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Abstract. It follows from work of S. Mochizuki, F. Liu, and B. Osserman
that there is a relationship between Ehrhart’s theory concerning rational
polytopes and the geometry of the moduli stack classifying dormant indige-
nous bundles on a proper hyperbolic curve in positive characteristic. This
relationship was established by considering the (finite) cardinality of the set
consisting of certain colorings on a 3-regular graph called spin networks. In
the present paper, we recall the correspondences between spin networks, lat-
tice points of rational polytopes, and dormant indigenous bundles and present
some identities and explicit computations of invariants associated with the
objects involved.
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1. Introduction

S. Mochizuki, F. Liu, and B. Osserman established a relationship (cf. [19]; [14])
between

• certain combinatorial invariants, such as the number of spin networks
and the Ehrhart quasi-polynomials of certain rational polytopes, and
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• the degree over the moduli stack of curves Mg,Fp of the moduli stack

classifying dormant indigenous bundles, which we denote by MZzz...

g,r,Fp
.

More precisely, the work of S. Mochizuki reduces the computation of the p-
curvature of an indigenous bundle to an entirely combinatorial issue (cf. [19], In-
troduction, § 1.2, p. 41, Theorem 1.3; [19], Chap. IV, p. 211, Theorem 2.3; [19],
Chap. IV, p. 221, Theorem 3.2; [19], Chap.V, § 1). This reduction allows one
to perform various explicit computations (cf. [19], Chap.V, § 1, p. 237, Corol-
lary 1.3; [19], Chap.V, § 3.2, p. 267, Corollary 3.7). Moreover, by applying
this reduction, F. Liu and B. Osserman conclude that the number of dormant
indigenous bundles on a general curve may be expressed as a polynomial with
respect to the characteristic of the base field (cf. [14], Theorem 2.1).

In the present paper, we explore further this nontrivial interaction between
combinatorics and algebraic geometry in positive characteristic that appears
in the work of earlier authors. In particular, we recall the correspondences
between the various objects indicated above (i.e., spin networks, Ehrhart quasi-
polynomials, and dormant indigenous bundles) and present some identities and
explicit computations of invariants associated with them.
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A spin network

1.1. A spin network is a type of dia-
gram which is used, in physics, to rep-
resent states and interactions between
particles and fields in quantum me-
chanics (cf. [30]). The history of spin
networks in this context dates back to
the early seventies to the work of R.
Penrose, which arose from attempts to
build up space-time and quantum me-
chanics simultaneous from combinato-
rial principles (cf. [23]; [24]). Penrose posited a system consisting of a number
of “units”, each of which has a total angular momentum (cf. [26], § 1, 2). These
units interact in ways that conserve total angular momentum. The system is
then described by an arbitrary 3-regular graph whose edges are labeled by inte-
gers, corresponding to twice the total angular momentum. The nodes describe
interactions at which the units meet. The only condition imposed is that at
the nodes, the conservation of angular momentum must be satisfied. Such a
combinatorial description makes it possible to consider the cardinality of cer-
tain naturally defined finite sets of such systems, i.e., spin networks, with, say,
a given fixed underlying 3-regular graph. One natural question in this context
is the following:

Can one calculate explicitly the cardinality of such finite sets of
spin networks?

1.2. The Ehrhart quasi-polynomial associated to a rational convex polytype in
a finite-dimensional vector space over the field of real numbers R is a periodic
sequence of polynomials (with coefficients in the field of rational numbers Q)



COMBINATORICS OF DORMANT INDIGENOUS BUNDLES 3

that encodes the relationship between the volume of the given polytope and the
number of lattice points inside this polytope, as we shall explain below. (For
definitions and basic properties concerning polytopes, we shall refer to [4].)
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A convex polytope

Let n be a nonnegative integer, V
an n-dimensional R-vector space, and
L a lattice in V (i.e., a finitely gen-
erated submodule of V such that the
natural map L ⊗Z R → V is an iso-
morphism). Write Q · L for the image
of the natural map L ⊗Z Q → V . A
rational convex polytope in V is a (nec-
essarily compact) subset of V that may
be obtained as the convex hull (cf. [4],
Ch. I, 1.4 Definition) of a finite set of
points in Q · L ⊆ V . Let us fix a ra-
tional convex polytope P in V . The
dimension of P is defined to be the di-
mension d of the smallest R-subspace
of V containing P . For m a nonneg-
ative integer, we shall denote by mP

the polytope obtained as the image of P via the map V → V given by mul-
tiplication by m. The smallest positive integer k ∈ Z>0 for which the vertices
(cf. [4], Ch. I, 4.3 Definition, (a)) of kP belong to L is called the denominator
of P . Let us denote by

iP : Z≥0 → Z≥0

the lattice-point counting function, i.e., the function which to any nonnegative
integer m assigns the cardinality of the set mP ∩ L:

iP(m) = ](mP ∩ L).

E. Ehrhart proved (cf. [1]; [2]; [3]) that the function iP is a quasi-polynomial
function of degree d and period k with coefficients in Q, i.e., that there is a
(unique) sequence of polynomials

fP(t) := (fP
i (t))i∈Z,

where fP
i (t) denotes a polynomial of degree d with coefficients in Q, such that

iP(m) = fP
i (m) for m ≡ i (mod k).

We shall write fP(m) := fP
m(m) (m ∈ Z). The sequence fP(t) = (fP

i (t))i∈Z is
called the Ehrhart quasi-polynomial of P .

The number of lattice points inside a rational convex polytope has been stud-
ied intensively in combinatorics, algebraic geometry, number theory, and differ-
ential geometry. The determination of the Ehrhart quasi-polynomial fP(t) of
P has significant implications for various areas of mathematics. Certain of the
coefficients of the various constituent polynomials fP

i (t) ∈ Q[t] of fP(t) are easy
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to understand (cf. [31]). For example, Ehrhart showed (cf. [1]) that

“ the leading coefficient of fP
i (t)” = Vol(P),

where we observe that any basis of V determines a standard Euclidean measure
on V which, when considered up to positive real multiples, is independent of
the choice of basis; if the dimension of P is equal to n, then we write Vol(P) for
the volume of P with respect to the measure given by the positive real multiple
of such a standard Euclidean measure on V for which that any fundamental
domain of L has volume 1; if the dimension of P is < n = dim(V ), then we
compute its volume with respect to the lattice obtained by intersecting its affine
hull with L.

To the knowledge of the author, no simple general procedure is known for
determining arbitrary coefficients of the constituent polynomials of the Ehrhart
quasi-polynomial. In this context, it is of interest to consider the following
question:

Do there exist classes of rational convex polytopes for which one
can explicitly determine the associated Ehrhart quasi-polynomial?

A hyperbolic curve

1.3. An indigenous bundle is a P1-bundle on an alge-
braic curve, together with a connection, that satisfies
certain properties (cf. Definition 8.1). The notion of an
indigenous bundle was originally introduced and stud-
ied by Gunning in the context of compact hyperbolic
Riemann surfaces (cf. [6]). One may think of an indige-
nous bundle as an algebraic object that encodes the (analytic, i.e., non-algebraic)
uniformization data for a Riemann surface. Various equivalent formulations,
involving such diverse types of mathematical objects as differential operators,
atlases of coordinate charts, and kernel functions, have been studied by many
mathematicians.

̃=]‘«fi¤̃“‒ =̂£“‘£¡|“«†fl=’†“‘§|
^=¢•‹|fi’«§£\=\†fi‡|=|›†£‹‹|‘=·£‒¢

Just as in the case of the
theory over C, one may de-
fine the notion of an indigenous
bundle and the moduli space
classifying indigenous bundles in
positive characteristic. Various
properties of such objects were
firstly discussed in the context
of the p-adic Teichmüller the-
ory developed by S. Mochizuki
(cf. [18], [19]). A dormant torally
indigenous bundle is an indige-
nous bundle satisfying certain
conditions, including a condition

peculiar to positive characteristic, i.e., the condition that its p-curvature van-
ish identically (cf. Definition 8.2; Definition 8.3). If the underlying curve is a
proper hyperbolic curve, then a dormant torally indigenous bundle corresponds,
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in a certain sense, to a certain type of rank 2 semistable bundle (cf., e.g., [21],
Proposition 4.2) whose pull-back by Frobenius is unstable. Such semistable
bundles have been studied in a different context (cf. [22], [10]).

Let
MZzz...

g,r,Fp

be the moduli stack classifying pointed stable curves of type (g, r) (with 2g−2+
r > 0) over Fp := Z/pZ equipped with a dormant torally indigenous bundle (cf.

the notation “Zzz...”!). It is known (cf. Theorem 8.4) that MZzz...

g,r,Fp
is represented

by a proper, smooth Deligne-Mumford stack over Fp of dimension 3g − 3 + r.
Moreover, if we denote by Mg,r,Fp the moduli stack classifying pointed stable

curves of type (g, r) over Fp, then the natural projection MZzz...

g,r,Fp
→ Mg,r,Fp is

finite, faithfully flat, and generically étale.

One natural question concerning the geometry of MZzz...

g,r,Fp
is the following:

Can one calculate explicitly the degree degMg,r,Fp
(MZzz...

g,r,Fp
) of MZzz...

g,r,Fp

over Mg,r,Fp ?

The generic étaleness of MZzz...

g,r,Fp
over Mg,r,Fp implies that if X is a sufficiently

generic stable curve of type (g, r) over an algebraically closed field of character-
istic p, then the number of dormant torally indigenous bundles on X is exactly

degMg,r,Fp
(MZzz...

g,r,Fp
).
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1.4. In the present paper, we discuss a
certain convex polytope arising from a
3-regular quasi-graph G (cf. Definition
2.1), which we call the Liu-Osserman
polytope of G and denote by PG (cf.
Definition 3.1). PG is a rational con-
vex polytope, embedded in the space
of real-valued functions on the edges
of G, satisfying certain triangle in-
equalities and other constraints. One
verifies easily from the definitions a
fairly straightforward relationship be-
tween the set of spin networks with a
given fixed underlying 3-regular graph G and the lattice points inside PG. In
fact, the only substantive discrepancy is a factor that arises from the number
of 2-regular sub-quasi-graphs of G (cf. Proposition 4.3 or [14], Lemma 3.3).
Moreover, it follows from [19], Introduction, § 1.2, Theorem1.3; [19], Chap.V,
§ 1 (cf. Corollary 8.10) that, for every sufficiently large prime number p, there
is a bijective correspondence between the lattice points inside (p−2)PG and the
set of isomorphism classes of dormant torally indigenous bundles on a totally
degenerate curve whose dual quasi-graph is isomorphic to G (cf. Definition 8.7).
In particular, this circle of ideas allows one to conclude that the three questions
displayed in italics above are, in essence, equivalent. In the present paper, by
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applying these ideas, we obtain some identities and explicit computations which
answer these questions, as we explain in the statements of the following results.

Theorem A.
Let G = (V,E, I) be a connected 3-regular quasi-graph (cf. Definition 2.1, 2.2,

2.3). Write PG for the Liu-Osserman polytope of G (cf. Definition 3.1) and
fG(t) := (fG

i (t))i∈Z for the Ehrhart quasi-polynomial of PG. Then the following
hold:

(i) The isomorphism class of the quasi-graph G may be reconstructed from
the isomorphism class of the polytope PG (see Proposition 5.3 for a pre-
cise statement).

(ii) The quasi-polynomial fG(t) depends only on the pair of integers (]V, ]E),
where for a set S we denote by ]S the cardinality of S (see Corollary 6.4
and Remark 2.5 for a precise statement).

(iii) If, moreover, ]E is even (resp., odd), then, for i ∈ Z, the polynomial
fG

i (t) ∈ Q[t] may be expressed in the following form:

fG
i (t) = Vol(PG) ·

1
2
·]E∏

j=1

(t2 + 4t + aj
i ),

(
resp., fG

i (t) = Vol(PG) · (t + 2)

1
2
·(]E−1)∏
j=1

(t2 + 4t + aj
i ),

)
where the aj

i ’s are complex numbers such that

1
2
·]E∏

j=1

aj
i = Vol(PG)−1

(
resp., 2 ·

1
2
·(]E−1)∏
j=1

aj
i = Vol(PG)−1

)
.

(iv) If, moreover, G is a graph, then for each odd i ∈ Z, the polynomial
fG

i (t) ∈ Q[t] may be expressed as follows:

fG
i (t) = −(t + 2)g

22g−1
· Resx=0

[cot((t + 2)x)

sin2g−2(x)
dx

]
,

where g := 1− ]V + ]E and Resx=0(f) denotes the residue of f at x = 0.
In particular, we have

Vol(PG) =
(−1)g · B2g−2

2 · (2g − 2)!
,

where B2g−2 denotes the (2g−2)-nd Bernoulli number (cf. Remark 8.5).

Also, we conclude the following result.

Theorem B (= Corollary 8.10).
Let G = (V,E, I) be a 3-regular graph. Write fG(t) for the Ehrhart quasi-

polynomial of the Liu-Osserman polytope of G, SpinG(m) (m ∈ Z≥0) for the
set of m-colored spin networks on G (cf. Definition 2.6), and NG for the set of
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2-regular sub-quasi-graphs of G (cf. Definition 4.1). Then, for p an odd prime
with p > 2(g − 1), we have equalities

fG(p − 2) =
]SpinG(p − 2)

]NG

= degMg,0,Fp
(MZzz...

g,0,Fp
)

= − pg

22g−1
· Resx=0

[ cot(px)

sin2g−2(x)
dx

]
,

where g := 1 − ]V + ]E.

We shall remark on results of the present paper, displayed in Theorem A, B.

Remark 1.4.1
Our discussions and results in the present paper follow, to a substantial extent,
the idea discussed in [14]. The two first equalities of the display in Theorem B
are implicit in [14] (cf. the proofs of [14], Lemma 3.3, Theorem 3.9). Moreover,
the latter assertion of Theorem A (ii) is derived (cf. the proof of Lemma 7.2)
as a natural consequence of the discussion in the proof of [14], Theorem 2.1.

Remark 1.4.2
Theorem A (ii) contains the content of [14], Theorem 2.4, which asserts that the
odd values of the Ehrhart quasi-polynomial depend only on the type (g, r). Liu
and Ossermann conjectured, in the context of this result, that the even values
also depend only on the type (g, r) (cf. [14], Conjecture 4.2). Thus, Theorem A
(ii) yields an affirmative answer to the conjecture.

Remark 1.4.3
One key ingredient in the proof of Theorem A (iv), as well as in the proof

of Theorem B, is an explicit calculation of the degree degMg,0,Fp
(MZzz...

g,0,Fp
) (for

p > 2(g−1)) obtained by the author in [29] (cf. Theorem 8.4 (ii); [29], Theorem
A). One special case of this calculation, which was verified by S. Mochizuki
(cf. [19], Chap. V, Corollary 3.7), H. Lange-C. Pauly (cf. [13], Theorem 2),
and B. Osserman (cf. [22], Theorem 1.2) (by applying different methods) is the
following equality:

degM2,0,Fp
(MZzz...

2,0,Fp
) =

1

24
· (p3 − p).

2. Spin networks

We start by recalling the notion of a 3-regular graph and a spin network.
We shall follow the definitions of a spin network discussed in [24], p.241. For
notations and conventions concerning multisets, we shall refer to [25]. The
following definition of a quasi-graph is essentially the same as [14], Definition
2.2. Also, the following definition of a graph is the same as the definition of a
multigraph in [32]. Unlike some definitions of the notion of a “graph”, in this
definition, we do not consider the distinct branches of an edge; in particular, for
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us, an automorphism of a graph (cf. Definition 5.1) that induces the identity
automorphisms on the sets of vertices and edges, but which may permute the
branches of an edge will be regarded as the identity automorphism.

Definition 2.1.
A (finite) quasi-graph is a triple

G = (V,E, I)

consisting of

• a finite set V , whose elements are called vertices,
• a finite set E, whose elements are called edges, and
• a map I : E → V [1] t V [2], called an incidence relation, where V [i]

(i = 1, 2) denotes the set of multisets over V with cardinality i (cf. [25],
Definition 1).

If v ∈+ I(e) for v ∈ V , e ∈ E (cf. [25], Definition 2), then we shall say that
e is incident to v. A loop is an edge incident to the same vertex. Elements of
Efree := I−1(V [1]) are called free, and elements of Efix := I−1(V [2]) are called
fixed (hence, E = Efree t Efix). A (finite) graph is a quasi-graph G = (V,E, I)
satisfying the condition Efree = ∅.

Let us fix a quasi-graph G = (V,E, I).

Definition 2.2.
We shall say that G is connected if for any two of its vertices u, v there exists
a sequence e1, e2, · · · , el of edges of G such that u ∈+ I(e1), v ∈+ I(el) and
I(ej) ∩ I(ej+1) 6= ∅ for j = 1, · · · , l − 1.

For a vertex v ∈ V , we shall denote by

AG(v)

the multiset consisting of edges incident to v, where any loop incident to v
occurs twice in AG(v).

Definition 2.3.
For m ∈ Z>0, we shall say that G is m-regular if for any vertex v ∈ V , the
cardinality of the multiset AG(v) is exactly m.

Definition 2.4.
Let g, r be nonnegative integers, and assume that G is connected (cf. Definition
2.2). We shall say that G is of type (g, r) if

g = 1 − ]V + ]Efix, and r = ]Efree.

We shall refer to the integer g as the genus of G.
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Remark 2.5.
If a quasi-graph G0 = (V0, E0, I0) of type (g, r) is connected and 3-regular, then
one verifies from the incidence relation that

3 · ]V0 + ]Efree
0 = 2 · ]E0.

Hence, we have

]V0 = 2g − 2 + r, and ]E0 = 3g − 3 + 2r.

In particular, the number of vertices and edges in a connected 3-regular quasi-
graph (resp., a connected 3-regular graph) is completely determined by the type
of the quasi-graph (resp., graph).

Definition 2.6.
Let [a, b, c] be a multiset with cardinality three over the set Z≥0. We shall say
that [a, b, c] is preadmissible if any of the three integers a + b − c, a − b + c,
and −a + b + c is nonnegative. We shall say that [a, b, c] is admissible if it is
preadmissible and a + b + c is even. For n ∈ 1

2
·Z≥0, we shall say that [a, b, c] is

n-colored if a + b + c ≤ 2n.

Definition 2.7.
A spin network (resp., An n-colored spin network (n ∈ Z≥0)) on G is a collection
(λe)e∈E of nonnegative integers indexed by E such that for each vertex v ∈ V the
multiset

⊎
e∈+AG(v)[λe] (cf. [25], Definition 7.3) is admissible (resp., admissible

and n-colored).

Denote by

SpinG (resp., SpinG(n))

the set of spin networks on G (resp., the set of n-colored spin networks on G).
Observe that if (λe)e∈E is a spin network on G, then for each m ∈ Z≥0 the
collection (λe + 2m)e∈E forms also a spin network on G. It follows that SpinG

has infinitely many elements. On the other hand, each SpinG(n) (n ∈ Z≥0) is
evidently a finite subset of SpinG, and

SpinG =
⋃
n≥0

SpinG(n).

In particular, we may discuss the cardinality ]SpinG(n) of the various subsets
SpinG(n) (n ∈ Z≥0) of SpinG (cf. § 1.1).

3. Liu-Osserman polytopes

Next, we define a certain rational convex polytope constructed from a 3-
regular quasi-graph, for which we call the Liu-Ossermann polytope of the quasi-
graph.
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Fix a pair of nonnegative integers (g, r) with 2g− 2+ r > 0, and a connected
3-regular quasi-graph G = (V,E, I) of type (g, r) (cf. Definition 2.4). Denote
by

RE

the space of real valued functions v : E → R on E. The space RE is an
]E(= 3g− 3+2r)-dimensional R-vector space (cf. Remark 2.5), and the subset

ZE

of RE consisting of integer valued functions v : E → Z(⊆ R) forms a lattice of
RE.

Definition 3.1. (cf. [14], Definition 2.3)
Let us define a subset

PG

of RE to be the set of real-valued functions w : E → R on E satisfying the
following inequalities:

(i) for each e ∈ E, w(e) ≥ 0,
(ii) for each v ∈ V ,

∑
e∈+AG(v) w(e) ≤ 1, and

(iii) for each v ∈ V and e ∈+ AG(v), w(e) ≤
∑

e′∈+AG(v)−[e] w(e′)

(cf. [25], Definition 8). One verifies that PG is a connected ]E-dimensional
(namely, full dimensional) convex polytope in the space RE. We shall call
PG(⊆ RE) the Liu-Osserman polytope of G.

A vertex v of PG must satisfy all of the inequalities listed in Definition 3.1
(i), (ii), and (iii). Moreover, by replacing the inequalities with equalities, one
obtains a collection of linear constraints, and the vertex v must satisfy some ]E
independent constraints among these equalities. By rationality of coefficients
in such linear equalities, PG is a rational convex polytope with respect to the
lattice ZE(⊆ RE).

Let m be a nonnegative integer. It follows from the definition of PG that the
lattice-points mPG ∩ ZE inside mPG (cf. § 1.2) corresponds bijectively to the
set of Z≥0-valued functions w : E → Z≥0 such that for each v ∈ V the following
condition (iv)G,v,m holds:

(iv)G,v,m the multiset AG(v) is preadmissible and
m

2
-colored.

As we explained in § 1.2, the lattice-point counting function

iPG
; m 7→ iPG

(m) := ](mPG ∩ ZE)

is a quasi-polynomial function of degree ]E. We denote this quasi-polynomial
by

fG(t) = (fG
i (t))i∈Z,

where fG
i (t) ∈ Q[t].
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Example 3.2.
Let G(0,3) = (V(0,3) = {v0}, E(0,3) = {e1, e2, e3}, I(0,3)) be a connected 3-regular
quasi-graph of type (0, 3), which is uniquely determined up to isomorphism (cf.
Definition 5.1). G(0,3) and the Liu-Osserman polytope PG(0,3)

of G(0,3) may be
illustrated as follows:

e2

e1

e3

v0

G(0,3)

PG(0,3)

e1

e2

e3

0

(1
2
, 0, 1

2
)

(1
2
, 1

2
, 0)

(0, 1
2
, 1

2
)

It follows from a straightforward calculation that the lattice-point counting
function iPG

may be expressed as follows:

iPG
(m) =

{
1
24

(m + 2)(m2 + 4m + 3) if m is odd,
1
24

(m + 2)(m2 + 4m + 12) if m is even.

4. Sub-quasi-graphs

In this section, we recall a relationship between the set of colored spin net-
works on a given 3-regular quasi-graph and the lattice points inside the Liu-
Osserman polytope of the quasi-graph. This relationship (= Proposition 4.3) is
implicit in the proof of [14], Lemma 3.3.

Fix a connected 3-regular quasi-graph G = (V,E, I).

Definition 4.1. (cf. [14], Definition 3.2)
A sub-quasi-graph of G is a quasi-graph H = (VH , EH , IH) satisfying the follow-
ing conditions

• VH and EH are nonempty subsets of V and E respectively,
•

⋃
e∈EH

I(e)∗ ⊆ VH (cf, [25], § 1 for the definition of the support of a
multiset M , denoted by M∗), and

• I|EH
= IH as functions from EH to V

[1]
H t V

[2]
H (⊆ V [1] t V [2]).

Denote by

NG

the set of (not necessarily connected) 2-regular sub-quasi-graphs of G. It is
evident that ]NG > 0.
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Remark 4.2.
There exists a natural bijective correspondence between NG and 2PG ∩ZE. In-
deed, if H = (VH , EH , IH) is a 2-regular sub-quasi-graph of G, then the function
w(H) : E → Z defined by

w(H)(e) =

{
0 if e /∈ EH ,

1 if e ∈ EH .

is an element of 2PG∩ZE. Conversely, let w : E → Z be an element of 2PG∩ZE.
Set

E(w) := {e ∈ E | w(e) = 1}, V (w) :=
⋃

e∈E(w)

I(e)∗.

The image of E(w) via the incidence relation I : E → V [1] tV [2] is contained in
V (w)[1]tV (w)[2]; write I(w) for I|E(w), as a map from E(w) to V (w)[1]tV (w)[2].
Then the triple G(w) = (V (w), E(w), I(w)) forms a 2-regular sub-quasi-graph
of G. One verifies that the assignments H 7→ w(H), w 7→ G(w) determines a

bijective correspondence NG
∼→ 2PG ∩ ZE. In particular, we have

]NG = iPG
(2).

Proposition 4.3. (cf. [14], Lemma 3.3)
For an odd n ∈ Z≥0, there exists a natural bijection

SpinG(n)
∼→ (nPG ∩ ZE) × NG.

In particular, we have

iPG
(n)(= fG(n)) =

]SpinG(n)

]NG

.

Proof. First, we shall construct a map (nPG ∩ ZE) × NG → SpinG(n). Let
(w : E → Z, H = (VH , EH , IH)) be an element of (nPG ∩ZE)×NG. To the pair
(w,H), we associate a function wH : E → Z defined by

wH(e) =

{
2 · w(e) if e /∈ EH ,

n − 2 · w(n) if e ∈ EH .

Since n is odd, an element e of E lies in EH if and only if wH(e) is odd. Here,
for m ∈ Z≥0, one may verify easily the following fact:

(A)m a multiset [a, b, c] with cardinality three is admissible and m-colored if
and only if the multiset [a,m − b,m − c] is admissible and m-colored.

The collection (2·w(e))e∈E forms an n-colored spin network on G, it follows from
the definitions of wH and the fact (A)n that the collection (wH(e))e∈E forms also
an n-colored spin network on G. Hence, the assignment (w,H) 7→ (wH(e))e∈E

determines a map

α : (nPG ∩ ZE) × NG → SpinG(n).
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Next, we consider the bijectivity of α. Let λ = (λe)e∈E be an element of
SpinG(n). Set Eλ := {e ∈ E| λe is odd}, Vλ :=

⋃
e∈Eλ

I(e)∗ (cf. [25], § 1).

The image of Eλ via the incidence relation I : E → V [1] t V [2] is contained in

V
[1]
λ t V

[2]
λ ; write Iλ for I|Eλ

as a map from Eλ to V
[1]
λ t V

[2]
λ . Then the triple

Hλ := (Vλ, Eλ, Iλ) forms a 2-regular sub-quasi-graph of G. Moreover, denote by
wλ : E → R the function defined by

wλ(e) =

{
1
2
· λe if e /∈ Eλ,

1
2
· (n − λe) if e ∈ Eλ.

It follows from the fact (A)n and the definition of Eλ that wλ is an element of
nPG ∩ZE. One verifies easily that the assignment λ 7→ (wλ, Hλ) determines an
inverse to α, and hence completes the proof of Proposition 4.3. ¤

5. Reconstruction of graphs
(the proof of Theorem A (i))

In this section, we make and prove a precise statement of Theorem A (i). To
do this, we start by defining the notion of an isomorphism of graphs, as well as
of polytopes.

Definition 5.1.
Let G = (V,E, I), G′ = (V ′, E ′, I ′) be quasi-graphs. An isomorphism from

G to G′ is a pair ξ = (ξver, ξedg) consisting of bijections ξver : V
∼→ V ′, ξedg :

E
∼→ E ′ that are compatible, in the evident sense, with the respective incidence

relations I, I ′. We shall say that G is isomorphic to G′ if there exists an
isomorphism from G to G′. Denote by

Isom(G,G′)

the set of isomorphisms from G to G′. If G = G′, then the set Isom(G, G) (i.e.,
the set of automorphisms of G) forms a group under composition of morphisms.

Definition 5.2.
Let P ⊆ Rn, P ′ ⊆ Rn′

be polytopes embedded in a finite-dimensional R-vector
space. An isomorphism from P(⊆ Rn) to P ′(⊆ Rn′

) is an R-linear bijection

L : Rn → Rn′
that induces, by restricting, a bijection L|P : P ∼→ P ′ from P to

P ′. We shall say that P is isomorphic to P ′ if there exists an isomorphism from
P to P ′. Denote by

Isom(P ,P ′)

the set of isomorphisms from P to P ′. If P = P ′, then the set Isom(P ,P) (i.e.,
the set of automorphisms of P) forms a group under composition of morphisms.
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By the above definitions, it makes sense to speak of the isomorphism class of
a quasi-graph and the isomorphism class of a polytope.

Let G = (V,E, I), G′ = (V ′, E ′, I ′) be connected 3-regular quasi-graphs and
ξ = (ξver, ξedg) : G → G′ an isomorphism from G to G′. The bijection ξedg :

E
∼→ E ′ induces naturally an R-linear bijection Lξ : RE ∼→ RE′

. Moreover,
it follows from the definition of an isomorphism of quasi-praphs that Lξ is an
isomorphism between the Liu-Osserman polytopes PG(⊆ RE) and PG′(⊆ RE′

).
Thus, the assignment ξ 7→ Lξ determines a map

ΞG,G′ : Isom(G,G′) → Isom(PG,PG′).

If G = G′, then ΞG,G is a homomorphism between the respective automorphism
groups.

Now we formulate precisely the statement of Theorem A (i) as follows:

Proposition 5.3.
Let G(2,0) = (V(2,0), E(2,0), I(2,0)) be the connected 3-regular graph of type (2, 0)

(i.e., ]V(2,0) = 2 and ]E(2,0) = 3 by Remark 2.5) determined uniquely by the
following condition : V(2,0) = {u, v}, E(2,0) = {e1, e2, e3}, and I(2,0) : ei 7→ [u, v]
(i = 1, 2, 3).

(i) Let G = (V,E, I) be a connected 3-regular quasi-graph which is iso-
morphic to G(2,0). Write SV , SE for the symmetric groups on V , E
respectively. Also, write

ξG : Isom(G,G) → SV × SE

for the natural injection and

ξPG
: SE → Isom(PG,PG)

for the map that sends each σ ∈ SE to the automorphism RE ∼→ RE of
PG determined by assigning v 7→ v ◦σ (v ∈ RE). Then the maps ξG, ξPG

are isomorphisms of groups. Moreover, the map ΞG,G : Isom(G,G) →
Isom(PG,PG) may be identified, via these isomorphisms, with the second
projection SV × SE → SE.

(ii) Let G = (V,E, I), G′ = (V ′, E ′, I ′) be connected 3-regular quasi-graphs
neither of which is isomorphic to G(2,0). Then, the map ΞG,G′ is bijective.

Proof. Assertion (i) is straightforward. We consider assertion (ii). First, we

shall verify that ΞG,G′ is injective. Let ξ1 = (ξver
1 , ξedg

1 ), ξ2 = (ξver
2 , ξedg

2 ) be
elements of Isom(G,G′) satisfying that (Lξ1 :=)ΞG,G′(ξ1) = ΞG,G′(ξ2)(=: Lξ2).

The equality Lξ1 = Lξ2 : RE ∼→ RE′
of R-linear bijections implies that ξedg

1 =

ξedg
2 : E

∼→ E′. Moreover, we claim that ξver
1 = ξver

2 . Indeed, let us assume that

there is an element v of V such that ξver
1 (v) 6= ξver

2 (v). The fact ξedg
1 = ξedg

2 :

E
∼→ E ′ implies that ξedg

1 (AG(v)) = ξedg
2 (AG(v)). But G′ is connected, so it

occurs only when G′ is isomorphic to G(2,0). It contradicts to the hypothesis,
and hence, concludes that ξver

1 = ξver
2 . Thus we obtain that ξver

1 = ξver
2 and

ξedg
1 = ξedg

2 , i.e., ξ1 = ξ2. This completes the injectivity of ΞG,G′ .
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Next, we verify the surjectivity of ΞG,G′ . Toward the following discussion, we
set, for v ∈ V and a sufficiently small ε ∈ R≥0, a hyperplane

Hε
v := {f ∈ RE|

∑
e∈+AG(v)

f(e) = 1 − ε}

in RE and a function f ε
v : E → R defined by

f ε
v(e) =

{
1
3

if e ∈+ A(v), and
1
3
− ε if e /∈+ A(v).

For a sufficiently small ε ≥ 0, the element f ε
v of RE lies in PG. Denote by FG the

set of facets of PG (cf. [4], Ch. I, 4.3 Definition, (c)) in which the origin of RE

does not lie. It follows from the definition of PG that any facet h belonging to
FG is a subset of the hyperplane H0

vh
for some vertex vh ∈ V . Since the various

hyperplanes H0
v (v ∈ V ) are not parallel to each other, the assignment h 7→ vh

is well-defined and determines an injection

αG : FG → V.

We claim that αG is, moreover, surjective (i.e., αG is bijective). Indeed, for
each v0 ∈ V , the point f ε

v0
in PG satisfies that f ε

v0
∈ H0

v0
, and f ε

v0
/∈ H0

v for
v 6= v0. Hence, H0

v0
∩ PG is a nonempty facet of PG, and moreover, an element

of FG that is sent, by construction, to v0 via αG. This implies that αG is
surjective (i.e., αG is bijective).

Next, for v, u ∈ V , we consider a set Nv,u defined by

Nv,u := {n ∈ R≥0|f ε
v ∈ H(3−n)·ε

u }.
Since G is 3-regular, Nv,u includes exactly one nonnegative integer nv,u, which
coincides with the number of edges e with I(e) = [v, u]. The pair (E, I) may
be determined completely by the map

βG : V × V → Z≥0

(v, u) 7→ Nv,u.

(Note that if e1 and e2 are distinct edges such that I(e1) = I(e2) = {v, u} for
some v, u ∈ V , then we may not distinguish, by considering the map βG, e1

with e2. But this ambiguity will not confuse the isomorphism class of PG.)
In particular, if f is an element of Isom(PG,PG′), then by applying the affine
geometry of PG(⊆ RE), PG′(⊆ RE′

) and the maps αG, βG, αG′ , βG′ that there

exists an isomorphism G
∼→ G′ which is mapped to f via ΞG,G′ , i.e., ΞG,G′ is

surjective. This completes the proof of assertion (ii). ¤
Also, we conclude the following result.

Corollary 5.4.
Let G = (V,E, I), G′ = (V ′, E ′, I ′) be connoted 3-regular graphs, and suppose

that the Liu-Osserman polytope PG of G is isomorphic to the Liu-Osserman
polytope PG′ of G′. Then, G is isomorphic to G′.
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Proof. Recall (cf. Remark 2.5) that the genus of a graph is determined by
the number of its vertices. By considering the sets FG, FG′ and the bijections
αG : FG

∼→ V , αG′ : FG′
∼→ V ′ discussed in the proof of Proposition 5.3, the

assumption PG
∼= PG′ implies that ]V = ]V ′. Hence, it satisfies either (i) both

of G and G′ are of genus > 2, or (ii) both of G and G′ are of genus 2. In the
case of (i), the assertion follows from Proposition 5.3 (ii). Now, let us consider
the case (ii). Let G(2,0) be as in Proposition 5.3, and G′

(2,0) a connected 3-
regular graph of genus 2 not isomorphic to G(2,0), which is uniquely determined
up to isomorphism. Since PG(2,0)

is not isomorphic to PG′
(2,0)

, the assumption

PG
∼= PG′ implies that either G ∼= G′ ∼= G(2,0) or G ∼= G′ ∼= G(2,0). This

completes the proof of Corollary 5.4. ¤

6. Independence of Ehrhart quasi-polynomials
(the proof of Theorem A (ii))

In this section, we make and prove a precise statement of Theorem A (ii),
which yields an affirmative answer to a conjecture proposed in [14] (cf. [14],
Conjecture 4.2).

Definition 6.1.
Let G = (V,E, I) be a 3-regular quasi-graph, v1, v2 distinct vertices of G,

and e0, e1, e2 edges of G satisfying that e0 6= e1, e0 6= e2, and [e0, ei] ⊆ AG(vi)
(i = 1, 2). The A-move of G at e0 of type e1 ∨ e2 is the 3-regular quasi-graph
G′ = (V ′, E ′, I ′) determined uniquely by the following conditions:

(1) V ′ = V , E ′ = E,
(2) I ′|E′\{e1,e2} = I|E\{e1,e2}, and
(3) AG′(v1) = [e0, e1, e2], AG(v1) ] AG(v2) = AG′(v1) ] AG′(v2).

For simplicity, we often refer to G′ as the A-move of G at e0.

e0

e1

e2

v1

v2

e1

e2

v1 v2

e0A-move at e0

of type e1 ∨ e2

Proposition 6.2.
Let (g, r) be a pair of nonnegative integers with 2g− 2+ r > 0. Then any two
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connected 3-regular quasi-graphs of type (g, r) can be obtained from one another
by a finite sequence of A-moves.

Proof. Let Σ be an oriented topological surface that has genus g and r boundary
components. Recall that each pants decomposition of Σ associates naturally a
3-regular graph of type (g, r) (cf. [8], APPENDIX). This association turns any
elementary move between pants decompositions, in the sense of [17], § 2.2, into
either an operation of taking an A-move of a quasi-graph or the identity map.
Recall (cf. [7], § 2, Theorem 2) that any two pants decompositions of Σ may be
obtained from one another by a finite sequence of elementary moves. On the
other hand, for a 3-regular quasi-graph G of type (g, r), there exists at least
one pants decomposition ΣG of Σ that induces G by this association. Hence,
by passing to this association, the proof of Proposition 6.2 is completed. ¤
Proposition 6.3.

Let G = (V,E, I), e0, e1, e2, v1, v2, and G′ = (V ′, E ′, I ′) be as in Definition
6.1. Then, for each n ∈ Z≥0, there exists a natural bijection

nPG ∩ ZE ∼→ nPG′ ∩ ZE′
.

In particular, we have an equality iPG
= iPG′ : Z≥0 → Z≥0 of functions.

Proof. Denote by e3, e4 the edges satisfying that AG(v1) = [e0, e1, e3], and
AG(v2) = [e0, e2, e4].

We shall construct a bijection nPG ∩ZE ∼→ nPG′ ∩ZE′
. Let w be an element

of ZE(= ZE′
). Write a := w(e1), b := w(e3), c := w(e2), d := w(e4) and

e := w(e0). The function w satisfies the conditions both (iv)G,v1,n and (iv)G,v2,n

(cf. the discussion following Definition 3.1) if and only if the following two
conditions hold:

(i) e ≤ min{a + b, n − a − b, c + d, n − c − d},
(ii) e ≥ max{a − b, b − a, c − d, d − c}.

On the other hand, w satisfies the condition (iv)G′,v1,n and (iv)G′,v2,n if and only
if the following two conditions hold:

(iii) e ≤ min{a + c, n − a − c, b + d, n − b − d},
(iv) e ≥ max{a − c, c − a, b − d, d − b}.

Here, we set

P :=
1

2
· (n − |n − a − b − c − d|),

Q :=
1

2
· |a + b − c − d|,

R :=
1

2
· |a − b + c − d|,

S :=
1

2
· |a − b − c + d|.

Since equalities

min{A,B} =
A + B − |A − B|

2
, max{A,B} =

A + B + |A − B|
2
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(A, B ∈ R) hold, the conditions (i), (ii), (iii) and (iv) are, respectively, equiva-
lent to the following conditions:

(i) ⇔ e ≤ min
{
min{a + b, n − c − d}, min{n − a − b, c + d}

}
⇔ e ≤ min

{
P +

1

2
· (a + b − c − d), P − 1

2
· (a + b − c − d)

}
⇔ e ≤ P − Q,

(ii) ⇔ e ≥ max
{
max{a − b, c − d}, max{b − a, d − c}

}
⇔ e ≥ max

{
S +

1

2
· (a − b + c − d), S − 1

2
· (a − b + c − d)

}
⇔ e ≥ S + R,

(iii) ⇔ e ≤ min
{
min{a + c, n − b − d}, min{n − a − c, b + d}

}
⇔ e ≤ min

{
P +

1

2
· (a − b + c − d), P − 1

2
· (a − b + c − d)

}
⇔ e ≤ P − R,

(iv) ⇔ e ≥ max
{
max{a − c, b − d}, max{c − a, d − b}

}
⇔ e ≥ max

{
S +

1

2
· (a + b − c − d), S − 1

2
· (a + b − c − d)

}
⇔ e ≥ S + Q.

Now, we define a function w′ : E ′(= E) → R as follows:

w′(e′) =

{
w(e′) if e 6= e0, and

w(e′) + Q − R if e′ = e0,

where Q − R may be verified to be an integer. If w lies in nPG ∩ ZE, then it
follows from the above observation concerning the conditions (i)-(iv) that w′

lies on nPG ∩ ZE, and vice versa. Thus, the assignment w 7→ w′ determines
a bijection nPG ∩ ZE ∼→ nPG′ ∩ ZE. This completes the proof of Proposition
6.3. ¤

Now we shall formulate precisely the statement of Theorem A (ii), which
follows by applying Proposition 6.2, Proposition 6.3 (and the fact concerning
the leading coefficient of the Ehrhart quasi-polynomial (cf. § 1.2)).

Corollary 6.4.
Let (g, r) be a pair of nonnegative integers such that 2g − 2 + r > 0, and

G = (V,E, I), G′ = (V ′, E ′, I ′) connoted 3-regular quasi-graphs of type (g, r).
Then, we have an equality

iPG
= iPG′ : Z≥0 → Z≥0

of functions. In particular,

Vol(PG) = Vol(PG′), fG(t) = fG′
(t)
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(cf. the discussion preceding Example 3.2), and the respective minimum periods
of iPG

, iPG′ coincide.

7. Ehrhart-Macdonald reciprocity
(and the proof of Theorem A (iii))

Next, we consider the proof of Theorem A (iii). The discussion of this section
stems from the discussion in the proof of [14], Theorem 2,1, applied the Ehrhart-
Macdonald reciprocity (cf. the proof of Lemma 7.2). Here, recall the Ehrhart-
Macdonald reciprocity as follows.

Let Q be a rational convex polytope embedded in an n-dimensional R-vector
space Rn. Denote by Q◦ the relative interior of Q (cf. [4], 1.7 Definition) and
i◦Q : Z≥0 → Z≥0 the function which, to any m ∈ Z≥0, assigns the number of
lattice points inside (mQ)◦ , i.e.,

i◦Q(m) = ]((mQ)◦ ∩ Zn).

If fQ(t) denotes the Ehrhart quasi-polynomial of Q, then the Ehrhart-Macdonald
reciplocity (cf. [27]; [17]) asserts that

i◦Q(m) = (−1)dim(Q) · fQ(−m)

for m ∈ Z≥0.
Now, let us fix a connected 3-regular quasi-graph G = (V,E, I). We recall

the following

Proposition 7.1.
The minimal period of the Ehrhart quasi-polynomial fG(t) = (fG

i (t))i∈Z of PG

divides 4, i.e., fG
i (t) = fG

i+4(t) for i ∈ Z.

Proof. Recall (cf. [14], Lemma 3.4) that for any vertex v of the polytope PG, each
of the coordinates of v is equal to 0, 1

2
or 1

4
. Therefore, the assertion follows from

a well-known fact of Ehrhart’s theory explained in § 1.2 (or see [1]: [2]; [3]). ¤

Next, we determine a somewhat specific form of the polynomial fG
i (t) by

applying the Ehrhart-Macdonald reciprocity and Proposition 7.1.

Lemma 7.2. (cf. the proof of Lemma 7.2)
For each i ∈ Z, we have

fG
i (t − 4) = (−1)g−1 · fG

i (−t).

Proof. Fix an integer m with m ≥ 4. A lattice point inside the interior (mPG)◦

of mPG corresponds, by definition, to an integer-valued function w : E → Z
satisfying the following inequalities:

(i)◦ for each e ∈ E, w(e) > 0,
(ii)◦ for each v ∈ V ,

∑
e∈+A(v) w(e) < m,
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(iii)◦ for each v ∈ V and e ∈+ A(v), w(e) <
∑

e′∈+A(v)−[e] w(e′).

One verifies that an element w : E → Z of ZE lies in (mPG)◦ if and only if the
function w′ := w − 1 (i.e., w′(e) = w(e) − 1 for e ∈ E) lies in (m − 4)PG. That
is, the assignment w 7→ w′ determines a bijection

(mPG)◦ ∩ ZE ∼→ ((m − 4)PG) ∩ ZE.

Thus, we have

i◦PG
(m) = iPG

(m − 4)
(

= fG
m−4(m − 4)

)
,

and hence, by applying the Ehrhart-Macdonald reciplocity,

fG
m−4(m − 4) = (−1)3g−3+2r · fG

−m(−m)
(

= (−1)g−1 · fG
−m(−m)

)
(cf. Remark 2.5). On the other hand, it follows from Proposition 7.1 and [14],
Theorem 2.4 that fG

m−4(t) = fG
m(t) and fG

−m(t) = fG
m(t) for each m ∈ Z. Hence,

we conclude that

fG
i (m − 4) = (−1)g−1 · fG

i (−m)

for various pairs of integers (i,m) satisfying that m ≥ 4 and i ≡ m mod 4.
Thus, the required equality of polynomials is satisfied. ¤

Lemma 7.3.
Let f(t) ∈ C[t] be a monic polynomial of degree N > 0 satisfying that

f(t − s) = (−1)N ′
f(−t)

for s ∈ C and N ′ ∈ Z≥0. If N is even (resp., odd), then f(t) may be expressed
as the following form:

f(t) =

N
2∏

j=1

(t2 + st + aj),

(
resp., f(t) = (t +

s

2
) ·

N
2
−1∏

j=1

(t2 + st + aj).
)

where aj’s are complex numbers satisfying that
∏N

2
j=1 aj = 1 (resp., s

2
·
∏N

2
−1

j=1 aj =
1).

Proof. The equality f(t − s) = (−1)Nf(−t) implies that if r is a root of f(t),
then −r − s is also a root of f(t). Thus, we may express f(t) as

f(t) =
∏

k

(t − rk)
m(rk)(t + rk + s)m(rk)∨
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(where rk ∈ C and m(rk), m(rk)
∨ ∈ Z>0 for k = 1, 2, · · · )

=
∏

rk=−rk−s

(t − rk)
m(rk)(t + rk + s)m(rk)∨

·
∏

rk 6=−rk−s

(t − rk)
m(rk)(t + rk + s)m(rk)∨

=(t +
s

2
)m ·

∏
rk 6=− s

2

(t − rk)
m(rk)(t + rk + s)m(rk)∨ (∗)

for some m ∈ Z≥0.
Here, for a polynomial h ∈ C[t], we shall denote by h(j) the j-th derivative

of h with respect to t. By taking the j-th derivatives (j = 0, 1, 2, · · · ) on both
sides of the equality f(t − s) = (−1)Nf(−t), we obtain an equality

f (j)(t − s) = (−1)N+jf (j)(−t).

Similar to the case j = 0, if r is a root of f (j)(t), then −r − s is also a root of
f (j)(t). By taking account of this observation and the expression (∗) of f(t), it
follows from a routine argument that m(rk) = m(rk)

∨ for all rk with rk 6= − s
2
.

Thus, f(t) may be expressed as follows:

f(t) = (t +
s

2
)m ·

∏
rk 6=− s

2

((t − rk)(t + rk + s))m(rk)

= (t +
s

2
)δ ·

(
(t2 + st +

s2

4
)b

m
2
c ·

∏
rk 6=− s

2

(t2 + st − r2
k + srk)

m(rk)
)
,

where δ = 0 if m is even (equivalently, N is even), and δ = 1 if m is odd
(equivalently, N is odd). This completes the proof of Lemma 7.3.

¤

By combining Lemma 7.2 and Lemma 7.3 and the fact concerning the leading
coefficient of fG(t) (cf. § 1.2), we may conclude Theorem A (iii) as follows:

Corollary 7.4. (= Theorem A (iii))
If ]E is even (resp., odd), then for i ∈ Z the polynomial fG

i (t) ∈ Q[t] may be
expressed as the following form.

fG
i (t) = Vol(PG) ·

]E
2∏

j=1

(t2 + 4t + aj
i ),

(
resp., fG

i (t) = Vol(PG) · (t + 2) ·

]E−1
2∏

j=1

(t2 + 4t + aj
i ),

)
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where aj
i ’s are complex numbers satisfying that

]E
2∏

j=1

aj
i = Vol(PG)−1 (resp., 2 ·

]E−1
2∏

j=1

aj
i = Vol(PG)−1).

8. Dormant indigenous bundles
(and the proof of Theorem A (iv))

In this section, we recall a relationship between the lattice points inside nPG

(n ∈ Z≥0) and the set of isomorphism classes of certain P1-bundles on a given
proper hyperbolic curve in positive characteristic, which are called dormant
torally indigenous bundles. To prove Theorem A (iv), we apply this relationship
and reduces to counting such bundles, which was discussed in [29].

Fix a pair of nonnegative integers (g, r) with 2g − 2 + r > 0. Let k be a
field in which 2 is invertible, and denote by Mg,r,k the moduli stack of pointed
stable curves over k of genus g with r marked points (i.e., of type (g, r)), and
ζ : C → Mg,r,k the tautological curve, with its r marked points s1, · · · , sr :
Mg,r → C. Recall that Mg,r,R has a natural log structure given by the divisor

at infinity, where we shall denote the resulting log stack by Mlog

g,r,k. Also, by
taking the divisor which is union of the si and the pull-back of the divisor at
infinity of Mg,r,k, we obtain a log structure on C; we denote the resulting log
stack by Clog. Also, ζ : C → Mg,r,k extends naturally to a morphism of log stack

ζ log : Clog → Mlog

g,r,k.
Now, let S be a scheme over k and (X/S, {σi : S → X}i) a pointed stable

curve over S of type (g, r). It detemines its classifying morphism S → Mg,r,k,

that induces an isomorphism X
∼→ S ×Mg,r

C over S. By pulling-back the log

structures of Mlog

g,r,k and Clog, we obtain log structures on S and X; we denote

the resulting log stacks by Slog, X log respectively. Also, the structure morphism
of X/S extends to a morphism X log → Slog of log schemes, which is log smooth
(cf. [11], § 3). In this way, we consider the pointed stable curve (X/S, {σi}i) as
an object of log geometry.

First, we shall recall the definition of an indigenous bundle. Write PGL2

for the projective linear group of a 1-dimensional projective space and B for a
Borel subgroup of PGL2. Also, denote by sl2, b the Lie algebras corresponding
to PGL2, B respectively, and ι : b → sl2 the natural injection of Lie algebras
induced by the inclusion B ↪→ PGL2.

Suppose that π : E → X is a PGL2-torsor over X. By pulling-back the log
structure of X log, we obtain a log structure on E ; we denote the resulting log
stack by E log. Write TX/S, TE/S (resp., T log

X/S, T log
E/S) for the sheaves of derivations

of X, E over S (resp., the sheaves of log derivations of X log, E log over Slog)
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respectively. We have natural morphisms

ιX : T log
X/S → TX/S, ιE : T log

E/S → TE/S.

Since T log
X/S, T log

E/S are locally free, and ιX , ιE are isomorphisms over a scheme-

theoretically dense open subscheme of X (i.e., the smooth locus of X over S),

these morphisms are injective. The direct image π∗T log
E/S → π∗TE/S of ιE is

compatible with the respective natural PGL2-actions. Hence, if we denote by

T̃E/S, T̃ log
E/S the subsheaves of G-invariant sections of π∗TE/S, π∗T log

E/S respectively

(i.e., T̃E/S := (π∗TE/S)G, T̃ log
E/S := (π∗T log

E/S)G), then ιE yields an injection

ι̃E : T̃ log
E/S ↪→ T̃E/S.

Moreover, the PGL2-torsor E induces naturally a diagram

0 −−−→ E ×PGL2 sl2 −−−→ T̃ log
E/S

αlog
E−−−→ T log

X/S −−−→ 0yid

yeιE

yιX

0 −−−→ E ×PGL2 sl2 −−−→ T̃E/S
αE−−−→ TX/S −−−→ 0,

where E ×PGL2 sl2(∼= (π∗TE/X)PGL2) denotes the adjoint bundle associated to E ,
and the upper and lower horizontal sequences are exact.

Recall that an S-log connection on E is a split injection

∇ : T log
X/S → T̃ log

E/S

of the upper horizontal sequence in the above diagram (i.e., αlog
E ◦ ∇ = idT log

X/S
).

Since T log
X/S is locally free of rank one, any S-log connection is necessarily in-

tegrable, i.e., compatible with the Lie bracket structures on T log
X/S and T̃ log

E/S =

(π∗T log
E/S)PGL2 .

Suppose that there exists a B-reduction EB of a PGL2-torsor E , i.e., a B-
torsor πB : EB → X over X together with an isomorphism EB ×B PGL2

∼→ E .
Then the natural morphism EB → E induces an injection

i : ((πB∗T log
EB/S)B =:)T̃ log

EB/S ↪→ T̃ log
E/S

of OX-modules. Hence, for an S-log connection ∇ on E , we have the composite

KSE,EB ,∇ : T log
X/S

∇−→ T̃ log
E/S −→ T̃ log

E/S/i(T̃ log
EB/S).

We shall refer to the morphism KSE,EB ,∇ as the Kodaira-Spencer map associated
to the triple (E , EB,∇).

Definition 8.1.

(i) An indigenous bundle on (X/S, {σi}i) is a triple

E~ = (π : E → X, πB : EB → X,∇ : T log
X/S → T̃ log

E/S)
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consisting of a PGL2-torsor π : E → X, a B-reduction πB : EB → X,

and an S-log connection ∇ : T log
X/S → T̃ log

E/S on E such that the Kodaira-

Spencer map KSE,EB ,∇ associated to the triple (E , EB,∇) is an isomor-
phism.

(ii) Let E~
1 = (E1, (E1)B,∇1), E~

2 = (E2, (E2)B,∇2) be indigenous bundles
on (X/S, {σi}i). An isomorphism from E~

1 to E~
2 is an isomorphism

(E1)B
∼→ (E2)B of B-torsors such that the induced isomorphism E1

∼→ E2

of PGL2-torsors is compatible with the respective connections ∇1, ∇2.

Next, we recall the definition of a torally indigenous bundle. Let E~ =
(E , EB,∇) be an indigenous bundle on (X/S, {σi}i). Consider, for i ∈ {1, · · · , r},
the morphism of sequences of OX-modules

0 −−−→ E ×PGL2 sl2 −−−→ T̃ log
E/S

αlog
E−−−→ T log

X/S −−−→ 0y y y
0 −−−→ σi∗σ

∗
i (E ×PGL2 sl2) −−−→ σi∗σ

∗
i T̃E/S

σi∗σ∗
i αE−−−−−→ σi∗σ

∗
i TX/S −−−→ 0,

obtained by composing the diagram discussed above with the adjunction mor-
phism η(−) : (−) → σi∗σ

∗
i (−). (The local triviality of the PGL2-torsor E implies

that the lower horizontal sequence is also exact.) In particular, the vertical
arrows in the diagram are the composites

ηE×PGL2sl2 , η
eTE/S

◦ ι̃E , ηTX/S
◦ ιX

respectively. Since σi∗σ
∗
i TX/S

∼= σi∗σ
∗
i (TX/S/ιX(T log

X/S)), the composite ηTX/S
◦ιX :

T log
X/S → σi∗σ

∗
i TX/S (i.e., the right vertical arrow in the diagram) is the zero map.

Thus, it follows that the composite

(η
eTE/S

◦ ι̃E) ◦ ∇ : T log
X/S → σi∗σ

∗
i T̃E/S

factors through the injection σi∗σ
∗
i (E ×PGL2 sl2) ↪→ σi∗σ

∗
i T̃E/S. The resulting

morphism T log
X/S → σi∗σ

∗
i (E ×PGL2 sl2) corresponds, via the adjunction relation

“σ∗
i (−) a σi∗(−)”, to a morphism

σ∗
i T

log
X/S → σ∗

i (E ×PGL2 sl2).

Here, we observe that there exists a canonical isomorphism σ∗
i T

log
X/S

∼→ OS which

maps any local section of the form dlog(x)|S ∈ σ∗
i T

log
X/S (for a local function x

defining σi) to 1 ∈ OS. Thus, we obtain a global section

µi ∈ Γ(S, σ∗
i (E ×PGL2 sl2))

determined by the image of 1 ∈ Γ(S,OS) via the morphism OS(∼= σ∗
i T

log
X/S) →

σ∗
i (E ×PGL2 sl2) just discussed. We shall refer to µi as the monodromy operator

of E~ at σi.
Denote by

κE~
i : σ∗

i (E ×PGL2 sl2) ⊗OS
σ∗

i (E ×PGL2 sl2) → OS
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the nondegenerate bilinear form on σ∗
i (E ×PGL2 sl2) induced by the Killing form

κ(−,−) on sl2 (i.e., κ(a, b) = 1
4
· tr(ad(a)ad(b)) for a, b ∈ sl2). Let ρi be an

element of Γ(S,OS)/{±1} (i.e., equivalence classes of elements λ ∈ Γ(S,OS),
in which λ and −λ are identified). We shall say that E~ is of radius ρi at σi if
the monodromy operator µi at σi satisfies the condition

κE~
i (µi, µi) = 2ρ2

i .

If S = Spec(k) for an algebraically closed field k in which 2 is invertible, then
there exists a unique element ρi ∈ Γ(S,OS)/{±1} such that E~ is of radius ρi

at σi. Thus, it makes sense to speak of the radius of E~ at σi. Now suppose
that S is an arbitrary scheme on which 2 is invertible, and that E~ is of radius
ρi at σi for ρi ∈ Γ(S,O×

S )/{±1}
(
⊆ Γ(S,OS)/{±1}

)
. Then one verifies easily

that ρi may be characterized as the unique element ρ ∈ Γ(S,OS)/{±1} such
that κE~

i (µi, µi) = 2ρ2.

Definition 8.2 (cf. [19], Chap. I, § 4, Definition 4.1).
We shall say that an indigenous bundle E~ = (E , EB,∇) on (X/S, {σi}i) is
torally indigenous if there exists a set {ρi}r

i=1 of elements in {0}∪Γ(S,O×
S )/{±1}

such that E~ is of radius ρi at σi for all i.

Next, we recall the definition of a dormant indigenous bundle. In the fol-
lowing, let us assume that k = Z/pZ(=: Fp) for p an odd prime. Denote by
FX : X → X the absolute Frobenius of X. If ∂ is a log derivation corresponding

to a local section of T log
X/S (respectively, T̃ log

E/S = (π∗T log
E/S)PGL2), then we shall de-

note by ∂(p) the pthm symbolic power of ∂ (cf. [20], (1.2.1)), which is also a deriva-

tion corresponding to a local section of T log
X/S (respectively, T̃ log

E/S = (π∗T log
E/S)PGL2).

Since αlog
E (∂(p)) = αlog

E (∂)(p) for any local section of T log
X/S, the image of the p-

linear map from T log
X/S to T̃ log

E/S defined by assigning ∂ 7→ ∇(∂(p)) − ∇(∂)(p) is

contained in E ×PGL2 sl2(= ker(αlog
E )). Thus, we obtain an OX-linear morphism

ψE~ : T ⊗p
X/S → E ×PGL2 sl2

determined by assigning

∂⊗p 7→ ∇(∂(p)) −∇(∂)(p).

We shall refer to the morphism ψE~ as the p-curvature map of E~.

Definition 8.3.
We shall say that an indigenous bundle E~ on X/S is dormant if the p-curvature
map ψE~ vanishes identically on X.

We define an isomorphism of dormant torally indigenous bundles to be an
isomorphism of indigenous bundles. Thus, it makes sense to speak of the iso-
morphism class of a dormant torally indigenous bundle. Write (Set) for the
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category of (small) sets, and (Sch)Mg,r,Fp
for the category of (relative) schemes

over Mg,r,Fp . We set

MZzz...

g,r,Fp
: (Sch)Mg,r,Fp

→ (Set)

to be the (Set)-valued functor on (Sch)Mg,r,Fp
which, to any Mg,r,Fp-scheme T ,

classifying a pointed stable curve Y/T , assigns the set of isomorphic classes of
dormant torally indigenous bundles on Y/T that are of radius ∈ Fp/{±1}(⊆
Γ(T,OT )/{±1}) for all i. By forgetting the datum of a dormant torally indige-
nous bundle, we obtain a natural transformation

MZzz...

g,r,Fp
→ Mg,r,Fp

(cf. the figure following Acknowledgement !).

Theorem 8.4.

(i) The functor MZzz...

g,r,Fp
is represented by a proper, smooth Deligne-Mumford

stack over Fp of dimension 3g−3+r. The morphism MZzz...

g,r,Fp
→ Mg,r,Fp

is finite, faithfully flat and unramified over the points of Mg,r,Fp classify-

ing totally degenerate curves (cf. Definition 8.7). In particular, MZzz...

g,r,Fp

is generically étale over Mg,r,Fp.

(ii) If, moreover, r = 0 and p > 2(g−1), then the degree degMg,0,Fp
(MZzz...

g,0,Fp
)

of MZzz...

g,0,Fp
over Mg,0,Fp may be calculated as follows:

degMg,0,Fp
(MZzz...

g,0,Fp
) =

pg−1

22g−1
·

p−1∑
θ=1

1

sin2g−2(π·θ
p

)
.

Proof. Assertion (i) follows from [19], Introduction, § 1.2, Theorem 1.3 (ii); [19], Chap.
II, Lemma 2.7; [19], Chap. II, §2.3, Theorem 2.8 (and its proof). Assertion (ii)
follows from [29], Theorem A. ¤

Remark 8.5.
In [29], § 6.2 (ii), we observed that the value degMg,0,Fp

(MZzz...

g,0,Fp
) (p > 2(g − 1))

has another expression:

degMg,0,Fp
(MZzz...

g,0,Fp
) = − pg

22g−1
· Resx=0

[ cot(px)

sin2g−2(x)
dx

]
,

where Resx=0(f) denotes the residue of f at x = 0. Thus, degMg,0,Fp
(MZzz...

g,0,Fp
)

may be computed by considering the relation 1
sin2(x)

= 1 + cot2(x) and the

coefficient of the Laurent expansion (cf. [33], the proof of Theorem 1 (iii))

cot(x) =
1

x
+

∞∑
j=1

(−1)j22jB2j

(2j)!
x2j−1,



COMBINATORICS OF DORMANT INDIGENOUS BUNDLES 27

where B2j denotes the (2j)-th Bernoulli number, i.e.,

w

ew − 1
= 1 − w

2
+

∞∑
j=1

B2j

(2j)!
w2j.

More precisely, if we denote by Fg(t) the polynomial defined as the constant
term (with respect to x) of the power series

− tg−1

22g−1
·
(
1 +

∞∑
j=1

(−1)j22jB2j

(2j)!
(tx)2j

)(
1 +

1

x2
·
(
1 +

∞∑
j=1

(−1)j22jB2j

(2j)!
x2j

)2)g−1

(
= − tg

22g−1
· Resx=0

[ cot(tx)

sin2g−2(x)
dx

])
,

then degMg,0,Fp
(MZzz...

g,0,Fp
) = Fg(p) for any odd prime p > 2(g − 1). In particular,

it follows from an explicit computation that

“the leading term of Fg(t)” =
(−1)g · B2g−2

2 · (2g − 2)!
· t3g−3,

where it is well-known that B2j 6= 0 for j ∈ Z>0.

We shall fix an algebraically closed field K of characteristic p. If X =
(X/K, {σi}i) is a pointed stable curve over K of type (g, r), then we denote
by

M
Zzz...

X

the set of isomorphism classes of dormant torally indigenous bundles on X.
(Since Spec(K) is reduced and connected, for a dormant indigenous bundle E~

the radius of E~ at each σi is necessarily contained in Fp/{±1}(⊆ K/{±1})
(cf. [19], Chap.İI, p.128. Proposition 1.5).) The generic étalness of MZzz...

g,r,Fp

over Mg,r,Fp (cf. Theorem 8.4 (i)) implies that if X and Y are sufficiently
general pointed stable curves over K of type (g, r), including the case of totally
degenerate curves (cf. Definition 8.7), then we have

]M
Zzz...

X = ]M
Zzz...

Y = degMg,r,Fp
(MZzz...

g,r,Fp
).

In particular, if, moreover, r = 0, p > 2(g − 1), and X is totally degenerate,

then the value ]M
Zzz...

X may be calculated explicitly by the formula asserted in
Theorem 8.4 (ii).

Definition 8.6 (cf. [14], Definition 3.8).
Let X = (X/K, {σi}i) be a pointed stable curve over K of type (g, r). The

dual quasi-graph associated to X is the quasi-graph

GX = (VX, EX, IX),

where

(1) The vertices VX are the components of the underlying stable curve X.
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(2) The fixed edges Efix
X are the nodes of X, and the free edges Efree

X are the
marked points {σi}i.

(3) The incidence relation IX : (Efix
X t Efree

X =:)EX → V
[1]

X t V
[2]

X is defined
as follows:

• If e ∈ Efix
X , then IX(e) = [v1, v2], where v1 and v2 are the component

of X intersecting at the nodes,
• If e ∈ Efree

X , then IX(e) = [v], where v is the component of X on
which e lies.

Definition 8.7.
A pointed stable curve X = (X/K, {σi}i) over K is called totally degenerate if

each component of the normalization of X is isomorphic to the projective line
and the dual quasi-graph associated to X is 3-regular.

One verifies that the assignment X 7→ GX defines a bijective correspondence
between the set of isomorphism classes of unpointed totally degenerate curves
over K of genus g (resp., totally degenerate curves over K of type (g, r)) and the
set of 3-regular graphs of genus g (resp., 3-regular quasi-graphs of type (g, r)).

In the following, we shall relate the set M
Zzz...

X for an unpointed totally degen-
erate curve X of genus ≥ 2 to the lattice points inside the polytope (p− 2)PGX .
As a first step, we consider a pointed stable curve

triP = (P, {σ1, σ2, σ3})

of type (0, 3), which is uniquely determined up to isomorphism. (In particular,
the underling curve P is isomorphic to the projective line.) Let E~ be a dormant
torally indigenous bundle on X. If we denote by ρi ∈ K/{±1} (i = 1, 2, 3) the
radius of the monodromy operator of E~ at σi, then the assignment E~ 7→
(2ρ1, 2ρ2, 2ρ3) determines a map

rad : M
Zzz...

triP → (K/{±1})×3.

Next, let G(0,3) = (V(0,3), E(0,3), I(0,3)) be as in Example 3.2, which is isomorphic
to the dual quasi-graph associated to triP. The set of lattice points nPG(0,3)

∩
ZE(0,3) corresponds bijectively (cf. the discussion following Definition 3.1) to the
set {

(λi)
3
i=1 ∈ Z×3

≥0

∣∣ 3∑
i=1

λi ≤ n, λ1 + λ2 ≤ λ3, λ2 + λ3 ≤ λ1, λ3 + λ1 ≤ λ2

}
.

Consider a map

inc : (p − 2)PG(0,3)
∩ ZE0 → (K/{±1})×3.

defined by assigning (λ1, λ2, λ3) 7→ (2λ1 + 1, 2λ2 + 1, 2λ3 + 1), where for a ∈
Z we denote by a the image of a natural map Z → K/{±1}. Since 2λi ≤∑3

i=1 λi ≤ p − 2, the map inc is injective.



COMBINATORICS OF DORMANT INDIGENOUS BUNDLES 29

Proposition 8.8.
The map rad factors through the map inc, i.e., there exists a map

rad′ : M
Zzz...

P → (p − 2)PG0 ∩ ZE0

satisfying that rad = inc ◦ rad′. Moreover, the resulting map rad′ is bijective.

Proof. See [19], Introduction, § 1.2, p.41, Theorem 1.3; [19], Chap. IV, p.211,
Theorem 2.3; [19], Chap. V, § 1, and [14], Theorem 3.9. ¤

Next, let X = (X/K, ∅) be an unpointed totally degenerate curve over K of
genus g ≥ 2. Denote by GX = (VX, EX, IX) the dual (quasi-)graph associated

to X, and by X̃ :=
∐

v∈VX
Pv the normalization of X (and hence, Pv

∼= P for
v ∈ VX). By ordering suitably the elements in the multiset AGX(v), the collection
of data

triPv = (Pv, AGX(v))

forms a pointed stable curve of type (0, 3). One verifies that the natural
morphism Plog

v → X log is log étale. Hence, if E~ = (E , EB,∇) is a dor-
mant torally indigenous bundle on X, then for any v ∈ VX the restriction
E~|Pv := (E|Pv , EB|Pv ,∇|Pv) forms a dormant torally indigenous bundle on triPv.
Moreover, for any node e ∈ EX with IX(e) = [v1, v2], the radius of the mon-
odromy operators of E~|Pv1

and E~|Pv2
at e coincide. In particular, if we denote

by ρe ∈ K/{±1} this radius, then we obtain a well-defined map

radX : M
Zzz...

X → (K/{±1})EX

defined by E~ 7→ (ρe)e∈EX . The assignment E~ 7→ (E~|Pv)v∈VX defines a bijective

correspondence between M
Zzz...

X and the set of collections ([E~
v ])v∈VX , indexed by

VX, consisting of the isomorphism classes [E~
v ] of a dormant torally indigenous

bundle E~
v on triPv having radii which agree at any two marked points which are

glued together (cf. [19], Chap. II, p.128, Proposition 1.5). Thus, by combining
with Proposition 8.8, we have the following

Corollary 8.9.
Consider a map

incX : (p − 2)PG ∩ ZEX → (K/{±1})EX

defined by assigning

incX : (λe)e∈EX
7→ (2λe + 1)e∈EX

.

Then incX is injective, and the map radX factors through incX , i.e.,there exists
a map

rad′
X : M

Zzz...

X → (p − 2)PG ∩ ZEX

satisfying that radX = inc ◦ rad′. Moreover, the resulting map rad′
X : M

Zzz...

X →
(p − 2)PG ∩ ZEX is bijective.
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By applying Theorem 8.4, Corollary 8.8, and the discussion following Remark
8.5, we obtain the following

Corollary 8.10 (= Theorem B).
Let G be a 3-regular graph of genus g > 1. Write fG(t) for the Ehrhart

quasi-polynomial of the Liu-Osserman polytope of G, SpinG(m) (m ∈ Z≥0) for
the set of m-colored spin networks on G (cf. Definition 2.6), and NG for the
set of 2-regular sub-quasi-graphs of G (cf. Definition 4.1). Then, for p an odd
prime with p > 2(g − 1), we have equalities

fG(p − 2) =
]SpinG(p − 2)

]NG

= degMg,0,Fp
(MZzz...

g,0,Fp
)

= − pg

22g−1
· Resx=0

[ cot(px)

sin2g−2(x)
dx

]
.

Corollary 8.11 (= Theorem A (iv)).
Let G be a connected 3-regular graph of genus g. Write PG for the Liu-

Osserman polytope of G and fG(t) = (fG
i (t))i∈Z for the Ehrhart quasi-polynomial

of PG. For i an odd integer, the polynomial fG
i (t) ∈ Q[t] has the following ex-

pression:

fG
i (t) = −(t + 2)g

22g−1
· Resx=0

[cot((t + 2)x)

sin2g−2(x)
dx

]
,

where Resx=0(f) denotes the residue of f at x = 0. In particular, we have that

Vol(PG) =
(−1)g · B2g−2

2 · (2g − 2)!

Proof. If Fg(t) is the polynomial defined in Remark 8.5, then it follows from
Corollary 8.10 and the discussion following Remark 8.5 that fG(p− 2) = Fg(p)
for each odd prime p with p > 2(g − 1). Since the period of iPG

divides 4
and there are infinitely many primes q such that q ≡ 1 mod 4 (resp., q ≡ 3
mod 4), we have an equality fG

i (t − 2) = Fg(t) for i ≡ 1 mod 4 (resp., i ≡ 3
mod 4). Hence the former assertion follows from Theorem 8.3 (ii). The latter
assertion follows from the fact concerning the leading coefficient of Ehrhart
quasi-polynomials (cf. § 1.2). ¤

9. Appendix

Let G be a 3-regular graph of genus g ≥ 2. By applying Corollary 8.11 and the
discussion in Remark 8.5 to our calculations, we obtain an explicit expression
for the constituent polynomial f g(t) := fG

2n+1(t) (for an arbitrary n ∈ Z) under
consideration. We shall display some of these expressions as below. One may
propose, from these expressions, various conjectures concerning the coefficients
of f g(t), e.g., the conjecture that if we write f g(t) = (t + 2)g−1 · (

∑2g−2
j=0 cjtj)

(cj ∈ Q), then 1 > cj > 0 for all j. Of course, one may ask more sharper
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bounds for cj. But at the present time it is not clear to the author whether
such a conjecture is true or not.

f2(t) =
1

24
· (t + 2) · (t2 + 4t + 3),

f3(t) =
1

1440
· (t + 2)2 · (t4 + 8t3 + 34t2 + 72t + 45),

f4(t) =
1

120960
· (t + 2)3 · (2t6 + 24t5 + 141t4 + 488t3 + 1152t2 + 1728t

+ 945),

f5(t) =
1

7257600
· (t + 2)4 · (3t8 + 48t7 + 376t6 + 1824t5 + 6054t4

+ 14128t3 + 24192t2 + 28800t + 14175),

f6(t) =
1

191600640
· (t + 2)5 · (2t10 + 40t9 + 393t8 + 2448t7 + 10702t6

+ 34344t5 + 82804t4 + 150048t3 + 206784t2 + 207360t + 93555),

f7(t) =
1

5230697472000
· (t + 2)6

· (1382t12 + 33168t11 + 392148t10 + 2978320t9+

16138719t8 + 65701872t7 + 206720900t6 + 509218224t5

+ 985601016t4 + 1485556416t3 + 1740216960t2 + 1524096000t

+ 683512875)

f8(t) =
1

8966909952000
· (t + 2)7

· (60t14 + 1680t13 + 23222t12 + 207888t11

+ 1342188t10 + 6603760t9 + 25558779t8 + 79242672t7

+ 198678320t6 + 403621824t5 + 661637376t4 + 863640576t3

+ 889159680t2 + 696729600t + 273648375)

f9(t) =
1

64023737057280000
· (t + 2)8

· (10851t16 + 347232t15 + 5494080t14

+ 56609280t13 + 423792536t12 + 2440848960t11

+ 11188170336t10 + 41678058880t9 + 127806050886t8

+ 324826420320t7 + 685561303520t6 + 1197933257088t5

+ 1719267273216t4 + 1995359754240t3 + 1846399795200t2

+ 1316818944000t + 488462349375)
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f10(t) =
1

102181884343418880000
· (t + 2)9

· (438670t18 + 15792120t17 + 281454687t16

+ 3279274464t15 + 27908405100t14 + 183965922000t13

+ 972990925932t12 + 4223486472480t11 + 1527042140314210

+ 46421838764920t9 + 119278057144932t8 + 259467174492480t7

+ 476995459785120t6 + 736884549092736t5 + 947000531630592t4

+ 995440509388800t3 + 841246647091200t2 + 553063956480000t

+ 194896477400625).
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The forgetting map MZzz...
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