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Abstract

It is conjectured that, in the asymptotic expansion of the Kashaev invariant of a hyperbolic knot,
the first coefficient is presented by the complex volume of the knot complement, and the second
coefficient is presented by a constant multiple of the square root of the twisted Reidemeister torsion
associated with the holonomy representation of the hyperbolic structure of the knot complement.
In particular, this conjecture has rigorously been proved for some simple hyperbolic knots, and the
second coefficient is presented by a modification of the square root of the Hessian of the potential
function of the hyperbolic structure of the knot complement.

In this paper, we define an invariant of a parametrized knot diagram to be a modification of the
Hessian of the potential function obtained from the parametrized knot diagram. Further, we show
that this invariant is equal (up to sign) to a constant multiple of the twisted Reidemeister torsion for
any two-bridge knot.

1 Introduction

In [10, 11], Kashaev defined the Kashaev invariant (L), € C of a link L for N =2,3,---
by using the quantum dilogarithm at ¢ = e2™V=IN I [12], he conjectured that, for
any hyperbolic link L, 2% log ( L), goes to the hyperbolic volume of S* — L as N — oo,
and verified the conjecture for some simple knots, by formal calculations. In [14], H.
Murakami and J. Murakami proved that the Kashaev invariant (L), of any link L is
equal to the N-colored Jones polynomial Jy (L; €™ ~1/N) of L evaluated at g = 2™V~1/N,
Further, as an extension of Kashaev’s conjecture, they conjectured that, for any knot
K, Zlog|Jn(K; e>™V=1/N)| goes to the (normalized) simplicial volume of S® — K. This
is called the volume conjecture. As a complexification of the volume conjecture, it is
conjectured in [15] that, for a hyperbolic link L, Jy(L; e>™V=N) ~ N as N — oo,
where we put .
§(L) = m (CS(S?) — L) + \/—_1V01(53 — L)),

and “cs” and “vol” denote the Chern-Simons invariant and the hyperbolic volume; we
call it the complex hyperbolic volume (which is the SLy;C Chern-Simons invariant). Fur-
thermore, it is conjectured in [8] (see also [3, 9, 26]) from the viewpoint of the SLyC
Chern-Simons theory that the asymptotic expansion of Jy(K; eV =1/ *) of a hyperbolic
knot K as N,k — oo fixing u = N/k is presented by the following form,
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for some scalars ¢,w, k; depending on K and u, though they do not discuss the Jones
polynomial in the Chern-Simons theory in the case of vanishing quantum dimension,
which is discussed in [22]. We note that the colored Jones polynomial is defined at
generic ¢, while the Kashaev invariant is defined only at ¢ = e2™V=I/N The semi-classical
approximation (i.e., the “eM*N®?2w” part) of the above expansion is proved for the figure-
eight knot in [1] at ¢ = V=N and in [13] at generic q around >™V~1/N_ As for rigorous
proofs for other hyperbolic knots, it is shown in [16, 18, 17] that, for any hyperbolic knot
K with up to 7 crossings, the asymptotic expansions of the Kashaev invariant of K is
presented by the following form,

a 2my/— 1, 1
(), = XN - (14 m6)- () v o(n)). @
i=1
for any d, where w(K') and k;(K)’s are some scalars. By another approach to this problem,
in [2], motivated by the above mentioned conjectures, a formal power series is constructed
as an invariant of a hyperbolic knot by using the canonical simplicial decomposition of
the hyperbolic knot complement; it is conjectured that this power series is equal to the
expansion (2).

We consider the second coefficient of the semi-classical approximation (i.e., the “w”
part) of the above expansions. As explained in [21], such a coefficient of the semi-classical
approximation of the Chern-Simons path integral is calculated as the regularized deter-
minant of the Laplacian, and it is presented by the square root of the Ray-Singer torsion
at a flat connection, which is equal to the twisted Reidemeister torsion. Further, by sim-
ilar arguments, it is conjectured in [8, 9, 13] that the w of (1) is a scalar multiple of the
square root of (the Ray-Singer torsion at a flat connection or) the twisted Reidemeister
torsion of the cochain complex of the knot complement with the sly coefficient twisted
by the adjoint action of the holonomy representation of the hyperbolic structure of the
knot complement; this conjecture is confirmed for the figure-eight knot in [1, 13], and
numerically checked for some knots in [4]. Furthermore, the “w” part of the power series
of [2] is conjectured (and confirmed in many cases) to be a constant multiple of the square
root of the twisted Reidemeister torsion. Hence, we conjecture that w(K') of (2) is equal
to a constant multiple of the square root of the twisted Reidemeister torsion. In the proof
of (2) in [16, 18, 17], we use the Poisson summation formula and the saddle point method
(see Section 4.2 and [16, 18, 17]), and we must check many technical concrete inequalities
to calculate such procedures. Because of such technical difficulties, it is difficult at the
present stage to prove (2) rigorously for general knots. However, by assuming such in-
equalities of the assumption of the saddle point method, we can guess the resulting form
of (2). In particular, by formal calculation assuming such assumption of the saddle point
method, w(K)™2 is presented by a modification of the Hessian of the potential function
obtained from a knot diagram parameterized by hyperbolicity parameters.

In this paper, we formulate wy(D) of a parameterized diagram D of a knot K such
that wo(D) = £ w(K)?, i.e., we define wy(D)™! to be a modification of the Hessian of
the potential function obtained from D (Definition 4.2). Further, from a parameterized
knot diagram, we construct a monodromy representation of a knot group into PGL,C
(Section 3.1), and we can consider the twisted Reidemeister torsion associated with such



a monodromy representation. The following theorem is the main theorem of this paper,
which confirm the above mentioned conjecture of w(K') for any two-bridge knot assuming
the above mentioned technical assumptions of the Poisson summation formula and the
saddle point method.

Theorem 1.1. Let K be any two-bridge knot, and let D be an appropriate parameterized
diagram of K. Then,

_ . T(K)

- 2y/-1

where T(K) is the twisted Reidemeister torsion associated with the monodromy represen-
tation obtained from the parameterization of D.

CUQ(D)

For example, as shown in Examples 3.1, 3.2, 4.5 and 4.6, for the 5, knot and the 6, knot
with the holonomy representations of the hyperbolic structures, the values of w(K') and
7(K) are numerically given by

w(bg) = 0.09019057740... + /=1 - 0.6499757866... ,
T(52) = —0.2344867659... — /=1 - 0.8286683659... ,
w(6;) = —0.5213883634... + /=1 -0.07173228265... ,
7(61) = 0.1496015098... + /~1 - 0.5334006103... ,
where we can confirm that the values of w(5,) and w(6;) are equal to the values given in

[16, 18], and the values of 7(53) and 7(6,) are equal to the values obtained from [20] (see
Examples 3.1 and 3.2). Hence, we can numerically verify the theorem as

5y 5y
w(52)? = —0.4143341829... + y=T-0.1172433829... = 27( j)l

6, 6
w(61)* = 0.2667003051... — =1 -0.07480075491... = 27(_>1,

Further, by results in [16, 18, 17|, the theorem means that the above mentioned conjecture
of w(K) is confirmed as

L T(E)
2/—1

for any hyperbolic knot with up to 7 crossings, since they are two-bridge knots.

w(K)?

The theorem means that the Hessian of the potential function is related to the twisted
Reidemeister torsion. We explain how they are related, roughly speaking, as follows. As
mentioned above, the twisted Reidemeister torsion of the problem is the Reidemeister
torsion of the cochain complex of the knot complement with the sly coefficient twisted
by the adjoint action of the holonomy representation of the hyperbolic structure of the
knot complement. This Reidemeister torsion is determined by the alternating product
of the determinants of the coboundary maps of this cochain complex; in particular, its
essential factor is the determinant of the coboundary map d; : C' — C? with respect
to an appropriate basis. Further, it is well known that H! of this cochain complex is



naturally isomorphic to the tangent space of the space of conjugacy classes of PGL,C
representations of the knot group. Hence, roughly speaking, the twisted Reidemeister
torsion is given by the determinant of the matrix whose entries are the coefficients of the
defining equations of the tangent space of the representation space. On the other hand,
we can reconstruct the representation space by using an ideal tetrahedral decomposition
of the knot complement. The shape of an ideal tetrahedron is parameterized by the cross-
ratio of the coordinates of its four vertices, and the representation space is parameterized
by solutions of hyperbolicity equations of such parameters. Further, the hyperbolicity
equations are given by differentials of the potential function. Hence, the tangent space of
the representation space is presented by the Hesse matrix of the potential function, and
its determinant (i.e., the Hessian of the potential function) is expected to be related to
the twisted Reidemeister torsion, as mentioned above.

We explain an outline of the proof of the theorem. We consider a parameterized knot
diagram of an open two-bridge knot, where an open knot is a 1-tangle whose closure is a
knot. We decompose such a knot diagram into elementary tangle diagrams. Further, we
reformulate 7(K) and wy(D) as compositions of operator invariants of such elementary
diagrams. In other words, regarding an open two-bridge knot as a plat closure of a 3-
braid, we reformulate 7(K) and wy(D) in terms of “representations” of parameterized
3-braids. Further, we show the theorem by comparing recursive formulas of both sides of
the required formula of the theorem.

The paper is organized as follows. In Section 2, we review some basic facts used in this
paper, such as the definition of the Kashaev invariant and a parameterization of a knot di-
agram by hyperbolicity parameters. In Section 3, we explain how we calculate the twisted
Reidemeister torsion for two-bridge knots. We construct a monodromy representation of
a knot group into PGL,C from a parameterized knot diagram, and calculate the twisted
Reidemeister torsion associated with this monodromy representation, by decomposing a
two-bridge knot diagram into elementary tangle diagrams. In Section 4, we define wy(D)
for an oriented parameterized open knot diagram D, and show a relation of it to the
Kashaev invariant, and calculate it for two-bridge knots. In Section 5, we show a proof
of Theorem 1.1, by comparing recursive formulas of both sides of the required formula of
the theorem.

The authors would like to thank Stavros Garoufalidis, Sergei Gukov, Kazuo Habiro,
Rinat Kashaev and Hitoshi Murakami for helpful comments.

2 Preliminaries

In this section, we review some basic facts used in this paper. In Section 2.1, we review
the definition of the Kashaev invariant. In Section 2.2, we review a parameterization of a
knot diagram by hyperbolicity parameters.

2.1 Kashaev invariant

In this section, we review the definition of the Kashaev invariant following [25], and review
some related formulas.



Let N be an integer > 2. We put ¢ = exp(27ry/—1/N), and put
(@)n = (L—2)(1—a%)-- (12"

for n > 0. It is known [14] (see also [16]) that for any n,m with n < m,

()n(@)N-—n-—1 =N, (3)
1
Zm D@ (4)

Following Faddeev [6], we define a holomorphic function ¢(t) on {t € C | 0 < Ret < 1}
by

(t> B /oo 6(2t—1)xdx

A= o 4z sinhz sinh(z/N)’

noting that this integrand has poles at nmy/—1 (n € Z), where, to avoid the pole at 0, we
choose the following contour of the integral,

(—00,—1] U {z€C||z[=1, Imz >0} U [1,00).
It is known [7, 23] that

(@)n = exp (@(%) - SO(QT;; 1)>,

. ()
(@)n = exp (cp(l = 22;1) — (1 - %))

Further, it is known [7, 23] (see also [16]) that

L~ ey of
]If@(t) 27?\/—_1L ( ) +O({V2)7 (6)
Ngo'(t) = —log (1 - eQWﬁt) +O(m).

Furthermore, it is known (due to Kashaev, see [16]) that
1 N S | —1 —1
k) = N T gy VT 1T
2N 2ry/—1 6 2 4 12N (7)
1 N 7 1 ™ —1 m/-1

1——) = T ClogN .
o(1-5%) /16 28Ty 12N

Following Yokota [25],' we review the definition of the Kashaev invariant. We put

N = {0,1,--- N —1}.

For i,7,k,1 € N, we put
N g 2tihgis —ij N qzti=tgid

(D~ @p-1(D k1) (@D iy i = @ i-1 (D=0 @D —k-1) (D pp—s)

ijo_
Rkl -

I'We make a minor modification of the definition of weights of critical points from the definition in [25], in order to make
(K )y invariant under Reidemeister moves.



where [m] € N denotes the residue of m modulo N, and we put

6ii — 1 if i+ —0+[1—k—1]+k—i=N—1,
0 otherwise.

Let K be an oriented knot. We consider a 1-tangle whose closure is isotopic to K such
that its string is oriented downward at its end points; abusing the notation, we also denote
this 1-tangle by K, and call such a 1-tangle an open knot. Let D be a diagram of this
I-tangle. We present D by a union of elementary tangle diagrams shown in (8). We
decompose the string of D into edges by cutting it at crossings and critical points with
respect to the height function of R%2. A labeling is an assignment of an element of N to
each edge. Here, we assign 0 to the two edges adjacent to the end points of D. We define
the weights of labeled elementary tangle diagrams by

()= ()= w(fY)

k l k l

' ) 7 t J
(- (v (k)

Then, the K ashaev invariant ( K ), of K is defined by

(K), = Z H W (crossings) H W (critical points) € C.

labelings crossings critical
of D points of D

(8)

2.2 Knot diagrams parameterized by hyperbolicity parameters

In this section, we review a parameterization of an open knot diagram by hyperbolicity
parameters, following [24]. Further, we review a potential function of a parameterized
open knot diagram.

We parameterize edges of an open knot diagram by parameters in CU{oc}, for example,
as follows.

We parameterize edges adjacent to unbounded regions by 1. We parameterize edges next
to the terminal edges by 0 or oo as shown above; we parameterize such an edge by oo



(resp. 0) if it is connected to the terminal edge by an under-path (resp. an over-path). We
parameterize the other edges in such a way that the parameters satisfy the hyperbolicity
equations, which are given as follows.

——— a-ho-H-0-Ho-Y
N (-90-2) = 1-5)(1-3)
e amYe-D) = a-He-Y

We call such parameters hyperbolicity parameters. For example, for the knot diagram (9),
the hyperbolicity equations are given by

1—% - (1—x1)(1—xi),
(1-2)0-1) = L-m)1-2)
(-2)1-—) = 1-a.

As we explain in Section 3.1, such a parameterization gives a monodromy representation
of the knot group into PGL,C. Hence, in many cases (including all two-bridge knots),
each solution of hyperbolicity equations is isolated (i.e., O-dimensional).

We consider an open knot diagram parameterized by hyperbolicity parameters. We
consider an angle consisting of two adjacent edges at a crossing. We associate such an
angle with the following value,

where we consider the orientation of an angle from the over-path to the under-path,
and the left case is the case where this orientation is counter-clockwise, and the right
case is the case where this orientation is clockwise. We recall that Lis(1) = ’%f. For
a parameterized open knot diagram, we put the potential function V to be the sum of

such values for all angles except for the constant terms, regarding V' as a function of



hyperbolicity parameters.

For example, for the above knot diagram, the potential function V' is given by

V(xy,z9,23) = Lig(xy) — L12( L ) —I—ng( 1) — Liy(22)

1 1 (10)
_LIQ( ) + L12( ) — le(l’g) L12( ) + 2 L12(1)
T2
We note that
0 T €T 0 T
T 12(y) og( y)’ 83/ 12( ) og( y) (11)
We also note that the hyperbolicity equations are given by
0
Bz, V =0 forallzq,

and, hence, a solution of the hyperbolicity equations gives a critical point of V.

3 Calculation of the twisted Reidemeister torsion

In this section, we explain how we calculate the twisted Reidemeister torsion for two-bridge
knots. In Section 3.1, we explain how we calculate the monodromy representation of a knot
group into PGL,C when a knot diagram is parameterized by hyperbolicity parameters.
In Section 3.2, we explain how we calculate the twisted Reidemeister torsion for the 5,
knot, as the simplest example among two-bridge knots; the calculation is reduced to the

calculations of det | | F, || D, F,; and det (Dl El). In Section 3.3, we decompose open

two-bridge knot diagrams into elementary tangle diagrams, to formulate such calculations

for any two-bridge knot. In Sections 3.4 and 3.5, we calculate det ( By || DiE, ) and

det (Dl E’l) respectively for any two-bridge knot. By using them, we calculate the twisted
Reidemeister torsion for any two-bridge knot in Section 3.6. See also [5, 20] for the
calculation of the Reidemeister torsion for twist knots.



3.1 The monodromy representation

In this section, we explain how we calculate the monodromy representation of a knot
group into PGL,;C from a parameterized knot diagram.

We review how to make an ideal tetrahedral decomposition of S — K from a knot
diagram, following [19, 24]. There are four tetrahedra at each crossing of the knot diagram,
and, by making an octahedron as the union of such four tetrahedra at each crossing,
we obtain an octahedral decomposition of S* — K. As in [24], we associate a complex
parameter to each edge of the knot diagram, and consider the hyperbolicity equations
with respect to the parameters. Then, the shape of an ideal octahedron at each crossing
is determined, as follows.

(12)

We can glue ideal tetrahedra at each face of a knot diagram. For example, we can make
the polyhedron of the following right picture by gluing 5 tetrahedra at the face of the left
picture.

(13)

Here, we note that the edge ;75 of the tetrahedron “cc0z;z5” at the crossing of the edges
of 21 and x5 in the left picture corresponds to the edge 000 of the tetrahedron “Ocox;xs”
of the right picture.

We consider the following left picture as a part of a knot diagram.

o o X/V/ \%
_ |z 1 el X[ XN
" U



As mentioned in Section 2.2, the hyperbolicity equation of these parameters is
x v x v
1-)(1-—) = (1-2)(1--).
-=)-=) = (1-=)1--)

We consider tetrahedra at each crossing as in (12), and consider tetrahedra at each face
as in (13). Further, we consider maps taking such tetrahedra to each other as in the
right picture; for example, the map X, in the right picture takes a tetrahedron at the left
crossing placed as in (12) to a tetrahedron at the lower face placed as in (13). Such maps
take vertices of the tetrahedra, as follows.

’ )(\uf‘ x jév '

X 0, X.(0) =z, Xu(u) = o0,
X,(v) =0, Xy(00) =z, X,(z) = o0,

Hence,

where PGLyC acts on CU {co} by the Mobius transformation. It follows that

1 —x 1 —v
Xu (1/u —1)’ Xy~ (l/x —1)’

where “~” means the equality in PGLy;C. Similarly, we have that

1 -z 1 =
Xw (1/u’ —1)’ Xv (1/:10 —1)'
Therefore,

z — 0 oo v
X — XuX_Il ~ <1{ 1 )’ X/ = X,U/X_l ~ (-73 1 qj) U) .
u 1 1 E_l v O v _

u’ U u z

We note that, from the construction, X fixes 0 and z, and X’ fixes oo and x by the Mdbius
transformation.

By using such matrices, we can calculate the monodromy representation (5% — K) —
PGL,C from a knot diagram with parameters.

3.2 Calculation of the twisted Reidemeister torsion for the 5, knot

In this section, we explain how we calculate the twisted Reidemeister torsion for the 5y
knot, before we explain the calculation for any two-bridge knot later.

10



The 55 knot is the knot presented by the following picture; it is the mirror image of
the 55 knot.

S
N WO@Z\Q%

~ X{
< Xl(/\}'\
—
Xo A\ Zs
;) —\> -

As in [24], the parameters of the knot diagram is given as in the left picture. The
hyperbolicity equations are

1 . i) To 1 . _
(1—x1)(1—x—1) = 1—$—1, (1_;1:_1)(1_:1:_2) = 1—u,.
Hence,
:L'g:xf—a:1+1, x2+1—@:0.

T

We calculate X; and X! by the way of Section 3.1; for example,
) 1 a1 1 0 , =1 -1
XON(O 1 ) X1N<1 1—:51)’ Xl”( 0 1)
1 0
(o)

By using them, we can calculate the other matrices; for example,

10 2 -1 0 1
XONXEI”N(() 1>’ Wi ~ (1 0)7 Zi (—1 2)
for each 1.

We consider a cell decomposition of the knot complement, as follows, The (large) 0-cell
is a shaded region of the following left picture. The 1-cells are the arrows of the following

11



left picture. The 2-cells are given as in the right two pictures.

S S S
~

Here, the base points of the 0-cell and the 2-cells are depicted by dots in the pictures, and
the base points of the 1-cells are the tops of the arrows.

We consider the cochain complex C* of this cell decomposition with the sly coefficient
twisted by the monodromy representation of Section 3.1. The relator given by the 2-cell
ry is presented by

Wo Xo Zo X;

Its perturbation is given by
(1+eew,) Wo- (1+eex,) Xo-(14+¢cez)Zo- X' (1 —cex,) + O(e?)
for ew,, €z,, ez, € sly. Its coefficient of ¢ is presented by
er, = ew, + (Wo —1)ex, + Woez,,

where we put W; = ad(W;), X, =ad(X;), Z; =ad(Z;), ---. Similarly, from the relator
Wo X, 7' X7 X171 X) of the 2-cell 4, we obtain

ery, = ew, — X0 ' Xlex, .
Further, from the relator X, X 'W, ! X, X{, of the 2-cell 3, we obtain
Cry = €x, — Xé_l)fl’l ew, + X7 T — 1) ey, .

By calculating similarly, the coboundary map D; : C' — C? is presented by

1 Wo—1 W, 0 0 0 0 0 0

1 0 0 0 P 0 0 0 0

0 1 0 A7t a7t w1 0 0 0 0
p,—| 0 0 0 0 1 XX -1 —X, 0 0

0 0 1 0 0 X, 0 0 0o |’

0 0 0 0 0 1 0 XXj—1 —As

0 0 0 0 0 0 1 X 0

0 0 0 1 0 0 0 0 zZt

12



with respect to the basis (ewy, €xy; €2y, €Wy, €X1s €Xas €20, €x5, €75) Of C1 and the basis
(€rys €rys Ergy -+ €rg) of C2. Further, the coboundary map Dy : C° — C! is presented by
a matrix of the following form,

Wo—1)X; ' X

(-5

(Zo—1)X]

Wy —1 :

l)o = ;fy%q -1 = . 3

XX — 1 '
(22— 1) ]
XXy — 1 3
(Z5—1) X}

with respect to the basis (e, €xys €205 EWys X1y EXgs €745 €X5y €25) Of CL.
We consider a subcomplex C* of C*, as follows. Recalling that X; and X/ have fixed
points mentioned in Section 3.1, we modify D; by multiplying

-1 -1 -1 -1
1 1 1 1 r; 1 1 1
( ad (1 0) ad (1 O) 1 ad ( 1 0) ad <1 O)

-1 -1 -1
xg 1 11 11
ad ( 1 0) ad (1 0) ad (1 O) )
from the left, and multiplying

(o) v o) m(id) w(r ) T
a(f3) (i h) () ()

from the right. Then, the modified D; has entries of the following form,

13



and we can verify that any entry of the modified D, is of the following form,

* % | %
% % | %
0 0 | %

Further, we modify D, by multiplying
1 —1 -1 -1
11 11 11 xp 1
( ad (1 0) 1 ad (1 0) ad (1 O) ad < 1 O>
1 -1 -1 -1
xy 1 11 01 11
ad < 1 0) ad (1 0) ad <1 0> ad (1 0) >

from the left. Then, the modified Dy has entries of the following form,

‘T

01 1 * * 0

ad( ) (-1 = =100
10 2

0 0 0

1 -1 -4 3

(P Lz = [ -1 21

1 O 3 - = =

0 0 0

and we can verify that any entry of the modified Dy is of the following form,

O | * ¥
O | * ¥
O | * ¥

We put C! to be the vector subspace of C! consisting of vectors of the form
(%0 %0 -] - |**0)T.
We put C? to be the vector subspace of C? consisting of vectors of the form
(%% 0]%x0] - |**O)T.

We put C0 = €9 Since the modified Dy and D, preserve these subspaces, C* forms a
subcomplex of C* by these modified Dy and D;. We put Dy and Dy to be the restrictions
of these modified Dy and Dy to C*.

We put C* = C*/C*. By definition, C° = 0. We put D; to be the map on C"* induced

14



by the modified D;.
Cvz {f)l C«l Ef)o C’O

Ll

C? +—— C' «—— (Y

b

2Dy
The calculation of the Rgidemeisvter torsion of C* is reduced to the calculations of the
Reidemeister torsions of C* and C*,

T(C*) = 7(C*)7(C*).

We can verify that H2(C*) = H2(C*) = C and H'(C*) = H'(C*) = C and the other
cohomology groups of these cochain complexes vanish. o

We calculate the Reidemeister torsion of C*, as follows. We define the map D, : C% —
C to be the map evaluating 2-cochains by the cohomology class [0Fk]| of the boundary
of the knot exterior Ex, where we choose the base point of 0Ef to be the base point of
the 2-cell r3. Then, the following complex forms an acyclic complex,

0 C 2 2 Do Do o 0.

The Reidemeister torsion of C* is presented by

A ~

det E Dy det (D2 Eg)

~

T(O*) = )
det | | By || D, E;
where we put
0 1
0 1
0
. 0 .
Ey = 11> IDES 1
0 1
' 0
: 0
0 0
By definition, we have that
the lowest three 1 000 1
det | | By || Dy || = det( ) =det |21 1 3) = 2(1-—),
rows of D 1 9 1 T

15



where “=” means that the left-hand side is equal to either of +1 multiple of the right-hand
side. For a general two-bridge knot, this value becomes 2 (1 S—— )

Tm—1

Further, we calculate det (ﬁﬂ%), as follows. As mentioned above, D, is the map
evaluating 2-cochains by [0Ek] of the boundary 0F of the knot exterior Ex. We regard
K as a 1-tangle in a 3-ball B3. Then, 0E consists of the boundary N (K) of a tubular
neighbourhood of K and a 2-holed dB3. Since N (K) is obtained by connecting 2-cells
r3,Ts, T, -+ in the form of a tube along the monodromy, the contribution of ON(K) to
D, is given by

ey + X X ey + AT T Z T S e,y + AT T 2T T e,
— XTI Z T T W e, AT AT 2T T W ey,
+ X7 Tz T T W T T ey,
AT 2T AT T W TR T A e
Further, the contribution of a 2-holed dB3 to Dy is given by
—€p + (67"2 +Wo 67"3) +Wo (Xlilem + ers) +Wo ‘Xlil(e'fs + A 67’7) + X(;ilxll Erg -

(How to obtain this formula: We consider the following 2-chains ro3, r45, 7¢7.

23
T45

The relator around ro3 is Wy Xo X, "Wy 1/\5'1’*12(6, and its differential is given by
~1 -1
Cras = €wy + Whex, — Xy Xiew, — Xy X[ Wiex, = e+ Woe,, .

Similarly, we can show that e,,, = e,, + Xje,, and e,,, = e,, + Xz e,.. The constibution
of the 2-holed B? is obtained by connecting them along the monodromy,

-1 -1 =1 41
—€r ter tWoXi e, +Wo X ey, + X, Xen,

and this gives the above mentioned formula.) Hence, Dy : C? — C is presented by

Dy = (0 0 1)<(—X5‘1X1—123—1X3—1X{‘1W0—1, Xtz et w1 )

(W ))7

16



with respect to the basis e,,, e,,, €.,,---. Further, D5 is the restriction of the modified D,
to C?. Moreover, we can see from the definition of Fy that only the part of e,, contributes
to Dy F5. Hence,

o 1 -3 —4 1\ (1
DyEy = (00 1)(1—W0) o] =©o 1|2 2 oflo] =1
0 1 0 1)\0

Therefore, o
det (DQEQ) = 1.

We note that this holds for any two-bridge knot, since only the top 2-cell r3 contributes
to the resulting value, independently of the other part of the knot, as shown above.

The Reidemeister torsion of C* is presented by

det hl El
(C*) = — ,
( ) det (DlEl)
where we put
* 1
1 0 0
* . 1
hl = * ) El = 1
] 1

Here, h; presents a cohomology class, which evaluates ex, to be 1. By definition, we have
that

Therefore,
2 1 . . L
) = T Gt (D) det | By DuBy || (14)

It is a problem to calculate the latter two factors in the right-hand side. We calculate
them for any two-bridge knot in Sections 3.4 and 3.5.
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3.3 Decomposition of two-bridge knot diagrams into elementary diagrams

In this section, we decompose open two-bridge knot diagrams into elementary diagrams,
and explain how we describe the hyperbolicity equations among parameters of such knot
diagrams.

Any open two-bridge knot can be presented by a plat closure of a 3-braid of a product
of copies of o) and o, !, i.e., any open two-bridge knot diagram (or its mirror image) can
be obtained by gluing copies of the following tangle diagrams, which we call elementary

diagrams.
S 1\ xX; 1 1 xZ; 1 1£L'm,1 /1 1\ Lom—1 1
1 00
0 1 1 0
Yo Y ARG I PV RGO

To describe the hyperbolicity equations among these parameters, we consider the param-
eters a; and ;11 at the ends of middle strands of oy and o5 ! as follows,

1 €T; 1 1
S I — iy
041' = ——:- = -

; (072N ] 1 _ Tit1

1 _ Ti41
xq T
1 Ti41 1

Qg1

«;
1 Li 1 1 _ Ti41 1 _ Ti41

_ T _ T
Oy = ——— iyl = 1— .
= Tit1

1 Ti+1 1

Q41

In general, for a parameterized tangle, we consider the parameter a at the end of a strand
of the tangle diagram, as follows,

(0%
Y T —_Z
_1 x ;S _1 U
a_l u u a_1_£7
- = o
W

«
X
;S
u,”
/
U/ ..
u\_-"
N,
T
X
(6

When we glue two tangle diagrams, it is required that these parameters coincide at each
connecting point, which implies the hyperbolicity equation among parameters of the re-
sulting tangle diagram.

18



3.4 Calculation of det (Eg ‘ E1E1>

A A A

In this section, we calculate det ( E,|| DiE, ) for any two-bridge knot.

We consider the contribution of oy to det E2 D, E; ) .

|
: \ —’X’ AT
z+1

[\X”l Q Zit1

—I7Xi

As explained in Section 3.1, we have that
11—y | 0
X;N<xio %i_ql)’ XMN(g_l :ci+1—1>'
The relators among these matrices are given by
Wi XXX X
Xi X Wih X X
Z; Z;l ,
and, as explained in Section 3.2, their differentials are given by
- X 1‘)(+16X1+1 ;
€x; — Xi/ 1Xi+1leWi+1 Xz’ 1Xz+1(1 Wi+1)6Xi+1 )
€z, — €z, -

Hence, the corresponding part of D, is presented by

0 0 0
1 0 0 0 S S 0
Dy =1 o0 1 o | -a'xl & 1262“(1 Wii1) 0
0 0 1 0 0 —1
0 0 0

with respect to the basis (ew,, ex,, €z, w1, €x,,,5 €2, )- 1t is necessary to calculate the
determinant of the following matrices,

A B G 0 0 0
1 0 0 0 ~XxL 0
0 1 0 | -&x'xt ar- 1;‘qﬂ(l Wis1) 0
0 0 1 0 0 -1
0 0 0

19



1 0 0 0 —XTAL 0
0 1 0 | =& A0 Wia) 0
~ | 0 0 1 0 0 —1
A; By G 0 0 0
0 0 0
100 0 ~XTAL 0
01 0| -&"'x) 2'A01-Wi) 0
~ | 001 0 0 ~1
000 Ay Bit1 Cin
000 ' ' '
— (AiJrl BiJrl Ci+1>

where ‘~” means that the matrices of both sides are related by elementary transformations
(hence, they have equal determinants), and we put

0 X, 0
(Aisi Biyn Cipa) = (A B Cy) X' A2 iWia—1) 0
0 0 1
Hence, oy is taken by the “representation” by
1 @ 0 XA 0
/ — X/ 1Xz+11 X/ 1Xz+1(WZ+1 1) 0f- (15)
1 \931‘4-1 1 0 0 1

We consider the subcomplex C* as in Section 3.2, and consider the corresponding matrix
to the matrix of (15). To the matrix of (15), we multiply

(a(i0) oo 0) mGa))

from the left, and multiply

(1) (0 0) =0 0))

from the right. Then, the entries of the resulting matrix are presented by

AN i 1 —=E 0 0
=1y i+l — 0 1 0
ad(1 0) X A a d<1 0) ‘ )
0 0 ‘ Nl S
xi($i+1—1)
_ Tl 2 *
(z;—1)z; x4
z; 1 ,1 1 11\ 0 1
0 0 \——W_l

20



1
€T; 1 —1 = ZT; 1
ad (1 O) : Xi/ XiJrll(Wi-i-l_l) -ad ( 1+1 0)

_ @i =D?Qaitwig =1 2(@ip1—1) (22411 —2)

(@D, @Dz *
= —(.Z'i+1 — 1)2 2<$i+1 — 1) *
0 0 |0

Hence, the restriction of the matrix of (15) to the subcomplex C* is presented by

zi(xiy1—1)
0 0 — oo l) 0 00
0 0 0 1 00
. Tiy1—1 2 o (xi+171)2(2x¢+xi+171) 2(x¢+171)(21i+x¢+172) 0 0
(zi—1)z; x4 (z;—1)z; (z;—1)x;
0 1 _(xi+1 - 1)2 Q(JZZ‘_H - 1) 0 0
0 0 0 0 10
0 0 0 0 01

We consider the contribution of o5 ' to det ( B, || DB, ) .

i,—l Tiy1 — 1 Tiv1 — 1 0

The relators among these matrices are given by
—1
Wi Wi,
/ -1 -1
Xi Xi Xiv1 23 Xiha
1yt —ly—1 31

Hence, similarly as the case of oy, the corresponding part of D; is presented by

0 0 0
1 0 0 -1 0 0

D, = 0 1 0 0 XZX;—]_ _Xi-‘,-l
0 0 1|0 - 0

21
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with respect to the basis (ew;, €x,, €z, €w,,,:€x,.1:€z,,). Further, 05" is taken by the

“representation” by

1

as

1

1
—

0

0 1-XX X
0 X

0

(17)

We consider its restriction to the subcomplex é*, similarly as the case of o;. To the

matrix of (17), we multiply

(i)

from the left, and multiply

({1 o)

e 1\

ad (1 0) ad (
Tipp 1

ad( 1 0) ad(

) )
o))

from the right. Then, the entries of the resulting matrix are presented by

-1
ad(l o> (1= XX - ad

Tipp 1
1 0

Qri—zip+D (@i =1) 2@z +D@in=1) |
@ a?(zi—xiy1)
= (@i—@ip1)(@ip1—1) Awi1—1) .
0 0 ‘ 0
1 . (96i+1—1 ) (Z(mifl) ) «
x; 1\ 1 1 Ti\Ti—Ti41 Ti (T —Ti41
v . . N — 1
ad(1 ()> X1 - ad (1 0) 0 mi(z:l_zi)
0 O J2i+1—1
Ly N
X ad (T ) = 0 0
ad (1 0) X, ad< 1 0) 0
0 _Liml
LTi—Ti+1

Hence, the restriction of the matrix of (17) to the subcomplex C* is presented by

1 0 0 0 0 0

01 0 0 0 0

O 0 (2$i—xi+1+1)($,‘+1—1) Q(Ii—l‘i+1+1)(l‘i+1—1) Tip1—1 Q(Ii—l)
xf x%(:vi—x,-.u) zi(Ti—xip1)  wi(Ti—Tip1)

0 0 (xi—$i+1)§$i+1—1) 2($z‘+‘1—1) 0 1

0 0 Bt 0 0 0

0 0 0 1 0 0

. (18)

The matrices (16) and (18) give a 6-dimensional “representation” of parameterized

3-braids.

required value. A basis of this 3-dimensional subspace is given by

e = (0 0 —oi(z; — Dy 1—aj+o;+ar; —(op—1)(2;— 1) (a; — 1)(z; — 3)) ,

22
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er=(0 —oy ai(z;— Dz —1+0 — 20w 0 —1),

(How to obtain this basis: (0109)* is a central element of the 3-braid group. For any
open two-bridge knot, when we insert (o,02) at any place of a 3-braid, the knot type of
the open two-bridge knot does not change. Further, the values of z; and «; are invariant
under the action of (¢10%)%. Hence, only 1-eigenspace with respect to the action of (oy04)?
contributes to the required value. This 1-eigenspace is the above mentioned 3-dimensional
subspace. In this 1-eigenspace, we obtain e3 as an eigenvector of the action of oy, and
obtain e; as an eigenvector of the action of g9, and obtain e, as an eigenvector of the
action of o10901. We note that these “eigenvectors” are eigenvectors with respect to the
action of multiplying matrices to row vectors from the right.)

With respect to the basis (eq, s, €3), the matrices (16) and (18) are rewritten as the
following matrices, by which we define a “representation” ®, of parameterized 3-braids,

2
1 \xiJrl

= — 0 —Ti4+1 —1 s
Tirt \o 0 1

1
(19)
1] / 1 1 1 0 0
D, = T-a -1 —z;41 O
1 x,-+1/ 1 TOHL N\ 1 2m, 1
We define @, of the top part of an open two—bridge knot, as follows.
G X
1 00 K _)XI
! YAz
1 \.’El [-\ X4
—)Xl
As explained in Section 3.1, we have that
10 , (1 -1 1 0 , (L -
XON(O 1)7 XON(O 1 ) Xl”(1 1—x1>’ Xl”(ol 1)
As explained in Section 3.2, the corresponding part of D; is presented by
1 Wy—1 0 0 z!
10 0 —x Ay 0 20
0 1 T T O A (20)

with respect to the basis (ew,, €x,, €w,, €x,, €z ). To the above matrix, we multiply

(aG ) () 1)

23



from the left, and multiply

(4G o) o a0) a3 ) (i)

from the right. Then, the entries of the resulting matrix are presented by

11\ ol
ad (1 0) (=7t - ad -1 0 |,
0 1
x1—1
(_Xéilxl_l) -ad ( )
* r1—1
XX (1 - W) - ( ) (21— )2 2—z1) | —1
0o | o
Hence, the restriction of the matrix (20) to the subcomplex C* is presented by
1 0(-10 0 0 0 0 1 =2
0O 1|1 2 0 0 0 0 0 1
1010 O 0 0 r1—1 0 0 0
010 0 0 0 0 -1 0 0
0 0 1 0| 1—-2;y O * * 0O O
000 1 0 =1 |(z:—1)?% 2(1-21)| 0 O
When we calculate det ( By || D, FE; ) . we remove the fifth row of D; from the definition

of E. The matrix obtained from the above matrix by removing the fifth row is equivalent
to the following matrix by elementary transformations,

( 0 —2 [22}-3ax3+1 —day+3] -1 1 )

Further, the vector

(O -2 227

—31'1—1—1 —4IE1 +3

-1 1)

24



is rewritten as the following vector with respect to the basis (ey, s, €3), by which we define
®, of the top part of an open two-bridge knot,

N
<I>2< 1)00 ) — _ﬁ (1 221 0). (21)
1 T 1 B

We define @, of a bottom part of an open two-bridge knot, as follows.

As explained in Section 3.1, we have that

 f—— 1 T—1—1 0
() ()

10 , 10
o () (g 1),

noting that z,, = 0. By calculating D; at the bottom of an open two-bridge knot similarly
as above, the corresponding part of D, is presented by

1 0 0 0 zZ-t (22)
0 1 0 |X,1 X, -1 =&,
0 0 1 X _ 0

with respect to the basis (ew,, ,,€x,, 1, €2, 1:€x, €z, ). To this matrix (22), we multiply

(aGi0) () i) )

from the left, and multiply

(4G 0) wa( ) G 0) w0 0) = (0))

from the right. Then, the entries of the resulting matrix are presented by

—1
1 1 1 1 1\
ad (1 0) - Z. " -ad (1 0) =




2Ty —1+1
T A 0 1 o |
ad( "1—1 0) (X, 1 X, —1)-ad (1 0) = 1 x| x|,
0 00
N\ 11 “Zs ’
Im—l o m—1 B
ad( i 0) (=X - ad <1 0) 0 1 * ,
0 0 |-a2_

—1 1—xm—1
11 01
ad (1 0) (=X ) -ad (1 O> = 0 -1

Hence, the restriction of the matrix (22) to the subcomplex C* is presented by

1 0/0 0|0 0| 0 0|1 -2
0 1]0 0/0 0] 0 00 1
0 0|1 0]0 023 « |« «
0 0o 1]0 o T s|x s
0 010 0|1 0|~ 0|0 0
0 0J0 0f0 1 0 —1/0 0

When we calculate det ( By || D, FE; ), we remove the rightmost three columns of D;

from the definition of ;. We remove the rightmost three columns from the above matrix,
and insert each of ey, eq, €3 into the first row. Then, putting a1 = Tpo1/(Tm_1 — 1),
their determinants are equal to

Tm—1 Tm—1 Tm—1
Tm—1 — 1 ’ Tm—1 — 1 ’ Tm—1 — 1

respectively. Hence, we define ®, of the bottom part of an open two-bridge knot by

1 2 1 . 1
() = T | -1]. 23
2 0&1 T — 1\ g (23)

We define @, of the other bottom part of an open two-bridge knot, as follows.
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As explained in Section 3.1, we have that

Tom— 0 —1 1
'Xﬁ_lm/( ]'1 xm—y—l)’ 'X%_lm/(() L —1)’

Tm—1 Tm—1

1 0 , 10
o (1o 1) 2o 1)

noting that x,, = 0. By calculating D, at the bottom of an open two-bridge knot similarly
as above, the corresponding part of D; is presented by

1 0 0 R 0 (24)
0 1 0 |X Tl 1-w,) —xL T lxst
0 0 1 0 Z.

with respect to the basis (ew,, |, €x,, 1, €2, 15 €Xms €W,,). Lo this matrix (24), we multiply

(aGo) (it a) (o))

from the left, and multiply

(4G 0) wa( ) G 0) o 0) = 0))

from the right. Then, the entries of the resulting matrix are presented by

11\ 0 1 Ere !
(—x' Y. _ 0 -1 0
ad (1 O> ( mel) ad (1 0) = )
0 0 ‘—xm’:l
1N\’ 11 i i
Im— 1 _ m—1
0 0 ‘mmfﬂl_xmfﬂ
2Ty —1—1 4
-1 Tm—1 Z'mfl_l) Tm—1 *
Tmoy 1 1 =119 . 0 1y _ ( —
ad< 1 0) X X (1-W,,) -ad (1 0) = 1 2 1|,
0 0 |0
11\ " 11 e
. — 01 |-1
ad <1 0> Zm—1 - ad (1 0)
0 0 1
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Hence, the restriction of the matrix (24) to the subcomplex C* is presented by

Tm—1
1—zm—1 O

o O
o O

21‘m71_1
Tm—1 (-’Emfl_l)
1
0
0

SN OO
SO0 O|l= O
SO |IOoO RO O
SOOIk OO O
O~ O oo O
— OO OO O
O O | % *

— | % %

— N % %

0 0

Similarly as the above case, we remove the rightmost three columns from the above
matrix, and insert each of ey, €3, e3 into the first row. Then, putting a1 =1 — - 171,
their determinants are equal to

-2, 1, -1

respectively. Hence, we define @5 of this bottom part of an open two-bridge knot by

1 T |1 2
(I)2< 150 ) = — —11 ) (25)

For a diagram D of any open two-bridge knot, by decomposing D into a union of ele-
mentary tangle diagrams, we define ®5(D) to be the composition of ®5 of such elementary
diagrams, whose values are given in (19), (21), (23), (25). Then, by the above arguments,
we have that

det | | Ey|| DyF; = Oy(D). (26)

3.5 Calculation of det([)lEl)

In this section, we calculate det (DlEl) for any two-bridge knot.

Similarly as in Section 3.4, we can see that, at the top part of an open two-bridge knot
diagram, D, is presented by

1 0] 0 0 1
1 0| 0 L0
1
01| 0 0
T
00

with respect to the basis ey, , ex,, ew,, €x,, €z,. Further, at the part of oy, D; is presented
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x;—1
1 0 0 0 Al
0 1 0o |mElo g 0
Ti+1
0 0 1 0 0 -1

with respect to the basis ew;, ex;,, €z, €., €x,,1, €7, At the part of o5 ', D, is presented
by

1 0 0 —1 0 0
Ti+1—
0 0 1 0 -m=l 0
Ti+1—x4

with respect to the basis ew,, ex,,ez,, ew, ., €x, ., €z, ,. At the bottom parts of an open
two-bridge knot diagram, D, are presented by

and 1 0 0 |1 0

1 0 0 0 1 o
0 1 0 0 —ap 0 1 0 0 Zpo1(1—zpm1)
0 0 1 |ZF== 0 0 0 1 0 1

respectively, with respect to the basis ey, ,,ex, ,,ez _,,ex, ez, and the basis ey, .,
ex, 1+€z,_1.€x,,ew,. The matrix of D; is a union of copies of the above mentioned
matrices.

From the definition of El, the matrix of D{F; is the matrix obtained from Dj by
removing the second column. Its determinant is equal to the product of some entries of
Dl, since most of the entries of D; are equal to 0. The choice of entries which contribute
to the determinant depends on the orientations of strands; more concretely, we choose
the following values depending on the orientations of strands, whose product presents the
value of the required determinant,

N ~N
o, ! o = | ! 00 _
( ,) ) (o2 1 ( 2 ) Lo
1 z1 11 1 z1 11
ch( ! yml 1 ) _ -flfz(ﬂfz - 1) CI)1< 14 xigl ) _ a:i(xi—a:iﬂ)
) \xﬂ-l vl Li+1 — 1 1 1’1’,-&-1/ 1 Tiy1 — 1
. NG S L W . Lok JUN g
1 X \ % - J:i(xi+1 _ 1) ) 1 ( - Tiv1 — T )
Ti41 1 1 Ti+1 1




(e d ) e (e ) -
1 zien | 1 (w01 — 1) xlﬂf/ 1 Tipr =1
. 1) 2, 1 1y 2ma 1_%1
1< b = Tm-— 1($m 1—1 ( @1 L
1<K Ty 1£\ Ty 1 1—2,,-1
0 @En1 =17 & 160 ) =

1
For a diagram D of any open two-bridge knot, by decomposing D into a union of elemen-
tary diagrams, we define ®1(D) to be the composition of ®; of such elementary diagrams,
whose values are given above. Then, by the above arguments, we have that

<

[ay

—_

mr

det (DlEl) = q)l(D)

For an elementary tangle diagram T, we define ®;(T") from ®;(T") by multiplying

when the top of T' is parameterized by 1? +x1 fl

and multiplying
1

! Yooy
—*——  when the bottom of T' is parameterized by
Tit1 Ajt1

Then, we can verify that <i>1(T) does not depend on the orientation of 7' ignoring the
difference of sign; more concretely, its values are given by

N

N 1
(I) 1 0 —
1< ) > (1)
1 X1 1
o ] / _omlm=) g \ ’ _ w1
$l+1 SE@+1 1 ’ $z+l x7,+1 B 1)2 ’
1 L1 1 l‘m 1 1
= Tm— l(xm 1_ == xm_l—l)Q.

~

By the above Constructlon ®1(D) = &¢(D) for a dlagram D of any open two-bridge knot.
Hence, we have that

det (D1Ey) = &(D). (27)
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3.6 Calculation of the twisted Reidemeister torsion for any two-bridge knot

In this section, we calculate the twisted Reidemeister torsion 7(K') for any two-bridge
knot K, by applying (27) and (26) to (14).

A

We define ®(-) by ®(-) = P1(-) Po(-). Its concrete values are given by

N
1
) 1@ = ———— (1 2, 0
( ) ) o 20
Na |1
\ Z; 1 (xl . 1)2 1 21‘1‘_,_1 1
o = 2 0 -z —1],
1 Ve 11 Tin(zin =12 \og o 1
il )1 2 (1 0 0
- ! —1 —xi_;’_l 0 ;
mlf 1 Tiel \ 1 2, 1
Tm—1 /1 1 1 Tm—1 1 2
® =22 -1, @ = (zma—1*[-1],
0&1 9 1)0 1

ignoring the difference of sign. R
For an elementary tangle diagram 7', we define ®(7) from ®(7") by multiplying

1
1

Q;
1

( D% L when the top of T' is parameterized by 1 |

.
.

and multiplying

. .
. .

1i |£Ei+1| 1

(iy1 — 1)* (2341 — 1)*  when the bottom of T is parameterized by oot

and dividing the value of the bottom part by 1 — ﬁ Its concrete values are given by

N

¢<12

o0 > = oi(r1-1) (1 22, 0),

1 X 1

R 1 \ i 1 1 224, 1

o / > = 21 |0 —x41 -1,
1 \xiﬂ 1 0 0 1




By the above construction, ®(D)/(1 — a;ml,l) = (D) for a diagram D of any open two-
bridge knot.
Hence, for a diagram D of any open two-bridge knot K, we have that

2
7(K)

= (D). (28)

Example 3.1. We numerically calculate the twisted Reidemeister torsion for the 55 knot,
which is the knot shown in Section 3.2. As shown in Section 3.2, the hyperbolicity
equations are presented by

x
:cgzxf—erl, x2+1——2:0.
T

Hence,
2} —222 +32, -1 = 0.

Corresponding to the holonomy representation of the hyperbolic structure of the knot
complement, we choose a solution

1 = 0.784920145... + /-1 - 1.307141278... ,

which gives the complex hyperbolic volume by
— 1
5 =
o) = 57
Therefore, by (28),

V(zy,29) = 0.450109610... — /=1 - 0.4813049796... .

5 1 0 0 . 1
— = (=D 22 0)-ao| -1 —29 O  —2— [ -1
7(52) 1 )( ) ? 1 2z 1 (o —1)3 )

= —0.6323164993... + /-1 - 2.2345852998... ,
and, hence, the value of the twisted Reidemeister torsion of the 5, knot is give by
7(59) = —0.2344867659... — v—1 - 0.8286683659... .

We can confirm that the above value is also obtained from [20], by transforming the
Reidemeister torsion associated with the longitude (of [20]) to the Reidemeister torsion
associated with the meridian (the above value) as mentioned in [13].
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Example 3.2. We numerically calculate the twisted Reidemeister torsion for the 6; knot,
which is the knot shown in Section 2.2. As shown in Section 2.2, the hyperbolicity

equations are presented by
x x
vy = af— 11+ 1, vy = v+ 1-= =0, r3+1—-= = 0.
I )

Hence,
] =323 +627 —51,+2 = 0.

Corresponding to the holonomy representation of the hyperbolic structure of the knot
complement, we choose a solution

r1 = 0.8951233822... + /-1 - 1.5524918200... ,

which gives the complex hyperbolic volume by

5(6y) = = 0.5035603876... — \/—1 - 1.0807800768... .

1
—V ) )
2my/—1 (21, 22, 73)
Therefore, by (28),

5 1 0 0 1 0 0 3 1
— = z(r—1) (1 211 0)emp -1 —zp O) 25| -1 —23 O]  —2— (-1
7(61) 1 2z, 1 1 2z, 1) @17\

= 0.9749303264... — /-1 - 3.4760907942... ,
and, hence, the value of the twisted Reidemeister torsion of the 6, knot is give by
7(6,) = 0.1496015098... + /=1 - 0.5334006103... .

We can confirm that the above value is also obtained from [20], by transforming the
Reidemeister torsion associated with the longitude (of [20]) to the Reidemeister torsion
associated with the meridian (the above value) as mentioned in [13].

4 Definition and calculation of w»

In this section, we define wo(D) for an oriented parameterized open knot diagram D in
Section 4.1, and show that it is (formally, in general) equal (up to sign) to the square of
w(K) of the asymptotic expansion (2) of the Kashaev invariant in Section 4.2. Further,
we calculate wy (D) for open two-bridge knot diagrams in Section 4.3.

4.1 Definition of wy

In this section, we define wy(D) for an oriented parameterized open knot diagram D in
Definition 4.2, motivated by the square of w(K) of the asymptotic expansion (2) of the
Kashaev invariant. We show that wy(D) is invariant under the RII and RIIT moves under
a certain assumption on the values of hyperbolicity parameters in Proposition 4.3.
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For a parameterized knot diagram D, we slice D by horizontal lines in such a way that
each region has a crossing or a critical point, and we put €2; of each region as follows, and
we put (D) to be the product of them.

x\ Y T y/
Ol | el N7 ] — — (1 -2),
1 x’Ay’ ‘ ) ( ZL’/)( y)
1 Y y/ T 1 T
ol N7 | ... =1-Z, o I = 1-=,
' 1Ay’ y 1<| x/\l) /
T /y ! y
Ol | e | N | e = (1-2)(1-2),
1 ] ) - e he-y
1 1 /
Q, \y ..... :1_2,7 Ql<| ..... x\) >:1_£7
1 Y ! 1

Yy
of [ |~ | ) .
o a~ !
U || | ) =

where the parameter « at an end of a strand is defined as in Section 3.3.

Lemma 4.1. For a parameterized knot diagram D, the value of Qy(D) is determined
independently of the way of slicing D.

Proof. 1t is sufficient to show that Q;(D) is invariant under the following moves.

—

>
s U e N
N\ / / N
We obtain the invariance under the moves of the first line from the definition of €2;.

We obtain the invariance under the moves of the second line from the definition of €y
and hyperbolicity equations among parameters. O]

For an oriented parameterized knot diagram D, we put {25 of each crossing as follows,
and put Qy(D) to be the product of them.

12 /2
(00 = () - %

34



For a parameterized open knot diagram D, we recall that the potential function V is
defined as in Section 2.2, which is a function of hyperbolicity parameters z;’s. We also
recall that a solution of hyperbolicity equations gives a critical point of V. We define the
Hesse matrix at a critical point of V' by

1= ((wge) gV,

’

We note that

0 \2 x 0 \2 x x 0 0 x T
OBy - 9ty = IV (By =
o) = o)1) = 2o ) ) te() =~
which are obtained from (11). Hence, for example, the Hesse matrix of the potential
function of (10) is given by

Ty 1 + T2 __x2 O
1—x1 r1—1 xr1—T2 Tr1—x2
H = __xy T2 oy 1 + 3 __x3
Tr1—x2 xr1—x2 11—z xo—1 xro—x3 Tro—x3 1
T3 3 T3
0 Tro—x3 To—x3 1—x3 x3—1
14z o X2 0
1—x1 T1—T2 T1—x2
— T2 L2 4 ] 4 %3 __x3
r1—T2 r1—T2 To2—x3 To—T3
To—I3 T2—I3

Definition 4.2. For an oriented parameterized open knot diagram D, we define wy(D)
by
1

(D) = =0 D)D) det

We expect that this gives an invariant of an oriented parameterized open knot. The
following proposition is a partial evidence of this expectation.

Proposition 4.3. For an oriented parameterized open knot diagram D, we(D) is invariant
under the RII and RIII moves, if the values of the hyperbolicily parameters at the moves
are generic.

Here, “generic” means that both sides of the hyperbolicity equations of the knot diagrams
appearing in the RII and RIII moves are always non-zero.

Proof. We show the invariance under the RII move, as follows. (The following proof works
when o’ #£x #y #vy'.)

We calculate wy of the left-hand side. By definition,

o, (LHS) = (1-2)°(1- %)2.
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Further, we can verify by definition that

independently of a choice of orientations of the strands. The Hesse matrix for the left-hand
side is given by the following form,

x x x x
y—x a'—x T y—x /+ az ' —x 0/ € C2
x x y y
———+ay - a 0 c c
gz 792 gyt y—y 3 4
- 0 0 0 — 0
' —x , ' —x ,
0 yfy, 0 0 0 — yﬁy,
x x x x
‘G €3 ' —x 0/ '—x  y—u +b1 Y-z + b2
Y x y =z
Cy Cy 0 —y vz + bg vy  y=z +b3

This matrix can be transformed into the following form by elementary transformation,

0 0 m,%r 0
ay ag by bo 1 C2 1 C3 0 0 0 ygy'
+ + + SP)
az ag by b3 C3 C4 C2 C4 —— 0 0 0
0o L] 0 0
Y=y

The first direct summand gives the Hesse matrix of the right-hand side. The determinant
of the second direct summand is the error term, and it cancels with )4 (LHS) Qs (LHS).
Hence, wy(D) is invariant under the RIT move.

We show the invariance under the RIIT moves, as follows. (The following proof works
when both sides of hyperbolicity equations appearing in the knot diagrams in the proof

are always non-zero.)
a B
o
—

d I\
\y/ o 2 / \Zl

When we give values of «, 5, v, z, y, 2z, the values of the other parameters are determined
by

v

- Ty _r—y+ Py
U= —, V=
oar +y—ay 15}

rz
w = s
ar+y—ay— Py +aby+ Pz —afz
;o yz ;Y- ztz
U = — w =
By +z — Bz ¥
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o Bry + xz — Prz — yrz + Byrz — yz + yyz

By ’
/ LYz
= ,
afry + axz — afrz + yz — ayz
, _ zly—2+72) g Ty +By— Pzt bz

v(ez+y—ay)’ By ’
noting that the values of 2/, ¥/, 2/ do not change as functions of «, (3, v, =, y, z under the
RIIT move. By definition,

x v v 2 u y'
% (LHS) = (1-=)(1 - 5)(1 ——)1-2)-=)01-=),
Y w’ x v v’ 2!
0, (RHS) = (1- g)(l - ?)(1 - ;)(1 - g)(l - 5)(1 - J)-
Further, we can verify by definition that
Qy (LHS) B y2 w2 v'?
O (RHS) o2y 2u?’

independently of a choice of orientations of the strands. The Hesse matrix of the left-hand
side is given by the following form,

A B[Ot
BlT D, E,
~+CT| Ef |Fi+--
where
z oz __z 0
Yy—x xu—m - y—a:v
A= 35 v e 0.
0 0 zzv B ziz’
= 0 0 00 0
B, = 0 yﬁv 0], C;=(0 0 O ,
0 -2 0 00 =
ﬁ_ﬁ—i_ﬁ_w/uu _uﬁv _wgu
Dl = _# uzfu - yiv + zzv - wqiv wzv )
o u v 2w u
w—u w—uv w—2z' wW—v + wW—u w—y’
u Yy’ u _ Y
' —u 0 0 x/_y/ /:C’—u ) x/_y/ ) 0
El = O 0 0 ; Fl - - /y 7 /y 7 B 7 0
0 Y o x’' —y z'—y w—y y y
w—y’ w—z' 0 0 w—z'  z—2
Further, the Hesse matrix of the right-hand side is given by the following form,
< Ay By | Cy+---
BQT Do FEs
---—i—CQT Eg 4+
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where

u’ix - a:’giw 0 0
y _ Y _ Y
AQ = z—y u' —y 2=y )
i y . _w
0 z—y z—y z—w'
R T
— 0 0 = 0 0
Yy
By=| -~ 0 0 G,=[ 0 o0o0],
/
0 0 0 00
w’ y 4z v’ v’ w’
u—w'  uw—y ' u—x v u' —v’ u’ —w'’
D, — v’ o + U ' _
2 — u/_vl/ o —o! W= w —o! v —v w/_vll ) 9
w v w w v z
u! —w’ w! —v’ uw'—w' oz w’+w’ o w2
v’ x
O ’ O/ O z' =o' z'—z ’ 0 ’ O ’
v v z v z
E, = Y 0 , k= 0 y—2 g — T
0 2’ 0 2 A
w'—z' Y —z y—z w —2

These two Hesse matrices can be transformed into the following form (i = 1,2) by ele-
mentary transformations,

-+ Ay — B;D;'BF 0 C; — B;D;'E; + -
0 D; 0
-+ CF' —E'D'BT 0 F,— EI'D'E; + -

7

Here, the parts of “---” are the contributions from the outside of the RIII move, and they
are invariant under the RIII move. Further, we can verify by direct calculation that

Ay — B Di'Bl = Ay — ByD;'Bj,

Cy— BiD{'E, = Cy— ByDy' By,

F\—E'D'E, = F, — EID;'E,.
(We can verify the first two formulas by direct calculations. Then, the third formula can be
obtained from the first formula by the symmetry of 7 rotation of the RIII move.) Hence,

the change of the determinants of the Hesse matrices is equal to the ratio of det(D;) and
det(Dy). Since we can verify by direct calculation that

it is shown that wy is invariant under the RIII move. O

Remark 4.4. Definition 4.2 gives an appropriate definition of wy(D) which (formally,
in general) presents (+1) times the square of w(K) of the asymptotic expansion (2) of
the Kashaev invariant, when a critical point of V' is isolated and its Hesse matrix is non-
degenerate. It mainly tends to hold, say, for alternating knot diagrams. However, when
D is redundant as a knot diagram (say, when D has a loop of the RI move), Definition
4.2 does not work well in the above sense. It might be difficult to show that wq(D) gives
a knot invariant by showing its invariance under the Reidemeister moves.
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4.2 Relation to the Kashaev invariant

In this section, we explain that we(D) is (formally, in general) equal (up to sign) to the
square of w(K) of the asymptotic expansion (2) of the Kashaev invariant, which we show
in (30) and (31) at the end of this section.

We consider an oriented open knot diagram whose ends are downward oriented. We
slice such a knot diagram by horizontal lines in such a way that each region has a crossing
or a critical point. We consider a section of a knot diagram by such a horizontal line, and
associate the ¢th strand on the horizontal line with the following color,

kioi —

n—1 ( the number of upward-oriented strands )
2 in the right of the ith strand

where n is the number of strands on the horizontal line. Here, we put ky = k,_1 = 0. For
example, strands are colored by

husid wbont wpat o}
E L R

depending on the orientations of the strands. We regard k; as an integer parameter for
even i, and regard k; as a half-integer parameter for odd 7.
Around a maximal point, strands are colored by

or
ki—FC—F;mkiJ,_l—FC k‘i—FC—émki-i-l‘f—C

and, in any case, k; — % = k;41. Further, around a minimal point, strands are colored by

ki+c—§uki+1+c or ki—l—c—l—éukiﬂ—i—c

and, in any case, k; + % = k;y1. These error terms of % correspond to the values of
Q1(+ )12 of critical points defined in Section 4.1 putting ¢% = z;.
Around a positive crossing, strands are colored by

kri—c—%k kiy1+c ki-i-c—%k kiy1+c
kj4+e—1 \k£+1+c kj+etd \ ke

k¢+c+§K kiz1+c ki+c+§k kip1+c
kj+c—1 \k;+1+c ki+ctl \k;+1+c

and the corresponding R matrices are given by

ki+c—3 kit1+c
2 i+l k;—k!
kri'c—% kiy1tc Nq ‘
R ~

ki+c—3 \k£+1+c by Mrte (@bt @ity (D -3 @

and
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(q)ki+1*k§+1 (q)k/ k{—l(q)k;*ki (q)ki—ki+1—%

kitc—2 kiy1+c
2 1+1 k! —K
Eki+l+c ki, te Nq i+l
koot ket T (g G ’
ki, +c

kj+c+3 i+1 ki3
kHrCJr%
ki4c+i kit1+c Ekg@h - qui,k”l
Kip1+c+1 K. e kisrerl (@D (D, kH_l——(G)ki+17k§+1(Q>kg+l—kg_%
Kite—g ki +c
ki+c+3 kip1+c
ki yte Kitehs N qu§+1_ki+1
kiy1te kitetd (Q>k;+l—k§_l(Q)k’ (Q)k kz+1—*(q)ki+1—k§+1
ki+ctg( (ki +e
The contributions of the “g” part of the numerators of the right-hand sides to the

Kashaev invariant are presented by Qy(-)~"/? defined in Section 4.1, putting ¢* = x; and

K The contributions of the denominators of the right-hand sides to the Kashaev

. /
q =z
invariant are equal, and their contributions to the Kashaev invariant are presented by

! )"’Sp(twrl t;) 90(1 t+t—i)_|_ .>’

exp (- Hplti—tinn) —p(1—tinr +th — 5 o

putting t; = %7 and t; = Further, since

K}

N
1 1 1

cp(l —tit1 + t;—i-l - ﬁ) = 90(1 —tiy1 + t;+1) - ﬁ %0/(1 tiy1 + tz-i—l) + O(N2)

1
= (L= tin + i) + 5 log (1 - ’“)+0( ):
Tit1

1 1
1—th+t,——) = 1—t 4+t 1 1—— O
p(L—ti+ti—55) = (1= ti+ ) + 5 log ( xz)+ (32):
the contributions from the “p(--- — —) parts to the Kashaev invariant are the multiples
of (1-%) Y* and (1- %)_1/ , putting x; = e>™V~1% and Tl = e™V=14 "and they are

presented by € (- )~1/2 of a crossing defined in Section 4.1. By using the remaining part,
we put V to be the sum of the following form,

- 1
V = N( ot —tivn) — (L —tia +t41) + oty —t) —e(l—ti+1) +>
= o (R L) () () ) +O()
21/ —1 2 Tis1 Tig1 ) 2 ) N2/’

where we obtain the second equality by (6). By using this V, we can calculate the
asymptotic expansion of the Kashaev invariant, as we explain below.
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We explain how we calculate the asymptotic expansion of the Kashaev invariant by
using the following example, which is the mirror image 6, of the 6; knot.

By definition, the Kashaev invariant of the 6; knot is presented by the following form,
ignoring the ¢ terms,

= 2: 50 0 ko3 ki3 5o 0 kst katy o 0 0 katy
<61 >N ~ Rko—% 0 R4 0 Rkl_% kot Ry2y ng_% kotd Ry
ko, k4

Z N % qul % Nq_kl
— @)kaof%(Q)kof% (@ kot (Q)klf%(Q)kaofé (G)karé(Q)krkl @)kr%
N ¢*s N g"s N
X — — X — — X —
(/) SN () PR () NSRS S (7) FN SR (7) P () P S (7) PN RN (/) PO
Z Nt gt g gl gt
= D @ @t @yt @iy @b a @D vy @

N

where we obtain the last equality by (3) and (4). Hence, by (5),

ky ko kg))7

e 4 k —k k —k C
(61)y ~ N* Y g ghgg 3'eXp<N'V(N’N’N

where we put

R 1 1
Vit ta,t3) = N 90(751)—90(1—t1)+<ﬂ(t2—t1+—2N) —(ta) — o(1 —t3)
1 1 1
by —to 4+ —) — o(t3) — (1 — t3) — 3¢p(— 1——).
+o(ls — o+ 557) = elts) = (1 = ts) = 30(55) +5¢(1 = 55)
Further, the “gp( cee %)” parts are calculated as
1 @/(tg—tl) 1
ty—t1+—) = @ts —t;) + ———H —
80(2 1+2N) (s 1) + ON +O(N2)
1 i) 1
= - — —log (1 ——= —
o(ta —t1) 9 Og( $1) +O(N2)’

1 1 x 1
QO(tg—tQ—Fﬁ) = gO(tg—tQ) —§log <1_{E_z) +O(m)

41



(B ~ TS e (-2 (- 2) e (N V(SR

il T2 N7 N7 N
k1,k2,k3
where we put
. 1
Vit tats) = 5 (0(t) =0l —t) +o(ts — 1) = p(t2)

1 w2

6

(1~ ta) + ot — ta) — pl(ta) = (1~ 1)) +2- =

B

1 1
%—\/_—1 V(xh T2, $3) + O(m)a

putting z; = e2™V=1%_ As shown in [16, 18, 17], for hyperbolic knots with up to 7 crossings,
we can calculate the asymptotic expansion of the sum of the above form as

(61)y ~ ™ 2N? / (D) 2Qy(D) "2 exp (N - V(ty,ta, t3)) dty di dis

m)3/2 N—1/2
(3\75’?/2 (det(—H)) /,

~ ™2 NI Q (D) 20y (D) 2N )

where D is a diagram of the 6; knot mentioned above, and the first approximation is an
approximation of a sum by an integral which is shown by the Poisson summation formula,
and the second approximation is obtained by the saddle point method at an appropriate
critical point (1., ta.c, t3,c) of \7, putting H to be the Hesse matrix at this critical point,

. 0% .
i = (Mv)m.

In fact, in a formal sense, such approximations are standard method (and we can guess
the form of the resulting formula by formal calculation), but, to be precise, we must check
some technical inequalities to prove such approximations; see [16, 18, 17] for details. For
the 6; knot, we can rigorously obtain that

<6_1>N ~ eNC(@-N?’/Q-w(E),
where

§(6_1) = V(t1;07t2;cat3;c)7

w(B) = e T2 (D) V20(D) A (2m) 2 (det(—H))
We note that ¢(6,) presents the complex hyperbolic volume of the complement of the 6;
knot. By the above formula, we have that

1
w(6,)?

— —O.(D) (D) ﬁ det(—H)
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= /=1 O(D) (D) det H,

0 _

5— = 9 and hence
z;

1
271'\/—1 Bti
H ~ 2m/—1 H.

Therefore, from the definition of ws,

where we obtain the second equality, since x;

Generalizing the above argument, we explain how we calculate the asymptotic expan-
sion of the Kashaev invariant (formally, in general), as follows. We consider an oriented
open knot K, and consider a parameterized diagram D of K.

We let n; be the number of counter-clockwise angles, let ny be clockwise angles, let n
be the number of hyperbolicity parameters, let n. be the number of crossings (ignoring
dotted lines), and let ny be the number of edges parameterized by 1 (ignoring dotted
lines). Since nyg is equal to the number of angles marked by dots in the above picture, we
have that

ny+no+ng = 4”0_47 2(n0+n) = 4nc—2. (29)
Similarly as the case of the 6; knot, we can obtain that

(K), ~ e(n2—n1)mV/=1/4 nrnetn—(ni+n2)/2

N

x /Ql(D)_l/QQg(D)_l/Q exp (N - V(ty, -+ tn)) diy -+~ dty,

where
1

1
/1 N

putting z; = e2™V=1%_ We note that n, +n — mtnz — "TJ“?’ by (29). Hence, we obtain the
following approximations (formally, in general),

V(tlv"';tn) = (xlvaxn)+0(

(K), ~ emmm)mV/=1/4 N(n+3)/2 / Q1 (D)2Qu(D) V2 exp (N - V(ty, -+ ,tn)) dty -+ -dt,
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(2m)"/? S\ —1/2

N e(nrm)ﬂﬁ/zx N (n+3)/2 Ql(D)71/2Q2(D>71/26N<(K) (det(—H))

n/2
~ ememm)TVEIA N2 Q) (DY Y20, (D) 2N S (27r)n]/V2 (/ det(—H))™"/*.
Therefore,
(K)y ~ eNEL N2 (K, (30)
where
S(K) = Vte, e,
W(K) = eI Q (D) Y20,(D) Y2 (2) 2 (det(—H)) 2
Further,
- (;{)2 _ m=mmI120 (D) 0y(D) ﬁ det(— IT)
= em=me=mmV=120 (D) Qy(D) det H
= /=1 Q(D) (D) det H,
since ny — ny — n is odd by (29). Hence, from the definition of wy, we obtain that
w(K)* = wy(D), (31)

as required.

Example 4.5. We numerically verify (31) for the 5, knot, which is the knot shown in
Section 3.2. As shown in Example 3.1, we obtain the values of hyperbolicity parameters
and the complex volume. Further, from the definition of w,, we have that

(}—Hm T2 __x2 ) To
H = i x2x1—$2 :r:gan_x2 5 Ql(D) =1-— s
_:plfacz Tr1—xo + 1 T
1
wo(D) = —0.4143341829... + /—1-0.117243382... ,

T /1 QD) detH
where D is the 5, knot diagram shown in Section 3.2. Hence,
w(B2) = wy(D)Y? = 0.09019057740... + =1 - 0.6499757866... ,

where we choose the sign of the square root depending the orientation of the domain of
the integral of the saddle point method; for details, see [16]. Further, from the definition
of the Kashaev invariant, we have that

o N3 -1
<52 >N = Z (C]) — q_

0<i<j<N ‘171 (@)i (9)j-i (@); (@) n—j-1’
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see [16]. By calculating this sum concretely as shown in the following table, we can
numerically observe that the limit of ( 5y ), e~ ) N=#?2 tends to the above mentioned
value of w(52), noting that ¢ — 1 as N — 0.

N q < 5_2 >N e~ N<(52) N—3/2

50 0.09574104848... + /—1 - 0.6581517399...
100 0.09297541546... + /-1 - 0.6540225631...
200 0.09158517383... + v/—1-0.6519891312...

Example 4.6. We numerically verify (31) for the 6; knot, which is the knot shown in
Section 2.2. As shown in Example 3.2, we obtain the values of hyperbolicity parameters
and the complex volume. Further, by using the Hesse matrix shown in Section 4.1, we
have that

ws(D) !

T /o1 det H

where D is the 6; knot diagram shown in Section 2.2. Hence,

wE1) = (—w(D))"? = —0.5213883634... + v=T - 0.07173228265.... ,

where we choose the sign of ws(D) depending the sign of (31), and choose the sign of the
square root depending the orientation of the domain of the integral of the saddle point
method; for details, see [18]. Further, from the definition of the Kashaev invariant, we
have that

= —0.2667003051... + /=1 - 0.07480075491... ,

o B N4 q—l
(6 = 2 (@i (@i (@) (@5 (@D N1 (Dr—s (@D (Dn—b-1"

0<i<j<k<N

as shown before in this section. By calculating this sum concretely as shown in the
following table, we can numerically observe that the limit of { 6, ), e N<(61) N=3/2 tends
to the above mentioned value of w(6,).

N (B ), VO N2

50 —0.5121772692... + /-1 -0.1473909514...
100 —0.5181425383... + /-1 - 0.1096254180...
200 —0.5201050838... + /=1 - 0.09068263776...

4.3 Calculation of w, for open two-bridge knot diagrams

In this section, we calculate wy for open two-bridge knot diagrams. To calculate it, we
introduce an operator invariant ¥, and present w, in terms of W.

As we explain in Section 3.3, any open two-bridge knot diagram (or its mirror image)
can be obtained by gluing copies of the following elementary tangle diagrams.

> xi\l 1@51 1Xxm_ll
%215/ ) 0&1 1)0

1

1
1 1

1 1 1 \xi+1

&1



Let D be an open two-bridge knot diagram obtained by gluing copies of the above ele-
mentary diagrams.

From the definition of 2y, (D) is equal to the product of ; of such elementary
diagrams, whose values are given as follows,

N

Ql< 1) i ) -

1 X1 1

1w |1 - AL -
0, =120 = -2

1 \'TiJrl 1 i 1 $i+1/ 1 Li

1 Tm—1 /1 1 Tm—1 1
Q< ) ., Q< ) -

0 1 1)0
(D)

Further, from the definition of g, 25
diagrams, whose values are given as follows,

N N
Qy 1m ) =1, QQ<1200 ) - %7
1 1 !

/O

is equal to the product of {2y of elementary

X1 1

3
(1) - 1
(] )5 (<)
b2
(13 () -
Sf) ()

oK

Qy 1)

For an elementary tangle diagram 7', we define Qy(T') from Q,(T") by multiplying
1

5 when the top of T' is parameterized by 1+ +x] +1
; : : :

X

46



and multiplying

I2

7+1  Wwhen the bottom of 7' is parameterized by 1; ,ifcjﬂ f+1 .

Then, we can verify that (7)) = 1 for each elementary diagram T'. Hence, Qy(D) = 1.
We calculate the contribution of each elementary diagram to the Hesse matrix. The

contribution of the diagram
1 \$¢+1

1 i .
+L12(1‘_Z) —Lig(xx—:l) +L12({I?i+1) + -

1

1
to the potential function is given by

Hence, its contribution to the Hesse matrix is given by

TS U S _Tit1
zi—1 Ti—Ti+1 Ti—Tit1
Tit1 _ miqa Tit1 4.
Ti—Tit1 Ti—Tip1 1-zip1

We calculate the determinant of a matrix of the above form recursively, as follows. For
an indeterminant y, we put

det [ ' = Ajy+ B,
. P + fy
det | -.. B _Titl :Ai+1y+Bi+1.
xi_:r:l T;—Tit1 - :ci—xi_t%
i1 _ Tig1 i+l
Ti—Tit1 Ti—Tit1 1—xiq1 +y

Then, we have that

1 Tiga ( 1 Tiga )(_ Tit1l + Titl )_( Titl )2
(Ai—i-l Bi+1) — (Al Bl) zi—1 1361'*90141 Ti—1  xi—xiqa Ti—Tip1 0 l—mip Ti—Ti41 .

Tit1 Tit1
Ti—Tiq1 1-zip1

Including the contribution of €2y, we put

(A

T 1 T ( 1 T )(_ Tit1l + Titl ) _ ( Tit1 )2
— (1 _ _2+1) zi—1 Ti—Ti41 zi—1 Ti—Ti41 Ti—Ti41 1—zi41 Ti—Ti41
1

— . Tit1 Ti41
v Ti—Tit1 1—zi41
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_CE,L'(CEZ'+1—1) 1

$i+1 (a)i—l)$i+1
v ZTip1 zi41—1

Similarly, the contribution from the diagram

1 xi_H( 1

to the Hesse matrix is given by

1 Tit1 __ZTit1
zi—1 Ti—Ti41 Ti—Ti41
Tit1 Titl Tt
Ti—Tit1 T;—Ti41 1—zi41

Hence, similarly as above, we put

v
1 $i+1/ 1
. 1 Tit1 1 Ty __ Tig Tit1 _ Tit+1 2
— (1 _ :UH‘l) z;—1 Ti—Tit1 (zifl zifa:i+1)( . Ti—Tit1 N 17£Ei+1) (wifxlurl)
] it1 it1
i 1 Ti—Ti+1 1-zip1
T xi(mH_l—l)
_ il | (zy—1)zi
_ ) Ti—Tit1 xzi—1
L x; Tiy1—1
+1 1+1
Further, the contribution from the diagram
\
1 o0
1 Ny |1
to the Hesse matrix is given by
T,
11—z +
Hence, we put
\
1 00 _ z1
v o (1 1*x1) :

1 \(El 1

Furthermore, by similar arguments as above, we put

(130 - () (&35 ) - (=)
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For an open two-bridge knot diagram D obtained by gluing copies of elementary diagrams,
we define ¥(D) to be the product of ¥ of such elementary diagrams.
By the above construction of ¥, we have that

V(D) = (D) Q(D) det H.
Hence, from the definition of wy, we have that

1
\/—_1 (.UQ(D)

5 Proof of Theorem 1.1

— (D). (32)

In this section, we prove Theorem 1.1. We introduce ®, ¥ and ¢,,, ¥, modifying o, 0,
and reduce the proof the the theorem to Proposition 5.1.

For an open two-bridge knot diagram D, we define <I>(D) to be ® of the diagram
obtained from D by m rotation and by exchanging the positive and negative crossings,

/
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Further, similarly as the calculation in Section 3, we can show that

(! met |1 1—2p1 (2)
(I) 1)0 T2 Tm—1
m—1 1

Without assuming that z,, = 0, we can put

-~ 1 T ]. Tm _ 1
@(W) (&_/\)——xml 0],
-1 —1
consistently with the above definition.
We define ¥ by the following formulas,

N -

T 1 00 _ z1 T, 00 1 _ z1
\IJ( ) > o (1 1—361)’ \I]( g ) - (1 z1—1)7
1 X1 1 1 T / 1
1 xX; 1 _wi(xi+1fl)
G \ _ L1 (Ti—1)zit1 1
\ o T Ti—Titl _omi—1 )
1 Tiv1 |11 v Tit1 xip1—1
1 iz 1 xi(mH,lf].)
- T Ti—Tit1 x;—1 )
$z+1 v Tit1 zit1—1
1 ZIIm—lS 1 =T 1 0 1 Ty —1
]. T — 1 ]- xm—l)
1 ) 1 )

without assuming that ,, = 0. When x,,, = 0, this definition is equal to the definition of
U except for the sign of ¥(o,!). Hence, ¥(D) = ¥(D) when z,, = 0.
Without assuming that x,, = 0, we can put

& 1w1 Qr_n/\ Ty 1(xm—1) 0 ’
xm(azm 1—1) \!1
consistently with the above definition.
We recall that our diagram of an open two-bridge knot is a plat closure of a product

of copies of o, and o, '. By the hyperbolicity equations, the values of z; are recursively
determined by

T4+ 1— = if the strand of z; is between o; and oy
T _ .
_ 1 or between o, ' and o'
Tiy1 = (xz _ 1)2
T; + 1_—% otherwise.
Ti—1

Putting z; = x (and 2y = 00), we can regard x; as a rational function of z; we put it to
be f;(x). The hyperbolicity equation of the knot is given by f,,(x) = 0.
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Without assuming that z,, = 0, we put

V 1— g
om(r) = (zm—1) ®(D),  Yu(x) = T v,

as rational functions of z.

Proof of Theorem 1.1. The required formula of the theorem is rewritten as

2 1

T(K) V=T w(D)

for a diagram D of an open two-bridge knot K. By (28), the left-hand side is equal
to ®(D). By (32), the right-hand side is equal to ¥(D). They are equal to ®(D) and
(D) respectively, as we explained above. Further, they are equal to ¢, (c) and 1, (c)
respectively, for a root x=c of f,,(z) = 0. Since they are equal by Proposition 5.1 below,
we obtain the required formula of the theorem. n

As mentioned above, the proof of the theorem is reduced to the following proposition.

Proposition 5.1.

gbm(x) = @Dm(I)

Proof. We recall that our diagram of an open two-bridge knot is a plat closure of a
product of copies of o1 and o, '. We put the end of this product to be - - - bsbab1 by, where
bs, b, b1, by = o or o, '. We note that the knot type does not depend on the choice of
bo. Further, by the symmetry of Lemma 5.2 below, we can assume that b, = o, . In the
following of this proof, we prove the proposition by induction on m, in the four cases of
the choices of b3 and by. The initial cases of the induction (the cases where m < 3) hold
by Example 5.3 below. In the following proof, we show the required formula of the case
of m, assuming the case of m’ for m’ < m.

We note that fi(x) is not equal to 1. (Because, the equation fi(z) = 0 is the hyper-
bolicity equation of some two-bridge knot, which is a hyperbolic knot or the (2,n) torus
knot. In any case, fi(x) is a non-trivial rational function of x. In particular, it is not
equal to 1.)

We further note that fi(z) and fyi1(z) are not equal. (Because, if fi(z) and fii1(x)
were equal, we can show by the recursive formula of z; that f;(z) = 1 for some j, which
contradicts the above claim.)

For simplicity, we denote ¢;(z), ¥i(z), fi(z) by ¢, ¥;, fi;. By definition, f; = z;,
without assuming that x,, = 0. We put

fir _ {}(fi+)1f—1) 1 fir {}(fz‘+)1f—1) 1

— 2t i—1)fs — ’ i—1)fi

b = f fi_fi+1+1 __fi—1 ’ Ql - f fi—fi+1+1 fi—1 ’
¢ fit1 fitr1—1 v fit1 fit1—1

v _ fmfl_fm (0)
" fm(fm—l_l) 1)’

o1



1 1 -1 1 1 1 0 0
Pl=5|0 -z 7] @=75l% 79
\NO0 O 1 t\1 -1 1
1
U/ :(fmfl_l)(fm_DQ 0
" fmfl _1

By definition, f; satisfies the same recursive formula as x;,

fi+1— fi if the strand of z; is between oy and o4
fi1 = i’12 or between o, and o, ',
K3 - R 1
fi+ (1fl—f) otherwise.
T fia

For simplicity, in the following of this proof, we write formulas of the case of m = 10.
(We can easily obtain the formulas of general m from them by replacing 10, 9, 8, 7 with
m, m—1, m—2, m—3.)

Case 1: the case where by = by = 05 .

In this case, we have that

fo=fi+1-2  p=pr1-f (3)
Js J7
In the definition of ¥, the differences among s, ¥y, 1o are presented by

Usg, Qs Vg, Qs Qg V10-

These vectors are linearly dependent. By calculating their coefficient concretely, we have
that

(fr=1) fo _ Jst o= Jsfo = Jsho ~Q81)9—|—L‘Q8Q9U10 = 0.

Fr—f)fo—1) " (fs— fo)(fro— 1) Jo— fro

This is rewritten as the following linear relation among g, ¥, 119,

(fr=Ufo  fs+Jo—Jfsfo— fsfio fo _
(fr = fo)(fo—1) ve (fs = fo)(fro — 1) wg—i_fg—flo Yo = &
By (33), this is rewritten as
%¢8_2f8¢9+f8f9¢10 = 0. (34)

Similarly as above, we can show the following linear relation among 17, Vg, g,

e =D(fr=fs)fs B
o= f)(fs— 1) Y =2 frvs + f7 fsg = 0, (35)
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noting that, in this case, we can not use fs = fr +1 — % at the present stage.

Similarly as the case of ®, we can show the following linear relation among ¢7, ¢s, do,

¢10>

fo (fo—1) fr(fo—2)
(fe—D(fr =1 f7 bt (fr—=D(fs—1) ?s
fe 2fs —1) S 3 (fs — 1)

T

By (33), this is rewritten as
fo s (fs — 1)
(fe—1) f7

Since 1y = ¢7, Vg = Ps, W9 = g by the assumption of the induction, we can eliminate
¢7a 77Z}87 ¢87 Q7D97 ¢9 by USing (34)7 (35>’ (36) Thena we obtain

( (fe — 1)(fr — fs) f3 n fo fs (fs — 1)
(fe — f7) fr (fs = 1) (fe—1) f2

To show the proposition, it is sufficient to show that ¥y = ¢19. Hence, it is sufficient to

show that
(fe —1)(fr — fs) fa . feo fs (fs — 1) _

(fe — fr) fr (fs = 1) (fe—1)f2

Go= (o120 =0

b7+ (fo—2) ¢s — fs (2fs — 1) ¢g + f& fodro = 0. (36)

)1/)7 = f2 fo (Y10 — d10)-

This is rewritten as

f7 (f7 B 1)2 > — O, (37>

<_f8+f7+1_ﬁ>(_f8+f7+q

which holds by the recursive formula of f;. Therefore, we obtain the proposition in this
case.

Case 2: the case where by = o1 and by = 02_1.

In this case, we have that

fo

(fs —1)?
fs’ '

_ I8
1 f7

Jio=fo+1- Jo=fs+ (38)

In the definition of ¥, the differences among s, ¥y, 1o are presented by
vg,  Qsvg, (s o vio.

These vectors are linearly dependent. By calculating their coefficient concretely, similarly
as in Case 1, we have that

(fr—1) fo
(fr = fa)(fo—1)

st o= fsfo — Jsho
(fs = fo)(fio — 1)

fo
fg - fl()

g g + Yo = 0.
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By (38), this is rewritten as

frolfs=1) — 2fs
fs (fr = [s) fo

Similarly, by calculating the coefficients of the linear dependence among

v7, Prug, PrQguv,

g g + feho = 0. (39)

we have that

(fe—1) fa Jr—Jfs+ fafs — fafo 8

RO [0 ) R Py ATy R A
By (38), this is rewritten as
Jo—1 frfs —2f7+ Js Jr—Js B
=T s P RGe T 40)

Further, in the definition of ®, by calculating the coefficients of the linear dependence
among

/ / ] / / / / / / /
vy, Prug, PrQguy,  PrQg Qg vy,

we have that

fo(fo—1) o — f7(1_2f8+f8f9)¢
Flfs=D(fr=12""  (fi-1)(fs—12 "
L RCR-D KRG

(fs =D(fo—1)
By (38), this is rewritten as
fo (fs —1)° Jr(L=2fs + fsfo)
fr(fo — D) (fr = f3)? fs (fz = 1fs)

Since 1y = ¢7, g = ¢g, Y9 = ¢g by the assumption of the induction, we obtain the
following relation from (39) and (41),

fo(fs—1)° (L =2fs+ fo)
fr (fe = 1) (fr = fs) fs (fr = fs)

To show the proposition, it is sufficient to show that o0 = ¢19. Hence, it is sufficient to

show that
fo(fs—1)° (L =2fs+ fo)
fr (fs — D) (fr — f3)? fs (fr — fs)

By using (38), this is rewritten as

fo(fs—1)°
Jr(fs =) (fr = f3)

(fo = D)(fro = 1)

7 — s+ (2fs —1) g — fa fodro = 0. (41)

5 U7 Vs — g = f3 fo (10— Y1o)-

Y7

Yy — g = 0.

fr(fs = D (frfs = 2fr — fs)
fs (fr = fs)?

5 U7 — Y — g = 0.
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Further, by using (40), we can eliminate ¥g and 9. Then, we obtain

( fo (fs —1)° + (fo—1) fr (fs — 1)
fr(fe =D(fr = 1)  (fs = fo)(fr = fs)

Since the coefficient is ¢ is rewritten as (37), this formula holds similarly as in Case 1.
Therefore, we obtain the proposition in this case.

)1/17 = 0.

Case 3: the case where b3 = by = 0;.
In this case, we have that

e
f10=f9+<€9_—i9)7 f9:f8+1_%- (42)
fs

In the definition of W, the differences among s, 1y, 11 are presented by

vg, FPgvg, FPszQguro.

These vectors are linearly dependent. By calculating their coefficient concretely, similarly
as in Case 1, we have that

(=1 f _Js—Jo+ Jsfo — Jsho fo _
(fr = fs)(fo = 1) v (fs = fo)(f10 = 1) Pt Jo = f1o v =0
By (42), this is rewritten as
o Jsfo = 2fs + Jo fo (fs = fo)? _
[ A R A L (43

Similarly, by calculating the coefficients of the linear dependence among
vr,  Prus,  Pr Py,

we have that

(fo—1) /s —fr—Js+ fifs + f1/o Js _
(fo = f)(fs —1) vt (fr = fe)(fo— 1) ¢8+f8_f9 Yo =0
By (42), this is rewritten as
(fo —D(fr = [s) 2
RN BI AT A S, )

Further, in the definition of @, by calculating the coefficients of the linear dependence

among
/ / / / / ! / / / /
vy, Prug, PrPug,  Pr Py Qg vy,

we have that

_ fo (fo—1) b — fr(fo —2) 5
(fo— D f(fr—12(fs—1 " (F-D(fs—12"
201 3
N fe (L —=2fs+ fsfo) bo -+ fs fo 60 = 0.

(fs = 1)2(fy — 1)2 (fo = 1)(fio — 1)
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By (42), this is rewritten as
Cfe(fs=1) 0 fo—2 1—=2fs+ fsfo fo (fs = fo)?
f2(fs=1) o Js o5t Jo—1 Pt fs (fo—1)

Since 1y = ¢, s = ¢s, Y9 = @9 by the assumption of the induction, we obtain the
following relation from (43) and (45),

fo (fs —1) 2 L) (fs — fo)?

¢10 = 0. (45)

JoNJ8 = 1) 2 e _ - |
AU TR T gy e )
To show the proposition, it is sufficient to show that 119 = ¢109. Hence, it is sufficient to
show that ) 2
S U — s+ = 0.

i (fe=1) Js

By this formula and (44), we can eliminate g and 9. Then, we obtain

( fo (fs —1) N (fe —1)(fr — fs)
Bfs—1)  (fo—fr)fr(fs—1)

Since the coefficient of v is rewritten as (37), this formula holds similarly as in Case 1.
Therefore, we obtain the proposition in this case.

>¢7 = 0.

Case 4: the case where bs = oy' and by = 0.
In this case, we have that

_1)2 _1)\2
f1o=f9+(“];9_—i9), f9:f8‘|’(];8_—2. (46)
fs f7
We put s 5
r k r k
U D@ T @ D@1y

for k =17,8,9,10. §
In the definition of ¥, the differences among 15, 19, 119 are the same as in Case 3,
and we have that

~ (F=1) f s — Js = Jo+ [sJo — fsSuo o

(fr = fs)(fo— 1) (fs = fo)(fro — 1) Jo— fio
By replacing v, with 1}, and by using (46), this is rewritten as

fr fo(fs —1) g — f82 (=2fs + fo+ fsfo) g — fs fg3 (fs =1)¢y = 0. (47)

Similarly, by calculating the coefficients of the linear dependence among

U7, Q7U87 Q7 P8 Vg,

g + 1o = 0.

we have that

(fe —1) fs(fo—1) Jo—Jfs+ fofs — fifo

T e T [

fs(fo—1) B
BT 0
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By replacing v, with 1} and by using (46), this is rewritten as

(fo—1)*(fr — 1) f3 fe(fr— fs)(fo—1)
(fe — fr)(fs = 1)(fo — 1) fr(fs—1)

Further, in the definition of @, by calculating the coefficients of the linear dependence
among

Vot (=2fr+ fs+ frfs) v + g = 0. (48)

v, Qrug, Q7 Pyug, Q7 PyQg iy,
we have that
Jo (fo—1) 4
folfe—1)(fr— 127"
n fe (L—2fs+ fsfo) do + fa [ (fs — 1)
(fs = D(fo — 1) (fo—D(fio —1)?

By replacing ¢, with ¢ and by using (46), this is rewritten as
y ) k

W%—ﬁ(l—ﬁﬁfsfg) St 13 (1=2fs+ fsfo) o+ fs [ (fs—1) ¢lo = 0. (49)

Since YL = ¢, i = @k, Yy = ¢y by the assumption of the induction, we obtain the
following relation from (47) and (49),

(A =2f4 fsfo) &
(fr—D(fs—1>

p10 = 0.

-1
%w; — (=24 fo) U — f2(fo— D)W = fi f3 (fs = 1) (¥ — dlo).
To show the proposition, it is sufficient to show that ¢y = ¢19. Hence, it is sufficient to
show that )
%@b;—f?(l—ﬂgjufg)%_fg(fg_ ) = 0.

By (46), this is rewritten as
Jo (fr — fe)(fo— 1) f (fr = fa)(fo = 1)
fZ(fs—1) fr(fs—1)
By this formula and (48), we can eliminate ¥§ and 1. Then, we obtain
( (fo—1)(fr =1 fZ Jo (fr — fe)(fo—1)
(fo = f)(fs = 1)(fo — 1) f(fs—1)

Since the coefficient of v, is rewritten as (37), this formula holds similarly as in Case 1.
Therefore, we obtain the proposition in this case. O

Vo= (=2fr + fs + frfs) g — Yy = 0.

+ );z/?:o.

The following lemma is used in the proof of the above proposition.

Lemma 5.2. By the reflection of an open two-bridge knot diagram with respect to a
vertical line, oy and o5 are exchanged, and the values of ¢, and ¥y, become (—1)-multiple
of the original values.
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0 0 1
Proof. In the definition of ®, ®(c) and ®(o, ") are conjugate by M; = (0 1 O). Fur-
1 0 0
ther, the value of ® of the top part of a two-bridge knot diagram becomes M;-multiple of
the original vector. Furthermore, the value of ® of the bottom part of a two-bridge knot
diagram becomes (—M;)-multiple of the original vector. Hence, the value of ¢,, becomes
(—1)-multiple of the original value.

In the definition of ¥, ¥(oy) and ®(0, ') are conjugate by M, = <1 0

0 -1
the value of U of the top part of a two-bridge knot diagram becomes M,-multiple of the
original vector. Furthermore, the value of ¥ of the bottom part of a two-bridge knot
diagram becomes (—M,)-multiple of the original vector. Hence, the value of 1, becomes
(—1)-multiple of the original value, as required. O

) . Further,

Without assuming that zo = oo, we can put

é<1m1> :é(lml> :ﬁ(l 0 1),
®(1m1> - ‘I’<1ﬂ_@x1> - 1f0:v1 (0.

consistently with the definitions of ® and W. Indeed, we can show Lemma 5.2 without

using these formulas, but these formulas are helpful to understand the symmetry of Lemma
5.2.

The following example shows the initial cases of the induction of the proof of Propo-
sition 5.1.

Example 5.3. Proposition 5.1 holds for m < 3.

Proof. By the symmetry of Lemma 5.2, it is sufficient to show the formula of Proposition
5.1 for the plat closures of o7 - b- by for b = 1, oy, 05", 02, 0105 ", 05 01, 05 2, recalling
that the knot type does not depend on the choice of by = o, or o, '. We note that some
of them are not knots, but 2-component links. We calculate both sides of the formula
concretely for these cases.

For the plat closure of o7 - by,

1
bi@) = tile) = -
For the plat closure of o7 - oy - by,
2
G2(x) = Yolz) = — a1
For the plat closure of o2 - o, * - by,
6a(e) = tala) = =,
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For the plat closure of 0% - 0% - by,

B 3r —1
22 (z—1(x+1)

P3(z) = Yy(z) =

For the plat closure of o2 - o105 " - by,

r(z? — 1 +2)
xr) = xr) = .
For the plat closure of 02 - o, 'y - by,
2z (x+1)
¢3(z) = Ys(z) = — PR
For the plat closure of o2 - 52 - by,
322 —5x+1
93(r) = vslw) = 22 (a2 —x+1)
Hence, Proposition 5.1 holds for m < 3. O
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