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§ 1. Introduction

The purpose of this article is to call forth the interest of specialists in microlocal
analysis in the computer-assisted study of the Landau-Nakanishi geometry by showing
concrete examples which we have encountered in making the effort with Henry P. Stapp
to elucidate the concrete contents of Sato’s postulate ([2]) on the analytic structure of
the S-matrix near the 3-particle threshold. For the convenience of the reader we first
recall the definition of a Feynman graph G and the Landau-Nakanishi variety (hereafter
abbreviated as LN variety) L (G) associated with G.

Definition 1.1. A Feynman graph G is a graph that consists of finitely many points
V1, V2, . . . , Vn′ (called vertices), finitely many line segments L1, L2, . . . , LN (called
internal lines) and finitely many half-lines Le

1, Le
2, . . . , Le

n (called external lines), where
each of the end-points W+

` and W−
` of L` (` = 1, 2, . . . , N) coincides with some Vj

(j = 1, 2, . . . , n′) satisfying the condition

(1.1) W+
` 6= W−

` ,

and the (unique) end-point of Le
r (r = 1, 2, . . . , n) coincides with some Vj (j = 1, 2, . . . , n′).

In this article we assume that each internal line and each external line are oriented
(and specified with an arrow like “→−” if necessary). Using this orientation we define
the incidence number [j : `] for a pair of a vertex Vj and an internal line L` by the
following rule:

(1.2) [j : `] =


+1 when the internal line L` ends at the vertex Vj ,

−1 when L` starts from Vj ,

0 neither of the end-points of L` coincides with Vj .
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The incidence number [j : r] for a pair of a vertex Vj and an external line Le
r is defined

in a similar manner.
We also assume that a ν-dimensional real (or complex if so specified) vector pr =

(pr,0, . . . , pr,ν−1) (r = 1, 2, . . . , n) is assigned to each external line Le
r and a strictly

positive number m` (` = 1, 2, . . . , N) is assigned to each internal line L`.

Figure 1. An example of a Feynman graph.

Remark 1.2. In this article we assume, for the sake of simplicity, that all constants
m` are the same and we denote it by the number m. That is, we consider only the
so-called equal mass case.

Remark 1.3. Unless otherwise stated, we assume ν = 2 in what follows.

Remark 1.4. In this article we do not assume

(1.3) p2
r(= p2

r,0 − p2
r,1) = m2.

In passing we note that, here and in what follows, for ν-dimensional vector k =

(k0, k1, . . . , kν−1) the scalar k2 stands for k2
0 −

ν−1∑
ρ=1

k2
ρ.

In order to write down the defining equation of the LN variety, we introduce the
following numbers j±(`) and j(r) for an internal line L` and an external line Le

r:

(1.4) [j±(`) : `] = ±1,

(1.5) [j(r) : r] 6= 0.

Definition 1.5. (i) The Landau-Nakanishi variety L (G) associated with a Feyn-
man graph G is, by definition, the totality of (p,

√
−1u) in Rνn×(

√
−1Rνn) that satisfies

the following equations for some (α1, . . . , αN ; k1, . . . , kN ; v1, . . . , vn′ ; a) ∈ RN ×RνN ×
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Rνn′ × Rν :

(1.6)



n∑
r=1

[j : r]pr +
N∑

`=1

[j : `]k` = 0 (j = 1, 2, . . . , n′),

α`(k2
` − m2) = 0, k`,0 > 0 (` = 1, 2, . . . , N),

vj+(`) − vj−(`) = α`k` (` = 1, 2, . . . , N),

ur = −[j(r) : r](vj(r) + a) (r = 1, 2, . . . , n).

(ii) If α` ≥ 0 (` = 1, 2, . . . , N) in (1.6), L (G) is designated as L +(G) and called the
positive-α LN variety associated with G.
(iii) If α` > 0 (` = 1, 2, . . . , N), then L +(G) is designated as L ⊕(G).

Remark 1.6. (i) If we formally define the Feynman integral FG(p) associated with G

by

(1.7)
∫

· · ·
∫ n′

Π
j=1

δν
( n∑

r=1

[j : r]pr +
N∑

`=1

[j : `]k`

)
N

Π
`=1

(k2
` − m2 +

√
−10)

N

Π
`=1

dνk`,

then it is known ([2]) that under some moderate conditions FG(p) is well-defined as
a microfunction and that it is supported by L +(G). Thus L +(G) is a variety in√
−1S∗Rνn. Denoting by π the canonical projection map from

√
−1S∗Rνn to Rνn,

we denote π(L +(G)) by L+(G). It is also called the positive-α LN variety. When
we want to emphasize that we are dealing with the object projected down to the base
manifold, we sometimes use somewhat loose expression “(positive-α) LN surface”. As
we will show in Section 2 and Section 3, some higher codimensional component of an
LN “surface” is of particular interest.
(ii) When FG(p) is well-defined, it has the form

(1.8) fG(p)δν
(∑

j,r

[j : r]pr

)
.

The vector a in the last equation of (1.6) is a counterpart of the factor δν(
∑

[j : r]pr).
The factor fG(p) is called a Feynman amplitude (or function).

Concerning the concrete figure of L+(G) the book of Eden et al. ([1]) is a good
introduction. Thanks to the progress of computers, mathematicians can now make the
figures in [1] much more precise so that they may give a fresh impetus to study the
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Landau-Nakanishi geometry, if they put sufficiently enough energy and time into the
study of the subject. Actually, as we show in Section 2, the detailed description of
L+(G) gives rise to interesting mathematical problems even for a very simple graph G.
Section 3 is devoted to showing what kind of anomalies is observed when G contains
what we call the non-external vertices. The study of such graphs is not only challenging
but also important in our future study of the analytic structure of the S-matrix near
the 3-particle threshold, which will make essential use of the Borel resummation.

§ 2. LN surface L(G) and its positive-α part L+(G) when G is
an ice-cream cone graph

As one of the most basic graph that is relevant to the 3-particle threshold we consider
the so-called ice-cream cone graph, that is,

Figure 2. The ice-cream cone graph G1.

The reason of our interest in L+(G1) is twofold. First, L+(G1) touches the 3-particle
threshold 3PT , and we know ([2], [3])

(2.1) fG1(p)|3PT = a(p)fG0(p) + b(p)

holds at a generic point of 3PT , where a(p) and b(p) are holomorphic functions and the
graph G0 is described in the figure below:

Figure 3. The Feynman graph G0.

Second, if we consider a point p where the following configuration of Fig. 4 is realized,
that is, if all internal lines are parallel keeping each vertex distinct, then we find
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Figure 4. The configuration of vectors vj ’s and α`k`’s.

(2.2) p4 + p5 = 2p6,

(2.3) p2
6 = m2.

The totality N− of such points covers only a tiny portion of L+(G1), but as Fig. 5
shows 1, N− is a crucially important part of the singularity that L+(G1) presents; the
singularity is commonly known as “Whitney’s umbrella”, and N− belongs to its most
singular part. Thus explicitly writing down the holonomic system that fG1(p) satisfies
near N− is a charming problem in microlocal analysis.
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Figure 5. The “non-zero α” LN surface of G1 with ν = 2 and m = 1.

1The surface appearing in the figure is analytically isomorphic to the one defined by the following

equations of parameters s > 0 and t > 0: x = s +
1

s
, y =

s2t + 3s

st − 1
and z = t. It has only one

pinch point singularity N− and also has a self-intersection curve corresponding to a shank of an
umbrella.
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§ 3. Truss-bridge graphs

As our eventual purpose is to understand the analytic structure of the S-matrix
near the 3-particle threshold, it is natural to try to study the concrete figure of the
positive-α LN surface L+(G) associated with Feynman graph G when it touches 3-
particle threshold. One such a graph is G1 studied in Section 2. One can readily note
that L+(T2) contains L+(G1) and also note that L+(T1) touches 3-particle threshold,
where the truss-bridge graph T1 (resp. T2) is given in Fig. 6 (resp. Fig. 7) below.

Figure 6. The truss-bridge graph T1. Figure 7. The truss-bridge graph T2.

Thus it is natural to study L+(T3), as the next target, where

Figure 8. The truss-bridge graph T3.

Interestingly enough, there is no reference which concretely describes L+(T3), as far as
we know. And, the actual figure shown in Fig. 9 is highly intriguing; the LN surface
in the figure consists of two irreducible components. One is isomorphic to the surface
defined by the following equations of parameters s > 0 and t > 0:

(3.1)

x = s + 1/s,

y = −
((

b2 − ab
)
s2 + (a − b) s + 1

)
t2 +

(
(a − 2b) s2 + s

)
t + s2

((b2 − ab) s − b) t2 + ((a − 2b) s + 1) t + s
,

z = bt2/(bt − 1),
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where a and b are some positive constants. This surface has two pinch point singularities
and two self-intersection curves which form a combination of two umbrellas. Another
component is the curve, i.e., the higher codimensional component, defined by equations
of s > 0:

(3.2) x = s + 1/s, y = −as2 − 3s

as + 1
, z = −b/(s2 − bs).

2
2.002
2.004
2.006
2.008

2.01
1.151.21.251.31.35

2

2.02

2.04

2.06

2.08

2.1

2.12

The higher codimensional curve

Figure 9. A generic slice of the “non-zero α” LN surface of T3 in a transversally inter-
secting 3-dimensional space (ν = 2 and m = 1).
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Among other things, the existence of a higher codimensional component of the LN
surface that corresponds to the configuration described in Fig. 10 was what we had not
anticipated before the actual computation.

Figure 10. The configuration of vectors vj ’s.

Note that the vertex V3 may move freely from V2 to V4 in the configuration of Fig. 10
even if (p, k) is fixed. This flexibility of the configuration is tied up with the higher
codimensionality of the component in question.

We believe that several intriguing features of L+(T3) should be tied up with the
existence of non-external vertex V3. Here, and in what follows, we say that a vertex is
non-external if no external line is incident upon the vertex. It is probably worth noting
the following fact.

Let us consider the following graph T̃3:

Figure 11. The Feynman graph T̃3.

Then, for any point p in L⊕(T̃3) (⊂ L+(T3)), we find

(3.3) p2
6 = m2;

otherwise stated, although the external line p6 is originally assumed not necessarily
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to be on-shell, the current configuration forces it to be on-shell. We note that we
encountered a similar situation in Section 2; at some particular points of L⊕(G1), p6 lies
on mass-shell. But this time at all points in L⊕(T̃3), p6 obeys the mass-shell constraint.
The confirmation of (3.3) is straightforward. First we note that the energy-momentum
conservation at V3 (i.e., the first equation of (1.6) with j = 3)

(3.4) k5 = k6 = k2 = k3,

because ν = 2 and α` 
 0 (` = 2, 3, 5, 6). Then it follows from the third equation of
(1.6) that

(3.5) α4k4 = α3k3 + α5k5 = (α3 + α5)k3,

and hence

(3.6) k4 = k3.

Similarly the third equation of (1.6) applied to the triangle formed by V3, V4 and V5

entails

(3.7) α6k6 = α5k5 + α7k7.

Hence (3.4) guarantees

(3.8) k7 = k5 = k3.

Thus the energy-momentum conservation at V4 implies

(3.9) p6 = k3,

proving (3.3). In passing, we note that in the course of the above reasoning we have
also confirmed

(3.10) p4 + p5 = 2p6.

The degeneration of this sort is a universal one, and we can confirm that at a point
p in L⊕(Tn) (n ≥ 4) where Tn is the truss-bridge graph given in Fig. 12 below, all the
internal lines become parallel, and hence we find (in the labeling of external energy-
momentum vectors as in Fig. 12)

(3.11) p4 + p5 = 2p6, p2
6 = m2 if n is odd,

and

(3.12) p5 + p6 = 2p4, p2
4 = m2 if n is even.
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Figure 12. The truss-bridge graph Tn consisting of n-trusses.

We also note

(3.13) p1 + p2 = 2p3, p2
3 = m2

holds. Hence, by setting

(3.14) N = N+ ∪ N−,

where

(3.15) N+ =
∪

p2
3=m2

{(p1, p2, p3); p1 + p2 = 2p3}

and

(3.16) N− =
∪

p2
6=m2

{(p4, p5, p6); p4 + p5 = 2p6},

we find

(3.17) L⊕(Tn) ⊂ N (n ≥ 4)

with some change of labeling of (p4, p5, p6) if necessary. Thus the micro-analytic struc-
ture of the S-matrix near N should be formidably difficult to study, but we believe the
analysis of individual Feynman integrals FTn(p) should be within reach of us.

§ 4. Concluding remarks and future problems

Having in mind the study of micro-analytic structure of the S-matrix near the 3-
particle threshold, we have made a detailed study of the LN surfaces associated with
an ice-cream cone graph and a truss-bridge graph Tn with n = 3 near the 3-particle



A computer-assisted study of the Landau-Nakanishi geometry 11

threshold. Thanks to the power of recent computers our results are precise enough
to stimulate the interest of mathematicians in the geometry of LN surfaces near the
3-particle threshold. Among other things we note that a central role is played by the
set N given by (3.14) (or N− for the configuration of Fig. 4). Although the singularity
structure of the S-matrix near N should be too complicated to analyze, we believe the
study of the holonomic structure of individual Feynman integrals near N is an interest-
ing problem in microlocal analysis. Another interesting feature of our results is that the
existence of non-external vertices in a Feynman graph normally gives strong constraint
on the shape of the associated LN variety. (See [4] and [5] for some related topics.)
The study of the holonomic structure of a Feynman integral associated with a Feynman
graph containing non-external vertices is an important and challenging problem in mi-
crolocal analysis. One natural way to approach this problem is to introduce fictitiously
an external vector pj at a non-external vertex Vj and then set it to be 0. As one imme-
diately realizes, this procedure normally leads to the restriction of a holonomic system
to a submanifold which contains characteristic points. We believe concrete studies of
Feynman integrals of this sort should contribute much to the progress of the theory of
holonomic systems.
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