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THE STATE SUM INVARIANT OF 3-MANIFOLDS
CONSTRUCTED FROM THE E6 LINEAR SKEIN

KENTA OKAZAKI

Abstract. The E6 state sum invariant is a topological invariant of closed 3-
manifolds constructed by using the 6j-symbols of the E6 subfactor. In this paper,
we introduce the E6 linear skein as a certain vector space motivated by E6 subfactor
planar algebra, and develop its linear skein theory by showing many relations in
it. By using this linear skein, we give an elementary self-contained construction of
the E6 state sum invariant.

1. Introduction

In [TV], Turaev and Viro constructed a state sum invariant of 3-manifolds based
on their triangulations, by using the 6j-symbols of representations of the quantum
group Uq(sl2). Further, Ocneanu [O] (see also [EK, KS]) generalized the construction
to the case of other types of 6j-symbols, say, the 6j-symbols of subfactors. In the
construction, we consider colorings (called states, historically) of edges and faces
of a triangulation of a 3-manifold, and associate colored tetrahedra to values of
the 6j-symbols. A state sum invariant is defined by a sum of the product of such
values of tetrahedra, where the sum runs over all admissible colorings. When the
6j-symbols can be obtained from representations of a quantum group, it is known
(see [T]) that the state sum invariant is equal to the square of the absolute value
of the Reshetikhin-Turaev invariant, and the calculation of the state sum invariant
is reduced to the calculation of the Reshetikhin-Turaev invariant. However, in the
case of the 6j-symbols of the E6 subfactor, such Reshetikhin-Turaev invariant can
not be defined, and it is necessary to calculate the state sum invariant directly. For
some calculations of the E6 state sum invariant, see [SuW, W], where they construct
the E6 state sum invariant directly from concrete values of the 6j-symbols of the E6

subfactor given in [I].
We briefly recall the E6 subfactor; see, for example, [EK] for details. A subfactorN

is a certain subalgebra of a certain C∗-algebraM. A principal graph of a subfactor
is (roughly speaking) a graph whose vertices are irreducible N -N bimodules and
irreducible N -M bimodules, and an irreducible N -N bimodule X is connected to
an irreducible N -M bimodule Y by an edge when Y appears in the irreducible
decomposition of X ⊗

N
M. The E6 subfactor is the subfactor whose principal graph

is of the following form,

(1.1)

1
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where circled vertices areN -N bimodules and the other vertices areN -M bimodules.
The 6j-symbols are coefficients of a transformation between bases of

(1.2) Hom
(
Vl, (Vi ⊗ Vj)⊗ Vk

)
and Hom

(
Vl, Vi ⊗ (Vj ⊗ Vk)

)
,

though it is difficult in general to calculate their concrete values directly from the
subfactor, since these bimodules are infinite dimensional.

We briefly recall the sl2 linear skein; see [KL, L] for details. It is known that the
Jones polynomial of links can be defined by using the Kauffman bracket, which is de-
fined by a recursive relation among link diagrams. Lickorish introduced the sl2 linear
skein, which is the vector space spanned by link diagrams subject to the recursive
relation of the Kauffman bracket. It is a key point that we can calculate the value of
any link diagram by graphical calculation using the defining relations of the linear
skein recursively. Further, he introduced the Jones-Wenzl idempotents as elements
of the sl2 linear skein

(
white boxes defined in (2.5)

)
, corresponding to irreducible

representations of the quantum group Uq(sl2). By using these Jones-Wenzl idempo-
tents, he gave an elementary self-contained construction of the Reshetikhin-Turaev
invariant; in fact, this construction is quite useful when calculating the Reshetikhin-
Turaev invariant of concrete 3-manifolds; see [KL]. Moreover, it is known [KL, L]
that we can describe the 6j-symbols of representations of Uq(sl2) in terms of the sl2
linear skein, as coefficients of a transformation between the following two graphs,

(1.3) ←→ ,

which describes the transformation of (1.2) graphically.
As a graphical approach to subfactors, Jones [J] introduced planar algebras, which

are a kind of algebras given graphically in the plane. As the Kuperberg program
says (see [MPS]), it is a problem to
(i) give a presentation by generators and relations for each planar algebra, and
(ii) show basic properties of the planar algebra based on such a presentation.
For the D2n planar algebra, (i) and (ii) have been done in [MPS]. For the E6 and
E8 planar algebras, Bigelow [B] has done (i), and has partially done (ii) by using
the existence of the subfactor planar algebra, though idempotents corresponding to
N -N bimodules are not given in the E6 planar algebra in [B].

In this paper, we introduce the E6 linear skein, motivated by Bigelow’s generators
and relations of the E6 planar algebra. We define the E6 linear skein S(R2) of R2 to be
the vector space spanned by certain 6-valent graphs (which we call planar diagrams)
subject to certain relations (Definition 2.1). Our relations are a modification of
Bigelow’s relations; we show that they are equivalent in Section 6.1. We show that
S(R2) is 1-dimensional (Proposition 2.2), which means the key point that we can
calculate the value of any planar diagram by graphical calculation using the defining
relations of the linear skein recursively. That is, in order to prove Proposition 2.2,
we show that
(1) any planar diagram is equal to a scalar multiple of the empty diagram in S(R2),
and
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(2) such a scalar is uniquely determined for any planar diagram.
We give a self-contained combinatorial proof of them. To show them, it is important
to give an efficient algorithm to reduce any planar diagram to the empty diagram.
Such a reduction is done by decreasing the number of 6-valent vertices of a planar
diagram. To do this, we use the relation (2.4) (one of our relations), which can reduce
two vertices connected by two parallel edges, while the corresponding relation (6.1)
(one of Bigelow’s relations) reduces two vertices connected by three parallel edges.
In fact, to reduce planar diagrams, our relations are more efficient than Bigelow’s
relations, and this is a reason why we define the E6 linear skein by our relations,
instead of Bigelow’s relations. We show (1) by decreasing the number of vertices of
any planar diagram by using (2.4). To show (2), we show that the resulting value
does not depend on the choice of a process of decreasing the number of vertices; we
consider all such processes and show the independence on them concretely.

Further, we introduce idempotents (gray boxes in Section 3) in our linear skein,
corresponding to the irreducible N -N bimodules V0, V2, V4 in (1.1). It is known, see
[I], that the fusion rule algebra of the E6 subfactor is given by the product shown in
the following table, and the quantum dimensions of V0, V2, V4 are equal to 1, 1+

√
3,

1 respectively.

V0 V2 V4

V0 V0 V2 V4

V2 V2 V0+2V2+V4 V2

V4 V4 V2 V0

In particular, V0 is the N -N bimodule N , which gives the unit of the fusion rule
algebra. Corresponding to V0, we define the gray box over 0 strand to be the empty
diagram. Further, V2 is an irreducible N -N bimodule in the irreducible decompo-
sition of M ⊗

M
M. Corresponding to V2, we define the gray box over 2 strands to

be the Jones-Wenzl idempotent over 2 strands. Furthermore, V4 is an irreducible
N -N bimodule in the irreducible decomposition ofM⊗

M
M⊗

N
M⊗

M
M. Correspond-

ing to V4, we define the gray box over 4 strands to be a certain idempotent over
4 strands. We show that the values of the closures of these gray boxes are equal
to the quantum dimensions of V0, V2, V4 (Lemma 3.2). By using these gray boxes,
we introduce colored planar trivalent graphs, whose edges are colored by these gray
boxes, where we define admissible trivalent vertices in (3.5) corresponding to the
above mentioned fusion rule algebra. In particular, we note that we consider two
kinds of trivalent vertices when the adjacent three edges are colored by 2, 2, 2, since
the summand V2 in V2⊗V2 has multiplicity 2. Moreover, we consider the linear skein
H(i1, i2, · · · , in) spanned by planar diagrams on a disk bounded by the gray boxes
over i1 strands, i2 strands, · · · , in strands, corresponding to the intertwiner space
Hom(V0, Vi1⊗Vi2⊗· · ·⊗Vin). We show that a basis of this space is given by colored
trivalent trees (Proposition 4.9). In particular, when n = 4, we can describe the 6j-
symbols in terms of colored planar trivalent graphs as coefficients of a transformation
between bases of the forms in (1.3).
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By using these 6j-symbols, we give a construction of our state sum invariant in
terms of colored planar trivalent graphs (Definition 5.1). It is known as a general
procedure that the topological invariance of such a state sum invariant is shown
from the defining relation of the 6j-symbols. We review this procedure in terms
of our E6 linear skein (the proof of Theorem 5.2). In particular, in the proof, we
show a pentagon relation of the 6j-symbols by using a basis of H(i1, i2, · · · , i5) given
in Proposition 4.9. We show that our state sum invariant is equal to the E6 state
sum invariant (Proposition 6.2), since our 6j-symbols can be transformed into the
6j-symbols of the E6 subfactor given in [I].

We comment on a topological aspect of our construction; see [KL] for this aspect.
A triangulation of a 3-manifold is locally described by a triangulation of a 3-ball.
When a 3-ball has a triangulation, it induces a triangulation of the boundary 2-
sphere, and we consider its dual planar trivalent graph. In this correspondence,
“gluing a tetrahedron on a 3-ball” corresponds to a fusion of the dual trivalent
graph, which is described by 6j-symbols.

From this viewpoint, we calculate our state sum invariant for some concrete 3-
manifolds in Section 7. It is expected that, when we study topological aspects of the
invariant, it is useful to construct a state sum invariant in terms of the linear skein.

The paper is organized as follows. In Section 2, we introduce the E6 linear skein
S(R2) of R2, and show that S(R2) is 1-dimensional. Further, we show that S(R2)
is spherical, that is, we can regard planar diagrams in R2 as in S2 = R2 ∪ {∞}. In
Section 3, we introduce gray boxes and colored planar trivalent graphs. In Section 4,
we introduce the space H(i1, i2, · · · , in), and give a basis of this space. By using this
basis, we define the 6j-symbols. In Section 5, we construct our state sum invariant
by using these 6j-symbols. In Section 6, we show that the defining relations of our
E6 linear skein are equivalent to Bigelow’s relations. Further, we show that our state
sum invariant is equal to the E6 state sum invariant. In Section 7, we calculate our
state sum invariant for the lens spaces L(4, 1), L(5, 2) and L(5, 1) in terms of the
E6 linear skein. In Appendix A, we present the concrete values of the weights. In
Appendix B, we show that our 6j-symbols can be transformed into the 6j-symbols
of the E6 subfactor.
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Notation. Throughout the paper, the scalar field for every vector space is the
complex field C. We put q = exp(π

√
−1/12), [n] = (qn − q−n)/(q − q−1), and

ω = exp(4π
√
−1/3). Further, d0 = 1, d2 = [3], d4 = 1 (by Lemma 3.2), and we put

w = d20 + d22 + d24 = 2 + [3]2 = 6 + 2
√
3. We note that

(1.4) [2] =

√
2 +
√
6

2
, [3] =

√
2 [2] = 1 +

√
3, [4] =

√
3 [2] =

3
√
2 +
√
6

2
,

[5] = [2]2 = 2 +
√
3, [6] = 2 [2] =

√
2 +
√
6, [12− n] = [n].

2. The E6 linear skein

In this section, we introduce the E6 linear skein of R2 and show that it is 1-
dimensional in Section 2.1. Further, we introduce the E6 linear skein of a disk and
show some properties in the E6 linear skein in Section 2.2.

2.1. The E6 linear skein of R2. In this section, we introduce the E6 linear skein
S(R2) of R2 as a vector space spanned by certain planar graphs in Definition 2.1,
and show that S(R2) is a 1-dimensional vector space spanned by the empty diagram
in Proposition 2.2.

We define a planar diagram to be a 6-valent graph (possibly containing closed
curves) embedded in R2 such that each vertex is depicted by a disk whose boundary
has a base point, as shown in the following picture.

We regard isotopic planar diagrams as equivalent planar diagrams. A planar diagram
is said to be connected if it is connected as a graph. A cap of a planar diagram is
an edge bounding a region of the shape of a disk as shown in . A digon of a
planar graph is a region of the shape of a disk bounded by two edges and two vertices

as shown in .

Definition 2.1. We define the E6 linear skein of R2, denoted by S(R2), to be the
vector space spanned by planar diagrams subject to the following relations,

D ∪ (a closed curve) = [2]D for any planar diagram D,(2.1)

(A planar diagram containing a cap) = 0,(2.2)

= ω ,(2.3)

= [4] + [3][4] .(2.4)
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Here, in each of (2.3) and (2.4), pictures in the formula mean planar diagrams, which
are identical except for a disk, where they differ as shown in the pictures. The white

boxes, called the Jones-Wenzl idempotents, are inductively defined by = ,

and

=
n-1
n-1 − [n− 1]

[n]

n-1
n-2
n-1

1

1

for 2 ≤ n ≤ 11,(2.5)

where a thick strand attached with an integer n means n parallel strands.

It is known, see for example [L], that the Jones-Wenzl idempotents satisfy the
following properties in the linear skein,

= ,(2.6)

= 0 (i = 1, . . . , n− 1),(2.7)

n-1
n-1 =

n-1
n-1 =

[n+ 1]

[n]

n-1
n-1(2.8)

for 1 ≤ n ≤ 11.
The aim of this section is to show the following proposition, which implies that

S(R2) is 1-dimensional.

Proposition 2.2. There exists an isomorphism ⟨ ⟩ : S(R2) → C which takes the
empty diagram ∅ to 1.

Proof. We show that S(R2) is spanned by the empty diagram ∅, i.e., at most 1-
dimensional, as follows. Let D be a planar diagram. We show that D is equal to a
scalar multiple of ∅ in S(R2). By considering an innermost connected component of
D, we can reduce the proof to the case where D is connected. If D has no vertices,
then D is the empty diagram or a closed curve. Thus, by (2.1), D is equal to ∅
or [2]∅. If D has just one vertex, then D must have a cap, and thus D = 0 by
(2.2). Hence, we can assume that D is a connected planar diagram with at least two
vertices and no caps. Then, by Lemma 2.3 below, D has a digon. By using (2.3), we
move the base points of the vertices of this digon as shown in the left-hand side of
(2.4). Further, by applying the left-hand side of (2.4) to this digon, D is presented
by a linear sum of planar diagrams with fewer vertices. By repeating this argument,
D can be presented by a scalar multiple of ∅ in S(R2). Hence, S(R2) is spanned by
the empty diagram ∅.

We show the proposition by improving the above argument. Let S̃k(R2) be the
vector space freely spanned by planar diagrams with at most k vertices. We will
inductively define the linear map ⟨ ⟩k : S̃k(R2) → C for k = 0, 1, 2, · · · , extending
⟨ ⟩k−1, satisfying that ⟨∅⟩k = 1 and⟨

D ∪ (a closed curve)
⟩
k

= [2] ⟨D⟩k for any planar diagram D,(2.9) ⟨
(A planar diagram containing a cap)

⟩
k
= 0,(2.10)
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k
= ω

⟨ ⟩
k
,(2.11) ⟨ ⟩

k
= [4]

⟨ ⟩
k
+ [3][4]

⟨ ⟩
k
.(2.12)

If such linear maps exist, we obtain a non-trivial linear map ⟨ ⟩ : S(R2) → C as the
inductive limit of them, and such a linear map ⟨ ⟩ must be isomorphic, since S(R2)
is at most 1-dimensional as shown above. In the following of this proof, we define
⟨ ⟩k for k = 0, 1, · · · by induction on k showing (2.9)–(2.12).

When k = 0, we define ⟨ ⟩0, as follows. Let D be a planar diagram with no vertices.
Then, D is a union of closed curves. We define ⟨D⟩0 = [2]m, where m is the number
of closed curves of D. We can verify (2.9) for k = 0 by definition, and the conditions
(2.10)–(2.12) are trivial in this case.

When k = 1, we define ⟨ ⟩1, as follows. For a planar diagram D with no vertices,
we put ⟨D⟩1 = ⟨D⟩0. For a planar diagram D with just one vertex, we put ⟨D⟩1 = 0,
noting that D must have a cap. We can verify (2.9)–(2.11) for k = 1 by definition,
and the condition (2.12) is trivial in this case.

When k ≥ 2, assuming that there exists a linear map ⟨ ⟩k−1 : S̃k−1(R2) → C
satisfying (2.9)–(2.12) for k − 1, we define a map ⟨ ⟩k, as follows. For a planar
diagram D with at most k−1 vertices, we put ⟨D⟩k = ⟨D⟩k−1. For a planar diagram
D with just k vertices, we define ⟨D⟩k, as follows. When D is disconnected, we put
⟨D⟩k to be the product of ⟨connected component of D⟩k. If D contains a cap, we
put ⟨D⟩k = 0. Hence, it is sufficient to define ⟨D⟩k for a connected planar diagram D
with no caps. By Lemma 2.3 below, such a planar diagram has a digon. By applying
the left-hand side of the following formula to this digon, we define ⟨D⟩k by⟨ ⟩

k
= ωη

(
[4]
⟨ ⟩

k−1
+ [3][4]

⟨ ⟩
k−1

)
,(2.13)

where the integer η is defined by the position of the base points of the diagram in
the left-hand side, as follows. We move each of the base points around the vertices

clockwisely until the diagram become , and η is the number of times the base

points pass the edges. For example, if the diagram in the left-hand side is , then

η = 5+ 2 = 7. We note that the planar diagram in the left-hand side has k vertices,
and the planar diagrams in the right-hand side have k − 1 and k − 2 vertices. We
also note that the definition (2.13) is well defined independently of the π-rotation of
this substitution, since the right-hand side of (2.13) is invariant under the π-rotation
by the k−1 case of Lemma 2.5 below. Further, in order to complete the proof, we
must show that ⟨D⟩k does not depend on the choice of a digon, and that this ⟨ ⟩k
satisfies (2.9)–(2.12).

We show that ⟨D⟩k does not depend on the choice of a digon, as follows. For a
planar diagram D with a digon R, we put DR to be the linear sum of planar diagrams

obtained from D by substituting ωη
(
[4] + [3][4]

)
into of this
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digon. We define J (4) by

= [4] + [3][4] .

Let D be a planar diagram with two digons R1 and R2. Then, we have the following
three cases of the mutual positions of R1 and R2; see Figure 1.
(a) The vertices of R1 and R2 are distinct.
(b) R1 and R2 have one common vertex.
(c) The vertices of R1 and R2 are equal.
We assume that the base points of vertices of R1 and R2 are as shown in Figure 1,
since the other cases are reduced to this case from the definition of η. It is sufficient
to show that ⟨DR1⟩k−1 = ⟨DR2⟩k−1 in each of Cases (a)–(c).

Figure 1. Possible positions of two digons R1 and R2.

Case (a). ⟨DR1⟩k−1 = ⟨DR2⟩k−1, since they are equal to
⟨

⨿
⟩
k−1

by

(2.12) for k − 1, completing this case.

Case (b). The equation ⟨DR1⟩k−1 = ⟨DR2⟩k−1 is rewritten as⟨ ⟩
k−1

= ωs
⟨ ⟩

k−1
(s = 0, 1),(2.14)

and we show this formula in Lemma 2.10 below, completing this case.

Case (c). When R1 and R2 have one common edge, it is enough to show that⟨ ⟩
k−1

=

⟨ ⟩
k−1

,

and this follows from (2.8) and Lemma 2.4 below. When the edges of R1 and R2 are
distinct, it is enough to show that⟨ ⟩

k−1

= ωt−s

⟨ ⟩
k−1

(0 ≤ s, t ≤ 2)(2.15)

with s + t being even, and we show this formula in Lemma 2.8 below, completing
this case.

Therefore, we showed that ⟨D⟩k does not depend on the choice of a digon, and hence,
we obtain a well-defined linear map ⟨ ⟩k : S̃k(R2)→ C.
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Finally, we show that ⟨ ⟩k satisfies (2.9)–(2.12), as follows. We recall that ⟨ ⟩k is
defined by

⟨D⟩k =


∏
⟨connected component of D⟩k if D is disconnected,

0 if D is a connected planar diagram with a cap,

⟨DR⟩k−1 if D is a connected planar diagram with no cap.

For any planar diagram D with k vertices, we have that⟨
D ∪ (a closed curve)

⟩
k
= ⟨D⟩k

⟨
(a closed curve)

⟩
k
= [2]⟨D⟩k,

from the definition of ⟨ ⟩k for disconnected planar diagrams, and hence, we obtain
(2.9). From the definition of ⟨ ⟩k, we obtain (2.10). From the definition of ⟨ ⟩k and
(2.11) for k−1, we obtain (2.11). The remaining case is to show (2.12). Let D be the
planar diagram in the left-hand side of (2.12). It is sufficient to show (2.12) when D
is connected. If D does not have a cap, (2.12) is obtained from (2.13). We assume
that D has a cap. If the cap is on a vertex outside the picture of the left-hand side
of (2.12), both sides of (2.12) are 0 by definition. Otherwise, the cap is on a vertex
in the picture of the left-hand side of (2.12). In this case, the left-hand side of (2.12)
is 0 by definition, and the right-hand side of (2.12) is also 0 by (2.7). Hence, we
obtain (2.12). Therefore, we showed that ⟨ ⟩k satisfies (2.9)–(2.12), completing the
proof. □

In the proof of Proposition 2.2, we used Lemmas 2.3, 2.4, 2.5, 2.8 and 2.10 below.
We show them in the following of this section.

Lemma 2.3. A connected planar diagram with at least two vertices and no caps has
a digon.

Proof. Let D be a planar diagram with no caps. In this proof, we regard D as on
R2 ∪ {∞} = S2. It is sufficient to show that D has at least two digons in S2.

Let v, e, and f be the numbers of vertices, edges, and faces of D respectively.
Let Cn be the number of n-gons of D. By definition, f =

∑
k≥2 Ck. Further,

6v = 2e =
∑

k≥2 kCk, since D is 6-valent. From these equations and Euler’s formula
v − e+ f = 2, we obtain 6 = C2 −

∑
k≥4(k − 3)Ck ≤ C2. Hence, D has at least two

digons in S2, as required. □
Lemma 2.4. For an integer k ≥ 2, let ⟨ ⟩k be a linear map S̃k(R2) → C satisfying
(2.9)–(2.11). Then, ⟨ ⟩

k
=
⟨ ⟩

k
=

1

[4]

⟨ ⟩
k
.

Proof. By calculating the Jones-Wenzl idempotent concretely by definition, we have
that

= − [3]

[4]

(
+

)
+

[2]

[4]

(
+ + +

)
− [2]2

[4]
(2.16)

− 1

[4]

(
+

)
+

[2]

[3][4]
− [2]2

[3][4]

(
+

)
+

[2]3

[3][4]
.
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By using the above formula, we have that

(2.17) = − [3]

[4]

(
+

)
+

[2]

[4]

(
+

)
− 1

[4]

(
+

)
.

Hence, ⟨ ⟩
k
=
(
[2]− 2[3]

[4]

)⟨ ⟩
k
=

1

[4]

⟨ ⟩
k
,

⟨ ⟩
k
= − 1

[4]
(ω + ω−1)

⟨ ⟩
k
=

1

[4]

⟨ ⟩
k
,

which imply the required formula of the lemma. □

Lemma 2.5. For an integer k ≥ 2, let ⟨ ⟩k be a linear map S̃k(R2) → C satisfying
(2.9)–(2.12). Then, ⟨ ⟩

k
=
⟨ ⟩

k
.

Proof. We put D = and D′ = , i.e., D and D′ are planar diagrams

which are identical except for a disk, where they differ as shown in these pictures.
Let Γ be a planar graph obtained from D by replacing the disk with an 8-valent
vertex. If Γ has a cap on a 6-valent vertex, then both ⟨D⟩k and ⟨D′⟩k are equal to 0
by (2.10). Hence, we assume that there are no caps on 6-valent vertices of Γ.

If Γ has at least three 6-valent vertices, then, by Lemma 2.6 below, Γ has a digon
whose vertices are 6-valent. By applying (2.12) to this digon, we can decrease the
number of vertices of D and D′, keeping the required formula unchanged. Hence,
repeating this argument, we can reduce the proof of the lemma to the case where Γ
has at most two vertices.

If Γ has no 6-valent vertex, then both ⟨D⟩k and ⟨D′⟩k are equal to 0 by (2.10),
since any planar diagram with just one vertex must have a cap. Hence, the lemma
holds in this case.

If Γ has one 6-valent vertex, then Γ must have a cap on the 8-valent vertex. Hence,
by (2.7) and Lemma 2.4, we have that ⟨D⟩k = ⟨D′⟩k. Therefore, the lemma holds in
this case.

If Γ has two 6-valent vertices, then we show the lemma, as follows. If Γ has a cap
on the 8-valent vertex, we obtain the lemma as shown above. Hence, we assume that
Γ has no cap on the 8-valent vertex. Then, Γ must be either

Γ1,i = (0 ≤ i ≤ 2) or Γ2,i = (0 ≤ i ≤ 4),

where we depict the 8-valent vertex by . Among them, Γ1,i for i ̸= 1 and Γ2,i

for any i have a digon, and we can show the lemma as shown above in this case.
The remaining case is Γ1,1. In this case, the outer region of D and D′ is depicted by
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(0 ≤ j ≤ 4), and hence, D and D′ are isotopic. Therefore, the lemma

holds in this case. □
Lemma 2.6. Let Γ be a connected planar graph with no caps, whose vertices are
one 8-valent vertex and at least three 6-valent vertices. Then, Γ has a digon whose
vertices are 6-valent.

Proof. In this proof, we regard Γ as on R2 ∪ {∞} = S2. We put v, e, f and Cn

(n = 2, 3, . . . ) of Γ in the same way as in the proof of Lemma 2.3. Let C ′
2 be the

number of digons of Γ whose vertices are 6-valent, and let C ′′
2 be the number of digons

of Γ which have the 8-valent vertex. By definition, C2 = C ′
2 + C ′′

2 . It is sufficient to
show that C ′

2 ≥ 2.
Let m be the number of the vertices adjacent to the 8-valent vertex. We can verify

that m ≥ 2 and C ′′
2 ≤ 8−m. In a similar way as in the proof of Lemma 2.3, we have

that 6(v − 1) + 8 = 2e =
∑

k≥2 kCk and f =
∑

k≥2Ck. From these equations and
Euler’s formula v − e+ f = 2, we have that

C ′
2 −

∑
k≥4

(k − 3)Ck = 7− C ′′
2 ≥ m− 1.

If m ≥ 3 or Γ has a k-gon with k ≥ 4, we have that C ′
2 ≥ 2, as required. Hence,

we assume that m = 2, and that each face of Γ is a digon or a 3-gon. Then, the

neighborhood of the 8-valent vertex must be . Since Γ has at least three

6-valent vertices, this contradicts to the connectivity of Γ. Hence, we obtain the
lemma. □

In order to show Lemma 2.8 and 2.10, we show Lemma 2.7 below, which says that
an edge can “pass-over” a vertex. It is known, see for example [L], that a tangle
diagram is regarded as in the linear skein by putting

= A + A−1

with A =
√
−1 q1/2 =

√
−1 exp(π

√
−1/24), noting that [2] = −A2 − A−2. Further,

it is known, see [L], that the value of a tangle diagram in the linear skein is invariant
under Reidemeister moves II and III.

Lemma 2.7. For an integer k ≥ 2, let ⟨ ⟩k be a linear map S̃k(R2) → C satisfying
(2.9)–(2.12). Then, ⟨ ⟩

k

=

⟨ ⟩
k

.

Proof. Since ⟨·⟩k of the right-hand side of the following formula is equal to 0 by
Lemma 2.5,

− = − ,(2.18)
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it is sufficient to show the above formula. In the following of this proof, we show
that each side of (2.18) is equal to

7∑
j=0

ζjDj ,

where we put ζ = exp(−π
√
−1/4) and

D0 = , D1 = , D2 = , . . . , D7 = .

We show that the left-hand side of (2.18) is equal to
∑7

j=0 ζ
jDj, as follows. By

expanding all crossings of the left-hand side of the following formula and by moving
the base point, we have that

= A−6 + ω−1A−4 + ω−2A−2 + · · ·+ A6

=
7∑

j=1

ω−j+1A2j−8Dj = −
7∑

j=1

ζjDj = −
7∑

j=0

ζjDj .

Hence, the left-hand side of (2.18) is equal to
∑7

j=0 ζ
jDj.

We show that the right-hand side of (2.18) is equal to
∑7

j=0 ζ
jDj, as follows. By

(2.17), we have that

= D0 −
[3]

[4]
(ω−1D1 + ωD7) +

[2]

[4]
(ωD2 + ω−1D6)−

1

[4]
(D3 +D5).

By considering its mirror image, we have that

= D4 −
[3]

[4]
(ωD3 + ω−1D5) +

[2]

[4]
(ω−1D2 + ωD6)−

1

[4]
(D1 +D7).

Hence, the right-hand side of (2.18) is equal to

D0 −D4 +
1− [3]ω−1

[4]
(D1 −D5) +

[2](ω − ω−1)

[4]
(D2 −D6) +

[3]ω − 1

[4]
(D3 −D7).

Further, we can verify that

1− [3]ω−1

[4]
= ζ,

[2](ω − ω−1)

[4]
= ζ2,

[3]ω − 1

[4]
= ζ3

by direct calculation. Therefore, the right-hand side of (2.18) is equal to
∑7

j=0 ζ
jDj,

as required. □
It is known, see for example [L], that

= (−1)nAn(n+2) , = (−1)nA−n(n+2) (1 ≤ n ≤ 11).(2.19)

Lemma 2.8. The formula (2.15) holds for s, t ∈ {0, 1, 2} with s+ t being even.
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Proof. When s ̸= t, that is, (s, t) = (2, 0) or (0, 2), the both sides of (2.15) are equal
to 0 from Lemma 2.9 below. Hence, we may assume s = t. By Lemma 2.7, the
left-hand side of (2.15) is equal to⟨ ⟩

k−1
=
⟨ ⟩

k−1
= [4][5]

⟨ ⟩
k−1

,

where the first equality is obtained by expanding the crossings, the second one is
obtained by Lemma 2.4 and (2.8). In the same way, we can verify that the right-
hand side of (2.15) is equal to

[4][5]
⟨ ⟩

k−1
.

Further, we have that⟨ ⟩
k−1

=
⟨ ⟩

k−1
=
⟨ ⟩

k−1
,

where the first equality is obtained by Lemma 2.7, the second one is obtained by
(2.19) and by expanding the crossings. Therefore, we obtain (2.15), as required. □

Lemma 2.9. For an integer k ≥ 2, let ⟨⟩k be a linear map S̃(R2) −→ C satisfying

(2.9)–(2.12). Then,
⟨ ⟩

k
= 0 for m ∈ {1, 2, 4, 5}.

Proof. We have that⟨ ⟩
k
=
⟨ ⟩

k
=
⟨ ⟩

k
= A−4m(m+1)

⟨ ⟩
k
,

where the second equality is obtained by Lemma 2.7 and the third one is obtained

by (2.19). Since A−4m(m+1) = exp(−2π
√
−1 · m(m+1)

12
) ̸= 1, we obtain the required

formula. □
Lemma 2.10. The formula (2.14) holds for s = 0, 1.

Proof. We first show (2.14) for s = 0, that is,⟨ ⟩
k−1

=
⟨ ⟩

k−1
.(2.20)

By using (2.16), we have that⟨ ⟩
k−1

=
⟨ ⟩

k−1
=
⟨ ⟩

k−1
+

[2]

[4]

⟨ ⟩
k−1

= [4]
⟨ ⟩

k−1
+ [3][4]

⟨ ⟩
k−1

+
[2]

[4]

⟨ ⟩
k−1

= [4]
⟨ ⟩

k−1
− [3]

⟨ ⟩
k−1

+ [3][4]
⟨ ⟩

k−1
+

[2]

[4]

⟨ ⟩
k−1

.
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Therefore, the left-hand side of (2.20) is equal to

[4]
⟨ ⟩

k−1
+ [3][4]

⟨ ⟩
k−1

= [4]2
⟨ ⟩

k−1
+ [3][4]2

⟨ ⟩
k−1

+ [2]
⟨ ⟩

k−1
.

By using Lemma 2.5, we can verify that the right-hand side of (2.20) is also equal to
the above formula. Hence, we obtain (2.20).

We next show (2.14) for s = 1, that is,⟨ ⟩
k−1

= ω
⟨ ⟩

k−1
.(2.21)

We have ⟨ ⟩
k−1

=
⟨ ⟩

k−1
= −A6

⟨ ⟩
k−1

,

where the first equality is obtained by Lemma 2.7 and the second one is obtained by
expanding the crossings. By applying (2.20), this is equal to

−A6
⟨ ⟩

k−1
= −A6

⟨ ⟩
k−1

= −A8
⟨ ⟩

k−1
.

Since −A8 = ω, we obtain (2.21). □

2.2. Some properties in the E6 linear skein. In this section, we introduce the
E6 linear skein of a disk and show some properties in the E6 linear skein.

For an integer m ≥ 0, let (D2, 2m) denote a disk D2 with fixed distinct 2m points
on its boundary. We define a planar diagram in (D2, 2m) to be a graph (possibly
containing closed curves) embedded in D2 whose vertices are 2m univalent vertices
on the fixed points of the boundary of D2 and 6-valent vertices, such that each 6-
valent vertex is depicted by a disk whose boundary has a base point, as shown in the
following picture.

(m = 7)

We regard isotopic planar diagrams as equivalent planar diagrams. In the following
of this paper, we omit to draw the disk D2 of a planar diagram. For an integerm ≥ 0,
we define the E6 linear skein of (D2, 2m), denoted by S(D2, 2m), to be the vector
space spanned by planar diagrams in (D2, 2m) subject to the relations (2.1)–(2.4).

Lemma 2.11. For any planar diagram T in (D2, 2),

=

in S(R2).
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Proof. From (2.4), we have that

= [4] − [3][4] ,

= [4] − [3][4]

in S(D2, 8). Comparing these equations, we have that

=

in S(D2, 8). Hence, in the same way as in the proof of Lemma 2.7, we obtain

=(2.22)

in S(D2, 8). Therefore, we have that

= =

where the first equality is obtained by (2.22) and the second one is obtained by
(2.19). Hence, we obtain the required formula. □
By this lemma, we can regard planar diagrams in R2 as in S2 = R2 ∪ {∞}.

3. Colored planar trivalent graphs

In this section, we introduce gray boxes as certain idempotents in the E6 linear
skein, and introduce colored planar trivalent graphs as planar trivalent graphs whose
edges are colored by such gray boxes. Further, we calculate the values of some simple
colored planar trivalent graphs.

We define gray boxes ∈ S(D2, 2n) for n = 0, 2, 4 by

= ∅, = , = − 1

[2]2[4]
.

We note that, by definition, these gray boxes are symmetric with respect to π ro-
tation, like the white boxes of the Jones-Wenzl idempotents. We show some basic
properties of the gray boxes in the following lemma.

Lemma 3.1.

(1) = 0 for i = 0, 1, 2.

(2) =
1

[4]
− 1

[2]2[4]
.

(3) = −[3] = .

(4) = for n = 0, 2, 4.
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Proof. We obtain (1) from the definition of gray boxes and (2.2) and (2.7).
We show (2), as follows. In the same way as in the proof of Lemma 2.4, we have

that

=
1

[4]
.(3.1)

Applying this formula and (2.8) to (2.4), we have that

= + [2]2[3] .(3.2)

Hence,

= − 1

[2]2[4]
=

[5]− [3]

[4]
− 1

[2]2[4]
,

where we obtain the second equality by (2.8) and (3.2). Since [5]−[3] = 1, we obtain
(2).

We show (3), as follows. From (2.4) and the definition of the gray box, we have
that

=
1

[2]2

(
−

)
.(3.3)

Hence, we have that

=
1

[2]2

(
−

)
=

1

[2]2

(
− +

[3]

[4]

)

=
1

[2]2

(
− [2]2[3] +

[3]

[4]

)
= −[3] ,

where the first equality is obtained by (3.3), the second one is obtained by (2.16)
and the third one is obtained by (2.2), (2.7), (2.16) and (3.2). Hence, we obtain the
first equality of (3). We can obtain the second equality of (3) in a similar way.

We show (4), as follows. When n = 0 or 2, the required formula is obtained by
definition. When n = 4, we have that

= − 1

[2]2[4]
= +

[3]

[2]2[4]
= ,

where the second equality is obtained by (3) and the third one is obtained by (2.16)
and (1). Hence, we obtain (4), completing the proof. □

We define dn for n ∈ {0, 2, 4} by

dn =
⟨ ⟩

.

We recall (see, for example, [L]) that⟨ ⟩
= [n+ 1],(3.4)

which can be obtained by using (2.8) repeatedly.
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Lemma 3.2. The values of dn are given by

dn =

{
1 if n = 0, 4,

[3] = 1 +
√
3 if n = 2.

In particular, these values are positive real numbers.

Proof. When n = 0, the required formula is trivial.
When n = 2, we obtain the required formula from the definition of the gray box

and (3.4).
When n = 4, we show the required formula, as follows. By Lemma 3.1 (2), we

have that

d4 =
1

[4]

⟨ ⟩
− 1

[2]2[4]

⟨ ⟩
= 1,

where we obtain the second equality by (3.4) and (2.2). Hence, we obtain the required
formula. □

A planar trivalent graph is a trivalent graph embedded in R2. We consider two
kinds of vertices; one is depicted by •, and the other is depicted by a disk whose
boundary has a base point. A coloring of a planar trivalent graph Γ is a map from
the set of edges of Γ to {0, 2, 4} and a map from the set of vertices of Γ to {•, }. A
coloring of a planar trivalent graph Γ is said to be admissible if the neighborhood of
each vertex of Γ is colored as shown in either of the following pictures.

(3.5)

We define a colored planar trivalent graph to be a planar trivalent graph with an
admissible coloring, for example, as shown in the following picture.

We regard a colored planar trivalent graph as in the E6 linear skein, by substituting

into each of the edges colored by n, and substituting the following diagrams

into vertices,

= (i, j, k ∈ {0, 2, 4}), = ,

where we put

a =
−i+ j + k

2
, b =

i− j + k

2
, c =

i+ j − k

2
.

We remark that, abusing the notation, the symbol denotes n parallel edges in

a planar diagram, while it denotes an edge colored by n in a colored planar trivalent
graph. Further, the symbol denotes a 6-valent vertex in a planar diagram, while
it denotes a kind of a trivalent vertex in a colored planar trivalent graph.
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We put θ(i, j, k, •) =
⟨ ⟩

and θ(2, 2, 2, ) =
⟨ ⟩

for a triple i, j, k ∈

{0, 2, 4} such that is one of the pictures in (3.5) up to rotation.

Lemma 3.3. The values of θ(·) are given by

θ(i, j, k, •) = θ(j, k, i, •),
θ(0, n, n, •) = dn,

θ(2, 2, 2, •) = [3][4]/[2]2 =
√
6,

θ(2, 2, 2, ) = [2]2[3][4] = 12
√
2 + 7

√
6,

θ(2, 2, 4, •) = 1.

In particular, these values are positive real numbers.

Proof. We obtain the first formula of the lemma by Lemma 2.11.
We obtain the second formula of the lemma from the definition of θ(i, j, k) and

Lemma 3.1 (4).
We obtain the third formula of the lemma, since

θ(2, 2, 2, •) =
⟨ ⟩

=
⟨ ⟩

− 1

[2]

⟨ ⟩
=
( [3]
[2]

)2
· [2]− 1

[2]
· [3] = ([3]− 1)[3]

[2]
=

[3][4]

[2]2
.

We obtain the fourth formula of the lemma, since

θ(2, 2, 2, ) =
⟨ ⟩

= [4]
⟨ ⟩

+ [3][4]
⟨ ⟩

= [3][4][5] = [2]2[3][4],

where the third equality is obtained by (3.4).
We obtain the last formula of the lemma, since

θ(2, 2, 4, •) =
⟨ ⟩

=
⟨ ⟩

= d4 = 1,

where the second equality is obtained by Lemma 3.1 (1). □

4. 6j-symbols in the E6 linear skein

In this section, we consider the vector space H(i1, · · · , in) spanned by planar dia-
grams whose ends are gray boxes colored by i1, · · · , in, and give a basis of this vector
space in Propositions 4.2 and 4.9. Further, we introduce 6j-symbols of the E6 linear
skein as coefficients of a transformation between certain bases of H(i, j, k, l) as we
show in Proposition 4.10.

For i1, . . . , in ∈ {0, 2, 4} (n ≥ 2), we define the vector space H(i1, . . . , in) to be the

subspace of S(D2, i1+ · · ·+ in) spanned by planar diagrams of the form

with T being a planar diagram in (D2, i1 + · · ·+ in).
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In order to prove Proposition 4.2, we show the following lemma.

Lemma 4.1. For an integer m ≤ 4, let T be a planar diagram in (D2, 2m). Then,
T can be presented by a linear sum of planar diagrams in (D2, 2m) with at most one
vertex.

Proof. By (2.1), we may assume that T has no closed curves. If T has at most one
vertex, the assertion of the lemma is trivial. If T has at least two vertices, we show
the lemma, as follows.

Let Γ be a planar graph on S2 obtained from T by regarding the outer region of the
unit disk of T as a 2m-valent vertex. We call this 2m-valent vertex ∞. Similarly as
the proof of Lemma 2.5, it is enough to show that Γ has a digon whose vertices does
not contain ∞. If Γ is disconnected, then, by considering an innermost connected
component which does not contain ∞, we see that T has a digon from Lemma 2.3.
Hence, we may assume that Γ is connected.

When m = 4, we obtain the lemma in a similar way as the proof of Lemma 2.6.
When m ≤ 3, we show the lemma, as follows. In a similar way as the proof of

Lemma 2.3, we can verify that there exists at least m + 3 digons. The number of
digons which contain ∞ is at most 2m− 1, because ∞ is 2m-valent. Thus, Γ has at
least m + 3 − (2m − 1) = 4 −m digons whose vertices does not contain ∞. Since
4−m ≥ 1, we obtain the assertion of the lemma. □

In the following proposition, we give a basis of H(i, j).

Proposition 4.2. For any i, j ∈ {0, 2, 4} and T ∈ S(D2, i+ j),

= δij ·
1

di

⟨ ⟩
,

where δij = 1 if i = j, and 0 otherwise. As a consequence, we have that

H(i, j) =

{
spanC

{ }
i = j,

0 i ̸= j.

Proof. By Lemma 4.1, we may assume that T has at most one vertex.
If T has just one vertex, then we can verify that there exists a cap, or parallel

three edges connecting the vertex and . Hence, by (2.2) and Lemma 3.1 (3), we
can reduce the proof of the proposition to the case where T has no vertices.

If T has no vertices, we show the proposition, as follows. When i ̸= j, the left-hand
side of the first formula of the proposition is equal to 0, by Lemma 3.1 (1). When
i = j, the left-hand side is equal to a scalar multiple of the identity diagram by (2.1)
and Lemma 3.1 (1). Hence, we can put

= α

for some α ∈ C. By closing the diagrams of both sides, using Lemma 3.1 (4) and

taking the bracket, we obtain α =
⟨ ⟩

/di, noting that di ̸= 0 by Lemma 3.2.

Therefore, we obtain the first formula of the proposition.
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The second formula of the proposition is obtained from the first formula, noting

that is non-zero in S(D2, 2i), since the value di of its closure is non-zero

by Lemma 3.2. □

In order to prove Proposition 4.9, we need Lemmas 4.7 and 4.8 below. In order to
show Lemma 4.7, we show the following four lemmas.

Lemma 4.3. For n ∈ {1, 2, 4, 5} and T ∈ S(D2, 2n), we suppose that = 0

for any i = 0, 1, . . . , 2n− 2. Then, T = 0 in S(D2, 2n).

Proof. In the same way as the proof of Lemma 2.9 using (2.22), we obtain that

= 0

in S(D2, 2n). Further, we have that

= +
(
a linear sum of planar diagrams of the form

)
in the linear skein, which can be shown by induction on m from the definition of the
Jones-Wenzl idempotents. Hence, by the assumption of the lemma putting m = 2n,
we obtain that T = 0. □

Lemma 4.4. In S(D2, 10),

= [2] .

Proof. By Lemma 4.3, it is sufficient to show that

= ,(4.1)

= ,(4.2)

= ,(4.3)

for any i = 0, 1, · · · , 3.
We show (4.1), as follows. (4.1) is rewritten as

= [2] ,

and this is shown by Lemma 3.1 (4).
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We show (4.2), as follows. When i = 0, 1, 2, this is shown by Lemma 3.1 (1).
When i = 3, (4.2) is rewritten as

= [2] .

By Lemma 3.1 (2), we have that

[2] =
1

[2][4]

(
[2]2 −

)
=

[2]2 + [3]

[2][4]
= ,

where the second equality is obtained by Lemma 3.1 (1) and (3). Therefore, we
obtain (4.2).

We can verify (4.3) in a similar way as above. □

Lemma 4.5. In S(D2, 12),

= [3] .

Proof. We have that

= − 1

[2]
= − 1

[2]
= 0,(4.4)

where the second equality is obtained by Lemma 3.1 (4), and the last one is obtained
by Lemma 4.4. Hence,

0 = = − 1

[2]2[4]
.

From (2.16), Lemma 3.1 (1) and (3), this is equal to

−
(
[3]

[4]
+

[3]2

[2]2[4]

)
.

Since [3]
[4]

+ [3]2

[2]2[4]
= [3]

[2]
· [2]

2+[3]
[2]2[4]

= [3]
[2]
, we obtain that

[3]

[2]
= .

Further, the right-hand side is calculated as

=
1

[2]
=

1

[2]
,

where we obtain the first equality by Lemma 4.4. Therefore, we obtain the required
formula of the lemma. □
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Lemma 4.6. In S(D2, 16),

= .

Proof. We have that

= = [3] ,

where the first equality is obtained by Lemma 3.1 (1) and (4), and the second one is
obtained by Lemma 4.5. As the π/2 rotation of this formula, we have that

= [3] .

From the above two formulas, we obtain the required formula. □
For A ∈ {•, }, we denote

=


if A = •,

if A = .

Lemma 4.7. For any i, j ∈ {0, 2, 4},

=
∑
k,A

dk
θ(i, j, k, A)

in S(D2, 2(i + j)), where k ∈ {0, 2, 4} and A ∈ {•, } of the sum run over all
admissible colorings of the colored planar trivalent graph in the summand.

Proof. Since the gray boxes are symmetric with respect to π rotation, we may assume
that i ≥ j without loss of generality.

When j = 0, the required formula is rewritten as

=
di

θ(i, i, 0, •)
= ,

and this is obtained by Lemma 3.1 (4).
When (i, j) = (2, 2), the required formula is rewritten as

=
∑

k=0,2,4

dk
θ(2, 2, k, •)

+
d2

θ(2, 2, 2, )

=
1

[3]
+

[2]2

[4]
+ +

1

[2]2[4]
.

From the definition of the gray box, this is rewritten as

=
1

[3]
+

[2]2

[4]
+ .
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We can verify the above formula by direct calculation, using (2.16).
When (i, j) = (4, 2), the required formula is rewritten as

=
d2

θ(4, 2, 2, •)
= [3] ,

and this is obtained by Lemma 4.5.
When (i, j) = (4, 4), the required formula is rewritten as

=
d0

θ(4, 4, 0, •)
= ,

and this is obtained by Lemma 4.6.
Therefore, the proof of the lemma is completed. □

Lemma 4.8. For A,A′ ∈ {•, },⟨ ⟩
= δAA′ θ(2, 2, 2, A) .

Proof. When A = A′, we obtain the lemma from the definition of θ(·).
When A ̸= A′, is presented by a linear sum of planar diagrams with just

one vertex. Since any planar diagram with just one vertex has a cap, the left-hand
side of the lemma is equal to 0. Hence, we obtain the required formula. □

In the following proposition, we give a basis of H(i1, . . . , in) for n ≥ 3.

Proposition 4.9. For i1, . . . , in ∈ {0, 2, 4} (n ≥ 3), the vector space H(i1, . . . , in)
has a basis { }

(j1,...,jn−3, A1,...,An−2)

,(4.5)

where j1, . . . , jn−3 ∈ {0, 2, 4} and A1, . . . , An−2 ∈ {•, } run over all admissible col-
orings.

Proof. We first show that H(i1, . . . , in) is spanned by the planar diagrams in (4.5)
by induction on n, as follows.

When n = 3, we have that

=
∑
k,A

dk
θ(i1, i2, k)

=
∑
A

⟨ ⟩
θ(i1, i2, i3)

for any T ∈ S(D2, i1 + i2 + i3), where the first equality is obtained by Lemma 4.7,
and the second one is obtained by Proposition 4.2. Hence, H(i1, i2, i3) is spanned by
the planar diagrams in (4.5).

When n ≥ 4, we show that H(i1, . . . , in) is spanned by the planar diagrams in
(4.5), assuming the case of n− 1, as follows. In a similar way as above, we have that

=
∑
k,A1

dk
θ(i1, i2, k, A1)
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for any T ∈ S(D2, i1 + · · · + in). By the assumption of the induction, this can be
presented by a linear sum of planar diagrams in (4.5). Therefore, H(i1, . . . , in) is
spanned by the planar diagrams in (4.5).

We next show that the planar diagrams in (4.5) are linearly independent, as follows.
We denote the index set of (4.5) by J . We assume that∑

(j′1,...,j
′
n−3, A

′
1,...,A

′
n−2)∈J

α
A′

1,...,A
′
n−2

j′1,...,j
′
n−3

= 0

for some scalars α
A′

1,...,A
′
n−2

j′1,...,j
′
n−3

∈ C. For any (j1, . . . , jn−3, A1, . . . , An−2) ∈ J , by gluing

the planar diagram to the above formula and taking the

bracket, we have that

(4.6)
∑

(j′1,...,j
′
n−3, A

′
1,...,A

′
n−2)∈J

α
A′

1,...,A
′
n−2

j′1,...,j
′
n−3

⟨ ⟩
= 0.

By Proposition 4.2, we have that

⟨ ⟩
=

δj1j′1
dj1

⟨ ⟩⟨ ⟩

=
δj1j′1 δA1A′

1
θ(i1, i2, j1, A1)

dj1

⟨ ⟩
= · · ·

=
n−1∏
k=1

δjkj′k

n−2∏
l=1

δAlA
′
l
· θ(i1, i2, j1, A1) θ(j1, i3, j2, A2) · · · θ(jn−1, in−1, in, An−2)

dj1dj2 · · · djn−1

,

where we obtain the second equality by Lemma 4.8, and obtain the last line by
repeating this procedure. Hence, from (4.6), we obtain that

α
A1,...,An−2

j1,...,jn−3
· θ(i1, i2, j1, A1) θ(j1, i3, j2, A2) · · · θ(jn−1, in−1, in, An−2)

dj1dj2 · · · djn−1

= 0.

Since all of θ(·) in the above formula are non-zero by Lemma 3.3, we obtain that

α
A1,...,An−2

j1,...,jn−3
= 0 for any (j1, . . . , jn−3, A1, . . . , An−2) ∈ J . Hence, the planar diagrams

in (4.5) are linearly independent, as required. □

We consider the values

dj4
θ(j3, j4, j5, A3) θ(j2, j4, j6, A4)

⟨ ⟩
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for j1, j2, . . . , j6 ∈ {0, 2, 4} and A1, A2, A3, A4 ∈ {•, } with the colored planar triva-
lent graph in the above formula being admissible. These values satisfy the formula
of the following proposition, which is the defining relation of the 6j-symbols. In this
sense, the above values give the 6j-symbols of the E6 linear skein.

Proposition 4.10 (the defining relation of the 6j-symbols). For i, j, k, l,m ∈ {0, 2, 4}

and A,B ∈ {•, } with A B

m

being admissible,

A B

m

=
∑
n,C,D

dn
θ(k, l, n, C) θ(i, j, n,D)

⟨ ⟩
n

C

D

.

where n ∈ {0, 2, 4} and C,D ∈ {•, } of the sum run over all admissible colorings of
the colored planar trivalent graph in ⟨ ⟩.

Proof. In the proof, indices of a sum run over all admissible colorings of the colored
planar trivalent graphs in the summand.

By using Lemma 4.7 twice, the left-hand side of the required formula is equal to

∑
n,n′,C,D

dndn′

θ(k, l, n, C) θ(i, j, n′, D)
.

By Proposition 4.2, this is equal to

∑
n,C,D

dn
θ(k, l, n, C) θ(i, j, n,D)

⟨ ⟩
n

C

D

.

From Lemma 2.11, this is equal to the right-hand side of the required formula. □

5. A state sum invariant of 3 manifolds

It is known, see [EK, KS], that a state sum invariant of 3-manifolds can be con-
structed from a set of 6j-symbols, and the topological invariance of the invariant is
shown by using the orthogonal relation and the pentagon relation of the 6j-symbols,
which are naturally obtained from the defining relation of the 6j-symbols. See also
[T, TV] for similar procedures of such constructions, and see [W] for a construction
of the E6 state sum invariant. In this section, along such a general procedure, we
construct a state sum invariant of 3-manifolds based on our E6 linear skein in Def-
inition 5.1, and show its topological invariance in Theorem 5.2. The outline of the
proof of the topological invariance is the known procedure, and we check it concretely
based on our E6 linear skein in this section.
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We relate an oriented tetrahedron to a planar trivalent graph, as follows, where,
in the left picture below, we regard gray characters as on faces of the hidden side.

⇝
dual

decomposition

∼
isotopy

on S2

For a given tetrahedron (the left picture), we consider the triangulation of the bound-
ary of the tetrahedron, and consider its dual decomposition on S2 (the middle pic-
ture). Further, by isotopy on S2, we obtain a planar trivalent graph (the right
picture). Here, we fix an orientation of the plane of the trivalent graph, and we
make the above correspondence in such a way that the induced orientation of the
boundary of the tetrahedron coincides with the orientation of the plane under this
correspondence.

We consider colorings of a tetrahedron corresponding to colorings of a planar
trivalent graph, as follows. A coloring of a tetrahedron T is a map from the set of
faces of T to {•, } and a map from the set of edges of T to {0, 2, 4}. A coloring of a
tetrahedron T is said to be admissible if each face of T is colored as shown in either
of the following pictures, noting that these are dual to the pictures of (3.5).

Here, when a face is colored by , we consider a marking such as at a vertex

of a triangle of the face corresponding to the base point of . For A ∈ {•, }, we
denote

=


if A = •,

if A = .

Let M be a closed oriented 3-manifold, and let T be a triangulation of M . A
coloring of T is a map from the set of faces of T to {•, } and a map from the set
of edges of T to {0, 2, 4}. A coloring of T is said to be admissible if the coloring
of each tetrahedron of T is admissible. When a face is colored by , we consider a

marking such as at a vertex of a triangle of the face. We define a weight | · |
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of a colored oriented tetrahedron by

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

⟨ ⟩
√

θ(i, j, n, A) θ(j, k, l, B) θ(l,m, n, C) θ(i, k,m,D)
,

where the colored planar trivalent graph in the right-hand side is obtained from the
tetrahedron as mentioned above. We note that the values of θ(·) are positive real
numbers by Lemma 3.3. We also note that, by Lemma 2.11, the colored planar
trivalent graph in the right-hand side can be regarded as in S2, which guarantees
that its value is well determined from a colored oriented tetrahedron. When the
marking of the tetrahedron is given in other ways, we define its weight similarly. We
denote by v the number of vertices of T . We put w = d20 + d22 + d24 = 2 + [3]2.

Definition 5.1. We define the E6 state sum of a closed oriented 3-manifold M with
a triangulation T by

ZE6(M, T ) = w−v
∑
λ

∏
E

dλ(E)

∏
T

∣∣(T, λ)∣∣,
where the sum of λ runs over all admissible colorings of T , the product of E runs
over all edges of T , and the product of T runs all tetrahedra of T .

We note that ZE6(M, T ) does not depend on a choice of markings of faces, because,
when we change a marking of a face, the changes of the weights of the adjacent
tetrahedra cancel together. Further, we show that ZE6(M, T ) does not depend on a
choice of a triangulation T in the following theorem.

Theorem 5.2. ZE6(M, T ) is a topological invariant of a closed oriented 3-manifold
M , independently of a choice of a triangulation T .

We will show a proof of the theorem later in this section. In order to show the
theorem, we recall the Pachner moves. Let M and M ′ be closed 3-manifolds with tri-
angulations T and T ′ respectively. It is known [P] that M and M ′ are homeomorphic
if and only if T and T ′ are related by a finite sequence of simplicial isomorphisms
and the Pachner moves P1,4 and P2,3 shown below,

P1,4←→ P2,3←→

where the pictures consist of one tetrahedron, four tetrahedra, two tetrahedra and
three tetrahedra, respectively. Hence, in order to show Theorem 5.2, it is sufficient
to show that ZE6(M, T ) is invariant under the Pachner moves P1,4 and P2,3.

Further, it is known [TV] that the P1,4 move can be simplified by using the P2,3

move, as follows. We consider singular triangulations, extending the usual triangu-
lations. By applying the P2,3 move to the upper three tetrahedra of the right-hand
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side of the P1,4 move, the right-hand side of the P1,4 move is rewritten as

the union obtained by gluing along P , Q, R.

Hence, by using the P2,3 move, the P1,4 move can be replaced with the following
move.
(5.1)

(
the union
obtained by gluing along P , Q, R

)
←→

Further, we will show later in the proof of Theorem 5.2 that invariance under this
move can be reduced to invariance under the following move [TV],

(5.2) ←→

where the left-hand side consists of two (singular) tetrahedra, and the right-hand
side consists of two triangles (with no tetrahedra). Hence, in order to show Theorem
5.2, it is sufficient to show that ZE6(M, T ) is invariant under the move (5.2) and the
P2,3 move.

Furthermore, it is known as general procedures (see [EK, KS, T, TV]) that in-
variance under the move (5.2) and the P2,3 move are obtained from the orthogonal
relation and the pentagon relation of the 6j-symbols, which are naturally obtained
from the defining relation of the 6j-symbols (Proposition 4.10). We show them in
the following two lemmas.

Lemma 5.3 (the orthogonal relation).

dm
∑
n,C,D

dn

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ = δmm′δAA′δBB′ .

Proof. In the proof, indices of a sum run over all admissible colorings of the colored
trivalent graph in the summand, and we denote θ(i, j, k, A) = θAijk.
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From the definition of the weights, the required formula is rewritten as

dm√
θAilmθ

B
kjmθ

A′
ilm′θB

′
jkm′

∑
n,C,D

dn
θCklnθ

D
ijn

⟨ C

D

A B

l n k

i j

m

⟩⟨ B′

A′

C D

k m′ j

l i

n

⟩
= δmm′δAA′δBB′ .

√
· in the above formula is equal to θAilmθ

B
kjm when m = m′, A = A′ and B = B′.

Thus, it is sufficient to show that

dm
θAilmθ

B
kjm

∑
n,C,D

dn
θCklnθ

D
ijn

⟨ C

D

A B

l n k

i j

m

⟩⟨ B′

A′

C D

k m′ j

l i

n

⟩
= δmm′δAA′δBB′ .(5.3)

By using Proposition 4.10 twice, we have that

A B

m

=
∑
n,C,D

dn
θCklnθ

D
ijn

⟨ C

D

A B

l n k

i j

m

⟩
n

C

D

=
∑
m′′,n,

A′′,B′′,C,D

dm′′dn
θA

′′
ilm′′θB

′′
jkm′′θCklnθ

D
ijn

⟨ C

D

A B

l n k

i j

m

⟩⟨ B′′

A′′

C D

k m′′ j

l i

n

⟩
A'' B''
m''

.

Hence, by Proposition 4.9 for n = 4, we obtain (5.3), as required. □
Lemma 5.4 (the pentagon relation).

∑
C

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
=

∑
l, C1,C2,C3

dl

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
.

Proof. In the proof, indices of a sum run over all admissible colorings of the colored
planar trivalent graphs in the summand, and we denote θAijk = θ(i, j, k, A). From the
definition of the weights, the required formula is rewritten as

(5.4)
∑
C

1

θC
i1i2i3

⟨
A1

k1

i1 i2
i3

k2

A2

A3

C

k3

⟩⟨
B1

j
1

j
2

i1

i2

i3

B2

B3

C

j
3

⟩
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=
∑

l,C1,C2,C3

dl

θC1
j1k1l

θC2
j2k2l

θC3
j3k3l

⟨
A1 B1

C3

C2

i1

j
2

k2
l

k3 j
3

⟩⟨ B2

A2

C1

C3

l

j
3 j

1

k1

i2

k3

⟩⟨ B3

A3

C2 l C1

i3

k2 k1

j
2

j
1

⟩
.

We show the above formula by calculating a certain colored planar trivalent graph
in two ways, as follows. By using Proposition 4.10 twice, we have that

=
∑

i′3,A
′
3,C

′

di′3

θ
A′

3

i′3k1k2
θC

′

i1i2i′3

⟨
A1

k1

i1 i2

i3

k2

A2

A3

C'

k3

'

'

⟩

=
∑
i′3,j

′
1,

A′
3,B

′
2,B

′
3,C

′

dj′1di′3

θ
A′

3

i′3k1k2
θ
B′

2

i2j′1j3
θ
B′

3

i′3j
′
1j2

θC
′

i1i2i′3

⟨
A1

k1

i1 i2

i3

k2

A2

A3

C'

k3

'

'

⟩⟨
B1

j
1

j
2

i1

i2

i3

B2

B3

C'

j
3

'

''
'

⟩
.

On the other hand, by using Proposition 4.10 three times, we have that

=
∑

l′,C′
2,C

′
3

dl′

θ
C′

2

j2k2l′
θ
C′

3

j3k3l′

⟨
A1 B1

C3

C2

i1

j
2

k2
l'

k3 j
3

'

'

⟩

=
∑
l′,j′1,

B′
2,C

′
1,C

′
2,C

′
3

dj′1dl′

θ
B′

2

i2j′1j3
θ
C′

1

j′1k1l
′θ

C′
2

j2k2l′
θ
C′

3

j3k3l′

⟨
A1 B1

C3

C2

i1

j
2

k2
l'

k3 j
3

'

'

⟩⟨ B2

A2

C1

C3

l'

j
3 j

1

k1

i2

k3

'

'

'
'

⟩

=
∑

l′,j′1,i
′
3,

A′
3,B

′
2,B

′
3,C

′
1,C

′
2,C

′
3

dj′1di′3dl′

⟨
A1 B1

C3

C2

i1

j
2

k2
l'

k3 j
3

'

'

⟩⟨ B2

A2

C1

C3

l'

j
3 j

1

k1

i2

k3

'

'

'
'

⟩⟨ B3

A3

C2 l'

'

'

'

' 'C1

i3

k2 k1

j
2

j
1
'
⟩

θ
A′

3

i′3k1k2
θ
B′

2

i2j′1j3
θ
B′

3

i′3j
′
1j2

θ
C′

1

j′1k1l
′θ

C′
2

j2k2l′
θ
C′

3

j3k3l′

.

From these formulae and Proposition 4.9 for n = 5, we obtain (5.4), as required. □

We now show a proof of Theorem 5.2.

Proof of Theorem 5.2. As mentioned before, it is sufficient to show that ZE6(M, T )
is invariant under the P2,3 move and the move (5.1).

We obtain the invariance under the P2,3 move by Lemma 5.4.
We show the invariance under the move (5.1), as follows. In the following of

this proof, indices of a sum run over all admissible colorings of tetrahedra in the
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summand. By Lemma 5.3, we have that

di3
∑

j3,B1,B2

dj3

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
= δi3i′3δA0A′

0
δB3B′

3

for any i1, i2, j1, j2 ∈ {0, 2, 4} and A0, A
′
0, B3, B

′
3 ∈ {•, } such that the colored tri-

angles , , and are admissible. By putting i3 = i′3,

B3 = B′
3, by multiplying d−1

i3
dj1dj2 by both sides and by summing over j1, j2, B3, we

have that

∑
j1,j2,j3,
B1,B2,B3

dj1dj2dj3

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
= d−1

i3

∑
j1,j2,A3

dj1dj2 · δA0A′
0
= w δA0A′

0
,

where the last equality is obtained by Lemma 5.5 below. This means the invariance
under the move (5.1), as required. □

In the proof of Theorem 5.2, we used the following lemma.

Lemma 5.5. For any k ∈ {0, 2, 4},

d−1
k

∑
i,j,A

didj = w,

where i, j ∈ {0, 2, 4} and A ∈ {•, } in the sum run over all admissible colorings of

a triangle .

Proof. When k = 0, we obtain the required formula from the definition of admissible
colorings and the definition of w.

When k = 2, is admissible for (i, j, A) = (0, 2, •), (2, 0, •), (2, 2, •), (2, 2, ),

(2, 4, •), (4, 2, •). Hence, the left-hand side of the lemma is equal to

d−1
2 · 2(d0d2 + d22 + d2d4) = 4 + 2[3] = 6 + 2

√
3 = w,

as required.

When k = 4, is admissible for (i, j, A) = (0, 4, •), (4, 0, •), (2, 2, •). Hence,

the left-hand side of the lemma is equal to

d−1
4 (2d0d4 + d22) = 2 + [3]2 = w,

as required. □
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6. Equality to the E6 state sum invariant

In this section, we show our defining relations of the E6 linear skein are equivalent
to Bigelow’s relations of the E6 subfactor planar algebra in Section 6.1. Further, we
show our state sum invariant is equal to the E6 state sum invariant in Section 6.2.

6.1. Equivalence to Bigelow’s relations of the E6 subfactor planar algebra.
Bigelow [B] defined a planar algebra {S ′(D2, 2n)}n=0,1,... (in his paper this is denoted
by P) by giving generators and relations, and proved that its principal graph is the
E6 Dynkin diagram. However, his proof relies on the existence of the E6 subfactor
planar algebra and some of its known properties. In this section, we show that
S(D2, 2n) is isomorphic to S ′(D2, 2n) for any n ≥ 0. We note that an S-labeled
disc of [B] corresponds to a vertex of this paper. As a consequence of this section,
{S(D2, 2n)}n=0,1,... forms a subfactor planar algebra.

As in [B], for an integer n ≥ 0, we define S ′(D2, 2n) to be the vector space spanned
by planar diagrams in (D2, 2n) subject to the relations (2.1)–(2.3) and (6.1), (6.2)
below,

= + [2]2[3] ,(6.1)

= 0.(6.2)

We recall that S(D2, 2n) is the vector space spanned by planar diagrams in (D2, 2n)
subject to the relations (2.1)–(2.4).

Proposition 6.1. For any n ≥ 0, S(D2, 2n) is isomorphic to S ′(D2, 2n).

Proof. We assume (2.1)–(2.3) in this proof. It is enough to show that (2.4) is equiv-
alent to (6.1) and (6.2).

Assuming (2.4), we show (6.1) and (6.2), as follows. We obtain (6.1) from (3.2).
Further, we obtain (6.2) in the similar way as the proof of Lemma 2.9 in the case
m = 4, using (2.22).

Assuming (6.1) and (6.2), we show (2.4), as follows. From the E6 version of
the proof of [B, Lemma 3.1], an edge can pass-over a vertex. Hence, the formula of
Lemma 4.3 holds in S ′(D2, 2m) in the similar way as the proof of Lemma 2.9. Hence,
it is sufficient to show that

(2.4) = (2.4) ,(6.3)

(2.4) = (2.4) ,(6.4)
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(2.4) = (2.4) ,(6.5)

for any i = 0, 1, 2, 3. We obtain (6.3) by (2.8), (3.1) and (6.1), and we obtain (6.4)
and (6.5) by (2.2) and (2.7), noting that the relations (2.1)–(2.3) implies (2.7), (2.8)
and (3.1). Therefore, we obtain (2.4), as required. □

6.2. Equality of our state sum invariant to the E6 state sum invariant. The
E6 state sum invariant of 3-manifolds is the state sum invariant defined from the
6j-symbols of the E6 subfactor. The E6 state sum invariant is concretely formulated
and calculated in [SuW, W]. In this section, we show that our state sum invariant
defined in Section 5 is equal to the E6 state sum invariant in Proposition 6.2.

We briefly review the formulation of the E6 state sum invariant; for details, see
[SuW, W]. Similarly as our formulation, edges are colored by 0, 2, 4 (they are denoted
by “id”, “ρ”, “α” in [SuW, W]). Admissible colorings are defined similarly as our
formulation. A face whose edges are colored by i, j, k is colored by • unless i = j =
k = 2, and is colored by S3 and S4 if i = j = k = 2, while a face whose edges
are colored by 2, 2, 2 is colored by • and in our formulation. (To be precise, their
faces are colored by S1, S2, S3, S4, though the color is uniquely determined unless
i = j = k = 2, and we denote it by • here.) Unlike our formulation, a total order
of the vertices is given, and edges are oriented by using this order. The weight of a
tetrahedron ∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
is given by the 6j-symbols of the E6 subfactor; we review their concrete values in
Appendix B.

Proposition 6.2. Our state sum invariant of a closed oriented 3-manifold M defined
in Section 5 is equal to the E6 state sum invariant of M .

Proof. We note that basic parts of their formulation are similar to our formulation.
The differences are that their edges are oriented, and that a face whose edges are
colored by 2, 2, 2 is colored by S3 and S4, while such a face is colored by • and in
our formulation.

We transfer the colors of faces by putting

= , = unless i = j = k = 2,

= ua + va , = ua + va
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with some unitary matrix

(
u3 v3
u4 v4

)
. By the unitarity of this matrix, we have that

⊗ + ⊗

= ⊗ + ⊗ ,

which justifies that the substitution of S3, S4 can be transformed into the substitution
of •, in the definition of the state sum invariant.

It is shown, see Lemma B.1 (due to T. Ohtsuki), that our 6j-symbols can be
transformed into the 6j-symbols of the E6 subfactor by such a transformation as
above. Hence, our state sum invariant is equal to the E6 state sum invariant. □

7. Properties and examples of our state sum invariant

The values of the E6 state-sum invariant have been calculated for the lens space
L(p, q) for q = 1, 2, 3 in [SuW], and for some other 3-manifolds in [SaW]. In this
section, we calculate the values of the E6 state-sum invariant for the lens spaces
L(4, 1), L(5, 2) and L(5, 1) in terms of our E6 linear skein in Examples 7.5, 7.6 and
7.7. Further, we review some property of the E6 state sum invariant in Proposition
7.1.

The following proposition is a well-known basic property of the E6 state sum
invariant.

Proposition 7.1. For any closed oriented 3-manifold M ,

ZE6(M) = ZE6(M),

where M denotes M with the opposite orientation.

Proof. We review the proof based on our construction of the state sum invariant.
When we change the orientation of M , the colored planar trivalent graph corre-
sponding to a tetrahedron becomes its mirror image. Hence, the value of ZE6(M)
becomes its complex conjugate. □

In order to calculate our state sum invariant later, we show some properties of
colored planar trivalent graphs in the following three lemmas.

Lemma 7.2.

(1) =
2

[2][3]

(2) = − 1

[2]
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(3) = [2]4

(4) = − 1

[2]

Proof. We obtain (1), since

= = − 1

[2]

= − 2

[2]
=

[3]− 2

[2]
=

2

[2][3]
.

We obtain (2), since

= = − 1

[2]
.

We show (3), as follows. By Proposition 4.9, H(2, 2, 2) is spanned by and

. Further, since the left-hand side of the required formula is symmetric with

respect to 2
3
π rotation, we can put

(7.1) = c

with some scalar c. By closing one strand at the bottom, we have that

(7.2) = c .

By expanding white boxes, we calculate the diagram of the right-hand side as

=
[3]− 1

[2]
=

[4]

[2]2
.

Further, by (3.2), the left-hand side of (7.2) is calculated as

= + [2]2[3] .
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We can verify that the second summand of the right-hand side is equal to 0 by
expanding the white box. Hence, by using (3.2) again, we can show that

= [2]2[4] .

Therefore, from (7.2), c = [2]4. Hence, from (7.1), we obtain (3) of the lemma.
We obtain (4), since

= = − 1

[2]
= − 1

[2]
.

□

Lemma 7.3. The values of

⟨ ⟩
are given, as follows.

(1)

⟨ ⟩
= δAB θ(i, j, k, A) for i, j, k ∈ {0, 2, 4} and A,B ∈ {•, }.

(2)

⟨ ⟩
=

2

[2][3]
θ(2, 2, 2, •) = 2 [4]

[2]3
.

(3)

⟨ ⟩
= 0 .

(4)

⟨ ⟩
= − 1

[2]
θ(2, 2, 2, ) = −[2][3][4] .

(5)

⟨ ⟩
= [2]2[3][4] .

(6)

⟨ ⟩
= 0 .

(7)

⟨ ⟩
= − 1

[2]
.

(8)

⟨ ⟩
= −[3] .

(9)

⟨ ⟩
= [2]3 .

(10)

⟨ ⟩
= − 1

[3]
.
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Proof. We obtain (1) by Lemma 3.1 (4) and Lemma 4.8.
We obtain (2) by applying Lemma 7.2 (1) to a triangle of a diagram of the required

formula.
We obtain (3), since any planar diagram with just one vertex must have a cap and

such a diagram is equal to 0 in the linear skein.
We obtain (4) by applying Lemma 7.2 (2) to a triangle of a diagram of the required

formula.
We obtain (5) and (6) by applying Lemma 7.2 (3) to a triangle of a diagram of

the required formulas and by using Lemma 4.8.
We obtain (7) by applying Lemma 7.2 (4) to a triangle of a diagram of the required

formula and by using Lemma 4.8.
We obtain (8), since⟨ ⟩

=

⟨ ⟩
=

⟨ ⟩
= −[3]d4 = −[3],

where the third equality is obtained by Lemma 3.1 (3).
We obtain (9), since

⟨ ⟩
=

⟨ ⟩
=

⟨ ⟩
− 1

[2]2[4]

⟨ ⟩

=
[2]

[3][4]

⟨ ⟩
=

[2]

[3][4]
θ(2, 2, 2, ) = [2]3,

where the third equality is obtained by (2.16) and (6) of the lemma.
We obtain (10), since

⟨ ⟩
=

⟨ ⟩
=

⟨ ⟩
− 1

[2]2[4]

⟨ ⟩

=
[2]

[3][4]

⟨ ⟩
− 1

[2]2[4]

⟨ ⟩
=

[2]

[3][4]
d4 −

[2]

[4]
=

[2](1− [3])

[3][4]
= − 1

[3]
,

where the fourth equality is obtained by (9) of the lemma. □

Lemma 7.4.

(1) = −[2]3 +

(2) = [2]3
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Proof. We show (1), as follows. Since the space H(2, 2, 2) is spanned by and

by Proposition 4.9, we can put

(7.3) = c1 + c2

with some scalars c1 and c2. By closing the diagrams of (7.3) with , we have

that ⟨ ⟩
= c1 · θ(2, 2, 2, •)

by Lemma 4.8. Further, by Lemmas 3.3 and 7.3,

−[2][3][4] = c1 ·
[3][4]

[2]2
.

Hence, c1 = −[2]3. By closing the diagrams of (7.3) with , we have that

⟨ ⟩
= c2 · θ(2, 2, 2, )

by Lemma 4.8. Further, by Lemmas 3.3 and 7.3,

[2]2[3][4] = c2 · [2]2[3][4] .
Hence, c2 = 1. Therefore, from (7.3), we obtain (1) of the lemma.

We show (2), as follows. Since the space H(4, 2, 2) is spanned by by

Proposition 4.9, we can put

(7.4) = c

with some scalars c. By closing the diagrams of (7.4) with , we have that

⟨ ⟩
= c · θ(2, 2, 4, •).

Further, by Lemmas 3.3 and 7.3,

[2]3 = c .

Hence, from (7.4), we obtain (2) of the lemma. □
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We briefly review the construction of the state sum invariant based on spines of
3-manifolds; see [T, TV] for details. A spine of a closed oriented 3-manifold is a
2-polyhedron obtained from M − (3-balls) by collapsing all 3-cells in such a way that
each point of the resulting 2-polyhedron has a neighborhood of either of the following
forms.

Thus, a spine consists of vertices (the right picture), edges (the middle picture) and
faces (the left picture). A typical spine of a 3-manifold M is the 2-skeleton of the
dual decomposition of a triangulation of M . A coloring of a spine X is a map from
the set of edges of X to {•, } and a map from the set of edges of X to {0, 2, 4}. We
can define an admissible coloring of a spine in an appropriate way, corresponding to
an admissible coloring of a triangulation. We can define a weight of a colored vertex
of a spine corresponding to the weight of a colored tetrahedron, by using a colored
planar trivalent graph obtained as the intersection of the spine and the boundary of
a neighborhood of the vertex. It is known, see [T, TV], that the state sum invariant
of a 3-manifold M with a spine X is presented by

ZE6(M) = w−v
∑
λ

∏
F

dλ(F )

∏
V

(
the weight of V colored by λ

)
,

where the sum of λ runs over all admissible colorings of X, the product of F runs
over all faces of X, the product of V runs all vertices of X, and v denotes the number
of 3-balls when we make X from M .

Example 7.5 ([SuW]). The value of the E6 state sum invariant of the lens space
L(4, 1) is given by

ZE6
(
L(4, 1)

)
=

3 +
√
−3

6
.

Proof. In this proof, we calculate the required value based on our construction of the
state sum invariant.

A spine of L(4, 1) is given as follows,

(7.5)

(
2-polyhedron
obtained by gluing

along x1, · · · , x4, y

) ∪
dashed
line

where the resulting 2-polyhedron obtained from the left picture by gluing the edges
labeled by x1, · · · , x4, y has a boundary of a dashed line, and we consider the union
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of this resulting 2-polyhedron and a disk along this dashed line. This spine has one
vertex. This vertex corresponds to the fusion of the left picture below.

The fusion of the left picture corresponds to the tetrahedron of the middle picture;
the upper graph of the fusion is dual to the faces of the front side of the tetrahedron,
and the lower graph is dual to the faces of the hidden side of the tetrahedron. The
tetrahedron of the middle picture corresponds to the planar graph of the right picture;
we note that this planar graph is the union of the upper graph of the fusion and the
mirror image of the lower graph of the fusion, which is equal to the boundary of the
left picture of (7.5).

Hence, we calculate the value of ZE6(L(4, 1)), as follows,

ZE6
(
L(4, 1)

)
= w−1

∑
i,j∈{0,2,4}
A,B∈{•, }

didj

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

= w−1
∑

i,j∈{0,2,4}
A,B∈{•, }

didj
θ(i, i, j, A) θ(i, i, j, B)

⟨ ⟩
.(7.6)

When j = 0, the sum of (7.6) is equal to

∑
i∈{0,2,4}

did0
θ(i, i, 0, •)2

⟨ ⟩
=

∑
i∈{0,2,4}

d2i
d2i

= 3 ,

by Lemmas 3.3 and 7.3. When j = 4, the sum of (7.6) is equal to

d2d4
θ(2, 2, 4, •)2

⟨ ⟩
=

[3]

12
·
(
− 1

[3]

)
= −1 ,
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by Lemmas 3.3 and 7.3. When j = 2, the sum of (7.6) is equal to

d22
θ(2, 2, 2, •)2

⟨ ⟩
+

d22
θ(2, 2, 2, •) θ(2, 2, 2, )

⟨ ⟩

+
d22

θ(2, 2, 2, •) θ(2, 2, 2, )

⟨ ⟩
+

d22
θ(2, 2, 2, )2

⟨ ⟩

=
[3]2(

[3][4]/[2]2
)2 · 2 [4][2]3

+ 2 · [3]2(
[3][4]/[2]2

)(
[2]2[3][4]

)(− [2][3][4]ω−2
)

=
2 [2]

[4]
− 2 [2][3]ω−2

[4]
,

by Lemmas 3.3 and 7.3. Hence,

ZE6
(
L(4, 1)

)
= w−1

(
3− 1 +

2 [2]

[4]
− 2 [2][3]ω−2

[4]

)
=

3 +
√
−3

6
,

by (1.4), as required. □

Example 7.6 ([SuW]). The value of the E6 state sum invariant of the lens space
L(5, 2) is given by

ZE6
(
L(5, 2)

)
=

3 +
√
3

12
.

Proof. In this proof, we calculate the required value based on our construction of the
state sum invariant.

A spine of L(5, 2) is given as follows.

(
2-polyhedron
obtained by gluing

along x1, · · · , x5, y, z

) ∪
dashed
line
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This spine has one vertex. This vertex corresponds to the fusion of the first picture
below.

The second picture shows a part of the first picture, removing the identical part. The
fusion of the second picture corresponds to the third and fourth pictures, similarly
as in the case of L(4, 1).

Hence, we calculate the value of ZE6(L(5, 2)), as follows,

ZE6
(
L(5, 2)

)
= w−1

∑
i,j∈{0,2,4}
A,B∈{•, }

didj

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

= w−1
∑

i,j∈{0,2,4}
A,B∈{•, }

didj
θ(i, i, j, A) θ(i, j, j, B)

⟨ ⟩
.(7.7)

This colored planar trivalent graph has admissible colorings only if (i, j) = (0, 0), (2, 2).
When (i, j) = (0, 0), the sum of (7.7) is equal to

d20
θ(0, 0, 0, •)2

⟨ ⟩
= 1 .

When (i, j) = (2, 2), the sum of (7.7) is equal to

d22
θ(2, 2, 2, •)2

⟨ ⟩
+

d22
θ(2, 2, 2, •) θ(2, 2, 2, )

⟨ ⟩

+
d22

θ(2, 2, 2, •) θ(2, 2, 2, )

⟨ ⟩
+

d22
θ(2, 2, 2, )2

⟨ ⟩

=
[3]2(

[3][4]/[2]2
)2 · 2 [4][2]3

+
[3]2(

[3][4]/[2]2
)(
[2]2[3][4]

)(− [2][3][4]
)
(ω2 + ω−2)
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=
2 [2]

[4]
− [2][3](ω2 + ω−2)

[4]
,

by Lemmas 3.3 and 7.3. Hence,

ZE6
(
L(5, 2)

)
= w−1

(
1 +

2 [2]

[4]
− [2][3](ω2 + ω−2)

[4]

)
=

3 +
√
3

12
,

by (1.4), as required. □
Example 7.7 ([SuW]). The value of the E6 state sum invariant of the lens space
L(5, 1) is given by

ZE6
(
L(5, 1)

)
=

3 +
√
3

12
.

Proof. In this proof, we calculate the required value based on our construction of the
state sum invariant.

A spine of L(5, 1) is given as follows.

(7.8)

(
2-polyhedron
obtained by gluing

along x1, · · · , x5, y, z

) ∪
dashed
line

This spine has two vertices. These vertices correspond to the fusions of the first
picture below.

(7.9)
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The second column shows parts of the fusions, removing the identical parts. The
fusions of the second column correspond to the pictures of the third and fourth
columns, similarly as in the cases of L(4, 1) and L(5, 2).

Hence, we calculate the value of ZE6(L(5, 1)), as follows,

ZE6
(
L(5, 1)

)
= w−1

∑
i,j,k∈{0,2,4}

A,B,C,D∈{•, }

didjdk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

= w−1
∑

i,j,k∈{0,2,4}
A,B,C,D∈{•, }

didjdk
θ(i,i,j,A) θ(i,j,k,B) θ(i,i,k,C) θ(i,j,k,D)

⟨ ⟩⟨ ⟩
.

(7.10)

In order to calculate this sum, we consider a relation between the upper left graph
and the lower left graph of (7.9). Since the space H(i, i, i, i, i) has a basis given in
Proposition 4.9, we can put

(7.11) =
∑

j′,k′∈{0,2,4}
A′,B′,C′∈{•, }

Φj′k′

A′B′C′ ,

with some scalars Φj′k′

A′B′C′ . Further, by Proposition 4.10, we have that

=
∑

k′∈{0,2,4}
C′,D∈{•, }

dk′

θ(i, i, k′, C ′) θ(i, j, k′, D)

⟨ ⟩
,

=
∑

j′∈{0,2,4}
A′,B′∈{•, }

dj′

θ(i, i, j′, A′) θ(i, j′, k′, B′)

⟨ ⟩
.

Hence, by comparing the above two formulas to (7.11), we have that

Φj′k′

A′B′C′ =
∑

D∈{•, }

dj′dk′

θ(i,i,j′,A′) θ(i,j′,k′,B′) θ(i,i,k′,C ′) θ(i,j,k′,D)

⟨ ⟩⟨ ⟩
.

Further, by closing the diagrams of (7.11) with a certain diagram, we have that

⟨ ⟩
=

∑
j′,k′∈{0,2,4}

A′,B′,C′∈{•, }

Φj′k′

A′B′C′

⟨ ⟩
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=
θ(i, i, j, A) θ(i, j, k, B) θ(i, i, k, C)

djdk
Φjk

ABC ,

where we obtain the second equality in a similar way as in the proof of Proposition
4.9. Therefore, by presenting Φjk

ABC from the above two formulas in two ways, we
have that

⟨ ⟩
=

∑
D∈{•, }

1

θ(i, j, k′, D)

⟨ ⟩⟨ ⟩
.

By substituting this formula to (7.10), we have that
(7.12)

ZE6
(
L(5, 1)

)
= w−1

∑
i,j,k∈{0,2,4}
A,B,C∈{•, }

didjdk
θ(i, i, j, A) θ(i, j, k, B) θ(i, i, k, C)

⟨ ⟩
.

We note that the diagram of this formula is the union the upper left graph of (7.9)
and the mirror image of the lower left graph of (7.9), which is equal to the boundary
of the left picture of (7.8).

The coloring of the colored planar trivalent graph in (7.12) is admissible only if
(i, j, k) = (0, 0, 0), (2, 0, 2), (2, 2, 0), (2, 2, 2), (2, 2, 4), (2, 4, 2). We note that this graph

is symmetric with respect to π rotation of . Hence, it is sufficient

to calculate the cases where (i, j, k) = (0, 0, 0), (2, 0, 2), (2, 2, 2), (2, 2, 4).
When (i, j, k) = (0, 0, 0), the sum of (7.12) is equal to

d30
θ(0, 0, 0, •)3

⟨ ⟩
= 1 .

When (i, j, k) = (2, 0, 2), the sum of (7.12) is equal to the sum of the following two
formulas,

d0d
2
2

θ(0, 2, 2, •)2 θ(2, 2, 2, •)

⟨ ⟩
=

d0d
2
2

θ(0, 2, 2, •)2 θ(2, 2, 2, •)
· θ(2, 2, 2, •) =

d22
θ(0, 2, 2, •)2

= 1 ,

d0d
2
2

θ(0, 2, 2, •)2 θ(2, 2, 2, )2

⟨ ⟩
=

d0d
2
2

θ(0, 2, 2, •)2 θ(2, 2, 2, )
· ω−2θ(2, 2, 2, ) =

d22
θ(0, 2, 2, •)2

· ω−2 = ω ,

by using Lemma 3.3.
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When (i, j, k) = (2, 2, 2), by the above mentioned symmetry, it is sufficient to calcu-
late the cases where (A,B,C) = (•, •, •), (•, •, ), (•, , •), (•, , ), ( , •, ), ( , , ).
When (A,B,C) = (•, •, •), the sum of (7.12) is equal to

d32
θ(2, 2, 2, •)3

⟨ ⟩
=
( [3]

[3][4]/[2]2
)3 · 2

[2][3]

⟨ ⟩
=
( [2]2
[4]

)3 · 2

[2][3]
· 2 [4]
[2]3

=
4 [2]2

[3][4]2
,

by Lemmas 7.2, 3.3 and 7.3. When (A,B,C) = (•, •, ), the sum of (7.12) is equal
to

d32
θ(2, 2, 2, •)2 θ(2, 2, 2, )

⟨ ⟩

=
[3]3

([3][4]/[2]2)2 · [2]2[3][4]
· 2ω

4

[2][3]

⟨ ⟩

=
[2]2

[4]3
· 2ω

4

[2][3]
(−[2][3][4]) = −2ω [2]2

[4]2
,

by Lemmas 7.2, 3.3 and 7.3. When (A,B,C) = (•, , •), the sum of (7.12) is equal
to

d32
θ(2, 2, 2, •)2 θ(2, 2, 2, )

⟨ ⟩

=
[3]3

([3][4]/[2]2)2 · [2]2[3][4]
(
− ω−2

[2]

)⟨ ⟩

=
[2]2

[4]3
·
(
− ω−2

[2]

)
(−[2][3][4]) =

ω [2]2[3]

[4]2
,

by Lemmas 7.2, 3.3 and 7.3. When (A,B,C) = (•, , ), the sum of (7.12) is equal
to

d32
θ(2, 2, 2, •) θ(2, 2, 2, )2

⟨ ⟩

=
[3]3

([3][4]/[2]2) · ([2]2[3][4])2
(
− 1

[2]

)⟨ ⟩
= 0 ,

by Lemmas 7.2, 3.3 and 7.3. When (A,B,C) = ( , •, ), the sum of (7.12) is equal
to

d32
θ(2, 2, 2, •) θ(2, 2, 2, )2

⟨ ⟩
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=
[3]3

([3][4]/[2]2) · ([2]2[3][4])2
·
(
− [2]3 ω−4

⟨ ⟩
+ ω−2

⟨ ⟩)
=

1

[2]2[4]3
·
(
− [2]3 ω−4(−[2][3][4]) + ω−2 · [2]2[3][4]

)
=

ω−1 [2]2[3]

[4]2
+

ω [3]

[4]2
,

by Lemmas 7.4, 3.3 and 7.3. When (A,B,C) = ( , , ), the sum of (7.12) is equal
to

d32
θ(2, 2, 2, )3

⟨ ⟩
=
( [3]

[2]2[3][4]

)3 · ω−2 [2]4
⟨ ⟩

=
1

[2]6[4]3
· ω−2 [2]4 · [2]2[3][4] =

ω [3]

[4]2
,

by Lemmas 7.4, 3.3 and 7.3. Hence, the sum of (7.12) for (i, j, k) = (2, 2, 2) is equal
to

4 [2]2

[3][4]2
− 2 · 2ω [2]2

[4]2
+

ω [2]2[3]

[4]2
+
(ω−1 [2]2[3]

[4]2
+

ω [3]

[4]2
)

+
ω [3]

[4]2

=
4 [2]2

[3][4]2
− 4ω [2]2

[4]2
− [2]2[3]

[4]2
+

2ω [3]

[4]2
.

When (i, j, k) = (2, 2, 4), the sum of (7.12) is equal to the sum of the following two
formulas,

d22d4
θ(2, 2, 2, •) θ(2, 2, 4, •)4

⟨ ⟩
=

[3]2

([3][4]/[2]2) · 12
(
− 1

[2]

)⟨ ⟩

=
[2]2[3]

[4]

(
− 1

[2]

)(
− 1

[3]

)
=

[2]

[4]
,

d22d4
θ(2, 2, 2, ) θ(2, 2, 4, •)2

⟨ ⟩
=

[3]2

[2]2[3][4] · 12
· ω−2 [2]3

⟨ ⟩
=

[3]

[2]2[4]
· ω−2 [2]3

(
− 1

[3]

)
= −ω [2]

[4]
,

by Lemmas 7.2, 7.4, 3.3 and 7.3.
Therefore, from (7.12), we obtain that

ZE6
(
L(5, 1)

)
= w−1

(
1 + 2

(
1 + ω

)
+
( 4 [2]2
[3][4]2

− 4ω [2]2

[4]2
− [2]2[3]

[4]2
+

2ω [3]

[4]2
)
+ 2

( [2]
[4]
− ω [2]

[4]

))
= w−1

(
3 +

4 [2]2

[3][4]2
− [2]2[3]

[4]2
+

2[2]

[4]
+

2ω

[4]2
(
[4]2 − 2[2]2 + [3]− [2][4]

))
= w−1

(
3 +

4 [2]2

[3][4]2
− [2]2[3]

[4]2
+

2[2]

[4]
+

2ω

[4]2
· 0
)

=
3 +
√
3

12
,
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by (1.4), as required. □

We note that the graph in (7.12) is dual to the following (singular) triangulation
of the 2-sphere,

and we obtain L(5, 1) from a 3-ball by gluing faces of this triangulation to each other.
Further, like (7.12), the value of our state sum invariant for any lens space can be
presented by using such a graph.

In general, any closed oriented 3-manifold M can be obtained from a triangulated
3-ball by gluing faces of the boundary 2-sphere to each other. The value of our state
sum invariant of M can be presented by using the dual graph of such a triangulation
of the 2-sphere; see [KL] for a similar statement for the Turaev–Viro invariant.
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Appendix A. The values of the weights

From Lemmas 3.3 and 7.3, we obtain the following table of the weights.

Proposition A.1. The weights of colored tetrahedra are given as follows, where we
omit to draw the face color •.∣∣∣∣∣∣

∣∣∣∣∣∣ = δAB ·
1√
didj

(i, j, k ∈ {0, 2, 4}, A,B ∈ {•, }),

∣∣∣∣∣∣
∣∣∣∣∣∣ = 1

[2][4]
,

∣∣∣∣∣∣
∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣
∣∣∣∣∣∣ = − [2]

[3][4]
,

∣∣∣∣∣∣
∣∣∣∣∣∣ = 1

[3][4]
,

∣∣∣∣∣∣
∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣
∣∣∣∣∣∣ = − [2]

[3][4]
,

∣∣∣∣∣∣
∣∣∣∣∣∣ = − 1

[4]
,

∣∣∣∣∣∣
∣∣∣∣∣∣ = [2]

[3][4]
,

∣∣∣∣∣∣
∣∣∣∣∣∣ = − 1

[3]
.

Appendix B. Equivalence to the E6 6j-symbols

In this section, we review the values of the 6j-symbols of the E6 subfactor given
in [SuW, W]. Further, we review that our 6j-symbols can be transformed into the
6j-symbols of the E6 subfactor in Lemma B.1 (due to T. Ohtsuki).

Similarly as in Section 5, we relate an oriented tetrahedron with oriented edges to
a planar trivalent graph, as follows.

⇝
dual

decomposition

∼
isotopy

on S2

We review the values of the 6j-symbols of the E6 subfactor given in [SuW, W], as
the weight of the tetrahedron, in terms of the above planar graph. When none of
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i, j, k, l,m, n is equal to 2, ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = 1 .

When one or two of i, j, k, l,m, n are equal to 2, there are no admissible colorings of
the tetrahedron. When three of i, j, k, l,m, n are equal to 2,∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ =
1

[3]
.

When four of i, j, k, l,m, n are equal to 2,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =


1

[3]
if the remaining two are equal to 4,

− 1

[3]
otherwise.

When five of i, j, k, l,m, n are equal to 2,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =



q3

[3]
if (a, b) = (3, 3),

q−3

[3]
if (a, b) = (4, 4),

0 if (a, b) = (3, 4), (4, 3),

(B.1)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =


1

[3]
if (a, c) = (3, 3), (4, 4),

0 if (a, c) = (3, 4), (4, 3),

(B.2)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =


1

[3]
if (a, d) = (3, 3), (4, 4),

0 if (a, d) = (3, 4), (4, 3),

(B.3)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =



q7√
2 [3]

if (b, c) = (3, 3), (4, 3),

q√
2 [3]

if (b, c) = (4, 4),

− q√
2 [3]

if (b, c) = (3, 4),

(B.4)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =


1

[3]
if (b, d) = (3, 3), (4, 4),

0 if (b, d) = (3, 4), (4, 3),

(B.5)
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∣∣∣∣∣∣∣ =


− q2√

2 [3]
if (c, d) = (3, 3), (3, 4), (4, 3),

q2√
2 [3]

if (c, d) = (4, 4),

(B.6)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =



0 if (a, b) = (3, 3), (4, 4),

q3

[3]
if (a, b) = (3, 4),

q−3

[3]
if (a, b) = (4, 3),

(B.7)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =



1

[3]
if (a, c) = (3, 3),

− 1

[3]
if (a, c) = (4, 4),

0 if (a, c) = (3, 4), (4, 3),

(B.8)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =


1

[3]
if (a, d) = (3, 4), (4, 3),

0 if (a, d) = (3, 3), (4, 4),

(B.9)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =



q7√
2 [3]

if (b, c) = (3, 3),

− q7√
2 [3]

if (b, c) = (4, 3),

− q√
2 [3]

if (b, c) = (3, 4), (4, 4),

(B.10)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =



q6

[3]
if (b, d) = (3, 4),

− q6

[3]
if (b, d) = (4, 3),

0 if (b, d) = (3, 3), (4, 4),

(B.11)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =


− q2√

2 [3]
if (c, d) = (3, 3), (4, 3), (4, 4),

q2√
2 [3]

if (c, d) = (3, 4),

(B.12)
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When all of i, j, k, l,m, n are equal to 2,

(B.13)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =



− 1

[3]2
if (a, b, c, d) = (3, 3, 3, 3), (3, 4, 3, 4),

q3√
2 [3]

if (a, b, c, d) = (3, 3, 4, 3),

− q3√
2 [3]

if (a, b, c, d) = (3, 4, 4, 4),

q−3

√
2 [3]

if (a, b, c, d) = (4, 3, 3, 4), (4, 4, 3, 3),

q−6

[3]2
if (a, b, c, d) = (4, 3, 4, 4),

q6

[3]2
if (a, b, c, d) = (4, 4, 4, 3),

0 otherwise.

We rewrite the list of Proposition A.1, in terms of the dual planar graph, as follows,

(B.14)

∣∣∣∣∣
∣∣∣∣∣ = δAB ·

1√
didj

(i, j, k ∈ {0, 2, 4}, A,B ∈ {•, }),∣∣∣∣∣
∣∣∣∣∣ = 1

[2][4]
,

∣∣∣∣∣
∣∣∣∣∣ = 0,

∣∣∣∣∣∣
∣∣∣∣∣∣ = − [2]

[3][4]
,∣∣∣∣∣

∣∣∣∣∣ = 1

[3][4]
,

∣∣∣∣∣∣
∣∣∣∣∣∣ = 0,

∣∣∣∣∣
∣∣∣∣∣ = − [2]

[3][4]
,∣∣∣∣∣

∣∣∣∣∣ = − 1

[4]
,

∣∣∣∣∣
∣∣∣∣∣ = [2]

[3][4]
,

∣∣∣∣∣
∣∣∣∣∣ = − 1

[3]
.

We review a proof of the following lemma, which was shown by T. Ohtsuki.

Lemma B.1 (T. Ohtsuki). The 6j-symbols given in Section 5 can be transformed
into the 6j-symbols of the E6 subfactor.

Proof. We put

u3 = exp
(π√−1

8

)
·

√
3−
√
3

6
, u4 = − exp

(
− π
√
−1
8

)
·

√
3 +
√
3

6
,

v3 = exp
(
− 5 π

√
−1

24

)
·

√
3 +
√
3

6
, v4 = exp

(
− 11 π

√
−1

24

)
·

√
3−
√
3

6
.
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Then,

u3u3 =
3−
√
3

6
, u4u4 =

3 +
√
3

6
, u3v3 =

q4√
6
,

v3v3 =
3 +
√
3

6
, v4v4 =

3−
√
3

6
, u4v4 = − q4√

6
,

u3u3 + u4u4 = 1, v3v3 + v4v4 = 1, u3v3 + u4v4 = 0.

Hence,

(
u3 v3
u4 v4

)
is a unitary matrix.

By putting

= , = unless i = j = k = 2,

= ua + va , = ua + va ,

we calculate ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

by using (B.14), and verify that it is equal to the above mentioned value. When all
vertices are colored by •, it is easy to check the proof. Hence, we consider the case
where there are vertices colored by S3, S4, i.e., we verify the values of (B.1)–(B.13)
in the following of this proof.

As for (B.1),∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = uaub

∣∣∣∣∣
∣∣∣∣∣+ vavb ω

2

∣∣∣∣∣
∣∣∣∣∣ =

1

[3]

(
uaub + vavb ω

2
)
.

Hence, we can verify (B.1) by concrete calculation for each (a, b).
As for (B.2),∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ = uauc

∣∣∣∣∣
∣∣∣∣∣+ vavc

∣∣∣∣∣
∣∣∣∣∣ =

1

[3]

(
uauc + vavc

)
.

Hence, we can verify (B.2) for each (a, c), since

u3u3 + v3v3 = 1, u4u4 + v4v4 = 1, u3u4 + v3v4 = 0,

which can be checked concretely.
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As for (B.3),∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = uaud

∣∣∣∣∣
∣∣∣∣∣+ vavd

∣∣∣∣∣
∣∣∣∣∣ =

1

[3]

(
uaud + vavd

)
,

and we can verify (B.3) in the same way as the case of (B.2).
As for (B.4),∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ = ubuc

∣∣∣∣∣
∣∣∣∣∣+ vbvc ω

2

∣∣∣∣∣
∣∣∣∣∣ =

1

[3]

(
ubuc + vbvc ω

2
)
.

Hence, we can verify (B.4) by concrete calculation for each (b, c).
As for (B.5),∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ = ubud

∣∣∣∣∣
∣∣∣∣∣+ vbvd

∣∣∣∣∣
∣∣∣∣∣ =

1

[3]

(
ubud + vbvd

)
,

and we can verify (B.5) in the same way as the case of (B.2).
As for (B.6),∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ = ucud

∣∣∣∣∣
∣∣∣∣∣+ vcvd ω

2

∣∣∣∣∣
∣∣∣∣∣ =

1

[3]

(
ucud + vcvd ω

2
)
.

Hence, we can verify (B.6) by concrete calculation for each (c, d).
As for (B.7),∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ = uaub

∣∣∣∣∣
∣∣∣∣∣+ (vaub ω

2 + uavb
) ∣∣∣∣∣

∣∣∣∣∣+ vavb ω
2

∣∣∣∣∣
∣∣∣∣∣

= − [2]

[3][4]
uaub −

1

[4]

(
vaub ω

2 + uavb
)
+

[2]

[3][4]
vavb ω

2.

Hence, we can verify (B.7) by concrete calculation for each (a, b).
As for (B.8),∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ = uauc

∣∣∣∣∣
∣∣∣∣∣+ (vauc ω

−2 + uavc ω
2
) ∣∣∣∣∣

∣∣∣∣∣+ vavc

∣∣∣∣∣
∣∣∣∣∣

= − [2]

[3][4]
uauc −

1

[4]

(
vauc ω

−2 + uavc ω
2
)
+

[2]

[3][4]
vavc .

Hence, we can verify (B.8) by concrete calculation for each (a, c).
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As for (B.9),

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = uaud

∣∣∣∣∣
∣∣∣∣∣+ (vaud + uavd

) ∣∣∣∣∣
∣∣∣∣∣+ vavd

∣∣∣∣∣
∣∣∣∣∣

= − [2]

[3][4]
uaud −

1

[4]

(
vaud + uavd

)
+

[2]

[3][4]
vavd .

Hence, we can verify (B.9) by concrete calculation for each (a, d).
As for (B.10),

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = ubuc

∣∣∣∣∣
∣∣∣∣∣+ (vbuc ω

−2 + ubvc ω
−2
) ∣∣∣∣∣

∣∣∣∣∣+ vbvc ω
2

∣∣∣∣∣
∣∣∣∣∣

= − [2]

[3][4]
ubuc −

1

[4]

(
vbuc ω

−2 + ubvc ω
−2
)
+

[2]

[3][4]
vbvc ω

2.

Hence, we can verify (B.10) by concrete calculation for each (b, c).
As for (B.11),

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = ubud

∣∣∣∣∣
∣∣∣∣∣+ (vbud ω

2 + ubvd ω
−2
) ∣∣∣∣∣

∣∣∣∣∣+ vbvd

∣∣∣∣∣
∣∣∣∣∣

= − [2]

[3][4]
ubud −

1

[4]

(
vbud ω

2 + ubvd ω
−2
)
+

[2]

[3][4]
vbvd .

Hence, we can verify (B.11) by concrete calculation for each (b, d).
As for (B.12),

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = ucud

∣∣∣∣∣
∣∣∣∣∣+ (vcud + ucvd ω

2
) ∣∣∣∣∣

∣∣∣∣∣+ vcvd ω
2

∣∣∣∣∣
∣∣∣∣∣

= − [2]

[3][4]
ucud −

1

[4]

(
vcud + ucvd ω

2
)
+

[2]

[3][4]
vcvd ω

2.

Hence, we can verify (B.12) by concrete calculation for each (c, d).



56 KENTA OKAZAKI

As for (B.13),∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = uaubucud

∣∣∣∣∣
∣∣∣∣∣

+
(
vavbucud ω

2 + vaubvcud + vaubucvd

+ uavbvcud ω
2 + uavbucvd + uaubvcvd ω

2
) ∣∣∣∣∣∣

∣∣∣∣∣∣
+
(
vavbvcud ω

2 + vavbucvd ω
−2 + vaubvcvd ω

−2 + uavbvcvd ω
2
) ∣∣∣∣∣

∣∣∣∣∣
=

1

[2][4]
uaubucud

− [2]

[3][4]

(
vavbucud ω

2 + vaubvcud + vaubucvd

+ uavbvcud ω
2 + uavbucvd + uaubvcvd ω

2
)

+
1

[3][4]

(
vavbvcud ω

2 + vavbucvd ω
−2 + vaubvcvd ω

−2 + uavbvcvd ω
2
)
.

Hence, we can verify (B.13) by concrete calculation for each (a, b, c, d), completing
the proof. □
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