A Min-Max Theorem for k-submodular Functions and Extreme Points of the Associated Polyhedra

SATORU FUJISHIGE AND SHIN-ICHI TANIGAWA

Research Institute for Mathematical Sciences Kyoto University, Kyoto 606-8502, Japan {fujishig,tanigawa}@kurims.kyoto-u.ac.jp

September 13, 2013

Abstract

A. Huber and V. Kolmogorov (ISCO 2012) introduced a concept of k-submodular function as a generalization of ordinary submodular (set) functions and bisubmodular functions. They presented a min-max relation for the k-submodular function minimization by considering ℓ_1 norm, which requires a non-convex set of feasible solutions associated with the k-submodular function. Our approach overcomes the trouble incurred by the non-convexity by means of a new norm composed of ℓ_1 and ℓ_{∞} norms. We show another min-max relation that characterizes the minimum of a k-submodular function in terms of the maximum of the negative of the norm values over the associated convex set of feasible solutions. The min-max relation given in the present paper is simpler than that of Huber and Kolmogorov.

We also show a counterexample to a characterization, given by Huber and Kolmogorov, of extreme points of the k-submodular polyhedron in their sense and make it a correct one by fixing a flaw therein.

1 Introduction

A. Huber and V. Kolmogorov [6] introduced a concept of k-submodular function, which is a generalization of ordinary submodular (set) functions and bisubmodular functions (see, e.g., [3, 4, 5]). Motivated by [8], Huber and Kolgomolov introduced convex polyhedra, what they call k-submodular polyhedra, associated with k-submodular functions. Earlier than Huber and Kolmogorov [6] A. Bouchet [2] also considered a class of ksubmodular functions to define multimatroids as a generalization of delta-matroids [1, 3]. Kolmogorov [7] also considered a concept of tree-submodularity, which is more general than k-submodularity. It was shown in [7] that polynomial solvability of the k-submodular function minimization implies that of the tree-submodular function minimization for all trees.

Thapper and Zivny [9] showed a dichotomy theorem that classifies the polynomialtime solvability of the minimization problems of functions on finite domains in terms of binary fractional polymorphisms (see [9, 10, 11] for the details). One of the important applications of this result is the tractability of the k-submodular function minimization problem in the valued CSP model since its complexity was not known before. It, however, remains an open problem whether k-submodular functions can be minimized in polynomial time in the value oracle model.

In this paper we consider general k-submodular functions and their associated ksubmodular polyhedra. We introduce a new norm that is composed of ℓ_1 and ℓ_{∞} norms and show a min-max relation that the minimum of a k-submodular function is equal to the maximum of the negative of the norm values over the associated k-submodular polyhedron (see [4] about such a min-max relation for bisubmodular functions by means of ℓ_1 norm).

Huber and Kolmogorov [6] presented a min-max relation that characterizes the minimum of a k-submodular function in terms of ℓ_1 norm, which requires a non-convex set of feasible solutions associated with the k-submodular function for $k \ge 3$. Our approach with the new norm overcomes the trouble incurred by the non-convexity.

In the present paper we first give definitions and some preliminaries in Section 2. Section 3 shows a min-max relation that characterizes the minimum of a k-submodular function in terms of a new norm composed of ℓ_1 and ℓ_{∞} norms. In Section 4 we give a counterexample to a characterization, presented in [6], of extreme points of k-submodular polyhedron in the sense of Huber and Kolmogorov, and then show a correct one. Finally, Section 5 gives concluding remarks.

2 Definitions and Preliminaries

Let V be a nonempty finite set and $\mathcal{U} \equiv \{U_1, U_2, \cdots, U_n\}$ be a partition of V. A subset $T \subseteq V$ is called a *subtransversal* (or *partial transversal*) of \mathcal{U} if $|T \cap U| \leq 1$ for all $U \in \mathcal{U}$. Denote by \mathcal{T} the set of all subtransversals of \mathcal{U} .

For any $T, T' \in \mathcal{T}$ define binary operations \sqcup and \sqcap on \mathcal{T} by

$$T \sqcup T' = (T \cup T') \setminus \bigcup \{ U \in \mathcal{U} \mid |U \cap (T \cup T')| = 2 \}, \qquad T \sqcap T' = T \cap T'.$$
(1)

Let $k = \max\{|U| \mid U \in \mathcal{U}\}$. A function $f : \mathcal{T} \to \mathbb{R}$ is called *k*-submodular if

$$f(T) + f(T') \ge f(T \sqcup T') + f(T \sqcap T') \qquad (\forall T, T' \in \mathcal{T}).$$
(2)

This definition of a k-submodular function is equivalent to that given in [6]. We assume $f(\emptyset) = 0$. We call (\mathcal{U}, f) a k-submodular system on V. Define a polyhedron

$$\mathbf{P}(f) = \{ x \in \mathbb{R}^V \mid \forall T \in \mathcal{T} : \ x(T) \le f(T) \},\tag{3}$$

where we define $x(T) = \sum_{v \in T} x(v)$. We call P(f) the *k*-submodular polyhedron associated with the *k*-submodular system (\mathcal{U}, f) .

Bouchet [2] considered k-submodular functions that were monotone nondecreasing and had the unit-increase property to define a set system called a *multimatroid*, a generalization of delta-matroids [1]. General k-submodular functions were considered by Huber and Kolmogorov [6], where they assumed that |U| = k for all $U \in \mathcal{U}$. They defined a polyhedron in a way slightly different from our P(f) in (3) by adding the following inequalities to those in (3).

$$\forall U \in \mathcal{U}, \ \forall X \in \binom{U}{2}: \ x(X) \le 0,$$
(4)

where $\binom{U}{2}$ is the set of all two-element subsets of U. We denote the 'k-submodular polyhedron' in the sense of Huber and Kolmogorov by $P_2(f)$, i.e.,

$$P_2(f) = \{ x \in \mathbb{R}^V \mid \forall T \in \mathcal{T} : x(T) \le f(T), \forall U \in \mathcal{U}, \forall X \in \binom{U}{2} : x(X) \le 0 \}.$$
(5)

Note that we have

$$\mathbf{P}(f) \cap \mathbb{R}_{\leq 0}^{V} = \mathbf{P}_{2}(f) \cap \mathbb{R}_{\leq 0}^{V} \subseteq \mathbf{P}_{2}(f) \subseteq \mathbf{P}(f), \tag{6}$$

where $\mathbb{R}_{\leq 0}^V$ is the set of all nonpositive vectors in \mathbb{R}^V .

For any $x \in P(f)$ (or $x \in P_2(f)$) and $T \in \mathcal{T}$ we say T is *x*-tight if x(T) = f(T). We can easily show the following (see [6]).

Lemma 2.1. For any $x \in P_2(f)$ and $X, Y \in \mathcal{T}$, if X and Y are x-tight, then $X \sqcup Y$ and $X \sqcap Y$ are also x-tight. \Box

In the present paper the collection of vectors $x \in P(f)$ with $x \leq 0$ plays an important rôle in showing our main theorem about a min-max relation for k-submodular functions. Note that such vectors belong to $P_2(f)$.

For any $u \in V$ and $x \in P(f)$ define

$$\hat{\mathbf{c}}(x,u) = \max\{\alpha \in \mathbb{R} \mid x + \alpha \chi_u \in \mathbf{P}(f)\},\tag{7}$$

where χ_u is the unit vector in \mathbb{R}^V with $\chi_u(u) = 1$ and $\chi_u(v) = 0$ for all $v \in V \setminus \{u\}$. Note that $\hat{c}(x, u)$ can be expressed as

$$\hat{\mathbf{c}}(x,u) = \min\{f(X) - x(X) \mid u \in X \in \mathcal{T}\}.$$
(8)

We call $\hat{c}(x, u)$ the *saturation capacity* associated with x and u. If $\hat{c}(x, u) = 0$, we call u *saturated*, and otherwise ($\hat{c}(x, u) > 0$), *non-saturated*. Define sat(x) to be the set of saturated elements associated with x. We see that u is saturated if and only if there exists at least one x-tight set X such that $u \in X$. Let us denote by $\mathcal{T}(x)$ the collection of x-tight sets.

For any $x \in P(f)$ and any saturated $u \in V$ define the *dependence function*

$$dep(x,u) = \{ v \in V \mid \exists \beta > 0 : x + \beta(\chi_u - \chi_v) \in \mathbf{P}(f) \}.$$
(9)

This can be rewritten as

$$dep(x, u) = \bigcap \{ X \mid u \in X \in \mathcal{T}(x) \}.$$
(10)

Here, it should be noted that we have $dep(x, u) \in \mathcal{T}(x)$ if $x \in P_2(f)$ (due to Lemma 2.1) but not necessarily otherwise. If $x \in P_2(f)$, then dep(x, u) is the unique minimal x-tight set containing u.

Furthermore, for any $v \in dep(x, u) \setminus \{u\}$ define

$$\tilde{c}(x, u, v) = \max\{\beta \in \mathbb{R} \mid x + \beta(\chi_u - \chi_v) \in P(f)\} > 0,$$
(11)

which is called the *exchange capacity* for u and $v \in dep(x, u) \setminus \{u\}$ associated with x. This can also be rewritten as

$$\tilde{c}(x, u, v) = \min\{f(X) - x(X) \mid X \in \mathcal{T}, \ u \in X, \ v \notin X\}.$$
(12)

The concepts of sat, \hat{c} , dep, and \tilde{c} generalize those defined for ordinary submodular polyhedra (see [5]).

For any nonempty $W \subseteq V$ and $x \in \mathbb{R}^V$ we define $x^W \in \mathbb{R}^W$ by $x^W(v) = x(v)$ for all $v \in W$. Also define (\mathcal{U}^W, f^W) to be the restriction of the k-submodular system (\mathcal{U}, f) on V to W as follows. Let $\mathcal{U}^W = \{U \cap W \mid U \in \mathcal{U}, U \cap W \neq \emptyset\}, \mathcal{T}^W = \{T \cap W \mid T \in \mathcal{T}\}$ and $f^W(T) = f(T)$ for all $T \in \mathcal{T}^W$. For $k' = \max\{|U| \mid U \in \mathcal{U}^W\}, (\mathcal{U}^W, f^W)$ is a k'-submodular system on W. For any nonempty $T \in \mathcal{T}, f^T$ is an ordinary submodular function on 2^T , which defines the associated *base polyhedron*

$$B(f^T) = \{ x \in \mathbb{R}^T \mid \forall X \subset T : x(X) \le f(X), \ x(T) = f(T) \}.$$
(13)

(See [5].)

For any $x \in \mathbb{R}^V$ define

$$||x||_{1,\infty} = \sum_{i=1}^{n} \max_{u \in U_i} |x(u)|.$$
(14)

This defines a norm on \mathbb{R}^V , which is a composition of ℓ_1 and ℓ_{∞} norms. Our main result is a min-max theorem based on the new norm $|| \cdot ||_{1,\infty}$ on \mathbb{R}^V .

3 A Min-Max Theorem

We show the following min-max theorem.

Theorem 3.1. For a k-submodular system (\mathcal{U}, f) on V with $f(\emptyset) = 0$ we have

$$\min\{f(T) \mid T \in \mathcal{T}\} = \max\{-||x||_{1,\infty} \mid x \in \mathcal{P}(f)\}.$$
(15)

Moreover, if f is integer-valued, there exists an integral x that attains the maximum of the right-hand side. \Box

Remarks: It should be noted that Theorem 3.1 follows from the the min-max theorem shown by Huber and Kolmogorov [6]. We shall give a direct and simple proof of Theorem 3.1 in the following. \Box

In order to prove Theorem 3.1 we will show some lemmas. For simplicity we write $|| \cdot ||_{1,\infty}$ as $|| \cdot ||$.

Lemma 3.2. For any $x \in P(f)$ and $T \in \mathcal{T}$ we have

$$f(T) \ge x(T) \ge -||x||. \tag{16}$$

(Proof) This easily follows from the definitions of P(f) and ||x||.

Let x^* be a maximizer of the right-hand side of (15). Because of the definition of P(f) we can assume that $x^* \leq 0$. Recall that $u \in V$ is saturated if for every $\alpha > 0$ we have $x^* + \alpha \chi_u \notin P(f)$, and non-saturated otherwise. If $x^*(u) < 0$ for some non-saturated u, then we can make u saturated or $x^*(u) = 0$ without increasing the norm $||x^*||$. Hence we further assume that u is saturated for every $u \in V$ with $x^*(u) < 0$.

We fix such a maximizer x^* in the following argument.

Recall that $\mathcal{T}(x^*)$ is the collection of x^* -tight sets. It is a crucial fact that since $x^* \leq 0$, $\mathcal{T}(x^*)$ is closed with respect to binary operations \sqcup and \sqcap , due to Lemma 2.1.

Lemma 3.3. For every $u \in V$ with $x^*(u) < 0$ we have $dep(x^*, u) \in \mathcal{T}(x^*)$.

(Proof) By the assumption u is saturated and $x^* \leq 0$. It follows from Lemma 2.1 that $dep(x^*, u) \in \mathcal{T}(x^*)$.

We write $dep(x^*, u)$ as D(u) for simplicity in the sequel. For any $v \in V$ let U(v) be the unique set $U \in \mathcal{U}$ such that $v \in U$.

Lemma 3.4. Suppose that $u \in V$ and $x^*(u) < 0$. Then for $v \in V$ with $D(u) \cap U(v) = \emptyset$ we have $x^*(v) = 0$ or

$$|(D(u) \cup D(v)) \cap U_i| \neq 2 \qquad (\forall i = 1, \cdots, n).$$

$$(17)$$

(Proof) If $x^*(v) < 0$ and some U_i violates (17), then $v \in (D(u) \sqcup D(v)) \sqcap D(v) \subset D(v)$, which contradicts the minimality of D(v).

Let u be an element of V such that $x^*(u) < 0$. Then, if for every $w \in D(u)$ we have $x^*(w) = \min\{x^*(v) \mid v \in U(w)\}$, we call u *legitimate*. Also, if for some $w \in D(u)$ we have $x^*(w) > \min\{x^*(v) \mid v \in U(w)\}$, we say u is not legitimate with w.

The following is a key lemma.

Lemma 3.5. For any $U \in U$ with $\min\{x^*(v) \mid v \in U\} < 0$ let W be the set of all the minimizers of $\min\{x^*(v) \mid v \in U\}$. Then there exists a legitimate $w \in W$.

(Proof) Suppose on the contrary that no element in W is legitimate. Then, |D(w)| > 1 for all $w \in W$. For each $w \in W$ let w^- be an element of $D(w) \setminus \{w\}$ such that $x^*(w^-) > \min\{x^*(v) \mid v \in U(w^-)\}$. Put $z_{w^-} = x^*(w^-) - \min\{x^*(v) \mid v \in U(w^-)\}$.

Now, for each $w \in W$ there exists some (sufficiently small) $\alpha_w > 0$ such that $y_w \equiv x^* + \alpha_w(\chi_w - \chi_{w^-}) \in P(f)$ and $\alpha_w \leq \min\{z_{w^-}, -x^*(w)\}$. It follows that a convex combination y^* of y_w ($w \in W$) with positive coefficients has a norm $||y^*||$ smaller than $||x^*||$, a contradiction.

Now, for given x^* , we find a minimizer $T \in \mathcal{T}$ of f by the following procedure.

Procedure Find_Min Step 1: $\tilde{\mathcal{U}} \leftarrow \{U \in \mathcal{U} \mid \exists u \in U : x^*(u) < 0\},$ $T \leftarrow \emptyset.$ Step 2: While $\tilde{\mathcal{U}} \neq \emptyset$, do the following: (1) Choose $U \in \tilde{\mathcal{U}}$ and let \hat{u} be a legitimate element of U. (2) $T \leftarrow T \cup D(\hat{u}),$ $\tilde{\mathcal{U}} \leftarrow \tilde{\mathcal{U}} \setminus \{U(v) \mid v \in D(\hat{u})\}.$ Step 3: Return T.

The following lemma completes the proof of the min-max relation in Theorem 3.1.

Lemma 3.6. Procedure Find_Min finds $T \in \mathcal{T}$ such that $-||x^*|| = f(T)$.

(Proof) It follows from Lemma 3.5 we can find a legitimate \hat{u} in Step 2. Furthermore, Lemma 3.4 validates $T \in \mathcal{T}$ and T being x^* -tight. The finally obtained T satisfies that $T \cap U \neq \emptyset$ for all $U \in \mathcal{U}$ with $\min\{x^*(v) \mid v \in U\} < 0$ and that for all $u \in T$ we have $x^*(u) = \min\{x^*(v) \mid v \in U(u)\}$. Hence, $-||x^*|| = x^*(T) = f(T)$. \Box

Now we show the latter half of Theorem 3.1, the integrality property. Note that by definition P(f) is hereditary, i.e., closed downward, so that there exists an integral x in P(f).

Consider the following procedure.

Procedure Find_Max

Step 0: Let x be an integral non-positive vector in P(f).

Step 1: While there exists a non-saturated $v \in V$ with x(v) < 0, do the following: $\alpha \leftarrow \min\{-x(v), \hat{c}(x, v)\},\$ $x \leftarrow x + \alpha \chi_v$. Step 2: $\tilde{\mathcal{U}} \leftarrow \{U \in \mathcal{U} \mid \exists u \in U : x(u) < 0\},\$ $T \leftarrow \emptyset$. **Step 3**: While $\mathcal{U} \neq \emptyset$, do the following: (1) Choose $U \in \tilde{\mathcal{U}}$. (2) Define $W = \{ u \in U \mid x(u) = \min\{x(v) \mid v \in U\} \}.$ (3) Choose $u \in W$. (3-1) If u is not legitimate with $w \in D(u) \setminus \{u\}$, then (a) $\beta \leftarrow \min\{-x(u), \tilde{c}(x, u, w), x(w) - \min\{x(v) \mid v \in U(w)\}\},\$ (b) $x \leftarrow x + \beta(\chi_u - \chi_w)$, (c) If $\exists v \in U : x(v) < 0$, then go to (2); else remove U from $\tilde{\mathcal{U}}$. (3-2) If u is legitimate, then $T \leftarrow T \cup D(u)$, $\tilde{\mathcal{U}} \leftarrow \tilde{\mathcal{U}} \setminus \{ U(v) \mid v \in D(u) \}.$ Step 4: Return x.

Lemma 3.7. Suppose f is integer-valued. Starting with an integral $x \in P(f)$ with $x \leq 0$, Procedure Find_Max finds an integral maximizer for the min-max relation in *Theorem* 3.1.

(Proof) During the execution of Procedure Fin_Max x remains integral. If u in (3) of Step 3 is not legitimate, x(u) becomes larger, and when $|W| \ge 2$, W becomes smaller. Hence, repeating (2), (3), and (4) in Step 3, we find a legitimate u or we get x with x(v) = 0 for all $v \in U$. It follows that Procedure Find_Max terminates after a finite number of iterations and the finally obtained integral x and subtransversal T give max and min solutions, similarly as in the proof of Lemma 3.6.

This completes the proof of Theorem 3.1.

4 Extreme Points of $P_2(f)$

Huber and Kolmogorov [6] presented a characterization of extreme points of $P_2(f)$ for a k-submodular function f. In particular, as a necessary condition, they state that if $x \in \mathbb{R}^V$

is a nonzero extreme point of $P_2(f)$ then there is a nontrivial chain $\emptyset = T_0 \subset T_1 \subset \cdots \subset T_k$ of elements in \mathcal{T} such that

- (i) $|T_i \setminus T_{i-1}| = 1$ for $1 \le i \le k$ and
- (ii) T_i is x-tight for $0 \le i \le k$.

We give a counterexample to this claim by showing the existence of a nonzero extreme point that does not satisfy (i).

Let $U_1 = \{v_1, v_2, v_3\}$ and $U_2 = \{u_1, u_2, u_3\}$. Let $V = U_1 \cup U_2$, $\mathcal{U} = \{U_1, U_2\}$, and M be any integer greater than 5. Define $f : \mathcal{T} \to \mathbb{R}$ by

$$\begin{split} f(\emptyset) &= 0, \\ f(\{v_1\}) &= -1, \ f(\{u_1\}) = 1, \\ f(\{v_i\}) &= f(\{u_i\}) = M \text{ for } i = 2, 3, \\ f(\{u_1, v_1\}) &= -2, \\ f(\{u_i, v_j\}) &= f(\{u_i\}) + f(\{v_j\}) \text{ for } i, j = 1, 2, 3 \text{ with } (i, j) \neq (1, 1). \end{split}$$

Lemma 4.1. f is k-submodular for k = 3.

(Proof) Take any $T, T' \in \mathcal{T}$ and let us check $f(T) + f(T') \ge f(T \sqcup T') + f(T \sqcap T')$. We may assume $T \not\subset T'$ and $T' \not\subset T$. We shall use the fact that $f(\{u_i\}) + f(\{u_j\}) \ge 0$ and $f(\{v_i\}) + f(\{v_j\}) \ge 0$ for any distinct i, j.

1. If |T| = 1 and |T'| = 1, denote $T = \{x\}$ and $T' = \{y\}$.

- If U(x) = U(y), then $T \sqcup T' = \emptyset$ and $T \sqcap T' = \emptyset$. Thus $f(T) + f(T') = f(\{x\}) + f(\{y\}) \ge 0 = f(T \sqcup T') + f(T \sqcap T')$.
- Otherwise, $T \sqcup T' = \{x, y\}$ and $T \sqcap T' = \emptyset$. If $\{x, y\} = \{v_1, u_1\}$, then $f(T) + f(T') = 0 > -2 = f(T \sqcup T') + f(T \sqcap T')$. If $\{x, y\} \neq \{v_1, u_1\}$, then $f(T) + f(T') = f(\{x\}) + f(\{y\}) = f(T \sqcup T') + f(T \sqcap T')$.
- 2. If |T| = 2 and |T'| = 1, denote $T = \{x, y\}$ and $T' = \{z\}$. We may assume that U(y) = U(z). Then $T \sqcup T' = \{x\}$ and $T \sqcap T' = \emptyset$. Hence,
 - If $\{x, y\} = \{v_1, u_1\}$, then $f(T) + f(T') = -2 + M \ge \max\{f(\{v_1\}), f(\{u_1\})\} \ge f(\{x\}) = f(T \sqcup T') + f(T \sqcap T').$
 - Otherwise, $f(T) + f(T') = f(\{x\}) + f(\{y\}) + f(\{z\}) \ge f(\{x\}) = f(T \sqcup T') + f(T \sqcap T').$

¹By a nontrivial chain, we mean $k \ge 1$.

- 3. If |T| = 2 and |T'| = 2, denote $T = \{x, y\}$ and $T' = \{z, w\}$.
 - If $\{x, y\} = \{v_1, u_1\}$, then $f(T \sqcup T') \le 1$ and $f(T \sqcap T') \le 1$. Therefore $f(T) + f(T') = -2 + f(\{z\}) + f(\{w\}) \ge -3 + M \ge f(T \sqcup T') + f(T \sqcap T')$.
 - Otherwise, we may assume $\{z, w\} \neq \{v_1, u_1\}$. If y = w, then $T \sqcup T' = \{y\}$ and $T \sqcap T = \{y\}$, and hence $f(T) + f(T') = f(\{x\}) + f(\{z\}) + 2f(\{y\}) \ge 2f(\{y\}) = f(T \sqcup T') + f(T \sqcap T')$. If $y \neq w$, we may assume $T \cap T' = \emptyset$. Then $T \sqcup T' = \emptyset$ and $T \sqcap T' = \emptyset$, and hence $f(T) + f(T') = f(\{x\}) + f(\{y\}) + f(\{z\}) + f(\{w\}) \ge 0 = f(T \sqcup T') + f(T \sqcap T')$. \Box

Now consider the nonzero $x^* \in \mathbb{R}^V$ given by

$$x^*(v_1) = -2, \ x^*(v_2) = 2, \ x^*(v_3) = -2,$$

 $x^*(u_1) = 0, \ x^*(u_2) = 0, \ x^*(u_3) = 0.$

We can see by exhaustive checking that $x^* \in P_2(f)$ and the following equations hold.

$$x^{*}(\{v_{1}, u_{1}\}) = f(\{v_{1}, u_{1}\}),$$

$$x^{*}(\{v_{1}, v_{2}\}) = x^{*}(\{v_{2}, v_{3}\}) = 0,$$

$$x^{*}(\{u_{1}, u_{2}\}) = x^{*}(\{u_{2}, u_{3}\}) = x^{*}(\{u_{3}, u_{1}\}) = 0.$$
(18)

Since the system of six equations in (18) uniquely determines the solution x^* , x^* is an extreme point of $P_2(f)$.

Note that for any chain of elements in \mathcal{T} satisfying Condition (i), Condition (ii) is violated for $x = x^*$, since $x^*(v_i) < f(\{v_i\})$ for any v_i and $x^*(u_i) < f(\{u_i\})$ for any u_i . Hence x^* cannot be any extreme point of $P_2(f)$ that corresponds to the conditions given by Huber and Kolmogorov [6].

We have shown that the conditions provided in [6] do not give an exact characterization of extreme points of $P_2(f)$. We will give a correct characterization of extreme points of $P_2(f)$. Let (\mathcal{U}, f) be a k-submodular system on V.

We first show some lemmas.

Lemma 4.2. For a nonempty $T \in \mathcal{T}$ let x be a vector in \mathbb{R}^V satisfying

- (A) $x^T \in B(f^T)$,
- (B) For each u ∈ T,
 (B1) if x(u) ≥ 0, then x(v) = -x(u) for all v ∈ U(u) \ {u};
 (B2) otherwise,
 (1) x(v) = x(u) for all v ∈ U(u) \ {u} but one v with x(v) = -x(u) or
 (2) x(v) = 0 for all v ∈ U(u) \ {u}.

Then we have $x^Z \in P_2(f^Z)$ for $Z = \bigcup \{U(u) \mid u \in T\}$. (Proof) For any $X \in \mathcal{T}$ such that $X \subseteq Z$ we have

$$\begin{aligned} x(X) &= x(X) + x(T) - f(T) \\ &\leq x(X \sqcup T) + x(X \sqcap T) - f(T) \\ &\leq f(X \sqcup T) + f(X \sqcap T) - f(T) \\ &\leq f(X). \end{aligned}$$
(19)

Because of the way of defining x by (B) it follows from (19) that $x^Z \in P_2(f^Z)$.

We also have

Lemma 4.3. For a given $x \in P_2(f)$ and a nonempty $T \in \mathcal{T}$ suppose that $x^T \in B(f^T)$. Let $Z = \bigcup \{U(u) \mid u \in T\}$. For an element $u \in T$ define $y \in \mathbb{R}^Z$ by y(v) = x(v) for all $v \in Z \setminus (U(u) \setminus \{u\})$ and y(v) for all $v \in (U(u) \setminus \{u\})$ according to (B1) and (B2), replacing x by y, in Lemma 4.2. Then we have $y \in P_2(f^Z)$.

(Proof) Since $x \in P_2(f)$, similarly as in (19) we can show that $y \in P_2(f^Z)$.

For $U \in \mathcal{U}$ consider the system of linear inequalities

$$x(u) + x(v) \le 0 \qquad (\forall \{u, v\} \in \binom{U}{2}).$$
(20)

Denote by C_2^U the cone of feasible solutions of (20). We call $\{u, v\}$ a tight pair for a feasible solution x^* if the inequality of (20) for the pair $\{u, v\}$ holds with equality for $x = x^*$.

Lemma 4.4. Suppose $|U| \ge 3$. The cone C_2^U is pointed and its extreme rays are given by $x(u) = \alpha$ and $x(v) = -\alpha$ for all $v \in U \setminus \{u\}$ with a parameter $\alpha \ge 0$, for all $u \in U$. Every component-wise maximal solution x^* of (20) lies on an extreme ray of C_2^U and if $x^* \ne 0$, the set of the tight pairs for x^* forms a star with center u such that $x^*(u) > 0$.

(Proof) Since $|U| \ge 3$, if we replace all the inequalities of (20) by equations, it gives the unique solution x = 0. Hence C_2^U is pointed. Moreover, for any component-wise maximal feasible solution x^* , if $x^* \ne 0$, there exists only one $u \in U$ such that $x^*(u) > 0$. Since x^* is component-wise maximal, we must have $x^*(v) = -x^*(u)$ for all $v \in U \setminus \{u\}$. Hence x^* lies on an extreme ray of C_2^U and the tight pairs form a star with center u. \Box

Note that every extreme vector (lying on an extreme ray) of C_2^U is component-wise maximal.

For any subset $\mathcal{E} \subseteq {\binom{U}{2}}$ we regard \mathcal{E} as the edge set of an undirected graph $G = (U, \mathcal{E})$ with vertex set U.

Lemma 4.5. For any subset $\mathcal{E} \subseteq \binom{U}{2}$ the system of equations

$$x(u) + x(v) = 0 \qquad (\forall \{u, v\} \in \mathcal{E})$$
(21)

uniquely determines the solution x = 0 if and only if every connected component of the graph $G = (U, \mathcal{E})$ contains at least one odd cycle.

(Proof) Suppose that every connected component of the graph $G = (U, \mathcal{E})$ contains at least one odd cycle. Since equations (21) for an odd cycle determine x(v) = 0 for elements (vertices) v on the cycle, which then determines x(v) = 0 for other elements v in the same connected component.

Conversely, suppose that (21) determines the unique solution x = 0. Then we must have $\bigcup \mathcal{E} = U$. If some connected component having at least two vertices does not contain odd cycles, then it forms a bipartite graph. Hence the values x(v) for vertices v in the connected component are not uniquely determined. (For, if $x(v_0)$ for a vertex v_0 of the bipartite graph is increased by α , then increasing x(v) for every v at an even distance from v_0 by α and decreasing x(v) for every v at an odd distance from v_0 by α keep x satisfy (21) for any $\alpha \in \mathbb{R}$.) Hence every connected component has at least one odd cycle. \Box

For $x^T \in \mathbf{B}(f^T)$ define a directed graph $G_x^T = (T, A_x)$ with the vertex set T and the arc set A_x given by

$$A_x = \{ (u, v) \mid u \in T, v \in dep(x, u) \setminus \{u\} \}.$$
 (22)

Let $H_x^i = (S_x^i, B_x^i)$ $(i \in I)$ be the strongly connected components of G_x^T . Choose any $w^i \in S_x^i$ for each $i \in I$. Then we call the set $W = \{w^i \mid i \in I\}$ a *covering set* of G_x^T .

It is known ([5]) that for any maximal chain of tight sets in $\mathcal{T}(x) \cap 2^T$

$$\emptyset = T_0 \subset T_1 \subset \dots \subset T_p = T \tag{23}$$

the collection of the difference sets $T_j \setminus T_{j-1}$ $(j = 1, \dots, p)$ is exactly the collection of vertex sets S_x^i $(i \in I)$ of the strongly connected components of G_x^T ; in particular, p = |I|.

Lemma 4.6. For any $x \in P_2(f)$ and nonempty $T \in \mathcal{T}$ suppose that the following three statements hold:

- (1) For every tight set $T' \in \mathcal{T}(x)$ we have $T' \subseteq \bigcup \{ U(u) \mid u \in T \}$.
- (2) $x^T \in \mathcal{B}(f^T)$.
- (3) (B) in Lemma 4.2 is satisfied.

If for some $i_0 \in I$

(a) we have $|S_x^{i_0}| \ge 2$ and

(b) for some distinct $u, v \in S_x^{i_0}$ we have $x(u) \neq 0$ and $x(v) \neq 0$, and letting \mathcal{E}_u and \mathcal{E}_v be, respectively, the sets of all tight pairs for U(u) and U(v), the connected component of graph $(U(u), \mathcal{E}_u)$ containing u and that of $(U(v), \mathcal{E}_v)$ containing v are both bipartite (more specifically, stars),

then x is not an extreme point of $P_2(f)$.

(Proof) Under the assumption of the present lemma let u and v be those appearing in (b). Define

$$\alpha_1 = \min\{|x(u)|, |x(v)|\},\\alpha_2 = \min\{f(T') - x(T') \mid T' \in \mathcal{T}, |T' \cap \{u, v\}| = 1\}.$$

By the assumption we have $\alpha_1 > 0$. Also, since $u, v \in S_x^{i_0}$, we have $v \in dep(x, u)$ and $u \in dep(x, v)$, so that $\alpha_2 > 0$. Then, for a real number α such that $0 < \alpha < \min\{\alpha_1, \alpha_2\}$, put $x(u) \leftarrow x(u) \pm \alpha$ and $x(v) \leftarrow x(v) \mp \alpha$ and modify x(z) for $z \in U(u) \cup U(v)$ according to (B) in Lemma 4.2. (The modification of x(w) for $w \in (U(u) \setminus \{u\}) \cup (U(v) \setminus \{v\})$ according to (B) can be made because the relevant components are stars. This includes the case where the relevant component is an isolated vertex in Case (B2)(2).) Let x^+ and x^- be the obtained new points. Since $\alpha_2 \leq \min\{\tilde{c}(x, u, v), \tilde{c}(x, v, u)\}$ and since x^{\pm} satisfy the assumption of Lemma 4.2 because of the choice of α , we have $x^{\pm} \in P_2(f)$ and $x = \frac{1}{2}(x^+ + x^-)$. This completes the proof of this lemma.

We now show the following.

Theorem 4.7. For a given $x \in P_2(f)$, x is an extreme point of $P_2(f)$ if and only if there exists a $T \in \mathcal{T}$ such that the following (a)–(e) hold:

- (a) For every tight set $T' \in \mathcal{T}(x)$ we have $T' \subseteq \bigcup \{ U(u) \mid u \in T \}$.
- (b) $x^T \in B(f^T)$.
- (c) For each u ∈ T,
 (c1) if x(u) ≥ 0, then x(v) = -x(u) for all v ∈ U(u) \ {u};
 (c2) otherwise,
 (1) x(v) = x(u) for all v ∈ U(u) \ {u} but one v' with x(v') = -x(u) or
 - (2) x(v) = 0 for all $v \in U(u) \setminus \{u\}$.
- (d) For some covering set $W = \{w^i \mid i \in I\}$ of G_x^T with strongly connected components having vertex sets $S_x^i \subseteq T$ ($i \in I$) we have x(v) = 0 for all $v \in T \setminus W$. Moreover, for each $i \in I$ and $v \in S_x^i \setminus \{w^i\}$ we have $|U(v)| \ge 3$, and if values of x(v) are determined by (2) of (c2), we have $|U(w^i)| \ge 4$.

(e) For all $v \in U \in U$ with $U \cap T = \emptyset$ we have x(v) = 0. Moreover, $|U| \ge 3$ for all $U \in U$ such that $U \cap T = \emptyset$.

Here Conditions (b), (c), and (d) are void if $T = \emptyset$.

(Proof) If (a)–(e) are satisfied for $x \in P_2(f)$, then we have tight equations given as follows.

$$x(T_i) = f(T_i)$$
 for a maximal chain of tight sets for x^T , (24)

$$x(u) + x(v) = 0 \quad (\forall u \in T, \ \forall v \in U(u) \setminus \{u\} \text{ in Case (c1)}),$$
(25)

$$x(v) + x(z) = 0 \ (\forall u \in T, \ \forall \{v, z\} \in \binom{U(u)}{2} \text{ in Case (c1) with } x(u) = 0), \ (26)$$

$$x(v') + x(v) = 0 \quad (\forall u \in T, \ \forall v \in U(u) \setminus \{v'\} \text{ in Case (c2)(1)}), \tag{27}$$

$$x(v) + x(z) = 0 \quad (\forall i \in I, \forall \{v, z\} \in \binom{U(w^i) \setminus \{w^i\}}{2} \text{ in Case (c2)(2)}, \quad (28)$$

$$x(v) + x(z) = 0 \quad (\forall U \in \mathcal{U} \text{ with } U \cap T = \emptyset, \ \forall \{v, z\} \in \binom{U}{2}).$$
(29)

We can see that the system of equations (24)–(29) uniquely determines the solution x, due to Lemma 4.5, so that x is an extreme point of $P_2(f)$.

Conversely, suppose that $x \in P_2(f)$ is an extreme point. Then for each $u \in V$ there must exist a tight equation of type

- (I) x(T) = f(T) for some $T \in \mathcal{T}$ with $u \in T$ or
- (II) x(X) = 0 for some $X \in {\binom{U}{2}}$ with $u \in X$ and $U \in \mathcal{U}$.

Denote by $\mathcal{T}(x)$ the collection of tight sets T of type (I) (as before) and define $W = \bigcup \{T \mid T \in \mathcal{T}(x)\}.$

Since $x \in P_2(f)$, we have $dep(x, u) \in \mathcal{T}(x)$ for all $u \in W$. Moreover, for any $u \in W$ and any $v \in W \setminus \bigcup \{U \in \mathcal{U} \mid U \cap dep(x, u) \neq \emptyset\}$ we have $dep(x, u) \cup dep(x, v) \in \mathcal{T}(x)$. Hence, similarly as in the proof of Theorem 3.1, there exists $T \in \mathcal{T}(x)$ such that $T \cap U(u) \neq \emptyset$ for all $u \in W$. Let us show that for such T, Conditions (a)–(e) are satisfied. Firstly, (a), (b), and (e) follow from the choice of T and Lemma 4.5.

Secondly, we show (c). Fixing the values of x(u) for all $u \in T$ and discarding the constraints $x(T') \leq f(T')$ for all $T' \in \mathcal{T} \setminus 2^T$, component-wise maximal vectors x satisfying (20) are exactly those determined by (c), due to Lemmas 4.4 and 4.5. Hence, if x does not satisfy (c), then defining $Z = \bigcup \{U(v) \mid v \in T\}$, there exist $u \in T$ and $y \in \mathbb{R}^Z$, defined appropriately as in Lemma 4.3, such that (i) $x^Z \leq y$ and (ii) $x(\hat{w}) < y(\hat{w})$ for \hat{w} with $\{\hat{w}\} = U(u) \cap T'$ for a tight set $T' \in \mathcal{T}(x)$. Since all the tight sets $T'' \in \mathcal{T}(x)$ for x are included in Z and we have $x \in P_2(f)$ and $y \in P_2(f^Z)$ because of Lemma 4.3,

defining $y^* \in \mathbb{R}^V$ by $y^*(v) = y(v)$ for all $v \in Z$ and $y^*(v) = 0$ for all $V \setminus Z$, we have for a sufficiently small positive $\epsilon > 0$

$$z_{\epsilon} \equiv \epsilon x + (1 - \epsilon)y^* \in \mathcal{P}_2(f).$$
(30)

Then we have $z_{\epsilon}(\hat{w}) > x(\hat{w})$, which implies $z_{\epsilon}(T') > f(T')$, a contradiction. Hence (c) is satisfied.

Finally, (d) follows from Lemma 4.6.

In the counterexample given above, T appearing in Theorem 4.7 is $T = \{v_1, u_1\}$, graph $G_{x^*}^T$ is strongly connected, and a covering set is $W = \{v_1\}$.

It should be noted that we have assumed the membership $x \in P_2(f)$ in the characterization of extreme points, so that it is not well characterized so as to obtain extreme points efficiently.

5 Concluding Remarks

We have shown a min-max relation for k-submodular functions in terms of a new norm composed of ℓ_1 and ℓ_{∞} norms, which is simpler and easier to understand than the min-max relation shown by Huber and Kolmogorov in [6] by using ℓ_1 norm alone.

We have also shown a characterization of extreme points of $P_2(f)$, a k-submodular polyhedron in the sense of Huber and Kolmogorov, which fixes a flaw in [6].

Devising a polynomial-time algorithm for minimizing k-submodular functions is left open. As pointed out in [6] and discussed here in Section 4 as well, we need a good characterization of extreme points of $P_2(f)$. A key to the good characterization is to develop a polynomial-time algorithm for linear optimization over $P_2(f)$. Main difficulty in linear optimization over $P_2(f)$ is that a polynomial-time algorithm for it requires an efficient membership algorithm for discerning whether $\mathbf{0} \in P(f)$.

Acknowledgments

The present work was supported by JSPS Grant-in-Aid for Scientific Research (B) 25280004.

References

- [1] A. Bouchet: Greedy algorithm and symmetric matroids. *Mathematical Programming* **38** (1987) 147–159.
- [2] A. Bouchet: Multimatroids I—-Coverings by independent sets. SIAM Journal on Discrete Mathematics 10 (1997) 626–646.

- [3] A. Bouchet and W. H. Cunningham: Delta-matroids, jump systems, and bisubmodular polyhedra. *SIAM Journal on Discrete Mathematics* **8** (1995) 17–32.
- [4] S. Fujishige: A min-max theorem for bisubmodular polyhedra. *SIAM Journal on Discrete Mathematics* **10** (1997) 294–308.
- [5] S. Fujishige: Submodular Functions and Optimization, Second Ed., Elsevier, 2005.
- [6] A. Huber and V. Kolmogorov: Towards minimizing k-submodular functions. Proceedings of ISCO 2012, LNCS 7422 (2012) 451–462.
- [7] V. Kolmogorov: Submodularity on a tree: unifying L¹-convex and bisubmodular functions. Proceedings of MFCS 2011, LNCS 6907 (2011) 400–411.
- [8] F. Kuivinen: On the complexity of submodular function mimisation on diamonds. *Discrete Optimization* **8** (2011) 459–477.
- [9] J. Thapper and S. Živný: The power of linear programming for valued CSPs. Proceedings of FOCS 2012, IEEE (2012) 669–678.
- [10] J. Thapper and S. Živný: The complexity of finite valued CSPs. Proceedings of STOC 2013.
- [11] S. Živný: The Complexity of Valued Constraint Satisfaction Problems, Springer, 2012.