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Abstract

We consider a class of integer-valued discrete convex functions, called BS-convex
functions, defined on integer lattices whose affinity domains are sets of integral
points of integral bisubmodular polyhedra. We examine discrete structures of BS-
convex functions and give a characterization of BS-convex functions in terms of
their convex conjugate functions by means of (discordant) Freudenthal simplicial
divisions of the dual space.

1. Introduction
Kazuo Murota [9] has developed the theory of discrete convex functions such as M- and
M♮-convex functions and L- and L♮-convex functions (also see [7, Chapter VII]). The class
of integer-valued such discrete convex functions defined on integer lattices is the most
fundamental, where M♮-convex functions have generalized polymatroids as their affinity
domains and L♮-convex functions have convex extensions with respect to the Freudenthal
simplicial divisions.

We consider a class of integer-valued discrete convex functions, called BS-convex
functions, which are defined on integer lattices and whose affinity domains are sets of
integral points of integral bisubmodular polyhedra. We give a characterization of BS-
convex functions by means of the Freudenthal simplicial divisions and the Union-Jack
simplicial divisions of the dual space.
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2. Bisubmodular polyhedra
Let V be a finite nonempty set and 3V be the set of ordered pairs (X,Y ) of disjoint subsets
X, Y ⊆ V . Denote by Z and R the set of integers and that of reals, respectively. Also
define 1

2
Z = {k

2
| k ∈ Z}. Any element in 1

2
Z is called half-integral and is called a half-

integer if it is not an integer. Any vector x in (1
2
Z)V is called half-integral and is called

integral if x(v) is an integer for each v ∈ V . For any X ⊆ V define χX ∈ {0, 1}V to be
the characteristic vector of X , i.e., χX(v) = 1 for v ∈ X and χX(v) = 0 for v ∈ V \X .
When X is a singleton {w}, we also write χw as χ{w}. For any x ∈ RV and X ⊆ V
define x(X) =

∑
v∈X x(v), where x(∅) = 0.

Let f : 3V → R be a bisubmodular function, i.e., for every (X, Y ), (W,Z) ∈ 3V we
have

f(X, Y ) + f(W,Z) ≥ f((X, Y ) ⊔ (W,Z)) + f((X, Y ) ⊓ (W,Z)), (2.1)

where (X, Y )⊔(W,Z) = ((X∪W )\(Y ∪Z), (Y ∪Z)\(X∪W )) and (X, Y )⊓(W,Z) =
(X ∩W,Y ∩ Z). We assume f(∅, ∅) = 0. Define

P(f) = {x ∈ RV | ∀(X, Y ) ∈ 3V : x(X)− x(Y ) ≤ f(X,Y )}, (2.2)

which is called the bisubmodular polyhedron associated with f . When f is integer-valued,
we call the set PZ(f) of all the integral points of P(f) a BS-convex set (BS stands for
‘bisubmodular’). Note that the convex hull of PZ(f) is equal to P(f) (see [3, 4] and [7,
Sect. 3.5.(b)]). Occasionally we identify a BS-convex set with its corresponding bisub-
modular polyhedron.

Now consider an integer-valued function g : ZV → Z ∪ {+∞} on the integer lattice
ZV . Suppose that for every vector µ : V → R the convex hull of the affinity (or linearity)
domain given by

Argmin{g(x)− ⟨µ, x⟩ | x ∈ ZV }, (2.3)

if nonempty, is a BS-convex set. Then we call g a BS-convex function. Note that every
face of a bisubmodular polyhedron (or a BS-convex set) is a bisubmodular polyhedron
(or a BS-convex set).

We have the following theorem, which can be shown by using characterizations of
base polyhedra due to Tomizawa [7, Th. 17.1] and of bisubmodular polyhedra due to
Ando and Fujishige [1]. We define an edge vector to be an edge-direction vector identified
up to non-zero scalar multiplication.

Theorem 1: A pointed polyhedron Q is a bisubmodular polyhedron if and only if every
edge vector of Q has at most two nonzero components that are equal to 1 or −1.
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3. BS-convex functions
Now, let us examine the combinatorial structures of BS-convex functions. Let g : ZV →
Z ∪ {+∞} be a BS-convex function. In the sequel we suppose that the effective domain
of BS-convex function g is full-dimensional and every affinity domain of g is pointed.

Consider an affinity domain Q, of g, of full dimension and suppose that the affine
function supporting g on Q is given by

y = ⟨µ, x⟩+ α. (3.1)

Note that µ is the gradient vector of g on Q.
Let q be an extreme point of Q. Then we have a signed poset P(q) = (V,A(q)) that

expresses the signed exchangeability associated with q for Q (see [1, 2, 6]). Signed poset
P(q) has possible bidirected arcs a as follows:

(a) a = u+−v for distinct vertices u, v ∈ V , which means that q + χu − χv ∈ Q.

(b) a = u++v for vertices u, v ∈ V , which means that q + χu + χv ∈ Q if u ̸= v, and
q + χu ∈ Q if u = v.

(c) a = u−−v for vertices u, v ∈ V , which means that q − χu − χv ∈ Q if u ̸= v, and
q − χu ∈ Q if u = v.

For any arc a = u±±v define ∂a = ±χu ± χv if u ̸= v, and ∂a = ±χu if u = v. Note
that (a), (b), and (c) mean that for any arc a ∈ A(q) we have q + ∂a ∈ Q.

For a half-integral vector x ∈ (1
2
Z)V we call U0 = {v ∈ V | x(v) ∈ Z} the integer

support of x and U1 = V \ U0 the half-integer support of x, respectively.
Then we have the following.

Theorem 2: Let g : ZV → Z∪{+∞} be a BS-convex function. For every affinity domain
Q of g of full dimension the gradient vector µ of g on Q and the constant α in (3.1) are
half-integral, and for the half-integer support U1 of µ we have even z(U1) for all z ∈ Q
or odd z(U1) for all z ∈ Q according as α is an integer or a half-integer.

PROOF: Since Q is full-dimensional, letting q be an extreme point of Q, the gradient
vector µ is the unique solution of the following system of linear equations with integral
right-hand sides:

⟨∂a, µ⟩ = g(q + ∂a)− g(q) (∀a ∈ A(q)), (3.2)

which has a half-integral solution.
Moreover, it follows from the above argument that µ is expressed as µ0+

1
2
χU1 , where

µ0 = ⌊µ⌋, the integral vector obtained from µ by rounding µ(v) (v ∈ V ) downward to the
nearest integers. Then we have g(z) = ⟨µ0, z⟩+ 1

2
z(U1) + α, which is an integer. Hence,

α is half-integral, from which the latter part of the present theorem easily follows. 2
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Example 3: The set of four points

Q = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

in Z3 is a BS-convex set due to Theorem 1. A linear function

y =
1

2
{x(1) + x(2) + x(3)}

with a half-integer gradient takes on integers on Q since x(1) + x(2) + x(3) is even for
all x ∈ Q. Actually Q is an even-parity delta-matroid (see [3, 8]).

A BS-convex set Q ⊆ ZV is said to have constant parity if x(V ) for all x ∈ Q are
even or are odd.

Conjecture 4: Every constant-parity BS-convex set of full dimension is a translation of a
delta-matroid.

Note that BS-convex sets are exactly jump systems without any hole ([3, 8]) and that
all the points of every constant-parity BS-convex set Q of full dimension lie on the bound-
ary of the convex hull of Q.

4. BS-convex functions and Freudenthal simplicial divi-
sions

For the unit hypercube [0, 1]V a Freudenthal cell is defined as follows. Let λ = (v1, · · · , vn)
be a permutation of V , where n = |V |. For each i = 0, 1, · · · , n denote by Si the set of the
first i elements of λ. Then the simplex formed by χSi

(i = 0, 1, · · · , n) is a Freudenthal
cell. The collection of n! such Freudenthal cells corresponding to permutations of V gives
us the (standard ) Freudenthal simplicial division of the unit hypercube [0, 1]V .

For any S ⊆ V , transforming the standard Freudenthal simplicial division of [0, 1]V

by making points χX correspond to points χ(X\S)∪(S\X) for all X ⊆ V , we get another
simplicial division of [0, 1]V , which we call the Freudenthal simplicial division reflected
by S and each cell of it a Freudenthal cell reflected by S.

The (standard ) Freudenthal simplicial division of RV is obtained by translations
of the standard Freudenthal simplicial division of [0, 1]V to translated unit hypercubes
[0, 1]V + z (= [z, z + χV ]) by all integral z ∈ ZV (see Figure 1).
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Figure 1. The Freudenthal simplicial division.
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Figure 2. A discordant Freudenthal simplicial division D.

For each integral point z ∈ ZV let us consider a Freudenthal simplicial division of
[0, 1]V + z reflected by a set (depending on z) in such a way that it gives us a simplicial
division of RV . We call such a simplicial division of RV a discordant Freudenthal sim-
plicial division of RV (see Figure 2). Given a discordant Freudenthal simplicial division
D of RV , we call f : ZV → Z ∪ {+∞} a D-convex function if the extension, denoted
by f̂ , of f with respect to simplicial division D is convex on RV . The convex conjugate
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f • : RV → R ∪ {+∞} of f is defined by

f •(p) = sup{⟨p, x⟩ − f(x) | x ∈ ZV } (∀p ∈ RV ). (4.1)

The restriction of f • on the integer lattice ZV is denoted by f •
Z.

Theorem 5: Given a discordant Freudenthal simplicial division D of RV , let f : ZV →
Z∪{+∞} be a D-convex function having full-dimensional pointed affinity domains. Then
f •
Z is a BS-convex function. Moreover, the gradient of f •

Z on every full-dimensional affinity
domain is an integral vector.

PROOF: Since facets of any (standard) Freudenthal cell have normal vectors of form
χu − χv for u, v ∈ V with u ̸= v and ±χv for v ∈ V and since f has an integral gradient
on every reflected Freudenthal cell, the present theorem follows from Theorem 1 and the
definitions of f • and f •

Z. 2

Now, for a discordant Freudenthal simplicial division D for integer lattice ZV let us
consider the simplicial division 1

2
D for the half-integral lattice (1

2
Z)V . Then, Theorem 5

leads us to the following.

Corollary 6: Consider any 1
2
D-convex function f : (1

2
Z)V → 1

2
Z ∪ {+∞} having full-

dimensional pointed affinity domains. Let Q be an affinity domain (a BS-convex set ),
of f •, of full dimension that corresponds to a point p ∈ (1

2
Z)V giving a vertex of the

epi-graph of f̂ . Then, the subdifferential ∂f(p) of f at p (the affinity domain Q of f •
Z

corresponding to p) is a BS-convex set.

It should be noted that for any 1
2
D-convex function f (in Corollary 6) f •

Z defined on
ZV takes on values in 1

2
Z, possibly half-integers.

Theorem 7: Let f : (1
2
Z)V → 1

2
Z ∪ {+∞} be a 1

2
D-convex function having full-

dimensional pointed affinity domains. Suppose that for every point p ∈ 1
2
Z corresponding

to a vertex of the epi-graph of f̂ , putting Q = ∂f(p) and letting U1 be the half-integer
support of p, z(U1) is even for all z ∈ Q or z(U1) is odd for all z ∈ Q according as f(p)
is an integer or a half-integer. Then, f •

Z is a BS-convex function.

PROOF: Note that for the affine function (3.1) that supports f • on Q = ∂f(p) we have
µ = p and α = −f(p). We can thus see from the assumption that f •

Z is integer-valued
(cf. Theorem 2). Hence the present theorem follows from Corollary 6. 2

We call a 1
2
D-convex function f in Theorem 7 a BS •-convex function. From Theorems

2 and 7 we now have the following.

Theorem 8: A function g : ZV → Z ∪ {+∞} is a BS-convex function if and only if we
have g = f •

Z for a BS •-convex function f : (1
2
Z)V → 1

2
Z ∪ {+∞}.
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Let us denote by UJ the Union-Jack simplicial division for ZV of RV . (The Union-
Jack simplicial division is a discordant Freudenthal simplicial division obtained in a some-
what concordant way as follows. For each integral point z ∈ ZV z is expressed as z0+χW

where z0 has all even values z0(v) (v ∈ V ) and W is a subset of V . Then consider a
Freudenthal simplicial division of [z, z + χV ] reflected by W .) Also denote by 1

2
UJ the

half Union-Jack simplicial division for (1
2
Z)V (see Figure 3). Similarly we define the

quarter Union-Jack simplicial division 1
4
UJ for (1

4
Z)V . Then we have

Theorem 9: Every discordant Freudenthal simplicial division D for ZV of RV is a
coarsening of the half Union-Jack simplicial division 1

2
UJ for (1

2
Z)V . Hence the class

of the convex extensions of BS-convex functions is a subclass of the convex conjugate
functions of 1

4
Z-valued 1

4
UJ-convex functions for the fixed quarter Union-Jack simplicial

division 1
4
UJ for (1

4
Z)V .
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Figure 3. The half Union-Jack simplicial division 1
2
UJ.

5. Concluding Remarks
We have examined structures of BS-convex functions, which are integer-valued discrete
convex functions having BS-convex sets (sets of integral points in integral bisubmodular
polyhedra) as their affinity domains. We have shown the following relations.

{D-convex functions (∀D)} ⊂ {BS•-convex functions}
⊂ {1

2
D-convex functions (∀D)}
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and by duality (or conjugacy)

{D-convex functions (∀D)}• ⊂ {BS-convex functions}
⊂ {1

2
D-convex functions (∀D)}•,

where {f, · · ·}• = {f •, · · ·}. We also have

{1
2
D-convex functions (∀D)} ⊂ {1

4
UJ-convex functions}.

Murota [10] considered M-convex functions on constant-parity jump systems, which
are closely related to BS-convex functions since the convex hulls of BS-convex sets and
of jump systems are both integral bisubmodular polyhedra (see [3, 8]). Domains of M-
convex functions on jump systems considered in [10] may have holes. Moreover, the
convex extension of such an M-convex function restricted on the underlying integer lattice
may take on non-integral values on the holes. A special case of BS-convex functions
defined on delta-matroids was also considered in [5, 11].
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