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Abstract
It is conjectured that, in the asymptotic expansion of the Kashaev invariant of a hyperbolic knot,

the first coefficient is presented by the complex volume of the knot complement, and the second
coefficient is presented by a constant multiple of the square root of the twisted Reidemeister torsion
associated with the holonomy representation of the hyperbolic structure of the knot complement.
In particular, this conjecture has rigorously been proved for some simple hyperbolic knots, and the
second coefficient is presented by a modification of the square root of the Hessian of the potential
function of the hyperbolic structure of the knot complement.

In this paper, we define an invariant of a parametrized knot diagram to be a modification of the
Hessian of the potential function obtained from the parametrized knot diagram. Further, we show
that this invariant is equal (up to sign) to a constant multiple of the twisted Reidemeister torsion for
any two-bridge knot.

1 Introduction

In [10, 11], Kashaev defined the Kashaev invariant ⟨L ⟩
N
∈ C of a link L for N = 2, 3, · · ·

by using the quantum dilogarithm at q = e2π
√
−1/N . In [12], he conjectured that, for

any hyperbolic link L, 2π
N
log ⟨L ⟩

N
goes to the hyperbolic volume of S3 − L as N → ∞,

and verified the conjecture for some simple knots, by formal calculations. In [14], H.
Murakami and J. Murakami proved that the Kashaev invariant ⟨L ⟩

N
of any link L is

equal to the N -colored Jones polynomial JN(L; e
2π

√
−1/N) of L evaluated at q = e2π

√
−1/N .

Further, as an extension of Kashaev’s conjecture, they conjectured that, for any knot
K, 2π

N
log |JN(K; e2π

√
−1/N)| goes to the (normalized) simplicial volume of S3 −K. This

is called the volume conjecture. As a complexification of the volume conjecture, it is
conjectured in [15] that, for a hyperbolic link L, JN(L; e

2π
√
−1/N) ∼ eN ς(L) as N → ∞,

where we put

ς(L) =
1

2π
√
−1
(
cs(S3 − L) +

√
−1 vol(S3 − L)

)
,

and “cs” and “vol” denote the Chern-Simons invariant and the hyperbolic volume; we
call it the complex hyperbolic volume (which is the SL2C Chern-Simons invariant). Fur-
thermore, it is conjectured in [8] (see also [3, 9, 26]) from the viewpoint of the SL2C
Chern-Simons theory that the asymptotic expansion of JN(K; e2π

√
−1/k) of a hyperbolic

knot K as N, k →∞ fixing u = N/k is presented by the following form,

JN(K; e2π
√
−1/k) ∼

N,k→∞
u=N/k: fixed

eNςN3/2 ω ·
(
1 +

∞∑
i=1

κi ·
(2π√−1

N

)i)
(1)
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for some scalars ς, ω, κi depending on K and u, though they do not discuss the Jones
polynomial in the Chern-Simons theory in the case of vanishing quantum dimension,
which is discussed in [22]. We note that the colored Jones polynomial is defined at

generic q, while the Kashaev invariant is defined only at q = e2π
√
−1/N . The semi-classical

approximation (i.e., the “eNςN3/2 ω” part) of the above expansion is proved for the figure-

eight knot in [1] at q = e2π
√
−1/N and in [13] at generic q around e2π

√
−1/N . As for rigorous

proofs for other hyperbolic knots, it is shown in [16, 18, 17] that, for any hyperbolic knot
K with up to 7 crossings, the asymptotic expansions of the Kashaev invariant of K is
presented by the following form,

⟨K ⟩
N

= eN ς(K)N3/2 ω(K) ·
(
1 +

d∑
i=1

κi(K) ·
(2π√−1

N

)i
+O

( 1

Nd+1

))
, (2)

for any d, where ω(K) and κi(K)’s are some scalars. By another approach to this problem,
in [2], motivated by the above mentioned conjectures, a formal power series is constructed
as an invariant of a hyperbolic knot by using the canonical simplicial decomposition of
the hyperbolic knot complement; it is conjectured that this power series is equal to the
expansion (2).

We consider the second coefficient of the semi-classical approximation (i.e., the “ω”
part) of the above expansions. As explained in [21], such a coefficient of the semi-classical
approximation of the Chern-Simons path integral is calculated as the regularized deter-
minant of the Laplacian, and it is presented by the square root of the Ray-Singer torsion
at a flat connection, which is equal to the twisted Reidemeister torsion. Further, by sim-
ilar arguments, it is conjectured in [8, 9, 13] that the ω of (1) is a scalar multiple of the
square root of (the Ray-Singer torsion at a flat connection or) the twisted Reidemeister
torsion of the cochain complex of the knot complement with the sl2 coefficient twisted
by the adjoint action of the holonomy representation of the hyperbolic structure of the
knot complement; this conjecture is confirmed for the figure-eight knot in [1, 13], and
numerically checked for some knots in [4]. Furthermore, the “ω” part of the power series
of [2] is conjectured (and confirmed in many cases) to be a constant multiple of the square
root of the twisted Reidemeister torsion. Hence, we conjecture that ω(K) of (2) is equal
to a constant multiple of the square root of the twisted Reidemeister torsion. In the proof
of (2) in [16, 18, 17], we use the Poisson summation formula and the saddle point method
(see Section 4.2 and [16, 18, 17]), and we must check many technical concrete inequalities
to calculate such procedures. Because of such technical difficulties, it is difficult at the
present stage to prove (2) rigorously for general knots. However, by assuming such in-
equalities of the assumption of the saddle point method, we can guess the resulting form
of (2). In particular, by formal calculation assuming such assumption of the saddle point
method, ω(K)−2 is presented by a modification of the Hessian of the potential function
obtained from a knot diagram parameterized by hyperbolicity parameters.

In this paper, we formulate ω2(D) of a parameterized diagram D of a knot K such
that ω2(D) = ±ω(K)2, i.e., we define ω2(D)−1 to be a modification of the Hessian of
the potential function obtained from D (Definition 4.2). Further, from a parameterized
knot diagram, we construct a monodromy representation of a knot group into PGL2C
(Section 3.1), and we can consider the twisted Reidemeister torsion associated with such
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a monodromy representation. The following theorem is the main theorem of this paper,
which confirm the above mentioned conjecture of ω(K) for any two-bridge knot assuming
the above mentioned technical assumptions of the Poisson summation formula and the
saddle point method.

Theorem 1.1. Let K be any two-bridge knot, and let D be an appropriate parameterized
diagram of K. Then,

ω2(D) = ± τ(K)

2
√
−1

,

where τ(K) is the twisted Reidemeister torsion associated with the monodromy represen-
tation obtained from the parameterization of D.

For example, as shown in Examples 3.1, 3.2, 4.5 and 4.6, for the 52 knot and the 61 knot
with the holonomy representations of the hyperbolic structures, the values of ω(K) and
τ(K) are numerically given by

ω(52) = 0.09019057740...+
√
−1 · 0.6499757866... ,

τ(52) = −0.2344867659...− √−1 · 0.8286683659... ,
ω(61) = −0.5213883634...+ √−1 · 0.07173228265... ,
τ(61) = 0.1496015098...+

√
−1 · 0.5334006103... ,

where we can confirm that the values of ω(52) and ω(61) are equal to the values given in
[16, 18], and the values of τ(52) and τ(61) are equal to the values obtained from [20] (see
Examples 3.1 and 3.2). Hence, we can numerically verify the theorem as

ω(52)
2 = −0.4143341829...+ √−1 · 0.1172433829... =

τ(52)

2
√
−1

,

ω(61)
2 = 0.2667003051...− √−1 · 0.07480075491... =

τ(61)

2
√
−1

.

Further, by results in [16, 18, 17], the theorem means that the above mentioned conjecture
of ω(K) is confirmed as

ω(K)2 = ± τ(K)

2
√
−1

for any hyperbolic knot with up to 7 crossings, since they are two-bridge knots.

The theorem means that the Hessian of the potential function is related to the twisted
Reidemeister torsion. We explain how they are related, roughly speaking, as follows. As
mentioned above, the twisted Reidemeister torsion of the problem is the Reidemeister
torsion of the cochain complex of the knot complement with the sl2 coefficient twisted
by the adjoint action of the holonomy representation of the hyperbolic structure of the
knot complement. This Reidemeister torsion is determined by the alternating product
of the determinants of the coboundary maps of this cochain complex; in particular, its
essential factor is the determinant of the coboundary map d1 : C1 → C2 with respect
to an appropriate basis. Further, it is well known that H1 of this cochain complex is
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naturally isomorphic to the tangent space of the space of conjugacy classes of PGL2C
representations of the knot group. Hence, roughly speaking, the twisted Reidemeister
torsion is given by the determinant of the matrix whose entries are the coefficients of the
defining equations of the tangent space of the representation space. On the other hand,
we can reconstruct the representation space by using an ideal tetrahedral decomposition
of the knot complement. The shape of an ideal tetrahedron is parameterized by the cross-
ratio of the coordinates of its four vertices, and the representation space is parameterized
by solutions of hyperbolicity equations of such parameters. Further, the hyperbolicity
equations are given by differentials of the potential function. Hence, the tangent space of
the representation space is presented by the Hesse matrix of the potential function, and
its determinant (i.e., the Hessian of the potential function) is expected to be related to
the twisted Reidemeister torsion, as mentioned above.

We explain an outline of the proof of the theorem. We consider a parameterized knot
diagram of an open two-bridge knot, where an open knot is a 1-tangle whose closure is a
knot. We decompose such a knot diagram into elementary tangle diagrams. Further, we
reformulate τ(K) and ω2(D) as compositions of operator invariants of such elementary
diagrams. In other words, regarding an open two-bridge knot as a plat closure of a 3-
braid, we reformulate τ(K) and ω2(D) in terms of “representations” of parameterized
3-braids. Further, we show the theorem by comparing recursive formulas of both sides of
the required formula of the theorem.

The paper is organized as follows. In Section 2, we review some basic facts used in this
paper, such as the definition of the Kashaev invariant and a parameterization of a knot di-
agram by hyperbolicity parameters. In Section 3, we explain how we calculate the twisted
Reidemeister torsion for two-bridge knots. We construct a monodromy representation of
a knot group into PGL2C from a parameterized knot diagram, and calculate the twisted
Reidemeister torsion associated with this monodromy representation, by decomposing a
two-bridge knot diagram into elementary tangle diagrams. In Section 4, we define ω2(D)
for an oriented parameterized open knot diagram D, and show a relation of it to the
Kashaev invariant, and calculate it for two-bridge knots. In Section 5, we show a proof
of Theorem 1.1, by comparing recursive formulas of both sides of the required formula of
the theorem.

The authors would like to thank Stavros Garoufalidis, Sergei Gukov, Kazuo Habiro,
Rinat Kashaev and Hitoshi Murakami for helpful comments.

2 Preliminaries

In this section, we review some basic facts used in this paper. In Section 2.1, we review
the definition of the Kashaev invariant. In Section 2.2, we review a parameterization of a
knot diagram by hyperbolicity parameters.

2.1 Kashaev invariant

In this section, we review the definition of the Kashaev invariant following [25], and review
some related formulas.
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Let N be an integer ≥ 2. We put q = exp(2π
√
−1/N), and put

(x)n = (1− x)(1− x2) · · · (1− xn)

for n ≥ 0. It is known [14] (see also [16]) that for any n,m with n ≤ m,

(q)n(q)N−n−1 = N, (3)∑
n≤k≤m

1

(q)m−k(q)k−n

= 1. (4)

Following Faddeev [6], we define a holomorphic function φ(t) on {t ∈ C | 0 < Re t < 1}
by

φ(t) =

∫ ∞

−∞

e(2t−1)xdx

4x sinhx sinh(x/N)
,

noting that this integrand has poles at nπ
√
−1 (n ∈ Z), where, to avoid the pole at 0, we

choose the following contour of the integral,

(−∞,−1 ] ∪
{
z ∈ C

∣∣ |z| = 1, Im z ≥ 0
}
∪ [ 1,∞).

It is known [7, 23] that

(q)n = exp
(
φ
( 1

2N

)
− φ

(2n+ 1

2N

))
,

(q)n = exp
(
φ
(
1− 2n+ 1

2N

)
− φ

(
1− 1

2N

))
.

(5)

Further, it is known [7, 23] (see also [16]) that

1

N
φ(t) =

1

2π
√
−1

Li2
(
e2π

√
−1 t
)

+O
( 1

N2
),

1

N
φ′(t) = − log

(
1− e2π

√
−1 t
)

+O
( 1

N2
).

(6)

Furthermore, it is known (due to Kashaev, see [16]) that

φ
( 1

2N

)
=

N

2π
√
−1

π2

6
+

1

2
logN +

π
√
−1
4
− π
√
−1

12N
,

φ
(
1− 1

2N

)
=

N

2π
√
−1

π2

6
− 1

2
logN +

π
√
−1
4
− π
√
−1

12N
.

(7)

Following Yokota [25],1 we review the definition of the Kashaev invariant. We put

N = {0, 1, · · · , N − 1}.

For i, j, k, l ∈ N , we put

Ri j
k l =

N q−
1
2
+i−k θi jk l

(q)[i−j](q)[j−l](q)[l−k−1](q)[k−i]

, R
i j

k l =
N q

1
2
+j−l θi jk l

(q)[i−j](q)[j−l](q)[l−k−1](q)[k−i]

,

1We make a minor modification of the definition of weights of critical points from the definition in [25], in order to make
⟨K ⟩N invariant under Reidemeister moves.
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where [m] ∈ N denotes the residue of m modulo N , and we put

θi jk l =

{
1 if [i− j] + [j − l] + [l − k − 1] + [k − i] = N − 1,

0 otherwise.

Let K be an oriented knot. We consider a 1-tangle whose closure is isotopic to K such
that its string is oriented downward at its end points; abusing the notation, we also denote
this 1-tangle by K, and call such a 1-tangle an open knot. Let D be a diagram of this
1-tangle. We present D by a union of elementary tangle diagrams shown in (8). We
decompose the string of D into edges by cutting it at crossings and critical points with
respect to the height function of R2. A labeling is an assignment of an element of N to
each edge. Here, we assign 0 to the two edges adjacent to the end points of D. We define
the weights of labeled elementary tangle diagrams by

W
( i j

k l

)
= Ri j

k l , W
(

k l

)
= q−1/2δk,l−1 , W

(
k l

)
= δk,l ,

W
( i j

k l

)
= R

i j

k l , W
( i j )

= q1/2δi,j+1 , W
( i j )

= δi,j .

(8)

Then, the Kashaev invariant ⟨K ⟩
N
of K is defined by

⟨K ⟩
N

=
∑

labelings

∏
crossings

of D

W (crossings)
∏

critical
points of D

W (critical points) ∈ C.

2.2 Knot diagrams parameterized by hyperbolicity parameters

In this section, we review a parameterization of an open knot diagram by hyperbolicity
parameters, following [24]. Further, we review a potential function of a parameterized
open knot diagram.

We parameterize edges of an open knot diagram by parameters in C∪{∞}, for example,
as follows.

1 ∞ 1

x1

x2 1

1
x3 1

0 1

(9)

We parameterize edges adjacent to unbounded regions by 1. We parameterize edges next
to the terminal edges by 0 or ∞ as shown above; we parameterize such an edge by ∞
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(resp. 0) if it is connected to the terminal edge by an under-path (resp. an over-path). We
parameterize the other edges in such a way that the parameters satisfy the hyperbolicity
equations, which are given as follows.

u′

u

x
v′

v

(
1− x

u

)(
1− v′

x

)
=
(
1− x

u′
)(
1− v

x

)
u′

u

x
v′

v

(
1− x

u

)(
1− x

v′
)

=
(
1− x

u′
)(
1− x

v

)
u′

u

x
v′

v

(
1− u

x

)(
1− v′

x

)
=
(
1− u′

x

)(
1− v

x

)
We call such parameters hyperbolicity parameters. For example, for the knot diagram (9),
the hyperbolicity equations are given by

1− x2
x1

= (1− x1)
(
1− 1

x1

)
,(

1− x2
x1

)(
1− 1

x2

)
= (1− x2)

(
1− x3

x2

)
,(

1− x3
x2

)(
1− 1

x3

)
= 1− x3 .

As we explain in Section 3.1, such a parameterization gives a monodromy representation
of the knot group into PGL2C. Hence, in many cases (including all two-bridge knots),
each solution of hyperbolicity equations is isolated (i.e., 0-dimensional).

We consider an open knot diagram parameterized by hyperbolicity parameters. We
consider an angle consisting of two adjacent edges at a crossing. We associate such an
angle with the following value,

x y

⇝ Li2
(x
y

)
− Li2(1)

x y

⇝ Li2(1)− Li2
(y
x

)
where we consider the orientation of an angle from the over-path to the under-path,
and the left case is the case where this orientation is counter-clockwise, and the right
case is the case where this orientation is clockwise. We recall that Li2(1) = π2

6
. For

a parameterized open knot diagram, we put the potential function V to be the sum of
such values for all angles except for the constant terms, regarding V as a function of
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hyperbolicity parameters.

1 ∞ 1

x1

x2 1

1
x3 1

0 1

For example, for the above knot diagram, the potential function V is given by

V (x1, x2, x3) = Li2(x1)− Li2
( 1
x1

)
+ Li2

(x2
x1

)
− Li2(x2)

−Li2
( 1
x2

)
+ Li2

(x3
x2

)
− Li2(x3)− Li2

( 1
x3

)
+ 2Li2(1).

(10)

We note that

x
∂

∂x
Li2
(x
y

)
= − log

(
1− x

y

)
, y

∂

∂y
Li2
(x
y

)
= log

(
1− x

y

)
. (11)

We also note that the hyperbolicity equations are given by

∂

∂xi
V = 0 for all i,

and, hence, a solution of the hyperbolicity equations gives a critical point of V .

3 Calculation of the twisted Reidemeister torsion

In this section, we explain how we calculate the twisted Reidemeister torsion for two-bridge
knots. In Section 3.1, we explain how we calculate the monodromy representation of a knot
group into PGL2C when a knot diagram is parameterized by hyperbolicity parameters.
In Section 3.2, we explain how we calculate the twisted Reidemeister torsion for the 52
knot, as the simplest example among two-bridge knots; the calculation is reduced to the

calculations of det

(
Ê2 D̂1Ê1

)
and det

(
Ď1Ě1

)
. In Section 3.3, we decompose open

two-bridge knot diagrams into elementary tangle diagrams, to formulate such calculations

for any two-bridge knot. In Sections 3.4 and 3.5, we calculate det

(
Ê2 D̂1Ê1

)
and

det
(
Ď1Ě1

)
respectively for any two-bridge knot. By using them, we calculate the twisted

Reidemeister torsion for any two-bridge knot in Section 3.6. See also [5, 20] for the
calculation of the Reidemeister torsion for twist knots.
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3.1 The monodromy representation

In this section, we explain how we calculate the monodromy representation of a knot
group into PGL2C from a parameterized knot diagram.

We review how to make an ideal tetrahedral decomposition of S3 − K from a knot
diagram, following [19, 24]. There are four tetrahedra at each crossing of the knot diagram,
and, by making an octahedron as the union of such four tetrahedra at each crossing,
we obtain an octahedral decomposition of S3 − K. As in [24], we associate a complex
parameter to each edge of the knot diagram, and consider the hyperbolicity equations
with respect to the parameters. Then, the shape of an ideal octahedron at each crossing
is determined, as follows.

x

yz

w

x
yz

w

∞

0

(12)

We can glue ideal tetrahedra at each face of a knot diagram. For example, we can make
the polyhedron of the following right picture by gluing 5 tetrahedra at the face of the left
picture.

x1

x2

x3
x4

x5

0

x1

x2
x3

x4

x5

∞

(13)

Here, we note that the edge x1x2 of the tetrahedron “∞0x1x2” at the crossing of the edges
of x1 and x2 in the left picture corresponds to the edge ∞0 of the tetrahedron “0∞x1x2”
of the right picture.

We consider the following left picture as a part of a knot diagram.

u′

u

x
v′

v

Xu′

X

Xu

Xv′

X ′

Xv

9



As mentioned in Section 2.2, the hyperbolicity equation of these parameters is(
1− x

u

)(
1− v′

x

)
=
(
1− x

u′
)(
1− v

x

)
.

We consider tetrahedra at each crossing as in (12), and consider tetrahedra at each face
as in (13). Further, we consider maps taking such tetrahedra to each other as in the
right picture; for example, the map Xu in the right picture takes a tetrahedron at the left
crossing placed as in (12) to a tetrahedron at the lower face placed as in (13). Such maps
take vertices of the tetrahedra, as follows.

x

0

u −→
Xu

0

x

∞

−→

Xv

v

∞

x

Hence,

Xu(x) = 0, Xu(0) = x, Xu(u) =∞,
Xv(v) = 0, Xv(∞) = x, Xv(x) =∞,

where PGL2C acts on C ∪ {∞} by the Möbius transformation. It follows that

Xu ∼
(

1 −x
1/u −1

)
, Xv ∼

(
1 −v

1/x −1

)
,

where “∼” means the equality in PGL2C. Similarly, we have that

Xu′ ∼
(

1 −x
1/u′ −1

)
, Xv′ ∼

(
1 −v′

1/x −1

)
.

Therefore,

X = XuX
−1
u′ ∼

(
x
u′ − 1 0
1
u′ − 1

u
x
u
− 1

)
, X ′ = Xv′X

−1
v ∼

(
v′

x
− 1 v − v′
0 v

x
− 1

)
.

We note that, from the construction, X fixes 0 and x, and X ′ fixes∞ and x by the Möbius
transformation.

By using such matrices, we can calculate the monodromy representation π1(S
3−K)→

PGL2C from a knot diagram with parameters.

3.2 Calculation of the twisted Reidemeister torsion for the 52 knot

In this section, we explain how we calculate the twisted Reidemeister torsion for the 52
knot, before we explain the calculation for any two-bridge knot later.
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The 52 knot is the knot presented by the following picture; it is the mirror image of
the 52 knot.

1 1∞

x1

1 x2 1

0 1

W0
X0

X ′
0

Z0

X ′
1

X1

X2

X ′
2

W1
Z2

X3

X ′
3

Z3

As in [24], the parameters of the knot diagram is given as in the left picture. The
hyperbolicity equations are

(1− x1)
(
1− 1

x1

)
= 1− x2

x1
,

(
1− x2

x1

)(
1− 1

x2

)
= 1− x2 .

Hence,

x2 = x21 − x1 + 1, x2 + 1− x2
x1

= 0.

We calculate Xi and X
′
i by the way of Section 3.1; for example,

X ′
0 ∼

(
1 x1−1
0 1

)
, X1 ∼

(
1 0
1 1−x1

)
, X ′

1 ∼
( 1

x1
−1 x2−1
0 x2

x1
−1

)
,

· · · , X3 ∼
(

1 0
1
x2
−1 1

)
.

By using them, we can calculate the other matrices; for example,

X0 ∼ X ′
3 ∼

(
1 0
0 1

)
, Wi ∼

(
2 −1
1 0

)
, Zi ∼

(
0 1
−1 2

)
for each i.

We consider a cell decomposition of the knot complement, as follows, The (large) 0-cell
is a shaded region of the following left picture. The 1-cells are the arrows of the following
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left picture. The 2-cells are given as in the right two pictures.

r1

r3 r4

r6

r2
r5

r7

r8

Here, the base points of the 0-cell and the 2-cells are depicted by dots in the pictures, and
the base points of the 1-cells are the tops of the arrows.

We consider the cochain complex C∗ of this cell decomposition with the sl2 coefficient
twisted by the monodromy representation of Section 3.1. The relator given by the 2-cell
r1 is presented by

W0X0 Z0X
−1
0 .

Its perturbation is given by

(1 + ε eW0)W0 · (1 + ε eX0)X0 · (1 + ε eZ0)Z0 ·X−1
0 (1− ε eX0) + O(ε2)

for eW0 , eZ0 , eZ0 ∈ sl2. Its coefficient of ε is presented by

er1 = eW0 + (W0 − 1) eX0 +W0 eZ0 ,

where we put Wi = ad(Wi), Xi = ad(Xi), Zi = ad(Zi), · · · . Similarly, from the relator
W0X

′
0
−1X−1

1 X ′
1
−1X ′

0 of the 2-cell r2, we obtain

er2 = eW0 −X ′
0
−1X ′

1 eX1 .

Further, from the relator X0X
−1
1 W−1

1 X1X
′
0 of the 2-cell r3, we obtain

er3 = eX0 −X ′
0
−1X−1

1 eW1 + X−1
1 (W−1

1 − 1) eX1 .

By calculating similarly, the coboundary map D1 : C
1 → C2 is presented by

D1 =



1 W0−1 W0 0 0 0 0 0 0
1 0 0 0 −X ′

0
−1X ′

1 0 0 0 0
0 1 0 −X ′

0
−1X−1

1 X−1
1 (W−1

1 −1) 0 0 0 0
0 0 0 0 1 X1X ′

1−1 −X2 0 0
0 0 1 0 0 −X ′

1 0 0 0
0 0 0 0 0 1 0 X2X ′

2−1 −X3

0 0 0 0 0 0 1 −X ′
2 0

0 0 0 1 0 0 0 0 Z−1
3


,
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with respect to the basis (eW0 , eX0 , eZ0 , eW1 , eX1 , eX2 , eZ2 , eX3 , eZ3) of C1 and the basis
(er1 , er2 , er3 , · · · , er8) of C2. Further, the coboundary map D0 : C

0 → C1 is presented by
a matrix of the following form,

D0 =



(W0−1)X ′
0
−1X ′

1

(X0−X ′
0
−1)X ′

1

(Z0−1)X ′
1

W1 − 1
X1X ′

1 − 1
X2X ′

2 − 1
(Z2 − 1)X ′

2

X3X ′
3 − 1

(Z3−1)X ′
3


=



...

...

...
X3−1
Z3−1

 ,

with respect to the basis (eW0 , eX0 , eZ0 , eW1 , eX1 , eX2 , eZ2 , eX3 , eZ3) of C
1.

We consider a subcomplex Ĉ∗ of C∗, as follows. Recalling that Xi and X
′
i have fixed

points mentioned in Section 3.1, we modify D1 by multiplying(
ad

(
1 1
1 0

)−1

ad

(
1 1
1 0

)−1

1 ad

(
x1 1
1 0

)−1

ad

(
1 1
1 0

)−1

ad

(
x2 1
1 0

)−1

ad

(
1 1
1 0

)−1

ad

(
1 1
1 0

)−1
)

from the left, and multiplying(
ad

(
1 1
1 0

)
1 ad

(
1 1
1 0

)
ad

(
1 1
1 0

)
ad

(
x1 1
1 0

)

ad

(
x2 1
1 0

)
ad

(
1 1
1 0

)
ad

(
0 1
1 0

)
ad

(
1 1
1 0

) )T

from the right. Then, the modified D1 has entries of the following form,

ad

(
1 1
1 0

)−1

· (W0 − 1) =

 −1 0 −1
1 2 −1
0 0 0

 ,

ad

(
1 1
1 0

)−1

· W0 · ad
(
1 1
1 0

)
=

 1 −2 −1
0 1 1

0 0 1

 ,

ad

(
1 1
1 0

)−1

· (−X ′
0
−1X ′

1) · ad
(
x1 1
1 0

)
=

 x1−1 0 0
0 −1 0

0 0 1
x1−1

 ,

· · · ,
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and we can verify that any entry of the modified D1 is of the following form, ∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

 .

Further, we modify D0 by multiplying(
ad

(
1 1
1 0

)−1

1 ad

(
1 1
1 0

)−1

ad

(
1 1
1 0

)−1

ad

(
x1 1
1 0

)−1

ad

(
x2 1
1 0

)−1

ad

(
1 1
1 0

)−1

ad

(
0 1
1 0

)−1

ad

(
1 1
1 0

)−1
)

from the left. Then, the modified D0 has entries of the following form,

· · · ,

ad

(
0 1
1 0

)−1

· (X3 − 1) =

 ∗ ∗ 0
1
x2
−1 0 0

0 0 0

 ,

ad

(
1 1
1 0

)−1

· (Z3 − 1) =

 −1 −4 3
−1 −2 1

0 0 0

 ,

and we can verify that any entry of the modified D0 is of the following form, ∗ ∗ ∗∗ ∗ ∗
0 0 0

 .

We put Ĉ1 to be the vector subspace of C1 consisting of vectors of the form(
∗ ∗ 0 | ∗ ∗ 0 | · · · | · · · | ∗ ∗ 0

)T
.

We put Ĉ2 to be the vector subspace of C2 consisting of vectors of the form(
∗ ∗ 0 | ∗ ∗ 0 | · · · | ∗ ∗ 0

)T
.

We put Ĉ0 = C0. Since the modified D0 and D1 preserve these subspaces, Ĉ∗ forms a
subcomplex of C∗ by these modified D0 and D1. We put D̂0 and D̂1 to be the restrictions
of these modified D0 and D1 to Ĉ∗.

We put Č∗ = C∗/Ĉ∗. By definition, Č0 = 0. We put Ď1 to be the map on Č1 induced

14



by the modified D1.

Ĉ2 D̂1←−−− Ĉ1 D̂0←−−− Ĉ0y y y
C2 ←−−− C1 ←−−− C0y y y
Č2 Ď1←−−− Č1 ←−−− 0

The calculation of the Reidemeister torsion of C∗ is reduced to the calculations of the
Reidemeister torsions of Ĉ∗ and Č∗,

τ(C∗) = τ(Ĉ∗) τ(Č∗).

We can verify that H2(C∗) ∼= H2(Ĉ∗) ∼= C and H1(C∗) ∼= H1(Č∗) ∼= C and the other
cohomology groups of these cochain complexes vanish.

We calculate the Reidemeister torsion of Ĉ∗, as follows. We define the map D̂2 : Ĉ
2 →

C to be the map evaluating 2-cochains by the cohomology class [∂EK ] of the boundary
of the knot exterior EK , where we choose the base point of ∂EK to be the base point of
the 2-cell r3. Then, the following complex forms an acyclic complex,

0 ←−−− C D̂2←−−− Ĉ2 D̂1←−−− Ĉ1 D̂0←−−− Ĉ0 ←−−− 0.

The Reidemeister torsion of Ĉ∗ is presented by

τ(Ĉ∗) =

det

 Ê1 D̂0

 det
(
D̂2Ê2

)

det

 Ê2 D̂1Ê1


,

where we put

Ê2 =



0
0
0
0
1
0
...
0


, Ê1 =



1
1

. . .

1
1
0
0
0


.

By definition, we have that

det

 Ê1 D̂0

 .
= det

( the lowest three

rows of D̂0

)
= det

 1
x2
−1 0 0

−1 −4 3
−1 −2 1

 .
= 2

(
1− 1

x2

)
,
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where “
.
=” means that the left-hand side is equal to either of ±1 multiple of the right-hand

side. For a general two-bridge knot, this value becomes 2
(
1− 1

xm−1

)
.

Further, we calculate det
(
D̂2Ê2

)
, as follows. As mentioned above, D̂2 is the map

evaluating 2-cochains by [∂EK ] of the boundary ∂EK of the knot exterior EK . We regard
K as a 1-tangle in a 3-ball B3. Then, ∂EK consists of the boundary ∂N(K) of a tubular
neighbourhood of K and a 2-holed ∂B3. Since ∂N(K) is obtained by connecting 2-cells
r3, r8, r6, · · · in the form of a tube along the monodromy, the contribution of ∂N(K) to

D̂2 is given by

er3 + X ′
0
−1X1

−1er8 + X ′
0
−1X1

−1Z3
−1X3

−1er6 + X ′
0
−1X1

−1Z3
−1X3

−1X ′
1
−1
er5

−X ′
0
−1X1

−1Z3
−1X3

−1X ′
1
−1W0

−1er1 + X ′
0
−1X1

−1Z3
−1X3

−1X ′
1
−1W0

−1er2

+ X ′
0
−1X1

−1Z3
−1X3

−1X ′
1
−1W0

−1X ′
0
−1X ′

1 er4

+ X ′
0
−1X1

−1Z3
−1X3

−1X ′
1
−1W0

−1X ′
0
−1X ′

1X2 er7 .

Further, the contribution of a 2-holed ∂B3 to D̂2 is given by

−er1 + (er2 +W0 er3) +W0 (X1
−1er4 + er5) +W0X1

−1(er6 + X2 er7) + X ′
0
−1X ′

1 er8 .

(How to obtain this formula: We consider the following 2-chains r23, r45, r67.

r23

r67

r45

The relator around r23 is W0X0X−1
1 W−1

1 X ′
1
−1X ′

0, and its differential is given by

er23 = eW0 +W0 eX0 −X ′
0
−1X ′

1 eW1 −X ′
0
−1X ′

1W1 eX1 = er2 +W0 er3 .

Similarly, we can show that er45 = er4 + X1 er5 and er67 = er6 + X2 er7 . The constibution
of the 2-holed ∂B3 is obtained by connecting them along the monodromy,

− er1 + er23 +W0X1
−1er45 +W0X1

−1er67 + X ′
0
−1X ′

1 er8 ,

and this gives the above mentioned formula.) Hence, D2 : C
2 → C is presented by

D2 =
(
0 0 1

)((−X ′
0
−1X1

−1Z3
−1X3

−1X ′
1
−1W0

−1, X ′
0
−1X1

−1Z3
−1X3

−1X ′
1
−1W0

−1, 1, · · ·
)

−
(
− 1, 1, W0, · · ·

))
,
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with respect to the basis er1 , er2 , er3 , · · · . Further, D̂2 is the restriction of the modified D2

to Ĉ2. Moreover, we can see from the definition of Ê2 that only the part of er3 contributes

to D̂2Ê2. Hence,

D̂2Ê2 =
(
0 0 1

) (
1−W0

)1
0
0

 =
(
0 0 1

)−3 −4 1
2 2 0
1 0 1

1
0
0

 = 1.

Therefore,
det
(
D̂2Ê2

)
= 1.

We note that this holds for any two-bridge knot, since only the top 2-cell r3 contributes
to the resulting value, independently of the other part of the knot, as shown above.

The Reidemeister torsion of Č∗ is presented by

τ(Č∗) =

det

 h1 Ě1


det
(
Ď1Ě1

) ,

where we put

h1 =


∗
1
∗
∗
...
∗

, Ě1 =


1
0 0

1
1

. . .

1

.
Here, h1 presents a cohomology class, which evaluates eX1 to be 1. By definition, we have
that

det

 h1 Ě1

 = 1.

Therefore,

2

τ(K)
=

1

1− 1
xm−1

det
(
Ď1Ě1

)
det

 Ê2 D̂1Ê1

 . (14)

It is a problem to calculate the latter two factors in the right-hand side. We calculate
them for any two-bridge knot in Sections 3.4 and 3.5.
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3.3 Decomposition of two-bridge knot diagrams into elementary diagrams

In this section, we decompose open two-bridge knot diagrams into elementary diagrams,
and explain how we describe the hyperbolicity equations among parameters of such knot
diagrams.

Any open two-bridge knot can be presented by a plat closure of a 3-braid of a product
of copies of σ1 and σ

−1
2 , i.e., any open two-bridge knot diagram (or its mirror image) can

be obtained by gluing copies of the following tangle diagrams, which we call elementary
diagrams.

1

1

∞

x1 1

1

1

xi

xi+1

1

1

1

1

xi

xi+1

1

1

1 xm−1

0

1

1

1 xm−1

0

1

1

To describe the hyperbolicity equations among these parameters, we consider the param-
eters αi and αi+1 at the ends of middle strands of σ1 and σ−1

2 , as follows,

1

1

αi

xi

xi+1

αi+1

1

1

αi =
1− 1

xi

1− xi+1

xi

, αi+1 =
1− xi+1

1− xi+1

xi

,

1

1

αi

xi

xi+1

αi+1

1

1

αi =
1− xi+1

xi

1− 1
xi

, αi+1 =
1− xi+1

xi

1− xi+1

.

In general, for a parameterized tangle, we consider the parameter α at the end of a strand
of the tangle diagram, as follows,

α

x

u′

u

α =
1− u

x

1− u′

x

,

α

x

u′

u

α =
1− x

u

1− x
u′
,

u

u′

x

α

α =
1− u

x

1− u′

x

,

u

u′

x

α

α =
1− x

u

1− x
u′
.

When we glue two tangle diagrams, it is required that these parameters coincide at each
connecting point, which implies the hyperbolicity equation among parameters of the re-
sulting tangle diagram.
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3.4 Calculation of det
(
Ê2

∣∣∣ D̂1Ê1

)
In this section, we calculate det

(
Ê2 D̂1Ê1

)
for any two-bridge knot.

We consider the contribution of σ1 to det

(
Ê2 D̂1Ê1

)
.

Wi

Wi+1

Xi

X ′
i

Xi+1

X ′
i+1

Zi

Zi+1

As explained in Section 3.1, we have that

X ′
i ∼

(xi+1

xi
− 1 1− xi+1

0 1
xi
− 1

)
, Xi+1 ∼

(xi+1

xi
− 1 0

1
xi
− 1 xi+1 − 1

)
.

The relators among these matrices are given by

WiX
′
i
−1
X−1

i+1X
′
i+1
−1
X ′

i ,

XiX
−1
i+1W

−1
i+1Xi+1X

′
i ,

Zi Z
−1
i+1 ,

and, as explained in Section 3.2, their differentials are given by

eWi
−X ′

i
−1X ′

i+1eXi+1
,

eXi
−X ′

i
−1X−1

i+1eWi+1
+ X ′

i
−1X−1

i+1(1−Wi+1)eXi+1
,

eZi
− eZi+1

.

Hence, the corresponding part of D1 is presented by

D1 =



. . . . . . . . . 0 0 0

1 0 0 0 −X ′
i
−1X ′

i+1 0
0 1 0 −X ′

i
−1X−1

i+1 X ′
i
−1X−1

i+1(1−Wi+1) 0
0 0 1 0 0 −1
0 0 0

. . . . . . . . .


with respect to the basis (eWi

, eXi
, eZi

, eWi+1
, eXi+1

, eZi+1
). It is necessary to calculate the

determinant of the following matrices,
Ai Bi Ci 0 0 0

1 0 0 0 −X ′
i
−1X ′

i+1 0
0 1 0 −X ′

i
−1X−1

i+1 X ′
i
−1X−1

i+1(1−Wi+1) 0
0 0 1 0 0 −1
0 0 0

. . . . . . . . .


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≈


1 0 0 0 −X ′

i
−1X ′

i+1 0
0 1 0 −X ′

i
−1X−1

i+1 X ′
i
−1X−1

i+1(1−Wi+1) 0
0 0 1 0 0 −1
Ai Bi Ci 0 0 0

0 0 0
. . . . . . . . .



≈


1 0 0 0 −X ′

i
−1X ′

i+1 0
0 1 0 −X ′

i
−1X−1

i+1 X ′
i
−1X−1

i+1(1−Wi+1) 0
0 0 1 0 0 −1
0 0 0 Ai+1 Bi+1 Ci+1

0 0 0
. . . . . . . . .


≈

(
Ai+1 Bi+1 Ci+1

. . . . . . . . .

)
,

where ‘≈” means that the matrices of both sides are related by elementary transformations
(hence, they have equal determinants), and we put

(
Ai+1 Bi+1 Ci+1

)
=
(
Ai Bi Ci

) 0 X ′
i
−1X ′

i+1 0
X ′

i
−1X−1

i+1 X ′
i
−1X−1

i+1(Wi+1−1) 0
0 0 1

 .

Hence, σ1 is taken by the “representation” by

1

1

xi

xi+1

1

1

7−→

 0 X ′
i
−1X ′

i+1 0
X ′

i
−1X−1

i+1 X ′
i
−1X−1

i+1(Wi+1−1) 0
0 0 1

 . (15)

We consider the subcomplex Ĉ∗ as in Section 3.2, and consider the corresponding matrix
to the matrix of (15). To the matrix of (15), we multiply(

ad

(
1 1
1 0

)−1

ad

(
xi 1
1 0

)−1

ad

(
1 1
1 0

)−1)
from the left, and multiply(

ad

(
1 1
1 0

)
ad

(
xi+1 1
1 0

)
ad

(
1 1
1 0

))T

from the right. Then, the entries of the resulting matrix are presented by

ad

(
1 1
1 0

)−1

· X ′
i
−1X ′

i+1 · ad
(
xi+1 1
1 0

)
=

 −
xi(xi+1−1)

xi−1
0 0

0 1 0

0 0 − xi−1
xi(xi+1−1)

 ,

ad

(
xi 1
1 0

)−1

· X ′
i
−1X−1

i+1 · ad
(
1 1
1 0

)
=

 −
xi+1−1
(xi−1)xi

2
xi

∗
0 1 ∗
0 0 − (xi−1)xi

xi+1−1

 ,
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ad

(
xi 1
1 0

)−1

· X ′
i
−1X−1

i+1(Wi+1−1) · ad
(
xi+1 1
1 0

)

=

 − (xi+1−1)2(2xi+xi+1−1)
(xi−1)xi

2(xi+1−1)(2xi+xi+1−2)
(xi−1)xi

∗
−(xi+1 − 1)2 2(xi+1 − 1) ∗

0 0 0

 .

Hence, the restriction of the matrix of (15) to the subcomplex Ĉ∗ is presented by

0 0 −xi(xi+1−1)
xi−1

0 0 0

0 0 0 1 0 0

− xi+1−1
(xi−1)xi

2
xi
− (xi+1−1)2(2xi+xi+1−1)

(xi−1)xi

2(xi+1−1)(2xi+xi+1−2)
(xi−1)xi

0 0

0 1 −(xi+1 − 1)2 2(xi+1 − 1) 0 0

0 0 0 0 1 0
0 0 0 0 0 1


. (16)

We consider the contribution of σ−1
2 to det

(
Ê2 D̂1Ê1

)
.

Wi

Wi+1

Xi

X ′
i

Xi+1

X ′
i+1

Zi

Zi+1

As explained in Section 3.1, we have that

X ′
i ∼

( 1
xi
− 1 xi+1 − 1

0 xi+1

xi
− 1

)
, Xi+1 ∼

(
xi+1 − 1 0
1− 1

xi

xi+1

xi
− 1

)
.

The relators among these matrices are given by

WiW
−1
i+1 ,

XiX
′
iXi+1 Z

−1
i+1X

−1
i+1 ,

ZiX
′
iX

′
i+1
−1
X−1

i+1X
′
i
−1
.

Hence, similarly as the case of σ1, the corresponding part of D1 is presented by

D1 =



. . . . . . . . . 0 0 0

1 0 0 −1 0 0
0 1 0 0 XiX ′

i−1 −Xi+1

0 0 1 0 −X ′
i 0

0 0 0
. . . . . . . . .


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with respect to the basis (eWi
, eXi

, eZi
, eWi+1

, eXi+1
, eZi+1

). Further, σ−1
2 is taken by the

“representation” by

1

1

xi

xi+1

1

1

7−→

1 0 0
0 1−XiX ′

i Xi+1

0 X ′
i 0

 . (17)

We consider its restriction to the subcomplex Ĉ∗, similarly as the case of σ1. To the
matrix of (17), we multiply(

ad

(
1 1
1 0

)−1

ad

(
xi 1
1 0

)−1

ad

(
1 1
1 0

)−1)
from the left, and multiply(

ad

(
1 1
1 0

)
ad

(
xi+1 1
1 0

)
ad

(
1 1
1 0

))T

from the right. Then, the entries of the resulting matrix are presented by

ad

(
xi 1
1 0

)−1

· (1−XiX ′
i ) · ad

(
xi+1 1
1 0

)

=


(2xi−xi+1+1)(xi+1−1)

x2
i

2(xi−xi+1+1)(xi+1−1)

x2
i (xi−xi+1)

∗
(xi−xi+1)(xi+1−1)

xi

2(xi+1−1)
xi

∗
0 0 0

 ,

ad

(
xi 1
1 0

)−1

· Xi+1 · ad
(
1 1
1 0

)
=

 −
xi+1−1

xi(xi−xi+1)
2(xi−1)

xi(xi−xi+1)
∗

0 1 ∗
0 0 xi(xi+1−xi)

xi+1−1

 ,

ad

(
1 1
1 0

)−1

· X ′
i · ad

(
xi+1 1
1 0

)
=


xi−xi+1

xi−1
0 0

0 1 0

0 0 xi−1
xi−xi+1

 .

Hence, the restriction of the matrix of (17) to the subcomplex Ĉ∗ is presented by

1 0 0 0 0 0
0 1 0 0 0 0

0 0 (2xi−xi+1+1)(xi+1−1)

x2
i

2(xi−xi+1+1)(xi+1−1)

x2
i (xi−xi+1)

− xi+1−1
xi(xi−xi+1)

2(xi−1)
xi(xi−xi+1)

0 0 (xi−xi+1)(xi+1−1)
xi

2(xi+1−1)
xi

0 1

0 0 xi−xi+1

xi−1
0 0 0

0 0 0 1 0 0


. (18)

The matrices (16) and (18) give a 6-dimensional “representation” of parameterized
3-braids. In fact, only a 3-dimensional subspace contributes to the calculation of the
required value. A basis of this 3-dimensional subspace is given by

e1 =
(
0 0 −αi(xi − 1)xi 1− αi + xi + αixi −(αi − 1)(xi − 1) (αi − 1)(xi − 3)

)
,
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e2 =
(
0 −αi αi(xi − 1)xi −1 + αi − 2αixi 0 −1

)
,

e3 =
(
(αi − 1)(xi − 1) (αi − 1)(xi + 1) −αi(xi − 1)xi 1− αi − xi + 3αixi 0 0

)
.

(How to obtain this basis: (σ1σ2)
3 is a central element of the 3-braid group. For any

open two-bridge knot, when we insert (σ1σ2)
3 at any place of a 3-braid, the knot type of

the open two-bridge knot does not change. Further, the values of xi and αi are invariant
under the action of (σ1σ2)

3. Hence, only 1-eigenspace with respect to the action of (σ1σ2)
3

contributes to the required value. This 1-eigenspace is the above mentioned 3-dimensional
subspace. In this 1-eigenspace, we obtain e3 as an eigenvector of the action of σ1, and
obtain e1 as an eigenvector of the action of σ2, and obtain e2 as an eigenvector of the
action of σ1σ2σ1. We note that these “eigenvectors” are eigenvectors with respect to the
action of multiplying matrices to row vectors from the right.)

With respect to the basis (e1, e2, e3), the matrices (16) and (18) are rewritten as the
following matrices, by which we define a “representation” Φ2 of parameterized 3-braids,

Φ2

(
1

1

xi

xi+1

1

1

)
= − 1

xi+1

1 2 xi+1 1
0 −xi+1 −1
0 0 1

 ,

Φ2

(
1

1

xi

xi+1

1

1

)
=

1

1− αi+1

 1 0 0
−1 −xi+1 0
1 2xi+1 1

 .

(19)

We define Φ2 of the top part of an open two-bridge knot, as follows.

1 ∞

1 x1

1

W0

W1

X0

X ′
0

X1

X ′
1

Z1

As explained in Section 3.1, we have that

X0 ∼
(
1 0
0 1

)
, X ′

0 ∼
(
1 x1−1
0 1

)
, X1 ∼

(
1 0
1 1−x1

)
, X ′

1 ∼
( 1

x1
−x1

0 1
x1
−1

)
.

As explained in Section 3.2, the corresponding part of D1 is presented by
1 W0−1 0 0 Z−1

1

1 0 0 −X ′
0
−1X ′

1 0
0 1 −X ′

0
−1X−1

1 X ′
0
−1X−1

1

(
1−W1

)
0

. . . . . . . . .

 (20)

with respect to the basis (eW0 , eX0 , eW1 , eX1 , eZ1). To the above matrix, we multiply(
ad

(
1 1
1 0

)−1

ad

(
1 1
1 0

)−1

1

)
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from the left, and multiply(
ad

(
1 1
1 0

)
1 ad

(
1 1
1 0

)
ad

(
x1 1
1 0

)
ad

(
1 1
1 0

))T

from the right. Then, the entries of the resulting matrix are presented by

ad

(
1 1
1 0

)−1

· (W0 − 1) =

 −1 0 −1
1 2 −1
0 0 0

 ,

ad

(
1 1
1 0

)−1

· Z−1
1 · ad

(
1 1
1 0

)
=

 1 −2 −1
0 1 1

0 0 1

 ,

ad

(
1 1
1 0

)−1

· (−X ′
0
−1X ′

1) · ad
(
x1 1
1 0

)
=

 x1−1 0 0
0 −1 0

0 0 1
x1−1

 ,

(−X ′
0
−1X−1

1 ) · ad
(
1 1
1 0

)
=

 1−x1 0 0
0 −1 0

0 0 1
1−x1

 ,

X ′
0
−1X−1

1 (1−W1) · ad
(
x1 1
1 0

)
=

 ∗ ∗ x1−1
(x1−1)2 2(1−x1) −1

0 0 0

 .

Hence, the restriction of the matrix (20) to the subcomplex Ĉ∗ is presented by

1 0 −1 0 0 0 0 0 1 −2
0 1 1 2 0 0 0 0 0 1
1 0 0 0 0 0 x1−1 0 0 0
0 1 0 0 0 0 0 −1 0 0
0 0 1 0 1−x1 0 ∗ ∗ 0 0
0 0 0 1 0 −1 (x1−1)2 2(1−x1) 0 0

. . . . . . . . . . . . . . . . . .


.

When we calculate det

(
Ê2 D̂1Ê1

)
, we remove the fifth row of D̂1 from the definition

of Ê2. The matrix obtained from the above matrix by removing the fifth row is equivalent
to the following matrix by elementary transformations,(

0 −2 2x21−3x1+1 −4x1+3 −1 1
. . . . . . . . . . . . . . . . . .

)
.

Further, the vector (
0 −2 2x21−3x1+1 −4x1+3 −1 1

)
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is rewritten as the following vector with respect to the basis (e1, e2, e3), by which we define
Φ2 of the top part of an open two-bridge knot,

Φ2

(
1

1

∞

x1 1

)
= − 1

x1(x1 − 1)

(
1 2x1 0

)
. (21)

We define Φ2 of a bottom part of an open two-bridge knot, as follows.

1

xm−1

0

1

1

Wm−1

Xm−1

X ′
m−1

Xm

X ′
m

Zm−1

Zm

As explained in Section 3.1, we have that

Xm−1 ∼
(
1− 1

xm−1
1

0 1

)
, X ′

m−1 ∼
(
xm−1−1 0
− 1

xm−1
xm−1

)
,

Xm ∼
(

1 0
1

xm−1
−1 1

)
, X ′

m ∼
(
1 0
0 1

)
,

noting that xm = 0. By calculating D1 at the bottom of an open two-bridge knot similarly
as above, the corresponding part of D1 is presented by

. . . . . . . . .

1 0 0 0 Z−1
m

0 1 0 Xm−1X ′
m−1−1 −Xm

0 0 1 −X ′
m−1 0

 (22)

with respect to the basis (eWm−1 , eXm−1 , eZm−1 , eXm , eZm). To this matrix (22), we multiply(
ad

(
1 1
1 0

)−1

ad

(
xm−1 1
1 0

)−1

ad

(
1 1
1 0

)−1)
from the left, and multiply(

ad

(
1 1
1 0

)
ad

(
xm−1 1
1 0

)
ad

(
1 1
1 0

)
ad

(
0 1
1 0

)
ad

(
1 1
1 0

))T

from the right. Then, the entries of the resulting matrix are presented by

ad

(
1 1
1 0

)−1

· Z−1
m · ad

(
1 1
1 0

)
=

 1 −2 −1
0 1 1

0 0 1

 ,
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ad

(
xm−1 1
1 0

)−1

· (Xm−1X ′
m−1 − 1) · ad

(
0 1
1 0

)
=


2xm−1+1

x2
m−1

∗ ∗
1 ∗ ∗
0 0 0

 ,

ad

(
xm−1 1
1 0

)−1

· (−Xm) · ad
(
1 1
1 0

)
=

 −
1

x2
m−1

∗ ∗
0 −1 ∗
0 0 −x2m−1

 ,

ad

(
1 1
1 0

)−1

· (−X ′
m−1) · ad

(
0 1
1 0

)
=


xm−1

1−xm−1
0 0

0 −1 0

0 0 1−xm−1

xm−1

 .

Hence, the restriction of the matrix (22) to the subcomplex Ĉ∗ is presented by

. . . . . . . . . . . . . . . . . .

1 0 0 0 0 0 0 0 1 −2
0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 0 2xm−1+1

x2
m−1

∗ ∗ ∗
0 0 0 1 0 0 1 ∗ ∗ ∗
0 0 0 0 1 0 xm−1

1−xm−1
0 0 0

0 0 0 0 0 1 0 −1 0 0


.

When we calculate det

(
Ê2 D̂1Ê1

)
, we remove the rightmost three columns of D̂1

from the definition of Ê1. We remove the rightmost three columns from the above matrix,
and insert each of e1, e2, e3 into the first row. Then, putting αm−1 = xm−1/(xm−1 − 1),
their determinants are equal to

xm−1

xm−1 − 1
, − xm−1

xm−1 − 1
, 2 · xm−1

xm−1 − 1

respectively. Hence, we define Φ2 of the bottom part of an open two-bridge knot by

Φ2

(
1 xm−1

0

1

1

)
=

xm−1

xm−1 − 1

 1
−1
2

 . (23)

We define Φ2 of the other bottom part of an open two-bridge knot, as follows.

1

xm−1

0

1

1

Wm−1

Wm

Xm−1

X ′
m−1

Xm

X ′
m

Zm−1
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As explained in Section 3.1, we have that

Xm−1 ∼
(
xm−1 0

1
xm−1

xm−1−1

)
, X ′

m−1 ∼
(
−1 1
0 1

xm−1
−1

)
,

Xm ∼
(

1 0
1− 1

xm−1
1

)
, X ′

m ∼
(
1 0
0 1

)
,

noting that xm = 0. By calculating D1 at the bottom of an open two-bridge knot similarly
as above, the corresponding part of D1 is presented by

. . . . . . . . .

1 0 0 −X ′
m−1

−1 0
0 1 0 X ′

m−1
−1X−1

m (1−Wm) −X ′
m−1

−1X−1
m

0 0 1 0 Zm−1

 (24)

with respect to the basis (eWm−1 , eXm−1 , eZm−1 , eXm , eWm). To this matrix (24), we multiply(
ad

(
1 1
1 0

)−1

ad

(
xm−1 1
1 0

)−1

ad

(
1 1
1 0

)−1)
from the left, and multiply(

ad

(
1 1
1 0

)
ad

(
xm−1 1
1 0

)
ad

(
1 1
1 0

)
ad

(
0 1
1 0

)
ad

(
1 1
1 0

))T

from the right. Then, the entries of the resulting matrix are presented by

ad

(
1 1
1 0

)−1

· (−X ′
m−1

−1
) · ad

(
0 1
1 0

)
=


xm−1

1−xm−1
0 0

0 −1 0

0 0 1−xm−1

xm−1

 ,

ad

(
xm−1 1
1 0

)−1

· (−X ′
m−1

−1X−1
m ) · ad

(
1 1
1 0

)
=

 ∗ − 2
xm−1

∗
0 −1 ∗
0 0 xm−1(1−xm−1)

 ,

ad

(
xm−1 1
1 0

)−1

· X ′
m−1

−1X−1
m (1−Wm) · ad

(
0 1
1 0

)
=


2xm−1−1

xm−1(xm−1−1)
4

xm−1
∗

1 2 −1
0 0 0

 ,

ad

(
1 1
1 0

)−1

· Zm−1 · ad
(
1 1
1 0

)
=

 1 2 −1
0 1 −1
0 0 1

 .
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Hence, the restriction of the matrix (24) to the subcomplex Ĉ∗ is presented by

. . . . . . . . . . . . . . . . . .

1 0 0 0 0 0 xm−1

1−xm−1
0 0 0

0 1 0 0 0 0 0 −1 0 0

0 0 1 0 0 0 2xm−1−1
xm−1(xm−1−1)

∗ ∗ ∗
0 0 0 1 0 0 1 ∗ ∗ ∗
0 0 0 0 1 0 0 0 1 2
0 0 0 0 0 1 0 0 0 1


.

Similarly as the above case, we remove the rightmost three columns from the above
matrix, and insert each of e1, e2, e3 into the first row. Then, putting αm−1 = 1 − 1

xm−1
,

their determinants are equal to

−2, 1, −1

respectively. Hence, we define Φ2 of this bottom part of an open two-bridge knot by

Φ2

(
1 xm−1

0

1

1

)
= −

 2
−1
1

 . (25)

For a diagram D of any open two-bridge knot, by decomposing D into a union of ele-
mentary tangle diagrams, we define Φ2(D) to be the composition of Φ2 of such elementary
diagrams, whose values are given in (19), (21), (23), (25). Then, by the above arguments,
we have that

det

 Ê2 D̂1Ê1

 = Φ2(D). (26)

3.5 Calculation of det
(
Ď1Ě1

)
In this section, we calculate det

(
Ď1Ě1

)
for any two-bridge knot.

Similarly as in Section 3.4, we can see that, at the top part of an open two-bridge knot
diagram, Ď1 is presented by 

1 0 0 0 1
1 0 0 1

x1−1
0

0 1 1
1−x1

0 0

0 0
. . . . . . . . .


with respect to the basis eW0 , eX0 , eW1 , eX1 , eZ1 . Further, at the part of σ1, Ď1 is presented
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by 

. . . . . . . . .

1 0 0 0 xi−1
xi(xi+1−1)

0

0 1 0 xi(xi−1)
xi+1−1

0 0

0 0 1 0 0 −1
. . . . . . . . .


with respect to the basis eWi

, eXi
, eZi

, eWi+1
, eXi+1

, eZi+1
. At the part of σ−1

2 , Ď1 is presented
by 

. . . . . . . . .

1 0 0 −1 0 0

0 1 0 0 0 xi(xi−xi+1)
xi+1−1

0 0 1 0 xi−1
xi+1−xi

0
. . . . . . . . .


with respect to the basis eWi

, eXi
, eZi

, eWi+1
, eXi+1

, eZi+1
. At the bottom parts of an open

two-bridge knot diagram, Ď1 are presented by
. . . . . . . . .

1 0 0 0 1
0 1 0 0 −x2m−1

0 0 1 1−xm−1

xm−1
0

 and


. . . . . . . . .

1 0 0 1−xm−1

xm−1
0

0 1 0 0 xm−1(1−xm−1)

0 0 1 0 1


respectively, with respect to the basis eWm−1 , eXm−1 , eZm−1 , eXm , eZm and the basis eWm−1 ,

eXm−1 , eZm−1 , eXm , eWm . The matrix of Ď1 is a union of copies of the above mentioned
matrices.

From the definition of Ě1, the matrix of Ď1Ě1 is the matrix obtained from Ď1 by
removing the second column. Its determinant is equal to the product of some entries of
Ď1, since most of the entries of Ď1 are equal to 0. The choice of entries which contribute
to the determinant depends on the orientations of strands; more concretely, we choose
the following values depending on the orientations of strands, whose product presents the
value of the required determinant,

Φ1

(
1

1

∞

x1 1

)
=

−1
(x1 − 1)2

, Φ1

(
1

1

∞

x1 1

)
=

1

1− x1
,

Φ1

(
1

1

xi

xi+1

1

1

)
=

xi(xi − 1)

xi+1 − 1
, Φ1

(
1

1

xi

xi+1

1

1

)
=

xi(xi − xi+1)

xi+1 − 1
,

Φ1

(
1

1

xi

xi+1

1

1

)
=

xi − 1

xi(xi+1 − 1)
, Φ1

(
1

1

xi

xi+1

1

1

)
=

xi − 1

xi+1 − xi
,
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Φ1

(
1

1

xi

xi+1

1

1

)
=

(xi − 1)2

(xi+1 − 1)2
, Φ1

(
1

1

xi

xi+1

1

1

)
= −xi(xi − 1)

xi+1 − 1
,

Φ1

(
1 xm−1

0

1

1

)
= xm−1(xm−1 − 1), Φ1

(
1 xm−1

0

1

1

)
=

1− xm−1

xm−1

,

Φ1

(
1

xm−1

0

1

1

)
= (xm−1−1)2 , Φ1

(
1

xm−1

0

1

1

)
=

1−xm−1

xm−1

.

For a diagram D of any open two-bridge knot, by decomposing D into a union of elemen-
tary diagrams, we define Φ1(D) to be the composition of Φ1 of such elementary diagrams,
whose values are given above. Then, by the above arguments, we have that

det
(
Ď1Ě1

) .
= Φ1(D).

For an elementary tangle diagram T , we define Φ̂1(T ) from Φ1(T ) by multiplying

xi
1
αi
− 1

when the top of T is parameterized by 1

αi

xi 1

and multiplying

1
αi+1
− 1

xi+1

when the bottom of T is parameterized by
1

αi+1

xi+1 1

.

Then, we can verify that Φ̂1(T ) does not depend on the orientation of T ignoring the
difference of sign; more concretely, its values are given by

Φ̂1

(
1

1

∞

x1 1

)
=

1

(x1 − 1)2
,

Φ̂1

(
1

1

xi

xi+1

1

1

)
=

xi(xi − 1)

xi+1 − 1
, Φ̂1

(
1

1

xi

xi+1

1

1

)
=

(xi − 1)2

(xi+1 − 1)2
,

Φ̂1

(
1 xm−1

0

1

1

)
= xm−1(xm−1−1), Φ̂1

(
1 xm−1

0

1

1

)
= (xm−1−1)2.

By the above construction, Φ1(D)
.
= Φ̂1(D) for a diagram D of any open two-bridge knot.

Hence, we have that

det
(
Ď1Ě1

) .
= Φ̂1(D). (27)
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3.6 Calculation of the twisted Reidemeister torsion for any two-bridge knot

In this section, we calculate the twisted Reidemeister torsion τ(K) for any two-bridge
knot K, by applying (27) and (26) to (14).

We define Φ( · ) by Φ( · ) = Φ̂1( · ) Φ2( · ). Its concrete values are given by

Φ

(
1

1

∞

x1 1

)
=

1

x1(x1 − 1)3
(
1 2x1 0

)
,

Φ

(
1

1

xi

xi+1

1

1

)
=

(xi − 1)2

xi+1(xi+1 − 1)2

1 2 xi+1 1
0 −xi+1 −1
0 0 1

 ,

Φ

(
1

1

xi

xi+1

1

1

)
=

x2i
xi+1

 1 0 0
−1 −xi+1 0
1 2xi+1 1

 ,

Φ

(
1 xm−1

0

1

1

)
= x2m−1

 1
−1
2

 , Φ

(
1 xm−1

0

1

1

)
= (xm−1−1)2

 2
−1
1

 ,

ignoring the difference of sign.
For an elementary tangle diagram T , we define Φ̂(T ) from Φ(T ) by multiplying

1

(αi − 1)2(xi − 1)4
when the top of T is parameterized by 1

αi

xi 1

and multiplying

(αi+1 − 1)2(xi+1 − 1)4 when the bottom of T is parameterized by
1

αi+1

xi+1 1

and dividing the value of the bottom part by 1− 1
xm−1

. Its concrete values are given by

Φ̂

(
1

1

∞

x1 1

)
= x1(x1−1)

(
1 2x1 0

)
,

Φ̂

(
1

1

xi

xi+1

1

1

)
= xi+1

1 2 xi+1 1
0 −xi+1 −1
0 0 1

 ,

Φ̂

(
1

1

xi

xi+1

1

1

)
= xi+1

 1 0 0
−1 −xi+1 0
1 2 xi+1 1

 ,

Φ̂

(
1 xm−1

0

1

1

)
=

x3m−1

(xm−1 − 1)3

 1
−1
2

 ,
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Φ̂

(
1 xm−1

0

1

1

)
=

x3m−1

(xm−1 − 1)3

 2
−1
1

 .

By the above construction, Φ(D)/(1 − 1
xm−1

)
.
= Φ̂(D) for a diagram D of any open two-

bridge knot.
Hence, for a diagram D of any open two-bridge knot K, we have that

2

τ(K)
= Φ̂(D) . (28)

Example 3.1. We numerically calculate the twisted Reidemeister torsion for the 52 knot,
which is the knot shown in Section 3.2. As shown in Section 3.2, the hyperbolicity
equations are presented by

x2 = x21 − x1 + 1, x2 + 1− x2
x1

= 0.

Hence,
x31 − 2 x21 + 3x1 − 1 = 0.

Corresponding to the holonomy representation of the hyperbolic structure of the knot
complement, we choose a solution

x1 = 0.784920145...+
√
−1 · 1.307141278... ,

which gives the complex hyperbolic volume by

ς(52) =
1

2π
√
−1

V (x1, x2) = 0.450109610...− √−1 · 0.4813049796... .

Therefore, by (28),

2

τ(52)
= x1(x1 − 1)

(
1 2x1 0

)
· x2

 1 0 0
−1 −x2 0
1 2x2 1

 · x32
(x2 − 1)3

 1
−1
2


= −0.6323164993...+ √−1 · 2.2345852998... ,

and, hence, the value of the twisted Reidemeister torsion of the 52 knot is give by

τ(52) = −0.2344867659...− √−1 · 0.8286683659... .

We can confirm that the above value is also obtained from [20], by transforming the
Reidemeister torsion associated with the longitude (of [20]) to the Reidemeister torsion
associated with the meridian (the above value) as mentioned in [13].
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Example 3.2. We numerically calculate the twisted Reidemeister torsion for the 61 knot,
which is the knot shown in Section 2.2. As shown in Section 2.2, the hyperbolicity
equations are presented by

x2 = x21 − x1 + 1, x3 = x2 + 1− x2
x1

= 0, x3 + 1− x3
x2

= 0.

Hence,
x41 − 3x31 + 6 x21 − 5x1 + 2 = 0.

Corresponding to the holonomy representation of the hyperbolic structure of the knot
complement, we choose a solution

x1 = 0.8951233822...+
√
−1 · 1.5524918200... ,

which gives the complex hyperbolic volume by

ς(61) =
1

2π
√
−1

V (x1, x2, x3) = 0.5035603876...− √−1 · 1.0807800768... .

Therefore, by (28),

2

τ(61)
= x1(x1−1)

(
1 2x1 0

)
· x2

 1 0 0
−1 −x2 0
1 2x2 1

 · x3
 1 0 0
−1 −x3 0
1 2x3 1

 · x33
(x3−1)3

 1
−1
2


= 0.9749303264...− √−1 · 3.4760907942... ,

and, hence, the value of the twisted Reidemeister torsion of the 61 knot is give by

τ(61) = 0.1496015098...+
√
−1 · 0.5334006103... .

We can confirm that the above value is also obtained from [20], by transforming the
Reidemeister torsion associated with the longitude (of [20]) to the Reidemeister torsion
associated with the meridian (the above value) as mentioned in [13].

4 Definition and calculation of ω2

In this section, we define ω2(D) for an oriented parameterized open knot diagram D in
Section 4.1, and show that it is (formally, in general) equal (up to sign) to the square of
ω(K) of the asymptotic expansion (2) of the Kashaev invariant in Section 4.2. Further,
we calculate ω2(D) for open two-bridge knot diagrams in Section 4.3.

4.1 Definition of ω2

In this section, we define ω2(D) for an oriented parameterized open knot diagram D in
Definition 4.2, motivated by the square of ω(K) of the asymptotic expansion (2) of the
Kashaev invariant. We show that ω2(D) is invariant under the RII and RIII moves under
a certain assumption on the values of hyperbolicity parameters in Proposition 4.3.
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For a parameterized knot diagram D, we slice D by horizontal lines in such a way that
each region has a crossing or a critical point, and we put Ω1 of each region as follows, and
we put Ω1(D) to be the product of them.

Ω1

(
x

x′

y

y′

)
=
(
1− x

x′
)(
1− y′

y

)
,

Ω1

(
1

1

y

y′

)
= 1− y′

y
, Ω1

(
x

x′

1

1

)
= 1− x

x′
,

Ω1

(
x

x′

y

y′

)
=
(
1− x′

x

)(
1− y

y′
)
,

Ω1

(
1

1

y

y′

)
= 1− y

y′
, Ω1

(
x

x′

1

1

)
= 1− x′

x
,

Ω1

(
α α−1

)
= α,

Ω1

(
α α−1 )

= α,

where the parameter α at an end of a strand is defined as in Section 3.3.

Lemma 4.1. For a parameterized knot diagram D, the value of Ω1(D) is determined
independently of the way of slicing D.

Proof. It is sufficient to show that Ω1(D) is invariant under the following moves.

←→ ←→

←→ ←→

We obtain the invariance under the moves of the first line from the definition of Ω1.
We obtain the invariance under the moves of the second line from the definition of Ω1

and hyperbolicity equations among parameters.

For an oriented parameterized knot diagram D, we put Ω2 of each crossing as follows,
and put Ω2(D) to be the product of them.

Ω2

( x

x′

y

y′

)
=

x′2

x2
, Ω2

( x

x′

y

y′

)
=

y′2

y2
.
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For a parameterized open knot diagram D, we recall that the potential function V is
defined as in Section 2.2, which is a function of hyperbolicity parameters xi’s. We also
recall that a solution of hyperbolicity equations gives a critical point of V . We define the
Hesse matrix at a critical point of V by

H =
((
xi

∂

∂xi

)(
xj

∂

∂xj

)
V
)
i,j
.

We note that(
x
∂

∂x

)2
Li2
(x
y

)
=
(
y
∂

∂y

)2
Li2
(x
y

)
=

x

y − x
,

(
x
∂

∂x

)(
y
∂

∂y

)
Li2
(x
y

)
= − x

y − x
,

which are obtained from (11). Hence, for example, the Hesse matrix of the potential
function of (10) is given by

H =

 x1

1−x1
− 1

x1−1
+ x2

x1−x2
− x2

x1−x2
0

− x2

x1−x2

x2

x1−x2
− x2

1−x2
− 1

x2−1
+ x3

x2−x3
− x3

x2−x3

0 − x3

x2−x3

x3

x2−x3
− x3

1−x3
− 1

x3−1


=

1+x1

1−x1
+ x2

x1−x2
− x2

x1−x2
0

− x2

x1−x2

x2

x1−x2
+ 1 + x3

x2−x3
− x3

x2−x3

0 − x3

x2−x3

x3

x2−x3
+ 1

 .

Definition 4.2. For an oriented parameterized open knot diagram D, we define ω2(D)
by

ω2(D) =
1√

−1 Ω1(D) Ω2(D) detH
.

We expect that this gives an invariant of an oriented parameterized open knot. The
following proposition is a partial evidence of this expectation.

Proposition 4.3. For an oriented parameterized open knot diagram D, ω2(D) is invariant
under the RII and RIII moves, if the values of the hyperbolicity parameters at the moves
are generic.

Here, “generic” means that both sides of the hyperbolicity equations of the knot diagrams
appearing in the RII and RIII moves are always non-zero.

Proof. We show the invariance under the RII move, as follows. (The following proof works
when x′ ̸= x ̸= y ̸= y′.)

x

x′

x

y

y′

y

←→
x y

We calculate ω2 of the left-hand side. By definition,

Ω1

(
LHS

)
=
(
1− x

x′
)2(

1− y′

y

)2
.
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Further, we can verify by definition that

Ω2

(
LHS

)
=

x′2y2

x2 y′2
,

independently of a choice of orientations of the strands. The Hesse matrix for the left-hand
side is given by the following form,

x
y−x
− x

x′−x
+a1 − x

y−x
+ a2

x
x′−x

0 c1 c2

− x
y−x

+ a2
x

y−x
− y′

y−y′
+a3 0 y′

y−y′
c3 c4

x
x′−x

0 0 0 − x
x′−x

0

0 y′

y−y′
0 0 0 − y′

y−y′

c1 c3 − x
x′−x

0 x
x′−x
− x

y−x
+b1

x
y−x

+ b2

c2 c4 0 − y′

y−y′
x

y−x
+ b2

y′

y−y′
− x

y−x
+b3


.

This matrix can be transformed into the following form by elementary transformation,

((
a1 a2
a2 a3

)
+

(
b1 b2
b2 b3

)
+

(
c1 c2
c3 c4

)
+

(
c1 c3
c2 c4

))
⊕


0 0 x

x′−x
0

0 0 0 y′

y−y′

x
x′−x

0 0 0

0 y′

y−y′
0 0

 .

The first direct summand gives the Hesse matrix of the right-hand side. The determinant
of the second direct summand is the error term, and it cancels with Ω1

(
LHS

)
Ω2

(
LHS

)
.

Hence, ω2(D) is invariant under the RII move.

We show the invariance under the RIII moves, as follows. (The following proof works
when both sides of hyperbolicity equations appearing in the knot diagrams in the proof
are always non-zero.)

α β γ

x y z

u
v

w

x′ y′ z′

←→

α β γ

x y z

u′

v′
w′

x′ y′ z′

When we give values of α, β, γ, x, y, z, the values of the other parameters are determined
by

u =
xy

αx+ y − αy
, v =

x− y + βy

β
,

w =
xz

αx+ y − αy − βy + αβy + βz − αβz
,

u′ =
yz

βy + z − βz
, w′ =

y − z + γz

γ
,
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v′ =
βxy + xz − βxz − γxz + βγxz − yz + γyz

βγy
,

x′ =
xyz

αβxy + αxz − αβxz + yz − αyz
,

y′ =
x (y − z + γz)

γ (αx+ y − αy)
, z′ =

x− y + βy − βz + βγz

βγ
,

noting that the values of x′, y′, z′ do not change as functions of α, β, γ, x, y, z under the
RIII move. By definition,

Ω1

(
LHS

)
=
(
1− x

u

)(
1− v

y

)(
1− v

w

)(
1− z′

z

)(
1− u

x′
)(
1− y′

w

)
,

Ω1

(
RHS

)
=
(
1− y

u′
)(
1− w′

z

)(
1− x

x′
)(
1− v′

u′
)(
1− v′

y′
)(
1− z′

w′

)
.

Further, we can verify by definition that

Ω2

(
LHS

)
Ω2

(
RHS

) =
y2w2 v′2

v2 y′2u′2
,

independently of a choice of orientations of the strands. The Hesse matrix of the left-hand
side is given by the following form, · · ·+ A1 B1 C1 + · · ·

BT
1 D1 E1

· · ·+ CT
1 ET

1 F1 + · · ·

 ,

where

A1 =

 x
y−x
− x

u−x
− x

y−x
0

− x
y−x

x
y−x
− v

y−v
0

0 0 v
z−v
− z′

z−z′

 ,

B1 =

 x
u−x

0 0
0 v

y−v
0

0 − v
z−v

0

 , C1 =

0 0 0
0 0 0

0 0 z′

z−z′

 ,

D1 =

 v
u−v
− x

u−x
+ u

w−u
− u

x′−u
− v

u−v
− u

w−u

− v
u−v

v
u−v
− v

y−v
+ v

z−v
− v

w−v
v

w−v

− u
w−u

v
w−v

z′

w−z′
− v

w−v
+ u

w−u
− y′

w−y′

 ,

E1 =

 u
x′−u

0 0
0 0 0

0 y′

w−y′
− z′

w−z′

 , F1 =


y′

x′−y′
− u

x′−u
− y′

x′−y′
0

− y′

x′−y′
y′

x′−y′
− y′

w−y′
0

0 0 z′

w−z′
− z′

z−z′

 .

Further, the Hesse matrix of the right-hand side is given by the following form, · · ·+ A2 B2 C2 + · · ·
BT

2 D2 E2

· · ·+ CT
2 ET

2 F2 + · · ·

 ,
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where

A2 =

 x
u′−x
− x

x′−x
0 0

0 y
z−y
− y

u′−y
− y

z−y

0 − y
z−y

y
z−y
− w′

z−w′

 ,

B2 =

− x
u′−x

0 0
y

u′−y
0 0

0 0 w′

z−w′

 , C2 =

 x
x′−x

0 0
0 0 0
0 0 0

 ,

D2 =


w′

u′−w′− y
u′−y

+ x
u′−x
− v′

u′−v′
v′

u′−v′
− w′

u′−w′
v′

u′−v′
v′

x′−v′
− v′

u′−v′
+ v′

w′−v′
− v′

y′−v′
− v′

w′−v′

− w′

u′−w′ − v′

w′−v′
w′

u′−w′− w′

z−w′ +
v′

w′−v′
− z′

w′−z′

 ,

E2 =

 0 0 0

− v′

x′−v′
v′

y′−v′
0

0 0 z′

w′−z′

 , F2 =


v′

x′−v′
− x

x′−x
0 0

0 z′

y′−z′
− v′

y′−v′
− z′

y′−z′

0 − z′

y′−z′
z′

y′−z′
− z′

w′−z′

 .

These two Hesse matrices can be transformed into the following form (i = 1, 2) by ele-
mentary transformations, · · ·+ Ai −BiD

−1
i BT

i 0 Ci −BiD
−1
i Ei + · · ·

0 Di 0

· · ·+ CT
i − ET

i D
−1
i BT

i 0 Fi − ET
i D

−i
i Ei + · · ·

 .

Here, the parts of “· · · ” are the contributions from the outside of the RIII move, and they
are invariant under the RIII move. Further, we can verify by direct calculation that

A1 −B1D
−1
1 BT

1 = A2 −B2D
−1
2 BT

2 ,

C1 −B1D
−1
1 E1 = C2 −B2D

−1
2 E2,

F1 − ET
1 D

−1
1 E1 = F2 − ET

2 D
−1
2 E2.

(We can verify the first two formulas by direct calculations. Then, the third formula can be
obtained from the first formula by the symmetry of π rotation of the RIII move.) Hence,
the change of the determinants of the Hesse matrices is equal to the ratio of det(D1) and
det(D2). Since we can verify by direct calculation that

det(D1) Ω1

(
LHS

)
Ω2

(
LHS

)
= det(D2) Ω1

(
RHS

)
Ω2

(
RHS

)
,

it is shown that ω2 is invariant under the RIII move.

Remark 4.4. Definition 4.2 gives an appropriate definition of ω2(D) which (formally,
in general) presents (±1) times the square of ω(K) of the asymptotic expansion (2) of
the Kashaev invariant, when a critical point of V is isolated and its Hesse matrix is non-
degenerate. It mainly tends to hold, say, for alternating knot diagrams. However, when
D is redundant as a knot diagram (say, when D has a loop of the RI move), Definition
4.2 does not work well in the above sense. It might be difficult to show that ω2(D) gives
a knot invariant by showing its invariance under the Reidemeister moves.
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4.2 Relation to the Kashaev invariant

In this section, we explain that ω2(D) is (formally, in general) equal (up to sign) to the
square of ω(K) of the asymptotic expansion (2) of the Kashaev invariant, which we show
in (30) and (31) at the end of this section.

We consider an oriented open knot diagram whose ends are downward oriented. We
slice such a knot diagram by horizontal lines in such a way that each region has a crossing
or a critical point. We consider a section of a knot diagram by such a horizontal line, and
associate the ith strand on the horizontal line with the following color,

ki−1 −
n− i
2

+
(

the number of upward-oriented strands
in the right of the ith strand

)
where n is the number of strands on the horizontal line. Here, we put k0 = kn−1 = 0. For
example, strands are colored by

0 k1+
1
2 k2 k3− 1

2 k4 k5− 1
2 0

and

−1 k1− 1
2 k2−1 k3− 3

2 k4−1 k5− 1
2 0

depending on the orientations of the strands. We regard ki as an integer parameter for
even i, and regard ki as a half-integer parameter for odd i.

Around a maximal point, strands are colored by

ki+c+ 1
2 ki+1+c

or
ki+c− 1

2 ki+1+c

and, in any case, ki − 1
2
= ki+1. Further, around a minimal point, strands are colored by

ki+c− 1
2 ki+1+c or ki+c+ 1

2 ki+1+c

and, in any case, ki +
1
2
= ki+1. These error terms of 1

2
correspond to the values of

Ω1( · )−1/2 of critical points defined in Section 4.1 putting qkj = xj.
Around a positive crossing, strands are colored by

ki+c− 1
2

k′i+c− 1
2

ki+1+c

k′i+1+c

ki+c− 1
2

k′i+c+ 1
2

ki+1+c

k′i+1+c

ki+c+ 1
2

k′i+c− 1
2

ki+1+c

k′i+1+c

ki+c+ 1
2

k′i+c+ 1
2

ki+1+c

k′i+1+c

and the corresponding R matrices are given by

ki+c− 1
2

k′i+c− 1
2

ki+1+c

k′i+1+c

R
ki+c−1

2
ki+1+c

k′i+c−
1
2

k′i+1+c
∼ N qki−k′i

(q)ki−ki+1− 1
2
(q)ki+1−k′i+1

(q)k′i+1−k′i−
1
2
(q)k′i−ki

,
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ki+c− 1
2

k′i+c+ 1
2

ki+1+c

k′i+1+c

R
ki+1+c k′i+1+c

ki+c−1
2

k′i+c+
1
2

∼ N qk
′
i+1−k′i

(q)ki+1−k′i+1
(q)k′i+1−k′i−

1
2
(q)k′i−ki(q)ki−ki+1− 1

2

,

ki+c+ 1
2

k′
i+c+ 1

2

k′i+c− 1
2

ki+1+c

ki+1+c+1

k′i+1+c

R
k′i+c+

1
2

ki+c+
1
2

k′i+1+c ki+1+c+1
∼ N qki−ki+1

(q)k′i−ki(q)ki−ki+1− 1
2
(q)ki+1−k′i+1

(q)k′i+1−k′i−
1
2

,

ki+c+ 1
2

k′i+c+ 1
2

ki+1+c

k′i+1+c

R
k′i+1+c k′i+c+

1
2

ki+1+c ki+c+
1
2

∼ N qk
′
i+1−ki+1

(q)k′i+1−k′i−
1
2
(q)k′i−ki(q)ki−ki+1− 1

2
(q)ki+1−k′i+1

.

The contributions of the “q··· ” part of the numerators of the right-hand sides to the
Kashaev invariant are presented by Ω2( · )−1/2 defined in Section 4.1, putting qkj = xj and

qk
′
j = x′j. The contributions of the denominators of the right-hand sides to the Kashaev

invariant are equal, and their contributions to the Kashaev invariant are presented by

exp
(
· · · +φ(ti−ti+1) −φ

(
1−ti+1+t

′
i+1−

1

2N

)
+φ(t′i+1−t′i) −φ

(
1−t′i+ti−

1

2N

)
+ · · ·

)
,

putting tj =
kj
N

and t′j =
k′j
N
. Further, since

φ
(
1− ti+1 + t′i+1 −

1

2N

)
= φ

(
1− ti+1 + t′i+1

)
− 1

2N
φ′(1− ti+1 + t′i+1

)
+O

( 1

N2

)
= φ

(
1− ti+1 + t′i+1

)
+

1

2
log
(
1−

x′i+1

xi+1

)
+O

( 1

N2

)
,

φ
(
1− t′i + ti −

1

2N

)
= φ

(
1− t′i + ti

)
+

1

2
log
(
1− xi

x′i

)
+O

( 1

N2

)
,

the contributions from the “φ(· · ·− 1
2N

)” parts to the Kashaev invariant are the multiples

of
(
1− xi

x′
i

)−1/2
and

(
1− x′

i+1

xi+1

)−1/2
, putting xj = e2π

√
−1 tj and x′j = e2π

√
−1 t′j , and they are

presented by Ω1( · )−1/2 of a crossing defined in Section 4.1. By using the remaining part,
we put V̌ to be the sum of the following form,

V̌ =
1

N

(
· · · + φ(ti − ti+1) − φ

(
1− ti+1 + t′i+1

)
+ φ(t′i+1 − t′i) − φ

(
1− t′i + ti

)
+ · · ·

)
=

1

2π
√
−1

(
· · · + Li2

( xi
xi+1

)
− Li2

(x′i+1

xi+1

)
+ Li2

(x′i+1

x′i

)
− Li2

(xi
x′i

)
+ · · ·

)
+O

( 1

N2

)
,

where we obtain the second equality by (6). By using this V̌ , we can calculate the
asymptotic expansion of the Kashaev invariant, as we explain below.
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We explain how we calculate the asymptotic expansion of the Kashaev invariant by
using the following example, which is the mirror image 61 of the 61 knot.

0 −1

−1 k0− 1
2 0

k1− 1
2

k2+
1
2 0

0
k3− 1

2 0

k4+
1
2 0

−1 0

By definition, the Kashaev invariant of the 61 knot is presented by the following form,
ignoring the qconstant terms,

⟨ 61 ⟩N ∼
∑

k0,··· ,k4

R
0 0

k0−1
2

0 R
k0−1

2
k1−1

2
−1 0 R 0 0

k1−1
2

k2+
1
2
R

k3+
1
2

k2+
1
2

0 1 R 0 0
k3−1

2
k4+

1
2
R

0 k4+
1
2

0 1

∼
∑

k0,··· ,k4

N

(q)N−k0− 1
2
(q)k0− 1

2

× N qk1

(q)k0−k1(q)k1− 1
2
(q)N−k0− 1

2

× N q−k1

(q)N−k2− 1
2
(q)k2−k1(q)k1− 1

2

× N qk3

(q)k3−k2(q)k2− 1
2
(q)N−k3− 1

2

× N q−k3

(q)N−k4− 1
2
(q)k4−k3(q)k3− 1

2

× N

(q)N−k4− 1
2
(q)k4− 1

2

=
∑

k1,k2,k3

N4 · qk1 · q−k1 · qk3 · q−k3

(q)k1− 1
2
(q)k1− 1

2
(q)k2−k1(q)N−k2− 1

2
(q)k2− 1

2
(q)k3−k2(q)N−k3− 1

2
(q)k3− 1

2

,

where we obtain the last equality by (3) and (4). Hence, by (5),

⟨ 61 ⟩N ∼ N4
∑

k1,k2,k3

qk1 · q−k1 · qk3 · q−k3 · exp
(
N · V̂

(k1
N
,
k2
N
,
k3
N

))
,

where we put

V̂ (t1, t2, t3) =
1

N

(
φ(t1)− φ(1− t1) + φ

(
t2 − t1 +

1

2N

)
− φ(t2)− φ(1− t2)

+ φ
(
t3 − t2 +

1

2N

)
− φ(t3)− φ(1− t3)− 3φ

( 1

2N

)
+ 5φ

(
1− 1

2N

))
.

Further, the “φ
(
· · ·+ 1

2N

)
” parts are calculated as

φ
(
t2 − t1 +

1

2N

)
= φ(t2 − t1) +

φ′(t2 − t1)
2N

+O
( 1

N2

)
= φ(t2 − t1) −

1

2
log
(
1− x2

x1

)
+O

( 1

N2

)
,

φ
(
t3 − t2 +

1

2N

)
= φ(t3 − t2) −

1

2
log
(
1− x3

x2

)
+O

( 1

N2

)
.
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Hence,

⟨ 61 ⟩N ∼ eπ
√
−1/2

∑
k1,k2,k3

x1 · x−1
1 · x3 · x−1

3

((
1− x2

x1

)(
1− x3

x2

))−1/2

exp
(
N · V̌

(k1
N
,
k2
N
,
k3
N

))
,

where we put

V̌ (t1, t2, t3) =
1

N

(
φ(t1)− φ(1− t1) + φ

(
t2 − t1

)
− φ(t2)

− φ(1− t2) + φ
(
t3 − t2

)
− φ(t3)− φ(1− t3)

)
+ 2 · 1

2π
√
−1
· π

2

6

=
1

2π
√
−1

V (x1, x2, x3) +O
( 1

N2

)
,

putting xi = e2π
√
−1 ti . As shown in [16, 18, 17], for hyperbolic knots with up to 7 crossings,

we can calculate the asymptotic expansion of the sum of the above form as

⟨ 61 ⟩N ∼ eπ
√
−1/2N3

∫
Ω1(D)−1/2Ω2(D)−1/2 exp

(
N · V̌ (t1, t2, t3)

)
dt1 dt2 dt3

∼ eπ
√
−1/2N3 Ω1(D)−1/2Ω2(D)−1/2eN ς(61)

(2π)3/2

N3/2

(
det(−Ȟ)

)−1/2
,

where D is a diagram of the 61 knot mentioned above, and the first approximation is an
approximation of a sum by an integral which is shown by the Poisson summation formula,
and the second approximation is obtained by the saddle point method at an appropriate
critical point (t1;c, t2;c, t3;c) of V̌ , putting Ȟ to be the Hesse matrix at this critical point,

Ȟ =
( ∂2

∂ti ∂tj
V̌
)
i,j
.

In fact, in a formal sense, such approximations are standard method (and we can guess
the form of the resulting formula by formal calculation), but, to be precise, we must check
some technical inequalities to prove such approximations; see [16, 18, 17] for details. For
the 61 knot, we can rigorously obtain that

⟨ 61 ⟩N ∼ eN ς(61) ·N3/2 · ω(61),

where

ς(61) = V̌ (t1;c, t2;c, t3;c),

ω(61) = eπ
√
−1/2Ω1(D)−1/2Ω2(D)−1/2(2π)3/2

(
det(−Ȟ)

)−1/2
.

We note that ς(61) presents the complex hyperbolic volume of the complement of the 61
knot. By the above formula, we have that

1

ω(61)2
= −Ω1(D) Ω2(D)

1

(2π)3
det(−Ȟ)
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.
=
√
−1 Ω1(D) Ω2(D) detH,

where we obtain the second equality, since xi
∂
∂xi

= 1
2π

√
−1

∂
∂ti

and hence

Ȟ ∼ 2π
√
−1 H.

Therefore, from the definition of ω2,

ω(61)
2 = ω2(D).

Generalizing the above argument, we explain how we calculate the asymptotic expan-
sion of the Kashaev invariant (formally, in general), as follows. We consider an oriented
open knot K, and consider a parameterized diagram D of K.

1

x1

x2 1

1
x3 1

We let n1 be the number of counter-clockwise angles, let n2 be clockwise angles, let n
be the number of hyperbolicity parameters, let nc be the number of crossings (ignoring
dotted lines), and let n0 be the number of edges parameterized by 1 (ignoring dotted
lines). Since n0 is equal to the number of angles marked by dots in the above picture, we
have that

n1 + n2 + n0 = 4nc − 4, 2(n0 + n) = 4nc − 2. (29)

Similarly as the case of the 61 knot, we can obtain that

⟨K ⟩
N
∼ e(n2−n1)π

√
−1/4Nnc+n−(n1+n2)/2

×
∫

Ω1(D)−1/2Ω2(D)−1/2 exp
(
N · V̌ (t1, · · · , tn)

)
dt1 · · · dtn ,

where

V̌ (t1, · · · , tn) =
1

2π
√
−1

V (x1, · · · , xn) +O
( 1

N2

)
,

putting xi = e2π
√
−1 ti . We note that nc + n− n1+n2

2
= n+3

2
by (29). Hence, we obtain the

following approximations (formally, in general),

⟨K ⟩
N
∼ e(n2−n1)π

√
−1/4N (n+3)/2

∫
Ω1(D)−1/2Ω2(D)−1/2 exp

(
N · V̌ (t1, · · · , tn)

)
dt1 · · · dtn
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∼ e(n2−n1)π
√
−1/4N (n+3)/2Ω1(D)−1/2Ω2(D)−1/2eN ς(K) (2π)

n/2

Nn/2

(
det(−Ȟ)

)−1/2

∼ e(n2−n1)π
√
−1/4N3/2Ω1(D)−1/2Ω2(D)−1/2eN ς(K) (2π)n/2

(
det(−Ȟ)

)−1/2
.

Therefore,

⟨K ⟩
N
∼ eN ς(K) ·N3/2 · ω(K), (30)

where

ς(K) = V̌ (t1;c, · · · , tn;c),

ω(K) = e(n2−n1)π
√
−1/4 Ω1(D)−1/2Ω2(D)−1/2(2π)n/2

(
det(−Ȟ)

)−1/2
.

Further,

1

ω(K)2
= e(n1−n2)π

√
−1/2 Ω1(D) Ω2(D)

1

(2π)n
det(−Ȟ)

= e(n1−n2−n)π
√
−1/2Ω1(D) Ω2(D) detH

.
=
√
−1 Ω1(D) Ω2(D) detH,

since n1 − n2 − n is odd by (29). Hence, from the definition of ω2, we obtain that

ω(K)2
.
= ω2(D), (31)

as required.

Example 4.5. We numerically verify (31) for the 52 knot, which is the knot shown in
Section 3.2. As shown in Example 3.1, we obtain the values of hyperbolicity parameters
and the complex volume. Further, from the definition of ω2, we have that

H =

(1+x1

1−x1
+ x2

x1−x2
− x2

x1−x2

− x2

x1−x2

x2

x1−x2
+ 1

)
, Ω1(D) = 1− x2

x1
,

ω2(D) =
1√

−1 Ω1(D) detH
= −0.4143341829...+ √−1 · 0.117243382... ,

where D is the 52 knot diagram shown in Section 3.2. Hence,

ω(52) = ω2(D)1/2 = 0.09019057740...+
√
−1 · 0.6499757866... ,

where we choose the sign of the square root depending the orientation of the domain of
the integral of the saddle point method; for details, see [16]. Further, from the definition
of the Kashaev invariant, we have that

⟨ 52 ⟩N =
∑

0≤i≤j<N

N3 q−1

(q)i (q)i (q)j−i (q)j (q)N−j−1

,
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see [16]. By calculating this sum concretely as shown in the following table, we can

numerically observe that the limit of ⟨ 52 ⟩N e−N ς(52)N−3/2 tends to the above mentioned
value of ω(52), noting that q → 1 as N →∞.

N q ⟨ 52 ⟩N e−N ς(52)N−3/2

50 0.09574104848...+
√
−1 · 0.6581517399...

100 0.09297541546...+
√
−1 · 0.6540225631...

200 0.09158517383...+
√
−1 · 0.6519891312...

Example 4.6. We numerically verify (31) for the 61 knot, which is the knot shown in
Section 2.2. As shown in Example 3.2, we obtain the values of hyperbolicity parameters
and the complex volume. Further, by using the Hesse matrix shown in Section 4.1, we
have that

ω2(D) =
1√

−1 Ω1 detH
= −0.2667003051...+ √−1 · 0.07480075491... ,

where D is the 61 knot diagram shown in Section 2.2. Hence,

ω(61) =
(
− ω2(D)

)1/2
= −0.5213883634...+ √−1 · 0.07173228265... ,

where we choose the sign of ω2(D) depending the sign of (31), and choose the sign of the
square root depending the orientation of the domain of the integral of the saddle point
method; for details, see [18]. Further, from the definition of the Kashaev invariant, we
have that

⟨ 61 ⟩N =
∑

0≤i≤j≤k<N

N4 q−1

(q)i (q)i (q)j−i (q)j (q)N−j−1 (q)k−j (q)k (q)N−k−1

,

as shown before in this section. By calculating this sum concretely as shown in the
following table, we can numerically observe that the limit of ⟨ 61 ⟩N e−N ς(61)N−3/2 tends
to the above mentioned value of ω(61).

N ⟨ 61 ⟩N e−N ς(61)N−3/2

50 −0.5121772692...+ √−1 · 0.1473909514...
100 −0.5181425383...+ √−1 · 0.1096254180...
200 −0.5201050838...+ √−1 · 0.09068263776...

4.3 Calculation of ω2 for open two-bridge knot diagrams

In this section, we calculate ω2 for open two-bridge knot diagrams. To calculate it, we
introduce an operator invariant Ψ, and present ω2 in terms of Ψ.

As we explain in Section 3.3, any open two-bridge knot diagram (or its mirror image)
can be obtained by gluing copies of the following elementary tangle diagrams.

1

1

∞

x1 1

1

1

xi

xi+1

1

1

1

1

xi

xi+1

1

1

1 xm−1

0

1

1

1 xm−1

0

1

1

45



Let D be an open two-bridge knot diagram obtained by gluing copies of the above ele-
mentary diagrams.

From the definition of Ω1, Ω1(D) is equal to the product of Ω1 of such elementary
diagrams, whose values are given as follows,

Ω1

(
1

1

∞

x1 1

)
= 1,

Ω1

(
1

1

xi

xi+1

1

1

)
= 1− xi+1

xi
, Ω1

(
1

1

xi

xi+1

1

1

)
= 1− xi+1

xi
,

Ω1

(
1 xm−1

0

1

1

)
= 1, Ω1

(
1 xm−1

0

1

1

)
= 1.

Further, from the definition of Ω2, Ω2(D) is equal to the product of Ω2 of elementary
diagrams, whose values are given as follows,

Ω2

(
1

1

∞

x1 1

)
= 1, Ω2

(
1

1

∞

x1 1

)
=

1

x21
,

Ω2

(
1

1

xi

xi+1

1

1

)
=

1

x2i+1

, Ω2

(
1

1

xi

xi+1

1

1

)
=

1

x2i+1

,

Ω2

(
1

1

xi

xi+1

1

1

)
= x2i , Ω2

(
1

1

xi

xi+1

1

1

)
= x2i ,

Ω2

(
1

1

xi

xi+1

1

1

)
= 1, Ω2

(
1

1

xi

xi+1

1

1

)
= 1,

Ω2

(
1 xm−1

0

1

1

)
= 1, Ω2

(
1 xm−1

0

1

1

)
= x2m−1 ,

Ω2

(
1 xm−1

0

1

1

)
= 1, Ω2

(
1 xm−1

0

1

1

)
= x2m−1 .

For an elementary tangle diagram T , we define Ω̂2(T ) from Ω2(T ) by multiplying

1

x2j
when the top of T is parameterized by 1 xj 1
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and multiplying

x2j+1 when the bottom of T is parameterized by 1 xj+1 1 .

Then, we can verify that Ω̂2(T ) = 1 for each elementary diagram T . Hence, Ω2(D) = 1.
We calculate the contribution of each elementary diagram to the Hesse matrix. The

contribution of the diagram
1

1

xi

xi+1

1

1

to the potential function is given by

· · · + Li2
( 1
xi

)
− Li2

(xi+1

xi

)
+ Li2(xi+1) + · · · .

Hence, its contribution to the Hesse matrix is given by
. . . . . .
. . . · · ·+ 1

xi−1
− xi+1

xi−xi+1

xi+1

xi−xi+1

xi+1

xi−xi+1
− xi+1

xi−xi+1
+ xi+1

1−xi+1
+ · · · . . .

. . . . . .

 .

We calculate the determinant of a matrix of the above form recursively, as follows. For
an indeterminant y, we put

det

(
. . . . . .
. . . · · ·+ y

)
= Ai y +Bi ,

det


. . . . . .
. . . · · ·+ 1

xi−1
− xi+1

xi−xi+1

xi+1

xi−xi+1
xi+1

xi−xi+1
− xi+1

xi−xi+1
+ xi+1

1−xi+1
+ y

 = Ai+1 y +Bi+1 .

Then, we have that

(
Ai+1 Bi+1

)
=
(
Ai Bi

)( 1
xi−1
− xi+1

xi−xi+1

(
1

xi−1
− xi+1

xi−xi+1

)(
− xi+1

xi−xi+1
+ xi+1

1−xi+1

)
−
( xi+1

xi−xi+1

)2
1 − xi+1

xi−xi+1
+ xi+1

1−xi+1

)
.

Including the contribution of Ω1, we put

Ψ

(
1

1

xi

xi+1

1

1

)

=
(
1− xi+1

xi

)( 1
xi−1
− xi+1

xi−xi+1

(
1

xi−1
− xi+1

xi−xi+1

)(
− xi+1

xi−xi+1
+ xi+1

1−xi+1

)
−
( xi+1

xi−xi+1

)2
1 − xi+1

xi−xi+1
+ xi+1

1−xi+1

)
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=
xi+1

xi

(
−xi(xi+1−1)

(xi−1)xi+1
1

xi−xi+1

xi+1
− xi−1

xi+1−1

)
.

Similarly, the contribution from the diagram

1

1

xi

xi+1

1

1

to the Hesse matrix is given by
. . . . . .
. . . · · · − 1

xi−1
+ xi+1

xi−xi+1
− xi+1

xi−xi+1

− xi+1

xi−xi+1

xi+1

xi−xi+1
− xi+1

1−xi+1
+ · · · . . .

. . . . . .

 .

Hence, similarly as above, we put

Ψ

(
1

1

xi

xi+1

1

1

)

=
(
1− xi+1

xi

)(− 1
xi−1

+ xi+1

xi−xi+1

(
1

xi−1
− xi+1

xi−xi+1

)(
− xi+1

xi−xi+1
+ xi+1

1−xi+1

)
−
( xi+1

xi−xi+1

)2
1 xi+1

xi−xi+1
− xi+1

1−xi+1

)

=
xi+1

xi

(
xi(xi+1−1)
(xi−1)xi+1

1
xi−xi+1

xi+1

xi−1
xi+1−1

)
.

Further, the contribution from the diagram

1

1

∞

x1 1
to the Hesse matrix is given by (

x1

1−x1
+ · · · . . .
. . . . . .

)
.

Hence, we put

Ψ

(
1

1

∞

x1 1

)
=
(
1 x1

1−x1

)
.

Furthermore, by similar arguments as above, we put

Ψ

(
1 xm−1

0

1

1

)
=

(
1

1−xm−1

1

)
, Ψ

(
1 xm−1

0

1

1

)
=

(
1

xm−1−1

1

)
.
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For an open two-bridge knot diagramD obtained by gluing copies of elementary diagrams,
we define Ψ(D) to be the product of Ψ of such elementary diagrams.

By the above construction of Ψ, we have that

Ψ(D) = Ω1(D) Ω2(D) detH.

Hence, from the definition of ω2, we have that

1√
−1 ω2(D)

= Ψ(D). (32)

5 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We introduce Φ̌, Ψ̌ and ϕm, ψm modifying Φ̂, Ψ,
and reduce the proof the the theorem to Proposition 5.1.

For an open two-bridge knot diagram D, we define Φ̌(D) to be Φ̂ of the diagram
obtained from D by π rotation and by exchanging the positive and negative crossings,

Φ̌

( 1 ∞
1

1 x1

x2

x3 11

)
= Φ̂

( 1 1y3

y2

1
y1 1

0 1

)
.

In other words, Φ̌ is defined by the following formulas,

Φ̌

(
1

1

∞

x1 1

)
=

1

(x1−1)3
(
1 −1 2

)
,

Φ̌

(
1

1

∞

x1 1

)
=

1

(x1−1)3
(
2 −1 1

)
,

Φ̌

(
1

1

xi

xi+1

1

1

)
=

1

xi

1 −1 1
0 − 1

xi

2
xi

0 0 1

 ,

Φ̌

(
1

1

xi

xi+1

1

1

)
=

1

xi

 1 0 0
2
xi
− 1

xi
0

1 −1 1

 ,

Φ̌

(
1 xm−1

0

1

1

)
=

xm−1−1
x2m−1

 1
2

xm−1

0

 .
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Further, similarly as the calculation in Section 3, we can show that

Φ̌

(
1 xm−1

0

1

1

)
=

1−xm−1

x2m−1

 0
2

xm−1

1

 .

Without assuming that xm = 0, we can put

Φ̌

(
1 xm 1

)
= Φ̌

(
1 xm 1

)
=

xm−1−1
xm−1

 1
0
−1

 ,

consistently with the above definition.
We define Ψ̌ by the following formulas,

Ψ̌

(
1

1

∞

x1 1

)
=
(
1 x1

1−x1

)
, Ψ̌

(
1

1

∞

x1 1

)
=
(
1 x1

x1−1

)
,

Ψ̌

(
1

1

xi

xi+1

1

1

)
=

xi+1

xi

(
−xi(xi+1−1)

(xi−1)xi+1
1

xi−xi+1

xi+1
− xi−1

xi+1−1

)
,

Ψ̌

(
1

1

xi

xi+1

1

1

)
= − xi+1

xi

(
xi(xi+1−1)
(xi−1)xi+1

1
xi−xi+1

xi+1

xi−1
xi+1−1

)
,

Ψ̌

(
1 xm−1

0

1

1

)
=

(
1−xm

1−xm−1

1

)
, Ψ̌

(
1 xm−1

0

1

1

)
=

(
xm−1

1−xm−1

1

)
,

without assuming that xm = 0. When xm = 0, this definition is equal to the definition of
Ψ except for the sign of Ψ̌(σ−1

2 ). Hence, Ψ(D)
.
= Ψ̌(D) when xm = 0.

Without assuming that xm = 0, we can put

Ψ̌

(
1 xm 1

)
= Ψ̌

(
1 xm 1

)
= − xm−1(xm−1)

xm(xm−1−1)

(
0
1

)
,

consistently with the above definition.
We recall that our diagram of an open two-bridge knot is a plat closure of a product

of copies of σ1 and σ−1
2 . By the hyperbolicity equations, the values of xi are recursively

determined by

xi+1 =


xi + 1− xi

xi−1

if the strand of xi is between σ1 and σ1
or between σ−1

2 and σ−1
2 ,

xi +
(xi − 1)2

1− xi

xi−1

otherwise.

Putting x1 = x (and x0 = ∞), we can regard xi as a rational function of x; we put it to
be fi(x). The hyperbolicity equation of the knot is given by fm(x) = 0.
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Without assuming that xm = 0, we put

ϕm(x) = (xm−1)2 Φ̌(D), ψm(x) =
1− xm

xm−1

1− xm
Ψ̌(D),

as rational functions of x.

Proof of Theorem 1.1. The required formula of the theorem is rewritten as

2

τ(K)
=

1√
−1 ω2(D)

for a diagram D of an open two-bridge knot K. By (28), the left-hand side is equal

to Φ̂(D). By (32), the right-hand side is equal to Ψ(D). They are equal to Φ̌(D) and
Ψ̌(D) respectively, as we explained above. Further, they are equal to ϕm(c) and ψm(c)
respectively, for a root x=c of fm(x) = 0. Since they are equal by Proposition 5.1 below,
we obtain the required formula of the theorem.

As mentioned above, the proof of the theorem is reduced to the following proposition.

Proposition 5.1.
ϕm(x) = ψm(x).

Proof. We recall that our diagram of an open two-bridge knot is a plat closure of a
product of copies of σ1 and σ−1

2 . We put the end of this product to be · · · b3b2b1b0, where
b3, b2, b1, b0 = σ1 or σ−1

2 . We note that the knot type does not depend on the choice of
b0. Further, by the symmetry of Lemma 5.2 below, we can assume that b1 = σ−1

2 . In the
following of this proof, we prove the proposition by induction on m, in the four cases of
the choices of b3 and b2. The initial cases of the induction (the cases where m ≤ 3) hold
by Example 5.3 below. In the following proof, we show the required formula of the case
of m, assuming the case of m′ for m′ < m.

We note that fk(x) is not equal to 1. (Because, the equation fk(x) = 0 is the hyper-
bolicity equation of some two-bridge knot, which is a hyperbolic knot or the (2, n) torus
knot. In any case, fk(x) is a non-trivial rational function of x. In particular, it is not
equal to 1.)

We further note that fk(x) and fk+1(x) are not equal. (Because, if fk(x) and fk+1(x)
were equal, we can show by the recursive formula of xi that fj(x) = 1 for some j, which
contradicts the above claim.)

For simplicity, we denote ϕi(x), ψi(x), fi(x) by ϕi, ψi, fi. By definition, fi = xi,
without assuming that xm = 0. We put

Pi =
fi+1

fi

(
−fi(fi+1−1)

(fi−1)fi+1
1

fi−fi+1

fi+1
− fi−1

fi+1−1

)
, Qi = −fi+1

fi

(
fi(fi+1−1)
(fi−1)fi+1

1
fi−fi+1

fi+1

fi−1
fi+1−1

)
,

vm =
fm−1 − fm
fm(fm−1−1)

(
0
1

)
,
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P ′
i =

1

fi

1 −1 1
0 − 1

fi

2
fi

0 0 1

 , Q′
i =

1

fi

 1 0 0
2
fi
− 1

fi
0

1 −1 1

 ,

v′m =
(fm−1−1) (fm−1)2

fm−1

 1
0
−1

 .

By definition, fi satisfies the same recursive formula as xi,

fi+1 =


fi + 1− fi

fi−1

if the strand of xi is between σ1 and σ1
or between σ−1

2 and σ−1
2 ,

fi +
(fi − 1)2

1− fi
fi−1

otherwise.

For simplicity, in the following of this proof, we write formulas of the case of m = 10.
(We can easily obtain the formulas of general m from them by replacing 10, 9, 8, 7 with
m, m−1, m−2, m−3.)

Case 1: the case where b3 = b2 = σ−1
2 .

In this case, we have that

f10 = f9 + 1− f9
f8
, f9 = f8 + 1− f8

f7
. (33)

In the definition of Ψ̌, the differences among ψ8, ψ9, ψ10 are presented by

v8, Q8 v9, Q8Q9 v10.

These vectors are linearly dependent. By calculating their coefficient concretely, we have
that

(f7 − 1) f9
(f7 − f8)(f9 − 1)

· v8 −
f8 + f9 − f8f9 − f8f10
(f8 − f9)(f10 − 1)

·Q8v9 +
f9

f9 − f10
·Q8Q9v10 = 0.

This is rewritten as the following linear relation among ψ8, ψ9, ψ10,

(f7 − 1) f9
(f7 − f8)(f9 − 1)

· ψ8 −
f8 + f9 − f8f9 − f8f10
(f8 − f9)(f10 − 1)

· ψ9 +
f9

f9 − f10
· ψ10 = 0.

By (33), this is rewritten as

f9
f8
ψ8 − 2 f8 ψ9 + f8 f9 ψ10 = 0. (34)

Similarly as above, we can show the following linear relation among ψ7, ψ8, ψ9,

− (f6 − 1)(f7 − f8) f8
(f6 − f7)(f8 − 1)

ψ7 − 2 f7 ψ8 + f7 f8 ψ9 = 0, (35)
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noting that, in this case, we can not use f8 = f7 + 1− f7
f6

at the present stage.

Similarly as the case of Φ̌, we can show the following linear relation among ϕ7, ϕ8, ϕ9,
ϕ10,

f6 (f9 − 1)

(f6 − 1)(f7 − 1)2 f7
ϕ7 +

f7 (f9 − 2)

(f7 − 1)(f8 − 1)
ϕ8

− f 2
8 (2f8 − 1)

(f8 − 1)(f9 − 1)
ϕ9 +

f8 f
3
9 (f8 − 1)

(f9 − 1)(f10 − 1)2
ϕ10 = 0.

By (33), this is rewritten as

f6 f8 (f8 − 1)

(f6 − 1) f 3
7

ϕ7 + (f9 − 2)ϕ8 − f8 (2f8 − 1)ϕ9 + f 2
8 f9 ϕ10 = 0. (36)

Since ψ7 = ϕ7, ψ8 = ϕ8, ψ9 = ϕ9 by the assumption of the induction, we can eliminate
ϕ7, ψ8, ϕ8, ψ9, ϕ9 by using (34), (35), (36). Then, we obtain( (f6 − 1)(f7 − f8) f8

(f6 − f7) f7 (f8 − 1)
+
f6 f8 (f8 − 1)

(f6 − 1) f 3
7

)
ψ7 = f 2

8 f9 (ψ10 − ϕ10).

To show the proposition, it is sufficient to show that ψ10 = ϕ10. Hence, it is sufficient to
show that

(f6 − 1)(f7 − f8) f8
(f6 − f7) f7 (f8 − 1)

+
f6 f8 (f8 − 1)

(f6 − 1) f 3
7

= 0.

This is rewritten as(
− f8 + f7 + 1− f7

f6

)(
− f8 + f7 +

(f7 − 1)2

1− f7
f6

)
= 0, (37)

which holds by the recursive formula of fi. Therefore, we obtain the proposition in this
case.

Case 2: the case where b3 = σ1 and b2 = σ−1
2 .

In this case, we have that

f10 = f9 + 1− f9
f8
, f9 = f8 +

(f8 − 1)2

1− f8
f7

. (38)

In the definition of Ψ̌, the differences among ψ8, ψ9, ψ10 are presented by

v8, Q8 v9, Q8Q9 v10.

These vectors are linearly dependent. By calculating their coefficient concretely, similarly
as in Case 1, we have that

(f7 − 1) f9
(f7 − f8)(f9 − 1)

ψ8 −
f8 + f9 − f8f9 − f8f10
(f8 − f9)(f10 − 1)

ψ9 +
f9

f9 − f10
ψ10 = 0.
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By (38), this is rewritten as

f7 (f8 − 1)

f8 (f7 − f8)
ψ8 −

2 f8
f9

ψ9 + f8 ψ10 = 0. (39)

Similarly, by calculating the coefficients of the linear dependence among

v7, P7 v8, P7Q8 v9,

we have that

− (f6 − 1) f8
(f6 − f7)(f8 − 1)

ψ7 +
f7 − f8 + f7f8 − f7f9
(f7 − f8)(f9 − 1)

ψ8 +
f8

f8 − f9
ψ9 = 0.

By (38), this is rewritten as

f6 − 1

f6 − f7
ψ7 +

f7f8 − 2f7 + f8
(f7 − f8) f8

ψ8 +
f7 − f8

f7 (f8 − 1)
ψ9 = 0. (40)

Further, in the definition of Φ̌, by calculating the coefficients of the linear dependence
among

v′7, P ′
7 v

′
8, P ′

7Q
′
8 v

′
9, P ′

7Q
′
8Q

′
9 v

′
10,

we have that

f6 (f9 − 1)

f7 (f6 − 1)(f7 − 1)2
ϕ7 −

f7 (1− 2f8 + f8f9)

(f7 − 1)(f8 − 1)2
ϕ8

+
f 2
8 (2f8 − 1)

(f8 − 1)(f9 − 1)
ϕ9 −

f8 f
3
9 (f8 − 1)

(f9 − 1)(f10 − 1)2
ϕ10 = 0.

By (38), this is rewritten as

f6 (f8 − 1)3

f7 (f6 − 1)(f7 − f8)2
ϕ7 −

f7 (1− 2f8 + f8f9)

f8 (f7 − f8)
ϕ8 + (2f8 − 1)ϕ9 − f8 f9 ϕ10 = 0. (41)

Since ψ7 = ϕ7, ψ8 = ϕ8, ψ9 = ϕ9 by the assumption of the induction, we obtain the
following relation from (39) and (41),

f6 (f8 − 1)3

f7 (f6 − 1)(f7 − f8)2
ψ7 −

f7 (1− 2f8 + f9)

f8 (f7 − f8)
ψ8 − ψ9 = f8 f9 (ϕ10 − ψ10).

To show the proposition, it is sufficient to show that ψ10 = ϕ10. Hence, it is sufficient to
show that

f6 (f8 − 1)3

f7 (f6 − 1)(f7 − f8)2
ψ7 −

f7 (1− 2f8 + f9)

f8 (f7 − f8)
ψ8 − ψ9 = 0.

By using (38), this is rewritten as

f6 (f8 − 1)3

f7 (f6 − 1)(f7 − f8)2
ψ7 −

f7 (f8 − 1)(f7f8 − 2f7 − f8)
f8 (f7 − f8)2

ψ8 − ψ9 = 0.
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Further, by using (40), we can eliminate ψ8 and ψ9. Then, we obtain( f6 (f8 − 1)3

f7 (f6 − 1)(f7 − f8)2
+

(f6 − 1) f7 (f8 − 1)

(f6 − f7)(f7 − f8)

)
ψ7 = 0.

Since the coefficient is ψ7 is rewritten as (37), this formula holds similarly as in Case 1.
Therefore, we obtain the proposition in this case.

Case 3: the case where b3 = b2 = σ1.

In this case, we have that

f10 = f9 +
(f9 − 1)2

1− f9
f8

, f9 = f8 + 1− f8
f7
. (42)

In the definition of Ψ̌, the differences among ψ8, ψ9, ψ10 are presented by

v8, P8 v9, P8Q9 v10.

These vectors are linearly dependent. By calculating their coefficient concretely, similarly
as in Case 1, we have that

− (f7 − 1) f9
(f7 − f8)(f9 − 1)

ψ8 −
f8 − f9 + f8f9 − f8f10
(f8 − f9)(f10 − 1)

ψ9 +
f9

f9 − f10
ψ10 = 0.

By (42), this is rewritten as

− f9
f8
ψ8 +

f8f9 − 2f8 + f9
f9 − 1

ψ9 +
f9 (f8 − f9)2

f8 (f9 − 1)2
ψ10 = 0. (43)

Similarly, by calculating the coefficients of the linear dependence among

v7, P7 v8, P7 P8 v9,

we have that

(f6 − 1) f8
(f6 − f7)(f8 − 1)

ψ7 +
−f7 − f8 + f7f8 + f7f9

(f7 − f8)(f9 − 1)
ψ8 +

f8
f8 − f9

ψ9 = 0.

By (42), this is rewritten as

(f6 − 1)(f7 − f8)
(f6 − f7) f7 (f8 − 1)

ψ7 +
2

f8
ψ8 − ψ9 = 0. (44)

Further, in the definition of Φ̌, by calculating the coefficients of the linear dependence
among

v′7, P ′
7 v

′
8, P ′

7 P
′
8 v

′
9, P ′

7 P
′
8Q

′
9 v

′
10,

we have that

− f6 (f9 − 1)

(f6 − 1) f7 (f7 − 1)2(f8 − 1)
ϕ7 −

f7 (f9 − 2)

(f7 − 1)(f8 − 1)2
ϕ8

+
f 2
8 (1− 2f8 + f8f9)

(f8 − 1)2(f9 − 1)2
ϕ9 +

f8 f
3
9

(f9 − 1)(f10 − 1)2
ϕ10 = 0.
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By (42), this is rewritten as

− f6 (f8 − 1)

f 3
7 (f6 − 1)

ϕ7 −
f9 − 2

f8
ϕ8 +

1− 2f8 + f8f9
f9 − 1

ϕ9 +
f9 (f8 − f9)2

f8 (f9 − 1)2
ϕ10 = 0. (45)

Since ψ7 = ϕ7, ψ8 = ϕ8, ψ9 = ϕ9 by the assumption of the induction, we obtain the
following relation from (43) and (45),

f6 (f8 − 1)

f 3
7 (f6 − 1)

ψ7 −
2

f8
ψ8 + ψ9 =

f9 (f8 − f9)2

f8 (f9 − 1)2
(ϕ10 − ψ10).

To show the proposition, it is sufficient to show that ψ10 = ϕ10. Hence, it is sufficient to
show that

f6 (f8 − 1)

f 3
7 (f6 − 1)

ψ7 −
2

f8
ψ8 + ψ9 = 0.

By this formula and (44), we can eliminate ψ8 and ψ9. Then, we obtain( f6 (f8 − 1)

f 3
7 (f6 − 1)

+
(f6 − 1)(f7 − f8)

(f6 − f7) f7 (f8 − 1)

)
ψ7 = 0.

Since the coefficient of ψ7 is rewritten as (37), this formula holds similarly as in Case 1.
Therefore, we obtain the proposition in this case.

Case 4: the case where b3 = σ−1
2 and b2 = σ1.

In this case, we have that

f10 = f9 +
(f9 − 1)2

1− f9
f8

, f9 = f8 +
(f8 − 1)2

1− f8
f7

. (46)

We put

ψ′
k =

ψk

(xk−1−1)(xk−1)2
, ϕ′

k =
ϕk

(xk−1−1)(xk−1)2

for k = 7, 8, 9, 10.
In the definition of Ψ̌, the differences among ψ8, ψ9, ψ10 are the same as in Case 3,

and we have that

− (f7 − 1) f9
(f7 − f8)(f9 − 1)

ψ8 −
f8 − f9 + f8f9 − f8f10
(f8 − f9)(f10 − 1)

ψ9 +
f9

f9 − f10
ψ10 = 0.

By replacing ψk with ψ′
k and by using (46), this is rewritten as

f7 f9 (f8 − 1)ψ′
8 − f 2

8 (−2f8 + f9 + f8f9)ψ
′
9 − f8 f 3

9 (f8 − 1)ψ′
10 = 0. (47)

Similarly, by calculating the coefficients of the linear dependence among

v7, Q7 v8, Q7 P8 v9,

we have that

− (f6 − 1) f8 (f9 − 1)

(f6 − f7)(f8 − 1)
ψ7 +

f7 − f8 + f7f8 − f7f9
f7 − f8

ψ8 +
f8 (f9 − 1)

f8 − f9
ψ9 = 0.
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By replacing ψk with ψ′
k and by using (46), this is rewritten as

(f6 − 1)2(f7 − 1)2 f 2
8

(f6 − f7)(f8 − 1)(f9 − 1)
ψ′
7+(−2f7+f8+f7f8)ψ′

8+
f 2
8 (f7 − f8)(f9 − 1)

f7 (f8 − 1)
ψ′
9 = 0. (48)

Further, in the definition of Φ̌, by calculating the coefficients of the linear dependence
among

v′7, Q′
7 v

′
8, Q′

7 P
′
8 v

′
9, Q′

7 P
′
8Q

′
9 v

′
10,

we have that

f6 (f9 − 1)

f7 (f6 − 1)(f7 − 1)2
ϕ7 −

f7 (1− 2f8 + f8f9)

(f7 − 1)(f8 − 1)2
ϕ8

+
f 2
8 (1− 2f8 + f8f9)

(f8 − 1)(f9 − 1)2
ϕ9 +

f8 f
3
9 (f8 − 1)

(f9 − 1)(f10 − 1)2
ϕ10 = 0.

By replacing ϕk with ϕ′
k and by using (46), this is rewritten as

f6 (f9 − 1)

f7
ϕ′
7−f7 (1−2f8+f8f9)ϕ′

8+f
2
8 (1−2f8+f8f9)ϕ′

9+f8 f
3
9 (f8−1)ϕ′

10 = 0. (49)

Since ψ′
7 = ϕ′

7, ψ′
8 = ϕ′

8, ψ′
9 = ϕ′

9 by the assumption of the induction, we obtain the
following relation from (47) and (49),

f6 (f9 − 1)

f7
ψ′
7 − f7 (1− 2f8 + f9)ψ

′
8 − f 2

8 (f9 − 1)ψ′
9 = f8 f

3
9 (f8 − 1) (ψ′

10 − ϕ′
10).

To show the proposition, it is sufficient to show that ψ10 = ϕ10. Hence, it is sufficient to
show that

f6 (f9 − 1)

f7
ψ′
7 − f7 (1− 2f8 + f9)ψ

′
8 − f 2

8 (f9 − 1)ψ′
9 = 0.

By (46), this is rewritten as

f6 (f7 − f8)(f9 − 1)

f 2
7 (f8 − 1)

ψ′
7 − (−2f7 + f8 + f7f8)ψ

′
8 −

f 2
8 (f7 − f8)(f9 − 1)

f7 (f8 − 1)
ψ′
9 = 0.

By this formula and (48), we can eliminate ψ′
8 and ψ′

9. Then, we obtain( (f6 − 1)2(f7 − 1)2 f 2
8

(f6 − f7)(f8 − 1)(f9 − 1)
+
f6 (f7 − f8)(f9 − 1)

f 2
7 (f8 − 1)

)
ψ′
7 = 0.

Since the coefficient of ψ7 is rewritten as (37), this formula holds similarly as in Case 1.
Therefore, we obtain the proposition in this case.

The following lemma is used in the proof of the above proposition.

Lemma 5.2. By the reflection of an open two-bridge knot diagram with respect to a
vertical line, σ1 and σ

−1
2 are exchanged, and the values of ϕm and ψm become (−1)-multiple

of the original values.
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Proof. In the definition of Φ̌, Φ̌(σ1) and Φ̌(σ−1
2 ) are conjugate by M1 =

0 0 1
0 1 0
1 0 0

. Fur-

ther, the value of Φ̌ of the top part of a two-bridge knot diagram becomes M1-multiple of
the original vector. Furthermore, the value of Φ̌ of the bottom part of a two-bridge knot
diagram becomes (−M1)-multiple of the original vector. Hence, the value of ϕm becomes
(−1)-multiple of the original value.

In the definition of Ψ̌, Ψ̌(σ1) and Φ̌(σ−1
2 ) are conjugate by M2 =

(
1 0
0 −1

)
. Further,

the value of Ψ̌ of the top part of a two-bridge knot diagram becomes M2-multiple of the
original vector. Furthermore, the value of Ψ̌ of the bottom part of a two-bridge knot
diagram becomes (−M2)-multiple of the original vector. Hence, the value of ψm becomes
(−1)-multiple of the original value, as required.

Without assuming that x0 =∞, we can put

Φ̌

(
1 x0 1

)
= Φ̌

(
1 x0 1

)
=

x0
(x1−1)3

(
1 0 1

)
,

Ψ̌

(
1 x0 1

)
= Ψ̌

(
1 x0 1

)
=

x0
1− x1

(
1 0

)
,

consistently with the definitions of Φ̌ and Ψ̌. Indeed, we can show Lemma 5.2 without
using these formulas, but these formulas are helpful to understand the symmetry of Lemma
5.2.

The following example shows the initial cases of the induction of the proof of Propo-
sition 5.1.

Example 5.3. Proposition 5.1 holds for m ≤ 3.

Proof. By the symmetry of Lemma 5.2, it is sufficient to show the formula of Proposition
5.1 for the plat closures of σ2

1 · b · b0 for b = 1, σ1, σ
−1
2 , σ2

1, σ1σ
−1
2 , σ−1

2 σ1, σ
−2
2 , recalling

that the knot type does not depend on the choice of b0 = σ1 or σ−1
2 . We note that some

of them are not knots, but 2-component links. We calculate both sides of the formula
concretely for these cases.

For the plat closure of σ2
1 · b0,

ϕ1(x) = ψ1(x) = − 1

x− 1
.

For the plat closure of σ2
1 · σ1 · b0,

ϕ2(x) = ψ2(x) = − 2

x (x− 1)
.

For the plat closure of σ2
1 · σ−1

2 · b0,

ϕ2(x) = ψ2(x) =
x− 2

x
.
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For the plat closure of σ2
1 · σ2

1 · b0,

ϕ3(x) = ψ3(x) = − 3x− 1

x2 (x− 1)(x+ 1)
.

For the plat closure of σ2
1 · σ1σ−1

2 · b0,

ϕ3(x) = ψ3(x) =
x(x2 − x+ 2)

(x− 1)(x+ 1)
.

For the plat closure of σ2
1 · σ−1

2 σ1 · b0,

ϕ3(x) = ψ3(x) = − 2 x (x+ 1)

x2 − x+ 1
.

For the plat closure of σ2
1 · σ−2

2 · b0,

ϕ3(x) = ψ3(x) =
3x2 − 5x+ 1

x2 (x2 − x+ 1)
.

Hence, Proposition 5.1 holds for m ≤ 3.
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