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Abstract

A. Huber and V. Kolmogorov (ISCO 2012) introduced a concept of k-submodular
function as a generalization of ordinary submodular (set) functions and bisubmod-
ular functions. They presented a min-max relation for the k-submodular function
minimization by considering ¢; norm, which requires a non-convex set of feasible
solutions associated with the k-submodular function. Our approach overcomes the
trouble incurred by the non-convexity by means of a new norm composed of ¢; and
{~, norms. We show another min-max relation that characterizes the minimum of a
k-submodular function in terms of the maximum of the negative of the norm values
over the associated convex set of feasible solutions. The min-max relation given in
the present paper is simpler than that of Huber and Kolmogorov.

We also show a counterexample to a characterization, given by Huber and Kol-
mogorov, of extreme points of the k-submodular polyhedron in their sense and make
it a correct one by fixing a flaw therein.

1 Introduction

A. Huber and V. Kolmogorov [6] introduced a concept of k-submodular function, which
is a generalization of ordinary submodular (set) functions and bisubmodular functions
(see, e.g., [3, 4, 5]). Motivated by [8], Huber and Kolgomolov introduced convex poly-
hedra, what they call k-submodular polyhedra, associated with k-submodular functions.
Earlier than Huber and Kolmogorov [6] A. Bouchet [2] also considered a class of k-
submodular functions to define multimatroids as a generalization of delta-matroids [1, 3].



Kolmogorov [7] also considered a concept of tree-submodularity, which is more general
than k-submodularity. It was shown in [7] that polynomial solvability of the k-submodular
function minimization implies that of the tree-submodular function minimization for all
trees.

Thapper and Zivny [9] showed a dichotomy theorem that classifies the polynomial-
time solvability of the minimization problems of functions on finite domains in terms of
binary fractional polymorphisms (see [9, 10, 11] for the details). One of the important
applications of this result is the tractability of the k-submodular function minimization
problem in the valued CSP model since its complexity was not known before. It, how-
ever, remains an open problem whether k-submodular functions can be minimized in
polynomial time in the value oracle model.

In this paper we consider general k-submodular functions and their associated k-
submodular polyhedra. We introduce a new norm that is composed of ¢; and /., norms
and show a min-max relation that the minimum of a k-submodular function is equal to
the maximum of the negative of the norm values over the associated k-submodular poly-
hedron (see [4] about such a min-max relation for bisubmodular functions by means of /;
norm).

Huber and Kolmogorov [6] presented a min-max relation that characterizes the min-
imum of a k-submodular function in terms of ¢/; norm, which requires a non-convex set
of feasible solutions associated with the k-submodular function for £ > 3. Our approach
with the new norm overcomes the trouble incurred by the non-convexity.

In the present paper we first give definitions and some preliminaries in Section 2.
Section 3 shows a min-max relation that characterizes the minimum of a k-submodular
function in terms of a new norm composed of /; and /., norms. In Section 4 we give a
counterexample to a characterization, presented in [6], of extreme points of k-submodular
polyhedron in the sense of Huber and Kolmogorov, and then show a correct one. Finally,
Section 5 gives concluding remarks.

2 Definitions and Preliminaries

Let V be a nonempty finite set and U = {U;, Uy, --- , U, } be a partition of V. A subset
T C V is called a subtransversal (or partial transversal) of U if |T N U| < 1 for all
U € U. Denote by T the set of all subtransversals of U1.

For any T, T" € T define binary operations LI and M on 7 by

TuT =(TuT)\|JUeu|[Un(TuT)| =2}, TnNT'=TnT. (1)
Let £ = max{|U| | U € U}. A function f : T — Ris called k-submodular if

FD) + f(T) = f(OUT) + f(TAT)  (¥T, T € T). @)



This definition of a k-submodular function is equivalent to that given in [6]. We assume
f(0) = 0. We call (U, f) a k-submodular system on V. Define a polyhedron

P(f)={zeR" VT € T: (T) < f(T)}, 3)

where we define z(T') =}, ., x(v). We call P(f) the k-submodular polyhedron associ-
ated with the k-submodular system (U, f).

Bouchet [2] considered k-submodular functions that were monotone nondecreasing
and had the unit-increase property to define a set system called a multimatroid, a general-
ization of delta-matroids [1]. General k-submodular functions were considered by Huber
and Kolmogorov [6], where they assumed that |U| = k for all U € U. They defined
a polyhedron in a way slightly different from our P(f) in (3) by adding the following
inequalities to those in (3).

U
YU € U, VX€<2> : x(X) <0, 4)
where (g) is the set of all two-element subsets of U. We denote the ’k-submodular

polyhedron’ in the sense of Huber and Kolmogorov by Py(f), i.e.,

U

Py(f) ={x e RV |VT € T: z(T) < f(T), YU €U, ¥X € (2

) cz(X) <0} (5)
Note that we have

P(f)mR‘g/o = PQ(f)mR‘g/o C Py(f) € P(f), (6)

where RY, is the set of all nonpositive vectors in R".
Forany z € P(f) (orz € Pyo(f))and T' € T we say T'is a-tight if x(T) = f(T"). We
can easily show the following (see [6]).

Lemma 2.1. Forany x € Py(f) and X, Y € T, if X and Y are x-tight, then X UY and
X MY are also x-tight. O

In the present paper the collection of vectors x € P(f) with z < 0 plays an important
rdle in showing our main theorem about a min-max relation for k-submodular functions.
Note that such vectors belong to P (f).

For any u € V and z € P(f) define

¢(zr,u) =max{a € R |z + ayx, € P(f)}, (7)

where Y, is the unit vector in RV with y,(u) = 1 and x,(v) = 0 forallv € V' \ {u}.
Note that ¢(x, u) can be expressed as

¢(r,u) =min{f(X)—z(X)|ue X e T} (8)



We call ¢(x, u) the saturation capacity associated with x and w. If ¢(z,u) = 0, we call
u saturated, and otherwise (¢(x,u) > 0), non-saturated. Define sat(x) to be the set of
saturated elements associated with z. We see that u is saturated if and only if there exists
at least one x-tight set X such that u € X. Let us denote by 7 () the collection of z-tight
sets.

For any x € P(f) and any saturated u € V' define the dependence function

dep(z,u) ={v €V |3 >0: v+ B(xu — xu) € P(f)}- )
This can be rewritten as
dep(z,u) = ﬂ{X lue X eT(x)} (10)

Here, it should be noted that we have dep(x,u) € T (x) if z € Py(f) (due to Lemma 2.1)
but not necessarily otherwise. If z € Py(f), then dep(z, u) is the unique minimal z-tight
set containing .

Furthermore, for any v € dep(x,u) \ {u} define

¢(x,u,v) =max{f € R| z+ B(xu — x») € P(f)} >0, (11)

which is called the exchange capacity for u and v € dep(x,u) \ {u} associated with z.
This can also be rewritten as

¢(z,u,v) =min{f(X) —z(X) | X eT,ue X, v¢ X} (12)

The concepts of sat, ¢, dep, and ¢ generalize those defined for ordinary submodular
polyhedra (see [5]).

For any nonempty W C V and z € RV we define "V € RY by 2"V (v) = z(v) for all
v € W. Also define (U", fV') to be the restriction of the k-submodular system (I, f) on
V to W as follows. LetU" = {UNW |U eUd, UNW £}, TV ={TnW | T €T}
and fY(T) = f(T)forall T € TV. For ¥ = max{|U| | U € UV}, U",fV)isa
k’-submodular system on W. For any nonempty 7" € T, fT is an ordinary submodular
function on 27, which defines the associated base polyhedron

BUY) = {a € BY [VX C T:2(X) < f(X). a(T) = f(D)}.  (13)
(See [5].)
For any 2 € RY define

[12]|1,00 = z_;fle%x | (w)]. (14)

This defines a norm on RY, which is a composition of ¢; and /., norms. Our main result
is a min-max theorem based on the new norm || - ||; o, on R.



3 A Min-Max Theorem

We show the following min-max theorem.

Theorem 3.1. For a k-submodular system (U, f) on V with f(0) = 0 we have
min{ f(T) | T € T} = max{—||z||1« | z € P(f)}. (15)

Moreover, if f is integer-valued, there exists an integral x that attains the maximum of the
right-hand side. O

Remarks: It should be noted that Theorem 3.1 follows from the the min-max theorem
shown by Huber and Kolmogorov [6]. We shall give a direct and simple proof of Theorem
3.1 in the following. O

In order to prove Theorem 3.1 we will show some lemmas. For simplicity we write
[ leo as {] -l

Lemma 3.2. Forany x € P(f) and T € T we have
f(T) 2 a(T) = —|l|] (16)
(Proof) This easily follows from the definitions of P(f) and ||x||. O

Let 2* be a maximizer of the right-hand side of (15). Because of the definition of P( f)
we can assume that z* < 0. Recall that u € V is saturated if for every o > 0 we have
x* 4+ ax, ¢ P(f), and non-saturated otherwise. If *(u) < 0 for some non-saturated ,
then we can make u saturated or 2*(u) = 0 without increasing the norm ||z*||. Hence we
further assume that v is saturated for every v € V' with 2*(u) < 0.

We fix such a maximizer x* in the following argument.

Recall that 7 (z*) is the collection of z*-tight sets. It is a crucial fact that since z* < 0,
T (z*) is closed with respect to binary operations L and M, due to Lemma 2.1.

Lemma 3.3. For every u € V with x*(u) < 0 we have dep(z*,u) € T (x*).
(Proof) By the assumption w is saturated and z* < 0. It follows from Lemma 2.1 that
dep(z*,u) € T(z*). O

We write dep(z*, u) as D(u) for simplicity in the sequel. For any v € V' let U(v) be
the unique set U € U such thatv € U.

Lemma 3.4. Suppose that v € V and x*(u) < 0. Then for v € V with D(u) NU(v) = 0
we have x*(v) = 0 or

|(D(u) U D(v))NU;| # 2 (Vi=1,---,n). (17)
(Proof) If z*(v) < 0 and some U; violates (17), then v € (D(u)U D(v)) 1 D(v) C D(v),
which contradicts the minimality of D(v). O



Let u be an element of V' such that *(u) < 0. Then, if for every w € D(u) we have
z*(w) = min{z*(v) | v € U(w)}, we call u legitimate. Also, if for some w € D(u) we
have z*(w) > min{z*(v) | v € U(w)}, we say u is not legitimate with w.

The following is a key lemma.

Lemma 3.5. For any U € U with min{z*(v) | v € U} < 0 let W be the set of all the
minimizers of min{x*(v) | v € U}. Then there exists a legitimate w € W.

(Proof) Suppose on the contrary that no element in W is legitimate. Then, |D(w)| > 1
forall w € W. Foreach w € W let w™ be an element of D(w) \ {w} such that z*(w™~) >
min{z*(v) | v € U(w™)}. Put z,,- = 2*(w™) — min{z*(v) | v € U(w™)}.

Now, for each w € W there exists some (sufficiently small) «,, > 0 such that y,, =
* + aw(Xw — Xu-) € P(f) and o, < min{z,-,—a*(w)}. It follows that a convex
combination y* of y,, (w € W) with positive coefficients has a norm ||y*|| smaller than

||z*||, a contradiction. O

Now, for given z*, we find a minimizer 7" € T of f by the following procedure.

Procedure Find_Min

Step1: U+ {U eU | Jue U :z*(u) <0},
T < (.

Step 2: While 2/ # (), do the following:

(1) Choose U € U and let 4 be a legitimate element of U.
2) T + T U D(a),
U—U\{U@W) |ve D)}
Step 3: Return 7.

The following lemma completes the proof of the min-max relation in Theorem 3.1.

Lemma 3.6. Procedure Find_Min finds T' € T such that —||z*|| = f(T).

(Proof) It follows from Lemma 3.5 we can find a legitimate @ in Step 2. Furthermore,
Lemma 3.4 validates 7' € T and T being x*-tight. The finally obtained 7T’ satisfies that
TNU # (forall U € U with min{z*(v) | v € U} < 0 and that for all u € T' we have
z*(u) = min{z*(v) | v € U(u)}. Hence, —||z*|| = *(T) = f(T). O

Now we show the latter half of Theorem 3.1, the integrality property. Note that by
definition P(f) is hereditary, i.e., closed downward, so that there exists an integral = in

P(f).

Consider the following procedure.



Procedure Find_Max

Step 0: Let 2 be an integral non-positive vector in P(f).

Step 1: While there exists a non-saturated v € V' with z(v) < 0, do the following:
a < min{—z(v), ¢(x,v)},
T < T+ axy-
Step2: U+ {UclU|FuecU:z(u) <0},
T « 0.
Step 3: While I/ # (), do the following:

(1) Choose U € U.
(2) Define W = {u € U | x(u) = min{z(v) | v € U}}.
(3) Choose u € W.
(3-1) If w is not legitimate with w € D(u) \ {u}, then
(@) 8+ min{—z(u),¢(z,u, w), z(w) — min{x(v) | v € U(w)}},
(b) & < 2+ B(Xu — Xw); N
(¢)If Jv € U : z(v) < 0, then go to (2); else remove U from U.
(3-2) If u 1s legitimate, then
T« TUD(u),
U—U\{Uw)|ve D)l
Step 4: Return .

Lemma 3.7. Suppose f is integer-valued. Starting with an integral v € P(f) with
x < 0, Procedure Find_Max finds an integral maximizer for the min-max relation in
Theorem 3.1.

(Proof) During the execution of Procedure Fin_Max = remains integral. If u in (3) of
Step 3 is not legitimate, x(u) becomes larger, and when |W| > 2, W becomes smaller.
Hence, repeating (2), (3), and (4) in Step 3, we find a legitimate v or we get x with
x(v) = 0 forall v € U. It follows that Procedure Find_Max terminates after a finite
number of iterations and the finally obtained integral x and subtransversal 7" give max
and min solutions, similarly as in the proof of Lemma 3.6. O

This completes the proof of Theorem 3.1.

4 Extreme Points of P5(f)

Huber and Kolmogorov [6] presented a characterization of extreme points of Py( f) for a
k-submodular function f. In particular, as a necessary condition, they state that if z € RY



is a nonzero extreme point of Py( f) then there is a nontrivial' chain() =Ty, C Ty C --- C
T;. of elements in 7 such that

() [ T;\T;—1|=1for1 <i<kand
(i1) T;is x-tight for 0 <1 < k.

We give a counterexample to this claim by showing the existence of a nonzero extreme
point that does not satisfy (i).

Let U1 = {Uly’Ug,’Ug} and U2 = {U17U27U3}. LetV = U1 U UQ, U= {Ul, UQ}, and
M be any integer greater than 5. Define f:7 — R by

F(0) =

({vl}) -1, f({w}) =1,

f({ui}) = ({uz}) =M for i =2,3,

f{ur,v1}) =

f({us,vs}) = ({uz-})+f({vj}) for i,j = 1,2,3 with (i,5) # (1,1).

Lemma 4.1. f is k-submodular for k = 3.

(Proof) Take any 7', 7" € T and let us check f(T") + f(T") > f(T'UT")+ f(T'NT"). We
may assume 7' ¢ 7" and 7" ¢ T. We shall use the fact that f({w;}) + f({u;}) > 0 and
f({vi}) + f({v;}) = 0 for any distinct i, j.

1. If|T| =1and |T'| = 1,denote T = {x} and T" = {y}.

e IfU(x) =U(y), then TUT =0and TNT" = 0. Thus f(T) + f(T") =
f{zh) + f{yh) 2 0= f(TLT)+ f(TNT).

e Otherwise, T UT' = {z,y} and TN T" = 0.
If {x,y} = {vi,us }, then f(T)+ f(T")=0> =2 = f(TUT")+ f(TNT).

If {z,y} # {vi,w}, then f(T) + f(T") = f({z}) + f({y}) = F(TUT) +
f(rnT).

2. If |T| = 2 and |T'| = 1, denote T" = {z,y} and 7" = {z}. We may assume that
U(y) =U(z). Then T UT' = {z} and T T" = (). Hence,

o If {z,y} = {vi,wi}, then f(T)+f(T") = =24+M > max{f({v1}), f({w })} =

f{zy) = [(T0T) + [(TNT).

e Otherwise, f(T)+ f(T") = f({z}) + [({y}) + f({=z}) = f({z}) = F(T U
T+ f(TAT).

1By a nontrivial chain, we mean k > 1.



3. If [T =2and |T"| = 2,denote T" = {x,y} and T" = {z, w}.

o If {z,y} = {v1,u1}, then f(TUT') < land f(TMNT’") < 1. Therefore
FM)+ (1) = =2+ f({zH) + f{w}) = =3+ M = f(TUT) + f(TOT").

e Otherwise, we may assume {z, w} # {vy,u1}. f y = w, then T UT" = {y}

and TMT = {y},and hence f(T)+ f(T") = f({z}) + f{z}) + 2f({y}) >
2f({y}) = f(TUT)+ f(TNT'). If y # w, we may assume T'NT" = {).
Then T UT = (and T N1’ = (), and hence f(T) + f(T") = f({z}) +

fRyh) + f{zh) + f{w}) 2 0= fF(TUT) + f(TTT). O

Now consider the nonzero z* € RY given by

¥ (v1) = =2, x%(ve) =2, x%(v3) = =2,
" (uy) =0, 2"(ug) =0, z"(uz) =0.

We can see by exhaustive checking that 2* € Py(f) and the following equations hold.

z*({vi,ur}) = f({vr,ur}),
z*({v1,v2}) = 2" ({ve, v3}) =0,
r*({ur,ue}) = " ({ug, uz}) = 2" ({us,u1 }) = 0. (18)

Since the system of six equations in (18) uniquely determines the solution z*, x* is an
extreme point of Py (f).

Note that for any chain of elements in 7 satisfying Condition (i), Condition (ii) is
violated for x = z*, since z*(v;) < f({v;}) for any v; and x*(u;) < f({w;}) for any w;.
Hence =* cannot be any extreme point of P,( f) that corresponds to the conditions given
by Huber and Kolmogorov [6].

We have shown that the conditions provided in [6] do not give an exact characteriza-
tion of extreme points of Py (f). We will give a correct characterization of extreme points
of Po(f). Let (U, f) be a k-submodular system on V.

We first show some lemmas.

Lemma 4.2. For a nonempty T € T let x be a vector in RY satisfying
(A) 2" € B(f7),

(B) Foreachu €T,
B1) if x(u) > 0, then x(v) = —x(u) forallv € U(u) \ {u};
(B2) otherwise,

(1) z(v) = z(u) forallv € U(u) \ {u} but one v with x(v) = —z(u) or
(2) z(v) =0forallv € U(u) \ {u}.



Then we have x% € Py(f?) for Z = U{U(u) | u € T}.
(Proof) For any X € 7T such that X C Z we have

(X)) = x(X)+z(T) - f(T)
< z(XUT)+x(XNT)— f(T)
< fXUT)+ f(XNT) - f(T)
< f(X). (19)
Because of the way of defining = by (B) it follows from (19) that 7 € Py(f%). O

We also have

Lemma 4.3. For a given © € Py(f) and a nonempty T € T suppose that zT € B(f7).
Let Z = | J{U(u) | uw € T}. For an element u € T define y € R? by y(v) = z(v) for
allve Z\ (U(u) \ {u}) and y(v) for all v € (U(u) \ {u}) according to (B1) and (B2),
replacing x by vy, in Lemma 4.2. Then we have y € Py(f%).

(Proof) Since = € Py(f), similarly as in (19) we can show that y € Py(f%). O

For U € U consider the system of linear inequalities

x(u) + x(v) <0 (V{u,v} € (g) ). (20)

Denote by CY the cone of feasible solutions of (20). We call {u,v} a tight pair for a
feasible solution z* if the inequality of (20) for the pair {u, v} holds with equality for
x =a".

Lemma 4.4. Suppose |U| > 3. The cone CY is pointed and its extreme rays are given by
z(u) = a and x(v) = —a forall v € U \ {u} with a parameter o > 0, for all u € U.
Every component-wise maximal solution x* of (20) lies on an extreme ray of CY and if
x* # 0, the set of the tight pairs for x* forms a star with center u such that x*(u) > 0.

(Proof) Since |U| > 3, if we replace all the inequalities of (20) by equations, it gives
the unique solution z = 0. Hence CY is pointed. Moreover, for any component-wise
maximal feasible solution z*, if z* # 0, there exists only one u € U such that z*(u) > 0.
Since x* is component-wise maximal, we must have z*(v) = —z*(u) forall v € U \ {u}.
Hence z* lies on an extreme ray of CY and the tight pairs form a star with center u. O

Note that every extreme vector (lying on an extreme ray) of C¥ is component-wise
maximal.

For any subset £ C (g) we regard £ as the edge set of an undirected graph G = (U, £)
with vertex set U.
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Lemma 4.5. For any subset £ C (g) the system of equations
z(u) +x(v) =0 (V{u,v} € &) (21)

uniquely determines the solution x = 0 if and only if every connected component of the
graph G = (U, E) contains at least one odd cycle.

(Proof) Suppose that every connected component of the graph G = (U, £€) contains at least
one odd cycle. Since equations (21) for an odd cycle determine z(v) = 0 for elements
(vertices) v on the cycle, which then determines z(v) = 0 for other elements v in the same
connected component.

Conversely, suppose that (21) determines the unique solution x = 0. Then we must
have | J€ = U. If some connected component having at least two vertices does not
contain odd cycles, then it forms a bipartite graph. Hence the values x(v) for vertices v in
the connected component are not uniquely determined. (For, if x(v,) for a vertex v, of the
bipartite graph is increased by «, then increasing z(v) for every v at an even distance from
vo by a and decreasing x(v) for every v at an odd distance from vy by a keep z satisfy
(21) for any o € R.) Hence every connected component has at least one odd cycle. O

For 27 € B(f7) define a directed graph G = (T, A,) with the vertex set T and the
arc set A, given by

A, ={(u,v) |ueT, vedep(x,u)\ {u}}. (22)

Let Hi = (S¢,B%) (i € I) be the strongly connected components of GZ. Choose any
w' € S for each i € I. Then we call the set W = {w’ | i € I} a covering set of G1.
It is known ([5]) that for any maximal chain of tight sets in 7 (z) N 27

Q):ToCTlC"'CTp:T (23)

the collection of the difference sets 7; \ 7;_; (j = 1,---,p) is exactly the collection of
vertex sets S° (i € I) of the strongly connected components of G in particular, p = |I|.

Lemma 4.6. For any x € Py(f) and nonempty T' € T suppose that the following three
statements hold:

(1) For every tight set T' € T (x) we have T' C | J{U(u) | u € T}.
(2) 27 € B(f1).
(3) (B) in Lemma 4.2 is satisfied.

If for some 1g € 1

(a) we have |S®| > 2 and

11



(b) for some distinct u,v € S we have x(u) # 0 and z(v) # 0, and letting £, and
Ey be, respectively, the sets of all tight pairs for U(u) and U(v), the connected
component of graph (U(u),&,) containing u and that of (U(v),&,) containing v
are both bipartite (more specifically, stars),

then x is not an extreme point of Ps(f).

(Proof) Under the assumption of the present lemma let © and v be those appearing in (b).
Define

ay = min{|z(w)], [z(v)[},

ag =min{f(T") —x(T) | T € T, |T" 0 {u,v}| =1}

By the assumption we have o; > 0. Also, since u,v € S, we have v € dep(z,u) and
u € dep(zx,v), so that s > 0. Then, for a real number o such that 0 < o < min{ay, s},
put z(u) < z(u)+aand z(v) < z(v)Fa and modify x(z) for z € U(u)UU (v) according
to (B) in Lemma 4.2. (The modification of z(w) for w € (U(u) \ {u}) U (U(v) \ {v})
according to (B) can be made because the relevant components are stars. This includes
the case where the relevant component is an isolated vertex in Case (B2)(2).) Let x™
and 2~ be the obtained new points. Since ay < min{¢(z, u,v),é(x,v,u)} and since z*
satisfy the assumption of Lemma 4.2 because of the choice of a, we have 2% € Py(f)

1(z* 4 27). This completes the proof of this lemma. O

and z = 5

We now show the following.

Theorem 4.7. For a given x € Ps(f), = is an extreme point of Py(f) if and only if there
exists a’l € T such that the following (a)—(e) hold:

(a) For every tight set T' € T (x) we have T C | J{U (u) | u € T'}.
() 27 € B(fT).

(c) Foreachu €T,
(cl)ifx(u) >0, then x(v) = —x(u) forallv € U(u) \ {u};
(c2) otherwise,
(1) z(v) = z(u) forallv € U(u) \ {u} but one v' with x(v') = —x(u) or

(2) xz(v) =0forallv € U(u) \ {u}.
(d) For some covering set W = {w' | i € I} of GL with strongly connected compo-
nents having vertex sets S:. C T (i € I) we have x(v) = 0 forallv € T \ W.

Moreover, foreachi € I andv € Si\ {w'} we have |U(v)| > 3, and if values of
x(v) are determined by (2) of (c2), we have |U(w?)| > 4.
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(e) Forallv e U e UwithUNT = O we have x(v) = 0. Moreover,
UelUsuchthatUNT = 0.

Ul > 3 for all

Here Conditions (b), (¢), and (d) are void if T = ().

(Proof) If (a)—(e) are satisfied for x € P,(f), then we have tight equations given as
follows.

z(T;) = f(T;) for a maximal chain of tight sets for z”, (24)

z(u)+z(v)=0 (NMueT, VvoeU(u)\ {u}in Case (cl)), (25)

z(v)+z(z) =0 VueT, Vo,z} € (U(2u)> in Case (c1) with z(u)=0), (26)

z(v)+z(v) =0 (Vue T, Vv € U(u) \ {v'} in Case (c2)(1)), (27)
(

r(v)+x(z) =0 (VU eUwithUNT =0, V{v,z} € (Z)) (29)

We can see that the system of equations (24)—(29) uniquely determines the solution x, due
to Lemma 4.5, so that z is an extreme point of Py( f).

Conversely, suppose that z € Py(f) is an extreme point. Then for each u € V there
must exist a tight equation of type

(D) x(T) = f(T) forsome T € T withu € T or
(II) z(X) = 0 for some X € (}) withu € X and U € U.

Denote by 7 (x) the collection of tight sets 7" of type (I) (as before) and define W =
W{T | T eT(x)}

Since x € Py(f), we have dep(z,u) € T (z) for all w € W. Moreover, for any
u € Wandanyv € W\U{U € U | UNdep(x,u) # (0} we have dep(z, u) Udep(z,v) €
T (x). Hence, similarly as in the proof of Theorem 3.1, there exists 7' € 7 () such that
TNU(u) # 0 forall u € . Let us show that for such 7', Conditions (a)—(e) are satisfied.

Firstly, (a), (b), and (e) follow from the choice of 7" and Lemma 4.5.

Secondly, we show (c). Fixing the values of x(u) for all v € T and discarding the
constraints z(7") < f(71") for all 7" € T \ 27, component-wise maximal vectors x
satisfying (20) are exactly those determined by (c), due to Lemmas 4.4 and 4.5. Hence, if
x does not satisfy (c), then defining Z = | J{U(v) | v € T'}, there existu € T and y € R,
defined appropriately as in Lemma 4.3, such that (i) 7 < y and (i) x(w) < y(w) for
w with {w} = U(u) NT" for a tight set 77 € T (z). Since all the tight sets 7”7 € T (z)
for z are included in Z and we have = € Py(f) and y € Py(f?) because of Lemma 4.3,
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defining y* € RY by y*(v) = y(v) forall v € Z and y*(v) = 0 forall V' \ Z, we have for
a sufficiently small positive € > 0

ze=er+ (1 —e)y* € Py(f). (30)

Then we have z.(w) > x(w), which implies z.(7") > f(7"), a contradiction. Hence (c)
1s satisfied.
Finally, (d) follows from Lemma 4.6. O

In the counterexample given above, T' appearing in Theorem 4.7 is T = {vy,u,},
graph G, is strongly connected, and a covering setis W = {v; }.

It should be noted that we have assumed the membership z € P ( f) in the characteri-
zation of extreme points, so that it is not well characterized so as to obtain extreme points
efficiently.

5 Concluding Remarks

We have shown a min-max relation for k-submodular functions in terms of a new norm
composed of ¢; and /., norms, which is simpler and easier to understand than the min-
max relation shown by Huber and Kolmogorov in [6] by using ¢; norm alone.

We have also shown a characterization of extreme points of Py(f), a k-submodular
polyhedron in the sense of Huber and Kolmogorov, which fixes a flaw in [6].

Devising a polynomial-time algorithm for minimizing £-submodular functions is left
open. As pointed out in [6] and discussed here in Section 4 as well, we need a good
characterization of extreme points of Py(f). A key to the good characterization is to
develop a polynomial-time algorithm for linear optimization over Py ( f). Main difficulty
in linear optimization over Py (f) is that a polynomial-time algorithm for it requires an
efficient membership algorithm for discerning whether 0 € P(f).
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