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Abstract

We announce the results of [K]. We present decomposition of WKB
solutions to monomially summable series at an irregular singular point
of singularly perturbed ordinary differential equations when the equa-
tions satisfy some stability conditions (Assumption I and II).

1 Introduction

The purpose of this report is to announce the results of [K]. The

main object studied there is the following singularly perturbed ordinary

differential equation:

(1)
(
εn
dn

dxn
+ an−1(x, ε)ε

n−1 d
n−1

dxn−1
+ · · · + a0(x, ε)

)
ψ = 0,

where ak(x, ε) ∈ C{x, ε}[x−1]. WKB solutions of (1) are formal solu-

tions of the following form:

(2) ψ(x, ε) = exp[

∫ x

S(x, ε)dx],

where S(x, ε) = ε−1S−1(x) + S0(x) + · · · is a formal power series so-

lution (in ε-variable) of the Riccati equation associated with (1). As

is well known, S(x, ε) is a divergent series in general. To give analyti-

cal meaning to such a divergent series, we employ Borel resummation

method. (See [KT] for details.) Therefore, it is indespensable to know

where the solutions are Borel summable, especially when we discuss

the Stokes phenomena for such solutions.

Before discussing the general situation, let us first consider the fol-

lowing Schrödinger equation

(3)
(
ε2 d

2

dx2
−R(x)

)
ψ = 0,
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where R(x) is a rational function. The Borel summability of solutions

of the Riccati equation associated with (3) except on the Stokes curves

is verified in [KoS]. (See also [CDK], [DLS] and [KKo].) The proof

is given by solving the Borel transformed Riccati equation along its

characteristic curve. However, it is difficult to apply their method

directly to the case of higher order equations because of the complexity

of their Stokes geometry. (Cf. [AKT] and [H].) And, the global aspects

of summability structure of WKB solutions are not well-known.

On the other hand, let us consider the following Schrödinger equation

(4)
(
ε2 d

2

dx2
− (x− ε2x2)

)
ψ = 0.

It is known that WKB solutions of (4) are (4, 1)-summable. (See [Su]

and [SuT].) Therefore, the Borel resummation method is not applicable

to such multi-summable solutions; we have to modify the resummation

method. (Cf. [B1].) Then, analysis of (1) will become complicated.

Judging by current circumstances of our study, it seems important

to know the condition that guarantees that the Borel resummation

method works appropriately in the analysis of (1).

In this article, we focus our attention on an irregular singular point

of (1) since its structure seems important when we determine the multi-

summability type of WKB solutions of (1). Related to the problem, in

[BM], summability structure of formal power series solutions of inho-

mogeneous linear singularly perturbed system of ordinary differential

equations was studied. Further, in [CMS], monomial summability of

formal power series solutions for nonlinear cases was discussed. The

aim of this study is to apply their theories to the case where the Newton

polygon of the symbol of (1) has several line segments; we construct

the decomposition of WKB solutions to monomially summable series

(Theorem 1) when the Newton polygon satisfies some stability condi-

tions under the perturbation (Assumption I and II). As an application
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of it, we discuss the Borel summability (in ε-variable) of formal power

series solutions of the Riccati equation associated with (1).

2 Main results

In this section, we explain the core results of [K]. Let

(5) P (x, ε, ξ) = ξn + an−1(x, ε)ξ
n−1 + · · · + a0(x, ε)

be the symbol of (1) and let al(x, 0) (l = 0, 1, · · · , n− 1) behave as

(6) al(x, 0) = clx
νl +O(xνl+1)

at x = 0, where cl( 6= 0) ∈ C and νl ∈ Z. (When al(x, 0) ≡ 0, we

regard νl as +∞.) We set cn = 1 and νn = 0. Then, the Newton

polygon N0 of P (x, 0, ξ) is defined by the convex hull of the set

(7)
∪

0≤l≤n

∪
j∈N

{
(l, νl + j)

}
.

Let αp (p = 1, 2, · · · ) be the slopes of the line segments of N0 in

decreasing order and let jp (p = 1, 2, · · · ) be the corresponding lengths

of the line segments projected onto the l-axis. Therefore, they satisfy

αp =
(
νn−|~j|p−1

− νn−|~j|p
)/
jp, where

(8) |~j|p =

p∑
i=1

ji.

We assume that m (≥ 1) of the slopes are strictly greater than 1, i.e.,

α1 > α2 > · · · > αm > 1 ≥ αm+1 > · · · . (When all the slopes are

strictly greater than 1, we regard αm+1 = 1 and jm+1 = 0.) Then, (1)

has an irregular singular point at x = 0.

Now, we assume the following conditions:

Assumption I. Line segments of N0 corresponding to the slopes αp
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(p = 1, · · · ,m) are stable near ε = 0, i.e., xσlal(x, ε) (l = 0, · · · , n−1)

are bounded at x = ε = 0, where

σl =



p−1∑
i=1

(αi − αp)ji + αp(n− l) when n− |~j|p ≤ l ≤ n− |~j|p−1,

m∑
i=1

(αi − αm)ji + αm(n− l) when l ≤ n− |~j|m.

(9)

Assumption II. These line segments of N0 are non-degenerate, i.e.,

the discriminant of

Dp(β) =
∑
l

clβ
l−n+|~j|p(10)

does not vanish, where the sum is taken over
{
l

∣∣ n − |~j|p ≤ l ≤
n− |~j|p−1, νl = σl

}
.

Remark 1. The equation (4) has an irregular singular point at x =∞.

It violates Assumption I there.

Then, roots ξ
(j)
p (x) (j = 1, · · · , jp) of P (x, 0, ξ) = 0 corresponding

to the line segment with the slope αp of N0 behave as

(11) ξ(j)
p (x) = β(j)

p x−αp + o(x−αp)

at x = 0, where β
(j)
p (6= 0) (j = 1, · · · , jp) are the distinct roots of

Dp(β) = 0. Applying a ramified coordinate transformation, we may

assume that αp (p = 1, · · · ,m) are positive integers strictly greater

than 1.

Let us first consider the case where N0 has only one line segment

and Assumption I and II are satisfied. Since (1) can be rewritten in
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the form

(12) −ε d
dx

Ψ =


0 −1 0 · · · 0
... . . . . . . . . . ...

0 · · · 0 −1 0

0 · · · · · · 0 −1

a0 a1 · · · an−2 an−1

 Ψ,

employing a splitting lemma (cf. [B2]), we find that (1) has WKB

solutions ψ(j)(x, ε) (j = 1, · · · , n) of the following form:

(13) ψ(j)(x, ε) = T (j)(x, ε) exp[ε−1

∫ x

Ξ(j)(x̃, ε)dx̃],

where T (j)(x, ε) and Ξ(j)(x, ε) (j = 1, · · · , n) are formal series in

C[[x, ε]][x−1] and Ξ(j)(x, ε) satisfies

(14) Ξ(j)(x, 0) = ξ
(j)
1 (x).

As a consequence of [CMS], we find that T (j)(x, ε) and Ξ(j)(x, ε) can

be written by linear combinations of 1-summable series in xr1ε (r1 =

α1 − 1) with the coefficients in C[x, x−1]. Here, the summability with

respect to the monomial xr1ε is a kind of the summability property of

the formal series

(15) lim
−→
R→0

lim
←−

N→∞

OR/(x
r1ε)NOR,

where OR is the space of holomorphic functions on
{
(x, ε) ∈ C2

∣∣ |x|, |ε|
< R

}
. See [CMS] for details. (See also [M] for the notion of strong

asymptotic developability.) Further, the singular directions of T (j)(x, ε)

and Ξ(j)(x, ε) are estimated as

(16) arg
(
xr1ε

)
= arg

(
β

(i)
1 − β

(j)
1

)
(i 6= j),

i.e., they are 1-summable in xr1ε except for the directions (16) at least.
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Therefore, we find that there exist non-negative real continuous func-

tions d(j)(θ) (j = 1, · · · , j1) on S1 that do not vanish on

(17) S1 \
∪
i6=j

{(
β

(i)
1 − β

(j)
1

)/∣∣β(i)
1 − β

(j)
1

∣∣}
and T (j)(x, ε) and Ξ(j)(x, ε) are 1-summable in ε-variable in a direction

arg ε = 0 on

(18)
{
x ∈ C \{0}

∣∣ |x| < d(j)
(
(x/|x|)r1

)}
.

Remark 2. We distinguish the words “1-summable in a direction arg ε =

0” and “Borel summable”; we say a formal power series is 1-summable

in a direction arg ε = 0 (resp., Borel summable) when its formal 1-

Borel transform converges and analytically extends to a sectorial re-

gion (resp., strip-shaped region) containing the positive real axis of

the Borel plane and its exponential size there is at most 1. (Compare

the definition in [B1] and [KT].) Hence, 1-summability in a direction

arg ε = 0 implies Borel summability.

Now, let us consider the case where N0 has several line segments.

In such a case, following a similar discussion in [B2], we obtain

Theorem 1 ([K]). Suppose that (1) satisfies Assumption I and II.

Then, there exist a transformation T (x, ε) = T1(x, ε) · · ·Tm(x, ε) ∈
GL

(
n,C[[x, ε]][x−1]

)
such that (12) is transformed by Ψ = TΦ to

the following system :

(19) ε
d

dx
Φ =


Ξ1 0 · · · 0
0 . . . . . . ...
... . . . Ξm 0

0 · · · 0 Ξ̃

 Φ,
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where elements of

Ξp(x, ε) =


Ξ

(1)
p 0 · · · 0

0 . . . . . . ...
... . . . . . . 0

0 · · · 0 Ξ
(jp)
p

 (
∈ GL

(
jp,C[[x, ε]][x−1]

))
(20)

and Tp(x, ε) (p = 1, · · · ,m) are linear combinations of 1-summable

series in xrpε (rp = αp − 1) with the coefficients in C[x, x−1]. Fur-

ther, Ξ
(j)
p (x, ε) satisfies

(21) Ξ(j)
p (x, 0) = ξ(j)

p (x).

Remark 3. The element Ξ̃ originate from the roots of P (x, 0, ξ) = 0

corresponding to the line segments with the slopes αp (p ≥ m + 1).

We also find that the elements of Ξ̃ are written by linear combinations

of 1-summable series in xrmε with the coefficients in C[x, x−1].

Remark 4. The proof of Theorem 1 proceeds by the induction on the

number of line segments with the slope αp > 1. When we reduce the

number, we use a transformation of the equation to a meromorphic

form in the category of monomially summable series. Similar transfor-

mations are also discussed by M. Canalis-Durand, J. Mozo-Fernández

and R. Schäfke ([S]).

Therefore, we find WKB solutions ψ
(j)
p (x, ε) of (1) of the following

form:

(22) ψ(j)
p (x, ε) = T̃ (j)

p (x, ε) exp[ε−1

∫ x

Ξ(j)
p (x̃, ε)dx̃],

where T̃
(j)
p (x, ε) is the (1, j+|~j|p−1)-element of T (x, ε). More precisely,

we can estimate the singular directions of Ξ
(j)
p (x, ε) and T̃

(j)
p (x, ε) as
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follows: Ξ
(j)
p (x, ε) is 1-summable in xrpε on

(23)

S1 \
∪
i6=j

{(
β(i)
p − β(j)

p

)/∣∣β(i)
p − β(j)

p

∣∣} \ {
− β(j)

p

/∣∣β(j)
p

∣∣ ∣∣ if jp+1 6= 0
}
,

where
{
− β(j)

p

/∣∣β(j)
p

∣∣ ∣∣ if jp+1 6= 0
}

=
{
− β(j)

p

/∣∣β(j)
p

∣∣} if jp+1 6= 0,

otherwise we regard it as the empty set. Components of T̃
(j)
p (x, ε)

originating from Tq(x, ε) are 1-summable in xrqε on

(24) S1 \
∪

1≤i≤jq

{
β(i)
q

/∣∣β(i)
q

∣∣}
when q > p, 1-summable in xrpε on (23) when q = p and convergent

when q < p. Therefore, we find that there exist non-negative real

continuous functions d
(j)
p,q(θ) (q = 1, · · · , p) on S1 that do not vanish

on (23) when q = p and on (24) when q < p such that Ξ
(j)
p (x, ε) and

T̃
(j)
p (x, ε) are 1-summable in ε-variable in a direction arg ε = 0 on

(25)
{
x ∈ C \{0}

∣∣ |x| < d(j)
p

(
x/|x|

)}
,

where

(26) d(j)
p

(
x/|x|

)
= min

1≤q≤p

{
d(j)
p,q

(
(x/|x|)rq

)}
.

Now, let us define S
(j)
p (x, ε) by

(27) S(j)
p (x, ε) =

d

dx
log

(
ψ(j)
p (x, ε)

)
.

Then, S
(j)
p (x, ε) is a formal series solution in ε-variable with the coeffi-

cients C{x}[x−1] of the Riccati equation associated with (1) and, from

the construction of Ξ
(j)
p (x, ε) and T̃

(j)
p (x, ε), we find S

(j)
p (x, ε) satisfies

(28) S(j)
p (x, ε) = ε−1ξ(j)

p (x) +O(ε0).
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Here we note that such formal series solutions of the Riccati equa-

tion are uniquely determined. Further, as a consequence of the above

discussion, we obtain

Theorem 2 ([K]). Let S
(j)
p (x, ε) be a formal series solution in ε-

variable of the Riccati equation associated with (1) in the form of

(28). Then, it is 1-summable in ε-variable in a direction arg ε = 0

on (25).

Remark 5. The singular directions of T̃
(j)
p (x, ε) are corresponding to

the directions Im ω
(i,j)
p,q = 0 and Re ω

(i,j)
p,q > 0

(
(q, i) 6= (p, j)

)
, where

(29) ω(i,j)
p,q =

(
ξ(i)
q (x)− ξ(j)

p (x)
)
dx.

Here we note that ω
(i,j)
p,q

(
(q, i) 6= (p, j)

)
play a central role when we

determine Stokes geometry for (1). (Cf. [H].)
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Analyse Algébrique des Perturbations Singulières, I, Hermann,

(1994), 69–84.

[B1] W. Balser: From divergent power series to analytic functions,

Lecture Notes in Mathematics, Vol. 1582, Springer-Verlag, 1994.

10



[B2] : Formal power series and linear systems of meromorphic

ordinary differential equations, Springer, New York, 2000.

[BM] W. Balser and J. Mozo-Fernández: Multisummability of for-

mal solutions of singular perturbation problems, J. Differential

Equations, 183 (2002), 526–545.

[CMS] M. Canalis-Durand, J. Mozo-Fernández and R. Schäfke: Mono-
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