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Abstract

Huber, Krokhin, and Powell (Proc. SODA2013) introduced a concept of skew bisubmodu-
larity, as a generalization of bisubmodularity, in their complexity dichotomy theorem for valued
constraint satisfaction problems over the three-value domain. In this paper we consider a nat-
ural generalization of the concept of skew bisubmodularity and show a connection between the
generalized skew bisubmodularity and a convex extension over rectangles. We also analyze the
dual polyhedra, called skew bisubmodular polyhedra, associated with generalized skew bisub-
modular functions and derive a min-max theorem that characterizes the minimum value of a
generalized skew bisubmodular function in terms of a minimum-norm point in the associated
skew bisubmodular polyhedron.

1 Introduction

For a finite set V let 2V be the set of all subsets of V and 3V be the set of all the ordered pairs of
disjoint subsets of V . A function f : 3V → R is called bisubmodular if

f(X+, X−)+ f(Y+, Y−) ≥ f(X+∩Y+, X−∩Y−)+ f((X+∪Y+)\ (X−∪Y−), (X−∪Y−)\ (X+∪Y+))

for all (X+, X−), (Y+, Y−) ∈ 3V . The concept of bisubmodularity was introduced in the study
of ∆-matroids by Bouchet [3] and independently by Chandrasekaran–Kabadi [5] (also see [6, 1]).
Examples of ∆-matroids include the base family of a matroid as well as the family of matchable
vertex sets in a graph, and bisubmodularity plays an important rôle in combinatorial optimiza-
tion for establishing the common generalization of matroid theory and matching theory from the
optimization view point (see, e.g., [4]).

Bisubmodularity generalizes the well-known concept of submodularity. A function f : 2V → R
is called submodular if

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y )
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for all X,Y ∈ 2V . The Lovász extension f̂ (or the Choquet integral) of a submodular function
f : 2V → R is a convex extension over [0, 1]V , which plays a fundamental rôle in minimizing
submodular functions as well as generalizing the submodular analysis to discrete convex analysis.
In fact Grötschel, Lovász, and Schrijver [13, Chapter 10] pointed out that one can minimize f by
applying the ellipsoid method to f̂ , which led to the first weakly and strongly polynomial-time
algorithms for minimizing submodular functions [12, 13]. Later, Iwata, Fleischer, and Fujishige
[18] and Schrijver [22] independently gave combinatorial, strongly polynomial-time algorithms for
minimizing submodular functions.

Algorithms for bisubmodular function minimization showed a similar historical development
following submodular function minimization. Qi [21] proposed a convex extension of a bisubmod-
ular function over [−1, 1]V and adapted the argument of Grötschel, Lovász, and Schrijver [13] to
bisubmodular functions. Fujishige and Iwata [10] extended their submodular function minimization
algorithm to bisubmodular function minimization. The time complexity of their algorithm is not
strongly polynomial, but later a combinatorial, strongly polynomial-time algorithm was developed
by McCormick and Fujishige [20].

Huber, Krokhin, and Powell [17] introduced a generalization of bisubmodularity, called skew
bisubmodularity, in their complexity dichotomy theorem for the valued constraint satisfaction prob-
lems (VCSPs) over the three-value domain. Let α be a number with 0 < α ≤ 1. A function
f : 3V → R is called α-bisubmodular if, for every X = (X+, X−) and Y = (Y+, Y−) ∈ 3V ,

f(X) + f(Y) ≥ f(X ∩Y) + αf(X ∪0 Y) + (1− α)f(X ∪1 Y), (1)

where X∩Y = (X+∩Y+, X−∩Y−), X∪0Y = ((X+∪Y+)\ (X−∪Y−), (X−∪Y−)\ (X+∪Y+)), and
X ∪1 Y = (X+ ∪ Y+, (X− ∪ Y−) \ (X+ ∪ Y+)). 1-bisubmodularity is nothing but bisubmodularity.
A function f : 3V → R is called skew bisubmodular if it is α-bisubmodular for some α ∈ (0, 1]. It
was left open in the proceedings paper [17] to decide whether α-bisubmodular functions could be
minimized in polynomial time for any α ∈ (0, 1) in the value oracle model, but very recently we
have been informed that Huber and Krokhin [16] showed that the minimization problem is indeed
tractable via a convex extension.1

In this paper we introduce a further natural generalization of the concept of skew bisubmodu-
larity, and reveal the importance of (generalized) skew bisubmodularity from the point of view of
discrete convex analysis. We examine an analog of the Lovász extension over general n-dimensional
rectangles and show that a necessary and sufficient condition for such an extension to be convex is
the generalized skew bisubmodularity, where α-bisubmodularity introduced in [17] shows up as a
special case when the rectangle is of form [−α, 1]V . This implies that the generalized skew bisub-
modular functions can also be minimized in strongly polynomial time by the ellipsoid method. We
also analyze the dual polyhedra, called skew bisubmodular polyhedra, associated with skew bisub-
modular functions. It turns out that each orthant of a skew bisubmodular polyhedron forms a
submodular polyhedron scaled by parameters, and skew bisubmodular polyhedra are special cases
of polybasic polyhedra examined by Fujishige, Makino, Takabatake, and Kashiwabara [11]. Also
skew bisubmodularity can be viewed as a special case of the discrete convexity defined within
the general framework recently developed by Hirai [14, 15], while his general framework does not
directly imply the oracle tractability of skew bisubmodular function minimization.

1The oracle tractability was announced at the Dagstuhl Seminar in November 2012 (see the slides of Anna
Huber: VCSPs on Three Elements. Seminar 12451 on “The Constraint Satisfaction Problem: Complexity and
Approximability”).
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Figure 1: The simplicial division of [−α−,α+] for n = 2.

Throughout the present paper we sometimes use bold-faced capital letters to denote elements
in 3V . For (X+, X−) ∈ 3V , for example, we use the bold-faced X to designate the pair (X+, X−)
and we define (X)+ = X+ and (X)− = X−. We adopt this convention for other letters as well. By
X ⊆ Y we mean X+ ⊆ Y+ and X− ⊆ Y−, and by X ⊂ Y we mean X ⊆ Y and X ̸= Y.

For any X ⊆ V , χX denotes the characteristic vector of X in RV .
If f(∅, ∅) ̸= 0, one can apply arguments to f − f(∅, ∅) instead of f and derive the corresponding

statements, so that we assume in the sequel that any function f : 3V → R satisfies f(∅, ∅) = 0.

2 A Generalization of Skew Bisubmodularity

In this section we shall introduce an extension f̂ of a function f : 3V → R over rectangles in
Section 2.1 and then introduce generalized skew bisubmodular functions in Section 2.2. A relation
between these two concepts is clarified in Section 3.

2.1 A simplicial division and an extension

For a finite set V of n elements let α = (α+,α−) be a pair of positive vectors α+,α− : V → R>0

and consider the n-dimensional rectangle [−α−,α+] = {x ∈ RV | −α− ≤ x ≤ α+}.
For any X ∈ 3V define

χα
X =

∑
v∈X+

α+(v)χ{v} −
∑
v∈X−

α−(v)χ{v}. (2)

Then, for each chain A1 ⊂ · · · ⊂ Ak in 3V the convex hull of {χα
Ai

| 1 ≤ i ≤ k} is a simplex and
such simplices for all the maximal chains induce a simplicial division of rectangle [−α−,α+]. See
Figure 1 for a two-dimensional example. This leads us to the the following essential fact.

Proposition 1. For any c ∈ RV \ {0}, there uniquely exist a chain (∅, ∅) ̸= A1 ⊂ · · · ⊂ Ak and
coefficients λ1, . . . , λk ∈ R>0 such that

c =

k∑
i=1

λiχ
α
Ai

. (3)
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By using the unique chain A1 ⊂ A2 ⊂ · · · ⊂ Ak and coefficients λ1, . . . , λk appearing in (3) for
c ∈ RV \ {0}, we define an extension f̂ : RV → R of a function f : 3V → R by

f̂(c) =
k∑

i=1

λif(Ai) (c ∈ RV \ {0}) (4)

and f̂(0) = f(∅, ∅) = 0.

2.2 Generalized skew bisubmodular functions

The key observation to analyze f̂ is a modular equation among the scaled characteristic vectors
χα
X. This relation can be derived by checking how c ≡ χα

X+χα
Y can be expressed in the form of (3)

for X,Y ∈ 3V , i.e., we shall compute λ1, . . . , λk and A1 ⊂ · · · ⊂ Ak for χα
X + χα

Y. The chain and
coefficients can be written by an explicit formula by using binary operations ∪t on 3V for t ∈ (0, 1)
defined as follows: For each t ∈ (0, 1) define

• Vt = (Vt,+, Vt,−) ∈ 3V by

Vt,+ =

{
v ∈ V

∣∣∣ α−(v)

α+(v)
≤ t

}
, Vt,− =

{
v ∈ V

∣∣∣ α+(v)

α−(v)
≤ t

}

• and a binary operation ∪t on 3V by

(X ∪t Y)+ = (X ∪0 Y)+ ∪ (Vt,+ ∩ (X+ ∪ Y+) ∩ (X− ∪ Y−)),

(X ∪t Y)− = (X ∪0 Y)− ∪ (Vt,− ∩ (X+ ∪ Y+) ∩ (X− ∪ Y−)).

Example. If V = {1, 2, 3, 4}, α+(1)
α−(1)

= 2
3 ,

α+(2)
α−(2)

= 1
3 ,

α−(3)
α+(3)

= 2
3 , and

α−(4)
α+(4)

= 1
2 , then V 1

3
=

(∅, {2}), V 1
2
= ({4}, {2}), V 2

3
= ({3, 4}, {1, 2}), and ({1, 3}, {2, 4}) ∪0 ({2, 4}, {3}) = ({1}, ∅). We

have ({1, 3}, {2, 4})∪ 1
3
({2, 4}, {3}) = ({1}, {2}), ({1, 3}, {2, 4})∪ 1

2
({2, 4}, {3}) = ({1, 4}, {2}), and

({1, 3}, {2, 4}) ∪ 2
3
({2, 4}, {3}) = ({1, 3, 4}, {2}).

Using ∪0 and ∪1 defined in Section 1, we have defined binary operations ∪t for all t ∈ [0, 1].
Note that Vt ⊆ Vt′ if t ≤ t′ and that these binary operations ∪t are determined once we fix α.

We now have the following.

Lemma 2. For given V and α, define a set T =
{
min

{
α−(v)
α+(v)

, α
+(v)

α−(v)

} ∣∣v ∈ V
}
∪{0, 1} and arrange

the distinct elements of T in the increasing order of magnitude as 0 = t0 < t1 < t2 < · · · < tk+1 = 1.
Then we have

χα
X + χα

Y = χα
X∩Y +

k∑
i=0

(ti+1 − ti)χ
α
X∪tiY

. (5)

Proof. Denote the vector on the left-hand side of (5) by LH and that on the right-hand side by
RH. We show LH(v) = RH(v) for all v ∈ V .

Choose any v ∈ V .
(I) If v /∈ X+ ∪X− ∪ Y+ ∪ Y−, then we have LH(v) = 0 = RH(v).
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(II) If v ∈ X+∩Y+, then LH(v) = 2α+(v). Since v ∈ X+∩Y+ and v ∈ (X∪0Y)+ ⊆ (X∪ti Y)+
for all i, we also have RH(v) = 2α+(v).

(III) If v ∈ X+ \ (Y+ ∪ Y−), then LH(v) = α+(v). Since v /∈ (X ∩ Y)+ ∪ (X ∩ Y)− and
v ∈ (X ∪0 Y)+ ⊆ (X ∪ti Y)+ for all i, we also have RH(v) = α+(v).

(IV) Because of the symmetry we assume that the remaining case is when v ∈ X+ ∩ Y−.
Then, LH(v) = α+(v) − α−(v). Suppose that α+(v) ≥ α−(v). Then, v /∈ (X ∪t Y)− for any

t ∈ [0, 1), and v ∈ (X ∪t Y)+ if and only if α−(v)
α+(v)

≤ t. By definition, there is an index j such that

tj =
α−(v)
α+(v)

. Since v /∈ (X ∩Y)+ ∪ (X ∩Y)−, we thus have RH(v) =
∑k

i=0(ti+1 − ti)χ
α
X∪tiY

(v) =∑k
i=j(ti+1 − ti)χ

α
X∪tiY

(v) =
∑k

i=j(ti+1 − ti)α
+(v) = (tk+1 − tj)α

+(v) = α+(v)−α−(v) = LH(v).

The same argument can also be applied to the case when α+(v) < α−(v).
This completes the proof.

Motivated by Lemma 2, we say that a function f : 3V → R is α-bisubmodular if

f(X) + f(Y) ≥ f(X ∩Y) +
k∑

i=0

(ti+1 − ti)f(X ∪ti Y) (6)

for all X,Y ∈ 3V , where ti (i = 0, . . . , k + 1) are those defined in Lemma 2. When α+(v) = 1 and
α−(v) = α for all v ∈ V for some α ∈ (0, 1], α-bisubmodularity becomes α-bisubmodularity in [17]
defined by (1).

3 Skew Bisubmodular Polyhedron and Convexity of f̂

Let α = (α+,α−) with α+ : V → R>0 and α− : V → R>0. For any x ∈ RV and X ∈ 3V define
x(χα

X) =
∑

v∈V x(v)χα
X(v), which is the canonical inner product ⟨x, χα

X⟩ of x and χα
X in (2). Hence,

x(χα
X) =

∑
v∈X+

α+(v)x(v)−
∑
v∈X−

α−(v)x(v). (7)

Also define the α-bisubmodular polyhedron P(f) associated with an α-bisubmodular function f by

P(f) = {x ∈ RV | ∀X ∈ 3V : x(χα
X) ≤ f(X)}. (8)

We show that f̂ defined by (4) is the support function of P(f), i.e., for any c ∈ RV , f̂(c) =
max{⟨c, x⟩ | x ∈ P(f)}. This implies that α-bisubmodularity is a necessary and sufficient condi-
tion for the convexity of f̂ (Theorem 7 shown below). The argument given here is essentially an
adaptation of bisubmodular analysis given in [9].

Let us proceed to the detailed description. For any given c ∈ RV consider the following linear
programming problem.

(P) Maximize ⟨c, x⟩
subject to x ∈ P(f).

To show that a dual optimal solution of this problem forms a chain, we first consider a relaxation
of the system of linear inequalities defining P(f) in (8).
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A pair S = (S+, S−) ∈ 3V is called an orthant if S+ ∪ S− = V . The set of all the pairs
X = (X+, X−) such that X+ ⊆ S+ and X− ⊆ S− is denoted by 2S. We define a superset PS(f) of
P(f) by

PS(f) = {x ∈ RV | ∀X ∈ 2S : x(χα
X) ≤ f(X)},

which is obtained from P(f) by discarding constraints not related to 2S.
The advantage of introducing orthants is that the maximization over PS(f) is equivalent to the

maximization over a submodular polyhedron. Let us explain this fact now. Notice that, once we
fix an orthant S, f becomes submodular on 2S. In other words, by defining fS : 2V → R by

fS(X) = f(S+ ∩X,S− ∩X) (X ⊆ V ),

fS is submodular on 2V . Consider the submodular polyhedron P(fS), which is given by

P(fS) = {x ∈ RV | ∀X ⊆ V : x(X) ≤ fS(X)}.

Then, observe

PS(f) = {x ∈ RV | ∃y ∈ P(fS), ∀v ∈ S+ : α+(v)x(v) = y(v), ∀v ∈ S− : −α−(v)x(v) = y(v)}.

This implies that PS(f) can be obtained from P(fS) by reflections and scaling along axes, and PS(f)
is combinatorially equivalent to P(fS). Recall that a greedy algorithm solves the maximization
problem over any submodular polyhedron (see [7, 9]). In terms of PS(f) we obtain a variant of the
greedy algorithm, Greedy Algorithm, which actually computes an optimal solution of (P) together
with the relevant orthant S (see Theorem 5 shown below).

Greedy Algorithm

Input: An α-bisubmodular function f : 3V → R+ on a finite set V , and a vector c ∈ RV .
Output: An optimal solution x∗ of (P).
1: Compute an orthant S = ({v ∈ V | c(v) ≥ 0}, {v ∈ V | c(v) < 0}) and a vector cα ∈ RV by

cα(v) =

{
c(v)

α+(v)
if v ∈ S+

− c(v)
α−(v)

if v ∈ S−
(v ∈ V ). (9)

2: Find a total ordering L = (v1, v2, . . . , vn) of V such that cα(v1) ≥ cα(v2) ≥ · · · ≥ cα(vn).
3: Compute a vector x∗ ∈ RV by

x∗(vi) =

{
1

α+(vi)
(f(Xi)− f(Xi−1)) if vi ∈ S+

− 1
α−(vi)

(f(Xi)− f(Xi−1)) if vi ∈ S−
(1 ≤ i ≤ n), (10)

where Xi is the restriction of S to {v1, . . . , vi} and X0 = (∅, ∅).
4: Return x∗.

Proposition 3. Let f : 3V → R be an α-bisubmodular function. For c ∈ RV , let x∗ be the vector
and S be the orthant computed by Greedy Algorithm. Then x∗ is an extreme point of

BS(f) := {x ∈ RV | x ∈ PS(f), x(χα
S ) = f(S)},

and ⟨c, x∗⟩ ≥ ⟨c, x⟩ for all x ∈ PS(f).
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Following the argument in [9, Section 3.5(b)], we now show that x∗ is indeed an optimal solution
not only over PS(f) but also over P(f). To see this we need one more technical lemma, which is
an analogue of [9, Lemma 3.60] for bisubmodular analysis.

Lemma 4. Let f : 3V → R be an α-bisubmodular function. For each orthant S ∈ 3V we have
BS(f) ⊆ P(f).

Proof. Let x ∈ BS(f). It then follows from α-bisubmodularity of f and Lemma 2 that for any
X ∈ 3V we have

x(χα
X)− f(X)

= x(χα
X)− f(X) + x(χα

S )− f(S) (by x ∈ B(f))

≤ x(χα
X∩S) +

k∑
i=0

(ti+1 − ti)x(χ
α
X∪tiS

)− [f(X ∩ S) +

k∑
i=0

(ti+1 − ti)f(X ∪ti S)]

≤ 0 (by x ∈ P(f)),

which implies x ∈ P(f).

Theorem 5. Let f : 3V → R be an α-bisubmodular function. For c ∈ RV , let x∗ be the vector
obtained by Greedy Algorithm. Then we have ⟨c, x∗⟩ ≥ ⟨c, x⟩ for all x ∈ P(f).

Proof. Let S = ({v ∈ V | c(v) ≥ 0}, {v ∈ V | c(v) < 0}) be the orthant computed by Greedy Algorithm.
Note that P(f) ⊆ PS(f). Combining this relation with Lemma 4, we have

max{⟨c, x⟩ | x ∈ PS(f)} ≥ max{⟨c, x⟩ | x ∈ P(f)} ≥ max{⟨c, x⟩ | x ∈ BS(f)}.

However, Proposition 3 implies max{⟨c, x⟩ | x ∈ PS(f)} = max{⟨c, x⟩ | x ∈ BS(f)} = ⟨c, x∗⟩. We
thus have ⟨c, x∗⟩ ≥ ⟨c, x⟩ for any x ∈ P(f).

Corollary 6. Let f : 3V → R be an α-bisubmodular function. Then, for any c ∈ RV we have

f̂(c) = max{⟨c, x⟩ | x ∈ P(f)} (c ∈ RV ). (11)

Proof. Let vectors cα and x∗ and chainX1 ⊂ X2 ⊂ · · · ⊂ Xn be those computed by Greedy Algorithm.
Define λi by λi = cα(vi) − cα(vi+1) for 1 ≤ i ≤ k − 1 and by λk = cα(vk). Then it can easily be
checked that ⟨c, x∗⟩ =

∑n
i=1 λif(Xi) and c =

∑n
i=1 λiχ

α
Xi

. Therefore, we obtain (11) because of

Proposition 1, the definition of f̂ , and Theorem 5.

We now show a main theorem of this section. We remark that, from the definition of f̂ in (4),
f̂ is positively homogeneous (i.e., f̂(λc) = λf̂(c) for any λ > 0 and c ∈ RV ).

Theorem 7. Let V be a finite set and α = (α+,α−) be a pair of vectors α+ : V → R>0 and
α− : V → R>0. Then, for any f : 3V → R, f̂ is convex if and only if f is α-bisubmodular.

Proof. The proof is essentially the same as that of the corresponding theorem for submodular
functions given in [9, Theorem 6.13]. Let us give it for the sake of completeness.

For each c ∈ RV , let xc be a maximizer of the right-hand side of (11). Then, for any c, c′ ∈ RV ,
we have 2f̂( c+c′

2 ) = f̂(c + c′) = ⟨c + c′, xc+c′⟩ ≤ ⟨c, xc⟩ + ⟨c′, xc′⟩ = f̂(c) + f̂(c′), which implies the

convexity of f̂ .
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Conversely, suppose that f̂ is convex. To show α-bisubmodularity of f , take any X and Y in
3V . Since f̂ is positively homogeneous and convex, we have

f̂(χα
X + χα

Y)

2
= f̂

(
χα
X + χα

Y

2

)
≤

f̂(χα
X) + f̂(χα

Y)

2
. (12)

On the other hand, since X ∩ Y ⊆ X ∪t0 Y ⊆ X ∪t1 Y ⊆ · · · ⊆ X ∪tk Y, it follows from the

definition of f̂ in (4) that

f̂

(
χα
X∩Y +

k∑
i=0

(ti+1 − ti)χ
α
X∪tiY

)
= f̂(χα

X∩Y) +

k∑
i=0

f̂((ti+1 − ti)χ
α
X∪tiY

). (13)

Therefore,

f(X) + f(Y) = f̂(χα
X) + f̂(χα

Y) (since f̂ is an extension of f)

≥ f̂ (χα
X + χα

Y) (by (12))

= f̂

(
χα
X∩Y +

k∑
i=0

(ti+1 − ti)χ
α
X∪tiY

)
(by (5))

= f̂(χα
X∩Y) +

k∑
i=0

f̂((ti+1 − ti)χ
α
X∪tiY

) (by (13))

= f̂(χα
X∩Y) +

k∑
i=0

(ti+1 − ti)f̂(χ
α
X∪tiY

) (since f̂ is positively homogeneous)

= f(X ∩Y) +

k∑
i=0

(ti+1 − ti)f(X ∪ti Y) (since f̂ is an extension of f)

Hence f is α-bisubmodular.

We also have the following theorem (see [2, 17] for special cases of bisubmodular and α-
bisubmodular functions; also see [14, Proposition 4.11] for more general functions).

Theorem 8. Under the same assumption as in Theorem 7, f : 3V → R is α-bisubmodular if and
only if

(a) for every orthant S, f restricted on 2S is submodular, and

(b) for every v ∈ V and U ⊆ V \ {v}, putting W = V \ ({v} ∪ U), we have

α−(v)f(U ∪ {v},W ) + α+(v)f(U,W ∪ {v}) ≥ (α+(v) + α−(v))f(U,W ).

Proof. We can easily see that the α-bisubmodularity of f implies (a) and (b). Hence it suffices to
show the if part.

Suppose that (a) and (b) hold. It follows from (a) that the extension f̂ defined by (4) is convex

on the cone RS+

≥0 × RS−
≤0 of every orthant S (see [19]). Moreover, (b) implies the convexity of f̂ on
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x(2)

x(1)

Figure 2: A 1
2 -bisubmodular polyhedron.

the union of adjacent simplices (having common facet x(v) = 0) that correspond to maximal chains
of 3V :

X0(= (∅, ∅)) ⊂ · · · ⊂ Xn−1(= (U,W )) ⊂ Xn = (U ∪ {v},W ),

X0(= (∅, ∅)) ⊂ · · · ⊂ Xn−1(= (U,W )) ⊂ X′
n = (U,W ∪ {v}),

where note that only the last elements (adjacent orthants) are different. Hence f̂ is convex, so that
f is α-bisubmodular due to Theorem 7.

For a submodular function f : 2V → R, let f̂ be the Lovász extension of f ([19]). As shown by
Grötschel, Lovász, and Schrijver [13], one can develop a polynomial-time (weak) separation oracle
that separates a point p ∈ RV \ F from the set F of minimizers of f̂ , which implies that one can
find a minimizer of f̂ in polynomial time. Since f̂ is linear on each cell of the simplicial division,
one can also find a minimizer of f . Qi [21] extended this argument to bisubmodular functions, and
here we can adopt the same argument for α-bisubmodular function f due to the convexity of f̂ .

Corollary 9. Any α-bisubmodular function f : 3V → R can be minimized in strongly polynomial
time.

It follows from Proposition 3 and Theorem 5 that, for a fixed orthant S, PS(f) is the one
obtained from a submodular polyhedron by a reflection and scaling. It is known that each edge
vector (i.e., a direction vector of each edge) of a bisubmodular polyhedron is one of the following
forms

(0, . . . , 0, 1, 0 . . . , 0), (0, . . . , 0,±1, 0, . . . , 0,∓1, 0, . . . , 0), (0, . . . , 0,±1, 0, . . . , 0,±1, 0, . . . , 0)

and hence each edge vector of an α-bisubmodular polyhedron has the support of size at most two.
See Figure 2 for an example.

The concept of a polybasic polyhedron is introduced in [11], where a convex polyhedron is
polybasic if every edge vector has a support of size at most two. Hence, skew bisubmodular
polyhedra are special cases of polybasic polyhedra.
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4 A Min-Max Theorem

For any x ∈ RV let us define

∥x∥α =
∑

v∈V :x(v)>0

α−(v)x(v)−
∑

v∈V :x(v)<0

α+(v)x(v).

It is not difficult to see that ∥·∥α is a norm on RV . The following extension of a theorem given in [8]
implies that the α-bisubmodular function minimization can be reduced to finding a minimum-norm
point with respect to ∥ · ∥α in the α-bisubmodular polyhedron P(f).

To show this we need one technical lemma. For x ∈ P(f), X is called x-tight if x(χα
X) = f(X).

Lemma 10. Let x ∈ P(f). If X and Y are x-tight, then X∩Y and X∪ti Y (i = 0, . . . , k+1) are
also x-tight.

Proof. By using Lemma 2, x ∈ P(f), α-bisubmodularity of f , and the x-tightness of X and Y, we
have x(χα

X)+x(χα
Y) = x(χα

X∩Y)+
∑k

i=0(ti+1−ti)x(χ
α
X∪tiY

) ≤ f(X∩Y)+
∑k

i=0(ti+1−ti)f(X∪tiY) ≤
f(X)+f(Y) = x(χα

X)+x(χα
Y). Hence, the inequalities must hold with equality, from which follows

the present lemma.

Theorem 11. For any α-bisubmodular function f : 3V → R,

min{∥x∥α | x ∈ P(f)} = max{−f(X) | X ∈ 3V }. (14)

Proof. For any x ∈ P(f) and X = (X+, X−) ∈ 3V , we always have ∥x∥α ≥ −f(X) since

∥x∥α =
∑

v∈V :x(v)>0

α−(v)x(v)−
∑

v∈V :x(v)<0

α+(v)x(v) ≥
∑
v∈X−

α−(v)x(v)−
∑
v∈X+

α+(v)x(v) ≥ −f(X).

Hence it suffices to show that ∥x∥α = −f(X) for some x ∈ P(f) and X ∈ 3V .
Let x̂ be a minimizer of the left-hand side of (14), and let A+ = {v ∈ V | x̂(v) < 0}, A− = {v ∈

V | x̂(v) > 0}, and A = (A+, A−). Note that for any u ∈ A+ and v ∈ A− there exist x̂-tight X
and Y such that u ∈ X+ and v ∈ Y−.

Take any u ∈ A+. For each v ∈ A−, if every x̂-tight X with u ∈ X+ satisfies v ∈ X+, then for
a sufficiently small positive number ϵ, we can obtain a better solution than x̂ in the minimization
problem by increasing x̂(u) by ϵ/α+(u) and decreasing x̂(v) by ϵ/α+(v). Therefore, for each v ∈ A−,
there exists an x̂-tight Xuv such that u ∈ Xuv

+ and v /∈ Xuv
+ . Similarly, for each v ∈ A+ \ {u}, there

exists an x̂-tight set Xuv such that u ∈ Xuv
+ and v /∈ Xuv

− , since otherwise (i.e., no such x̂-tight set
exists) for a sufficiently small positive number ϵ, increasing x̂(u) by ϵ/α+(u) and x̂(v) by ϵ/α−(v)
gives a better solution again. Put Xu =

∩
v∈(A+\{u})∪A−

Xuv. It follows from Lemma 10 that Xu

is x̂-tight with u ∈ Xu
+, X

u
+ ∩A− = ∅, and Xu

− ∩A+ = ∅.
By a symmetric argument we see that for any u ∈ A− there is an x̂-tight Xu such that u ∈ Xu

−,
Xu

+ ∩A− = ∅, and Xu
− ∩A+ = ∅.

Put X∗ =
∪

0X
u, where ∪0 is taken over all u ∈ A+∪A−. Then, it follows from Lemma 10 that

X∗ is x̂-tight with A+ ⊆ X∗
+ and A− ⊆ X∗

−. Moreover, since x̂(v) = 0 for all v ∈ V \ (A+ ∪A−) by

10



the definition of A+ and A−, we have

∥x̂∥α =
∑

v∈V :x̂(v)>0

α−(v)x̂(v)−
∑

v∈V :x̂(v)<0

α+(v)x̂(v) =
∑
v∈A−

α−(v)x̂(v)−
∑
v∈A+

α+(v)x̂(v)

=
∑
v∈X∗

−

α−(v)x̂(v)−
∑
v∈X∗

+

α+(v)x̂(v) = −x̂(χα
X∗)

Consequently, by the x̂-tightness of X∗, we obtain ∥x̂∥α = −x̂(χα
X∗) = −f(X∗). This completes

the proof.

5 Concluding Remarks

We have considered a natural generalization of the concept of skew bisubmodularity. We have shown
a characterization of the generalized skew bisubmodularity in terms of its convex extension over
rectangles, where an important rôle is played by skew bisubmodular polyhedra associated with skew
bisubmodular functions. We have also derived a min-max theorem (Theorem 11) that relates the
minimum value of a skew bisubmodular function to a minimum-norm point in the associated skew
bisubmodular polyhedron. All the existing combinatorial algorithms for minimizing submodular
functions or bisubmodular functions are based on min-max theorems corresponding to Theorem 11.
Devising a combinatorial polynomial-time algorithm for skew bisubmodular function minimization
will be discussed elsewhere.
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