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Abstract

A. Huber and V. Kolmogorov (ISCO 2012) introduced a concept of k-submodular
function as a generalization of ordinary submodular (set) functions and bisubmod-
ular functions. They presented a min-max relation for the k-submodular function
minimization by considering ℓ1 norm, which requires a non-convex set of feasible
solutions associated with the k-submodular function. Our approach overcomes the
trouble incurred by the non-convexity by means of a new norm composed of ℓ1 and
ℓ∞ norms. We show another min-max relation that characterizes the minimum of a
k-submodular function in terms of the maximum of the negative of the norm values
over the associated convex set of feasible solutions. The min-max relation given in
the present paper is simpler than that of Huber and Kolmogorov.

We also show a counterexample to a characterization, given by Huber and Kol-
mogorov, of extreme points of the k-submodular polyhedron in their sense and make
it a correct one by fixing a flaw therein.

1 Introduction
A. Huber and V. Kolmogorov [6] introduced a concept of k-submodular function, which
is a generalization of ordinary submodular (set) functions and bisubmodular functions
(see, e.g., [3, 4, 5]). Motivated by [8], Huber and Kolgomolov introduced convex poly-
hedra, what they call k-submodular polyhedra, associated with k-submodular functions.
Earlier than Huber and Kolmogorov [6] A. Bouchet [2] also considered a class of k-
submodular functions to define multimatroids as a generalization of delta-matroids [1, 3].
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Kolmogorov [7] also considered a concept of tree-submodularity, which is more general
than k-submodularity. It was shown in [7] that polynomial solvability of the k-submodular
function minimization implies that of the tree-submodular function minimization for all
trees.

Thapper and Zivny [9] showed a dichotomy theorem that classifies the polynomial-
time solvability of the minimization problems of functions on finite domains in terms of
binary fractional polymorphisms (see [9, 10, 11] for the details). One of the important
applications of this result is the tractability of the k-submodular function minimization
problem in the valued CSP model since its complexity was not known before. It, how-
ever, remains an open problem whether k-submodular functions can be minimized in
polynomial time in the value oracle model.

In this paper we consider general k-submodular functions and their associated k-
submodular polyhedra. We introduce a new norm that is composed of ℓ1 and ℓ∞ norms
and show a min-max relation that the minimum of a k-submodular function is equal to
the maximum of the negative of the norm values over the associated k-submodular poly-
hedron (see [4] about such a min-max relation for bisubmodular functions by means of ℓ1
norm).

Huber and Kolmogorov [6] presented a min-max relation that characterizes the min-
imum of a k-submodular function in terms of ℓ1 norm, which requires a non-convex set
of feasible solutions associated with the k-submodular function for k ≥ 3. Our approach
with the new norm overcomes the trouble incurred by the non-convexity.

In the present paper we first give definitions and some preliminaries in Section 2.
Section 3 shows a min-max relation that characterizes the minimum of a k-submodular
function in terms of a new norm composed of ℓ1 and ℓ∞ norms. In Section 4 we give a
counterexample to a characterization, presented in [6], of extreme points of k-submodular
polyhedron in the sense of Huber and Kolmogorov, and then show a correct one. Finally,
Section 5 gives concluding remarks.

2 Definitions and Preliminaries
Let V be a nonempty finite set and U ≡ {U1, U2, · · · , Un} be a partition of V . A subset
T ⊆ V is called a subtransversal (or partial transversal) of U if |T ∩ U | ≤ 1 for all
U ∈ U . Denote by T the set of all subtransversals of U .

For any T, T ′ ∈ T define binary operations ⊔ and ⊓ on T by

T ⊔ T ′ = (T ∪ T ′) \
∪
{U ∈ U | |U ∩ (T ∪ T ′)| = 2}, T ⊓ T ′ = T ∩ T ′. (1)

Let k = max{|U | | U ∈ U}. A function f : T → R is called k-submodular if

f(T ) + f(T ′) ≥ f(T ⊔ T ′) + f(T ⊓ T ′) (∀T, T ′ ∈ T ). (2)
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This definition of a k-submodular function is equivalent to that given in [6]. We assume
f(∅) = 0. We call (U , f) a k-submodular system on V . Define a polyhedron

P(f) = {x ∈ RV | ∀T ∈ T : x(T ) ≤ f(T )}, (3)

where we define x(T ) =
∑

v∈T x(v). We call P(f) the k-submodular polyhedron associ-
ated with the k-submodular system (U , f).

Bouchet [2] considered k-submodular functions that were monotone nondecreasing
and had the unit-increase property to define a set system called a multimatroid, a general-
ization of delta-matroids [1]. General k-submodular functions were considered by Huber
and Kolmogorov [6], where they assumed that |U | = k for all U ∈ U . They defined
a polyhedron in a way slightly different from our P(f) in (3) by adding the following
inequalities to those in (3).

∀U ∈ U , ∀X ∈
(
U

2

)
: x(X) ≤ 0, (4)

where
(
U
2

)
is the set of all two-element subsets of U . We denote the ’k-submodular

polyhedron’ in the sense of Huber and Kolmogorov by P2(f), i.e.,

P2(f) = {x ∈ RV | ∀T ∈ T : x(T ) ≤ f(T ), ∀U ∈ U , ∀X ∈
(
U

2

)
: x(X) ≤ 0}. (5)

Note that we have

P(f) ∩ RV
≤0 = P2(f) ∩ RV

≤0 ⊆ P2(f) ⊆ P(f), (6)

where RV
≤0 is the set of all nonpositive vectors in RV .

For any x ∈ P(f) (or x ∈ P2(f)) and T ∈ T we say T is x-tight if x(T ) = f(T ). We
can easily show the following (see [6]).

Lemma 2.1. For any x ∈ P2(f) and X, Y ∈ T , if X and Y are x-tight, then X ⊔ Y and
X ⊓ Y are also x-tight. 2

In the present paper the collection of vectors x ∈ P(f) with x ≤ 0 plays an important
rôle in showing our main theorem about a min-max relation for k-submodular functions.
Note that such vectors belong to P2(f).

For any u ∈ V and x ∈ P(f) define

ĉ(x, u) = max{α ∈ R | x+ αχu ∈ P(f)}, (7)

where χu is the unit vector in RV with χu(u) = 1 and χu(v) = 0 for all v ∈ V \ {u}.
Note that ĉ(x, u) can be expressed as

ĉ(x, u) = min{f(X)− x(X) | u ∈ X ∈ T }. (8)
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We call ĉ(x, u) the saturation capacity associated with x and u. If ĉ(x, u) = 0, we call
u saturated, and otherwise (ĉ(x, u) > 0), non-saturated. Define sat(x) to be the set of
saturated elements associated with x. We see that u is saturated if and only if there exists
at least one x-tight set X such that u ∈ X . Let us denote by T (x) the collection of x-tight
sets.

For any x ∈ P(f) and any saturated u ∈ V define the dependence function

dep(x, u) = {v ∈ V | ∃β > 0 : x+ β(χu − χv) ∈ P(f)}. (9)

This can be rewritten as

dep(x, u) =
∩
{X | u ∈ X ∈ T (x)}. (10)

Here, it should be noted that we have dep(x, u) ∈ T (x) if x ∈ P2(f) (due to Lemma 2.1)
but not necessarily otherwise. If x ∈ P2(f), then dep(x, u) is the unique minimal x-tight
set containing u.

Furthermore, for any v ∈ dep(x, u) \ {u} define

c̃(x, u, v) = max{β ∈ R | x+ β(χu − χv) ∈ P(f)} > 0, (11)

which is called the exchange capacity for u and v ∈ dep(x, u) \ {u} associated with x.
This can also be rewritten as

c̃(x, u, v) = min{f(X)− x(X) | X ∈ T , u ∈ X, v /∈ X}. (12)

The concepts of sat, ĉ, dep, and c̃ generalize those defined for ordinary submodular
polyhedra (see [5]).

For any nonempty W ⊆ V and x ∈ RV we define xW ∈ RW by xW (v) = x(v) for all
v ∈ W . Also define (UW , fW ) to be the restriction of the k-submodular system (U , f) on
V to W as follows. Let UW = {U ∩W | U ∈ U , U ∩W ̸= ∅}, T W = {T ∩W | T ∈ T }
and fW (T ) = f(T ) for all T ∈ T W . For k′ = max{|U | | U ∈ UW}, (UW , fW ) is a
k′-submodular system on W . For any nonempty T ∈ T , fT is an ordinary submodular
function on 2T , which defines the associated base polyhedron

B(fT ) = {x ∈ RT | ∀X ⊂ T : x(X) ≤ f(X), x(T ) = f(T )}. (13)

(See [5].)
For any x ∈ RV define

||x||1,∞ =
n∑

i=1

max
u∈Ui

|x(u)|. (14)

This defines a norm on RV , which is a composition of ℓ1 and ℓ∞ norms. Our main result
is a min-max theorem based on the new norm || · ||1,∞ on RV .
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3 A Min-Max Theorem
We show the following min-max theorem.

Theorem 3.1. For a k-submodular system (U , f) on V with f(∅) = 0 we have

min{f(T ) | T ∈ T } = max{−||x||1,∞ | x ∈ P(f)}. (15)

Moreover, if f is integer-valued, there exists an integral x that attains the maximum of the
right-hand side. 2

Remarks: It should be noted that Theorem 3.1 follows from the the min-max theorem
shown by Huber and Kolmogorov [6]. We shall give a direct and simple proof of Theorem
3.1 in the following. 2

In order to prove Theorem 3.1 we will show some lemmas. For simplicity we write
|| · ||1,∞ as || · ||.

Lemma 3.2. For any x ∈ P(f) and T ∈ T we have

f(T ) ≥ x(T ) ≥ −||x||. (16)

(Proof) This easily follows from the definitions of P(f) and ||x||. 2

Let x∗ be a maximizer of the right-hand side of (15). Because of the definition of P(f)
we can assume that x∗ ≤ 0. Recall that u ∈ V is saturated if for every α > 0 we have
x∗ + αχu /∈ P(f), and non-saturated otherwise. If x∗(u) < 0 for some non-saturated u,
then we can make u saturated or x∗(u) = 0 without increasing the norm ||x∗||. Hence we
further assume that u is saturated for every u ∈ V with x∗(u) < 0.

We fix such a maximizer x∗ in the following argument.
Recall that T (x∗) is the collection of x∗-tight sets. It is a crucial fact that since x∗ ≤ 0,

T (x∗) is closed with respect to binary operations ⊔ and ⊓, due to Lemma 2.1.

Lemma 3.3. For every u ∈ V with x∗(u) < 0 we have dep(x∗, u) ∈ T (x∗).

(Proof) By the assumption u is saturated and x∗ ≤ 0. It follows from Lemma 2.1 that
dep(x∗, u) ∈ T (x∗). 2

We write dep(x∗, u) as D(u) for simplicity in the sequel. For any v ∈ V let U(v) be
the unique set U ∈ U such that v ∈ U .

Lemma 3.4. Suppose that u ∈ V and x∗(u) < 0. Then for v ∈ V with D(u) ∩ U(v) = ∅
we have x∗(v) = 0 or

|(D(u) ∪D(v)) ∩ Ui| ̸= 2 (∀i = 1, · · · , n). (17)

(Proof) If x∗(v) < 0 and some Ui violates (17), then v ∈ (D(u)⊔D(v))⊓D(v) ⊂ D(v),
which contradicts the minimality of D(v). 2
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Let u be an element of V such that x∗(u) < 0. Then, if for every w ∈ D(u) we have
x∗(w) = min{x∗(v) | v ∈ U(w)}, we call u legitimate. Also, if for some w ∈ D(u) we
have x∗(w) > min{x∗(v) | v ∈ U(w)}, we say u is not legitimate with w.

The following is a key lemma.

Lemma 3.5. For any U ∈ U with min{x∗(v) | v ∈ U} < 0 let W be the set of all the
minimizers of min{x∗(v) | v ∈ U}. Then there exists a legitimate w ∈ W .

(Proof) Suppose on the contrary that no element in W is legitimate. Then, |D(w)| > 1
for all w ∈ W . For each w ∈ W let w− be an element of D(w)\{w} such that x∗(w−) >
min{x∗(v) | v ∈ U(w−)}. Put zw− = x∗(w−)−min{x∗(v) | v ∈ U(w−)}.

Now, for each w ∈ W there exists some (sufficiently small) αw > 0 such that yw ≡
x∗ + αw(χw − χw−) ∈ P(f) and αw ≤ min{zw− ,−x∗(w)}. It follows that a convex
combination y∗ of yw (w ∈ W ) with positive coefficients has a norm ||y∗|| smaller than
||x∗||, a contradiction. 2

Now, for given x∗, we find a minimizer T ∈ T of f by the following procedure.

———————————————————————————–
Procedure Find Min

Step 1: Ũ ← {U ∈ U | ∃u ∈ U : x∗(u) < 0},
T ← ∅.

Step 2: While Ũ ̸= ∅, do the following:
(1) Choose U ∈ Ũ and let û be a legitimate element of U .
(2) T ← T ∪D(û),
Ũ ← Ũ \ {U(v) | v ∈ D(û)}.

Step 3: Return T .
———————————————————————————–

The following lemma completes the proof of the min-max relation in Theorem 3.1.

Lemma 3.6. Procedure Find Min finds T ∈ T such that −||x∗|| = f(T ).

(Proof) It follows from Lemma 3.5 we can find a legitimate û in Step 2. Furthermore,
Lemma 3.4 validates T ∈ T and T being x∗-tight. The finally obtained T satisfies that
T ∩ U ̸= ∅ for all U ∈ U with min{x∗(v) | v ∈ U} < 0 and that for all u ∈ T we have
x∗(u) = min{x∗(v) | v ∈ U(u)}. Hence, −||x∗|| = x∗(T ) = f(T ). 2

Now we show the latter half of Theorem 3.1, the integrality property. Note that by
definition P(f) is hereditary, i.e., closed downward, so that there exists an integral x in
P(f).

Consider the following procedure.
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———————————————————————————–
Procedure Find Max

Step 0: Let x be an integral non-positive vector in P(f).
Step 1: While there exists a non-saturated v ∈ V with x(v) < 0, do the following:

α← min{−x(v), ĉ(x, v)},
x← x+ αχv.

Step 2: Ũ ← {U ∈ U | ∃u ∈ U : x(u) < 0},
T ← ∅.

Step 3: While Ũ ̸= ∅, do the following:
(1) Choose U ∈ Ũ .
(2) Define W = {u ∈ U | x(u) = min{x(v) | v ∈ U}}.
(3) Choose u ∈ W .

(3-1) If u is not legitimate with w ∈ D(u) \ {u}, then
(a) β ← min{−x(u), c̃(x, u, w), x(w)−min{x(v) | v ∈ U(w)}},
(b) x← x+ β(χu − χw),
(c) If ∃v ∈ U : x(v) < 0, then go to (2); else remove U from Ũ .

(3-2) If u is legitimate, then
T ← T ∪D(u),
Ũ ← Ũ \ {U(v) | v ∈ D(u)}.

Step 4: Return x.
———————————————————————————–

Lemma 3.7. Suppose f is integer-valued. Starting with an integral x ∈ P(f) with
x ≤ 0, Procedure Find Max finds an integral maximizer for the min-max relation in
Theorem 3.1.

(Proof) During the execution of Procedure Fin Max x remains integral. If u in (3) of
Step 3 is not legitimate, x(u) becomes larger, and when |W | ≥ 2, W becomes smaller.
Hence, repeating (2), (3), and (4) in Step 3, we find a legitimate u or we get x with
x(v) = 0 for all v ∈ U . It follows that Procedure Find Max terminates after a finite
number of iterations and the finally obtained integral x and subtransversal T give max
and min solutions, similarly as in the proof of Lemma 3.6. 2

This completes the proof of Theorem 3.1.

4 Extreme Points of P2(f )

Huber and Kolmogorov [6] presented a characterization of extreme points of P2(f) for a
k-submodular function f . In particular, as a necessary condition, they state that if x ∈ RV
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is a nonzero extreme point of P2(f) then there is a nontrivial1 chain ∅ = T0 ⊂ T1 ⊂ · · · ⊂
Tk of elements in T such that

(i) |Ti \ Ti−1| = 1 for 1 ≤ i ≤ k and

(ii) Ti is x-tight for 0 ≤ i ≤ k.

We give a counterexample to this claim by showing the existence of a nonzero extreme
point that does not satisfy (i).

Let U1 = {v1, v2, v3} and U2 = {u1, u2, u3}. Let V = U1 ∪ U2, U = {U1, U2}, and
M be any integer greater than 5. Define f : T → R by

f(∅) = 0,

f({v1}) = −1, f({u1}) = 1,

f({vi}) = f({ui}) = M for i = 2, 3,

f({u1, v1}) = −2,
f({ui, vj}) = f({ui}) + f({vj}) for i, j = 1, 2, 3 with (i, j) ̸= (1, 1).

Lemma 4.1. f is k-submodular for k = 3.

(Proof) Take any T, T ′ ∈ T and let us check f(T )+ f(T ′) ≥ f(T ⊔T ′)+ f(T ⊓T ′). We
may assume T ̸⊂ T ′ and T ′ ̸⊂ T . We shall use the fact that f({ui}) + f({uj}) ≥ 0 and
f({vi}) + f({vj}) ≥ 0 for any distinct i, j.

1. If |T | = 1 and |T ′| = 1, denote T = {x} and T ′ = {y}.

• If U(x) = U(y), then T ⊔ T ′ = ∅ and T ⊓ T ′ = ∅. Thus f(T ) + f(T ′) =
f({x}) + f({y}) ≥ 0 = f(T ⊔ T ′) + f(T ⊓ T ′).

• Otherwise, T ⊔ T ′ = {x, y} and T ⊓ T ′ = ∅.
If {x, y} = {v1, u1}, then f(T )+ f(T ′) = 0 > −2 = f(T ⊔T ′)+ f(T ⊓T ′).
If {x, y} ̸= {v1, u1}, then f(T ) + f(T ′) = f({x}) + f({y}) = f(T ⊔ T ′) +
f(T ⊓ T ′).

2. If |T | = 2 and |T ′| = 1, denote T = {x, y} and T ′ = {z}. We may assume that
U(y) = U(z). Then T ⊔ T ′ = {x} and T ⊓ T ′ = ∅. Hence,

• If {x, y} = {v1, u1}, then f(T )+f(T ′) = −2+M ≥ max{f({v1}), f({u1})} ≥
f({x}) = f(T ⊔ T ′) + f(T ⊓ T ′).

• Otherwise, f(T ) + f(T ′) = f({x}) + f({y}) + f({z}) ≥ f({x}) = f(T ⊔
T ′) + f(T ⊓ T ′).

1By a nontrivial chain, we mean k ≥ 1.
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3. If |T | = 2 and |T ′| = 2, denote T = {x, y} and T ′ = {z, w}.

• If {x, y} = {v1, u1}, then f(T ⊔ T ′) ≤ 1 and f(T ⊓ T ′) ≤ 1. Therefore
f(T )+f(T ′) = −2+f({z})+f({w}) ≥ −3+M ≥ f(T ⊔T ′)+f(T ⊓T ′).

• Otherwise, we may assume {z, w} ̸= {v1, u1}. If y = w, then T ⊔ T ′ = {y}
and T ⊓ T = {y}, and hence f(T ) + f(T ′) = f({x}) + f({z}) + 2f({y}) ≥
2f({y}) = f(T ⊔ T ′) + f(T ⊓ T ′). If y ̸= w, we may assume T ∩ T ′ = ∅.
Then T ⊔ T ′ = ∅ and T ⊓ T ′ = ∅, and hence f(T ) + f(T ′) = f({x}) +
f({y}) + f({z}) + f({w}) ≥ 0 = f(T ⊔ T ′) + f(T ⊓ T ′). 2

Now consider the nonzero x∗ ∈ RV given by

x∗(v1) = −2, x∗(v2) = 2, x∗(v3) = −2,
x∗(u1) = 0, x∗(u2) = 0, x∗(u3) = 0.

We can see by exhaustive checking that x∗ ∈ P2(f) and the following equations hold.

x∗({v1, u1}) = f({v1, u1}),
x∗({v1, v2}) = x∗({v2, v3}) = 0,

x∗({u1, u2}) = x∗({u2, u3}) = x∗({u3, u1}) = 0. (18)

Since the system of six equations in (18) uniquely determines the solution x∗, x∗ is an
extreme point of P2(f).

Note that for any chain of elements in T satisfying Condition (i), Condition (ii) is
violated for x = x∗, since x∗(vi) < f({vi}) for any vi and x∗(ui) < f({ui}) for any ui.
Hence x∗ cannot be any extreme point of P2(f) that corresponds to the conditions given
by Huber and Kolmogorov [6].

We have shown that the conditions provided in [6] do not give an exact characteriza-
tion of extreme points of P2(f). We will give a correct characterization of extreme points
of P2(f). Let (U , f) be a k-submodular system on V .

We first show some lemmas.

Lemma 4.2. For a nonempty T ∈ T let x be a vector in RV satisfying

(A) xT ∈ B(fT ),

(B) For each u ∈ T ,
(B1) if x(u) ≥ 0, then x(v) = −x(u) for all v ∈ U(u) \ {u};
(B2) otherwise,

(1) x(v) = x(u) for all v ∈ U(u) \ {u} but one v with x(v) = −x(u) or

(2) x(v) = 0 for all v ∈ U(u) \ {u}.
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Then we have xZ ∈ P2(f
Z) for Z = ∪{U(u) | u ∈ T}.

(Proof) For any X ∈ T such that X ⊆ Z we have

x(X) = x(X) + x(T )− f(T )

≤ x(X ⊔ T ) + x(X ⊓ T )− f(T )

≤ f(X ⊔ T ) + f(X ⊓ T )− f(T )

≤ f(X). (19)

Because of the way of defining x by (B) it follows from (19) that xZ ∈ P2(f
Z). 2

We also have

Lemma 4.3. For a given x ∈ P2(f) and a nonempty T ∈ T suppose that xT ∈ B(fT ).
Let Z =

∪
{U(u) | u ∈ T}. For an element u ∈ T define y ∈ RZ by y(v) = x(v) for

all v ∈ Z \ (U(u) \ {u}) and y(v) for all v ∈ (U(u) \ {u}) according to (B1) and (B2),
replacing x by y, in Lemma 4.2. Then we have y ∈ P2(f

Z).

(Proof) Since x ∈ P2(f), similarly as in (19) we can show that y ∈ P2(f
Z). 2

For U ∈ U consider the system of linear inequalities

x(u) + x(v) ≤ 0 (∀{u, v} ∈
(
U

2

)
). (20)

Denote by CU
2 the cone of feasible solutions of (20). We call {u, v} a tight pair for a

feasible solution x∗ if the inequality of (20) for the pair {u, v} holds with equality for
x = x∗.

Lemma 4.4. Suppose |U | ≥ 3. The cone CU
2 is pointed and its extreme rays are given by

x(u) = α and x(v) = −α for all v ∈ U \ {u} with a parameter α ≥ 0, for all u ∈ U .
Every component-wise maximal solution x∗ of (20) lies on an extreme ray of CU

2 and if
x∗ ̸= 0, the set of the tight pairs for x∗ forms a star with center u such that x∗(u) > 0.

(Proof) Since |U | ≥ 3, if we replace all the inequalities of (20) by equations, it gives
the unique solution x = 0. Hence CU

2 is pointed. Moreover, for any component-wise
maximal feasible solution x∗, if x∗ ̸= 0, there exists only one u ∈ U such that x∗(u) > 0.
Since x∗ is component-wise maximal, we must have x∗(v) = −x∗(u) for all v ∈ U \{u}.
Hence x∗ lies on an extreme ray of CU

2 and the tight pairs form a star with center u. 2

Note that every extreme vector (lying on an extreme ray) of CU
2 is component-wise

maximal.
For any subset E ⊆

(
U
2

)
we regard E as the edge set of an undirected graph G = (U, E)

with vertex set U .
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Lemma 4.5. For any subset E ⊆
(
U
2

)
the system of equations

x(u) + x(v) = 0 (∀{u, v} ∈ E) (21)

uniquely determines the solution x = 0 if and only if every connected component of the
graph G = (U, E) contains at least one odd cycle.

(Proof) Suppose that every connected component of the graph G = (U, E) contains at least
one odd cycle. Since equations (21) for an odd cycle determine x(v) = 0 for elements
(vertices) v on the cycle, which then determines x(v) = 0 for other elements v in the same
connected component.

Conversely, suppose that (21) determines the unique solution x = 0. Then we must
have

∪
E = U . If some connected component having at least two vertices does not

contain odd cycles, then it forms a bipartite graph. Hence the values x(v) for vertices v in
the connected component are not uniquely determined. (For, if x(v0) for a vertex v0 of the
bipartite graph is increased by α, then increasing x(v) for every v at an even distance from
v0 by α and decreasing x(v) for every v at an odd distance from v0 by α keep x satisfy
(21) for any α ∈ R.) Hence every connected component has at least one odd cycle. 2

For xT ∈ B(fT ) define a directed graph GT
x = (T,Ax) with the vertex set T and the

arc set Ax given by

Ax = {(u, v) | u ∈ T, v ∈ dep(x, u) \ {u}}. (22)

Let H i
x = (Si

x, B
i
x) (i ∈ I) be the strongly connected components of GT

x . Choose any
wi ∈ Si

x for each i ∈ I . Then we call the set W = {wi | i ∈ I} a covering set of GT
x .

It is known ([5]) that for any maximal chain of tight sets in T (x) ∩ 2T

∅ = T0 ⊂ T1 ⊂ · · · ⊂ Tp = T (23)

the collection of the difference sets Tj \ Tj−1 (j = 1, · · · , p) is exactly the collection of
vertex sets Si

x (i ∈ I) of the strongly connected components of GT
x ; in particular, p = |I|.

Lemma 4.6. For any x ∈ P2(f) and nonempty T ∈ T suppose that the following three
statements hold:

(1) For every tight set T ′ ∈ T (x) we have T ′ ⊆
∪
{U(u) | u ∈ T}.

(2) xT ∈ B(fT ).

(3) (B) in Lemma 4.2 is satisfied.

If for some i0 ∈ I

(a) we have |Si0
x | ≥ 2 and
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(b) for some distinct u, v ∈ Si0
x we have x(u) ̸= 0 and x(v) ̸= 0, and letting Eu and

Ev be, respectively, the sets of all tight pairs for U(u) and U(v), the connected
component of graph (U(u), Eu) containing u and that of (U(v), Ev) containing v
are both bipartite (more specifically, stars),

then x is not an extreme point of P2(f).

(Proof) Under the assumption of the present lemma let u and v be those appearing in (b).
Define

α1 = min{|x(u)|, |x(v)|},
α2 = min{f(T ′)− x(T ′) | T ′ ∈ T , |T ′ ∩ {u, v}| = 1}.

By the assumption we have α1 > 0. Also, since u, v ∈ Si0
x , we have v ∈ dep(x, u) and

u ∈ dep(x, v), so that α2 > 0. Then, for a real number α such that 0 < α < min{α1, α2},
put x(u)← x(u)±α and x(v)← x(v)∓α and modify x(z) for z ∈ U(u)∪U(v) according
to (B) in Lemma 4.2. (The modification of x(w) for w ∈ (U(u) \ {u}) ∪ (U(v) \ {v})
according to (B) can be made because the relevant components are stars. This includes
the case where the relevant component is an isolated vertex in Case (B2)(2).) Let x+

and x− be the obtained new points. Since α2 ≤ min{c̃(x, u, v), c̃(x, v, u)} and since x±

satisfy the assumption of Lemma 4.2 because of the choice of α, we have x± ∈ P2(f)
and x = 1

2
(x+ + x−). This completes the proof of this lemma. 2

We now show the following.

Theorem 4.7. For a given x ∈ P2(f), x is an extreme point of P2(f) if and only if there
exists a T ∈ T such that the following (a)–(e) hold:

(a) For every tight set T ′ ∈ T (x) we have T ′ ⊆
∪
{U(u) | u ∈ T}.

(b) xT ∈ B(fT ).

(c) For each u ∈ T ,
(c1) if x(u) ≥ 0, then x(v) = −x(u) for all v ∈ U(u) \ {u};
(c2) otherwise,

(1) x(v) = x(u) for all v ∈ U(u) \ {u} but one v′ with x(v′) = −x(u) or

(2) x(v) = 0 for all v ∈ U(u) \ {u}.

(d) For some covering set W = {wi | i ∈ I} of GT
x with strongly connected compo-

nents having vertex sets Si
x ⊆ T (i ∈ I) we have x(v) = 0 for all v ∈ T \ W .

Moreover, for each i ∈ I and v ∈ Si
x \ {wi} we have |U(v)| ≥ 3, and if values of

x(v) are determined by (2) of (c2), we have |U(wi)| ≥ 4.
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(e) For all v ∈ U ∈ U with U ∩ T = ∅ we have x(v) = 0. Moreover, |U | ≥ 3 for all
U ∈ U such that U ∩ T = ∅.

Here Conditions (b), (c), and (d) are void if T = ∅.

(Proof) If (a)–(e) are satisfied for x ∈ P2(f), then we have tight equations given as
follows.

x(Ti) = f(Ti) for a maximal chain of tight sets for xT , (24)
x(u) + x(v) = 0 (∀u ∈ T, ∀v ∈ U(u) \ {u} in Case (c1)), (25)

x(v) + x(z) = 0 (∀u ∈ T, ∀{v, z} ∈
(
U(u)

2

)
in Case (c1) with x(u)=0), (26)

x(v′) + x(v) = 0 (∀u ∈ T, ∀v ∈ U(u) \ {v′} in Case (c2)(1)), (27)

x(v) + x(z) = 0 (∀i ∈ I, ∀{v, z} ∈
(
U(wi) \ {wi}

2

)
in Case (c2)(2)), (28)

x(v) + x(z) = 0 (∀U ∈ U with U ∩ T = ∅, ∀{v, z} ∈
(
U

2

)
). (29)

We can see that the system of equations (24)–(29) uniquely determines the solution x, due
to Lemma 4.5, so that x is an extreme point of P2(f).

Conversely, suppose that x ∈ P2(f) is an extreme point. Then for each u ∈ V there
must exist a tight equation of type

(I) x(T ) = f(T ) for some T ∈ T with u ∈ T or

(II) x(X) = 0 for some X ∈
(
U
2

)
with u ∈ X and U ∈ U .

Denote by T (x) the collection of tight sets T of type (I) (as before) and define W =
∪{T | T ∈ T (x)}.

Since x ∈ P2(f), we have dep(x, u) ∈ T (x) for all u ∈ W . Moreover, for any
u ∈ W and any v ∈ W \∪{U ∈ U | U ∩dep(x, u) ̸= ∅} we have dep(x, u)∪dep(x, v) ∈
T (x). Hence, similarly as in the proof of Theorem 3.1, there exists T ∈ T (x) such that
T ∩U(u) ̸= ∅ for all u ∈ W . Let us show that for such T , Conditions (a)–(e) are satisfied.

Firstly, (a), (b), and (e) follow from the choice of T and Lemma 4.5.
Secondly, we show (c). Fixing the values of x(u) for all u ∈ T and discarding the

constraints x(T ′) ≤ f(T ′) for all T ′ ∈ T \ 2T , component-wise maximal vectors x
satisfying (20) are exactly those determined by (c), due to Lemmas 4.4 and 4.5. Hence, if
x does not satisfy (c), then defining Z =

∪
{U(v) | v ∈ T}, there exist u ∈ T and y ∈ RZ ,

defined appropriately as in Lemma 4.3, such that (i) xZ ≤ y and (ii) x(ŵ) < y(ŵ) for
ŵ with {ŵ} = U(u) ∩ T ′ for a tight set T ′ ∈ T (x). Since all the tight sets T ′′ ∈ T (x)
for x are included in Z and we have x ∈ P2(f) and y ∈ P2(f

Z) because of Lemma 4.3,
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defining y∗ ∈ RV by y∗(v) = y(v) for all v ∈ Z and y∗(v) = 0 for all V \ Z, we have for
a sufficiently small positive ϵ > 0

zϵ ≡ ϵx+ (1− ϵ)y∗ ∈ P2(f). (30)

Then we have zϵ(ŵ) > x(ŵ), which implies zϵ(T ′) > f(T ′), a contradiction. Hence (c)
is satisfied.

Finally, (d) follows from Lemma 4.6. 2

In the counterexample given above, T appearing in Theorem 4.7 is T = {v1, u1},
graph GT

x∗ is strongly connected, and a covering set is W = {v1}.
It should be noted that we have assumed the membership x ∈ P2(f) in the characteri-

zation of extreme points, so that it is not well characterized so as to obtain extreme points
efficiently.

5 Concluding Remarks
We have shown a min-max relation for k-submodular functions in terms of a new norm
composed of ℓ1 and ℓ∞ norms, which is simpler and easier to understand than the min-
max relation shown by Huber and Kolmogorov in [6] by using ℓ1 norm alone.

We have also shown a characterization of extreme points of P2(f), a k-submodular
polyhedron in the sense of Huber and Kolmogorov, which fixes a flaw in [6].

Devising a polynomial-time algorithm for minimizing k-submodular functions is left
open. As pointed out in [6] and discussed here in Section 4 as well, we need a good
characterization of extreme points of P2(f). A key to the good characterization is to
develop a polynomial-time algorithm for linear optimization over P2(f). Main difficulty
in linear optimization over P2(f) is that a polynomial-time algorithm for it requires an
efficient membership algorithm for discerning whether 0 ∈ P(f).
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