
critical points and propagate in the azimuthal direction (shown in Sec.1.2),
in a co-rotating system. We found that the torque on the inner sphere can
be large enough to change the angular velocity of the inner sphere.

Then, in this chapter, based on the result of Kimura et al.(2011) [2],
we investigate effects of the inner sphere rotation on the bifurcation struc-
ture and the convection patterns. Almost previous studies of the Boussinesq
thermal convection in rotating spheres and spherical shells assume the inner
and outer spheres co-rotate, possibly due to simplification of the configura-
tion of the problem. Araki et al.[46] investigated the bifurcation structure
of the axisymmetric steady thermal convection patterns in a spherical shell
with the inner sphere differential rotation using the Newton method, how-
ever, they fixed the rotation rate of inner sphere. There are some magneto-
hydrodynamic (MHD) dynamo models which permit the axial differential
rotation of the inner sphere [41, 42, 43, 44, 45], but bifurcation structure in
the MHD system has not been studied yet.
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3 Stability and a bifurcation diagram of Boussinesq thermal convection in
a moderately rotating spherical shell allowing rotation of the inner sphere

O

Figure 3.1: A schematic picture of the configuration of the Boussinesq ther-
mal convection problem allowing the rotation of the inner sphere.

The model, governing equations and numerical methods are described in
Sec. 3.2. In Sec. 3.3, we show the bifurcation diagram of the nonlinear
traveling wave solutions which bifurcate at the critical points under the as-
sumption of freely rotating inner sphere. The structures of these convective
motions and mean zonal flow patterns are compared with those in the co-
rotating system where both the inner and outer spheres rotate with the same
angular velocity. The conclusions and discussions are described in Sec. 3.4.

3.2 Model and numerical method

Let us consider a Boussinesq fluid in a spherical shell whose radii of the
inner and outer spheres are rin and rout, respectively, shown in Fig. 3.1.
This system is same as that in Sec. 2.2 except for the inner sphere rotation.
The inner sphere is rotating with Ω̃in in the rotating frame of reference with
constant angular velocity Ωk. This means that the inner sphere is rotating
with Ω̃in + Ωk in the inertial frame of reference.

We choose the same scales introduced in Sec. 2.2. The inertial moment
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3.2 Model and numerical method

of the inner sphere is normalized with ρd5. The non-dimensional governing
equations for the deviations from the state of rest in the rotating frame of
reference moving with the constant angular velocity Ωk are as follows:

∇ ·U = 0, (3.1)

∂U

∂t
+ (U · ∇)U + τk ×U = −∇π +Θr +∆U , (3.2)

P

(
∂Θ

∂t
+ (U · ∇)Θ

)
= R U · r +∇2Θ, (3.3)

where U is the non-dimensional velocity and Θ is the non-dimensional tem-
perature deviation from the basic state Ts(r) (2.1). The equation of motion
of the inner sphere is

Iin
dΩ̃in

dt
= N in(U ), (3.4)

where Iin is the non-dimensional inertial moment of the inner sphere and
N in is the non-dimensional torque operating the inner sphere. The axial
component of this torque k ·N in = Nin,z can be written as

Nin,z = 2πr3in

∫ π

0

[
∂ 〈Uφ〉
∂r

− 〈Uφ〉
r

]
r=rin

sin2 θdθ, (3.5)

where Uφ is the azimuthal component of velocity and 〈f〉(r, θ) means the
azimuthal (longitudinal or zonal) average defined as

〈f〉(r, θ) ≡ 1

2π

∫ 2π

0

f(r, θ, φ)dφ.

Here we assume the centers of both spheres always keep the same position.
The non-dimensional parameters in the equations are,

τ =
√
T =

2Ωd2

ν
, P =

ν

κ
, R =

αβγd6

νκ
, Iin =

I∗in
ρd5

, (3.6)

where T is the Taylor number, P the Prandtl number, R the Rayleigh num-
ber, I∗in the dimensional inertial moment of the inner sphere.

We choose the boundary condition of the velocity as no-slip and imper-
meable on both spheres, and the temperature disturbance is fixed to zero at
the inner and outer spheres:

U (r = rin, θ, φ, t) = Ω̃in × (riner), U (r = rout, θ, φ, t) = 0, (3.7)

Θ(r = rin, θ, φ, t) = 0, Θ(r = rout, θ, φ, t) = 0, (3.8)
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where er is the unit vector in the radial direction.
Since the velocity field is solenoidal, it can be represented with the toroidal

and poloidal potentials w and v as follows:

U ≡ ∇× (r(w + wS)) +∇× {∇× (rv)}, (3.9)

where wS is defined as

wS(r, Ω̃in(t)) ≡ − r3in
r3out − r3in

(
r − r3out

r2

)(
er · Ω̃in(t)

)
. (3.10)

Note that the velocity field described by wS satisfies the above velocity
boundary condition (3.7) [49]. Then the boundary condition of v and w
are

v =
∂v

∂r
= w = 0 at r = rin, rout. (3.11)

The governing equations of these potentials and Θ become

∂

∂t

(
L̂2w

)
=

[
∇2L̂2 + τ

∂

∂φ

]
w − τQ̂v +

[(
∇2 − ∂

∂t

)
L̂2 + τ

∂

∂φ

]
wS

− r · [∇× ((U · ∇)U)] , (3.12)

∂

∂t

(
L̂2∇2v

)
=

[
∇2L̂2 + τ

∂

∂φ

]
∇2v + τQ̂w − L̂2Θ+ τQ̂wS

− r · [∇×∇× ((U · ∇)U)] , (3.13)

P
∂Θ

∂t
= RL̂2v +∇2Θ− P (U · ∇)Θ, (3.14)

where L̂2 and Q̂ are the operators defined as eqs.(2.11) and (2.12), respec-
tively.

We will fix the values of η and P as the standard value η = 0.4 and P = 1.
The inertial moment of the inner sphere is set to be Iin = 8π(η/(1−η))5/15 '
0.22, assuming that the density of the inner sphere is the same as that of
fluid. This assumption is consistent with the self-gravitational force (2.2).
We seek for the nonlinear traveling wave solutions bifurcating at the critical
point by the Newton method and examine their linear stability by solving
the eigenvalue problems in the range of 52 ≤ τ ≤ 500 under the governing
equations (3.12)–(3.14) and (3.4) with the boundary conditions (3.7) and
(3.8) ((3.11) for potentials). We use the Galerkin-spectral method, which is
shown in Sec. 2.2.

To obtain the nonlinear traveling wave solutions using the Newton method,
the truncation wavenumber of spherical harmonics L and the maximum de-
gree of the Chebyshev polynomials N are set to both fixed to 21 in the
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standard calculations, while larger (N,L) pairs are used in some calcula-
tions to spot-check the results. When the nonlinear solution is calculated
by the Newton method, the nonlinear terms are evaluated in the physical
space and are converted back into the spectral space (the spectral transform
method). The numbers of the grid points on the physical space are chosen
as (Nr, Nθ, Nφ) = (33, 32, 64) in order to eliminate the aliasing errors, where
Nr, Nθ and Nφ the number of grid points in the radial, zenith (colatitudinal)
and azimuthal (longitudinal) directions, respectively. The detailed numerical
methods are described in Appendices.

3.3 Results

We first consider critical convection with respect to the conductive rest state.
Both the spheres are assumed to co-rotate until the thermal convection oc-
curs. The linearized equations of the governing equations (3.12)–(3.14) and
(3.4) can be separated into those for each azimuthal wavenumber m. The
critical parameters and the critical modes with m > 0 in the system allow-
ing the inner sphere rotation are exactly same as those in the co-rotating
system, because the critical modes with m > 0 do not produce torque oper-
ating the inner sphere and then do not rotate the inner sphere differentially
against the outer sphere (discussed in Sec. 2.3). The freely-rotating inner
sphere condition does not affect the critical parameters and critical modes
with m > 0. Therefore, we only calculate the critical parameters and critical
modes with m = 0 in the system allowing the inner sphere rotation. In the
range of 0 ≤ τ ≤ 500, the results of numerical calculations show that all the
critical modes with m = 0 are equatorially anti-symmetric. Then they do
not produce torque operating the inner sphere and do not rotate the inner
sphere differentially. The critical parameters and critical modes with m = 0
are exactly same as those in the co-rotating system. Therefore, from the
result of our previous study [2], we conclude that the critical azimuthal (lon-
gitudinal) wavenumber mc is 3 in the range of 0 < τ ≤ 51 while mc = 4 in
the range of 52 ≤ τ ≤ 500 in the system allowing the inner sphere rotation.

The finite-amplitude nonlinear traveling wave solutions which have four-
fold symmetry in the azimuthal direction bifurcate at the critical points when
52 ≤ τ ≤ 500, and we call these solutions as TW4s (Traveling Wave 4). In
the following, we seek these TW4 solutions using the Newton method and
their linear stability is evaluated by solving eigenvalue problems in the sys-
tem allowing the inner sphere rotation. In contrast to the critical convection,
these finite-amplitude TW4 solutions accompany the differentially rotating
inner sphere. The finite-amplitude solutions in the co-rotating system pro-
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duce non-zero torque operating the inner sphere due to mean zonal flows
(discussed in Sec. 2.3), and these solution induce only the axial component
of torque because of the equatorial symmetry. When these solutions are al-
lowed to rotate the inner sphere freely, the inner sphere accelerates in the
direction of this torque until the steady rotation is established, while struc-
ture of the solutions are modified and the final convection pattern converges
to the TW4 solutions in the system allowing the inner sphere rotation. In
these TW4 solutions, the inner sphere rotates with e constant angular veloc-
ity k ·Ω̃in = Ω̃in,z against the outer sphere, and torques operating on both the
inner and outer sphere exactly vanish because of stationary characteristics
of the solutions.

3.3.1 Bifurcation diagram and inner sphere rotation

Figure 3.2 shows the stable region of the finite-amplitude TW4 solutions in
the system allowing the inner sphere rotation. In these solutions, the inner
sphere rotates against z-axis with the angular velocity k · Ω̃in = Ω̃in,z, which
are described as colors and sizes of circles and boxes, in τ−R parameter space.
Figure 3.3 shows the axial component of the angular velocity of the inner
sphere Ω̃in,z driven by the stable TW4 solutions for each τ . From Figure 3.2,
we found that TW4s bifurcate supercritically from the rest conductive state
at the critical points and they are stable in the region Rc ≤ R . 1.2− 2Rc,
depending on the rotation rate τ . It is also found that the stable region of
TW4s generally extends with increasing τ for τ & 250 and 52 ≤ τ . 100.
From Figures 3.2 and 3.3, it is found that the inner sphere rotates in the
prograde direction when the rotation rate is small (τ . 160). When τ is
increased (200 . τ . 300), the angular velocity of the inner sphere keeps
nearly zero even when the Rayleigh number is increased to the marginal
Rayleigh number. When τ is further increased (τ = 400 and 500), the inner
sphere rotates in the retrograde direction. The increasing rate of the inner
sphere rotation rate is relatively large in small τ cases compared with large
τ cases. Note that this tendency is consistent with that of torques operating
the inner sphere in the co-rotating system (Fig. 2.2).

Figure 3.4 shows the obtained bifurcation diagram, which indicates stable
TW4s and their propagating directions in τ−R parameter space. Comparing
this figure with the bifurcation diagram in the co-rotating system shown in
Figure 4 of Kimura et al.(2011), it is found that the stable region of TW4
solutions is qualitatively similar to that in the co-rotating system. Table 3.1
quantitatively compares the marginal Rayleigh numbers in the co-rotating
system with those in the system allowing the inner sphere rotation. We
found that in slowly rotating cases such as τ = 52 and 100, the inner sphere
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Figure 3.2: The stable region of the finite-amplitude TW4 solutions in the
system allowing the inner sphere rotation. In these solutions, the inner sphere
rotates against z-axis with the angular velocity k · Ω̃in = Ω̃in,z All the TW4
solutions are stable on the colored circles and boxes. The circles mean Ω̃in,z >
0 while the boxes Ω̃in,z < 0, and the size of the symbols mean the amplitudes
of Ω̃in,z. The upper black dashed line shows the marginal stability curve
of the TW4 solutions, that is, TW4 solutions become unstable above the
upper dashed line. The lower green solid line shows the critical curve of the
conductive rest state in the rotating frame of reference, and the rotation rate
of the inner sphere is absolutely zero on this line. The conductive rest state
is stable below the lower solid line.
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Figure 3.3: The axial component of the angular velocity of the inner sphere
Ω̃in,z induced by the stable TW4 solutions for each τ .

rotation stabilizes the TW4 solutions while that destabilizes TW4 solutions
in moderately rotating cases (τ = 400 and 500). However the ratio of the
change of the marginal Rayleigh number is only about 1% or less. Therefore,
we can conclude that the stable region of TW4 solutions is quantitatively
similar to that in the co-rotating system.

3.3.2 Structure of convective motion

Figure 3.5 shows the distributions of the radial component of the velocity
Ur on the equatorial plane and those of the axial component of the vorticity
ωz = k · (∇× U ) in a meridional cross section when the Rayleigh numbers
are slightly below the marginal Rayleigh numbers of TW4 solutions. Note
that all the TW4 solutions shown in Figure 3.5 propagate in the retrograde
direction, that is, the patterns in the upper 6 panels drift in the clockwise
direction. The propagating velocity of each panel is shown in Table 3.2. It
is found that, when the rotation rate is small such as τ = 52 and 100, the
convection patterns are circular on the equatorial plane (upper (i) and (ii)
in Figure 3.5) and the convection cells bend along the shell boundary (lower
(i) and (ii) in Figure 3.5). As the rotation rate is increased, the convection
patterns come to tilt in the prograde-outward direction (upper (v) and (vi) in
Figure 3.5) and the convection cells elongate in the direction of the rotation
axis of the outer sphere (lower (v) and (vi) in Figure 3.5). Comparing these
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Figure 3.4: A bifurcation diagram of the stable finite-amplitude TW4 so-
lutions in the system allowing the inner sphere rotation. The propagating
direction of the solution is shown by a blue circle (retrograde) and a red
triangle (prograde). The lower solid curve shows the marginal stability of
the stationary (conductive) solution. where the blue curve (τ < 340) shows
that the propagating direction of the critical solutions is retrograde, and the
red curve (τ ≥ 340) prograde. All circles and triangles mean that the TW4
solutions are stable. TW4s become unstable above the upper black solid line.
The propagating velocity vp vanishes on the dashed line. The blue crosses
mean that the TW4 solutions propagating in the retrograde direction are
unstable.
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3 Stability and a bifurcation diagram of Boussinesq thermal convection in
a moderately rotating spherical shell allowing rotation of the inner sphere

τ Rc RTW4
f RTW4

c

52 1612.5026 2162 2133 +1.4%
100 2070.3920 3695 3675 +0.5%
200 3224.8090 3900 3902 −0.0%
300 4324.7513 5040 5044 −0.0%
400 5355.1777 6914 6924 −0.1%
500 6386.6056 9540* 9590* −0.5%

Table 3.1: The critical Rayleigh number Rc, the marginal Rayleigh number
RTW4

c in the co-rotating system and the marginal Rayleigh number RTW4
f in

the system allowing the inner sphere rotation for each τ . The last column
shows (RTW4

f −RTW4
c )/RTW4

c . The error of each marginal Rayleigh number is
less than ±1 for τ ≤ 400 and ±10 for τ = 500. Values labeled with asterisk
appearing in cases τ = 500 are calculated with the truncation wavenumbers
(N,L) = (21, 28). Rc and RTW4

c have already been shown in Table 3 of
Kimura et al [2], but these values on this table are more accurate (nearly
0.1% or less).

patterns of TW4s with those in the co-rotating system shown in Figure 8
of Kimura et al.(2011) [2], we found that the convection patterns of stable
TW4s in the system allowing the inner sphere rotation are quantitatively
similar to those in the co-rotating system. The differences of the amplitude
of Ur and ωz are at most 2% and 5%, respectively.

Figure 3.6 shows the azimuthal component of the velocity Uφ of the sta-
ble TW4 solutions in the system allowing the inner sphere rotation on the
equatorial plane (θ = 90◦) when the Rayleigh numbers are slightly below
the marginal Rayleigh numbers of TW4 solutions. It is found that when
the rotation rate is small, the distribution of Uφ on the equatorial plane is
spiralling in the clockwise (retrograde) direction from the inner to the outer
spheres ((i) and (ii) in Figure 3.6). However, as the rotation rate is increased,
this spiral structure becomes weak ((iii) and (iv) in Figure 3.6), and as the
rotation rate is further increased, the distribution becomes spiralling in the
counter-clockwise (prograde) direction from the inner to the outer spheres
((v) and (vi) in Figure 3.6). Note again that all these distributions of Uφ

shown in Figure 3.6 propagate in the retrograde direction. Figure 3.7 shows
the radial profiles of Uφ of the stable TW4 solutions in the system allowing
the inner sphere rotation and those in the co-rotating system on the section
shown as the dashed lines in Figure 3.6. The maximum of Uφ on the equato-
rial plane exists on this section for each τ . We found that, when τ = 52 and
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(i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

Figure 3.5: The convection patterns of stable TW4s in the system allowing
the inner sphere rotation when the Rayleigh numbers are slightly below the
marginal Rayleigh numbers of TW4 solutions. The upper 6 panels show the
radial component of velocity Ur on the equatorial plane (θ = 90◦) and the
lower 6 panels show the axial component of vorticity ωz = k · (∇×U) in a
meridional section. The detailed parameters are listed in Table 3.2.

(i) (ii) (iii) (iv) (v) (vi)

Figure 3.6: The azimuthal component of the velocity Uφ of the stable TW4
solutions in the system allowing the inner sphere rotation on the equatorial
plane (θ = 90◦) when the Rayleigh numbers are slightly below the marginal
Rayleigh numbers of the TW4 solutions. Dashed lines indicate the cross
sections of Figure 3.7. The detailed parameters are listed in Table 3.2.
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3 Stability and a bifurcation diagram of Boussinesq thermal convection in
a moderately rotating spherical shell allowing rotation of the inner sphere

τ R v
(frot)
p Ω̃in,z Uin

(i) and (I) 52 2100 −0.60 +1.61 +1.07
(ii) and (II) 100 3600 −1.58 +2.57 +1.71
(iii) and (III) 200 3800 −1.49 +0.03 +0.02
(iv) and (IV) 300 5000 −0.83 −0.09 −0.06
(v) and (V) 400 6900 −0.62 −0.37 −0.25
(vi) and (VI) 500 9200 −0.59 −0.88 −0.59

Table 3.2: The control and resulting parameters of the typical stable TW4
solutions in the system allowing the inner sphere rotation shown in the Fig-
ures and Tables below. v

(frot)
p is the propagating velocity in the azimuthal

direction. Ω̃in,z is the axial angular velocity of the inner sphere rotation. Uin

is the surface velocity of the inner sphere on the equatorial plane, that is,
Uin = rinΩ̃in,z. The Rayleigh numbers are slightly less than the marginal
Rayleigh numbers RTW4

c and RTW4
f , which are shown in Table 3.1.

100, Uφ near the inner sphere is strengthened toward the prograde direction
due to prograde rotation of the inner sphere. The difference of the maxi-
mum value of Uφ on the equatorial plane is about 8% for τ = 52 and 6% for
τ = 100. When τ = 500, Uφ near the inner sphere is strengthened toward the
retrograde direction due to retrograde rotation of the inner sphere, but the
difference of maximum value of Uφ on the equatorial plane is only about 2%.
We also found that, the distributions of 〈Uφ〉 in the outer region (r & 1.1 for
τ = 52 and τ = 100 and r & 0.8 for τ = 500) on the equatorial plane are
scarcely changed compared with those in the co-rotating system.

Table 3.3 shows the comparison of the propagating velocity of the stable
TW4 solutions in the azimuthal direction in the system allowing the inner
sphere rotation and that in the co-rotating system. The last column shows
that (v

(frot)
p − v

(corot)
p )/v

(corot)
p , indicating the difference of the amplitude of

the propagating velocity. We found that the propagating direction of the
TW4 solution in the system allowing the inner sphere rotation is same as
that in the co-rotating system for each τ . Also little different appears in
the amplitudes. When the rotation rate is small, the relative difference is at
most 15% while it is at most 9% when the rotation rate is large.

3.3.3 Structure of mean zonal flow

Figure 3.8 shows the distributions of the mean zonal flows 〈Uφ〉 of the stable
TW4 solutions in the system allowing the inner sphere rotation (labeled with
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Figure 3.7: The radial profiles of Uφ of stable TW4 solutions in the system
allowing the inner sphere rotation (red solid line) and those in the co-rotating
system (blue dashed line) on the section shown by the dashed lines in Figure
3.6. The inset in the rightmost panel is the enlarged drawing near the inner
sphere (rin ≤ r ≤ 0.7). The detailed parameters are listed in Table 3.2.
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Figure 3.8: Meridional distributions of mean zonal flow 〈Uφ〉 of the stable
TW4 solutions in the system allowing the inner sphere rotation (upper 6 pan-
els, labeled with lowercase Roman numerals) and in the co-rotating system
(lower 6 panels, labeled with uppercase Roman numerals). The distributions
in the co-rotating system already appear in Figure 9 of Kimura et.al (2011)
[2]. Dashed lines (A) and (B) label the sections shown in Figure 3.9. The
detailed parameters for each panel are listed in Table 3.2.
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3 Stability and a bifurcation diagram of Boussinesq thermal convection in
a moderately rotating spherical shell allowing rotation of the inner sphere

Ω̃in,z v
(frot)
p v

(corot)
p

(i) +1.61 −0.60 (I) −0.70 −15%
(ii) +2.57 −1.58 (II) −1.71 −8%
(iii) +0.03 −1.49 (III) −1.49 −0%
(iv) −0.09 −0.83 (IV) −0.83 +0%
(v) −0.37 −0.62 (V) −0.60 +3%
(vi) −0.88 −0.59 (VI) −0.54 +9%

Table 3.3: The comparison of the propagating velocity of the stable TW4
solutions in the azimuthal direction in the system allowing the inner sphere
rotation (v

(frot)
p ) and that in the co-rotating system (v

(corot)
p ). The first and

second columns show the same parameters listed in Table 3.2. The last
column shows (v

(frot)
p − v

(corot)
p )/v

(corot)
p .

the small Roman numerals) and those in the co-rotating system (labeled with
the capital Roman numerals). When the rotation rate is small the strong
prograde (retrograde) zonal flow locates in the vicinity of the poles in the
inner (outer) part of the shell and weak retrograde zonal flow locates near the
outer spheres around the equatorial plane (Figure 3.8 (i)). As the rotation
rate is increased, the retrograde equatorial zonal flow is strengthened and is
extending to the inner region. The prograde regions near the inner sphere
in high-latitudes extend to the outer regions, separate, and strong prograde
zonal flows emerge in the mid-latitudes near the outer sphere (Figures 3.8
(ii) and (iii)). As the rotation rate is further increased, the retrograde zonal
flows in the vicinity of the poles near the outer sphere are weakened, while
the prograde flows near the inner sphere keep their magnitudes. The strong
equatorial retrograde zonal flow near the inner sphere and the strong prograde
zonal flows in the mid-latitude near the outer sphere keep their magnitudes.
(Figures 3.8 (iv)–(vi)). These zonal flow patterns of the stable TW4 solutions
in the system allowing the inner sphere rotation seem to be qualitatively
similar to those in the co-rotating system (comparing (i)–(vi) with (I)–(V
I) in Figure 3.8). However, the amplitudes of these zonal flows are slightly
different.

Figure 3.9 shows the radial profiles of the mean zonal flows 〈Uφ〉 on the
section (A) and (B) shown in Figure 3.8. The lowercase Roman numerals
indicate the system allowing the inner sphere rotation and the uppercase
Roman numerals mean the co-rotating system. The minimum value of each
zonal flow in the whole meridional domain exists on the section (A) when
τ = 52 and 100, and on the section (B) when τ = 500. From (i)-(A), (I)-

46



3.3 Results

 0.8  1  1.2  1.4  1.6

(i)-(B)

(I)-(B)

Radius

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

M
ea

n
 z

o
n

al
 f

lo
w

(I)-(A)

(i)-(A)

τ = 52

-3

-2

-1

 0

 1

 2

 3

 4

 0.8  1  1.2  1.4  1.6

(ii)-(B)

(II)-(B)

(II)-(A)

(ii)-(A)

Radius

τ = 100

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0.8  1  1.2  1.4  1.6

(vi)-(B)

(VI)-(B)

(VI)-(A)

(vi)-(A)

Radius

τ = 500

Figure 3.9: The radial profiles of the mean zonal flow 〈Uφ〉 in the sections
labeled with the dashed lines (A) and (B) shown in Fig. 3.8. The thick
red solid and thick blue dashed lines mean the radial profiles of 〈Uφ〉 on the
section (A) in the system allowing the inner sphere rotation and in the co-
rotating system, respectively. The thin red solid and thin blue dashed lines
mean the distributions on the section (B) in the system allowing the inner
sphere rotation and in the co-rotating system, respectively. The detailed
parameters are listed in Table 3.2.

(A), (ii)-(A) and (II)-(A) on the left and middle panels in Figure 3.9, it is
found that when τ = 52 and 100, where the inner sphere rotates in the
prograde direction, the maximum value of 〈Uφ〉 on the section (A) is slightly
smaller (5 − 6%) than that in the co-rotating system and the amplitude of
the minimum value on the section (A) is also smaller than that in the co-
rotating system (by 22 % for τ = 52 and 12% for τ = 100). Therefore,
the amplitude of the mean zonal flow near the polar region becomes weaker
due to the inner sphere rotation when the rotation rate is small. On the
other hand, it is found that the entire radial profile of 〈Uφ〉 on the section
(A) becomes uniformly smaller than that in the co-rotating system when
τ = 500 where the inner sphere rotates in the retrograde direction ((vi)-(A),
(VI)-(A) on the right panel in Figure 3.9). The maximum of the prograde
zonal flow located in the vicinity of the poles near the inner sphere is also
decreased by 16%. Therefore, when the rotation rate is large, the mean zonal
flow is accelerated toward the retrograde direction not only near the inner
sphere but also near the outer sphere due to the inner sphere rotation. When
τ = 200 and 300, where the inner sphere scarcely rotates, we found that the
difference of the amplitudes of 〈Uφ〉 from that in the co-rotating system is
at most 3% (not shown). This difference is relatively small compared with
that in the slowly and rapidly rotating cases. From the radial profile of
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(i)-(I) (ii)-(II) (iii)-(III) (iv)-(IV) (v)-(V) (vi)-(VI)

Figure 3.10: The difference of the mean zonal flows in the system allowing
the inner sphere rotation from those in the co-rotating system normalized
with the equatorial surface velocity of the inner sphere ∆〈Uφ〉/Uin, where

∆〈Uφ〉 ≡ 〈U (frot)
φ 〉− 〈U (corot)

φ 〉, U (frot)
φ and U

(corot)
φ mean the azimuthal compo-

nent of the velocity of stable TW4 solutions in the system allowing the inner
sphere rotation and that in the co-rotating system, respectively, and Uin is
the equatorial surface velocity of the inner sphere. Uin for each τ and the
detailed parameters are listed in Table 3.2. Note that the actual direction
of the mean zonal flows is opposite in the cases of (iv)-(IV), (v)-(V) and
(vi)-(VI) due to the negative normalization factor Uin.

〈Uφ〉 on the equatorial plane (section (B) in Figure 3.9), it is found that the
strong equatorial prograde zonal flows are induced near the inner sphere when
τ = 52 and 100, while when τ = 500 the retrograde zonal flow is induced
there, which are consistent with the inner sphere rotation. On the other hand,
the distributions of 〈Uφ〉 in the equatorial outer region are scarcely changed
compared with those in the co-rotating system, that is, the amplitudes of the
retrograde zonal flow on the equatorial plane are hardly changed compared
with those in the co-rotating system for τ = 52, 100 and 500.

Figure 3.10 shows the difference of the mean zonal flows in the system
allowing the inner sphere rotation from those in the co-rotating system nor-
malized with the surface velocity of the inner sphere on the equatorial plane.
Note that Uin > 0 when τ ≤ 200 while Uin < 0 when τ ≥ 300 (see Ta-
ble 3.2). We found that, when τ = 52 and 100 (left two panels in Figure
3.10), the difference of 〈Uφ〉 is large near the whole inner sphere and becomes
maximum on the surface of the inner sphere around the equator. The other
positive peaks exist at high-latitude near the outer sphere. There are also
negative peaks in the vicinity of the poles near the inner sphere, while the
weak negative region exist near the outer sphere in the equatorial region.
As the rotation rate is increased as τ = 200 and 300 (middle two panels in
Figure 3.10), the difference is large near the whole surface of the inner sphere
and the maximum value of the difference locates on the equatorial surface of
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Figure 3.11: The radial profile of ∆〈Uφ〉/Uin in the equatorial plane for each
τ . The curves in the direction of the arrow corresponds to the variation of τ
from 52 to 500.

the inner sphere, however, the radial width of large difference region around
the equatorial plane becomes thinner. This can be seen quantitatively in the
radial profile of ∆〈Uφ〉/Uin on the equatorial plane shown in Figure 3.11. The
negative difference regions in the vicinity of the poles near the inner sphere
come to vanish. As the rotation rate is further increased as τ = 400 and 500
(right two panels in Figure 3.10), the radial width of large difference region
on the equatorial plane becomes further thinner, and the positive peaks lo-
cate at high-latitude near the outer sphere. However, the positive difference
regions including the above peaks extend toward the inner sphere along the
rotation axis in the tangential cylinder of the inner sphere.

3.4 Conclusion and discussion

We obtained the stability and a bifurcation diagram of the finite-amplitude
traveling wave solution TW4, which bifurcates supercritically at the critical
point and propagate in the azimuthal direction, in the system allowing the
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3 Stability and a bifurcation diagram of Boussinesq thermal convection in
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inner sphere rotation under the no-slip and fixed-temperature boundary con-
ditions for the ratio of the inner and outer radii η = 0.4 and the Prandtl
number P = 1 (Figs. 3.2 and 3.4). Note that the TW4 solutions shown in
the previous section are independent of the magnitude of the inertial mo-
ment of the inner sphere whenever the profile of the gravitational force (2.2)
is unchanged, because the torque operating on the inner sphere vanishes for
each steady solution. The obtained TW4 solutions bifurcate supercritically
from the conductive rest state at the critical points, and are stable from the
critical Rayleigh number Rc to 1.2 − 2Rc, depending on the rotation rate τ
(Figs. 3.2 and 3.4). When the rotation rate is small, the inner sphere rotates
in the prograde direction against the outer sphere. As the rotation rate is in-
creased, the inner sphere scarcely rotates even when the Rayleigh number is
increased. As the rotation rate is further increased, the inner sphere rotates
in the retrograde direction (Figs. 3.2 and 3.3). However, the difference of
the stable regions of the TW4 solutions between in the system allowing the
inner sphere rotation and in the co-rotating system is quite small as about
1% or less (Table 3.1). Therefore the bifurcation diagram is quantitatively
similar to that in the co-rotating system (Fig. 1.1).

We also found that, the difference of the convection patterns of the stable
TW4 solutions in the system allowing the inner sphere rotation from those
in the co-rotating system is at most several percent, and those patterns are
quantitatively similar. (Figs. 3.5, 3.6 and 3.7). The patterns of the mean
zonal flows are qualitatively similar (Fig. 3.8), however, the apparent differ-
ence of the mean zonal flow profile can be seen on the equatorial plane near
the inner sphere due to the inner sphere rotation. The maximum difference of
the amplitudes of the mean zonal flows of the stable TW4 solutions is about
20%, which is relatively large compared with that of Ur, ωz of convection
patterns.

The difference of the mean zonal flows is larger than that of the con-
vection patterns. This tendency can be explained in terms of the weakly
nonlinear analyses, discussed in Sec. 2.4. In the co-rotating system, we ex-
pand the dependent variables u (velocity), T (temperature), π (pressure)
and the Rayleigh number R around the critical state with a small parameter
ε as u = εu(1) + ε2u(2) + · · · , R = Rc + εR(1) + ε2R(2) + · · · , where Rc is
the critical Rayleigh number of the conductive rest state and u(1) is the crit-
ical mode which can be obtained using the eigenpair calculation. The axial
component of torque operating the inner sphere Nin,z also can be expanded

as Nin,z = εN
(1)
in,z + ε2N

(2)
in,z + · · · , where each order of this torque N

(i)
in,z can

be calculated by u
(i)
φ using the equation (3.5). However, in the range of the

parameters we examine, N
(1)
in,z vanishes due to the sinusoidal oscillation of u

(1)
φ
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in the azimuthal direction (the critical azimuthal wavenumber is non-zero).
Therefore, the torque on the inner sphere is O(ε2). As a result, in the system
allowing the inner sphere rotation, the magnitude of the inner sphere rota-
tion due to this torque operating the inner sphere is O(ε2). This means that
the effect of the inner sphere rotation on the convection patterns is O(ε2)
and the patterns of convective motion described such as Ur and ωz, shown in
Fig. 3.5, are hardly affected because these are O(ε). On the other hand, the
mean zonal flow 〈Uφ〉 can be affected by the inner sphere rotation effectively
since it is O(ε2). Specifically speaking, the velocity of TW4 solution U in
the system allowing the inner sphere rotation can be written as

U = εu(1) + ε2
(
u(2) + u(f,2)

)
+ · · · , (3.15)

where u(f,2) is the second order correction term due to the inner sphere ro-
tation and must satisfy

0 = 2πr3in

∫ π

0

∂
〈
u
(2)
φ

〉
∂r

+

∂
〈
u
(f,2)
φ

〉
∂r

−

〈
u
(f,2)
φ

〉
r


r=rin

sin2 θdθ, (3.16)

because the torque on the inner sphere of the TW4 solutions must vanish
in the system allowing the inner sphere rotation due to the stationarity of
these solutions. Each higher order correction term is also needed to satisfy
the condition that the torque operating the inner sphere must vanish.

The structure of the correction term u(f) in the rapidly rotating case can
be interpreted as a spherical Couette flow, where the flow is driven only
by slightly differential rotation of the inner and outer spheres in a rapidly
rotating spherical shell [50, 51, 52, 53]. Figure 3.12 compares the correction of
the flow in the system allowing the inner sphere rotation from the co-rotating
system with the spherical Couette flow with the same rotation parameters at
τ = 500. Note that the actual direction of the mean meridional circulations is
opposite since the normalization factor Uin < 0 at τ = 500. From this Figure
we found that the difference of the flow in the system allowing the inner
sphere rotation from that in the co-rotating system is quite similar to the
spherical Couette flow. The features of spherical Couette flows listed below
are investigated theoretically in Stewartson (1966) [51] and well described
numerically in Hollerbach (1994) [52] and Dormy et al. (1998) [53];

(i) the magnitude of the z-component of the angular velocity of the fluid
and that of the mean meridional circulation are large only inside the
tangential cylinder and there is almost no flow outside the tangential
cylinder,
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(ii) the Ekman boundary layers exist near the whole inner sphere and near
the outer sphere at high-latitude inside the tangential cylinder,

(iii) the strong mean meridional circulation from the inner sphere to the
outer sphere (the actual direction of the mean circulation is opposite)
exists near the tangential cylinder.

Moreover, when τ = 500, the torque operating on the inner sphere due to
the TW4 solution in co-rotating system is −15.0 while that due to the flow
induced by only the inner sphere differential rotation shown at the lower two
panels in Figure 3.12 is +14.0. Therefore, the summation of these torques on
the inner sphere is nearly zero, meaning that the equation (3.16) is almost
satisfied.

The propagating velocity of the TW4 solutions in the azimuthal direction
is also changed and the difference is large compared with the differences of Ur

and ωz (Table 3.3). This can also be explained in terms of the weakly nonlin-
ear analyses. Propagating direction of the large amplitude TW4 solutions in
the co-rotating system is not determined by the vortex stretching/shrinking
mechanism proposed by Takehiro [37], but by the advection of the convection
cell by the mean zonal flow (Figs. 11, 12 and 13 in Kimura et al.(2011)).
Since the magnitudes of the mean zonal flow is O(ε2) it effectively affects the
inner sphere rotation. Then, the propagating velocity is effectively changed
by the inner sphere rotation through the effective change of the amplitude
of the mean zonal flow. Actually, the change of the propagating velocity
shown in Table 3.3 corresponds to the change of the mean zonal flow. When
the rotation rate is small, the retrograde propagating velocity is weakened
because the amplitude of the retrograde zonal flow becomes small while that
of prograde zonal flows is unchanged. When the rotation rate is large, the
retrograde propagating velocity is strengthened because the retrograde zonal
flow is strengthened in the whole meridional plane.
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3.4 Conclusion and discussion

(vi)-(VI) (vi)-(VI)

Figure 3.12: Comparison between the difference of the flow in the system
allowing the inner sphere rotation from those in the co-rotating system (up-
per two panels) and the flow in the rotating spherical shell with slightly
differential inner sphere rotation (lower two panels) when τ = 500. The
upper left panel shows the difference of the z-component of the angular ve-
locity of the fluid in the system allowing the inner sphere rotation from those
in the co-rotating system normalized with the inner sphere rotation rate
∆〈Uφ/s〉/Ω̃in,z, where ∆〈Uφ/s〉 ≡ 〈U (frot)

φ /s〉 − 〈U (corot)
φ /s〉 and s = r sin θ.

The right upper panel shows the difference of the mean meridional circulation
in the system allowing the inner sphere rotation from those in the co-rotating
system normalized with the equatorial surface velocity of the inner sphere
(∆〈Ur〉/Uin,∆〈Uθ〉/Uin). The lower left (right) panel shows the z-component
of the angular velocity (mean meridional circulation) of the fluid in a rotating
spherical shell whose the inner sphere rotates with Ω̃in,z = −0.88 against the
outer sphere, which is the same value of the rotation rate of the case (vi).
Note that the actual direction of the mean meridional circulations is opposite
since the normalization factor Uin < 0 at τ = 500.
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Chapter 4

Emergence of equatorially
asymmetric convection pattern

4.1 Introduction

In the previous chapter, we found that the stable region and bifurcation struc-
ture of finite-amplitude convective solution TW4s in the system allowing the
rotation of both spheres are quantitatively similar to those in the co-rotating
system. The convective motions of TW4 solution are also qualitatively simi-
lar but the amplitude of the mean zonal flow and the propagating velocity of
TW4 are effectively changed due to inner sphere rotation. We consider that
this behaviour can be explained in terms of weakly nonlinear analyses: the
amplitude of convective motions O(ε) while that of mean zonal flow and of
inner sphere rotation are both O(ε2) because the torque on the inner sphere
is O(ε2) in the co-rotating system.

Then, in this chapter, we investigate the difference of behaviours of con-
vective solutions between in the co-rotating system and in the system allow-
ing the rotation of both spheres at larger Rayleigh numbers, where nonlinear
effect of convective solution is expected to larger than that of stable TW4
solution.

As is mentioned in Chap. 1, there have been many researches for finite-
amplitude convective solutions in terms of fluid mechanics thanks to recent
remarkable progress of computational ability [18, 19, 34, 35].

Ardes et al. [18] focused on a little rapid rotation region (τ = 2× 103) at
the ratio of the inner and outer radii of the shell η = 0.4 and relatively low
Prandtl number (P = 0.1) under stress-free and fixed-temperature bound-
ary conditions for investigating finite-amplitude convection patterns 1. They

1Ardes et al. [18] found that not only the columnar mode, equatorially attached mode,
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4 Emergence of equatorially asymmetric convection pattern

found that the convective solution transits as follows: stationary drifting so-
lution (called as a traveling wave solution in this thesis), vacillating solution,
quasi-periodic solution and aperiodic solution (called as a chaotic solution in
this thesis), in the range 1.0×104 ≤ R ≤ 2.0×104, where the critical Rayleigh
number is about 4500. Note that the dominant azimuthal wavenumbers of
the traveling wave solution and vacillating solution are both 1 (shown in Fig.9
in their paper) while the critical azimuthal wavenumber is 3. Note also that
the chaotic solution at R = 2.0× 104 still remains symmetric with respect to
the equatorial plane, called as equatorial symmetry in this thesis.

Grote and Busse [35] investigated the behaviour of convective solutions
as the Rayleigh number is increased when the rotation rate is large (τ = 104

and 1.5× 104) and the Prandtl number is moderate (P = 1.0 and 0.5). They
showed that, when the Rayleigh number is relatively small, the transition of
convection patterns is same as that in Ardes et al. (1997). As the Rayleigh
number is increased, localized turbulent convection pattern appears and is
sustained. As the Rayleigh number is further increased, the relaxation oscil-
lation occurs, that is, kinetic energy slowly decays periodically after its rapid
increasing.

Simitev and Busse [19] investigated the behaviour of convective solutions
when the rotation rate is large (τ = 3.0× 104) and the Prandtl numbers are
moderate and small (P = 0.5, 0.1 and 0.025). They showed that, when the
Prandtl number is relatively small (P = 0.1), the spiralling columnar convec-
tion emerging as a critical mode in rapidly rotating cases becomes unstable at
a larger Rayleigh number. When the Rayleigh number is increased, the am-
plitude vacillations, shape vacillations and the chaotic behaviours occur, and
the relaxation oscillation occurs as the Rayleigh number is further increased.
When the Prandtl number is small (P = 0.025), the equatorially attached
convection pattern, which emerges as a critical mode, becomes modulate but
is still concentrated near the outer sphere at a larger Rayleigh number. As
the Rayleigh number is further increased, the equatorially attached eddies
spread into interior region and become detached in some cases.

In this way, transition of convective solutions from traveling wave solu-
tions to chaotic solutions has been gradually revealed in the parameter space.
However, there have been few researches around an emerging point of equato-
rial asymmetric convection patterns. Especially the route from equatorially
symmetric pattern to equatorially asymmetric pattern is not known. Then,
in this chapter, we investigate the effect of inner and outer spheres rotation

spiralling columnar mode but also multi-cellular mode appear as critical modes, in a wide
parameter range on P − τ plane, where P is the Prandtl number and τ is the square root
of the Taylor number. They fixed the ratio of the inner and outer radii as 0.4.
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4.2 Model and numerical method

O

Figure 4.1: A schematic picture of the configuration of the Boussinesq ther-
mal convection problem allowing the rotation of both the spheres.

to an emergence of equatorially asymmetric pattern through focusing on the
routes from equatorially symmetric convection pattern to equatorially asym-
metric convection pattern both in the co-rotating system and in the system
allowing rotation of the inner sphere.

The model, governing equations and numerical methods are described in
Sec. 4.2. In Sec. 4.3, we show the routes from equatorially symmetric convec-
tive solution to equatorially asymmetric one both in the co-rotating system
and in the system allowing the rotation of both spheres, with some typical
behaviours of each convective solution. The conclusions and discussions are
described in Sec. 4.4.

4.2 Model and numerical method

Let us consider a Boussinesq fluid in a spherical shell whose radii of the inner
and outer spheres are rin and rout, respectively, shown in Figure 4.1. This
system is same as that in Sec. 3.2 except for the outer sphere rotation. The
inner and outer spheres are rotating with Ω̃in and Ω̃out, respectively in the
rotating frame of reference with constant angular velocity Ωk. These mean
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4 Emergence of equatorially asymmetric convection pattern

that the inner and outer spheres are rotating with Ω̃in +Ωk and Ω̃out +Ωk,
respectively in the inertial frame of reference.

Using the same scales introduced in Sec. 3.2, the non-dimensional govern-
ing equations for the deviations from the state of rest in the rotating frame
of reference moving with the constant angular velocity Ωk are as follows:

∇ ·U = 0, (4.1)

∂U

∂t
+ (U · ∇)U + τk ×U = −∇π +Θr +∆U , (4.2)

P

(
∂Θ

∂t
+ (U · ∇)Θ

)
= R U · r +∇2Θ, (4.3)

where U is the non-dimensional velocity and Θ is the non-dimensional tem-
perature deviation from the basic state Ts(r) (2.1). The equation of motions
of the inner and outer spheres are

Iin
dΩ̃in

dt
= N in(U), (4.4)

Iout
dΩ̃out

dt
= N out(U), (4.5)

where Iin and Iout are the non-dimensional inertial moments of the inner
and outer spheres, respectively, and N in and N out are the non-dimensional
torques operating on the inner and outer spheres, respectively. Here we
assume the centers of both spheres always keep the same position. The non-
dimensional parameters in the equations are,

τ =
√
T =

2Ωd2

ν
, P =

ν

κ
, R =

αβγd6

νκ
, Iin =

I∗in
ρd5

, Iout =
I∗out
ρd5

, (4.6)

where T is the Taylor number, P the Prandtl number, R the Rayleigh num-
ber, I∗in and I∗out the dimensional inertial moments of the inner and outer
spheres, respectively.

We choose the boundary condition of the velocity as no-slip and imper-
meable on both spheres, and the temperature disturbance is fixed to zero at
the inner and outer spheres:

U(r = rin, θ, φ, t) = Ω̃in × (riner), U(r = rout, θ, φ, t) = Ω̃out × (router),
(4.7)

Θ(r = rin, θ, φ, t) = 0, Θ(r = rout, θ, φ, t) = 0, (4.8)

where er is the unit vector in the radial direction.
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4.2 Model and numerical method

As is shown in Sec. 3.2, since the velocity field is solenoidal, it can be
represented with the toroidal and poloidal potentials w and v as follows:

U ≡ ∇× (r(w + wS)) +∇× {∇× (rv)}, (4.9)

where wS is defined as

wS(r, Ω̃in(t), Ω̃out(t)) ≡ − r3in
r3out − r3in

(
r − r3out

r2

)(
er · Ω̃in(t)

)
+

r3out
r3out − r3in

(
r − r3in

r2

)(
er · Ω̃out(t)

)
, (4.10)

which satisfies the above velocity boundary condition (4.7). Then the bound-
ary conditions of v and w are

v =
∂v

∂r
= w = 0 at r = rin, rout. (4.11)

The governing equations of these potentials and Θ become

∂

∂t

(
L̂2w

)
=

[
∇2L̂2 + τ

∂

∂φ

]
w − τQ̂v +

[(
∇2 − ∂

∂t

)
L̂2 + τ

∂

∂φ

]
wS

− r · [∇× ((U · ∇)U )] , (4.12)

∂

∂t

(
L̂2∇2v

)
=

[
∇2L̂2 + τ

∂

∂φ

]
∇2v + τQ̂w − L̂2Θ+ τQ̂wS

− r · [∇×∇× ((U · ∇)U)] , (4.13)

P
∂Θ

∂t
= RL̂2v +∇2Θ− P (U · ∇)Θ, (4.14)

which is exactly same as the equations shown in Sec. 3.2 except for wS. The
operators L̂2 and Q̂ are defined as eqs.(2.11) and (2.12), respectively.

We will fix the values of η and P as the standard value η = 0.4 and P = 1,
and also fix τ as 500, which means the moderate rotation region, and vary
the Rayleigh number in the range of 2.6× 104 ≤ R ≤ 3.4× 104. The inertial
moment of the inner sphere is set to be Iin = 8πr5in/15 ' 0.22, assuming
that the density of the inner sphere is the same as that of fluid. The inertial
moment of the outer sphere is set to be Iout = 100, which is the simulated
value of the inertial moment of the Earth’s mantle.

In this chapter we investigate the behaviour of the convection patterns us-
ing numerical time integrations. We use the Galerkin-spectral method, which
is shown in Sec.2.2. We also use the Crank-Nicolson scheme to the diffusion
terms and use the second order Adams-Bashforth scheme for all other terms,
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4 Emergence of equatorially asymmetric convection pattern

with the time step ∆t = 10−4. The truncation wavenumber of spherical har-
monics L and the maximum degree of the Chebyshev polynomialsN are set to
both fixed to 42 in the standard calculations. The nonlinear terms in the gov-
erning equations are evaluated in the physical space and are converted back
into the spectral space (the spectral transform method). The numbers of the
grid points on the physical space are chosen as (Nr, Nθ, Nφ) = (65, 64, 128)
in order to eliminate the aliasing errors, where Nr, Nθ and Nφ the number of
grid points in the radial, zenith (colatitudinal) and azimuthal (longitudinal)
directions, respectively. At the initial state, both the spheres do not rotate
in the rotating frame of reference with constant angular velocity Ωk, and the
random temperature disturbance is added to the conductive state.

4.3 Results

4.3.1 Transition from equatorially symmetric pattern
to equatorially asymmetric pattern

In this section we show the transition routes from equatorially symmetric
convective solutions to equatorially asymmetric ones in the system allowing
the rotation of both spheres and those in the co-rotating system in the range
2.7× 104 ≤ R ≤ 3.2× 104. We especially focus on the property (QPS, QPA,
CS or CA, which are defined below) of each obtained solution, and the typical
convection patterns are described in the next section.

We should remark the definition of the equatorial symmetry, asymme-
try and antisymmetry of the convective solutions. The convective solu-
tion (U ,Θ) can be decomposed uniquely into two parts, that is, (U ,Θ) =
(US,ΘS) + (UAnti,ΘAnti) such that the first term (the second term) satisfies
the following relations with the upper signature in each right hand side (with
the lower signature in each RHS):

Ur(r, θ, φ) = ±Ur(r, π − θ, φ), (4.15)

Uθ(r, θ, φ) = ∓Uθ(r, π − θ, φ), (4.16)

Uφ(r, θ, φ) = ±Uφ(r, π − θ, φ), (4.17)

Θ(r, θ, φ) = ±Θ(r, π − θ, φ). (4.18)

If a convective solution has only (US,ΘS) part, we call this solution equato-
rially symmetric solution, denoted by superscript S. If a convective solution
has only (UAnti,ΘAnti) part, we call this solution equatorially antisymmet-
ric solution, denoted by superscript Anti. If a convective solution consists of
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4.3 Results

2.7 2.8 2.9 3.0 3.1 3.2

QP

C

QP

C

S A

R×10-4

4.2 4.4 4.6 4.8 5.0 R/Rc

Figure 4.2: The property of the convective solution at each Rayleigh number
R = 2.7 × 104, 2.8 × 104, 2.9 × 104, 3.0 × 104, 3.1 × 104, 3.2 × 104, where
Rc = 6386.6056 (shown in Table 2.1). The upper 7 panels show the properties
of the convective solutions allowing the rotation of both spheres, while the
lower 8 panels show those in the co-rotating system. Each panel shows the
kind of the convective solution: the left upper box means the convective
solutions is QPS, the left lower box means CS, the right upper box means
QPA, and the right lower box means CA. The empty circles mean solutions
are QPS, circles filled with red mean solutions are CS, circles filled with blue
mean solutions are QPA, and circles filled with black mean solutions are CA.
The crosses mean the solutions are only the transient state or are unstable
and transit to other solutions along the arrows.

both the equatorially symmetric and antisymmetric part, we call this solution
equatorially asymmetric solution, denoted by superscript A.

Figure 4.2 shows the property of the convective solution at each Rayleigh
number R. Here we categorize the convection solutions into four kinds: equa-
torially symmetric quasi-periodic (or periodic) solution QPS, equatorially
asymmetric quasi-periodic (or periodic) solution QPA, equatorially symmet-
ric chaotic solution CS and equatorially asymmetric chaotic solution CA. The
circle in Fig. 4.2 means that the property of each obtained solution does not
change against small but finite-amplitude perturbations. On the other hand,
the cross means that the property of the solution changes with time evolu-
tion (only a transient state), or the property of the solution changes to other
properties against small perturbations (unstable solution). The arrow means
transition direction of the solution denoted by a cross.

For example, let us focus on the upper leftmost panel in Fig. 4.2. In the
system allowing the rotation of both spheres, we performed time integration
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Figure 4.3: Time series of equatorially symmetric part of mean kinetic energy
density ES

k (blue line) and equatorially antisymmetric part of mean kinetic
energy density EAnti

k (red line) at R = 3.1 × 104 in the co-rotating system.
In the left panel the left longitudinal axis shows the magnitude of ES

k while
the right one shows the magnitude of EAnti

k with log scale. The inset in the
left figure is the enlarged drawing of the time series of ES

k for 130 ≤ t ≤ 132.
The right figure also shows the time series of ES

k and EAnti
k long time after

t = 140. In the right panel the left longitudinal axis shows the magnitude of
ES

k while the right one shows the magnitude of EAnti
k with linear scale. The

inset in the right figure is the enlarged drawing of the time series of ES
k and

EAnti
k for 47 ≤ t ≤ 49.

at R = 2.7 × 104 with the initial condition being the obtained solution CS

at R = 2.8× 104, and the solution converged to QPS. Therefore the cross is
written in the lower left box, CS, at R = 2.7× 104 and the arrow is written
from the lower left box (CS) to the upper left box (QPS).

As an another example, Fig. 4.3 shows the time series of equatorially
symmetric part of mean kinetic energy density ES

k and equatorially antisym-
metric part of mean kinetic energy density EAnti

k at R = 3.1× 104 for t ≥ 50
in the co-rotating system. Note that the rotating frame of reference rotates
τ/(4π) ' 40 times in 1 non-dimensional time. Here ES

k and EAnti
k are defined

as the following equations, respectively:

ES
k ≡ 1

Vshell

∫
Vshell

1

2

∣∣US
∣∣2 dV, (4.19)

EAnti
k ≡ 1

Vshell

∫
Vshell

1

2

∣∣UAnti
∣∣2 dV, (4.20)
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4.3 Results

while the entire mean kinetic energy density Ek = ES
k + EAnti

k because∫
Vshell

US ·UAntidV = 0. The initial condition of the time series in Fig. 4.3 is
a small temperature disturbance in addition to the conductive rest state with
no flow in the rotating frame of reference with the angular velocity Ωk. After
some decades of non-dimensional time, the antisymmetric part of the kinetic
energy density EAnti

k decays exponentially and becomes less than 10−10 for
t > 45 (not shown), while the symmetric part of the kinetic energy density
ES

k keeps chaotic. We consider the convective solution for 50 ≤ t ≤ 100 to
be CS because ES

k keeps chaotic while EAnti
k keeps less than 10−14 ×ES

k , very
small. Then, ES

k starts oscillating for t > 110, so we consider CS is only the
transient state and the convective solution becomes QPS (shown as the cross
at the lower left box (CS) and as the arrow toward the upper left box (QPS)
in lower fifth panel in Fig. 4.2). For t > 110 EAnti

k also grows exponentially
with oscillation, and after a long time, EAnti

k converges to quasi-periodic os-
cillation while ES

k keeps quasi-periodic oscillation (shown in the right panel in
Fig. 4.3). Therefore, QPS is unstable and the convective solution converges
to QPA (shown as the cross at the upper left box (QPS) and as the arrow
toward the upper right box (QPA) in lower fifth panel in Fig. 4.2).

From Fig. 4.2, we summarize the transition from an equatorially sym-
metric solution to an equatorially asymmetric solution in the system al-
lowing the rotation of both spheres and in the co-rotating system. In the
system allowing the rotation of both spheres, as the Rayleigh number is in-
creased, the property of the obtained solution changes as the following order:
QPS → CS → CA. The transition Rayleigh number from QPS to CS is
between R = 2.7 × 104 and 2.8 × 104, while that from CS to CA is between
R = 3.0×104 and 3.2×104. Note that, in the system allowing the rotation of
only the inner sphere, the property of the obtained solution changes exactly
same as the above order as the Rayleigh number is increased. Moreover, both
the transition Rayleigh numbers from QPS to CS and from CS to CA are in
the same regions, respectively, as those in the system allowing the rotation of
both spheres. On the other hand, in the co-rotating system, as the Rayleigh
number is increased, the property of the obtained solution changes as the
following order: QPS → QPA → CA. The transition Rayleigh number from
QPS to QPA is between R = 2.9 × 104 and 3.0 × 104, while that from QPA

to CA is between R = 3.1× 104 and 3.2× 104.
Note also that, in both systems, the critical Rayleigh number of the an-

tisymmetric pattern RAnti
c = 14023 and the critical azimuthal wavenumber

mc = 5. Therefore we conclude that the antisymmetric instability of the con-
ductive state is not related to the emergence of the equatorial asymmetric
patterns discussed in this section.

Compared the properties of the obtained solutions in the system allow-
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4 Emergence of equatorially asymmetric convection pattern

ing the rotation of both spheres with those in the co-rotating system in the
region 2.6 × 104 ≤ R ≤ 3.4 × 104, we found that the routes from the equa-
torially symmetric convective solutions to the equatorially asymmetric ones
are completely different. We found the two important differences:

1. we could not find any QPA solutions, and find CS solutions instead in
the system allowing the rotation of both spheres,

2. the chaotic solution appears at smaller Rayleigh number in the system
allowing the rotation of both spheres (CS appears at R = 2.8 × 104)
than in the co-rotating system (CA appears at R = 3.2× 104).

These differences suggest that both sphere rotations make QPS and QPA

solutions unstable around R = 3.0 × 104, and make the solutions chaotic.
Taking it into consideration that the route from the equatorially symmetric
solutions to the equatorially asymmetric ones in the system allowing only
the inner sphere rotation is exactly same as that in the system allowing
the rotation of both spheres, we consider that the effect of the inner sphere
rotation to make solutions chaotic is larger than that of the outer sphere
rotation in this parameter range.

4.3.2 Convection patterns around the transition region

In this section we show typical convection patterns in the system allowing
the rotation of both spheres and in the co-rotating system at R = 2.6× 104,
3.0×104 and 3.4×104, around the transition region discussed in the previous
section (Fig. 4.2).

Convection patterns at R = 2.6× 104

Figure 4.4 shows the typical time series of the mean kinetic energy densities,
those of angular velocities of both spheres, the energy spectra and typical
convection patterns at R = 2.6× 104 in the system allowing the rotation of
both spheres. Figure 4.5 shows the typical time series of the mean kinetic
energy densities, those of torques on both spheres, the energy spectra and
typical convection patterns at R = 2.6 × 104 in the co-rotating system. In
both cases, EAnti

k are exactly zero (not shown), and the perpendicular com-
ponents of Ω̃in, Ω̃out against the axis of rotation are also exactly zero (the
left third and fourth panels in Fig. 4.4) in the system allowing both spheres
rotation and the perpendicular components of N in, N out against the axis of
rotation are also exactly zero (the left third and fourth panels in Fig. 4.5).
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Figure 4.4: Time series of the mean kinetic energy densities, those of angular
velocities of both spheres, the energy spectra and typical convection patterns
at R = 2.6 × 104 in the system allowing the rotation of both spheres. The
left upper four panels show the time series: the equatorially symmetric part
of the mean kinetic energy density ES

k , the mean kinetic energy densities for
each azimuthal wavenumbers Em

k , the angular velocities of the inner sphere
Ω̃in, and the angular velocities of the outer sphere Ω̃out, from top to bottom.
The left lowermost panel shows the energy spectra Em

k at t = 1.5 and the
time averaged energy spectra Em

k . The right five panels show the convection
patterns at t = 1.5: the radial component of the velocity Ur on the equatorial
plane, the stream function on the equatorial plane −r(∂v/∂φ), the axial
component of the vorticity ωz = k · (∇×U) on the equatorial plane, ωz at
the meridional section indicated by the black solid line in the above panel
(right third panel), and the azimuthally averaged azimuthal velocity (mean
zonal flow) 〈Uφ〉, from top to bottom.
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Figure 4.5: Time series of the mean kinetic energy densities, those of torques
on both spheres, the energy spectra and typical convection patterns at R =
2.6×104 in the co-rotating system. The left upper four panels show the time
series: the equatorially symmetric part of the mean kinetic energy density
ES

k , the mean kinetic energy densities for each azimuthal wavenumbers Em
k ,

the torque on the inner sphere N in, and the torque on the outer sphere N out,
from top to bottom. The left lowermost panel shows the energy spectra Em

k

at t = 1.0 and the time averaged energy spectra Em
k . The right five panels

show the convection patterns at t = 1.0, same as those at right five panels in
Fig. 4.4.
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Moreover, these all time series oscillate almost monotonically in bounded re-
gions. Therefore, we conclude that these convective solutions are both QPS

(not shown in Fig. 4.2). Note that, the mean kinetic energy density for each
azimuthal wavenumber Em

k is defined as follows:

Em
k ≡ 1

Vshell

∫
Vshell

1

2
|Um|2 dV, (4.21)

where Um means the velocity field which has m-fold symmetry in the az-
imuthal direction, and Vshell is the volume of the spherical shell. The total
mean kinetic energy density Ek =

∑L
m=0E

m
k , because

∫
Vshell

Um ·Um′
= 0 for

m 6= m′.
Compared the convective solution in the system allowing the rotation

of both spheres with that in the co-rotating system, these are qualitatively
similar in some aspects, which are described below, despite the inner and
outer sphere rotation: Ω̃in,z = −7.0± 1.5 (the left third panel in Fig. 4.4), at
most 3.4 % against the rotation rate of the reference frame Ω = τ/2 = 250.

The time averaged energy spectra Em
k of convection pattern is qualita-

tively similar in the range 0 ≤ m ≤ 5, and especially Em=2
k is the domi-

nant part of the kinetic energy density in both cases. Actually Em=2
k /Ek =

134/213 ' 63% in the system allowing the rotation of both spheres and

Em=2
k /Ek = 135/212 ' 64% in the co-rotating system, where · means the

time averaged value. Em=4
k /Ek is only about 10% in both cases even though

the critical modes have four-fold symmetry in the azimuthal direction and
the TW4 solutions first bifurcate from the conductive state at the critical
point (Fig. 1.1). This tendency is similar to the results in Ardes et al., who
found a large convection pattern in the azimuthal direction appears as the
Rayleigh number is increased, while their control parameters and boundary
conditions are totally different from those in this case.

While the long period oscillation occurs only in the system allowing the
rotation of both spheres (T ' 5.4), the dominant frequency of these four time
series in the system allowing the rotation of both spheres shown in Fig. 4.4
is almost same as that in the co-rotating system shown in Fig. 4.5: ω ' 48.3
in the system allowing the rotation of both spheres and ω ' 49.0 in the
co-rotating system.

The convection patterns are qualitatively similar. Especially, the convec-
tion patterns in the equatorial plane appear to have almost two-fold symme-
try in the azimuthal direction (the right first, second and third panels in Fig.
4.4 and those in Fig. 4.5), which is consistent with the fact that Em=2

k is the
dominant part of the kinetic energy density. The strong negative vorticity
regions are localized in two parts and the peaks of these exist at the outer
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4 Emergence of equatorially asymmetric convection pattern

part of the shell on the equatorial plane (the right third panel in Fig. 4.4 and
that in Fig. 4.5). The vortex tubes elongate in the direction of the axis of ro-
tation (the right fourth panel in Fig. 4.4 and that in Fig. 4.5), which are the
typical structures of the critical modes in rapidly rotating cases (lowermost
right two panels in Fig. 2.4).

The distributions of the mean zonal flows are also qualitatively similar
(the right lowermost panel in Fig. 4.4 and that in Fig. 4.5) except near the
inner sphere, because of the inner sphere rotation. The strong retrograde
zonal flow locates in the middle of the shell on the equatorial plane and is
localized there while the strong prograde zonal flows locate in the vicinity of
the poles near the inner sphere and in the mid-latitude near the outer sphere.

The convection patterns shown in Figs. 4.4 and 4.5 gradually propagate
in the azimuthal direction with small oscillations. The averaged propagating
velocity vp ' −2.0 in the system allowing the rotation of both spheres, while
vp ' −1.5 in the co-rotating system. Both the propagating velocities have
negative value, that is, the convection patterns propagate in the retrograde
direction (clockwise direction in Figs. 4.4 and 4.5). However, the magnitude
of the propagating velocity in the system allowing the rotation of both spheres
is larger than that in the co-rotating system by about 33%.

Convection patterns at R = 3.0× 104

Figure 4.6 shows the typical time series of the mean kinetic energy densities,
those of angular velocities of both spheres, the energy spectra and typical
convection patterns at R = 3.0 × 104 in the system allowing the rotation
of both spheres. In this system, EAnti

k are exactly zero (not shown), and
the perpendicular components of Ω̃in, Ω̃out against the axis of rotation are
also exactly zero (the left third and fourth panels in Fig. 4.6). However, all
these time series have chaotic fluctuations. Therefore we conclude that this
convective solution is CS (Fig. 4.2).

It is found that Em=2
k is the dominant part of the mean kinetic energy

density for over half of the time series shown at the left second panel in Fig.
4.6, while Em=2

k decreases and the other Em
k , such as Em=3

k , Em=4
k and Em=5

k ,
increase intermittently. These typical energy spectra Em

k are shown in the
left lowermost panel in Fig. 4.6. This panel shows that Em=2

k is the dominant
part of the kinetic energy density at t = 2.0 (Em=2

k /Ek = 141/245 ' 58%)
while there is no dominant part and the energy spectra Em

k become flat at
t = 0.2. The convection patterns also show this tendency: when t = 2.0
the convection patterns generally have two-fold symmetry in the azimuthal
direction (the right first, second and third panels in Fig. 4.6). On the other
hand, when t = 0.2, the convection patterns seem to consist of mainly m = 4
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Figure 4.6: Time series of the mean kinetic energy densities, those of angular
velocities of both spheres, the energy spectra and typical convection patterns
at R = 3.0 × 104 in the system allowing the rotation of both spheres, same
as Fig. 4.4. The middle and right five panels show the convection patterns
at t = 0.2 and t = 2.0, respectively, same as the right five panels in Fig. 4.4.
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4 Emergence of equatorially asymmetric convection pattern

and m = 5 modes in the azimuthal direction. Note that, the vortex tubes
always elongate in the direction of the axis of rotation (the middle and right
fourth panels in Fig. 4.6), whenever Em=2

k is dominant or not.

We found that the rotation rate of the inner sphere Ω̃in,z keeps negative for
almost all time in 0 ≤ t ≤ 5, but sometimes become positive intermittently
around t = 0.2, 1, 2.8 and 4. The amplitude of the inner sphere rotation rate
is that −13.3 . Ω̃in,z . +11.6, which is at most 5.3% against the rotation
rate of the reference frame. On the other hand, the rotation of the outer
sphere Ω̃out,z keeps positive for all time in 0 ≤ t ≤ 5, but the amplitude is
that +0.15 . Ω̃in,z . +0.60, relatively small compared with Ω̃in,z because of
the large inertial moment of the outer sphere.

Note that, Ω̃in,z keeps about −10 with fluctuations and Ω̃out,z also keeps
about +0.5 with fluctuations when Em=2

k is the dominant part of the mean
kinetic energy density, that is, 1.5 . t . 2.3, 3 . t . 4 and 4.5 . t . 5.
On the other hand, when Em=2

k suddenly decreases and the other parts of
the mean kinetic energy density increases, Ω̃in,z increases and also Ω̃out,z de-
creases rapidly. This sudden acceleration of the inner sphere rotation and
the simultaneous deceleration of the outer sphere rotation can be understood
as the change of the structure of the mean zonal flow. Actually when t = 2.0
(Em=2

k is dominant), the prograde zonal flows locate near the mid-latitude
near the outer sphere while the retrograde zonal flows locate almost all the
region near and inside the tangential cylinder and also locate on the equato-
rial plane near the outer sphere. On the other hand, when t = 0.2, the strong
prograde zonal flows locate in the vicinity of the poles near the inner sphere
while the strong retrograde zonal flows locate in the vicinity of the poles
near the outer sphere and also locate on the equatorial plane near the outer
sphere. The strong prograde zonal flows near the inner sphere accelerate the
inner sphere to be the positive value.

Figure 4.7 shows the typical time series of the mean kinetic energy den-
sities, those of torques on both spheres, the energy spectra and typical con-
vection patterns at R = 3.0× 104 in the co-rotating system. In this system,
EAnti

k are non-zero, and the perpendicular components of Ω̃in, Ω̃out against
the axis of rotation are also non-zero (the left third and fourth panels in Fig.
4.7). Moreover, all these time series oscillate in bounded regions. Therefore
we conclude that this convective solution is QPA (Fig. 4.2).

However, it is found that the antisymmetric part of the mean kinetic
energy density EAnti

k is very small compared with the symmetric part of that

ES
k (EAnti

k /ES
k = 2.05/274 ' 0.75%). The perpendicular components of the

torques on the inner sphere Nin,x and Nin,y are also very small compared with
the axial component of that Nin,z (max(|Nin,x|)/|Nin,z| = 9.3/160 ' 6%). On
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Figure 4.7: Time series of the mean kinetic energy densities, those of torques
on both spheres, the energy spectra and typical convection patterns at R =
3.0× 104 in the co-rotating system, same as Fig. 4.5. The middle five panels
show the typical convection patterns at t = 1.0, same as Fig. 4.5. The right
lowermost panel show the distribution of the time averaged mean zonal flow
〈uφ〉. Note that the time series of the antisymmetric part of the mean kinetic
energy density EAnti
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k .
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4 Emergence of equatorially asymmetric convection pattern

the other hand, those of the torques on the outer sphere Nout,x and Nout,y are
nearly same magnitude compared with the axial component of that Nout, z
(max(|Nout,x|)/|Nout,z| = 144/160 ' 90%).

The convection patterns are also equatorially asymmetric at t = 1.0,
shown at the middle fourth and fifth panels in Fig. 4.7, but the asymmetry
is very small and these convection patterns appear to be almost equatorially
symmetric. Moreover, the time averaged mean zonal flow, which is shown at
the rightmost lower panel in Fig. 4.7, appear to be equatorially symmetric.

It is also found that Em=2
k is the dominant part of kinetic energy density

in this case (Em=2
k /Ek = 173/276 ' 63%). This is consistent with the fact

that the convection patterns in the equatorial plane at t = 1.0 also appear to
have almost two-fold symmetry in the azimuthal direction, which is shown
at the middle first, second and third panels in Fig. 4.7. The strong negative
vorticity regions are localized in two parts and the peaks of these exist at the
outer part of the shell on the equatorial plane (the middle third panel in Fig.
4.7). The vortex tubes still elongate in the direction of the axis of rotation in
spite of the equatorial asymmetry, shown at the middle fourth panel in Fig.
4.7. These convection patterns are qualitatively similar to those of QPS at
R = 2.6× 104 in the co-rotating system, shown in Fig. 4.5.

This convection pattern gradually propagates in the azimuthal direction,
and the time averaged propagating velocity vp ' −2.1, which means the
patterns propagate in the retrograde (clockwise) direction. The magnitude
of this propagating velocity is larger than that at R = 2.6 × 104 in the co-
rotating system (vp ' −1.5). This propagating period can be confirmed by
the period of the long time oscillation of the perpendicular components of
the torques on the inner and outer spheres against the axis of rotation Nin,x,
Nin,y, Nout,x and Nout,y (T ' 3.0).

However, the dominant frequency of all the time series of this stable QPA

shown in Fig. 4.7 is that ω ' 195, which is larger that that of stable QPS at
R = 2.6× 104 in the co-rotating system (ω ' 49.0).

Convection patterns at R = 3.4× 104

Figure 4.8 shows the typical time series of the mean kinetic energy densities,
those of angular velocities of both spheres, the energy spectra and typical
convection patterns at R = 3.4× 104 in the system allowing the rotation of
both spheres, and Fig. 4.9 shows those at R = 3.4 × 104 in the co-rotating
system. In both cases, EAnti

k are non-zero, and the perpendicular components
of Ω̃in, Ω̃out against the axis of rotation are also non-zero (the left third and
fourth panels in Fig. 4.8 and those in Fig. 4.9). Moreover, all these time
series have chaotic fluctuations in both cases. Therefore we conclude that
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Figure 4.8: Time series of the mean kinetic energy densities, those of angular
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these convective solutions are both CA (not shown in Fig. 4.2).

However, it is found in each case that the antisymmetric part of the mean
kinetic energy density EAnti

k is still small compared with the symmetric part
of that ES

k , but the ratio is large compared with that at R = 2.6 × 104:

max(EAnti
k )/ES

k = 37.2/300 ' 12% in the system allowing the rotation of

both spheres, and max(EAnti
k )/ES

k = 39.4/295 ' 13% in the co-rotating
system. The perpendicular components of the rotation rate of the inner
sphere Ω̃in,x and Ω̃in,y are relatively still small compared with the axial com-
ponent of that Ω̃in,z in the system allowing the rotation of both spheres:
|Ω̃in,x|/|Ω̃in,z| ∼ 10− 20% except near the transition time of the signature of
Ω̃in,z. The perpendicular components of the torque on the inner sphere Nin,x

and Nin,y are also relatively still small compared with the axial component of
that Nin,z: |Nin,x|/|Nin,z| ∼ 10− 30% except the region around the transition
time of the signature of Nin,z. On the other hand, the perpendicular compo-
nents of the rotation rate of the outer sphere Ω̃out,x and Ω̃out,y are relatively
large compared with the axial component of that Ω̃out,z in the system allow-
ing the rotation of both spheres: |Ω̃out,x|/|Ω̃out,z| ∼ 20 − 40% except for the
region around t = 4.0. The perpendicular components of the torque on the
outer sphere Nout,x and Nout,y are relatively large compared with the axial
component of that Nout,z in the co-rotating system: |Nout,x|/|Nout,z| ∼ 50%.

Convection patterns are also equatorially asymmetric, shown at the fourth
and fifth panels at the second and third columns in Fig. 4.8 and in Fig.
4.9. These asymmetries are both relatively large compared with that at
R = 3.0 × 104 in the co-rotating system, which is consistent with the fact
that the ratio EAnti

k /ES
k is larger than that at R = 3.0×104 in the co-rotating

system. However, the time averaged mean zonal flows, which are shown at
the rightmost lower panel in Fig. in Fig. 4.8 and in Fig. 4.9, appear to be
equatorially symmetric patterns.

It is found that, in both cases, Em=2
k is the dominant part of the mean

kinetic energy density in some parts of the time series shown at the left second
panel in Fig. 4.8 and in Fig. 4.9. Note that the intermittent increasing of
the other Em

k occurs more frequently than that of CS at R = 3.0× 104 in the
system allowing the rotation of both spheres. These typical energy spectra
Em

k , which are shown in the left lowermost panel in Fig. 4.8 and in Fig. 4.9,
show that Em=2

k is the dominant part of the kinetic energy density at t = 2.2
in the system allowing the rotation of both spheres (Em=2

k /Ek = 180/346 '
52%) and at t = 1.0 in the co-rotating system (Em=2

k /Ek = 124/314 ' 39%).
When t = 3.9 in the system allowing the rotation of both spheres, there is
no dominant part of Em

k and Em
k broads in the range 0 ≤ m ≤ 8, and when

t = 1.75 in the co-rotating system, Em=4
k and Em=5

k are the dominant parts
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4 Emergence of equatorially asymmetric convection pattern

of Em
k ((Em=4

k + Em=5
k )/Ek = (93.4 + 84.3)/361 ' 49%).

The convection patterns also show this tendency: when t = 2.2 in the
system allowing the rotation of both spheres and when t = 1.0 in the co-
rotating system, the convection patterns generally have two-fold symmetry
in the azimuthal direction (the first, second and third panels at the second
column in Fig. 4.8 and those in Fig. 4.9). On the other hand, when t = 3.9
in the system allowing the rotation of both spheres the convection patterns
seem to consist of mainlym = 4 andm = 6 modes in the azimuthal direction,
and when t = 1.75 in the co-rotating system, those seem to consist of mainly
m = 4 and m = 5 modes in the azimuthal direction. Note that, the vortex
tubes still always elongate in the direction of the axis of rotation (the fourth
panels at the second and third columns in Fig. 4.8 and those in Fig. 4.9),
whenever Em=2

k is dominant or not.

We also found that, in the system allowing the rotation of both spheres,
the rotation rate of the inner sphere Ω̃in,z keeps negative for almost all time in
0 ≤ t ≤ 5, but sometimes become positive intermittently (shown at the third
panel of the first column in Fig. 4.8). The amplitude of the inner sphere
rotation rate is that −13.3 . Ω̃in,z . +14.7, which is at most 5.9% against
the rotation rate of the reference frame. This ratio is a little larger than that
at R = 3.0 × 104 in the system allowing the rotation of both spheres. The

time average of the axial component of the inner sphere rotation Ω̃in,z = −3.2,

while Ω̃in,z = −5.2, at R = 3.0 × 104 (CS solution). On the other hand, the
rotation of the outer sphere Ω̃out,z keeps positive for all time in 0 ≤ t ≤ 5

and the time average Ω̃out,z = 0.36 while Ω̃out,z = 0.41 at R = 3.0× 104 (CS

solution).

As is seen the CS solution at R = 3.0 × 104, Ω̃in,z keeps about −7 with
fluctuations and Ω̃out,z also keeps about +0.4 with fluctuations when Em=2

k

is dominant. On the other hand, when Em=2
k suddenly decreases and the

other parts of the mean kinetic energy density increases, Ω̃in,z increases and
also Ω̃out,z decreases rapidly. This tendency can be also understood as the
change of the structure of the mean zonal flow, as is discussed for CS solution
at R = 3.0 × 104: when t = 2.2 the prograde zonal flows locate near the
mid-latitude near the outer sphere while the retrograde zonal flows locate
almost all the region near and inside the tangential cylinder and also locate
on the equatorial plane near the outer sphere, while when t = 3.9 the strong
prograde zonal flows locate in the vicinity of the poles near the inner sphere
while the strong retrograde zonal flows locate in the vicinity of the poles
near the outer sphere and also locate on the equatorial plane near the outer
sphere.

It is also found that CA solution at R = 3.4×104 in the co-rotating system
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has the same behaviour: when Em=2
k is dominant Nin,z keeps negative (about

−100), while when the other modes Em
k increase Nin,z becomes positive. This

behaviour also can be understood as the change of the structure of the mean
zonal flow, discussed in the above paragraph.

4.4 Conclusion and discussion

We have investigated the route from the equatorial symmetric pattern to
the equatorial asymmetric pattern in the system allowing the rotation of
both spheres and in the co-rotating system, under the impermeable, no-slip
and fixed-temperature boundary conditions for the ratio of inner and outer
radii of the shell η = 0.4, the Prandtl number P = 1, the rotation rate
τ = 500, the inertial moments of the inner and outer spheres Iin ' 0.22
and Iout = 100, respectively. We found that, as the Rayleigh number is
increased in the range 2.7 × 104 ≤ R ≤ 3.2 × 104, the convective solution
transits as QPS → QPA → CA in the co-rotating system, while that transits
as QPS → CS → CA in the system allowing the rotation of both spheres
(Fig. 4.2): QPA does not appear in the system allowing the rotation of both
spheres and CS does not appear in the co-rotating system. In the system
allowing the rotation of only the inner sphere, the route is exactly same as
that in the system allowing the rotation of both spheres, and the transition
Rayleigh number from QPS to CS is 2.6×104 < R < 2.7×104 and that from
CS to CA is 3.0 × 104 < R < 3.2 × 104, respectively. Therefore we conclude
that the inner sphere rotation causes the different transition route from that
in the co-rotating system.

Convection patterns of QPS in the system allowing the rotation of both
spheres is qualitatively similar to that in the co-rotating system at R =
2.6× 104 (Figs. 4.4 and 4.5) in spite of the inner sphere retrograde rotation
Ω̃in,z = −7.0± 1.5, at most 3.4 % against the rotation rate of the reference.
In both cases, Em=2

k is the dominant part of the mean kinetic energy density
even though the azimuthal wavenumber of the critical mode mc = 4. This
means the azimuthal structure of convective solutions becomes larger as the
Rayleigh number is increased; this tendency is same as that in Ardes et
al. [18]. Moreover the amplitudes of the time averaged mean zonal flows

are quantitatively similar: max
(
〈Uφ〉

)
= +4.38 and min

(
〈Uφ〉

)
= −10.39

in the system allowing the rotation of both spheres while max
(
〈uφ〉

)
=

+4.48 and min
(
〈uφ〉

)
= −10.53 in the co-rotating system. However, the

magnitude of the propagating velocity in the azimuthal direction of QPS in
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the system allowing the rotation of both spheres (vp ' −2.0) is larger than
that in the co-rotating system (vp ' −1.5) by about 33%. This fact that, the
propagating velocities are effectively different while the convection patterns
and the mean zonal flows are qualitatively similar, appear to be inconsistent
with the propagating mechanism proposed in our previous work shown in
Chap. 1. Further detailed analyses should be done in order to find the origin
of the difference of the propagating velocities of stable QPSs.

As the Rayleigh number is increased to R = 3.0 × 104, chaotic solution
with equatorial symmetry CS appears in the system allowing the rotation of
both spheres while QPA does in the co-rotating system.

The convection patterns of QPA is qualitatively similar to those of QPS

at R = 2.6×104 in the co-rotating system, because the antisymmetric part of
QPA is very small compared with the symmetric one. However, the dominant
frequency of QPA is five times larger than that of QPS at R = 2.6 × 104 in
the co-rotating system.

The typical feature of convective solution CS is as follows: Em=2
k is aver-

agely the dominant part of the mean kinetic energy density and sometimes
the other parts of Em

k suddenly increase intermittently. When Em=2
k is the

dominant part, Ω̃in,z keeps negative with fluctuations and Ω̃out,z keeps pos-
itive with fluctuations, while the rapid inner sphere acceleration and the
simultaneous outer sphere deceleration occur intermittently when the other
parts of Em

k suddenly increase. When Em=2
k is dominant, the prograde zonal

flows locate near the mid-latitude near the outer sphere while the retrograde
zonal flows locate almost all the region near and inside the tangential cylin-
der 2 and also locate on the equatorial plane near the outer sphere, which is
also seen at the convective solution QPS On the other hand, when Em

k broads
and becomes flat around m = 5, the strong prograde zonal flows locate in
the vicinity of the poles near the inner sphere while the strong retrograde
zonal flows locate in the vicinity of the poles near the outer sphere and also
locate on the equatorial plane near the outer sphere. We conclude that this
change of the structure of the mean zonal flow causes the sudden accelera-
tion/deceleration of the inner and outer spheres at the convective solutions
CS.

As the Rayleigh number is further increased to R = 3.4 × 104, chaotic
solution with equatorial asymmetry CA appears in both systems. The be-
haviour of the convective solution CAs at R = 3.4 × 104 in both systems
are qualitatively similar to that of CS in the system allowing the rotation of
both spheres, because the antisymmetric part of CA is relatively small com-

2Tangential cylinder means the cylinder tangent to the inner sphere on the equatorial
plane.
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TW4 TW5t=0.2

Figure 4.10: Distributions of the mean zonal flows of the unstable traveling
wave solutions TW4 and TW5 with that of CS (t = 0.2) at R = 3.0× 104.

pared with the symmetric one in each system. However, the sudden accelera-
tion/deceleration of the inner and outer spheres with the change of distribu-
tion of Em

k occurs more frequently compared with that of CS at R = 3.0×104

in the system allowing rotation of both spheres.

Considering the (unstable) traveling wave solutions, we may understand
the reason why the sudden inner sphere prograde rotation of the convective
solution CS occurs in the system allowing the rotation of both spheres.

Figure 4.10 shows the distributions of the mean zonal flows of the unstable
traveling wave solutions TW4 and TW5 at R = 3.0 × 104 in the system
allowing the inner sphere rotation, comparing with that of CS at t = 0.2 and
R = 3.0× 104. These TW4 and TW5 solutions are bifurcated at the critical
point whose critical Rayleigh numbers are Rm=4

c = 6387 and Rm=5
c = 6585,

respectively, and both propagate in the retrograde direction: vp = −8.4
at TW4 and vp = −4.3 at TW5. The inner sphere rotates in the prograde
direction at both traveling wave solutions: Ω̃in,z = +6.2 at TW4 3 and Ω̃in,z =
+18.3 at TW5. We found that the strong prograde (retrograde) zonal flows of
CS in the vicinity of the poles near the inner (outer) sphere are qualitatively
similar to those of unstable TW4 solution, while Em=4

k is the second largest
component in Em

k (Fig. 4.6). Further quantitative researches should be
done, but we expect that the chaotic solution CS at R = 3.0 × 104 in the

3Note that the inner sphere rotates in the retrograde direction near the critical region,
shown in Fig. 3.2 and 3.3. The transition of the direction of the inner sphere rotation
from retrograde to prograde occurs around R ' 2.2× 104.

79



4 Emergence of equatorially asymmetric convection pattern

system allowing the rotation of both spheres wanders around the unstable
QPS solution, and intermittently goes away from QPS to near the unstable
traveling wave solutions such as TW4 solutions.
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Chapter 5

Conclusion and discussion

In this thesis, we investigated the effects of rotation of the inner and outer
spheres on the behaviour of Boussinesq thermal convection in a rotating
spherical shell, especially focusing on the bifurcation structure of convec-
tive solutions (Chap. 3) and emergence of equatorial asymmetric convective
solutions (Chap. 4).

We chose impermeable, no-slip and fixed temperature boundary condi-
tions. The control parameters are as follows: the ratio of inner and outer
radii and the Prandtl number are fixed to η = 0.4 and P = 1, respectively,
while the square root of the Taylor number τ is varied from 52 to 500, and
the Rayleigh number 1.5 × 103 ≤ R ≤ 3.4 × 104. The inertial moment of
the inner sphere Iin is fixed to about 0.22 assumed that the density of the
inner sphere is same as that of fluid; this assumption is consistent with the
self-gravitational field whose magnitude is proportional to the distance from
the center of the shell. The inertial moment of the outer sphere Iout is fixed
to 100 when the outer sphere rotation is allowed.

In this parameter region, traveling wave solution TW4, which has four-
fold symmetry and propagates in the azimuthal direction, bifurcates super-
critically at a critical point, whenever the inner sphere can rotate or not
(Chaps. 1 and 3). In the system allowing rotation of the inner sphere, the
inner sphere rotates in the prograde direction when the rotation rate is small
(τ . 160), while retrograde when the rotation rate is large (τ & 400), in the
stable region of TW4 solutions. (Figs. 3.2 and 3.3). These rotation directions
correspond to the directions of torques on the inner sphere in the co-rotating
system (Fig. 2.2), where these torques are generated by the nonlinear term
in the energy equation in slowly rotating region and by the azimuthal (lon-
gitudinal) component of the nonlinear term in the Navier-Stokes equation in
moderately rotating region (Sec. 2.4.1).

The bifurcation structure of TW4 solutions is quantitatively similar to
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5 Conclusion and discussion

that in the co-rotating system (Figs. 1.1 and 3.4): TW4s are stable in the
region Rc ≤ R . 1.2− 2Rc depending on the rotation rate, where R and Rc

are the Rayleigh number and the critical value, respectively. The convective
motions of stable TW4 solutions in the system allowing the inner sphere
rotation are also quantitatively similar to those in the co-rotating system
(Fig. 3.5). On the other hand, the amplitude of mean zonal flow and the
propagating velocity of TW4 solution are effectively changed due to the inner
sphere free rotation (Fig. 3.9). This tendency can be explained that the
nonlinear effect is small and the behaviour of stable TW4 solutions can be
understood with the weakly nonlinear analyses, because the TW4 solutions
are stable only near the critical curve. These are quantitatively confirmed
in Sec.2.4.2: the inner sphere rotation is O(ε2) because the zonal flow and
torque on the inner sphere are both O(ε2) in the co-rotating system, where
ε means the amplitude of the convective motion (Sec. 3.4).

As the Rayleigh number is increased up to around 5Rc in moderately
rotating case τ = 500, the equatorial asymmetric convection patterns appear
both in the co-rotating system and in the system allowing both spheres rota-
tion (Chap. 4). We found that the route from the equatorial symmetric con-
vective solution to the equatorial asymmetric one in the system allowing the
rotation of both spheres is different from that in the co-rotating system (Fig.
4.2). In the co-rotating system, as the Rayleigh number is increased around
4Rc − 5Rc, the convective solutions transit as QPS → QPA → CA, where
QPS means the quasi-periodic (or periodic) solution with equatorial symme-
try, QPA the quasi-periodic (or periodic) solution with equatorial asymmetry,
and CA the chaotic solution with equatorial asymmetry. On the other hand,
in the system allowing both spheres rotation, the convective solutions transit
as QPS → CS → CA, where CS means the chaotic solution with equatorial
symmetry. The transition route in the system where only the inner sphere
rotation is permitted is exactly same as that in the system allowing rotation
of both spheres. Therefore we conclude that the inner sphere rotation causes
the different transition route from that in the co-rotating system.

Considering these behaviours of convective solutions, we conclude that
the inner sphere rotation can affect the behaviour of convective solutions
effectively, despite the fact that the inertial moment of the inner sphere is
much smaller than those of fluid and the outer sphere: Iin ' 0.22 while
Ifluid ' 21.33 and Iout = 100.

We should indicate the importance of investigating the bifurcation struc-
ture in this convection model.

We found that, when R = 3.0 × 104, the convective solution CS exist
in the system allowing the rotation of both the spheres, shown in Fig. 4.6.
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When the inner sphere rotates in the retrograde direction with fluctuations
(t = 2.0), the convection patterns of CS are qualitatively similar to those of
QPS solutions obtained at R = 2.6×104 except for their amplitudes. On the
other hand, when the inner sphere rotates in the prograde direction (t = 0.2),
the zonal flow structure of CS inside the tangential cylinder is qualitatively
similar to those of unstable TW4 solution (Fig. 4.10). This suggests that
the unstable TW4 solution would be a key to understand the reason why the
sudden inner sphere prograde rotation occurs. We expect that this chaotic
solution CS wanders around the (unstable) QPS solution, while intermittently
goes near (unstable) traveling wave solutions such as TW4 solution.

In this way, the bifurcated solutions could be a clue to understand a
chaotic solution, i.e., investigating the bifurcation structure in this convec-
tion system is important not only for understanding the behaviours of the
obtained solutions but also could be important for understanding the be-
haviours of the chaotic solutions. Further detailed analyses for bifurcation
structures would leads to better understanding for finite-amplitude convec-
tion patterns. Especially, if we could find a traveling wave solution which is
the “skeleton” of the quasi-periodic solution QPS, investigating the stability
of this traveling wave solution would bring some information for appearing
the QPA and CS solutions.

Bifurcation structures and behaviours of finite-amplitude convective so-
lutions would be different, especially in more rapid rotation case or in lower
Prandtl number, because not only columnar convection pattern but also
spiralling columnar convection pattern or equatorially attached convection
pattern appears in these region. Behaviours of convective solutions with dif-
ferent inertial moments of both spheres also would be of interests. Note that,
if the inertial moment of the inner sphere is changed, we should also change
the profile of gravitational field in order to keep the physical consistency.
Considering the motions of the center of both spheres, the more physically
consistent model could be constructed as a next step toward a more realistic
model.
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Appendix A

Numerical method

A.1 Numerical method for obtaining the trav-

eling wave solutions

In order to obtain the critical modes, we linearize the governing equations
(2.8), (2.9) and (2.10) with respect to the state of rest and the basic temper-
ature profile as follows:

∂

∂t
Âx = B̂x, (A.1)

where the vector x is the dependent variables defined as x = t [v, w,Θ], and
both Â and B̂ are the operators defined as

Â =

 L̂2∆

L̂2

P

 ,

B̂ =


∆2L̂2 + τ

∂

∂φ
∆ τQ̂ −L̂2

−τQ̂ ∆L̂2 + τ
∂

∂φ
RL̂2 ∆

 ,
respectively. Assuming x ∝ exp(σt) (σ ∈ C), the equations (A.1) becomes
as follows:

σÂx = B̂x. (A.2)

This is an eigenvalue problem and the real part of σ is the growth rate and the
imaginary part is the frequency of the eigenmode. We expand the dependent
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variables v, w and Θ with the combinations of Chebyshev polynomials, which
satisfy the boundary conditions (2.13), in the radial direction (described
in the next section) and the spherical harmonics in the longitudinal and
latitudinal direction, respectively. The equations (A.2) are separated into
those for each longitudinal wavenumber m. Therefore, the critical Rayleigh
numbers Rm

c for each longitudinal wavenumber m are determined, and the
critical Rayleigh number is defined as Rc ≡ minm∈Z≥0

Rm
c . We find the value

of Rm
c by the bisection method. The truncation wavenumber of spherical

harmonics L and the maximum degree of the Chebyshev polynomials N
are both fixed to 25, while (N,L) = (30, 30) is used in some numerical
calculations in order to verify the results.

In order to obtain the nonlinear traveling waves bifurcating at the critical
points, we assume that the propagating velocity of the nonlinear traveling
wave in the longitudinal direction is vp. Then they become stationary solu-
tions in the frame of reference moving with the longitudinal velocity vp with
respect to the rotating frame. We transform the time t and longitude φ into
T ≡ t and Φ ≡ φ− vpt, then the governing equations become as follows;[

∂

∂T
− vp

∂

∂Φ

]
L̂2w = ∆L̂2w + τ

∂

∂Φ
w − τQ̂v

− r · [∇× ((u · ∇)u)] , (A.3)[
∂

∂T
− vp

∂

∂Φ

]
L̂2∆v = ∆L̂2∆v + τ

∂

∂Φ
∆v + τQ̂w − L̂2Θ

+ r · [∇×∇× ((u · ∇)u)] , (A.4)

P

[
∂

∂T
− vp

∂

∂Φ

]
Θ = RL̂2v +∆Θ− P (u · ∇)Θ, (A.5)

The boundary conditions (2.13) are invariant because the dependent variables
are all scalar. Therefore we find the stationary solution of the equations
(A.3), (A.4) and (A.5) with the boundary conditions (2.13). Note that in
the equations (A.3), (A.4) and (A.5), vp is also an unknown variable, and
this problem is a nonlinear eigenvalue problem.

In order to solve the nonlinear equations (A.3), (A.4) and (A.5) with
the boundary conditions (2.13), we use the Galerkin-spectral method again.
The expansion functions are the same as in the computation of the critical
modes. For calculation of the nonlinear terms, we use the spectral transform
method, that is, the nonlinear terms are evaluated in the physical space
and are converted back into the spectral space. Since the nonlinear terms
cause the interaction between the different longitudinal wavenumbers, the
calculation of the nonlinear solutions needs much computer resources than
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A.2 The expansion functions in the radial direction

those of the critical modes. The stationary solution satisfies the equations
(A.3), (A.4) and (A.5) with the time derivative terms dropped. We denote
the spectral coefficients of the expansion of the dependent variables as the
vector s, then the stationary solution s0 satisfy the following equations,

0 =
ds0
dT

= F (s0, vp), (A.6)

where F are quadratic functions of s and vp, whose dimension is the same
as the number of the component of s. Therefore, the equations (A.6) have
one arbitrariness, which corresponds to the arbitrariness of the origin of the
longitude Φ. In order to eliminate the arbitrariness, we lock the phase of the
complex spectral coefficient whose absolute value is maximum among all the
spectral coefficients in the critical state as 0[rad]. We use the Newton method
to solve the nonlinear equations (A.6). When the Rayleigh number is varied
with τ fixed, we choose the critical mode or the nonlinear traveling wave
solution obtained before as the initial guess in the Newton method. Also,
we investigate the stability of the obtained traveling wave by calculating the
eigenvalues of the linearized equations around the traveling wave solution.

A.2 The expansion functions in the radial di-

rection

On calculating the critical modes and the finite amplitude traveling wave
solutions, we expand the dependent variables v, w and Θ as follows,

v(r, θ, φ, t) ≡
L∑
l=1

l∑
m=−l

N−4∑
n=0

V m
l,n(t)Y

m
l (θ, φ)ζn(x(r)),

w(r, θ, φ, t) ≡
L∑
l=1

l∑
m=−l

N−2∑
n=0

Wm
l,n(t)Y

m
l (θ, φ)ψn(x(r)),

Θ(r, θ, φ, t) ≡
L∑
l=0

l∑
m=−l

N−2∑
n=0

Θm
l,n(t)Y

m
l (θ, φ)ξn(x(r)),

where N means the maximum degree of Chebyshev polynomials and L means
the truncation wavenumber of the spherical harmonics (the time t and the
longitude φ are transformed into T and Φ respectively in solving the nonlinear
traveling wave). The relation between r and x is defined as

r = r(x) ≡ rin + rout
2

+
rout − rin

2
x,

⇔ x(r) = 2r − rin − rout,
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and the basis functions ζn, ψn, ξn are as follows:

ζn(x) ≡ Tn(x)−
2n+ 4

n+ 3
Tn+2(x) +

n+ 1

n+ 3
Tn+4(x),

ψn(x) ≡ Tn(x)− Tn+2(x),

ξn(x) ≡ Tn(x)− Tn+2(x),

where Tn(x) = cos(n arccos(x)) is the Chebyshev polynomial of degree n.
With the above expansion functions in the radial direction, the boundary
conditions (2.13) are satisfied automatically.

88



Acknowledgements

I would like to express my deep respect for Prof. Michio Yamada. His fruitful
and suggestive advice with his enormous background knowledge has always
encouraged me in my studies during my studentship at Kyoto University.

I also would like to express my great appreciation for Prof. Shin-ichi
Takehiro. His attitude to research as a scholar, as well as his deep and
perceptive insight into research objects, have always inspired me to make
efforts to study more.

I appreciate Dr. Yoshitaka Saiki, Dr. Miki U. Kobayashi, Dr. Kiori Obuse
and Dr. Youhei Sasaki, who have given me a lot of helpful comments on my
research. I also would like to thank my colleagues Masanobu Inubushi, Eiichi
Sasaki and Kenta Ishimoto for sharing the great experience at the Research
Institute for Mathematical Sciences, Kyoto University.

My heartfelt appreciation goes to my families, who have been always
supporting me in many aspects throughout my life.

In the last, I am grateful to the RIMS for providing me a stimulating and
brilliant research environment. I sincerely treasure the experience of working
in this wonderful institute. I will always be proud of having been a member
of the RIMS.

Numerical calculations were performed with the computer systems of
the Institute for Information Management and Communication (IIMC) of
Kyoto University and with the computer systems of Research Institute for
Mathematical Sciences (RIMS), Kyoto University. For the calculations of
the critical modes, the nonlinear finite-amplitude solutions and the weakly
nonlinear analyses, we used the library for spectral transform ’ISPACK’
(http://www.gfd-dennou.org/arch/ispack/) [54] and its Fortran90 wrapper
library ’SPMODEL library’ (http://www.gfd-dennou.org/library/spmodel/)
[55]. The subroutines of LAPACK (http://www.netlib.org/lapack/) and the
Fujitsu SSL II were used in the calculation of eigenvalues to obtain the critical
modes and to examine the stability of solutions. The products of the Den-
nou Ruby project (http://www.gfd-dennou.org/library/ruby/) were used to

89



A Acknowledgements

draw the figures. This work was supported by a Grant in-Aid for the Global
COE Program “Fostering top leaders in mathematics – broadening the core
and exploring new ground” from the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) of Japan.

90



References

[1] S. Chandrasekhar, “Hydrodynamic and Hydromagnetic stability,” Ox-
ford Univ. Press, pp654 (1961).

[2] K. Kimura, S. Takehiro and M. Yamada, “Stability and bifurcation dia-
gram of Boussinesq thermal convection in a moderately rotating spher-
ical shell,” Phys. Fluids, 23, 074101 (2011).

[3] J. Yano, “Asymptotic theory of thermal convection in rapidly rotating
systems,” J. Fluid Mech., 243, 103 (1992).

[4] K. Zhang, “On coupling between the Poincare equation and the heat
equation,” J. Fluid Mech., 268, 211 (1994).

[5] K. Zhang, “On coupling between the Poincare equation and the heat
equation: non-slip boundary condition,” J. Fluid Mech., 284, 239
(1995).

[6] C. A. Jones, A. M. Soward and A. I. Mussa, “The onset of thermal
convection in a rapidly rotating sphere,” J. Fluid Mech., 405, 157 (2000).

[7] E. Dormy, A. M. Soward, C. A. Jones, D. Jault and P. Cardin, “The
onset of thermal convection in rotating spherical shells,” J. Fluid Mech.,
501, 43 (2004).

[8] K. K. Zhang and X. Liao, “A new asymptotic method for the analysis
of convection in a rapidly rotating sphere,” J. Fluid Mech., 518, 319
(2004).

[9] K. K. Zhang, X. Liao and F. H. Busse, “Asymptotic solutions of con-
vection in rapidly rotating non-slip spheres,” J. Fluid Mech., 578, 371
(2007).

[10] S. Takehiro and Y.-Y. Hayashi, “Boussinesq convection in rotating
spherical shells –a study on the equatorial superrotation,” The Earth’s

91



REFERENCES

Central Part: Its Structure and Dynamics, edited by T. Yukutake, 123
(1995).

[11] P. H. Roberts, “On the thermal instability of a rotating-fluid sphere
containing heat sources,” Phil. Trans. R. Soc. Lond. A, 263, 93 (1968).

[12] F. H. Busse, “Differential rotation in stellar convection zones,” Astro-
phys. J., 159, 629 (1970).

[13] F. H. Busse, “Thermal instabilities in rapidly rotating systems,” J. Fluid
Mech., 44, part3, 441 (1970).

[14] F. H. Busse, 1973 “Differential rotation in stellar convection zones II,”
Astron. Astrophys., 28, 27 (1973).

[15] G. Geiger and F. H. Busse, “On the onset of thermal convection in
slowly rotating fluid shells,” Geophys. Astrophys. Fluid Dynamics, 18,
147 (1981).

[16] K. Zhang, “Spiralling columnar convection in rapidly rotating spherical
fluid shells,” J. Fluid Mech., 236, 535 (1992).

[17] K. Zhang and F. H. Busse, “On the onset of convection in rotating
spherical shells,” Geophys. Astrophys. Fluid Dynamics, 39, 119 (1987).

[18] M. Ardes, F. H. Busse and J. Wicht, ”Thermal convection in rotating
spherical shells,” Physics of the Earth and Planetary Interiors, 99, 55
(1997).

[19] R. Simitev and F. H. Busse, “Patterns of convection in rotating spherical
shells,” New Journal of Physics, 5, 97.1 (2003).

[20] M. Net, F. Garcia and J. Sánchez, “On the onset of low-Prandtl-number
convection in rotating spherical shells: non-slip boundary conditions,”
J. Fluid Mech., 601, 317 (2008).

[21] F. Garcia, J. Sánchez and M. Net, “Antisymmetric polar modes of ther-
mal convection in rotating spherical fluid shells at high Taylor numbers,”
Phys. Rev. Lett., 101, 194501 (2008).

[22] U. Christensen, “Zonal flow driven by strongly supercritical convection
in rotating spherical shells,” J. Fluid Mech, 470, 115 (2002).

[23] M. Heimpel and J. Aurnou, “Turbulent convection in rapidly rotating
spherical shells: A model for equatorial and high latitude jets on Jupiter
and Saturn,” Icarus, 187, 540 (2007).

92



REFERENCES

[24] J. Aurnou, M. Heimpel and J. Wicht, “The effects of vigorous mixing
in a convective model of zonal flow on the ice giants,” Icarus, 190, 110
(2007).

[25] T. Miyagoshi, A. Kageyama and T. Sato, “Zonal flow formation in the
Earth’s core,” Nature 463, 793 (2010).

[26] F. H. Busse, “A simple model of convection in the Jovian atmosphere,”
Icarus 29, 255 (1976).

[27] F. H. Busse, “A model of mean zonal flows in the major planets,” Geo-
phys. Astrophys. Fluid Dynamics, 23, 153 (1983).

[28] F. H. Busse, “Convection-driven zonal flows in the major planets,” PA-
GEOPH, 121, 375 (1983).

[29] C. C. Porco, R. A. West, A. McEwen, A. D. Del Genio, A. P. Ingersoll,
P. Thomas, S. Squyres, L. Dones, C. D. Murray, T. V. Johnson, J. A.
Burns, A. Brahic, G. Neukum, J. Veverka, J. M. Barbara, T. Denk, M.
Evans, J. J. Ferrier, P. Geissler, P. Helfenstein, T. Roatsch, H. Throop,
M. Tiscareno, and A. R. Vasavada, “Cassini imaging of Jupiter’s atmo-
sphere, satellites, and rings,” Science 299, 1541 (2003).

[30] A. Sanchez-Lavega, J. F. Rojas and P. V. Sada, “Saturn’s zonal winds
at cloud level,” Icarus 147, 405 (2000).

[31] H. B. Hammel, K. Rages, G. W. Lockwood, E. Karkoschka and I. de
Peter, “New measurements of the winds of Uranus,” Icarus 153, 229
(2001).

[32] H. B. Hammel, I. de Peter, S. Gibbard, G. W. Lockwood and K. Rages,
“Uranus in 2003: Zonal winds, banded structures and discrete features,”
Icarus 175, 534 (2005).

[33] L. A. Sromovsky, P. M. Fry, T. E. Dowling, K. H. Baines and S. S. Li-
maye, “Coordinated 1996 HST and IRTF imaging of Neptune and Triton
III. Neptune’s atmospheric circulation and cloud structure,” Icarus 149,
459 (2001).

[34] A. Tilgner and F. H. Busse, “Finite-amplitude convection in rotating
spherical fluid shells,” J. Fluid Mech., 332, 359 (1997).

[35] E. Grote and F. H. Busse, “Dynamics of convection and dynamos in ro-
tating spherical fluid shells,” Fluid Dynamics Research, 28, 349 (2001).

93



REFERENCES

[36] P. Chossat, “Bifurcation and stability of convective flows in a rotating
or not rotating spherical shell,” SIAM J. Applied Math., 37, No.3, 624
(1979).

[37] S. Takehiro, “On the retrograde propagation of critical thermal con-
vection in a slowly rotating spherical shell,” J. Fluid Mech., 659, 505
(2010).

[38] J. Tromp, “Inner-core anisotropy and rotation,” Annu. Rev. Earth
Planet. Sci., 29, 47 (2001).

[39] A. Souriau, R. Garcia and G. Poupinet, “The seismological picture of
the inner core: structure and rotation,” C.R.Geoscience, 335, 51 (2003).

[40] J. Zhang, X. Song, Y. Li, P. G. Richards, X. Sun and F. Waldhauser,
“Inner core differential motion confirmed by earthquake waveform dou-
blets,” Science, 309, 1357 (2005).

[41] G. A. Glatzmaier and P. H. Roberts, “A three-dimensional convective
dynamo solution with rotating and finitely conducting inner core and
mantle,” Phys. Earth Planet. Inter., 91, 63 (1995).

[42] J. Aurnou and P. Olson, “Control of inner core rotation by electromag-
netic, gravitational and mechanical torques,” Phys. Earth Planet. Inter.,
117, 111 (2000).

[43] R. Hollerbach, “A spectral solution of the magneto-convection equations
in spherical geometry,” Int. J. Numer. Meth. Fluids, 32, 773 (2000).

[44] U. R. Christensen, J. Aubert, P. Cardin, E. Dormy, S. Gibbons, G. A.
Glatzmaier, E. Grote, Y. Honkura, C. Jones, M. Kono, M. Matsushima,
A. Sakuraba, F. Takahashi, A. Tilgner, J. Wicht, K. Zhang, “A numer-
ical dynamo benchmark,” Phys. Earth Planet. Inter., 128, 25 (2001).

[45] J. Aubert and M. Dumberry, “Steady and fluctuating inner core rotation
in numerical geodynamo models,” Geophys. J. Int., 184, 162 (2011).

[46] K. Araki, S. Yanase and J. Mizushima, “Symmetry breaking by differ-
ential rotation and saddle-node bifurcation of the thermal convection in
a spherical shell,” J. Phys. Soc. Japan, 65, No.12, 3862 (1996).

[47] S. Takehiro and Y.-Y. Hayashi, “Mean zonal flows excited by critical
thermal convection in rotating spherical shells,” Geophys. Astrophys.
Fluid Dynamics, 90, 43 (1999).

94



REFERENCES

[48] K. Kimura, S. Takehiro and M. Yamada, “Torques on the inner and
outer spheres induced by the Boussinesq thermal convection in a rotating
spherical shell,” J. Phys. Soc. Japan, 81, 084401 (2012).

[49] L. D. Landau and E. M. Lifshitz, “Fluid Mechanics, Second edition:
Volume 6 (Course of Theoretical Physics),” Butterworth-Heinemann
(1987).

[50] I. Proudman, “The almost-rigid rotation of viscous fluid between con-
centric spheres,” J. Fluid Mech., 1, 505 (1956).

[51] K. Stewartson, “On almost rigid rotations Part 2,” J. Fluid Mech., 26,
131 (1966).

[52] R. Hollerbach, “Magnetohydrodynamic Ekman and Stewartson layers
in a rotating spherical shell,” Proc. R. Soc. Lond. A, 444, 333 (1994).

[53] E. Dormy, P. Cardin and D. Jault, “MHD flow in a slightly differen-
tially rotating spherical shell, with conducting inner core, in a dipolar
magnetic field,” Earth Planet. Sci. Lett., 160, 15 (1998).

[54] K. Ishioka, ispack-0.96, http://www.gfd-dennou.org/arch/ispack/, GFD
Dennou Club (2011).

[55] S. Takehiro, Y. SASAKI, Y. Morikawa, K. Ishioka, M. Odaka, Y.O.
Takahashi, S. Nishizawa, K. Nakajima, M. Ishiwatari and Y.-Y.
Hayashi, SPMODEL Development Group, Hierarchical Spectral Models
for GFD (SPMODEL), http://www.gfd-dennou.org/library/spmodel/,
GFD Dennou Club (2011).

95


	web-title
	Dthesis_RIMSpreprint

