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EXPLICIT t-EXPANSIONS FOR THE ELLIPTIC
CURVE y2 = 4(x3 + Ax + B)

SEIDAI YASUDA

Abstract. For an elliptic curve E : y2 = 4(x3 + Ax + B) over a
field of characteristic 6= 2, we explicitly compute the pullback to
the formal completion of E at the origin of some important objects
on E including the functions x, y and the invariant differential
ω = dx/y in terms of the formal parameter t = −2x/y.

1. Introduction and the main result

Let R be a commutative ring with unit on which 2 is invertible. Let
E be an elliptic curve over Spec R whose affine form is given by the
equation y2 = 4(x3+Ax+B) for some A,B ∈ R satisfying 4A3+27B2 ∈
R×. Let Ê be the completion of E at the origin. We set t = −2x/y.

Then Ê is canonically isomorphic to the formal spectrum of R[[t]].

In this paper, we give an explicit description of the pullbacks to Ê
of some important functions and 1-forms on E. Our main result is the
following:

Theorem 1. Let ω̂ ∈ R[[t]]dt denote the pull back of the invariant

differential ω = dx/y to Ê. Then for any integer k, the formal power

series xkω̂
dt

∈ R((t)) is equal to the sum

(1)
∞∑

m,n=0

(m + 2n − k + 1)m+n

m!n!
AmBnt4m+6n−2k.

Here (m + 2n − k + 1)m+n denotes the Pochhammer symbol

(m + 2n − k + 1)m+n =
m+n∏
i=1

(m + 2n − k + i),

and we understand (m + 2n − k + 1)m+n = 1 when m = n = 0.
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The proof of Theorem 1 will be given in Section 2. We give some
other results in Section 3.

Remark 2. According to [6, p. 924, Remark], the formula (1) for
k = 0 was already obtained by Beukers [3]. According to [8, p. 273],
a generalization of the formula for k = 0 to the case of an elliptic
curve given by a more general Weierstraß equation was also obtained
by Beukers [3], and recently perhaps independently by Sadek [5].

Remark 3. When A and B vary, the sum (1) is a formal power series
of three variables A, B, and t with coefficients in Z. If we set A′ = At4

and B′ = Bt6, then Theorem 1 for k ≤ 0 is rewritten as

t2kxkω̂/dt = F ((1 − k, k),−A′, B′),

where the right hand side is the hypergeometric series of two variables
in the sense of [2, Definition 3.1], associated to the set {2ν1+3ν2,−ν1−
2ν2} of linear forms. Similarly we have

t2kxkω̂/dt = lim
ε→0

F ((1 − k + ε, k + ε),−A′, B′)

for k ≥ 1. Here the right hand side is the coefficient-wise limit in R.

Now we give several consequences of Theorem 1. All of them follow
immediately from Theorem 1 or from the argument of its proof, and
the proofs are omitted.

Corollary 4. Let the notation and the assumption be as in Theorem
1.

(1) We have

ω̂

dt
=

∞∑
m,n=0

(2m + 3n)!

(m + 2n)!m!n!
AmBnt4m+6n.

(2) We have the equalities

x = −
∞∑

m,n=0

(2m + 3n − 2)!

(m + 2n − 1)!m!n!
AmBnt4m+6n−2

and

y = 2
∞∑

m,n=0

(2m + 3n − 2)!

(m + 2n − 1)!m!n!
AmBnt4m+6n−3

in R((t)). Here we understand (2m+3n−2)!
(m+2n−1)!m!n!

= −1 when m =

n = 0. (Observe that (2m+3n−2)!
(m+2n−1)!m!n!

is an integer for any integers

m,n ≥ 0.)



EXPLICIT t-EXPANSIONS 3

(3) For any integer p, q ∈ Z satisfying k := p+q 6= 0, the monomial
xpyq is equal to −(−2)q/t2p+3q times∑

m,n≥0

k(m + 2n − k + 1)m+n−1

m!n!
AmBmt4m+6n

in R((t)). (Observe that k(m+2n−k+1)m+n−1

m!n!
is an integer for any

integers m,n ≥ 0.)

�
Remark 5. To be precise, the formulae for x, y, and xpyq in Corollary
4 are not consequences of Theorem 1 but immediate consequences of
the proof of Theorem 1 given in Section 2.

Corollary 6. Suppose that R is a Q-algebra.

(1) Let logÊ ∈ R[[t]] denote the formal logarithm associated to Ê
with respect to the formal parameter t. By definition logÊ is the
unique formal power series satisfying d logÊ = ω̂ and logÊ(0) =
0. We then have

logÊ =
∞∑

m,n=0

(2m + 3n)!

(m + 2n)!m!n!
AmBn t4m+6n+1

4m + 6n + 1
.

(2) Let ζ̂ ∈ R((t)) be a formal Laurent power series satisfying dζ̂ =

−xω̂. Then ζ̂ is equal to

c −
∞∑

m,n=0

(2m + 3n − 1)!

(m + 2n − 1)!m!n!
AmBn t4m+6n−1

4m + 6n − 1

for some constant c ∈ R. Here we understand (2m+3n−1)!
(m+2n−1)!m!n!

= 1

when m = n = 0.

�
Remark 7. Corollary 6 (a) was announced (with the author’s name)
without proof in p. 289 of [4].

Corollary 8. Let the notation and assumption be as in Theorem 1.

(1) Suppose that B = 0. We then have

ω̂

dt
=

1√
1 − 4At4

and
xω̂

dt
=

1

2t2
√

1 − 4At4
+

1

2t2
.
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(2) Suppose that A = 0. (Observe that 6 is invertible in R in this
case.) We then have

ω̂

dt
= 2F1

(
1

3
,
2

3
;
1

2
;
27

4
Bt6
)

and
xω̂

dt
=

2

3t2
2F1

(
1

3
,
2

3
;
1

2
;
27

4
Bt6
)

+
1

3t2
,

where 2F1(α, β; γ; z) is Gauß hypergeometric series

2F1(α, β; γ; z) =
∞∑

n=0

(α)n(β)n

(γ)nn!
zn.

�

Remark 9. The claim (a) in Corollary 8 can be proved directly without
using Theorem 1. We include this for completeness.

Suppose that R is a field which is complete with respect to an abso-
lute value | |. When the absolute value | | is archimedean, let α be the
unique real root of

4|A|3(T 2 − 1)(T − 4) − 27|B|2T 3

satisfying 0 ≤ α ≤ 1 and set

r =
1√
6

(
(4 − α)(4−α)

(
3α

|A|

)3α(
2 − 2α

|B|

)2−2α
) 1

12

.

When | | is non-archimedean, we set r = 1/ max(|A|1/4, |B|1/6). We
use the terminology “analytic” to stand for real analytic, complex an-
alytic, and rigid analytic in the case when | | is real archimedean,
complex archimedean, and non-archimedian, respectively. When | |
is archimedean (resp. non-archimedean), we let Ean denote E(R) re-
garded as an analytic manifold (resp. an analytic space over R associ-
ated to E). It then can be checked easily that there exists a unique
open neighborhood (resp. a unique admissible open neighborhood with
respect to the strong G-topology) of the origin O in Ean such that the
rational function t on E gives an isomorphism from U to the open disk
{t | |t| < r}.

Corollary 10. Let the notation and assumption be as above.

(1) The formulae in Theorem 1 and Corollary 4, with ω̂ replaced
with ω, are valid on U .
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(2) Suppose that R is of characteristic zero. Then there exists a
unique analytic function logE on U and an analytic function ζ
on U \ {O} such that d logE = ω, dζ = −xω and that the value
of logE at the origin is equal to zero. The formulae (a) and (b)

in Corollary 6, with logÊ and ζ̂ replaced with logE and ζ, are
valid on U and U \ {O}, respectively.

�

Almost all the material of this manuscript is a translation into Eng-
lish of my handwritten notes and my emails to Shinichi Kobayashi, all
of which were written in Japanese on January 2004.

2. Proof of Theorem 1

In this section we give a proof of Theorem 1. Let the notation and
assumption be as in Theorem 1. If suffices to prove the claim for the
universal case when R is the localization R = Z[1/2, A, B, 1/(4A3 +
27B2)] of the polynomial ring over Z[1/2] of the two variables A and B.
By choosing an injective ring homomorphism ι : Z[1/2, A, B, 1/(4A3 +
27B2)] ↪→ C such that ι(A) and ι(B) are real numbers, we can reduce
the proof to that in the case when R = C and both A and B are real
numbers.

Let us assume that R = C and both A and B are real numbers. For
k ∈ Z, we let Fk(t) denote the formal power series (1) with coefficients
in R. Observe that the formal power series t2kFk(t) is absolutely con-
vergent on |t| < ck for a sufficiently small ck > 0. Hence it suffices to
prove that for each integer k, the value of xkω/dt at t = a is equal to
Fk(a) for infinitely many complex numbers a with 0 < |a| < ck.

Observe that, if (x, y) ∈ C××C× satisfies y2 = 4(x3 +Ax+B), then
(t, u) = (−2x/y, 1/x) satisfies the equality

1 =
t2

u
+ Aut2 + Bu2t2.

Let us fix t ∈ C× and set

f(u) = u

(
1 − t2

u
− Aut2 − Bu2t2

)
,

which we regard as a holomorphic function of u. For |t| sufficiently
small, the function f(u) have a unique zero on |u| < 1, which we
denote by u0. Then (x, y) = (1/u0,−2/(tu0)) is a point of E(C) with
−2x/y = t.
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We prove the claim for k = 0. By Jensen’s formula (cf. [1, p.208])

log |f(0)| = − log

∣∣∣∣ 1

u0

∣∣∣∣+ 1

2π

∫ 2π

0

log |f(eiθ)|dθ

we have

log | − t2| = log |u0| +
1

2π
Re

∫ 2π

0

log(1 − g(eiθ))dθ

where

g(u) =
t2

u
+ At2u + Bt2u2.

Since we have assumed that A and B are real numbers, u0 is a positive
real number if t is a sufficiently small real number. Since

1

2π

∫ 2π

0

log(1 − g(eiθ))dθ

= −
∑
n≥1

1

2πn

∫ 2π

0

g(eiθ)ndθ

= −
∑

m,n≥0
(m,n)6=(0,0)

(2m + 3n)!

(m + 2n)!m!n!

AmBn(t2)2m+3n

2m + 3n
,

we have

log u0

= log t2 +
∑

m,n≥0
(m,n) 6=(0,0)

(2m + 3n)!

(m + 2n)!m!n!

AmBn(t2)2m+3n

2m + 3n

if t is a sufficiently small real number. By differentiating with respect to
t and by using ω = tdu0/(2u0), we obtain the desired equality ω/dt =
F0(t) for any sufficiently small real number t, which proves the claim
for k = 0.

Next we consider the case when k 6= 0. Let rk denote the residue of
u−k(uf(u))′/(uf(u)) at u = 0. By the residue theorem we have

(2) xk + rk =
1

2πi

∫
|u|=1

u−k(uf(u))′

uf(u)
du

for |t| sufficiently small. We set

h(u) =
u

t2
− Au2 − Bu3.
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Since

(uf(u))′

uf(u)
=

(− 1
t2
− 2Au − 3Bu2)

1 − h(u)

= (− 1

t2
− 2Au − 3Bu2)

∑
n≥0

h(u)n

where the last infinite sum is absolutely convergent if |u| is much smaller
than |t|2, we have rk = 0 for k < 0 and

(3) rk = − 1

t2
Ck,1 + 2ACk,2 + 3BCk,3

for k > 0. Here Ck,j is the finite sum∑
m,n≥0

2m+3n≤k−j

(m + n + `k,j(m,n))!

`k,j(m, n)!m!n!

(−1)m+nAmBn

t`k,j(m,n)

for j = 1, 2, 3, where `k,j(m,n) = (k − j) − (2m + 3n). On the other
hands, since

(uf(u))′

uf(u)
=

u−1 − 2At2 − 3Bt2u

1 − g(u)

= (u−1 − 2At2 − 3Bt2u)
∑
n≥0

g(u)n

where the last infinite sum is absolutely convergent if |u| = 1 and |t| is
sufficiently small, the right hand side of (2) is equal to

(4) Dk,0 − 2At2Dk,1 − 3Bt2Dk,2.

Here Dk,j is the infinite sum∑
m,n≥0

m+2n≥k−j

(m + n + `′k,j(m,n))!

`′k,j(m,n)!m!n!

AmBn

t`
′
k,j(m,n)

for j = 0, 1, 2, where `′k,j(m,n) = m + 2n − (k − j). By (2), (3), and

(4), the value of −xk/k is equal to the sum∑
m,n≥0

(m + 2n − k + 1)m+n−1

m!n!
AmBnt2(2m+3n−k)

for |t| sufficiently small. Since xkω = t/2 · d(−xk/k), we have the
equality xkω/dt = Fk(t) for |t| sufficiently small, which proves the
claim for k 6= 0. �
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3. Some other formulae

The method of the proof, given in Section 2, of Theorem 1 can be
applied to a more general situation. Especially we can obtain in many
cases explicit expansions of the pullbacks of functions or 1-forms on
a plane curve over a field with respect to a local parameter at some
closed point.

In this section we give several examples of such formulae. We omit
the proofs of these formulae, since the main idea of the proofs is essen-
tially the same as that of Theorem 1.

Theorem 11. Let m = 2g + 1 be a positive odd integer. Let C be a
hyperelliptic curve over Q whose affine form is given by y2 = xm − 1.
We set t = −xg/y, which is a local parameter of C at the infinity.

Let Ĉ denote the completion of C at the infinity, which is canonically
isomorphic to the formal spectrum of Q[[t]]. Then we have

x =
1

t2
+
∑
n≥1

(−1)n−1

(
mn − 1

n

)
t2(mn−1)

mn − 1

and

y = − 1

tm
+ g

∑
n≥1

(−1)n

(
mn − g

n

)
tm(2n−1)

mn − g

in Q((t)), and the pullback ω̂ of ω = xg−1dx/(2y) to Ĉ has the following
explicit description:

ω̂

dt
=
∑
n≥0

(−1)n

(
mn

n

)
t2mn.

�
Let us go back to the situation in Theorem 1 and suppose that R is

a subring of the field C of complex numbers. Let r and U be as in the
paragraph just before Corollary 10. Let logE be the complex analytic
function on U introduced in (b) of Corollary 10. We regard logE as a
complex analytic function of t on the open disk {t | |t| < r}. Let Λ ⊂ C
denote the lattice generated by the periods of E(C) with respect to ω.
Let σ be the Weierstraß σ-function on C with respect to the lattice
Λ. We end this paper with two formulae on the t-expansions of some
functions related to σ. The author expect that they are useful for
explicit computation related to the formal group law or the canonical
height.

Theorem 12. Let the notation and assumption be as above. Let S
be the set of quadruples (a, b, c, d) of integers a, b, c, d ≥ 0 satisfying
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(a, b, c, d) 6= (0, 0, 0, 0). For (a, b, c, d) ∈ S, we set

Va,b,c,d =
(2a + 3b − 1)! (2c + 3d)!

(a + 2b − 1)! (c + 2d)! a!b!c!d!
.

Here we understand (2a+3b−1)!
(a+2b−1)!

= 1 when (a, b) = (0, 0). (Observe that

Va,b,c,d is an integer for any a, b, c, d ≥ 0.) Then − log(σ(logE(t))/t) is
equal to the sum∑

(a,b,c,d)∈S

Va,b,c,d
Aa+cBb+dt4a+6b+4c+6d

(4a + 6b − 1)(4a + 6b + 4c + 6d)

for any complex number t with |t| < r.

In order to state the last formula in this paper, we need to introduce
some more notation. For non-negative integers m,n, a, b ≥ 0 satisfying
the condition

(*): 2m + 3n = a + b,

let us introduce two integers Em,n,a,b, Fm,n,a,b ∈ Z.
Let m,n, a, b ≥ 0 be integers satisfying the condition (*). Let

Ξ(m,n, a, b) denote the set of pairs (m1, n1) ∈ Z × Z satisfying the
following conditions:

0 ≤ m1 ≤ m, 0 ≤ n1 ≤ n, m1 + n1 ≤ a ≤ 2m1 + 3n1 − 1.

For (m1, n1) ∈ Ξ(m,n, a, b), we let em,n,a,b(m1, n1) denote the integer

(2m1 + 3n1 − a)a!b!

(a − (m1 + n1))!(b − (m2 + n2))!m1!n1!m2!n2!
,

where m2 = m − m1 and n2 = n − n1. We set

Em,n,a,b =
∑

(m1,n1)∈Ξ(m,n,a,b)

em,n,a,b(m1, n1).

If either a = 0 or b = 0, then we have Em,n,a,b = 0 since the set
Ξ(m,n, a, b) is an empty set. Let Θ(m,n, a, b) denote the set of integers
m1 satisfying the conditions

max{0, a − 3n} ≤ 2m1 ≤ min{2m, a, 2m + b − 1},
2m1 ≡ a mod 3.

For m1 ∈ Θ(m,n, a, b), we let fm,n,a,b(m1) denote the integer

a!(b − 1)!

(a − (m1 + n1))!((b − 1) − (m2 + n2))!m1!n1!m2!n2!
,
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where m2 = m − m1, n1 = a−2m1

3
, and n2 = n − n1. We set

Fm,n,a,b =
∑

m1∈Θ(m,n,a,b)

fm,n,a,b(m1).

If b = 0, then we have Fm,n,a,b = 0 since there exists no integer m1

satisfying the condition above. When b ≥ 1, we also set F ′
m,n,a,b =

(2 − 1/b)Em,n,a,b + Fm,n,a,b.

Theorem 13. Let the notation be as above. We then have

log
σ(logE(s) + logE(t))

s + t

− log
σ(logE(s))

s
− log

σ(logE(t))

t

= 2
∑

m, n ≥ 0
a, b ≥ 1

satisfying (*)

Em,n,a,bA
mBn s2a

2a

t2b

2b

−
∑

m, n ≥ 0

a ≥ 0, b ≥ 1
satisfying (*)

F ′
m,n,a,bA

mBn s2a+1

2a + 1

t2b−1

2b − 1

for (s, t) ∈ C × C satisfying |s|, |t| < r. �
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