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Abstract. Let Σ be a nonempty subset of the set of prime numbers
which is either equal to the entire set of prime numbers or of cardi-
nality one. In the present paper, we continue our study of the pro-Σ
fundamental groups of hyperbolic curves and their associated config-
uration spaces over algebraically closed fields in which the primes of
Σ are invertible. The present paper focuses on the topic of compar-
ison between the theory developed in earlier papers concerning pro-
Σ fundamental groups and various discrete versions of this theory.
We begin by developing a theory of combinatorial analogues of the
section conjecture and Grothendieck conjecture in anabelian
geometry for abstract combinatorial versions of the data that arises
from a hyperbolic curve over a complete discretely valued field, under
the condition that, for some l ∈ Σ, the l-adic cyclotomic character
has infinite image. This portion of the theory is purely combina-
torial and essentially follows from a result concerning the existence
of fixed points of actions of finite groups on finite graphs [satisfying
certain conditions] — a result which may be regarded as a geomet-
ric interpretation of the well-known elementary fact that free pro-Σ
groups are torsion-free. We then examine various applications of this
purely combinatorial theory to scheme theory. Next, we verify
various results in the theory of discrete fundamental groups of hy-
perbolic topological surfaces to the effect that various properties of
[discrete] subgroups of such groups hold if and only if analogous
properties hold for the closures of these subgroups in the profinite
completions of the discrete fundamental groups under considera-
tion. These results make possible a fairly straightforward trans-
lation, into discrete versions, of pro-Σ results obtained in previous
papers by the authors concerning the theory of partial combinatorial
cuspidalization, Dehn multi-twists, the tripod hommorphism, metric-
admissibility, and the characterization of local Galois groups in the
global Galois image associated to a hyperbolic curve. Finally, we con-
sider the analogue of the theory of tripods [i.e., copies of the pro-
Σ or discrete fundamental group of the projective line minus three
points] associated to cycles in a hyperbolic topological surface. From
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an intuitive topological point of view, these tripods are obtained by
considering once-punctured tubular neighborhoods of the cy-
cles. Such a construction was considered previously by M. Boggi in
the discrete case, but in the present paper, we consider it from the
point of view of the abstract pro-Σ theory developed in earlier pa-
pers by the authors and then proceed to relate this theory to the
discrete theory by applying the tools developed in earlier portions of
the present paper.
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Introduction

Let Σ ⊆ Primes be a subset of the set of prime numbers Primes
which is either equal to Primes or of cardinality one. In the present
paper, we continue our study of the pro-Σ fundamental groups
of hyperbolic curves and their associated configuration spaces over al-
gebraically closed fields in which the primes of Σ are invertible [cf.
[CmbGC], [MT], [CmbCsp], [NodNon], [CbTpI], [CbTpII], [CbTpIII]].
The present paper focuses on the topic of understanding the relation-
ship between the theory developed in earlier papers concerning pro-Σ
fundamental groups and various discrete versions of this theory. This
topic of comparison of pro-Σ and discrete versions of the theory turns
out to be closely related, in many situations, to the theory of sections
of various natural surjections of profinite groups. Indeed, this rela-
tionship with the theory of sections is, in some sense, not surprising,
inasmuch as sections typically amount to some sort of fixed point
within a profinite continuum. That is to say, such fixed points are
often closely related to the identification of a rigid discrete structure
within the profinite continuum.

In §1, §2, we study two different aspects of this topic of compari-
son of pro-Σ and discrete structures. Both §1 and §2 follow the same
pattern: we begin by proving an abstract and somewhat technical com-
binatorial result and then proceed to discuss various applications of
this combinatorial result.
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In §1, the main technical combinatorial result is summarized in The-
orem A below [where Σ is allowed to be an arbitrary nonempty set of
prime numbers]. This result consists of versions of the section con-
jecture and Grothendieck conjecture — i.e., the central issues of
concern in anabelian geometry — for outer representations of
ENN-type [cf. Definition 1.7, (i)]. Here, we remark that outer repre-
sentations of ENN-type are generalizations of the outer representations
of NN-type studied in [NodNon]. Just as an outer representation of
NN-type may be described, roughly speaking, as a purely combinato-
rial object modeled on the outer Galois representation arising from a
hyperbolic curve over a complete discretely valued field whose residue
field is separably closed, an outer representation of ENN-type may be
described, again roughly speaking, as an analogous sort of purely com-
binatorial object that arises in the case where the residue field is not
necessarily separably closed. The pro-Σ section conjecture portion of
Theorem A [i.e., Theorem 1.13, (i)] is then obtained by combining

• the essential uniqueness of fixed points of certain group actions
on profinite graphs given in [NodNon], Proposition 3.9, (i), with

• an essentially classical result concerning the existence of fixed
points [cf. Lemma 1.6; Remarks 1.6.1, 1.6.2], which amounts, in essence,
to a geometric reformulation of the well-known fact that free pro-Σ
groups are torsion-free [cf. Remarks 1.13.1; 1.15.2, (i)].

The argument applied to prove this pro-Σ section conjecture portion of
Theorem A is essentially similar to the argument applied in the tem-
pered case discussed in [SemiAn], Theorems 3.7, 5.4, which is reviewed
[in slightly greater generality] in the tempered section conjecture por-
tion of Theorem A [cf. Theorem 1.13, (ii)]. These section conjecture
portions of Theorem A imply, under suitable conditions, that there is a
natural bijection between conjugacy classes of pro-Σ and tempered
sections [cf. Theorem 1.13, (iii)]. This implication may be regarded as
an important example of the phenomenon discussed above, i.e., that
considerations concerning sections are closely related to the topic of
comparison of pro-Σ and discrete structures. Finally, by combining the
pro-Σ section conjecture portion of Theorem A with the combinatorial
version of the Grothendieck conjecture obtained in [CbTpII], Theorem
1.9, (i), one obtains the Grothendieck conjecture portion of Theorem A
[cf. Corollary 1.14].

Theorem A (Combinatorial versions of the section conjecture
and Grothendieck conjecture). Let Σ be a nonempty set of prime
numbers, G a semi-graph of anabelioids of pro-Σ PSC-type, G a profi-
nite group, and ρ : G→ Aut(G) a continuous homomorphism that is of
ENN-type for a conducting subgroup IG ⊆ G [cf. Definition 1.7,
(i)]. Write ΠG for the [pro-Σ] fundamental group of G and Πtp

G for the
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tempered fundamental group of G [cf. [SemiAn], Example 2.10; the dis-
cussion preceding [SemiAn], Proposition 3.6]. [Thus, we have a natural
outer injection Πtp

G ↪→ ΠG — cf. the proof of [CbTpIII], Proposition 3.3,

(i), (ii).] Write ΠG
def
= ΠG

out
o G [cf. the discussion entitled “Topological

groups” in [CbTpI], §0]; Πtp
G

def
= Πtp

G
out
o G; G̃ → G, G̃tp → G for the

universal pro-Σ and pro-tempered coverings of G corresponding to ΠG,
Πtp
G ; VCN(−) for the set of vertices, cusps, and nodes of the underlying

[pro-]semi-graph of a [pro-]semi-graph of anabelioids [cf. Definition 1.1,
(i)]. [Thus, we have a natural commutative diagram

1 −−−→ Πtp
G −−−→ Πtp

G −−−→ G −−−→ 1y y ∥∥∥
1 −−−→ ΠG −−−→ ΠG −−−→ G −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows
are outer injections.] Then the following hold:

(i) Suppose that ρ is l-cyclotomically full [cf. Definition 1.7, (ii)]
for some l ∈ Σ. Let s : G→ ΠG be a continuous section of the natural

surjection ΠG � G. Then, relative to the action of ΠG on VCN(G̃) via
conjugation of VCN-subgroups, the image of s stabilizes some element

of VCN(G̃).
(ii) Let s : G→ Πtp

G be a continuous section of the natural surjection

Πtp
G � G. Then, relative to the action of Πtp

G on VCN(G̃tp) via conju-
gation of VCN-subgroups [cf. Definition 1.9], the image of s stabilizes

some element of VCN(G̃tp).

(iii) Write Sect(ΠG/G) for the set of ΠG-conjugacy classes of con-
tinuous sections of the natural surjection ΠG � G and Sect(Πtp

G /G) for
the set of Πtp

G -conjugacy classes of continuous sections of the natural

surjection Πtp
G � G. Then the natural map

Sect(Πtp
G /G) −→ Sect(ΠG/G)

is injective. If, moreover, ρ is l-cyclotomically full for some l ∈ Σ,
then this map is bijective.

(iv) Let H be a semi-graph of anabelioids of pro-Σ PSC-type, H a
profinite group, ρH : H → Aut(H) a continuous homomorphism that
is of ENN-type for a conducting subgroup IH ⊆ H. Write ΠH
for the [pro-Σ] fundamental group of H. Suppose further that ρ is

verticially quasi-split [cf. Definition 1.7, (i)]. Let β : G
∼→ H be a

continuous isomorphism such that β(IG) = IH ; l ∈ Σ a prime number

such that ρG
def
= ρ and ρH are l-cyclotomically full; α : ΠG

∼→ ΠH a
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continuous isomorphism such that the diagram

G
ρG−→ Aut(G) ↪−→ Out(ΠG)

β
|
↓

|
↓

H
ρH−→ Aut(H) ↪−→ Out(ΠH)

— where the right-hand vertical arrow is the isomorphism induced by α
— commutes. Then α is graphic [cf. [CmbGC], Definition 1.4, (i)].

The purely combinatorial theory of §1 — i.e., the theory surrounding
and including Theorem A — has important applications to scheme
theory — i.e., to the theory of hyperbolic curves over quite general
complete discretely valued fields — as follows:

(A-1) We observe that a quite general result in the style of the main
results of [PS] concerning valuations fixed by sections of the arithmetic
fundamental group follows formally, in the case of hyperbolic curves
over quite general complete discretely valued fields, from Theorem A
[cf. Corollary 1.15, (iii); Remark 1.15.2, (i), (ii)]. The quite substantial
generality of this result is a reflection of the purely combinatorial
nature of Theorem A. This approach contrasts substantially with the
approach of [PS] via essentially scheme-theoretic techniques such as
the local-global principle for the Brauer group [cf. Remark 1.15.2, (i)].
The approach of the present paper also differs substantially from [PS]
in that the transition from fixed points of graphs to fixed valuations is
treated as a formal consequence of well-known elementary properties
of Berkovich spaces, i.e., in essence the compactness of the unit interval
[0, 1] ⊆ R [cf. Remark 1.15.2, (ii)].

(A-2) We observe that the natural bijection between conjugacy
classes of pro-Σ and tempered sections discussed in the purely com-
binatorial setting of Theorem A implies a similar bijection in the case
of hyperbolic curves over quite general complete discretely valued fields
[cf. Corollary 1.15, (vi)]. This portion of the theory was partially mo-
tivated by discussions between the second author and Y. André.

(A-3) In Corollary 1.16, (i), we show that, if p is a prime number 6= 3,
then a tripod [i.e., projective line minus three points] over a suitable
finite extension of Qp admits a Galois covering of degree a power of p
whose associated dual graph is not a tree. That is to say, such a
covering is of interest since, although, in the literature, there appear to
exist many computations of concrete examples of Galois coverings of
degree a power of p of tripods over finite extensions of Qp, it appears
that in many [if not all!] of these examples [such as Fermat curves],
the associated dual graph is a tree.
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(A-4) In Corollary 1.16, (ii), we use the hyperbolic curve constructed
in Corollary 1.16, (i), to refine the construction of [Hsh] by producing
an example of a section of the geometrically pro-p arithmetic funda-
mental group of this hyperbolic curve that fails to lift to a section of
the geometrically pro-Σ arithmetic fundamental group for any Σ of
cardinality ≥ 2 that contains p. This construction arose as a response
to a question posed orally to the authors of the present paper by A.
Tamagawa.

In the context of (A-1), we remark that, in the Appendix to the present
paper, we give an elementary exposition from the point of view of two-
dimensional log regular log schemes of the phenomenon of conver-
gence of valuations, without applying the language or notions, such
as Stone-Čech compactifications, typically applied in expositions of the
theory of Berkovich spaces.

In §2, we turn to the task of formulating discrete analogues of
a substantial portion of the theory developed in earlier papers. This
formulation centers around the notion of a semi-graph of temper-
oids of HSD-type [i.e., “hyperbolic surface decomposition type” —
cf. Definition 2.3, (iii)], which may be thought of as a natural discrete
analogue of the notion of a semi-graph of anabelioids of pro-Σ PSC-
type [cf. [CmbGC], Definition 1.1, (i)]. As the name suggests, this
notion may be thought of as referring to the sort of collection of dis-
crete combinatorial data that one may associate to a decomposition of
a hyperbolic surface into hyperbolic subsurfaces. Alternatively, it may
be thought of as referring to the sort of collection of combinatorial
data that arises from systems of topological coverings of the system of
topological spaces naturally associated to a stable log curve over a log
point whose underlying scheme is the spectrum of the field of complex
numbers [cf. Example 2.4, (i)]. After discussing various basic proper-
ties and terms related to semi-graphs of temperoids of HSD-type [cf.
Proposition 2.5; Definitions 2.6, 2.7], we observe that the fundamen-
tal operations of restriction, partial compactification, resolution,
and generization discussed in [CbTpI], §2, admit natural compatible
analogues for semi-graphs of temperoids of HSD-type [cf. Definitions
2.8, 2.9; Proposition 2.10].

The main technical combinatorial result of §2 is summarized in The-
orem B below. This result asserts, in effect, that discrete subgroups of
the discrete fundamental group of a semi-graph of temperoids of HSD-
type satisfy various properties of interest if and only if the profinite
completions of these discrete subgroups satisfy analogous properties
[cf. Theorem 2.15; Corollary 2.19, (i)]. The main technical tool that is
applied in order to derive this result is the fact that any inclusion of a
finitely generated group into a [finitely generated] free discrete group is,
after possibly passing to a suitable finite index subgroup, necessarily
split [cf. [SemiAn], Corollary 1.6, (ii), which is applied in the proof of
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Lemma 2.14, (i), of the present paper]. Here, we recall that in [SemiAn],
this fact [i.e., [SemiAn], Corollary 1.6, (ii)] is obtained as an immedi-
ate consequence of “Zariski’s main theorem for semi-graphs” [cf.
[SemiAn], Theorem 1.2].

Theorem B (Profinite versus discrete subgroups). Let G, H
be semi-graphs of temperoids of HSD-type [cf. Definition 2.3, (iii)].

Write Ĝ, Ĥ for the semi-graphs of anabelioids of pro-Primes PSC-
type determined by G, H [cf. Proposition 2.5, (iii), in the case where
Σ = Primes], respectively; ΠG, ΠH for the respective fundamental
groups of G, H [cf. Proposition 2.5, (i)]; ΠbG, Π bH for the respective

[profinite] fundamental groups of Ĝ, Ĥ. Then the following hold:

(i) Let H, J ⊆ ΠG be subgroups. Since ΠG injects into its pro-l
completion for any l ∈ Primes [cf. Remark 2.5.1], let us regard sub-

groups of ΠG as subgroups of the profinite completion Π̂G of ΠG. Write

H, J ⊆ Π̂G for the closures of H, J in Π̂G, respectively. Suppose that
the following conditions are satisfied:

(a) The subgroups H and J are finitely generated.

(b) If J is of infinite index in ΠG, then J is of infinite index

in Π̂G.

[Here, we note that condition (b) is automatically satisfied whenever
Cusp(G) 6= ∅ — cf. [SemiAn], Corollary 1.6, (ii).] Then the following
hold:

(1) It holds that J = J ∩ ΠG.

(2) Suppose that there exists an element γ̂ ∈ Π̂G such that

H ⊆ γ̂ · J · γ̂−1.

Then there exists an element δ ∈ ΠG such that

H ⊆ δ · J · δ−1.

(ii) Let

α : ΠG
∼−→ ΠH

be an outer isomorphism. Write α̂ : ΠbG ∼→ Π bH for the outer isomor-

phism determined by α and the natural outer isomorphisms Π̂G
∼→ ΠbG,

Π̂H
∼→ Π bH of Proposition 2.5, (iii). Then α is group-theoretically

verticial (respectively, group-theoretically cuspidal; group-theo-
retically nodal; graphic) [cf. Definition 2.7, (i), (ii)] if and only if α̂
is group-theoretically verticial [cf. [CmbGC], Definition 1.4, (iv)]
(respectively, group-theoretically cuspidal [cf. [CmbGC], Defini-
tion 1.4, (iv)]; group-theoretically nodal [cf. [NodNon], Definition
1.12]; graphic [cf. [CmbGC], Definition 1.4, (i)]).
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The significance of Theorem B lies in the fact that it renders possi-
ble a fairly straightforward translation of a substantial portion of the
profinite results obtained in earlier papers by the authors into discrete
versions, as follows:

(B-1) the partial combinatorial cuspidalization obtained in
[CbTpI], Theorem A; [CbTpII], Theorems A, B [cf. Corollary 2.20 of
the present paper];

(B-2) the theory of Dehn multi-twists summarized in [CbTpI],
Theorem B [cf. Corollary 2.21 of the present paper];

(B-3) the theory of the tripod homomorphism and metric-
admissibility summarized in [CbTpII], Theorem C; [CbTpIII], Theo-
rems A, C, D [cf. Theorem 2.24 of the present paper];

(B-4) the archimedean analogue [cf. Corollary 2.25 of the present
paper] of the characterization, given in [CbTpIII], Theorem B, of
nonarchimedean local Galois groups in the global Galois image
associated to a hyperbolic curve.

Finally, in §3, we examine the theory of canonical liftings of cy-
cles discussed in [Bgg2] from the point of view of the profinite theory
developed so far by the authors. This approach contrasts substan-
tially with the intuitive topological approach of [Bgg2] in the discrete
case. From a naive topological point of view, the canonical liftings of
cycles in question amount to once-punctured tubular neighbor-
hoods of the given cycles [cf. Figure 1 below], i.e., to the construction
of a tripod [i.e., a copy of the projective line minus three points] canon-
ically and functorially associated to the cycle. This tripod satisfies a
remarkable rigidity property, i.e., it admits a canonical isomor-
phism, subject to almost no indeterminacies, with a given fixed tripod
that is independent of the choice of the cycle. Moreover, this canonical
isomorphism is functorial with respect to “geometric” outer automor-
phisms of the profinite fundamental group of the stable log curve under
consideration that lift to automorphisms of the profinite fundamental
group of a configuration space [associated to the stable log curve] of
sufficiently high dimension. Here, by “geometric”, we mean that the
outer automorphism under consideration lies in the kernel of the tripod
homomorphism studied in [CbTpII], §3. Indeed, this remarkable rigid-
ity property is obtained as an immediate consequence of the theory of
tripod synchronization developed in [CbTpII], §3.

The profinite version of the theory of canonical liftings of cycles
developed in §3 is summarized in Theorem C below [cf. Theorem 3.10].
By applying the translation apparatus developed in §2 to this profinite
version of the theory, we also obtain a corresponding discrete version
of the theory of canonical liftings of cycles [cf. Theorem 3.14].
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Theorem C (Canonical liftings of cycles). Let (g, r) be a pair
of nonnegative integers such that 2g − 2 + r > 0; Σ a set of prime
numbers which is either equal to the entire set of prime numbers or of
cardinality one; k an algebraically closed field of characteristic 6∈ Σ;

Slog def
= Spec(k)log the log scheme obtained by equipping S

def
= Spec(k)

with the log structure determined by the fs chart N → k that maps
1 7→ 0; X log = X log

1 a stable log curve of type (g, r) over Slog. For
positive integers m ≤ n, write

X log
n

for the n-th log configuration space of the stable log curve X log [cf. the
discussion entitled “Curves” in [CbTpI], §0];

Πn

for the maximal pro-Σ quotient of the kernel of the natural surjection
π1(X

log
n ) � π1(S

log);

plog
n/m : X log

n −→ X log
m , pΠ

n/m : Πn � Πm,

Πn/m
def
= Ker(pΠ

n/m) ⊆ Πn, G, ΠG

for the objects defined in the discussion at the beginning of [CbTpII],
§3; [CbTpII], Definition 3.1. Let I ⊆ Π2/1 ⊆ Π2 be a cuspidal inertia

group associated to the diagonal cusp of a fiber of plog
2/1; Πtpd ⊆ Π3

a central {1, 2, 3}-tripod of Π3 [cf. [CbTpII], Definition 3.7, (ii)];
Itpd ⊆ Πtpd a cuspidal subgroup of Πtpd that does not arise from a

cusp of a fiber of plog
3/2; J

∗
tpd, J

∗∗
tpd ⊆ Πtpd cuspidal subgroups of Πtpd

such that Itpd, J
∗
tpd, and J∗∗tpd determine three distinct Πtpd-conjugacy

classes of closed subgroups of Πtpd. [Note that one verifies immediately
from the various definitions involved that such cuspidal subgroups Itpd,
J∗tpd, and J∗∗tpd always exist.] For positive integers n ≥ 2, m ≤ n and

α ∈ AutFC(Πn) [cf. [CmbCsp], Definition 1.1, (ii)], write

αm ∈ AutFC(Πm)

for the automorphism of Πm determined by α;

AutFC(Πn, I) ⊆ AutFC(Πn)

for the subgroup consisting of β ∈ AutFC(Πn) such that β2(I) = I;

AutFC(Πn)G ⊆ AutFC(Πn)

for the subgroup consisting of β ∈ AutFC(Πn) such that the image of β
via the composite AutFC(Πn) � OutFC(Πn) ↪→ OutFC(Π1)→ Out(ΠG)
— where the second arrow is the natural injection of [NodNon], Theo-
rem B, and the third arrow is the homomorphism induced by the natural
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outer isomorphism Π1
∼→ ΠG — is graphic [cf. [CmbGC], Definition

1.4, (i)];

AutFC(Πn, I)
G def

= AutFC(Πn, I) ∩ AutFC(Πn)G;

Cyclen(Π1)

for the set of n-cuspidalizable cycle-subgroups of Π1 [cf. Defini-
tion 3.5, (i), (ii)];

TpdI(Π2/1)

for the set of closed subgroups T ⊆ Π2/1 such that T is a tripodal sub-
group associated to some 2-cuspidalizable cycle-subgroup of Π1

[cf. Definition 3.6, (i)], and, moreover, I is a distinguished cuspidal
subgroup [cf. Definition 3.6, (ii)] of T . Then the following hold:

(i) Let n ≥ 3 be a positive integer. Then there exists a unique
AutFC(Πn, I)G-equivariant map

CI : Cyclen(Π1) −→ TpdI(Π2/1)

such that, for every J ∈ Cyclen(Π1), CI(J) is a tripodal subgroup
associated to J [cf. Definition 3.6, (i)]. Moreover, there exists an as-
signment

Cyclen(Π1) 3 J 7→ synI,J

— where synI,J denotes an I-conjugacy class of isomorphisms Πtpd
∼→

CI(J) — such that

(a) synI,J maps Itpd bijectively onto I,

(b) synI,J maps J∗tpd, J
∗∗
tpd bijectively onto lifting cycle-subgroups

of CI(J) [cf. Definition 3.6, (ii)], and

(c) for α ∈ AutFC(Πn, I)
G, the diagram [of Itpd-, I-conjugacy

classes of isomorphisms]

Πtpd −−−→ Πtpd

synI,J

y ysynI,α1(J)

CI(J) −−−→ CI(α1(J))

— where the upper horizontal arrow is the [uniquely determined — cf.
the commensurable terminality of Itpd of Πtpd discussed in [CmbGC],
Proposition 1.2, (ii)] Itpd-conjugacy class of automorphisms of Πtpd

that lifts TΠtpd
(α) [cf. [CbTpII], Definition 3.19] and preserves Itpd;

the lower horizontal arrow is the I-conjugacy class of isomorphisms
induced by α2 [cf. the “equivariance” mentioned above] — commutes
up to possible composition with the cycle symmetry of CI(α1(J))
associated to I [cf. Definition 3.8].

Finally, the assignment

J 7→ synI,J
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is uniquely determined, up to possible composition with cycle sym-
metries, by these conditions (a), (b), and (c).

(ii) Let n ≥ 4 be a positive integer, α ∈ AutFC(Πn, I)
G, and J ∈

Cyclen(Π1). Then there exists an automorphism β ∈ AutFC(Πn, I)
G

such that the FC-admissible outer automorphism of Π3 determined
by β3 lies in the kernel of the tripod homomorphism TΠtpd

of
[CbTpII], Definition 3.19, and, moreover, α1(J) = β1(J). Finally,
the diagram [of Itpd-, I-conjugacy classes of isomorphisms]

Πtpd Πtpd

synI,J

y ysynI,α1(J)=synI,β1(J)

CI(J) −−−→ CI(α1(J)) = CI(β1(J))

— where the lower horizontal arrow is the isomorphism induced by β2

[cf. the “equivariance” mentioned in (i)] — commutes up to possi-
ble composition with the cycle symmetry of CI(α1(J)) = CI(β1(J))
associated to I.

a cycle lifting cycles

Figure 1: A cycle and lifting cycles
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0. Notations and Conventions

Sets: Let S be a set equipped with an action by a group G. Then we
shall write

SG ⊆ S

for the subset consisting of elements of S fixed by the action of G on
S.

Numbers: Write Primes for the set of all prime numbers. Let Σ be a
set of prime numbers. Then we shall refer to a nonzero integer n as a
Σ-integer if every prime divisor of n is contained in Σ. The notation R
will be used to denote the set, additive group, or field of real numbers.
The notation C will be used to denote the set, additive group, or field
of complex numbers.

Groups: Let Σ be a set of prime numbers and f : G→ H a homomor-
phism (respectively, outer homomorphism) of groups. Then we shall
say that f is Σ-compatible if the homomorphism (respectively, outer
homomorphism) fΣ : GΣ → HΣ between pro-Σ completions induced
by f is injective. Note that one verifies easily that if G is a group, and
H ⊆ G is a subgroup of G of finite index, then the natural inclusion
H ↪→ G is Primes-compatible. If G is a topological group, then we
shall write

Gab

for the abelianization of G, i.e., the quotient of G by the closed normal
subgroup of G generated by the commutators of G. If G is a profinite
group, then we shall write

G � GΣ-ab-free

for the maximal pro-Σ abelian torsion-free quotient of G. We shall use
the terms normally terminal and commensurably terminal as they are
defined in the discussion entitled “Topological groups” in [CbTpI], §0.
If I, J ⊆ G are closed subgroups of a topological group G, then we
shall write

I ≺ J

if some open subgroup of I is contained in J .
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1. The combinatorial section conjecture

In the present §1, we study outer representations of ENN-type [cf.
Definition 1.7, (i)] on the fundamental group of a semi-graph of an-
abelioids of PSC-type. Roughly speaking, such outer representations
may be thought of as an abstract combinatorial version of the natural
outer representation of the maximal tamely ramified quotient of the
absolute Galois group of a complete local field on the logarithmic fun-
damental group of the geometric special fiber of a stable model of a
pointed stable curve over the complete local field. By comparison to the
outer representation of NN-type studied in [NodNon], outer represen-
tations of ENN-type correspond to the situation in which the residue
field of the complete local field under consideration is not necessar-
ily separably closed. Such outer representations of ENN-type give rise
to a surjection of profinite groups, which corresponds, in the case of
pointed stable curves over complete local fields, to the surjection from
the arithmetic fundamental group to [some quotient of] the absolute
Galois group of the base field. Our first main result [cf. Theorem 1.13,
(i), below] asserts that, under the additional assumption that the asso-
ciated cyclotomic character has open image, any section of this surjec-
tion necessarily admits a fixed point [i.e., a fixed vertex or edge]. This
“combinatorial section conjecture” is obtained as an immediate conse-
quence of an essentially classical result concerning fixed points of group
actions on graphs [cf. Lemma 1.6]. By applying this existence of fixed
points, we show that there is a natural bijection between conjugacy
classes of profinite sections and conjugacy classes of tempered sections
[cf. Theorem 1.13, (iii), below] and derive a rather strong version of
the combinatorial Grothendieck conjecture [cf. [NodNon], Theorem A;
[CbTpII], Theorem 1.9] for cyclotomically full outer representations of
ENN-type [cf. Corollary 1.14]. We also observe in passing that a gener-
alization of the main result of [PS] may be obtained as a consequence
of the theory discussed in the present §1 [cf. Corollary 1.15]. Finally,
we prove the existence of a Galois section of the geometrically pro-p
arithmetic fundamental group of a certain hyperbolic curve over a p-
adic local field that does not lift to a Galois section of the geometrically
pro-Σ arithmetic fundamental group of the curve for any Σ ) {p} [cf.
Corollary 1.16, (ii)].

In the present §1, let Σ be a nonempty set of prime numbers and G a
semi-graph of anabelioids of pro-Σ PSC-type. Write G for the under-
lying semi-graph of G, ΠG for the [pro-Σ] fundamental group of G, and
Πtp
G for the tempered fundamental group of G [cf. [SemiAn], Example

2.10; the discussion preceding [SemiAn], Proposition 3.6]. Thus, we
have a natural outer injection

Πtp
G ↪→ ΠG
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— cf. [CbTpIII], Lemma 3.2, (i); the proof of [CbTpIII], Proposition
3.3, (i), (ii). Let us write

G̃ −→ G, G̃tp −→ G
for the universal pro-Σ and pro-tempered coverings of G corresponding
to ΠG, Πtp

G and

VCN(G̃) def
= lim←− VCN(H), VCN(G̃tp)

def
= lim←− VCN(Htp)

— where H (respectively, Htp) ranges over the subcoverings of G̃ → G
(respectively, G̃tp → G) corresponding to open subgroups of ΠG (re-
spectively, Πtp

G ), and VCN(−) denotes the “VCN(−)” of the under-
lying semi-graph of the semi-graph of anabelioids in parentheses [cf.
Definition 1.1, (i), below; [NodNon], Definition 1.1, (iii)].

We begin by reviewing certain well-known facts concerning semi-
graphs and group actions on semi-graphs.

Definition 1.1. Let Γ be a semi-graph [cf. the discussion at the be-
ginning of [SemiAn], §1].

(i) We shall write Vert(Γ) (respectively, Cusp(Γ); Node(Γ)) for the
set of vertices (respectively, open edges, i.e., “cusps”; closed edges,

i.e., “nodes”) of Γ. We shall write Edge(Γ)
def
= Cusp(Γ) t Node(Γ);

VCN(Γ)
def
= Vert(Γ) t Edge(Γ).

(ii) We shall write

VΓ : Edge(Γ) −→ 2Vert(Γ)

(respectively, CΓ : Vert(Γ) −→ 2Cusp(Γ) ;

NΓ : Vert(Γ) −→ 2Node(Γ);

EΓ : Vert(Γ) −→ 2Edge(Γ))

[cf. (i); the discussion entitled “Sets” in [CbTpI], §0] for the map ob-
tained by sending e ∈ Edge(Γ) (respectively, v ∈ Vert(Γ); v ∈ Vert(Γ);
v ∈ Vert(Γ)) to the set of vertices (respectively, open edges; closed
edges; edges) of Γ to which e abuts (respectively, which abut to v;
which abut to v; which abut to v). For simplicity, we shall write V
(resp C; N ; E) instead of VΓ (resp CΓ; NΓ; EΓ) when there is no danger
of confusion.

(iii) Let n be a nonnegative integer; v, w ∈ Vert(Γ) [cf. (i)]. Then
we shall write δ(v, w) ≤ n if the following conditions are satisfied:

• If n = 0, then v = w.

• If n ≥ 1, then there exist n closed edges e1, . . . , en ∈ Node(Γ) of
Γ [cf. (i)] and n+ 1 vertices v0, . . . , vn ∈ Vert(Γ) of Γ such that v0 = v,
vn = w, and, for 1 ≤ i ≤ n, it holds that V(ei) = {vi−1, vi} [cf. (ii)].
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Moreover, we shall write δ(v, w) = n if δ(v, w) ≤ n but δ(v, w) 6≤ n−1.
If δ(v, w) = n, then we shall say that the distance between v and w is
equal to n.

Definition 1.2. Let Γ be a semi-graph.

(i) Let G be a group that acts on Γ. Then [by a slight abuse
of notation, relative to the notation defined in the discussion entitled
“Sets” in §0] we shall write

ΓG

for the semi-graph [i.e., the “G-invariant portion of Γ”] defined as fol-
lows:

• We take Vert(ΓG) to be Vert(Γ)G [cf. Definition 1.1, (i); the dis-
cussion entitled “Sets” in §0].

• We take Edge(ΓG) to be Edge(Γ)G [cf. Definition 1.1, (i); the
discussion entitled “Sets” in §0].

• Let e ∈ Edge(ΓG) = Edge(Γ)G. Then the coincidence map

ζe : e −→ Vert(ΓG) ∪ {Vert(ΓG)}
of ΓG [cf. item (3) of the discussion at the beginning of [SemiAn],
§1] is defined as follows: Write ζΓ

e : e → Vert(Γ) ∪ {Vert(Γ)} for the
coincidence map associated to Γ. Then, for b ∈ e, if b ∈ eG and
ζΓ
e (b) ∈ Vert(Γ)G (respectively, if either b 6∈ eG or ζΓ

e (b) 6∈ Vert(Γ)G),

then we set ζe(b)
def
= ζΓ

e (b) (respectively,
def
= Vert(ΓG)). In particular, it

holds that VΓG(e) = VΓ(e) ∩ Vert(Γ)G [cf. Definition 1.1, (ii)].

(ii) We shall write
Γ÷

for the semi-graph [i.e., the result of “subdividing” Γ] defined as follows:

• We take Vert(Γ÷) to be Vert(Γ) t Edge(Γ).

• We take Edge(Γ÷) to be the set of branches of Γ.

• Let b be a branch of an edge e of Γ. Write e(b) ∈ Edge(Γ÷),
v(e) ∈ Vert(Γ÷) for the edge and vertex of Γ÷ corresponding to b, e,
respectively. If b abuts, relative to Γ, to a vertex v ∈ Vert(Γ), then we
take the edge e(b) to be a node that abuts to v(e) and the vertex of Γ÷

corresponding to v ∈ Vert(Γ). If b does not abut, relative to Γ, to a
vertex of Γ, then we take the edge e(b) to be a cusp that abuts to v(e).

Definition 1.3. Let Γ be a semi-graph and Γ0 ⊆ Γ a sub-semi-graph
[cf. [SemiAn], the discussion following the figure entitled “A Typical
Semi-graph”] of Γ.
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(i) We shall write

Γ(0 ⊆ Γ

for the sub-semi-graph of Γ [i.e., the “open neighborhood” of Γ0] whose
sets of vertices and edges are defined as follows. [Here, we recall that
it follows immediately from the definition of a sub-semi-graph that a
sub-semi-graph is completely determined by its sets of vertices and
edges.]

• We take Vert(Γ(0 ) to be Vert(Γ0).

• We take Edge(Γ(0 ) to be the set of edges e of Γ such that VΓ(e)∩
Vert(Γ0) 6= ∅.

(ii) We shall write

Γ6∈0 ⊆ Γ

for the sub-semi-graph of Γ whose sets of vertices and edges are taken
to be Vert(Γ) \ Vert(Γ0), Edge(Γ) \ Edge(Γ0), respectively.

(iii) We shall write Γ 6∈(0
def
= (Γ6∈0 )( [cf. (i), (ii)].

(iv) We shall say that an edge e of Γ is a Γ0-bridge if VΓ(e)∩Vert(Γ0),

VΓ(e) ∩ Vert(Γ6∈0 ) 6= ∅. [Thus, one verifies easily that every Γ0-bridge
is a node.] We shall write Brdg(Γ0 ⊆ Γ) ⊆ Node(Γ) for the set of Γ0-
bridges of Γ. By abuse of notation, we shall write Brdg(Γ0 ⊆ Γ) ⊆ Γ
for the sub-semi-graph of Γ whose sets of vertices and edges are taken
to be ∅ [i.e., the empty set], Brdg(Γ0 ⊆ Γ) ⊆ Node(Γ), respectively.

Lemma 1.4 (Basic properties of sub-semi-graphs). Let Γ be a
semi-graph, Γ0 ⊆ Γ a sub-semi-graph [cf. [SemiAn], the discussion fol-
lowing the figure entitled “A Typical Semi-graph”] of Γ, G a group, and
ρ : G→ Aut(Γ) an action of G on Γ. Then the following hold:

(i) Suppose either that Γ is untangled [i.e., every node abuts to
two distinct vertices — cf. the discussion entitled “Semi-graphs” in
[NodNon], §0] or that G acts on Γ without inversion [i.e., if e ∈
Edge(Γ)G, then e = eG]. Then the semi-graph ΓG [cf. Definition 1.2,
(i)] may be regarded, in a natural way, as a sub-semi-graph of Γ.

(ii) Suppose that G acts on Γ without inversion, and that every
edge of Γ abuts to at least one vertex of Γ. Then every edge of ΓG

abuts to at least one vertex of ΓG.

(iii) The semi-graph Γ÷ [cf. Definition 1.2, (ii)] is untangled.

(iv) There exists a natural injection Aut(Γ) ↪→ Aut(Γ÷). More-

over, the resulting action ρ÷ of G on Γ÷ [i.e., the composite G
ρ→

Aut(Γ) ↪→ Aut(Γ÷)] is an action without inversion. Finally, it holds
that ΓG = ∅ if and only if (Γ÷)G = ∅.
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(v) Suppose that every edge of Γ0 abuts to at least one vertex of
Γ0. Then Γ0 may be regarded, in a natural way, as a sub-semi-graph
of Γ(0 [cf. Definition 1.3, (i)].

(vi) We have an equality of subsets of Edge(Γ):

Edge(Γ(0 ) ∩ Edge(Γ6∈(0 ) = Brdg(Γ0 ⊆ Γ).

Proof. The assertions of Lemma 1.4 follow immediately from the vari-
ous definitions involved. �

Lemma 1.5 (Sub-semi-graphs of invariants). In the situation of
Lemma 1.4, suppose either that Γ is untangled or that G acts on
Γ without inversion. Suppose, moreover, that the sub-semi-graph
Γ0 ⊆ Γ is a connected component of the sub-semi-graph ΓG ⊆ Γ
[cf. Lemma 1.4, (i)]. Then the following hold:

(i) The action ρ naturally determines actions of G on Γ(0 , Γ6∈(0 ,
respectively.

(ii) The intersection of Γ(0 ⊆ Γ with any connected component of
ΓG ⊆ Γ that is 6= Γ0 is empty.

(iii) We have an equality of subsets of Edge(Γ):

Edge(ΓG) ∩ Brdg(Γ(0 ⊆ Γ) = ∅.

Proof. The assertions of Lemma 1.5 follow immediately from the vari-
ous definitions involved. �

Lemma 1.6 (Existence of fixed points). Let Γ be a finite con-
nected [hence nonempty] semi-graph, G a finite solvable group
whose order is a Σ-integer [cf. the discussion entitled “Numbers” in
§0], and

ρ : G −→ Aut(Γ)

an action of G on Γ. Write Πdisc
Γ for the [discrete] topological funda-

mental group of Γ; ΠΣ
Γ for the pro-Σ completion of Πdisc

Γ ; Γ̃disc → Γ,

Γ̃Σ → Γ for the discrete, pro-Σ universal coverings of Γ corresponding

to Πdisc
Γ , ΠΣ

Γ , respectively. Let � ∈ {disc,Σ}. Write Aut(Γ̃� → Γ) ⊆
Aut(Γ̃�) for the group of automorphisms α̃ of Γ̃� such that α̃ lies over
a(n) [necessarily unique] automorphism α of Γ;

Aut(Γ̃� → Γ) −→ Aut(Γ)
α̃ 7→ α

for the resulting natural homomorphism;

Π�Γ//G
def
= Aut(Γ̃� → Γ)×Aut(Γ) G
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for the fiber product of the natural homomorphism Aut(Γ̃� → Γ) →
Aut(Γ) and the action ρ : G → Aut(Γ). Thus, one verifies easily that
Π�Γ//G fits into an exact sequence

1 −→ Π�Γ −→ Π�Γ//G −→ G −→ 1.

Let s : G → Π�Γ//G be a section of the above exact sequence. Write

ρ̃�s : G → Aut(Γ̃�) for the action obtained by forming the compos-

ite G
s→ Π�Γ//G

pr1→ Aut(Γ̃� → Γ) ↪→ Aut(Γ̃�). We shall say that a

connected finite subcovering Γ∗ → Γ of Γ̃Σ → Γ is G-compatible if
Γ∗ → Γ is Galois, and, moreover, the corresponding normal open sub-
group of ΠΣ

Γ is preserved by the outer action of G, via ρ, on ΠΣ
Γ . If

Γ∗ → Γ is a G-compatible connected finite subcovering of Γ̃Σ → Γ, then
let us write ρs,∗ : G→ Aut(Γ∗) for the action of G on Γ∗ determined by
ρ̃�s ; ΓG

∗ for the semi-graph defined in Definition 1.2, (i), with respect to
the action ρs,∗. [Thus, if Γ, hence also Γ∗, is untangled, then ΓG

∗ is
a sub-semi-graph of Γ∗ — cf. Lemma 1.4, (i).] Then the following
hold:

(i) Suppose that Γ is untangled. Then, for each G-compatible

connected finite subcovering Γ∗ → Γ of Γ̃Σ → Γ, the sub-semi-graph
ΓG
∗ ⊆ Γ∗ coincides with the disjoint union of some [possibly empty]

collection of connected components of Γ∗|ΓG
def
= Γ∗ ×Γ ΓG ⊆ Γ∗.

(ii) Suppose that Γ is untangled, and that G is isomorphic to Z/lZ
for some prime number l ∈ Σ. Then, for every G-compatible connected

finite subcovering Γ∗ → Γ of Γ̃Σ → Γ, the sub-semi-graph ΓG
∗ ⊆ Γ∗ is

nonempty.

(iii) Suppose that � = disc. Write (Γ̃disc)G for the sub-semi-graph of

[the necessarily untangled semi-graph!] Γ̃disc defined in Definition 1.2,

(i), with respect to the action ρ̃disc
s . Then (Γ̃disc)G is nonempty and

connected. If, moreover, we write (ΓG)0 ⊆ ΓG for the image of

the composite (Γ̃disc)G ↪→ Γ̃disc → Γ, then the resulting morphism

(Γ̃disc)G → (ΓG)0 is a [discrete] universal covering of (ΓG)0.

(iv) Suppose that � = disc (respectively, � = Σ). Then the set

VCN(Γ̃disc)G (respectively, VCN(Γ̃Σ)G def
= lim←− VCN(Γ∗)

G)

— where, in the resp’d case, the projective limit is taken over the G-

compatible connected finite subcoverings Γ∗ → Γ of Γ̃Σ → Γ — is
nonempty.

(v) Suppose that � = Σ, that Γ is untangled, and that G is iso-
morphic to Z/lZ for some prime number l ∈ Σ. Let (ΓG)0 ⊆ ΓG be a
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[nonempty] connected component of ΓG such that

VCN((ΓG)0) ∩ Im
(
VCN(Γ̃Σ)G → VCN(Γ)

)
6= ∅

[cf. (iv)]. Then there exists a G-compatible connected finite subcovering

Γ∗ → Γ of Γ̃Σ → Γ such that the image of ΓG
∗ ⊆ Γ∗ in Γ coincides

with (ΓG)0 ⊆ ΓG.

(vi) Suppose that � = Σ, and that Γ is untangled. Then the

sub-pro-semi-graph (Γ̃Σ)G of Γ̃Σ determined by the projective system
of sub-semi-graphs ΓG

∗ — where Γ∗ → Γ ranges over the G-compatible

connected finite subcoverings of Γ̃Σ → Γ — is nonempty and con-
nected. If, moreover, we write (ΓG)0 ⊆ ΓG for the image of the com-

posite (Γ̃Σ)G ↪→ Γ̃Σ → Γ, then the resulting morphism (Γ̃Σ)G → (ΓG)0

is a pro-Σ universal covering of (ΓG)0.

Proof. First, we verify assertion (i). Let us first observe that one verifies
immediately that ΓG

∗ ⊆ Γ∗|ΓG . Thus, to complete the verification of
assertion (i), it suffices to verify that the following assertion holds:

Claim 1.6.A: Let (Γ∗|ΓG)0 ⊆ Γ∗|ΓG be a connected com-
ponent of Γ∗|ΓG such that (Γ∗|ΓG)0 ∩ ΓG

∗ 6= ∅. Then
(Γ∗|ΓG)0 ⊆ ΓG

∗ .

To verify Claim 1.6.A, let us observe that since (Γ∗|ΓG)0 ∩ ΓG
∗ 6= ∅,

the action ρs,∗ of G on Γ∗ stabilizes (Γ∗|ΓG)0 ⊆ Γ∗. In particular, we
obtain an action of G on (Γ∗|ΓG)0 over ΓG. Thus, since the action
of G on ΓG is trivial, and the composite (Γ∗|ΓG)0 ↪→ Γ∗|ΓG → ΓG

is a connected finite covering of ΓG, again by our assumption that
(Γ∗|ΓG)0 ∩ ΓG

∗ 6= ∅, we conclude that the action of G on (Γ∗|ΓG)0 is
trivial, i.e., that (Γ∗|ΓG)0 ⊆ ΓG

∗ . This completes the proof of Claim
1.6.A, hence also of assertion (i).

Next, we verify assertion (ii). One verifies immediately that we may
assume without loss of generality that Γ∗ = Γ. Now suppose that
ΓG = ∅. Then since G ∼= Z/lZ, it follows that the action of G on Γ is
free, which thus implies that the quotient map Γ � Γ/G is a covering
of Γ/G. In particular, ΠΣ

Γ//G is isomorphic to the pro-Σ completion of

the topological fundamental group of the semi-graph Γ/G. Thus, the
pro-Σ group ΠΣ

Γ//G is free, hence, in particular, torsion-free. But this

contradicts the existence of the section of the surjection ΠΣ
Γ//G � G

determined by s. This completes the proof of assertion (ii).
Next, we verify the resp’d portion of assertion (iv) [i.e., the assertion

that VCN(Γ̃Σ)G 6= ∅] in the case whereG is isomorphic to Z/lZ for some
prime number l ∈ Σ. Let us first observe that it follows immediately
from Lemma 1.4, (iii), (iv), that, by replacing Γ by Γ÷, we may assume
without loss of generality that Γ is untangled. Thus, the assertion that

VCN(Γ̃Σ)G 6= ∅ follows immediately from assertion (ii), together with
the well-known elementary fact that a projective limit of nonempty
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finite sets is nonempty. This completes the proof of the assertion that

VCN(Γ̃Σ)G 6= ∅ in the case where G is isomorphic to Z/lZ for some
prime number l ∈ Σ.

Next, we verify assertion (iii). Let us first observe that since Γ̃disc

is a tree, hence untangled, it follows from Lemma 1.4, (i), that (Γ̃disc)G

is a sub-semi-graph of Γ̃disc. Next, let us observe that it follows im-
mediately from Lemma 1.4, (iv), that, by replacing Γ by Γ÷, we may
assume without loss of generality that G acts without inversion on Γ.

Thus, the assertion that (Γ̃disc)G is nonempty and connected follows im-
mediately from [SemiAn], Lemma 1.8, (ii). The remainder of assertion
(iii) follows from a similar argument to the argument applied in the
proof of assertion (i). This completes the proof of assertion (iii). In
particular, the unresp’d portion of assertion (iv) [i.e., the assertion that

VCN(Γ̃disc)G 6= ∅] holds.
Next, we verify assertion (v). Let us first observe that, to verify

assertion (v), it follows immediately from Lemma 1.4, (iii), (iv), that,
by replacing Γ by Γ÷, we may assume without loss of generality that
the action ρ is an action without inversion, and that every edge of Γ
abuts to at least one vertex of Γ. In particular, since [we have assumed
that] (ΓG)0 6= ∅, it follows from Lemma 1.4, (ii), (v), that (ΓG)(0 6= ∅
[cf. Definition 1.3, (i)]. Now if ΓG is connected, then one verifies imme-

diately that the trivial covering Γ
id→ Γ satisfies the condition imposed

on “Γ∗ → Γ” in the statement of assertion (v). Thus, to complete the
verification of assertion (v), we may assume without loss of generality
that ΓG is not connected, hence [cf. Lemma 1.4, (ii)] contains at least

one vertex 6∈ Vert((ΓG)0). In particular, (ΓG)6∈(0 6= ∅ [cf. Definition 1.3,
(iii)].

Write ((ΓG)(0 )
‘
→ (ΓG)(0 for the trivial Z/lZ-covering obtained by

taking a disjoint union of copies of (ΓG)(0 indexed by the elements of

Z/lZ; ((ΓG)6∈(0 )
‘
→ (ΓG)6∈(0 for the trivial Z/lZ-covering obtained by

taking a disjoint union of copies of (ΓG)6∈(0 indexed by the elements

of Z/lZ. Then the natural actions of G on ((ΓG)(0 )
‘

, ((ΓG)6∈(0 )
‘

[cf.
Lemma 1.5, (i)] determine natural actions of G × Z/lZ on ((ΓG)(0 )

‘
,

((ΓG)6∈(0 )
‘

, i.e., we have homomorphisms

ρ( : G× Z/lZ −→ Aut
(
((ΓG)(0 )

‘)
,

ρ 6∈( : G× Z/lZ −→ Aut
(
((ΓG)6∈(0 )

‘)
.

Let φ : G
∼→ Z/lZ be an isomorphism. Write

ρ 6∈(φ : G× Z/lZ −→ G× Z/lZ ρ 6∈(−→ Aut
(
((ΓG)6∈(0 )

‘)
(a, b) 7→ (a, φ(a) + b)

for the composite of ρ 6∈( with the homomorphism described in the
second line of the display.
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Next, for e ∈ Brdg
def
= Brdg((ΓG)0 ⊆ Γ) [cf. Definition 1.3, (iv)],

write G · e ⊆ Edge((ΓG)(0 ) for the G-orbit of e. Then it is immediate
that G · e ⊆ Brdg; moreover, since G ∼= Z/lZ, it follows immediately
from Lemma 1.5, (iii), that G · e is a G-torsor. Next, let us write

((ΓG)(0 )
‘
|G·e

def
= ((ΓG)(0 )

‘
×(ΓG)(0

G · e,

((ΓG)6∈(0 )
‘
|G·e

def
= ((ΓG)6∈(0 )

‘
×(ΓG) 6∈(0

G · e.
Then one verifies easily from the various definitions involved that the
following hold:

(a) The actions ρ(, ρ 6∈(φ of G × Z/lZ on ((ΓG)(0 )
‘

, ((ΓG)6∈(0 )
‘

determine actions on these fibers ((ΓG)(0 )
‘
|G·e, ((ΓG)6∈(0 )

‘
|G·e.

(b) These fibers ((ΓG)(0 )
‘
|G·e, ((ΓG)6∈(0 )

‘
|G·e are (G×Z/lZ)-torsors

with respect to the actions of (a).

(c) There is a natural isomorphism of semi-graphs ((ΓG)(0 )
‘
|G·e

∼→
((ΓG)6∈(0 )

‘
|G·e [cf. Lemma 1.4, (vi)], which we shall use to identify these

two semi-graphs.

(d) Let ebase ∈ ((ΓG)(0 )
‘
|G·e = ((ΓG)6∈(0 )

‘
|G·e [cf. (c)] be a lifting

of e ∈ Brdg. Then there is a uniquely determined [cf. (b)] isomorphism

ιebase
: ((ΓG)(0 )

‘
|G·e

∼−→ ((ΓG)6∈(0 )
‘
|G·e

of (G× Z/lZ)-torsors [cf. (b)] that maps ebase to ebase.

Let B be a collection of elements “ebase” as in (d) such that the map
ebase 7→ e determines a bijection between B and the set of G-orbits of
Brdg. Thus, by gluing ((ΓG)6∈(0 )

‘
to ((ΓG)6∈(0 )

‘
by means of the col-

lection of isomorphisms {ιebase
}ebase∈B of (d), we obtain a finite covering

Γ∗ → Γ, together with an action of G × Z/lZ on Γ∗ [i.e., obtained by

gluing the actions ρ(, ρ 6∈(φ ], such that the morphism Γ∗ → Γ is equi-
variant with respect to this action of G×Z/lZ on Γ∗ and the action of
G × Z/lZ on Γ obtained by composing the projection G × Z/lZ → G
with the given action of G on Γ. Next, let us observe that since φ is
an isomorphism, and both (ΓG)0 and (ΓG)6∈(0 contain vertices fixed by
G, one verifies immediately — e.g., by considering a path of minimal
length between such vertices fixed by G — that Γ∗ is connected. More-
over, it follows from the definition of Γ∗ that the covering Γ∗ → Γ is
Galois and equipped with a natural isomorphism Gal(Γ∗/Γ)

∼→ Z/lZ;

in particular, Γ̃Σ → Γ factors as a composite Γ̃Σ → Γ∗ → Γ.
Next, let us observe that, for each g ∈ G, the automorphism αg of Γ∗

obtained by considering the difference between ρs,∗(g) and the action
of g [i.e., (g, 0) ∈ G × Z/lZ] on Γ∗ defined above is an automorphism
over Γ. Moreover, it follows immediately from our assumption that

VCN((ΓG)0) ∩ Im
(
VCN(Γ̃Σ)G → VCN(Γ)

)
6= ∅



22 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

that αg fixes an element of VCN(Γ∗) that maps to VCN((ΓG)0) ⊆
VCN(Γ). But this implies that αg is trivial, i.e., that the action ρs,∗
of G coincides with the action of G (= G × {0} ⊆ G × Z/lZ) on Γ∗
defined above.

On the other hand, since φ is an isomorphism, it follows that (Γ∗)
G ⊆

Γ∗ is contained in the sub-semi-graph of Γ∗ determined by ((ΓG)(0 )
‘

.
In particular, it follows immediately from Lemma 1.5, (ii), that the
image of ΓG

∗ ⊆ Γ∗ in Γ is contained in (ΓG)0 ⊆ ΓG. Thus, it follows
immediately from assertion (i) that the image of ΓG

∗ ⊆ Γ∗ in Γ coincides
with (ΓG)0 ⊆ ΓG. This completes the proof of assertion (v).

Next, we verify assertion (vi). First, we claim that the following
assertion holds:

Claim 1.6.B: If G is isomorphic to Z/lZ for some prime
number l ∈ Σ, then assertion (vi) holds.

Indeed, it follows from the resp’d portion of assertion (iv) [i.e., the

assertion that VCN(Γ̃Σ)G 6= ∅] in the case where G is isomorphic to
Z/lZ for some prime number l ∈ Σ [i.e., the case that has already been

verified!] that (Γ̃Σ)G 6= ∅. On the other hand, it follows immediately

from assertion (v) that (Γ̃Σ)G is connected. Thus, the final portion of
assertion (vi) [in the case where G is isomorphic to Z/lZ for some prime
number l ∈ Σ] follows immediately from assertion (i) [and the evident
pro-Σ version of [SemiAn], Proposition 2.5, (i)]. This completes the
proof of Claim 1.6.B.

Next, we verify assertion (vi) for arbitrary finite solvable G by in-
duction on G]. Since G is finite and solvable, there exists a normal
subgroup N ⊆ G of G such that G/N is a nontrivial finite group of
prime order. Then it follows from the induction hypothesis that if we
write (ΓN)0 ⊆ ΓN for the [nonempty, connected!] image of the com-

posite (Γ̃Σ)N ↪→ Γ̃Σ → Γ, then the resulting morphism (Γ̃Σ)N → (ΓN)0

is a pro-Σ universal covering of (ΓN)0. Next, let us observe that since
N is normal in G, [one verifies immediately that] the action ρ̃Σ

s of G

on Γ̃Σ preserves (Γ̃Σ)N ⊆ Γ̃Σ. Thus, by replacing (Γ̃Σ → Γ, G) by

((Γ̃Σ)N → (ΓN)0, G/N) and applying Claim 1.6.B, we conclude that
assertion (vi) holds for the given G. This completes the proof of asser-
tion (vi).

Finally, we verify the resp’d portion of assertion (iv) [i.e., the as-

sertion that VCN(Γ̃Σ)G 6= ∅]. Let us first observe that, to verify the

assertion that VCN(Γ̃Σ)G 6= ∅, it follows immediately from Lemma 1.4,
(iii), (iv), that, by replacing Γ by Γ÷, we may assume without loss of

generality that Γ is untangled. Thus, the assertion that VCN(Γ̃Σ)G 6= ∅
follows immediately from assertion (vi). This completes the proof of
Lemma 1.6. �
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Remark 1.6.1. The conclusion of Lemma 1.6, (vi), follows for an
arbitrary [i.e., not necessarily solvable!] finite group G from [ZM], The-
orems 2.8, 2.10. That is to say, the proof given above of Lemma 1.6,
(vi), may be regarded as an alternative proof of these results of [ZM]
in the case where G is solvable. In this context, it is also perhaps of
interest to observe that, by considering Lemma 1.6, (vi), in the case
where Σ = Primes and Γ is a tree, one obtains an alternative proof of
the classical result concerning actions of finite groups on trees quoted
in the proof of Lemma 1.6, (iii); [SemiAn], Lemma 1.8, (ii), in the case
where the finite group under consideration is solvable.

Remark 1.6.2.

(i) In the situation of Lemma 1.6, if G is isomorphic to Z/lnZ for
some prime number l ∈ Σ and a positive integer n, then the con-
clusion of the resp’d portion of Lemma 1.6, (iv), may be verified by
the following easier argument: Since [as is well-known] a projective
limit of nonempty finite sets is nonempty, to verify the assertion that

VCN(Γ̃Σ)G 6= ∅, it suffices to verify that VCN(Γ∗)
G 6= ∅ for every G-

compatible connected finite subcovering Γ∗ → Γ of Γ̃Σ → Γ. Moreover,
one verifies immediately that we may assume without loss of generality
that Γ∗ = Γ. Next, let us observe that it follows immediately from
Lemma 1.4, (iv), that, by replacing Γ by Γ÷, we may assume without
loss of generality that G acts on Γ without inversion. Write H ⊆ G for

the unique subgroup such that Q
def
= G/H is of order l; ΓQ

def
= Γ/H for

the “quotient semi-graph”, i.e., the semi-graph whose vertices, edges,
and branches are, respectively, the H-orbits of the vertices, edges, and
branches of Γ [cf. the fact thatG acts on Γ without inversion]. Then one
verifies immediately that the natural morphism of semi-graphs Γ � ΓQ

determines an outer homomorphism

ΠΣ
Γ//G −→ ΠΣ

ΓQ//Q

[cf. the notation of the statement of Lemma 1.6]. Now since ΠΣ
ΓQ

is
a free pro-Σ group, hence torsion-free, it follows that the restriction
s(H) → ΠΣ

ΓQ//Q [which clearly factors through ΠΣ
ΓQ
⊆ ΠΣ

ΓQ//Q] of the

outer homomorphism ΠΣ
Γ//G → ΠΣ

ΓQ//Q to s(H) ⊆ ΠΣ
Γ//G is trivial,

hence that s determines a section sQ : Q → ΠΣ
ΓQ//Q of the natural

surjection ΠΣ
ΓQ//Q � Q. In particular, by applying Lemma 1.6, (ii), we

thus conclude that VCN(ΓQ)Q 6= ∅. Let zQ ∈ VCN(ΓQ)Q, z ∈ VCN(Γ)
a lifting of zQ, and g ∈ G a generator of G. Then since Q fixes zQ,
it follows that zg = zh, for some h ∈ H, hence that z is fixed by
g · h−1 ∈ G. On the other hand, since g · h−1 generates G, we thus
conclude that z is fixed by G, i.e., that VCN(Γ∗)

G 6= ∅, as desired.
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(ii) The proof of Lemma 1.6, (ii), as well as the argument of (i)
above, is essentially the same as the argument applied in [AbsCsp] to
prove [AbsCsp], Lemma 2.1, (iii).

Remark 1.6.3. In the respective situations of Lemma 1.6, (iii), (vi),

the sub-semi-graph (Γ̃disc)G and the sub-pro-semi-graph (Γ̃Σ)G are nec-
essarily connected [cf. Lemma 1.6, (iii), (vi)]. On the other hand, ΓG is
not, in general, connected. This phenomenon may be seen in the follow-

ing example: Suppose that 2 ∈ Σ, and that Γ̃disc is the graph given by
the integral points of the real line R, i.e., the vertices are given by the
elements of Z ⊆ R, and the edges are given by the closed line segments
joining adjacent elements of Z. For N = 2M a positive even integer,

write ΓN for the quotient of Γ̃disc by the evident action of N ∈ Z on

Γ̃disc via translations. Thus, we have a diagram of natural covering
maps

Γ̃disc −→ ΓN −→ Γ
def
= Γ2,

and the group G = Z/2Z acts equivariantly on this diagram via mul-
tiplication by ±1. Here, we observe that since N is even, one verifies
immediately that G acts on ΓN without inversion. Then one computes
easily that

(Γ̃disc)G = {0}, ΓG
N = MZ/NZ.

In particular, the pro-semi-graph (Γ̃Σ)G corresponds to the inverse limit

lim←− MZ/NZ,
hence consists of a single pro-vertex and no pro-edges and, in particular,
is nonempty and connected. On the other hand, each ΓG

N consists of
precisely two vertices and no edges, hence is not connected.

Definition 1.7. Let G be a profinite group and ρ : G → Aut(G) a
continuous homomorphism.

(i) We shall say that ρ is of ENN-type [where the “ENN” stands for
“extended NN”] (respectively, of EPIPSC-type [where the “EPIPSC”
stands for “extended PIPSC”]) if there exists a normal subgroup IG ⊆
G of G such that, for every open subgroup J ⊆ IG of IG, the composite

J ↪→ G
ρ→ Aut(G) factors as a composite J � JΣ-ab-free → Aut(G) [cf.

the discussion entitled “Groups” in §0], where the second arrow is of
NN-type [cf. [NodNon], Definition 2.4, (iii)] (respectively, of PIPSC-
type [cf. [CbTpIII], Definition 1.3]). In this situation, we shall refer to
IG as the conducting subgroup. Suppose that ρ is of ENN-type for some
conducting subgroup IG ⊆ G. Then we shall say that ρ is verticially
quasi-split if there exists an open subgroup H ⊆ G that acts as the
identity [i.e., relative to the action induced by ρ] on the underlying
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semi-graph G of G and, moreover, for every v ∈ Vert(G), satisfies the
following condition: the extension of profinite groups [cf. the discussion
entitled “Topological groups” in [CbTpI], §0]

1 −→ Πv −→ Πv

out
o H −→ H −→ 1

— where Πv ⊆ ΠG is a verticial subgroup associated to v ∈ Vert(G)
— associated to the outer action of H on Πv determined by ρ [cf.
[CmbGC], Proposition 1.2, (ii); [CbTpI], Lemma 2.12] admits a split-

ting sv : H → Πv

out
o H such that the image of the restriction of sv to

IG ∩H commutes with Πv.

(ii) Let l ∈ Σ. Then we shall say that ρ is l-cyclotomically full if

the image of the composite G
ρ→ Aut(G) χG→ (ẐΣ)× � Z×

l [cf. [CbTpI],
Definition 3.8, (ii)] is open.

Remark 1.7.1. It follows immediately from [CbTpIII], Remark 1.6.2,
that the following implication holds:

EPIPSC-type =⇒ ENN-type.

Lemma 1.8 (Outer representations induced on pro-l comple-
tions). Let G be a profinite group and ρ : G → Aut(G) a continuous
homomorphism of ENN-type (respectively, of EPIPSC-type) for a
conducting subgroup IG ⊆ G [cf. Definition 1.7, (i)]. For l ∈ Σ,
write G{l} for the semi-graph of anabelioids of pro-{l} PSC-type ob-
tained by forming the pro-l completion of G [cf. [SemiAn], Definition

2.9, (ii)]. Then the composite G
ρ→ Aut(G) → Aut(G{l}) is of ENN-

type (respectively, of EPIPSC-type) for the same conducting sub-
group IG ⊆ G.

Proof. This follows immediately from the various definitions involved.
�

Definition 1.9. Let z ∈ VCN(G). If z ∈ Vert(G) (respectively, z ∈
Edge(G)), then we shall refer to a verticial (respectively, an edge-like)
subgroup of Πtp

G associated to z [cf. [SemiAn], Theorem 3.7, (i), (iii)]

as a VCN-subgroup of Πtp
G associated to z. For z̃ ∈ VCN(G̃tp), we shall

also speak of VCN-subgroups of Πtp
G associated to z̃.

Definition 1.10.

(i) Let Γ be a semi-graph and v ∈ Vert(Γ). Then we shall write
Vδ≤1(v) ⊆ Vert(Γ) for the subset consisting of w ∈ Vert(Γ) such that
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N (v) ∩ N (w) 6= ∅. Also, we shall write Star(v)
def
= Vδ≤1(v) t E(v) ⊆

VCN(Γ).

(ii) Let v ∈ Vert(G). Then we shall write Vδ≤1(v) ⊆ Vert(G),
Star(v) ⊆ VCN(G) for the respective subsets of (i) applied to the un-
derlying semi-graph of G.

(iii) Let ṽ ∈ Vert(G̃). Then we shall write Vδ≤1(ṽ) ⊆ Vert(G̃),
Star(ṽ) ⊆ VCN(G̃) for the respective projective limits of the subsets
of (ii), i.e., where the constructions of these subsets are applied to the

images of ṽ in the connected finite etale subcoverings of G̃ → G.

Lemma 1.11 (VCN-subgroups and sections). Let G be a profinite

group, ρ : G → Aut(G) a continuous homomorphism, z̃ ∈ VCN(G̃),
z̃tp ∈ VCN(G̃tp), Πez ⊆ ΠG a VCN-subgroup of ΠG associated to z̃ ∈
VCN(G̃), and Πeztp ⊆ Πtp

G a VCN-subgroup of Πtp
G associated to z̃tp [cf.

Definition 1.9]. Write ΠG
def
= ΠG

out
o G, Πtp

G
def
= Πtp

G
out
o G [cf. the

discussion entitled “Topological groups” in [CbTpI], §0]. [Thus, we
have a natural commutative diagram

1 −−−→ Πtp
G −−−→ Πtp

G −−−→ G −−−→ 1y y ∥∥∥
1 −−−→ ΠG −−−→ ΠG −−−→ G −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows
are outer injections.] Then the following hold:

(i) It holds that

Πez = NΠG
(Πez) ∩ ΠG = CΠG

(Πez) ∩ ΠG,

Dez def
= NΠG

(Πez) = CΠG
(Πez) = NΠG

(Dez) = CΠG
(Dez),

Πeztp = NΠtp
G

(Πeztp) ∩ Πtp
G = CΠtp

G
(Πeztp) ∩ Πtp

G ,

Deztp
def
= NΠtp

G
(Πeztp) = CΠtp

G
(Πeztp) = NΠtp

G
(Deztp) = CΠtp

G
(Deztp).

(ii) Suppose that ρ is of ENN-type for a conducting subgroup

IG ⊆ G [cf. Definition 1.7, (i)]. Let S be a nonempty subset of VCN(G̃)
and s : G→ ΠG a section of the surjection ΠG � G such that, for each
ỹ ∈ S, it holds that s(IG) ≺ Dey [cf. the discussion entitled “Groups” in

§0]. Then there exists an element ṽ ∈ Vert(G̃) such that S ⊆ Star(ṽ)
[cf. Definition 1.10, (iii)].

(iii) Suppose that ρ is of ENN-type for a conducting subgroup
IG ⊆ G. Let s : G → ΠG be a section of the surjection ΠG � G such
that s(IG) ≺ Dez [cf. the discussion entitled ”Groups” in §0]. Write
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Gs
def
= CΠG

(s(IG)). Then there exists an element z̃′ ∈ VCN(G̃) such
that s(G) ⊆ Gs ⊆ Dez′.

(iv) Suppose that ρ is of ENN-type for a conducting subgroup
IG ⊆ G. Let s : G → Πtp

G be a section of the surjection Πtp
G � G such

that s(IG) ≺ Deztp [cf. the discussion entitled ”Groups” in §0]. Write

Gs
def
= CΠtp

G
(s(IG)). Then there exists an element (z̃′)tp ∈ VCN(G̃tp)

such that s(G) ⊆ Gs ⊆ D(ez′)tp. In particular, Gs is contained in a

profinite subgroup of Πtp
G [cf. (i)].

Proof. First, we verify assertion (i). The two equalities of the first
(respectively, third) line of the display and the first “=” of the sec-
ond (respectively, fourth) line of the display follow immediately from
[CmbGC], Proposition 1.2, (ii) (respectively, [CmbGC], Proposition
1.2, (ii), together with the injection reviewed at the beginning of the
present §1). Thus, the second and third “=” of the second (respectively,
fourth) line of the display follow immediately from the chain of inclu-
sions

Dez ⊆ NΠG
(Dez) ⊆ CΠG

(Dez) ⊆ CΠG
(Dez ∩ ΠG) = CΠG

(Πez) = Dez
(respectively,

Dtp
z ⊆ NΠtp

G
(Deztp) ⊆ CΠtp

G
(Deztp) ⊆ CΠtp

G
(Deztp∩Πtp

G ) = CΠtp
G

(Πeztp) = Deztp)

— where the third “⊆” follows immediately from [CbTpII], Lemma
3.9, (i) (respectively, the [easily verified] tempered version of [CbTpII],
Lemma 3.9, (i)). This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows from
the definition of the term “of ENN-type” that the restriction of ρ to
IG ⊆ G factors through the quotient IG � IΣ-ab-free

G [cf. the discussion

entitled “Groups” in §0]. Write ΠIG

def
= ΠG

out
o IG and ΠIΣ-ab-free

G

def
=

ΠG
out
o IΣ-ab-free

G . Thus, we have a commutative diagram

1 −−−→ ΠG −−−→ ΠG −−−→ G −−−→ 1∥∥∥ x x
1 −−−→ ΠG −−−→ ΠIG

−−−→ IG −−−→ 1∥∥∥ y y
1 −−−→ ΠG −−−→ ΠIΣ-ab-free

G
−−−→ IΣ-ab-free

G −−−→ 1

— where the horizontal sequeces are exact, the upper vertical arrows
are injective, the lower vertical arrows are surjective, and the two right-
hand squares are cartesian. Next, let us observe that we may assume

without loss of generality that S is equal to the set of all ỹ ∈ VCN(G̃)
such that s(IG) ≺ Dey. Now since s(IG) ≺ Dey = CΠG

(Πey) [cf. assertion
(i)] for every ỹ ∈ S, it holds that, for each ỹ ∈ S, some open subgroup



28 YUICHIRO HOSHI AND SHINICHI MOCHIZUKI

of the image J ⊆ ΠIΣ-ab-free
G

of IG
s→ ΠIG

� ΠIΣ-ab-free
G

is contained in

CΠ
IΣ-ab-free
G

(Πey). In particular, it follows from [NodNon], Propositions

3.8, (i); 3.9, (i), that

• every pair of edges of S abut to a common vertex, and

• the distance between any two vertices of S is ≤ 2 [cf. Definition 1.1,
(iii)].

It is now a matter of elementary combinatorial graph theory [cf. also
[NodNon], Lemma 1.8] to conclude that S ⊆ Star(ṽ) for some ṽ ∈
Vert(G̃), as desired. This completes the proof of assertion (ii).

Next, we verify assertion (iii). Since s(IG) ≺ Dez, the action of

some open subgroup of IG on G̃ determined by s|IG
fixes z̃ ∈ VCN(G̃).

Thus, it follows from the definition of Gs that, if, for γ ∈ Gs, we write

z̃γ ∈ VCN(G̃) for the image of z̃ by the action of γ ∈ Gs, then the action

of some open subgroup of IG on G̃ fixes z̃γ ∈ VCN(G̃), i.e., s(IG) ≺ Dezγ

for every γ ∈ Gs.

Now suppose that z̃ ∈ Edge(G̃). Then it follows from assertion (ii)

that there exists a vertex ṽ ∈ Vert(G̃) such that { z̃γ | γ ∈ Gs } ⊆ E(ṽ).
Now if { z̃γ | γ ∈ Gs }] = 1, then it is immediate that Gs ⊆ Dez. On the
other hand, if { z̃γ | γ ∈ Gs }] ≥ 2, then one verifies immediately from
the various definitions involved [cf. also [NodNon], Lemma 1.8] that the

action of Gs fixes ṽ ∈ Vert(G̃), which thus implies that Gs ⊆ Dev. This

completes the proof of assertion (iii) in the case where z̃ ∈ Edge(G̃).
Next, suppose that z̃ ∈ Vert(G̃). Then it follows from assertion (ii)

that the set Sδ of vertices ṽ ∈ Vert(G̃) such that

• Sez def
= { z̃γ | γ ∈ Gs } ⊆ Vδ≤1(ṽ);

• any edge ∈ Edge(G̃) that abuts to two distinct elements of Sez
[hence is fixed by the action of some open subgroup of IG determined
by s|IG

— cf. [NodNon], Lemma 1.8] necessarily abuts to ṽ

is nonempty. If the action of Gs fixes some ỹ ∈ VCN(G̃), then Gs ⊆ Dey.
Thus, we may assume without loss of generality that the action of Gs

does not fix any element of VCN(G̃). In particular, it follows that the
[nonempty!] sets Sez and Sδ — both of which are clearly preserved by
the action of Gs — are of cardinality ≥ 2. In a similar vein, Sδ \ Sez is
either empty or of cardinality ≥ 2. Moreover, the latter case contradicts
[NodNon], Lemma 1.8. Thus, we conclude that Sδ ⊆ Sez, which, by the
definition of Sez and Sδ, implies that Sδ = Sez, i.e., that, for any two
distinct z̃1, z̃2 ∈ Sez, there exists a [unique, by [NodNon], Lemma 1.8]

ẽ ∈ Edge(G̃) such that V(ẽ) = {z̃1, z̃2}. But, in light of the definition

of Sδ, this implies that S]ez = 2, and hence that Edge(G̃) contains an
element fixed by the action of Gs — a contradiction! This completes
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the proof of assertion (iii) in the case where z̃ ∈ Vert(G̃), hence also
of assertion (iii). Assertion (iv) follows immediately from a similar
argument to the argument applied in the proof of assertion (iii). This
completes the proof of Lemma 1.11. �

Lemma 1.12 (Triviality via passage to abelianizations). Let G
and J be profinite groups and φ : J → G a continous homomorphism.
Then the following hold:

(i) Let γ ∈ G be such that, for every open subgroup H ⊆ G of G
that contains γ, the image of γ in Hab is trivial. Then γ is trivial.

(ii) Suppose that, for every open subgroup H ⊆ G of G, the com-

posite φ−1(H)
φ→ H � Hab is trivial. Then φ is trivial.

Proof. First, we verify assertion (i). Assume that γ is nontrivial. Then
it is immediate that there exists a normal open subgroup N ⊆ G
of G such that γ 6∈ N . Write H ⊆ G for the closed subgroup of
G topologically generated by N and γ. Then the image of γ in the
abelian quotient H � H/N is nontrivial. This completes the proof
of assertion (i). Assertion (ii) follows immediately from assertion (i).
This completes the proof of Lemma 1.12. �

Theorem 1.13 (The combinatorial section conjecture for outer
representations of ENN-type). Let Σ be a nonempty set of prime
numbers, G a semi-graph of anabelioids of pro-Σ PSC-type, G a profi-
nite group, and ρ : G→ Aut(G) a continuous homomorphism that is of
ENN-type for a conducting subgroup IG ⊆ G [cf. Definition 1.7,
(i)]. Write ΠG for the [pro-Σ] fundamental group of G and Πtp

G for the
tempered fundamental group of G [cf. [SemiAn], Example 2.10; the dis-
cussion preceding [SemiAn], Proposition 3.6]. [Thus, we have a natural
outer injection Πtp

G ↪→ ΠG — cf. the proof of [CbTpIII], Proposition 3.3,

(i), (ii).] Write ΠG
def
= ΠG

out
o G [cf. the discussion entitled “Topological

groups” in [CbTpI], §0]; Πtp
G

def
= Πtp

G
out
o G; G̃ → G, G̃tp → G for the

universal pro-Σ and pro-tempered coverings of G corresponding to ΠG,
Πtp
G ; VCN(−) for the set of vertices, cusps, and nodes of the underlying

[pro-]semi-graph of a [pro-]semi-graph of anabelioids [cf. Definition 1.1,
(i)]. [Thus, we have a natural commutative diagram

1 −−−→ Πtp
G −−−→ Πtp

G −−−→ G −−−→ 1y y ∥∥∥
1 −−−→ ΠG −−−→ ΠG −−−→ G −−−→ 1
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— where the horizontal sequences are exact, and the vertical arrows
are outer injections.] Then the following hold:

(i) Suppose that ρ is l-cyclotomically full [cf. Definition 1.7, (ii)]
for some l ∈ Σ. Let s : G→ ΠG be a continuous section of the natural

surjection ΠG � G. Then, relative to the action of ΠG on VCN(G̃) via
conjugation of VCN-subgroups, the image of s stabilizes some element

of VCN(G̃).
(ii) Let s : G→ Πtp

G be a continuous section of the natural surjection

Πtp
G � G. Then, relative to the action of Πtp

G on VCN(G̃tp) via conju-
gation of VCN-subgroups [cf. Definition 1.9], the image of s stabilizes

some element of VCN(G̃tp).

(iii) Write Sect(ΠG/G) for the set of ΠG-conjugacy classes of con-
tinuous sections of the natural surjection ΠG � G and Sect(Πtp

G /G) for
the set of Πtp

G -conjugacy classes of continuous sections of the natural

surjection Πtp
G � G. Then the natural map

Sect(Πtp
G /G) −→ Sect(ΠG/G)

is injective. If, moreover, ρ is l-cyclotomically full for some l ∈ Σ,
then this map is bijective.

Proof. First, we verify assertion (i). Let us first observe that by re-
placing G by the pro-l completion of the finite étale covering of G de-
termined by a varying normal open subgroup H ⊆ ΠG [cf. Lemma 1.8;
[CbTpIII], Lemma 1.5] and G by ΠG/(H ∩ΠG), it follows immediately
from the well-known fact that a projective limit of nonempty finite
sets is nonempty that we may assume without loss of generality that
Σ = {l}. Next, let us observe that we may assume without loss of
generality that G has at least one node. In particular, it follows imme-
diately from Lemma 1.11, (iii), that, to verify assertion (i), by replacing
ΠG by a suitable open subgroup of ΠG, we may assume without loss
of generality — i.e., by arguing as in the discussion entitled “Curves”
in [AbsTpII], §0 — that the pro-l completion ΠG of the topological
fundamental group of the underlying semi-graph G of G is a free pro-l
group of rank ≥ 2, hence, in particular, center-free. Then we claim
that the following assertion holds:

Claim 1.13.A: For every connected finite étale Galois

subcovering H → G of G̃ → G, the action of IG on H,
via s, fixes an element of VCN(H).

To verify Claim 1.13.A, let us observe that, by replacing H by G, we
may assume without loss of generality thatH = G. Next, let us observe
that since the underlying semi-graph G of G is finite, the action of G

on G factors through a finite quotient G � Q. Write ΠG//Q
def
= ΠG

out
o

Q [i.e., notation which is well-defined since ΠG is center-free — cf.
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the discussion entitled “Topological groups” in [CbTpI], §0]. Thus, we
obtain a commutative diagram

1 −−−→ ΠG −−−→ ΠG −−−→ G −−−→ 1y y y
1 −−−→ ΠG −−−→ ΠG//Q −−−→ Q −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows are
surjective. Write IG � IQ for the [finite] quotient of IG determined by

the quotient G � Q, NG
def
= Ker(G � Q), and NI

def
= Ker(IG � IQ).

Now let us observe that

(a) since Q is finite, it is immediate that NG, NI are open in G, IG,
respectively, and, moreover,

(b) it follows from the definition of the term “of ENN-type” that,
by replacing G � Q by a suitable quotient of Q if necessary, we may
assume without loss of generality that the quotient IG � IQ fac-

tors through the quotient IG � I
{l}-ab-free
G [cf. the discussion entitled

“Groups” in §0], hence is cyclic of order a power of l.

Next, let us observe that the composite NG ↪→ G
s→ ΠG � ΠG//Q

determines a commutative diagram

NI ↪−→ NG

|
↓

|
↓

ΠG == ΠG

— where the upper horizontal arrow is the natural inclusion. Now we
claim that the following assertion holds:

Claim 1.13.B: The left-hand vertical arrow NI → ΠG
of the above diagram is the trivial homomorphism.

Indeed, let H ⊆ ΠG be an open subgroup and write NI,H ⊆ NI and
NG,H ⊆ NG for the open subgroups obtained by forming the inverse
image of H ⊆ ΠG via the vertical arrows of the above commutative
diagram. Thus, NG,H normalizes NI,H ; the action of NG,H on H by
conjugation induces the trivial action of NG,H on Hab. Next, let us
observe that since Hab is a free Zl-module, the left-hand vertical arrow

under consideration determines a homomorphism N
{l}-ab-free
I,H → Hab of

free Zl-modules of finite rank [cf. Definition 1.7, (i)], which is NG,H-
equivariant [with respect to the actions of NG,H by conjugation]. On
the other hand, since the action of NG,H on Hab is trivial, the NG,H-

equivariant homomorphism N
{l}-ab-free
I,H → Hab factors through a quo-

tient of N
{l}-ab-free
I,H on which NG,H acts trivially. Thus, since ρ is l-

cyclotomically full, and NG,H acts on N
{l}-ab-free
I,H via the cyclotomic

character [cf. Definition 1.7, (i)], we conclude that the NG,H-equivariant
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homomorphism N
{l}-ab-free
I,H → Hab is trivial. In particular, Claim 1.13.B

follows from Lemma 1.12, (ii). This completes the proof of Claim
1.13.B.

Next, let us observe that it follows immediately from Claim 1.13.B
that the section s determines a section of the natural surjection

ΠG//IQ

def
= ΠG//Q ×Q IQ

pr2
� IQ.

Thus, it follows immediately from the resp’d portion of Lemma 1.6,
(iv), together with the observation (b) discussed above [cf. also Re-
mark 1.13.1 below], that Claim 1.13.A holds. This completes the proof
of Claim 1.13.A.

Now by allowing the subcovering H in Claim 1.13.A to vary, we

conclude that s(IG) stabilizes some element of VCN(G̃). Thus, it follows
from Lemma 1.11, (iii), that the image s(G) stabilizes some element of

VCN(G̃). This completes the proof of assertion (i).
Assertion (ii) follows, by applying [NodNon], Proposition 3.9, (i),

from a similar argument to the argument applied to prove [SemiAn],
Theorems 3.7, 5.4. That is to say, instead of considering “subjoints”
[i.e., paths of length 2] as in the proof of [SemiAn], Theorem 3.7, the
content of [NodNon], Proposition 3.9, (i), requires us to consider paths
of length 3. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). Let s, t : G → Πtp
G be sections of

the surjection Πtp
G � G such that there exists an element γ ∈ ΠG such

that the composite ŝ : G
s→ Πtp

G ↪→ ΠG is the conjugate by γ ∈ ΠG of

the composite t̂ : G
t→ Πtp

G ↪→ ΠG. Thus, it follows from assertion (ii)

[applied to both s and t] that there exist elements ỹ, z̃ ∈ VCN(G̃tp) such

that if we write z̃γ ∈ VCN(G̃) for the image of z̃ by the action of γ, then
ŝ stabilizes both ỹ and z̃γ. In particular, we conclude from Lemma 1.11,
(ii), that the distance between ỹ and z̃γ is finite, i.e., that ỹ, z̃, and
z̃γ correspond to the same “tempered basepoint”, hence that γ ∈ Πtp

G .
This completes the proof of the injectivity portion of assertion (iii).

Since [one verifies immediately that] every element of VCN(G̃) lies in

the ΠG-orbit of an element of VCN(G̃tp), the final portion of assertion
(iii) follows immediately from assertion (i). This completes the proof
of Theorem 1.13. �

Remark 1.13.1. We observe in passing, with regard to the application
of Lemma 1.6, (iv), in the proof of Theorem 1.13, (i), that, in fact,
Lemma 1.6, (iv), is only applied in the case where the group “G” of
Lemma 1.6 is cyclic and of order a power of l. That is to say, we only
apply Lemma 1.6, (iv), in the case that, as discussed in Remark 1.6.2,
(i), admits a relatively simple proof.
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Corollary 1.14 (A combinatorial version of the Grothendieck
conjecture for outer representations of ENN-type). Let Σ be a
nonempty set of prime numbers; G, H semi-graphs of anabelioids of
pro-Σ PSC-type; GG, GH profinite groups; β : GG

∼→ GH a continu-
ous isomorphism; ρG : GG → Aut(G), ρH : GH → Aut(H) continuous
homomorphisms that are of ENN-type for conducting subgroups
IGG ⊆ GG, IGH ⊆ GH [cf. Definition 1.7, (i)] such that β(IGG) = IGH;
l ∈ Σ a prime number such that ρG and ρH are l-cyclotomically full
[cf. Definition 1.7, (ii)]. Suppose further that ρG is verticially quasi-
split [cf. Definition 1.7, (i)]. Write ΠG, ΠH for the [pro-Σ] funda-

mental groups of G, H, respectively. Let α : ΠG
∼→ ΠH be a continuous

isomorphism such that the diagram

GG
ρG−→ Aut(G) ↪−→ Out(ΠG)

β
|
↓

|
↓

GH
ρH−→ Aut(H) ↪−→ Out(ΠH)

— where the right-hand vertical arrow is the isomorphism induced by α
— commutes. Then α is graphic [cf. [CmbGC], Definition 1.4, (i)].

Proof. First, let us observe that by [CmbGC], Corollary 2.7, (i), it
follows from our assumption that ρG and ρH are l-cyclotomically full
that α : ΠG

∼→ ΠH is group-theoretically cuspidal. Thus, by applying
[NodNon], Lemma 1.14, we conclude that it suffices to verify that α
is group-theoretically verticial under the additional assumption that
G and H are noncuspidal. Write ΠGG , ΠGH for the profinite groups
“ΠG” [cf. Theorem 1.13] associated to ρG, ρH. Then it follows im-
mediately from our assumption that ρG is verticially quasi-split that
we may assume, after possibly replacing GG and GH by corresponding
open subgroups, that there exists a section sG : GG → ΠGG such that
the image of the restriction of sG to IGG commutes with some verticial
subgroup of ΠG. In particular, sG satisfies the conditions imposed on
the section “s : G → ΠG” in Lemma 1.11, (ii). Moreover, it follows

from Theorem 1.13, (i), that the isomorphism ΠGG
∼→ ΠGH determined

by α and β maps sG to a section sH : GH → ΠGH that is contained in
the commensurator in ΠGH of a VCN-subgroup of ΠH. In particular,
after possibly replacing GG and GH by corresponding open subgroups,
we may assume [cf. [CmbGC], Proposition 1.2, (ii); [NodNon], Remark
2.7.1] that the image of the restriction of sH to IGH commutes with
some nontrivial verticial element of ΠH [cf. [CbTpII], Definition 1.1].
Thus, by restricting these sections sG, sH to the respective conducting
subgroups and forming appropriate centralizers [cf. [NodNon], Lemma
3.6, (i), applied to the restriction of sG to IGG ], we conclude from the
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assumption that β is compatible with the respective conducting sub-
groups that α : ΠG

∼→ ΠH maps some nontrivial verticial element of
ΠG to a nontrivial verticial element of ΠH. In particular, it follows
from the implication (3) ⇒ (1) of [CbTpII], Theorem 1.9, (i), that α
is group-theoretically verticial, as desired. �

Remark 1.14.1. It is not difficult to verify that the assumption in
the statement of Corollary 1.14 that β(IGG) = IGH cannot be omit-
ted. Indeed, if one omits this assumption, then a counterexample
to the graphicity asserted in Corollary 1.14 may be obtained as fol-
lows: Let J be a semi-graph of anabelioids of pro-Σ PSC-type and
eG, eH distinct nodes of J . Write G (respectively, H) for the semi-
graph of anabelioids of pro-Σ PSC-type J Node(J )\{eG} (respectively,
J Node(J )\{eH}) obtained by deforming the nodes of J that are 6= eG
(respectively, 6= eH) [cf. [CbTpI], Definition 2.8]. Then if we take

GG = GH = Aut|{eG ,eH}|(J ) [cf. [CbTpI], Definition 2.6, (i)], α to be
the outer isomorphism determined by the specialization outer isomor-
phisms ΦJ Node(J )\{eG}, ΦJ Node(J )\{eH} [cf. [CbTpI], Definition 2.10],
β to be the identity isomorphism, and IGG (respectively, IGH) to be
the subgroup generated by the profinite Dehn twists that arise from
the direct summand of the direct sum decomposition in the display of
[CbTpI], Theorem 4.8, (iv), labeled by eG (respectively, eH), then one
verifies immediately that one obtains a counterexample as desired.

Let R be a complete discrete valuation ring whose residue character-
istic we denote by p [so p may be zero]; K a separable closure of the
field of fractions K of R;

X log

a stable log curve [cf. the discussion entitled “Curves” in [CbTpI],
§0] over the log regular log scheme Spec(R)log obtained by equip-
ping Spec(R) with the log structure determined by the maximal ideal
mR ⊆ R of R. Suppose, for simplicity, that X log is split, i.e., that the
natural action of Gal(K/K) on the dual semi-graph ΓXlog associated to

the geometric special fiber of X log is trivial. Write X log def
= X log ×R K;

Vert(X log) (respectively, Cusp(X log); Node(X log)) for the set of ver-
tices (respectively, open edges; closed edges) of ΓXlog , i.e., the set
of connected components of the complement of the cusps and nodes
(respectively, the set of cusps; the set of nodes) of the special fiber of
X log;

VCN(X log)
def
= Vert(X log) t Cusp(X log) t Node(X log).

Before proceeding, we recall that
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to each element z ∈ VCN(X log), one may associate, in
a way that is functorial with respect to arbitrary auto-
morphisms of the log scheme X log, a discrete valuation
that dominates R on the residue field of some point of
X, which is closed if and only if z is a cusp.

Indeed, this is immediate if z is a vertex or a cusp, since vertices and
cusps correspond to primes of height 1 of X . Now suppose that z
is a node that is locally defined by an equation of the form s1s2 − a,
for some a ∈ mR [cf., e.g., the discussion of [CbTpI], Definition 5.3,
(ii)]. By descent, we may assume without loss of generality that a
admits a square root b in R. Then one associates to z the discrete
valuation determined by the exceptional divisor of the blow-up of X at
the locus (s1, s2, b). [One verifies immediately that this construction is
compatible with arbitrary automorphisms of X log.]

Corollary 1.15 (Fixed points associated to Galois sections). Let
Σ be a set of prime numbers; Σ† ⊆ Σ a subset; l ∈ Σ†; R a complete
discrete valuation ring of residue characteristic p 6∈ Σ† [so p may be
zero]; K a separable closure of the field of fractions K of R;

X log

a stable log curve [cf. the discussion entitled “Curves” in [CbTpI],
§0] over the log regular log scheme Spec(R)log obtained by equipping
Spec(R) with the log structure determined by the maximal ideal of R.

Write GK
def
= Gal(K/K) for the absolute Galois group of K; IK ⊆ GK

for the inertia subgroup of GK; X log def
= X log ×R K; X log

K

def
= X log ×R

K;
∆Xlog

for the pro-Σ log fundamental group of X log

K
[i.e., the maximal pro-Σ

quotient of the log fundamental group of X log

K
];

ΠXlog

for the geometrically pro-Σ log fundamental group of X log [i.e., the
quotient of the log fundamental group of X log by the kernel of the natural
surjection of the log fundamental group of X log

K
onto ∆Xlog ]. Thus, we

have a natural exact sequence of profinite groups

1 −→ ∆Xlog −→ ΠXlog −→ GK −→ 1.

Write X̃ log → X log for the profinite log étale covering of X log corre-
sponding to ΠXlog . If Y log → X log is a finite connected subcovering of

X̃ log → X log that admits a stable model Y log over the normalization RY

of R in Y , then let us write ΓY log for the dual semi-graph determined
by the geometric special fiber of Y log over RY ; Vert(Y log) (respectively,
Cusp(Y log); Node(Y log)) for the set of vertices (respectively, open edges;
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closed edges) of ΓY log , i.e., the set of connected components of the com-
plement of the cusps and nodes (respectively, the set of cusps; the set
of nodes) of the geometric special fiber of Y log over RY ;

VCN(Y log)
def
= Vert(Y log) t Cusp(Y log) t Node(Y log);

VCN(X̃ log)
def
= lim←− VCN(Y log)

— where the projective limit is over all finite connected subcoverings

Y log → X log of X̃ log → X log as above, and we observe that the transi-
tion maps of the projective system under consideration do not neces-
sarily preserve the “type” [i.e., “V”, “C”, or “N”] of an element. If

z̃ ∈ VCN(X̃ log), then let us write z̃(Y log) ∈ VCN(Y log) for the element
of VCN(Y log) determined by z̃. Let H ⊆ GK be a closed subgroup such
that the image of

IH
def
= H ∩ IK ⊆ IK

via the natural surjection IK � IΣ†
K to the pro-Σ† completion IΣ†

K of IK
is an open subgroup of IΣ†

K and

s : H −→ ΠXlog

a section of the restriction to H ⊆ GK of the above exact sequence of
profinite groups. Then the following hold:

(i) If we write ∆†
Xlog for the maximal pro-Σ† quotient of ∆Xlog and

regard, via the specialization outer isomorphism with respect to X log,
the pro-Σ† group ∆†

Xlog as the [pro-Σ†] fundamental group of the semi-

graph of anabelioids of pro-Σ† PSC-type determined by the geometric
special fiber of the stable model X log [cf. [CmbGC], Example 2.5], then
the natural outer Galois action

H −→ Out(∆†
Xlog)

determined by the above exact sequence is of EPIPSC-type for the
conducting subgroup IH ⊆ H [cf. Definition 1.7, (i)]. If, moreover,
H is l-cyclotomically full, i.e., the image of H ⊆ GK via the l-
adic cyclotomic character on GK is open, then the above outer Galois
action is l-cyclotomically full [cf. Definition 1.7, (ii)].

(ii) Let z̃ ∈ VCN(X̃ log) and S = {Y log → X log} a cofinal system

consisting of finite Galois subcoverings Y log → X log of X̃ log → X log

such that Y log admits a stable model over the normalization RY of R
in Y . Then there exist a valuation vez [i.e., a bounded multiplicative
seminorm — cf., e.g., [Brk1], §1.1, §1.2] on the residue field of some

point of the underlying scheme X̃ of X̃ log and a cofinal subsystem S ′
of S such that, if Z log → X log is a member of S ′, then, as Y log → X log

ranges over the members of S ′ that lie over Z log, the discrete valu-
ations on residue fields of points of the underlying scheme Z of Z log

determined by the elements z̃(Y log) ∈ VCN(Y log) [cf. the discussion
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preceding the present Corollary 1.15] converge in the “Berkovich
space topology” — i.e., as bounded multiplicative seminorms — to
the valuation on the residue field of some point of Z determined by vez.

(iii) Write Stab(s) ⊆ VCN(X̃ log) for the subset consisting of ele-

ments z̃ ∈ VCN(X̃ log) such that the image of s stabilizes z̃. Suppose
that H is l-cyclotomically full [cf. (i)]. Then it holds that

Stab(s) 6= ∅.

In particular, if z̃ ∈ Stab(s), then the image of s lies in the decom-
position group of any valuation vez as in (ii).

(iv) Let Y log → X log be a finite connected subcovering of X̃ log →
X log that admits a stable model over the normalization RY of R in Y ;
z̃1, z̃2 ∈ Stab(s) [cf. (iii)]. Then one of the following four [mutually
exclusive] conditions is satisfied:

(a) z̃1(Y
log), z̃2(Y

log) ∈ Vert(Y log), and δ(z̃1(Y
log), z̃2(Y

log)) ≤ 2
[cf. Definition 1.1, (iii)].

(b) z̃1(Y
log), z̃2(Y

log) ∈ Edge(Y log), and V(z̃1(Y
log))∩V(z̃2(Y

log)) 6=
∅.

(c) z̃1(Y
log) ∈ Vert(Y log), z̃2(Y

log) ∈ Edge(Y log), and, moreover,
Vδ≤1(z̃1(Y

log)) ∩ V(z̃2(Y
log)) 6= ∅ [cf. Definition 1.10, (i)].

(d) z̃1(Y
log) ∈ Edge(Y log), z̃2(Y

log) ∈ Vert(Y log), and, moreover,
V(z̃1(Y

log)) ∩ Vδ≤1(z̃2(Y
log)) 6= ∅.

(v) In the situation of (iv), suppose, moreover, that the following
assertion — i.e., concerning “resolution of nonsingularities” [cf.
Remark 1.15.1 below] — holds:

(†RNS): Let Y log → X log be a finite connected subcov-

ering of X̃ log → X log that admits a stable model Y log

over RY and y ∈ Y a node of Y. Then there exists a fi-

nite connected subcovering Z log → Y log of X̃ log → Y log

that admits a stable model Z log over RZ such that the
fiber over y of the morphism Z → Y determined by
Z log → Y log is not finite.

Then every finite connected subcovering Y log → X log of X̃ log → X log

that admits a stable model over RY satisfies one of the following four
[mutually exclusive] conditions:

(a′) z̃1(Y
log), z̃2(Y

log) ∈ Vert(Y log), and z̃1(Y
log) = z̃2(Y

log).

(b) z̃1(Y
log), z̃2(Y

log) ∈ Edge(Y log), and V(z̃1(Y
log))∩V(z̃2(Y

log)) 6=
∅.

(c′) z̃1(Y
log) ∈ Vert(Y log), z̃2(Y

log) ∈ Edge(Y log), and, moreover,
z̃1(Y

log) ∈ V(z̃2(Y
log)).
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(d′) z̃1(Y
log) ∈ Edge(Y log), z̃2(Y

log) ∈ Vert(Y log), and, moreover,
z̃2(Y

log) ∈ V(z̃1(Y
log)).

(vi) Write ∆tp
Xlog for the Σ-tempered fundamental group of

X log

K
[cf. [CbTpIII], Definition 3.1, (ii)]; Πtp

Xlog for the geometrically

Σ-tempered fundamental group of X log [i.e., the quotient of the
tempered fundamental group of X log by the kernel of the natural sur-
jection of the tempered fundamental group of X log

K
onto ∆tp

Xlog ]. Thus,
we have a natural exact sequence of topological groups

1 −→ ∆tp
Xlog −→ Πtp

Xlog −→ GK −→ 1.

Write Sect(ΠXlog/H) for the set of ∆Xlog-conjugacy classes of contin-
uous sections of the restriction to H ⊆ GK of the natural surjection
ΠXlog � GK and Sect(Πtp

Xlog/H) for the set of ∆tp
Xlog-conjugacy classes

of continuous sections of the restriction to H ⊆ GK of the natural
surjection Πtp

Xlog � GK. Then the natural map

Sect(Πtp
Xlog/H) −→ Sect(ΠXlog/H)

is injective. If, moreover, H is l-cyclotomically full [cf. (i)], then
this map is bijective.

Proof. Assertion (i) follows immediately from the definition of the term
“IPSC-type” [cf. [NodNon], Definition 2.4, (i)], together with the well-
known structure of the maximal pro-Σ† quotient of IK . Assertion (ii)
follows immediately, by applying a standard argument involving Cantor
diagonalization, from the well-known [local] compactness of Berkovich
spaces [cf., e.g., [Brk1], Theorem 1.2.1]. Here, we recall in passing that
this compactness is, in essence, a consequence of the compactness of a
product of copies of the closed interval [0, 1] ⊆ R. This completes the
proof of assertion (ii).

Assertion (iii) follows immediately from the observation that, by ap-
plying Theorem 1.13, (i) [cf. also Remark 1.7.1; assertion (i) of the
present Corollary 1.15], together with the well-known fact that a pro-
jective limit of nonempty finite sets is nonempty, to the various finite

connected subcoverings of X̃ log → X log, one may conclude that the

action of GK , via s, on X̃ log fixes some element z̃s ∈ VCN(X̃ log) of

VCN(X̃ log). Assertion (iv) follows immediately [cf. also Remark 1.7.1;
assertion (i) of the present Corollary 1.15] from Lemma 1.11, (ii).

Next, we verify assertion (v). Let us first observe that it follows
immediately from assertion (iv) that if Y log → X log is a finite connected

subcovering of X̃ log → X log that admits a stable model over RY , then
z̃1(Y

log) and z̃2(Y
log) lie in a connected sub-semi-graph Γ∗ of ΓY log such

that
VCN(Γ∗)] = Vert(Γ∗)] + Edge(Γ∗)] ≤ 3 + 2 = 5.

Now one verifies immediately that this uniform bound “5” implies that
there exists a cofinal system S = {Y log → X log} consisting of finite
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Galois subcoverings Y log → X log of X̃ log → X log such that Y log admits
a stable model over RY and, moreover, ΓY log admits a connected sub-
semi-graph Γ∗

Y log such that

• z̃1(Y
log) and z̃2(Y

log) lie in Γ∗
Y log ;

• VCN(Γ∗
Y log)

] ≤ 5;

• the semi-graphs Γ∗
Y log map isomorphically to one another as one

varies Y log → X log.

Write V∗(Y log)
def
= Vert(Γ∗

Y log). Then it follows immediately from asser-
tion (iv) that, to complete the verification of assertion (v), it suffices
to verify that the following assertion holds:

Claim 1.15.A: V∗(Y log)] ≤ 1.

Indeed, suppose that V∗(Y log)] ≥ 2. Then it follows immediately that
there exists a compatible system of nodes e(Y log) of Γ∗

Y log [i.e., compat-
ible as one varies Y log → X log in S], each of which abuts to distinct
vertices vα(Y log), vβ(Y log) of Γ∗

Y log . [Thus, one may assume that the
vertices vα(−) (respectively, vβ(−)) form a compatible system of ver-
tices.] But this implies that for every Z log → X log in S that lies over
Y log → X log in S, if we write Y log, Z log for the respective stable mod-
els of Y log, Z log [so the morphism Z log → Y log extends to a morphism
Z log → Y log — cf., e.g., [ExtFam], Theorem C], then the inverse im-
age in Z log of the node e(Y log) admits at least one isolated point [i.e.,
e(Z log)], hence, by Zariski’s main theorem [cf. also the fact that the
covering Z log → Y log is Galois], that the entire inverse image in Z log of
e(Y log) is of dimension zero. On the other hand, this contradicts the
assertion (†RNS) in the statement of assertion (v). This completes the
proof of assertion (v).

Finally, we verify assertion (vi). The injectivity portion of assertion
(v) follows immediately from the injectivity portion of Theorem 1.13,
(iii) [cf. also Remark 1.7.1; assertion (i) of the present Corollary 1.15],

applied to the various finite connected subcoverings of X̃ log → X log.
Here, we note that it follows immediately from the final portion of
Lemma 1.11, (iv), that the resulting conjugacy indeterminacies that
occur at various subcoverings are uniquely determined up to profinite
centralizers of the sections that appear, hence converge in ∆tp

Xlog [i.e., if
one passes to an appropriate subsequence of the system of subcoverings
under consideration]. If H is l-cyclotomically full, then the surjectivity
of the map Sect(Πtp

Xlog/H) → Sect(ΠXlog/H) follows formally [i.e., by
choosing an appropriate “tempered basepoint” — cf. the proof of the
final portion of Theorem 1.13, (iii)] from the nonemptiness verified in
assertion (iii). This completes the proof of assertion (vi). �
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Remark 1.15.1. It follows from [Tama2], Theorem 0.2, (v), that if
K is of characteristic zero, the residue field of R is algebraic over Fp,
and Σ = Primes, then the assertion (†RNS) in the statement of Corol-
lary 1.15, (v), holds.

Remark 1.15.2.

(i) Corollary 1.15, (iii), (v) [cf. also [SemiAn], Lemma 5.5], may be
regarded as a generalization of the Main Result of [PS]. These results
are obtained in the present paper [cf. the proof of Theorem 1.13, (i)]
by, in essence, combining, via a similar argument to the argument ap-
plied in the tempered case treated in [SemiAn], Theorems 3.7, 5.4 [cf.
also the proof of Theorem 1.13, (ii), of the present paper], the unique-
ness result given in [NodNon], Proposition 3.9, (i) [cf. the proof of
Lemma 1.11, (ii)], with the existence of fixed points of actions of finite
groups on graphs that follows as a consequence of the classical fact
that [discrete or pro-Σ] free groups are torsion-free [cf. Remarks 1.6.2,
1.13.1; the proof of Lemma 1.6, (ii)]. One slight difference between the
profinite and tempered cases is that, whereas, in the tempered case,
it follows from the discreteness of the fundamental groups of graphs
that appear that the actions of profinite groups on universal coverings
of such graphs necessarily factor through finite quotients, the corre-
sponding fact in the profinite case is obtained as a consequence of the
fact that, under a suitable assumption on the cyclotomic characters
that appear, any homomorphism from a “positive slope” module to a
torsion-free “slope zero” module necessarily vanishes [cf. the proof of
Claim 1.13.B in Theorem 1.13, (i)]. That is to say, in a word, these
results are obtained in the present paper as a consequence of

abstract considerations concerning abstract profinite
groups acting on abstract semi-graphs that may,
for instance, arise as dual semi-graphs of geometric
special fibers of stable models of curves that appear
in scheme theory, but, a priori, have nothing to do
with scheme theory.

This a priori irrelevance of scheme theory to such abstract consider-
ations is reflected both in the variety of the results obtained in the
present §1 as consequences of Theorem 1.13, as well as in the gen-
erality of Corollary 1.15. This approach contrasts quite substantially
with the approach of [PS], i.e., where the main results are derived as a
consequence of highly scheme-theoretic considerations concerning sta-
ble curves over complete discrete valuation rings, in which the theory
of the Brauer group of the function field of such a curve plays a central
role [cf. [PS], §4].
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(ii) The essential equivalence between the issue of considering val-
uations fixed by Galois actions and the issue of considering vertices or
edges of associated dual semi-graphs fixed by Galois actions may be
seen in the well-known functorial homotopy equivalence between the
Berkovich space associated to a stable curve over a complete discrete
valuation ring and the associated dual graph [cf. [Brk2], Theorems 8.1,
8.2]. Moreover, the issue of convergence of [sub]sequences of valuations
fixed by Galois actions is an easy consequence of the well-known [local]
compactness of Berkovich spaces [cf. the proof of Corollary 1.15, (ii);
[Brk1], Theorem 1.2.1], i.e., in essence, a consequence of the well-known
compactness of a product of copies of the closed interval [0, 1] ⊆ R.
That is to say, there is no need to consider the quite complicated [and,
at the time of writing, not well understood!] structure of inductive
limits of local rings, as discussed in [PS], §1.6.

Corollary 1.16 (Non-existence of liftings of certain Galois sec-
tions). In the situation of Corollary 1.15, suppose further that the
following conditions hold:

• X log is the stable log curve determined by the tripod P1
R\{0, 1,∞}.

• p is a prime number 6= 3 that belongs to Σ.

• K is a finite extension of Qp.

• The closed subgroup H ⊆ GK is l-cyclotomically full and con-
tains some maximal pro-p subgroup of GK.

Write ∆‡
Xlog for the pro-p log fundamental group of X log

K
[i.e., the max-

imal pro-p quotient of the log fundamental group of X log

K
]; Π‡

Xlog for the

geometrically pro-p log fundamental group of X log [i.e., the quotient of
the log fundamental group of X log by the kernel of the natural surjection
of the log fundamental group of X log

K
onto ∆‡

Xlog ]. Thus, [since p ∈ Σ]
we have a natural commutative diagram of profinite groups

1 −−−→ ∆Xlog −−−→ ΠXlog −−−→ GK −−−→ 1y y ∥∥∥
1 −−−→ ∆‡

Xlog −−−→ Π‡
Xlog −−−→ GK −−−→ 1

— where the horizontal sequences are exact, the vertical arrows are
surjections, and the right-hand vertical arrow is the identity morphism.

Write (X̃ log)‡ → X log for the profinite log étale covering of X log that

corresponds to Π‡
Xlog . Then the following hold:
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(i) There exists a finite Galois subcovering Y log → X log of (X̃ log)‡ →
X log that admits a stable model Y log over RY such that the dual semi-
graph ΓY log determined by the geometric special fiber of Y log over RY

is not a tree [cf. the discussion at the beginning of [SemiAn], §1].
(ii) Suppose that p is an odd regular prime number. Then, after

possibly replacing K by a finite extension of K, there exists a finite Ga-

lois subcovering Y log → X log of (X̃ log)‡ → X log that is geometrically
connected over K and, moreover, satisfies the following property:
Write ∆Y log ⊆ ∆Xlog , ΠY log ⊆ ΠXlog , ∆‡

Y log ⊆ ∆‡
Xlog , Π‡

Y log ⊆ Π‡
Xlog

for the open subgroups determined by Y log. Then there exists a sec-
tion of the natural exact sequence of profinite groups

1 −→ ∆‡
Y log −→ Π‡

Y log −→ GK −→ 1

whose restriction to H ⊆ GK does not lift — relative to the natural
surjection ΠY log � Π‡

Y log over GK — to a section of [the restriction to
H ⊆ GK of]

1 −→ ∆Y log −→ ΠY log −→ GK −→ 1.

Proof. First, we verify assertion (i). Write η ∈ X for the generic point
of the [geometrically irreducible] special fiber of X over R, κ(η) for

the residue field of X at η, and X̃ ‡ for the normalization of X in

the underlying scheme of (X̃ log)‡. Then we claim that the following
assertion holds:

Claim 1.16.A: No point η̃ of X̃ ‡ that lies over η is

stabilized by the natural action of ∆‡
Xlog on X̃ ‡.

Indeed, suppose that there exists a point η̃ of X̃ ‡ that violates Claim

1.16.A. Write κ(η̃) for the residue field of X̃ ‡ at η̃. Let t be a rational
function on X that determines an isomorphism of the complement in
X of the three cusps with the affine scheme Spec(R[t±1, (1− t)−1]) over
R. Then, by considering the p-power roots of t, we obtain a surjection
Π‡

Xlog � Λ (∼= Zp), which restricts to a surjection

∆‡
Xlog � Λ (∼= Zp),

whose kernel we denote by P ⊆ ∆‡
Xlog . For n a positive integer, write

X log
n → X log for the finite subcovering of (X̃ log)‡ → X log corresponding

to the surjection Π‡
Xlog � Λ � Λ/pnΛ; κ(ηn) for the finite extension

of κ(η) determined by X log
n → X log [i.e., κ(ηn) = κ(η)(t

1/pn

), where
we write t for the image of t in κ(η)]; κ(ηP ) for the [inseparable] ex-
tension of κ(η) determined by the inductive limit of the κ(ηn)’s, where

n ranges over the positive integers [i.e., κ(ηP ) = κ(η)(t
1/p∞

)]. Thus,
κ(ηP ) is perfect, and κ(η̃) is a separable Galois extension of κ(ηP ). In

particular, the natural action of ∆‡
Xlog on X̃ ‡ determines a natural outer
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homomorphism

∆‡
Xlog −→ Gal(κ(η̃)/κ(ηP )),

whose kernel we denote by I ⊆ ∆‡
Xlog . Here, let us observe that one

verifies immediately from the well-known invariance of the Galois group
of the separable closure with respect to inseparable extensions that the
composite I ↪→ ∆‡

Xlog � Λ is surjective.
Next, write ξ ∈ X for the generic point of X and ξI∩P for the generic

point of the underlying scheme of the subcovering of (X̃ log)‡ → X log

corresponding to I ∩ P ⊆ ∆‡
Xlog . Now we claim that the following

assertion holds:

Claim 1.16.B: Any finite Galois subcovering Y log →
X log of (X̃ log)‡ → X log restricts to a trivial covering of
ξI∩P .

To verify Claim 1.16.B, let us observe that it follows immediately —
by replacing K by a finite extension of K — from the definition of
ξI∩P that we may assume without loss of generality that Y log admits a
stable model Y log over R. Thus, the morphism Y log → X log extends to
a morphism of stable log curves Y log → X log over Spec(R)log [cf., e.g.,
[ExtFam], Theorem C], so η̃ maps to a generic point ηY of the special
fiber of the underlying scheme Y of Y log. Write κ(ηY ) for the residue
field of Y at ηY . Then one verifies immediately that there exists a
positive integer n such that we may assume without loss of generality
— by replacing Y log by the composite covering of X log

n and Y log and
K by a finite extension of K — that the finite extension κ(ηY )/κ(η)
determines a finite separable extension κ(ηY )/κ(ηn). In particular, since
the special fiber of Y over R is reduced at ηY , we conclude that if we

write Sn for the normalization of S def
= Spec(OX ,η)→ X in Xn, then the

finite log étale covering Y log → X log restricts to a finite étale covering
of Sn. Thus, it follows immediately from the definition of I ⊆ ∆‡

Xlog [cf.

also our assumption that ∆‡
Xlog stabilizes η̃!] that Y log → X log restricts

to a trivial covering of ξI∩P . This completes the proof of Claim 1.16.B.
Next, let us observe that it follows from Claim 1.16.B that I ∩ P =

{1}, which thus implies that the composite I ↪→ ∆‡
Xlog � Λ is injective.

On the other hand, since I is a normal closed subgroup of the center-
free free pro-p group ∆‡

Xlog [cf. [CmbGC], Remark 1.1.3], one verifies
immediately that the existence of the injection I ↪→ Λ (∼= Zp) implies

that I lies in the center of the group ∆‡
Xlog , hence that I = {1}. But this

contradicts the surjectivity of the composite I ↪→ ∆‡
Xlog � Λ [already

verified above]. This completes the proof of Claim 1.16.A.

Next, let us write G
def
= AutK(X log). [Here, we recall the well-known

elementary fact that the action of G on the three cusps of X log deter-
mines a natural outer isomorphism of G with the symmetric group on
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three letters.] To complete the verification of assertion (i), it suffices to
derive a contradiction from the following assumption:

For any finite connected subcovering Y log → X log of

(X̃ log)‡ → X log such that the corresponding open sub-

group ∆‡
Y log ⊆ (∆‡

Xlog ⊆) ∆‡
Xlog

out
o G [cf. the discus-

sion entitled “Topological groups” in [CbTpI], §0] of

∆‡
Xlog

out
o G is normal, if we write ΓY log for the dual

semi-graph of the geometric special fiber of the stable
model Y log of Y log over RY , then it holds that ΓY log is
a tree.

This may be done as follows. Since the natural action of ∆‡
Xlog

out
o G

on ΓY log factors through a finite quotient, it follows from [SemiAn],
Lemma 1.8, (ii), together with our assumption that ΓY log is a tree, that
some element zY log ∈ VCN(ΓY log) is stabilized by the natural action

of ∆‡
Xlog

out
o G. On the other hand, since [one verifies easily that] the

action of G does not stabilize any closed point of the special fiber of X
[cf. our assumption that p 6= 3], it follows that the image in the special
fiber of X of the closed subscheme of the special fiber of Y determined
by zY log ∈ VCN(ΓY log) is not a closed point [which thus implies that
zY log is not an edge]. In particular, by applying the well-known fact that
a projective limit of nonempty finite sets is nonempty, we conclude, by

varying Y log, that there exists a point η̃ of X̃ ‡ that lies over η and is
stabilized by the action of ∆‡

Xlog . But this contradicts Claim 1.16.A.
This completes the proof of assertion (i).

Next, we verify assertion (ii). Let Y log → X log be a finite Galois

subcovering of (X̃ log)‡ → X log as in the statement of assertion (i).
By replacing K by a suitable finite extension of K, we may assume
without loss of generality that Y is geometrically connected overK, and,
moreover, that Y log admits a stable model Y log over R which is split,
i.e., the natural action of GK on the associated dual semi-graph ΓY log is
trivial. Then since ΓY log is not a tree, one verifies easily that there exists

a degree p cyclic [Galois] subcovering Z log → Y log of (X̃ log)‡ → Y log

that arises from the “combinatorial quotient” of Π‡
Y log , i.e., from a finite

covering of ΓY log . In particular, we have a natural isomorphism

Aut(Z log/Y log)
∼−→ Aut(ΓZlog/ΓY log) (∼= Z/pZ).

Write Π‡
Zlog ⊆ Π‡

Y log for the normal open subgroup of index p corre-

sponding to the covering Z log → Y log.
Now since [we have assumed that] p is odd and regular, it follows

immediately from [Hsh], Lemmas 2.1, (ii); 3.2, that the natural outer

Galois action of GK on ∆‡
Xlog determined by Π‡

Xlog factors through a

free pro-p quotient of GK . Thus, since Π‡
Y log is an open subgroup of
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Π‡
Xlog , one verifies immediately that, after possibly replacing K by a

finite extension of K, we may assume without loss of generality that
the natural outer Galois action of GK on ∆‡

Y log determined by Π‡
Y log

factors through a free pro-p quotient GK � Q 6= {1} of GK . Write

ΠQ
Y log

def
= ∆‡

Y log

out
o Q. Then we have a natural commutative diagram of

profinite groups

1 −−−→ ∆‡
Y log −−−→ Π‡

Y log −−−→ GK −−−→ 1∥∥∥ y y
1 −−−→ ∆‡

Y log −−−→ ΠQ
Y log −−−→ Q −−−→ 1

— where the horizontal sequences are exact, the vertical arrows are sur-
jective, and the right-hand square is cartesian. Moreover, one verifies
immediately from the various definitions involved that, after possibly
replacing K by a finite extension of K, it holds that the natural surjec-
tion Π‡

Y log � Π‡
Y log/Π

‡
Zlog = Aut(Z log/Y log) factors through the natural

surjection Π‡
Y log � ΠQ

Y log .
Next, let

φ : Q −→ Π‡
Y log/Π

‡
Zlog = Aut(Z log/Y log) (∼= Z/pZ)

be a nontrivial homomorphism. [Here, we observe that the existence
of such a homomorphism φ follows immediately from the fact that
Q 6= {1} is a free pro-p group.] Then since Q is free pro-p, there exists
a section sQ of the lower horizontal sequence of the above diagram such

that the composite of sQ with the surjection ΠQ
Y log � Π‡

Y log/Π
‡
Zlog =

Aut(Z log/Y log) coincides with φ. In particular, since the right-hand
square of the above diagram is cartesian, by pulling back sQ via GK �
Q, we obtain a section s of the upper horizontal sequence of the above
diagram. Write s|H : H → Π‡

Y log for the restriction of s to H ⊆ GK .
Here, we observe that it follows from our assumption that H contains
some maximal pro-p subgroup of GK , together with the well-known
elementary theory of Sylow subgroups, that the surjection GK � Q
induces a surjection H � Q.

Now suppose that this section s|H lifts to a section of [the restriction
to H ⊆ GK of] the exact sequence

1 −→ ∆Y log −→ ΠY log −→ GK −→ 1.

Then since the homomorphism φ : Q→ Π‡
Y log/Π

‡
Zlog = Aut(Z log/Y log)

∼→
Aut(ΓZlog/ΓY log) is nontrivial, and [as observed above] the natural ho-
momorphism H → Q is surjective, one verifies immediately from the
various definitions involved that the action of H ⊆ GK on ΓZlog deter-
mined by the lifting of s|H does not admit a fixed point — in contra-
diction to Corollary 1.15, (iii). Thus, we conclude that s|H does not
lift to a section of [the restriction to H ⊆ GK of] ΠY log � GK . This
completes the proof of assertion (ii). �
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2. Discrete combinatorial anabelian geometry

In the present §2, we introduce the notion of a semi-graph of temper-
oids of HSD-type [i.e., “hyperbolic surface decomposition type” — cf.
Definition 2.3, (iii)] and discuss discrete versions of the profinite results
obtained in [NodNon], [CbTpI], [CbTpII], [CbTpIII]. A semi-graph of
temperoids of HSD-type arises naturally from a decomposition [satis-
fying certain properties] of a hyperbolic topological surface and may
be regarded as a discrete analogue of the notion of a semi-graph of
anabelioids of PSC-type. The main technical result of the present §2
is Theorem 2.15, one immediate consequence of which is the following
[cf. Corollary 2.19]:

An isomorphism of groups between the discrete funda-
mental groups of a pair of semi-graphs of temperoids
of HSD-type arises from an isomorphism between the
semi-graphs of temperoids of HSD-type if and only
if the induced isomorphism between profinite comple-
tions of fundamental groups arises from an isomor-
phism between the associated semi-graphs of anabe-
lioids of pro-Primes PSC-type.

In the present §2, let Σ be a nonempty set of prime numbers.

Definition 2.1.

(i) We shall refer to as a semi-graph of temperoids G a collection of
data as follows:

• a semi-graph G [cf. the discussion at the beginning of [SemiAn],
§1],

• for each vertex v of G, a connected temperoid Gv [cf. [SemiAn],
Definition 3.1, (ii)],

• for each edge e of G, a connected temperoid Ge, together with,
for each branch b ∈ e abutting to a vertex v, a morphism of temperoids
b∗ : Ge → Gv [cf. [SemiAn], Definition 3.1, (iii)].

We shall refer to a semi-graph of temperoids whose underlying semi-
graph is connected as a connected semi-graph of temperoids. Given
two semi-graphs of temperoids, there is an evident notion of morphism
between semi-graphs of temperoids.

(ii) Let T be a connected temperoid. We shall say that a connected
object H of T is Σ-finite if there exists a morphism J → H in T such
that J is Galois [hence connected — cf. [SemiAn], Definition 3.1, (iv)],
and, moreover, AutT (J) is a finite group whose order is a Σ-integer [cf.
the discussion entitled “Numbers” in §0]. We shall say that an object
H of T is Σ-finite if H is isomorphic to a disjoint union of finitely many
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connected Σ-finite objects. We shall say that an object H of T is a
finite object if H is Primes-finite. We shall write

T Σ

for the connected anabelioid [cf. [GeoAn], Definition 1.1.1] obtained
by forming the full subcategory of T whose objects are the Σ-finite
objects of T . Thus, we have a natural morphism of temperoids [cf.
Remark 2.1.1 below]

T −→ T Σ.

We shall write

T̂ def
= T Primes

[cf. the discussion entitled “Numbers” in §0]. Finally, we observe that if
T = Btp(Π), where Π is a tempered group [cf. [SemiAn], Definition 3.1,
(i)], and “Btp(−)” denotes the category “Btemp(−)” of the discussion at
the beginning of [SemiAn], §3, then T Σ may be naturally identified with
B(ΠΣ), i.e., the connected anabelioid [cf. [GeoAn], Definition 1.1.1; the
discussion at the beginning of [GeoAn], §1] determined by the pro-Σ
completion ΠΣ of Π.

(iii) Let G be a semi-graph of temperoids [cf. (i)]. Then, by replac-
ing the connected temperoids “G(−)” corresponding to the vertices and
edges “(−)” by the connected anabelioids “GΣ

(−)” [cf. (ii)], we obtain a
semi-graph of anabelioids, which we denote by

GΣ

[cf. [SemiAn], Definition 2.1]. Thus, it follows immediately from the
various definitions involved that the various morphisms “G(−) → GΣ

(−)”

of (ii) determine a natural morphism of semi-graphs of temperoids [cf.
Remark 2.1.1 below]

G −→ GΣ.

We shall write Ĝ def
= GPrimes. One verifies easily that if G is a connected

semi-graph of temperoids [cf. (i)], then GΣ is a connected semi-graph of
anabelioids.

(iv) Let G be a connected semi-graph of temperoids [cf. (i)]. Suppose
that [the underlying semi-graph of] G has at least one vertex. Then we
shall write

B(G) def
= B(Ĝ)

[cf. (iii); the discussion following [SemiAn], Definition 2.1] for the con-
nected anabelioid determined by the connected semi-graph of anabe-

lioids Ĝ.
(v) Let G be a semi-graph of temperoids. Then we shall write

Vert(G), Cusp(G), Node(G), Edge(G), VCN(G), V , C, N , E , and δ for
the Vert, Cusp, Node, Edge, VCN, V , C, N , E , and δ of Definition 1.1,
(i), (ii), (iii), applied to the underlying semi-graph of G.
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(vi) Let G be a connected semi-graph of temperoids [cf. (i)]. Suppose
that [the underlying semi-graph of] G has at least one vertex. Then we
shall write

Btp(G)
for the category whose objects are given by collections of data

{Sv, φe}
— where v (respectively, e) ranges over the elements of Vert(G) (respec-
tively, Edge(G)) [cf. (v)]; for each v ∈ Vert(G), Sv is an object of the
temperoid Gv corresponding to v; for each e ∈ Edge(G), with branches

b1, b2 abutting to vertices v1, v2, respectively, φe : ((b1)∗)
∗Sv1

∼→ ((b2)∗)
∗Sv2

is an isomorphism in the temperoid Ge corresponding to e — and whose
morphisms are given by morphisms [in the evident sense] between such
collections of data. In particular, the category [i.e., connected anabe-
lioid] B(G) of (iv) may be regarded as a full subcategory

B(G) ⊆ Btp(G)
of Btp(G). One verifies immediately that any object G′ of Btp(G) de-
termines, in a natural way, a semi-graph of temperoids G ′, together
with a morphism of semi-graphs of temperoids G ′ → G. We shall
refer to this morphism G ′ → G as the covering of G associated to
G′. We shall say that a morphism of semi-graphs of temperoids is a
covering (respectively, finite étale covering) of G if it factors as the
post-composite of an isomorphism of semi-graphs of temperoids with
the covering of G associated to some object of Btp(G) (respectively, of
B(G) (⊆ Btp(G))). We shall say that a covering of G is connected if the
underlying semi-graph of the domain of the covering is connected.

Remark 2.1.1. Since every profinite group is tempered [cf. [SemiAn],
Definition 3.1, (i); [SemiAn], Remark 3.1.1], it follows immediately that
a connected anabelioid [cf. [GeoAn], Definition 1.1.1] determines, in a
natural way [i.e., by considering formal countable coproducts, as in
the discussion entitled “Categories” in [SemiAn], §0], a connected tem-
peroid [cf. [SemiAn], Definition 3.1, (ii)]. In particular, a semi-graph
of anabelioids [cf. [SemiAn], Definition 2.1] determines, in a natural
way, a semi-graph of temperoids [cf. Definition 2.1, (i)]. By abuse of
notation, we shall often use the same notation for the connected tem-
peroid (respectively, semi-graph of temperoids) naturally associated to
a connected anabelioid (respectively, semi-graph of anabelioids).

Definition 2.2.

(i) Let T be a topological space. Then we shall say that a closed
subspace of T (respectively, a closed subspace of T ; an open subspace
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of T ) is a circle (respectively, a closed disc; an open disc) on T if it
is homeomorphic to the set { (s, t) ∈ R2 | s2 + t2 = 1 } (respectively,
{ (s, t) ∈ R2 | s2 + t2 ≤ 1 }; { (s, t) ∈ R2 | s2 + t2 < 1 }) equipped with
the topology induced by the topology of R2. If D ⊆ T is a closed disc
on T , then we shall write ∂D ⊆ D for the circle on T determined by
the boundary of D regarded as a two-dimensional topological manifold
with boundary [i.e., the closed subspace of D corresponding to the
closed subspace { (s, t) ∈ R2 | s2 + t2 = 1 } ⊆ { (s, t) ∈ R2 | s2 + t2 ≤ 1 }]
and D◦ def

= D \ ∂D ⊆ D for the open disc on T obtained by forming
the complement of ∂D in D.

(ii) Let (g, r) be a pair of nonnegative integers. Then we shall
say that a pair X = (X, {Di}ri=1) consisting of a connected orientable
compact topological surface X of genus g and a collection of r disjoint
closed discs Di ⊆ X of X [cf. (i)] is of HS-type [where the “HS” stands
for “hyperbolic surface”] if 2g − 2 + r > 0.

(iii) Let X = (X, {Di}ri=1) be a pair of HS-type [cf. (ii)]. Then we
shall write

UX
def
= X\

( r⋃
i=1

D◦
i

)
[cf. (i)] and refer to UX as the interior of X. We shall refer to a
circle on UX determined by some ∂Di ⊆ UX [cf. (i)] as a cusp of UX ,
or alternatively, X. Write ∂UX ⊆ UX for the union of the cusps of
UX ; IX for the group of homeomorphisms φ : X

∼→ X such that φ
restricts to the identity on UX . Suppose that Y = (Y , {Ei}sj=1) is

also a pair of HS-type. Then we define an isomorphism X
∼→ Y of

pairs of HS-type to be an IX-orbit of homeomorphisms X
∼→ Y such

that each homeomorphism ψ that belongs to the IX-orbit induces a
homeomorphism UX

∼→ UY .

(iv) LetX = (X, {Di}ri=1) be a pair of HS-type [cf. (ii)] and {Yj}j∈J a
finite collection of pairs of HS-type Yj. For each j ∈ J , let ιj : UYj

↪→ UX

[cf. (iii)] be a local immersion [i.e., a map that restricts to an immersion
on some open neighborhood of each point of the domain] of topological
spaces. Then we shall say that a pair ({Yj}j∈J , {ιj}j∈J) is an HS-
decomposition of X if the following conditions are satisfied:

(1) UX =
⋃

j∈J ιj(UYj
).

(2) For any j ∈ J , the complement of the diagonal in UYj
×UX

UYj

is a disjoint union of circles, each of which maps homeomor-
phically, via the two projections to UYj

, to two distinct cusps of
UYj

[cf. (iii)]. [Thus, by “Brouwer invariance of domain”, it fol-
lows that ιj restricts to an open immersion on the complement
of the cusps of UYj

.]
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(3) For any j, j′ ∈ J such that j 6= j′, every connected component
of UYj

×UX
UYj′

projects homeomorphically onto cusps of UYj

and UYj′
.

(4) For any [i.e., possibly equal] j, j′ ∈ J , we shall refer to a circle of
UYj
×UX

UYj′
that forms a connected component of UYj

×UX
UYj′

as a pre-node [of the HS-decomposition ({Yj}j∈J , {ιj}j∈J)] and
to the cusps of UYj

, UYj′
that arise as the images of such a pre-

node via the projections to UYj
, UYj′

as the branch cusps of the
pre-node. Then we suppose further that every pre-node maps
injectively into UX , and that the image in UX of the pre-node
has empty intersection with ∂UX , as well as with the image via
ιj′′ , for j′′ ∈ J , of any cusp of UYj′′

which is not a branch cusp of
the pre-node. We shall refer to the image in UX of a pre-node
as a node [of the HS-decomposition ({Yj}j∈J , {ιj}j∈J)]. Thus,
[one verifies easily that] every node arises from a unique pre-
node. We shall refer to the branch cusps of the pre-node that
gives rise to a node as the branch cusps of the node. [Thus,
by “Brouwer invariance of domain”, it follows that, for any
pre-node of UYj

×UX
UYj′

, the maps ιj, ιj′ determine a home-
omorphism of the topological space obtained by gluing, along
the associated node, suitable open neighborhoods of the branch
cusps of UYj

, UYj′
onto the topological space constituted by a

suitable open neighborhood of the associated node in UX .]
(5) For any j ∈ J , every cusp of UYj

maps homeomorphically
onto either a cusp of UX or a node of ({Yj}j∈J , {ιj}j∈J) [cf.
(4)]. Moreover, every cusp of UX arises in this way from a
cusp of UYj

for some [necessarily uniquely determined] j ∈ J .
[Thus, by “Brouwer invariance of domain” — together with
a suitable gluing argument as in (4) — it follows that every
cusp of UX admits an open neighborhood that arises, for some
j ∈ J , as the homeomorphic image, via ιj, of a suitable open
neighborhood of a cusp of UYj

.]

If ({Yj}, {ιj}) is an HS-decomposition of X, then we shall refer to the
triple (X, {Yj}, {ιj}) as a collection of HSD-data [where the “HSD”
stands for “hyperbolic surface decomposition”]. If X = (X, {Yj}, {ιj})
is a collection of HSD-data, then we shall refer to the topological space
UX (respectively, [the closed subspace of UX corresponding to] an el-
ement of the [finite] set {Yj}; a cusp of UX ; a node of ({Yj}, {ιj}) [cf.
(4)]) as the underlying surface (respectively, a vertex; a cusp; a node)
of X. Also, we shall refer to a cusp or node of X as an edge of X.

Definition 2.3. Let X = (X, {Yj}, {ιj}) be a collection of HSD-data
[cf. Definition 2.2, (iv)].
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(i) We shall refer to the semi-graph

GX

defined as follows as the dual semi-graph of X: We take the set of
vertices (respectively, open edges; closed edges) of GX is the [finite] set
of vertices (respectively, cusps; nodes) of X [cf. Definition 2.2, (iv)].
For a vertex v and an edge e of X, we take the set of branches of e that
abut to v to be the set of natural inclusions [i.e., that arise from X —
cf. Definition 2.2, (iv)] from the edge of X corresponding to e into the
topological space UYj

associated to the Yj corresponding to the vertex
v.

(ii) We shall refer to the connected semi-graph

GX

of temperoids [cf. Definition 2.1, (i)] defined as follows as the semi-graph
of temperoids associated to X: We take the underlying semi-graph of
GX to be GX [cf. (i)]. For each vertex v of GX, we take the connected
temperoid of GX corresponding to v to be the connected temperoid de-
termined by the category of topological coverings with countably many
connected components of the topological space UYj

[cf. Definition 2.2,
(iii)] associated to the Yj corresponding to the vertex v. For each edge
e of GX, we take the connected temperoid of GX corresponding to e to
be the connected temperoid determined by the category of topological
coverings with countably many connected components of the circle [cf.
Definition 2.2, (i)] on UX corresponding to the edge e. For each branch
b of GX, we take the morphism of temperoids corresponding to b to
be the morphism obtained by pulling back topological coverings of the
topological spaces under consideration.

(iii) We shall say that a semi-graph of temperoids is of HSD-type
if it is isomorphic to the semi-graph of temperoids associated to some
collection of HSD-data [cf. (ii)].

Example 2.4 (Semi-graphs of temperoids of HSD-type asso-
ciated to stable log curves). Let (g, r) be a pair of nonnegative

integers such that 2g − 2 + r > 0. Write S
def
= Spec(C). In the fol-

lowing, we shall apply the notation and terminology of the discussion
entitled “Curves” in [CbTpI], §0.

(i) Let S → (Mg,r)C be a C-valued point of (Mg,r)C. Write Slog

for the fs log scheme obtained by equipping S with the log structure

induced by the log structure of (Mlog

g,r)C; X log → Slog for the stable

log curve over Slog corresponding to the resulting strict (1-)morphism

Slog → (Mlog

g,r)C; d for the rank of the group-characteristic of Slog [cf.

[MT], Definition 5.1, (i)], i.e., the number of nodes of X log; X log
an → Slog

an
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for the morphism of fs log analytic spaces determined by the morphism
X log → Slog; Xan → San for the underlying morphism of analytic spaces
of X log

an → Slog
an ; X log

an (C), Slog
an (C) for the respective topological spaces

“X log” defined in [KN], (1.2), in the case where we take the “X” of
[KN], (1.2), to be X log

an , Slog
an , i.e., for T ∈ {X,S},

T log
an (C)

def
= { (t, h) | t ∈ Tan, h ∈ Homgp(M

gp
Tan,t,S

1) such that

h(f) = f(t)/|f(t)| for every f ∈ O×
Tan,t ⊆Mgp

Tan,t }

— where we write S1 def
= {u ∈ C | |u| = 1 } and MTan for the sheaf of

monoids on Tan that defines the log structure of T log
an . Then, by con-

sidering the functoriality discussed in [KN], (1.2.5), and the respective
maps X log

an (C) → Xan, S
log
an (C) → San induced by the first projections,

we obtain a commutative diagram of topological spaces and continuous
maps

X log
an (C) −−−→ Xany y

Slog
an (C) −−−→ San.

Now one verifies immediately from the various definitions involved that
Slog

an (C) is homeomorphic to a product (S1)×d of d copies of S1; moreover,
it follows from [NO], Theorem 5.1, that the left-hand vertical arrow of
the above diagram is a topological fiber bundle. Let s ∈ Slog

an (C). Thus,
since [one verifies easily that] (S1)×d is an Eilenberg-Maclane space [i.e.,
its universal covering space is contractible], the left-hand vertical arrow
of the above diagram determines an exact sequence

1 −→ π1(X
log
an (C)|s) −→ π1(X

log
an (C)) −→ π1(S

log
an (C)) (∼= Z⊕d) −→ 1

— where we write X log
an (C)|s for the fiber of the left-hand vertical arrow

of the above diagram at s — which thus determines an outer action

π1(S
log
an (C)) (∼= Z⊕d) −→ Out(π1(X

log
an (C)|s)).

Write N ⊆ Xan for the finite subset consisting of the nodes of X log
an , C ⊆

Xan for the finite subset consisting of the cusps of X log
an , U

def
= Xan\(N∪

C) ⊆ Xan, and π0(U) for the finite set of connected components of U .
For each node x ∈ N (respectively, cusp y ∈ C; connected component
F ∈ π0(U) of U), write Cx (respectively, Cy; YF ) ⊆ X log

an (C)|s for the
closure of the inverse image of {x} (respectively, {y}; F ) ⊆ Xan via

the composite X log
an (C)|s

pr1→ X log
an (C)→ Xan — where the second arrow

is the upper horizontal arrow of the above diagram. Then one verifies
immediately from the various definitions involved that there exist a
uniquely determined, up to unique isomorphism [in the evident sense],
collection of data as follows:

• a pair of HS-type Z = (Z, {Di}ri=1) of type (g, r) [cf. Definition 2.2,
(ii), (iii)];
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• a homeomorphism φ : X log
an (C)|s

∼→ UZ of X log
an (C)|s with the inte-

rior UZ of Z [cf. Definition 2.2, (iii)] such that φ restricts to a home-
omorphism of

⊔
y∈C Cy ⊆ X log

an (C)|s with
⊔r

i=1 ∂Di ⊆ UZ [cf. Defini-

tion 2.2, (iii)].

Moreover, there exists a uniquely determined, up to unique isomor-
phism [in the evident sense], HS-decomposition of Z [cf. Definition 2.2,
(iv)] such that the set of vertices (respectively, nodes; cusps) [cf. Defini-
tion 2.2, (iv)] of the resulting collection of HSD-data [cf. Definition 2.2,
(iv)] is {φ(YF )}F∈π0(U) (respectively, {φ(Cx)}x∈N ; {φ(Cy)}y∈C). We
shall write

GXlog

for the semi-graph of temperoids of HSD-type associated to this col-
lection of HSD-data [cf. Definition 2.3, (ii)] and refer to GXlog as the
semi-graph of temperoids of HSD-type associated to X log. Then one
verifies immediately from the functoriality discussed in [KN], (1.2.5),
applied to the vertices, nodes, and cusps of the data under considera-
tion, that the locally trivial fibration X log

an (C)→ Slog
an (C) determines an

action

π1(S
log
an (C)) (∼= Z⊕d) −→ Aut(GXlog),

which is compatible, in the evident sense, with the outer action

π1(S
log
an (C)) −→ Out(π1(X

log
an (C)|s))

discussed above.

(ii) Let Slog be the fs log scheme obtained by equipping S with the
log structure given by the fs chart N 3 1 7→ 0 ∈ C and X log → Slog

a stable log curve of type (g, r) over Slog [cf. [CmbGC], Example 2.5,
in the case where k = C]. Then one verifies easily that the classifying

(1-)morphism Slog → (Mlog

g,r)C of X log → Slog factors as a composite

Slog → T log → (Mlog

g,r)C — where the first arrow is a morphism that in-
duces an isomorphism between the underlying schemes, and the second
arrow is strict — and, moreover, if we write Y log → T log for the stable

log curve determined by the strict (1-)morphism T log → (Mlog

g,r)C, then

we have a natural isomorphism over Slog

X log ∼−→ Y log ×T log Slog.

We shall write

GXlog
def
= GY log

[cf. (i)] and refer to GXlog as the semi-graph of temperoids of HSD-type
associated to X log. Then, by pulling back the action of the second to
last display of (i) via the homomorphism π1(S

log
an (C)) → π1(T

log
an (C))

induced by the morphism Slog → T log, we obtain an action

π1(S
log
an (C)) (∼= Z) −→ Aut(GXlog),
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together with a compatible outer action

π1(S
log
an (C)) −→ Out(π1(X

log
an (C)|s)).

Remark 2.4.1. One verifies easily that the discussion of Example 2.4,
(ii), generalizes immediately to the case of arbitrary fs log schemes Slog

with underlying scheme S = Spec(C).

Proposition 2.5 (Fundamental groups of semi-graphs of tem-
peroids of HSD-type). Let G be a semi-graph of temperoids of HSD-
type associated [cf. Definition 2.3, (ii), (iii)] to a collection of HSD-data
X [cf. Definition 2.2, (iv)]. Write UX for the underlying surface of X
[cf. Definition 2.2, (iv)] and

Btp(UX)

for the connected temperoid [cf. [SemiAn], Definition 3.1, (ii)] deter-
mined by the category of topological coverings with countably many con-
nected components of the topological space UX. Then the following hold:

(i) We have a natural equivalence of categories

Btp(UX)
∼−→ Btp(G)

[cf. Definition 2.1, (vi)]. In particular, Btp(G) is a connected tem-
peroid. Write

ΠG

for the tempered fundamental group [which is well-defined, up to
inner automorphism] of the connected temperoid Btp(G) [cf. [SemiAn],
Remark 3.2.1]. [Thus, the tempered group ΠG admits a natural outer
isomorphism with the topological fundamental group, equipped with the
discrete topology, of the topological space UX.] We shall refer to this
tempered group ΠG as the fundamental group of G.

(ii) Every connected finite étale covering H → G [cf. Definition 2.1,
(vi)] admits a natural structure of semi-graph of temperoids of
HSD-type.

(iii) The connected semi-graph of anabelioids GΣ [cf. Definition 2.1,
(iii)] is of pro-Σ PSC-type [cf. [CmbGC], Definition 1.1, (i)]. Write
ΠGΣ for the [pro-Σ] fundamental group of GΣ. Then the natural mor-
phism G → GΣ of semi-graphs of temperoids of Definition 2.1, (iii),
induces a natural outer injection

ΠG ↪→ ΠGΣ

[cf. (i)]. Moreover, this natural outer injection determines an outer
isomorphism

ΠΣ
G

∼−→ ΠGΣ
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— where we write ΠΣ
G for the pro-Σ completion of ΠG.

(iv) Let z ∈ VCN(G) [cf. Definition 2.1, (v)]. Write ΠGz for the
tempered fundamental group [cf. [SemiAn], Remark 3.2.1] of the con-
nected temperoid Gz of G corresponding to z. Then the natural outer
homomorphism

ΠGz −→ ΠG

is a Σ-compatible injection [cf. the discussion entitled “Groups” in
§0].

(v) In the notation of (iii) and (iv), the closure of the image of the
composite

ΠGz ↪→ ΠG ↪→ ΠGΣ

of the outer injections of (iii) and (iv) is a VCN-subgroup of ΠGΣ

[cf. (iii); [CbTpI], Definition 2.1, (i)] associated to z ∈ VCN(G) =
VCN(GΣ).

Proof. A natural equivalence of categories as in assertion (i) may be
obtained by observing that, after sorting through the various defini-
tions involved, an object of Btp(UX) [i.e., a topological covering of UX]
amounts to the same data as an object of Btp(G). Assertion (ii) follows
immediately from the various definitions involved.

Next, we verify assertion (iii). The assertion that GΣ is of pro-Σ PSC-
type, as well as the assertion that the morphism G → GΣ determines an
outer isomorphism ΠΣ

G
∼→ ΠGΣ , follows immediately from the various

definitions involved. Thus, the assertion that the morphism G → GΣ

determines an outer injection ΠG ↪→ ΠGΣ follows from the well-known
fact that the discrete group ΠG injects into its pro-l completion for any
l ∈ Primes [cf., e.g., [RZ], Proposition 3.3.15; [Prs], Theorem 1.4].

Next, we verify the injectivity portion of assertion (iv). Let us first
observe that it follows immediately from the various definitions involved
that the composite

ΠGz → ΠG ↪→ ΠbG
[cf. Definition 2.1, (iii)] of the outer homomorphism under consideration
and the outer injection of assertion (iii) [in the case where Σ = Primes]
factors as the composite

ΠGz → ΠbGz
↪→ ΠbG

of the outer homomorphism ΠGz → ΠbGz
induced by the morphism Gz →

Ĝz of Definition 2.1, (ii), and the natural outer inclusion ΠbGz
↪→ ΠbG [cf.

[SemiAn], Proposition 2.5, (i)]. Thus, to complete the verification of
the injectivity portion of assertion (iv), it suffices to verify that the
outer homomorphism ΠGz → ΠbGz

is injective. On the other hand,
this follows from the well-known fact that ΠGz injects into its pro-
l completion for any l ∈ Primes [cf., e.g., [RZ], Proposition 3.3.15;
[Prs], Theorem 1.4]. This completes the proof of the injectivity portion
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of assertion (iv). Assertion (v) follows immediately from the various
definitions involved. Finally, it follows immediately from assertions
(iii) and (v), together with the evident pro-Σ analogue of [SemiAn],
Proposition 2.5, (i), that the natural outer injection of assertion (iv) is
Σ-compatible. This completes the proof of assertion (iv), hence also of
Proposition 2.5. �

Remark 2.5.1. In the notation of Proposition 2.5, as is discussed in
Proposition 2.5, (i), the fundamental group ΠG of the semi-graph of
temperoids of HSD-type G is naturally isomorphic, up to inner auto-
morphism, to the topological fundamental group, equipped with the
discrete topology, of the hyperbolic topological surface with boundary
UX. In particular, ΠG is finitely generated, torsion-free, and center-free
and injects into its pro-l completion for any l ∈ Primes [cf. Proposi-
tion 2.5, (iii)]. Moreover, it holds that Cusp(G) 6= ∅ [cf. Definition 2.1,
(v)] if and only if ΠG is free.

Remark 2.5.2. In the situation of Example 2.4, (ii), write GXlog for the
semi-graph of temperoids of HSD-type associated to X log; GΣ

Xlog for the
semi-graph of anabelioids of pro-Σ PSC-type of Proposition 2.5, (iii),
in the case where we take the “G” of Proposition 2.5, (iii), to be GXlog ;
GPSC-Σ

Xlog for the semi-graph of anabelioids of pro-Σ PSC-type associated
to X log [cf. [CmbGC], Example 2.5]. Then it follows from Proposi-

tion 2.5, (iii), that we have a natural outer isomorphism ΠΣ
G

Xlog

∼→
ΠGΣ

Xlog
. On the other hand, by associating finite étale coverings of

X log
an (C) to log étale coverings of Kummer type ofX log [cf. [KN], Lemma

2.2] and then restricting such finite étale coverings to X log
an (C)|s [cf. Ex-

ample 2.4, (i)], we obtain an outer homomorphism ΠΣ
G

Xlog
→ ΠGPSC-Σ

Xlog
.

Then one verifies immediately from the various definitions involved
that the composite of the two outer homomorphisms

ΠGΣ
Xlog

∼←− ΠΣ
G

Xlog
−→ ΠGPSC-Σ

Xlog

is a graphic outer isomorphism [cf. [CmbGC], Definition 1.4, (i)], i.e.,
arises from a uniquely determined isomorphism of semi-graphs of an-
abelioids

GΣ
Xlog

∼−→ GPSC-Σ
Xlog .

Finally, one verifies easily that the above discussion generalizes im-
mediately to the case of arbitrary fs log schemes Slog with underlying
scheme S = Spec(C) [cf. Remark 2.4.1].
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Definition 2.6. Let G be a semi-graph of temperoids of HSD-type.
Write ΠG for the fundamental group of G.

(i) Let z ∈ VCN(G) [cf. Definition 2.1, (v)]. Then we shall refer
to a closed subgroup of ΠG that belongs to the ΠG-conjugacy class of
closed subgroups determined by the image of the outer injection of the
display of Proposition 2.5, (iv), as a VCN-subgroup of ΠG associated
to z ∈ VCN(G). If, moreover, z ∈ Vert(G) (respectively, ∈ Cusp(G);
∈ Node(G); ∈ Edge(G)) [cf. Definition 2.1, (v)], then we shall refer to
a VCN-subgroup of ΠG associated to z as a verticial (respectively, a
cuspidal; a nodal; an edge-like) subgroup of ΠG associated to z.

(ii) Write G̃ → G for the universal covering of G corresponding to

ΠG. Let z̃ ∈ VCN(G̃) [cf. Definition 2.1, (v)]. Then we shall refer

to the VCN-subgroup Πez ⊆ ΠG [cf. (i)] determined by z̃ ∈ VCN(G̃)
as the VCN-subgroup of ΠG associated to z̃ ∈ VCN(G̃). If, moreover,

z̃ ∈ Vert(G̃) (respectively, ∈ Cusp(G̃); ∈ Node(G̃); ∈ Edge(G̃)) [cf.
Definition 2.1, (v)], then we shall refer to the VCN-subgroup of ΠG
associated to z̃ as the verticial (respectively, cuspidal; nodal; edge-like)
subgroup of ΠG associated to z̃.

(iii) Let (g, r) be a pair of nonnegative integers such that 2g − 2 +
r > 0 and v ∈ Vert(G). Then we shall say that v is of type (g, r) if
the “(g, r)” appearing in Definition 2.2, (ii), for the pair of HS-type
corresponding to v coincides with (g, r). Thus, one verifies easily that
v is of type (g, r) if and only if the number of the branches of edges of
G that abut to v is equal to r, and, moreover,

rankZ(Πab
v ) = 2g + max{0, r − 1}

— where we use the notation Πv to denote a verticial subgroup associ-
ated to v.

Definition 2.7. Let G and H be semi-graphs of temperoids of HSD-
type. Write ΠG, ΠH for the fundamental groups of G, H, respectively.

(i) We shall say that an isomorphism ΠG
∼→ ΠH is group-theoretically

verticial (respectively, group-theoretically cuspidal; group-theoretically
nodal) if the isomorphism induces a bijection between the set of the
verticial (respectively, cuspidal; nodal) subgroups [cf. Definition 2.6,
(i)] of ΠG and the set of the verticial (respectively, cuspidal; nodal)

subgroups of ΠH. We shall say that an outer isomorphism ΠG
∼→ ΠH is

group-theoretically verticial (respectively, group-theoretically cuspidal;

group-theoretically nodal) if it arises from an isomorphism ΠG
∼→ ΠH

that is group-theoretically verticial (respectively, group-theoretically
cuspidal; group-theoretically nodal).
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(ii) We shall say that an outer isomorphism ΠG
∼→ ΠH is graphic if it

arises from an isomorphism G ∼→ H. We shall say that an isomorphism
ΠG

∼→ ΠH is graphic if the outer isomorphism ΠG
∼→ ΠH determined by

it is graphic.

Definition 2.8. Let G be a semi-graph of temperoids of HSD-type.
Write G for the underlying semi-graph of G. Also, for each z ∈ VCN(G),
write Gz for the connected temperoid of G corresponding to z.

(i) Let H be a sub-semi-graph of PSC-type [cf. [CbTpI], Definition
2.2, (i)] of G. Then one may define a semi-graph of temperoids of
HSD-type

G|H
as follows [cf. Fig. 2 of [CbTpI]]: We take the underlying semi-graph of
G|H to be H; for each vertex v (respectively, edge e) of H, we take the
temperoid corresponding to v (respectively, e) to be Gv (respectively,
Ge); for each branch b of an edge e of H that abuts to a vertex v of
H, we take the morphism associated to b to be the morphism Ge → Gv

associated to the branch of G corresponding to b. We shall refer to G|H
as the semi-graph of temperoids of HSD-type obtained by restricting G
to H. Thus, one has a natural morphism

G|H −→ G

of semi-graphs of temperoids of HSD-type.

(ii) Let S ⊆ Cusp(G) be a subset of Cusp(G) [cf. Definition 2.1, (v)]
which is omittable [cf. [CbTpI], Definition 2.4, (i)] as a subset of the

set of cusps Cusp(Ĝ) of the semi-graph of anabelioids of pro-Primes

PSC-type Ĝ [cf. Proposition 2.5, (iii), in the case where Σ = Primes]

relative to the natural identification Cusp(G) = Cusp(Ĝ). Then, by
eliminating the cusps contained in S, and, for each vertex v of G,
replacing the temperoid Gv by the temperoid of coverings of Gv that
restrict to a trivial covering over the cusps contained in S that abut to
v, we obtain a semi-graph of temperoids of HSD-type

G•S
[cf. Fig. 3 of [CbTpI]]. We shall refer to G•S as the partial compactifi-
cation of G with respect to S.

(iii) Let S ⊆ Node(G) be a subset of Node(G) [cf. Definition 2.1,
(v)] that is not of separating type [cf. [CbTpI], Definition 2.5, (i)] as

a subset of the set of nodes Node(Ĝ) of the semi-graph of anabelioids

of pro-Primes PSC-type Ĝ [cf. Proposition 2.5, (iii), in the case where

Σ = Primes] relative to the natural identification Node(G) = Node(Ĝ).
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Then one may define a semi-graph of temperoids of HSD-type

G�S

as follows [cf. Fig. 4 of [CbTpI]]: We take the underlying semi-graph of
G�S to be the semi-graph obtained by replacing each node e of G con-
tained in S such that V(e) = {v1, v2} ⊆ Vert(G) [cf. Definition 2.1, (v)]
— where v1, v2 are not necessarily distinct — by two cusps that abut
to v1, v2 ∈ Vert(G), respectively. We take the temperoid correspond-
ing to a vertex v (respectively, node e) of G�S to be Gv (respectively,
Ge). [Note that the set of vertices (respectively, nodes) of G�S may be
naturally identified with Vert(G) (respectively, Node(G)\S).] We take
the temperoid corresponding to a cusp of G�S arising from a cusp e
of G to be Ge. We take the temperoid corresponding to a cusp of G�S

arising from a node e of G to be Ge. For each branch b of G�S that
abuts to a vertex v of a node e (respectively, of a cusp e that does not
arise from a node of G), we take the morphism associated to b to be the
morphism Ge → Gv associated to the branch of G corresponding to b.
For each branch b of G�S that abuts to a vertex v of a cusp of G�S that
arises from a node e of G, we take the morphism associated to b to be
the morphism Ge → Gv associated to the branch of G corresponding to
b. We shall refer to G�S as the semi-graph of temperoids of HSD-type
obtained from G by resolving S. Thus, one has a natural morphism

G�S −→ G

of semi-graphs of temperoids of HSD-type.

Remark 2.8.1. One verifies immediately that the operations of re-
striction, partial compactification, and resolution discussed in Defini-
tion 2.8, (i), (ii), (iii), are compatible [in the evident sense] with the
corresponding pro-Σ operations — i.e., as discussed in [CbTpI], Defini-
tion 2.2, (ii); [CbTpI], Definition 2.4, (ii); [CbTpI], Definition 2.5, (ii)
— relative to the operation of passing to the associated semi-graph of
anabelioids of pro-Σ PSC-type [cf. Proposition 2.5, (iii)].

Definition 2.9. In the notation of Definition 2.8, let S ⊆ Node(G)
be a subset of Node(G) [cf. Definition 2.1, (v)]. Then we define the
semi-graph of temperoids of HSD-type

G S

as follows [cf. Fig. 5 of [CbTpI]]:

(i) We take Cusp(G S)
def
= Cusp(G) [cf. Definition 2.1, (v)].

(ii) We take Node(G S)
def
= Node(G) \ S.
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(iii) We take Vert(G S) [cf. Definition 2.1, (v)] to be the set of
connected components of the semi-graph obtained from G by omitting
the edges e ∈ Edge(G) \ S [cf. Definition 2.1, (v)]. Alternatively, one
may take Vert(G S) to be the set of equivalence classes of elements of
Vert(G) with respect to the equivalence relation “∼” defined as follows:
for v, w ∈ Vert(G), v ∼ w if either v = w or there exist n elements
e1, . . . , en ∈ S of S and n+1 vertices v0, v1, . . . , vn ∈ Vert(G) of G such

that v0
def
= v, vn

def
= w, and, for 1 ≤ i ≤ n, it holds that V(ei) = {vi−1, vi}

[cf. Definition 2.1, (v)].

(iv) For each branch b of an edge e ∈ Edge(G S) (= Edge(G) \ S
— cf. (i), (ii)) and each vertex v ∈ Vert(G S) of G S, b abuts, relative
to G S, to v if b abuts, relative to G, to an element of the equivalence
class v [cf. (iii)].

(v) For each edge e ∈ Edge(G S) (= Edge(G) \ S — cf. (i), (ii)) of
G S, we take the temperoid of G S corresponding to e ∈ Edge(G S)
to be the temperoid Ge.

(vi) Let v ∈ Vert(G S) be a vertex of G S. Then one verifies easily
that there exists a unique sub-semi-graph of PSC-type [cf. [CbTpI],
Definition 2.2, (i)] Hv of the underlying semi-graph of G whose set of
vertices consists of the elements of the equivalence class v [cf. (iii)].
Write

Tv
def
= Node(G|Hv) \ (S ∩ Node(G|Hv))

[cf. Definition 2.8, (i)]. Then we take the temperoid of G S corre-
sponding to v ∈ Vert(G S) to be the temperoid Btp((G|Hv)�Tv) [cf.
Definition 2.1, (vi); Proposition 2.5, (i); Definition 2.8, (iii)].

(vii) Let b be a branch of an edge e ∈ Edge(G S) (= Edge(G) \ S
— cf. (i), (ii)) that abuts to a vertex v ∈ Vert(G S). Then since b
abuts to v, one verifies easily that there exists a unique vertex w of
G which belongs to the equivalence class v [cf. (iii)] such that b abuts
to w relative to G. We take the morphism of temperoids associated
to b, relative to G S, to be the morphism naturally determined by
post-composing the morphism of temperoids Ge → Gw corresponding
to the branch b relative to G with the natural morphism of temperoids
Gw → Btp((G|Hv)�Tv) [cf. (vi)].

We shall refer to this semi-graph of temperoids of HSD-type G S as
the generization of G with respect to S.

Remark 2.9.1. One verifies immediately that the operation of gener-
ization discussed in Definition 2.9 is compatible [in the evident sense]
with the corresponding pro-Σ operation — i.e., as discussed in [CbTpI],
Definition 2.8 — relative to the operation of passing to the associated
semi-graph of anabelioids of pro-Σ PSC-type [cf. Proposition 2.5, (iii)].
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Remark 2.9.2. We take this opportunity to correct an unfortunate
misprint in [CbTpI], Definition 2.8, (vii): the phrase “equivalent class”
should read “equivalence class”.

Proposition 2.10 (Specialization outer isomorphisms). Let G be
a semi-graph of temperoids of HSD-type and S ⊆ Node(G) a subset of
Node(G). Write ΠG S

for the fundamental group of the generization
G S of G with respect to S [cf. Definition 2.9]. Then there exists a
natural outer isomorphism

ΦG S
: ΠG S

∼−→ ΠG

which satisfies the following three conditions:

(a) ΦG S
induces a bijection between the set of cuspidal subgroups

[cf. Definition 2.6, (i)] of ΠG S
and the set of cuspidal subgroups of

ΠG.

(b) ΦG S
induces a bijection between the set of nodal subgroups

[cf. Definition 2.6, (i)] of ΠG S
and the set of nodal subgroups of ΠG

associated to the elements of Node(G) \ S.

(c) Let v ∈ Vert(G S) be a vertex of G S; Hv, Tv as in Defi-
nition 2.9, (vi). Then ΦG S

induces a bijection between the ΠG S
-

conjugacy class of any verticial subgroup [cf. Definition 2.6, (i)] Πv ⊆
ΠG S

of ΠG S
associated to v ∈ Vert(G S) and the ΠG-conjugacy class

of subgroups determined by the image of the outer homomorphism

Π(G|Hv )�Tv
−→ ΠG

induced by the natural morphism (G|Hv)�Tv → G [cf. Definition 2.8, (i),
(iii)] of semi-graphs of temperoids of HSD-type.

We shall refer to this natural outer isomorphism ΦG S
as the spe-

cialization outer isomorphism with respect to S.

Proof. An outer isomorphism that satisfies the three conditions in the
statement of Proposition 2.10 may be obtained by observing that, after
sorting through the various definitions involved, an object of Btp(G S)
amounts to the same data as an object of Btp(G). This completes the
proof of Proposition 2.10. �

Lemma 2.11 (Infinite cyclic coverings). Let G be a semi-graph of
temperoids of HSD-type. Suppose that (Vert(G)],Node(G)]) = (1, 1),

i.e., the semi-graph of anabelioids of pro-Primes PSC-type Ĝ [cf. Propo-
sition 2.5, (iii), in the case where Σ = Primes] is cyclically primitive
[cf. [CbTpI], Definition 4.1]. Write G for the underlying semi-graph
of G; ΠG (∼= Z) for the discrete topological fundamental group of G;
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G∞ → G for the connected covering of G [cf. Definition 2.1, (vi)] corre-

sponding to the natural surjection ΠG � ΠG; ΠG∞
def
= Ker(ΠG � ΠG).

Then the following hold:

(i) Fix an isomorphism ΠG
∼→ Z. Then there exists a triple of

bijections

V : Z ∼−→ Vert(G∞), N : Z ∼−→ Node(G∞),

C : Z× Cusp(G) ∼−→ Cusp(G∞)

[cf. Definition 2.1, (v)] that satisfies the following properties:

• The bijections are equivariant with respect to the action of
ΠG

∼→ Z on Z by translations and the natural action of ΠG on “Vert(−)”,
“Node(−)”, “Cusp(−)”.

• The post-composite of C with the natural map Cusp(G∞) →
Cusp(G) coincides with the projection Z× Cusp(G)→ Cusp(G) to the
second factor.

• For each a ∈ Z, it holds that E(V (a)) = {N(a), N(a + 1)} t
{C(a, z) | z ∈ Cusp(G) } [cf. Definition 2.1, (v)].

Finally, such a triple of bijections is unique, up to post-composition
with the automorphisms of “Vert(−)”, “Node(−)”, “Cusp(−)” deter-
mined by the action of a [single!] element of ΠG.

(ii) Let a ≤ b be integers. Write G[a,b] for the [uniquely deter-
mined] sub-semi-graph of PSC-type [cf. [CbTpI], Definition 2.2, (i)]
of the underlying semi-graph of G∞ whose set of vertices is equal to
{V (a), V (a + 1), . . . , V (b)} [cf. (i)]. Also, write G[a,b] for the semi-
graph of temperoids obtained by restricting G∞ to G[a,b] [in the evident
sense — cf. also the procedure discussed in Definition 2.8, (i)]. Then
G[a,b] is a semi-graph of temperoids of HSD-type.

(iii) Let a ≤ b be integers. For a ≤ c ≤ b (respectively, a + 1 ≤
c ≤ b), let ΠV (c) ⊆ ΠG[a,b]

(respectively, ΠN(c) ⊆ ΠG[a,b]
) be a verticial

(respectively, nodal) subgroup of ΠG[a,b]
associated to V (c) ∈ Vert(G[a,b])

(respectively, N(c) ∈ Node(G[a,b])) [cf. (i), (ii)] such that, for a + 1 ≤
c ≤ b, it holds that ΠN(c) ⊆ ΠV (c−1) ∩ΠV (c). Then the inclusions ΠV (c),
ΠN(c) ↪→ ΠG[a,b]

determine an isomorphism

lim−→
(
ΠV (a) ←↩ ΠN(a+1) ↪→ ΠV (a+1) ←↩ · · · ↪→ ΠV (b−1) ←↩ ΠN(b) ↪→ ΠV (b)

)
∼−→ ΠG[a,b]

— where lim−→ denotes the inductive limit in the category of groups.

(iv) Let a ≤ b be integers. Then the composite G[a,b] → G∞ → G
determines an outer injection ΠG[a,b]

↪→ ΠG. Moreover, the image of
this outer injection is contained in the normal subgroup ΠG∞ ⊆ ΠG.
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(v) There exists a collection

{D[−a,a]}1≤a∈Z

of subgroups D[−a,a] ⊆ ΠG∞ indexed by the positive integers which satisfy
the following properties:

• D[−a,a] ⊆ ΠG∞ belongs to the ΠG-conjugacy class [of subgroups of
ΠG] obtained by forming the image of the outer injection ΠG[−a,a]

↪→ ΠG
of (iv).

• D[−a,a] ⊆ D[−a−1,a+1].

• The inclusions D[−a,a] ↪→ ΠG [where a ranges over the positive
integers] determine an isomorphism

lim−→
(
D[−1,1] ↪→ D[−2,2] ↪→ D[−3,3] ↪→ · · ·

) ∼−→ ΠG∞

— where lim−→ denotes the inductive limit in the category of groups.

(vi) In the situation of (v), since ΠG injects into its pro-l comple-
tion for any l ∈ Primes [cf. Remark 2.5.1], let us regard subgroups of
ΠG as subgroups of the pro-Σ completion ΠΣ

G of ΠG. For each positive

integer a ∈ Z, write D[−a,a] ⊆ ΠΣ
G for the closure of D[−a,a] in ΠΣ

G . Let

γ̂ ∈ ΠΣ
G . Suppose that D[a,−a]∩ γ̂ ·D[a,−a] · γ̂−1 6= {1}. Then the image of

γ̂ ∈ ΠΣ
G in the pro-Σ completion ΠΣ

G of ΠG is contained in ΠG ⊆ ΠΣ
G.

(vii) In the situation of (vi), suppose, moreover, that γ̂ is contained
in the closure ΠG∞ ⊆ ΠΣ

G of ΠG∞ in ΠΣ
G . Then γ̂ ∈ D[a,−a].

Proof. Assertions (i), (ii) follow immediately from the various defini-
tions involved. Assertion (iii) follows immediately from a similar argu-
ment to the argument applied in the proof of [CmbCsp], Proposition
1.5, (iii). Next, we verify assertion (iv). The injectivity portion of asser-
tion (iv) follows immediately — by considering a suitable finite étale
subcovering of G∞ → G and applying a suitable specialization outer
isomorphism [cf. Proposition 2.10] — from Proposition 2.5, (iv). The
remainder of assertion (iv) follows immediately from the various defi-
nitions involved. This completes the proof of assertion (iv). Assertion
(v) follows immediately from assertion (iii).

Next, we verify assertion (vi). Write GΣ for the semi-graph of an-
abelioids of pro-Σ PSC-type determined by G [cf. Proposition 2.5,

(iii)], G̃Σ → GΣ for the universal covering of the semi-graph of anabe-
lioids of pro-Σ PSC-type G corresponding to [the torsion-free group]

ΠΣ
G [cf. Proposition 2.5, (iii); [MT], Remark 1.2.2], and G̃Σ for the

underlying pro-semi-graph of G̃Σ. Then it follows immediately —
i.e., by considering a suitable finite étale subcovering of G∞ → G
and applying a suitable specialization outer isomorphism [cf. Propo-
sition 2.10] — from [NodNon], Lemma 1.9, (ii), that our assumption
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that D[a,−a] ∩ γ̂ · D[a,−a] · γ̂−1 6= {1} implies that the respective sub-

pro-semi-graphs of G̃Σ determined by D[a,−a], γ̂ · D[a,−a] · γ̂−1 ⊆ ΠΣ
G

[cf. Proposition 2.5, (v)] either contain a common pro-vertex or may
be joined to one another by a single pro-edge. But this implies that
γ̂ maps G[−a,a] to some ΠG-translate of G[−a,a], hence, in particular,
that the image of γ̂ ∈ ΠΣ

G in ΠΣ
G is contained in ΠG ⊆ ΠΣ

G, as desired.
This completes the proof of assertion (vi). Assertion (vii) follows im-
mediately — i.e., by considering a suitable finite étale subcovering of
G∞ → G and applying a suitable specialization outer isomorphism [cf.
Proposition 2.10] — from the commensurable terminality [cf. [CmbGC],
Proposition 1.2, (ii)] of D[a,−a] in a suitable open subgroup of ΠΣ

G con-

taining ΠG∞ . This completes the proof of Lemma 2.11. �

The content of the following lemma is entirely elementary and well-
known.

Lemma 2.12 (Action of the symplectic group). Let g be a pos-
itive integer. For each positive integer n and v = (v1, . . . , vn) ∈ Z⊕n,
write vol(v) ∈ Z for the [uniquely determined] nonnegative integer that
generates the ideal Z · v1 + · · · + Z · vn ⊆ Z; Mn(Z) for the set of n
by n matrices with coefficients in Z; GLn(Z) ⊆Mn(Z) for the group of
matrices A ∈ Mn(Z) such that det(A) ∈ {1,−1}; Sp2g(Z) ⊆ GL2g(Z)
for the subgroup of 2g by 2g symplectic matrices, i.e., B ∈ GL2g(Z)
such that

B ·
(

0 1
−1 0

)
· tB =

(
0 1
−1 0

)
.

[Note that one verifies immediately that, for every A ∈ GLn(Z), it holds
that vol(v) = vol(vA).] Then the following hold:

(i) Let v = (v1, . . . , vg) ∈ Z⊕g. Then there exists an invertible

matrix A ∈ GLg(Z) such that vA = (vol(v),

g−1︷ ︸︸ ︷
0, . . . , 0).

(ii) Let v = (v1, . . . , v2g) ∈ Z⊕2g. Then there exists a symplectic

matrix B ∈ Sp2g(Z) such that vB = (vol(v),

2g−1︷ ︸︸ ︷
0, . . . , 0).

(iii) Let N ⊆ Z⊕2g be a submodule of Z⊕2g and v ∈ Z⊕2g. Suppose
that N 6= {0}. Then there exist a nonzero integer n ∈ Z \ {0} and a
symplectic matrix B ∈ Sp2g(Z) such that n · vB ∈ N .

(iv) Let N ⊆ Z⊕2g be a submodule of Z⊕2g and π : Z⊕2g � Z a
surjection. Suppose that N is of infinite index in Z⊕2g. Then there
exists a symplectic matrix B ∈ Sp2g(Z) such that N ·B ⊆ Ker(π).

Proof. First, we verify assertion (i). Let us first observe that if v =
0 [i.e., vol(v) = 0], then assertion (i) is immediate. Thus, to verify
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assertion (i), we may assume without loss of generality that v 6= 0. In
particular, to verify assertion (i), by replacing v by vol(v)−1 ·v, we may
assume without loss of generality that vol(v) = 1. On the other hand,
since vol(v) = 1, one verifies immediately that Z⊕g/(Z · v) is a free Z-
module of rank g−1, hence that there exists an injection Z⊕g−1 ↪→ Z⊕g

that induces an isomorphism (Z · v) ⊕ Z⊕g−1 ∼→ Z⊕g. This completes
the proof of assertion (i).

Next, we verify assertion (ii). Since [one verifies easily that] Sp2(Z) =
SL2(Z) = {B ∈ GL2(Z) | det(B) = 1 }, assertion (ii) in the case where
g = 1 follows immediately from assertion (i) [in the case where we take
“g” in assertion (i) to be 2], together with the [easily verified] fact that{

det

(
a b
c d

)
, det

(
a −b
c −d

)}
= {1,−1} for every

(
a b
c d

)
∈ GL2(Z).

For i ∈ {1, . . . , g}, write Mi for the submodule of Z⊕2g generated by

(0, . . . , 0, 1, 0, . . . , 0), (0, . . . , 0, 1, 0, . . . , 0) ∈ Z⊕2g

— where the “1’s” lie, respectively, in the i-th and (g + i)-th compo-
nents. Then, by applying assertion (ii) in the case where g = 1 [already
verified above] to the Mi’s, we conclude that, to complete the verifi-
cation of assertion (ii), we may assume without loss of generality that

vi = 0 for every g + 1 ≤ i ≤ 2g. Write v≤g
def
= (v1, . . . , vg) ∈ Z⊕g. Then

let us observe that it follows from assertion (i) that there exists an
invertible matrix A ∈ GLg(Z) such that v≤gA = (vol(v≤g), 0, . . . , 0) =
(vol(v), 0, . . . , 0). Thus, assertion (ii) follows immediately from the
[easily verified] fact that(

A 0
0 tA−1

)
∈ Sp2g(Z).

This completes the proof of assertion (ii).
Assertion (iii) follows immediately from assertion (ii). Assertion (iv)

follows immediately — by applying the self-duality of Z⊕2g with respect

to the symplectic form determined by

(
0 1
−1 0

)
— from assertion (iii).

This completes the proof of Lemma 2.12. �

Lemma 2.13 (Automorphisms of surface groups). Let g be a
positive integer, Π the topological fundamental group of a connected
orientable compact topological surface of genus g, π : Π � Z a surjec-
tion, and J ⊆ Π a subgroup of Π such that the image of J in Πab is
of infinite index in Πab. [For example, this will be the case if J is
generated by 2g − 1 elements.] Then there exists an automorphism σ
of Π such that σ(J) ⊆ Ker(π).
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Proof. Write H
def
= Hom(Π,Z) = HomZ(Πab,Z). Let us fix isomor-

phisms H
∼→ Z⊕2g and H2(Π,Z)

∼→ Z. Then it follows from the
well-known theory of Poincaré duality that the cup product in group
cohomology

H ×H = H1(Π,Z)×H1(Π,Z) −→ H2(Π,Z) ∼= Z

determines a perfect pairing on H; moreover, if we write AutPD(H) ⊆
Aut(H) (

∼→ GL2g(Z) — cf. the notation of Lemma 2.12) for the sub-
group of automorphisms of H that are compatible with this perfect
pairing, then — by replacing the isomorphism H

∼→ Z⊕2g by a suit-
able isomorphism if necessary — the isomorphism Aut(H)

∼→ GL2g(Z)

determines an isomorphism AutPD(H)
∼→ Sp2g(Z) [cf. the notation of

Lemma 2.12]. On the other hand, recall [cf., e.g., the discussion preced-
ing [DM], Theorem 5.13] that the natural homomorphism Aut(Π) →
Aut(H) determines a surjection Aut(Π) � AutPD(H) (⊆ Aut(H)).
Thus, Lemma 2.13 follows immediately from Lemma 2.12, (iv). This
completes the proof of Lemma 2.13. �

Lemma 2.14 (Finitely generated subgroups of surface groups).
Let G be a semi-graph of temperoids of HSD-type and J ⊆ ΠG a finitely
generated subgroup of the fundamental group ΠG of G. Then the fol-
lowing hold:

(i) Suppose that Cusp(G) 6= ∅. Then there exist a subgroup F ⊆
ΠG of finite index and a surjection F � J such that J ⊆ F , and,
moreover, the restriction of the surjection F � J to J ⊆ F is the
identity automorphism of J .

(ii) Suppose that (Vert(G)],Cusp(G)],Node(G)]) = (1, 0, 1). Thus,
since we are in the situation of Lemma 2.11, we shall apply the nota-
tional conventions established in Lemma 2.11. Suppose that the image
of J in Πab

G is of infinite index in Πab. [For example, this will be the
case if J is generated by rankZ(Πab

G ) − 1 elements.] Then there exists
an automorphism σ ∈ Aut(ΠG) of ΠG such that σ(J) ⊆ ΠG∞.

(iii) In the situation of (ii), suppose, moreover, that J ⊆ ΠG∞.
Then there exists a positive integer a ∈ Z such that J ⊆ D[−a,a] [cf.
Lemma 2.11, (v)].

Proof. Assertion (i) follows from [SemiAn], Corollary 1.6, (ii), together
with the fact that ΠG is a finitely generated free group [cf. Remark 2.5.1].
Assertion (ii) follows from Lemma 2.13. Assertion (iii) follows from
Lemma 2.11, (v), together with our assumption that J is finitely gen-
erated. This completes the proof of Lemma 2.14. �
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Theorem 2.15 (Profinite conjugates of finitely generated Primes-
compatible subgroups). Let G be a semi-graph of temperoids of
HSD-type and H, J ⊆ ΠG subgroups of the fundamental group ΠG of
G. Since ΠG injects into its pro-l completion for any l ∈ Primes [cf.
Remark 2.5.1], let us regard subgroups of ΠG as subgroups of the profi-

nite completion Π̂G of ΠG. Write H, J ⊆ Π̂G for the closures of H, J

in Π̂G, respectively. Suppose that the following conditions are satisfied:

(a) The subgroups H and J are finitely generated.

(b) If J is of infinite index in ΠG, then J is of infinite index in

Π̂G.

[Here, we note that condition (b) is automatically satisfied whenever
Cusp(G) 6= ∅ — cf. [SemiAn], Corollary 1.6, (ii).] Then the following
hold:

(i) It holds that J = J ∩ ΠG.

(ii) Suppose that there exists an element γ̂ ∈ Π̂G such that

H ⊆ γ̂ · J · γ̂−1.

Then there exists an element δ ∈ ΠG such that

H ⊆ δ · J · δ−1.

Proof. First, we claim that the following assertion holds:

Claim 2.15.A: Theorem 2.15 holds in the case where J
is of finite index in ΠG.

Indeed, write N ⊆ ΠG for the normal subgroup of ΠG obtained by
forming the intersection of all ΠG-conjugates of J . Then since J is of
finite index in ΠG, it is immediate that N is of finite index in ΠG. Thus,
by considering the images in ΠG/N of the various groups involved, one
verifies immediately that Theorem 2.15 holds in the case where J is of
finite index in ΠG. This completes the proof of Claim 2.15.A. Thus, in
the remainder of the proof of Theorem 2.15, we may assume without
loss of generality that J is of infinite index in ΠG, which implies that

J is of infinite index in Π̂G [cf. condition (b)].
Next, we claim that the following assertion holds:

Claim 2.15.B: Let F ⊆ ΠG be a subgroup of finite
index such that J ⊆ F . Suppose that the assertion
obtained by replacing ΠG in assertion (i) by F holds.
Then assertion (i) holds, and, in the situation of as-
sertion (ii), there exists a ΠG-conjugate of H that is
contained in F . If, moreover, the assertion obtained
by replacing ΠG in assertion (ii) by F holds, then as-
sertion (ii) holds.

Indeed, let us first observe that since the natural inclusion F ↪→ ΠG
is Primes-compatible [cf. the discussion entitled “Groups” in §0], the
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profinite completion F̂ of F may be identified with the closure F of F

in Π̂G. In particular, the closure of J in F̂ is naturally isomorphic to the

closure J of J in Π̂G. Thus, it follows from Claim 2.15.A applied to F
that the assertion obtained by replacing ΠG in assertion (i) by F implies
assertion (i). Next, let us observe that in the situation of assertion (ii),

since [one verifies immediately that] ΠG · F = Π̂G, by replacing H by a
suitable ΠG-conjugate of H, we may assume without loss of generality
that γ̂ ∈ F . In particular, since H ⊆ γ̂ · J · γ̂−1 ⊆ γ̂ · F · γ̂−1 = F ,
it follows that H ⊆ F ∩ ΠG = F [cf. Claim 2.15.A]. Thus, one verifies
easily that the assertion obtained by replacing ΠG in assertion (ii) by
F implies assertion (ii). This completes the proof of Claim 2.15.B.

Next, we verify Theorem 2.15 in the case where Cusp(G) 6= ∅.
Suppose that Cusp(G) 6= ∅. Then it follows from Lemma 2.14, (i),
that there exist a subgroup F ⊆ ΠG of finite index and a surjection
π : F � J such that J ⊆ F , and, moreover, the restriction of π to
J ⊆ F is the identity automorphism of J . Now it follows immediately
from Claim 2.15.B that, by replacing ΠG by F , we may assume without
loss of generality that ΠG = F . Next, let us observe that since [it is
immediate that] J ⊆ J ∩ ΠG, to complete the verification of assertion
(i) in the case where Cusp(G) 6= ∅, it suffices to verify that J ∩ΠG ⊆ J .
Moreover, since J ⊆ J ∩ ΠG (⊆ J), it follows immediately from the
equality π̂|J = idJ that, to verify the inclusion J ∩ ΠG ⊆ J , it suffices
to verify that π̂(J ∩ΠG) ⊆ π̂(J). On the other hand, one verifies easily
that

π̂(J ∩ ΠG) ⊆ π̂(ΠG) = J = π̂(J),

as desired. This completes the proof of assertion (i) in the case where
Cusp(G) 6= ∅.

Next, to verify assertion (ii) in the case where Cusp(G) 6= ∅, let us
observe that, by replacing γ̂ by γ̂ · π̂(γ̂−1), we may assume without
loss of generality that γ̂ ∈ Ker(π̂). Now we claim that the following
assertion holds:

Claim 2.15.C: It holds that H ⊆ γ̂ · J · γ̂−1.

Indeed, since [one verifies easily that] γ̂−1 · H · γ̂, J ⊆ J , it follows
immediately from the equality π̂|J = idJ that, to verify Claim 2.15.C,
it suffices to verify that π̂(γ̂−1 ·H · γ̂) ⊆ π̂(J). On the other hand, since
γ̂ ∈ Ker(π̂), it holds that

π̂(γ̂−1 ·H · γ̂) = π̂(H) ⊆ π̂(ΠG) = J = π̂(J),

as desired. This completes the proof of Claim 2.15.C. In particular,
it follows immediately from [IUTeichI], Theorem 2.6 [i.e., in essence,
the argument given in the proof of [André], Lemma 3.2.1], that there
exists an element δ ∈ ΠG such that δ−1 ·H · δ = γ̂−1 ·H · γ̂ ⊆ J . This
completes the proof of assertion (ii) in the case where Cusp(G) 6= ∅,
hence also of Theorem 2.15 in the case where Cusp(G) 6= ∅.
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Next, we verify Theorem 2.15 in the case where Cusp(G) = ∅. Sup-
pose that Cusp(G) = ∅. First, we observe that since J is of infinite

index in Π̂G, it follows immediately that [ΠG : J ·N ]→ +∞ as N ranges
over the normal subgroups of ΠG of finite index, hence [cf. Claim 2.15.B;
the fact that J is finitely generated] that, by replacing ΠG by a suitable
subgroup of finite index in ΠG that contains J , we may assume without
loss of generality that the image of J in Πab

G is of infinite index in Πab
G [cf.

Remark 2.5.1]. Moreover, by considering suitable specialization outer
isomorphisms [cf. Proposition 2.10], we may assume without loss of
generality that the equality (Vert(G)],Cusp(G)],Node(G)]) = (1, 0, 1)
holds. Thus, since we are in the situation of Lemma 2.11, we shall
apply the notational conventions established in Lemma 2.11. More-
over, it follows from Lemma 2.14, (ii), that, by considering a suitable
automorphism of ΠG, we may assume without loss of generality that
J ⊆ ΠG∞ . Thus, it follows from Lemma 2.14, (iii), that there exists a
positive integer a ∈ Z such that J ⊆ D[−a,a] ⊆ ΠG∞ .

Next, let us observe that since ΠG/ΠG∞
∼→ ΠG (∼= Z) injects into

its profinite completion, it follows that J ∩ ΠG ⊆ ΠG∞ . In particular,
by applying Lemma 2.14, (iii), we conclude that, for any given fixed
element α ∈ J ∩ ΠG, we may assume, by possibly enlarging a, that
α ∈ D[−a,a]. Next, let us observe — i.e., by considering a suitable finite
étale subcovering of G∞ → G and applying a suitable specialization
outer isomorphism [cf. Proposition 2.10] — that the natural inclusion
D[−a,a] ↪→ ΠG is Primes-compatible [cf. Proposition 2.5, (iv)]. In par-
ticular, by replacing G by G[−a,a] [cf. Lemma 2.11, (ii)], we conclude
that assertion (i) in the case where Cusp(G) = ∅ follows from asser-
tion (i) in the case where Cusp(G) 6= ∅ [already verified above]. This
completes the proof of assertion (i) in the case where Cusp(G) = ∅.

Finally, to verify assertion (ii) in the case where Cusp(G) = ∅, let us
observe that ifH = {1}, then assertion (ii) is immediate. Thus, we may
assume without loss of generality that H 6= {1}. Next, let us observe

that since J ⊆ D[−a,a] ⊆ ΠG∞ , and ΠG/ΠG∞
∼→ ΠG (∼= Z) injects into

its profinite completion, one verifies immediately that H ⊆ ΠG∞ . Thus,
since H ⊆ ΠG∞ is finitely generated, it follows from Lemma 2.14, (iii),
that, by possibly enlarging a, we may assume without loss of generality
that H ⊆ D[−a,a]. Since, moreover, {1} 6= H ⊆ D[−a,a] ∩ γ̂ · J · γ̂−1 ⊆
D[−a,a] ∩ γ̂ · D[−a,a] · γ̂−1, it follows from Lemma 2.11, (vi), that the

image of γ̂ ∈ Π̂G in the profinite completion Π̂G of ΠG is contained in

ΠG ⊆ Π̂G, which thus implies that there exists an element γ′ ∈ ΠG such
that γ̂γ′ ∈ ΠG∞ . In particular, by replacing H by γ′ · H · (γ′)−1 and
possibly enlarging a, we may assume without loss of generality that
γ̂ ∈ ΠG∞ . Thus, again by applying the fact that {1} 6= D[−a,a] ∩ γ̂ ·
D[−a,a] · γ̂−1, we conclude from Lemma 2.11, (vii), that γ̂ ∈ D[−a,a].
In particular, since, as discussed above in the proof of assertion (i)
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[in the case where Cusp(G) = ∅], the natural inclusion D[−a,a] ↪→ ΠG is
Primes-compatible, by replacing G by G[−a,a], we conclude that assertion
(ii) in the case where Cusp(G) = ∅ follows from assertion (ii) in the
case where Cusp(G) 6= ∅ [already verified above]. This completes the
proof of assertion (ii) in the case where Cusp(G) = ∅, hence also of
Theorem 2.15. �

Remark 2.15.1. In passing, we observe that the analogue of Theo-
rem 2.15 for arbitrary Σ 6= Primes is false. Indeed, if, in the statement
of Theorem 2.15, one replaces “ΠG” by the group Z, then it is easy
to construct counterexamples to assertions (i), (ii). One may then ob-
tain counterexamples in the case of the original “ΠG” by considering
suitable edge-like subgroups [i.e., isomorphic to Z!] of the original “ΠG”.

Lemma 2.16 (VCN-subgroups of infinite index). Let G be a semi-
graph of anabelioids of pro-Σ PSC-type (respectively, of temperoids of

HSD-type). Write J
def
= ΠΣ

G (respectively, J
def
= ΠG) for the [pro-Σ

(respectively, discrete)] fundamental group of G. Let H ⊆ J be a VCN-
subgroup of J . Consider the following two [mutually exclusive] condi-
tions:

(1) H = J .

(2) H is of infinite index in J .

Then we have equivalences

(1)⇐⇒ (1′); (2)⇐⇒ (2′)

with the following two conditions:

(1′) H is verticial, and Node(G) = ∅.
(2′) Either H is edge-like, or Node(G) 6= ∅.

Proof. The implication (1′)⇒ (1) follows immediately from the various
definitions involved. Thus, one verifies immediately that, to complete
the verification of Lemma 2.16, it suffices to verify the implication (2′)
⇒ (2). To this end, let us observe that if H is edge-like, then since
H is abelian, and every closed subgroup of J of finite index is center-
free [cf., e.g., Remark 2.5.1; [CmbGC], Remark 1.1.3], we conclude
that H is of infinite index in J . Thus, we may assume without loss of
generality that H is verticial [and Node(G) 6= ∅]. Now since Node(G) 6=
∅, it follows from a similar argument to the argument in the discussion
entitled “Curves” in [AbsTpII], §0, that, by replacing G by a suitable
connected finite étale covering of G, we may assume without loss of
generality that the underlying semi-graph of G is loop-ample [cf. the
discussion entitled “Semi-graphs” in [AbsTpII], §0]. In particular, since
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[one verifies easily that] the abelianization of the [pro-Σ completion of
the] topological fundamental group of a noncontractible semi-graph is
infinite, the image of H in the abelianization of J is of infinite index,
which thus implies that H is of infinite index in J , as desired. This
completes the proof of Lemma 2.16. �

Corollary 2.17 (Profinite conjugates of VCN-subgroups). Let G
and H be semi-graphs of temperoids of HSD-type. Write ΠG, ΠH for the
respective fundamental groups of G, H. Thus, we obtain a semi-graph of

anabelioids of pro-Primes PSC-type Ĥ [cf. Proposition 2.5, (iii), in the
case where Σ = Primes]. Let zG ∈ VCN(G), zH ∈ VCN(H), ΠzG ⊆ ΠG
a VCN-subgroup of ΠG associated to zG ∈ VCN(G), ΠzH ⊆ ΠH a VCN-
subgroup of ΠH associated to zH ∈ VCN(H),

α̃ : ΠG
∼−→ ΠH

an isomorphism of groups, and γ̂ ∈ Π bH an element of the [profinite]

fundamental group Π bH of Ĥ. Let us fix an injection ΠH ↪→ Π bH such
that the induced outer injection is the outer injection of Proposition 2.5,
(iii), and regard subgroups of ΠH as subgroups of Π bH by means of this

fixed injection. Write ΠzH ⊆ Π bH for the closure of ΠzH in Π bH. [Thus,

ΠzH ⊆ Π bH is a VCN-subgroup of Π bH associated to zH ∈ VCN(Ĥ) =
VCN(H) — cf. Proposition 2.5, (v).] Then the following hold:

(i) It holds that ΠzH = ΠzH ∩ ΠH.

(ii) Suppose that

α̃(ΠzG) ⊆ γ̂ · ΠzH · γ̂−1.

Then there exists an element δ ∈ ΠH such that

α̃(ΠzG) ⊆ δ · ΠzH · δ−1.

Proof. First, let us observe that it follows immediately from Defini-
tion 2.3, (ii), together with the well-known structure of topological fun-
damental groups of topological surfaces, that ΠzG and ΠzH are finitely
generated. Thus, it follows immediately from Theorem 2.15 that, to
complete the verification of Corollary 2.17, it suffices to verify that the
following assertion holds:

If ΠzH 6= ΠH, then ΠzH is of infinite index in Π bH.

To this end, let us observe that since ΠzH 6= ΠH, it follows from
Lemma 2.16 [in the case where “G” is a semi-graph of temperoids
of HSD-type] that either zH is an edge, or Node(H) 6= ∅. On the
other hand, in either of these two cases, it follows immediately from
Lemma 2.16 [in the case where “G” is a semi-graph of anabelioids of
PSC-type], together with Proposition 2.5, (v), that ΠzH is of infinite
index in Π bH. This completes the proof of Corollary 2.17. �
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Corollary 2.18 (Properties of VCN-subgroups). Let G be a semi-
graph of temperoids of HSD-type. Write ΠG for the fundamental group

of G. Also, write G̃ → G for the universal covering of G corresponding
to ΠG. Then the following hold:

(i) For i = 1, 2, let ṽi ∈ Vert(G̃) [cf. Definition 2.1, (v)]. Write
Πevi
⊆ ΠG for the verticial subgroup of ΠG associated to ṽi [cf. Defini-

tion 2.6, (ii)]. Consider the following three [mutually exclusive] condi-
tions [cf. Definition 2.1, (v)]:

(1) δ(ṽ1, ṽ2) = 0.

(2) δ(ṽ1, ṽ2) = 1.

(3) δ(ṽ1, ṽ2) ≥ 2.

Then we have equivalences

(1)⇐⇒ (1′); (2)⇐⇒ (2′); (3)⇐⇒ (3′)

with the following three conditions:

(1′) Πev1 = Πev2.

(2′) Πev1 ∩ Πev2 6= {1}, but Πev1 6= Πev2.

(3′) Πev1 ∩ Πev2 = {1}.
(ii) In the situation of (i), suppose that condition (2), hence also

condition (2′), holds. Then it holds that (E(ṽ1) ∩ E(ṽ2))
] = 1 [cf. Def-

inition 2.1, (v)], and, moreover, if we write ẽ ∈ E(ṽ1) ∩ E(ṽ2) for the
unique element of E(ṽ1) ∩ E(ṽ2), then Πev1 ∩ Πev2 = Πee; Πee 6= Πev1;
Πee 6= Πev2.

(iii) For i = 1, 2, let ẽi ∈ Edge(G̃) [cf. Definition 2.1, (v)]. Write
Πeei
⊆ ΠG for the edge-like subgroup of ΠG associated to ẽi [cf. Defi-

nition 2.6, (ii)]. Then Πee1 ∩ Πee2 6= {1} if and only if ẽ1 = ẽ2. In
particular, Πee1 ∩ Πee2 6= {1} if and only if Πee1 = Πee2.

(iv) Let ṽ ∈ Vert(G̃), ẽ ∈ Edge(G̃). Write Πev, Πee ⊆ ΠG for the
VCN-subgroups of ΠG associated to ṽ, ẽ, respectively. Then Πee ∩Πev 6=
{1} if and only if ẽ ∈ E(ṽ). In particular, Πee ∩Πev 6= {1} if and only if
Πee ⊆ Πev.

(v) Every VCN-subgroup of ΠG is commensurably terminal in
ΠG.

Proof. Write G̃∧ → Ĝ for the universal profinite étale covering of the

semi-graph of anabelioids of pro-Primes PSC-type Ĝ [cf. Proposition 2.5,

(iii), in the case where Σ = Primes] determined by G̃ → G and ΠbG for

the [profinite] fundamental group of Ĝ determined by the universal

covering G̃∧ → Ĝ. Thus, one verifies easily that one obtains a nat-
ural morphism of [pro-]semi-graphs of temperoids [cf. Remark 2.1.1]
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G̃ → G̃∧ that induces injections ΠG ↪→ ΠbG [cf. Proposition 2.5, (iii)]

and VCN(G̃) ↪→ VCN(G̃∧) [cf. [NodNon], Definition 1.1, (iii)] such
that

• the injection VCN(G̃) ↪→ VCN(G̃∧) is compatible with the respec-
tive “δ’s” [cf. Definition 2.1, (v); [NodNon], Definition 1.1, (viii)], and,
moreover,

• for each z̃ ∈ VCN(G̃), the closure Πez ⊆ ΠbG of the image of the
VCN-subgroup Πez ⊆ ΠG of ΠG associated to z̃ via the injection ΠG ↪→
ΠbG coincides with the VCN-subgroup of ΠbG [cf. [CbTpI], Definition 2.1,

(i)] associated to the image of z̃ via the injection VCN(G̃) ↪→ VCN(G̃∧)
[cf. also Proposition 2.5, (v)].

First, we verify assertion (i). The equivalence (1) ⇔ (1′) follows
immediately from the equivalence (1)⇔ (1′) of [NodNon], Lemma 1.9,
(ii), together with the discussion at the beginning of this proof. Next,
let us observe that, by considering the edge-like subgroup associated to
an element of E(ṽ1)∩E(ṽ2), we conclude that condition (2) implies the
condition that Πev1∩Πev2 6= {1}. Thus, the implication (2)⇒ (2′) follows
immediately from the equivalence (1) ⇔ (1′). The implication (2′) ⇒
(2) follows immediately from Corollary 2.17, (i), and the implication
(2′) ⇒ (2) of [NodNon], Lemma 1.9, (ii), together with the discussion
at the beginning of this proof. The equivalence (3) ⇔ (3′) follows
immediately from the equivalences (1) ⇔ (1′) and (2) ⇔ (2′). This
completes the proof of assertion (i).

Assertion (iii) (respectively, (iv)) follows immediately from [NodNon],
Lemma 1.5 (respectively, [NodNon], Lemma 1.7), together with the dis-
cussion at the beginning of this proof. Assertion (v) follows formally
from assertions (i), (iii) [cf. also the proof of [CmbGC], Proposition 1.2,
(ii)].

Finally, we verify assertion (ii). Suppose that condition (2) [in the
statement of assertion (i)], hence also condition (2′) [in the statement
of assertion (i)], holds. Then the assertion that (E(ṽ1) ∩ E(ṽ2))

] = 1

follows immediately from the fact that the underlying semi-graph of G̃
is a tree. The remainder of assertion (ii) follows immediately — in light
of assertion (iii) — from Corollary 2.17, (i), and [NodNon], Lemma 1.9,
(i) [cf. also [CmbGC], Remark 1.1.3], together with the discussion at
the beginning of this proof. This completes the proof of assertion (ii),
hence also of Corollary 2.18. �

Corollary 2.19 (Graphicity of outer isomorphisms). Let G, H
be semi-graphs of temperoids of HSD-type. Write Ĝ, Ĥ for the semi-
graphs of anabelioids of pro-Primes PSC-type determined by G, H [cf.
Proposition 2.5, (iii), in the case where Σ = Primes], respectively; ΠG,
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ΠH for the respective fundamental groups of G, H; ΠbG, Π bH for the

respective [profinite] fundamental groups of Ĝ, Ĥ. Let

α : ΠG
∼−→ ΠH

be an outer isomorphism. Write α̂ : ΠbG ∼→ Π bH for the outer isomor-
phism determined by the outer isomorphism α and the natural outer

isomorphisms Π̂G
∼→ ΠbG, Π̂H

∼→ Π bH of Proposition 2.5, (iii). Then the
following hold:

(i) α is group-theoretically verticial (respectively, group-theo-
retically cuspidal; group-theoretically nodal; graphic) [cf. Defi-
nition 2.7, (i), (ii)] if and only if α̂ is group-theoretically verticial
[cf. [CmbGC], Definition 1.4, (iv)] (respectively, group-theoretically
cuspidal [cf. [CmbGC], Definition 1.4, (iv)]; group-theoretically
nodal [cf. [NodNon], Definition 1.12]; graphic [cf. [CmbGC], Defini-
tion 1.4, (i)]).

(ii) α is graphic if and only if α is group-theoretically verticial,
group-theoretically cuspidal, and group-theoretically nodal.

Proof. Assertion (ii) follows immediately, in light of Corollary 2.18,
from a similar argument to the argument applied in the proof of [CmbGC],
Proposition 1.5, (ii). Thus, it remains to verify assertion (i). The neces-
sity portion of assertion (i) follows immediately from Proposition 2.5,
(v). Next, let us observe that inclusions of verticial subgroups of the
fundamental group of a semi-graph of temperoids of HSD-type are nec-
essarily equalities [cf. Corollary 2.18, (i), (ii)]; a similar statement holds
concerning inclusions of edge-like subgroups [cf. Corollary 2.18, (iii)].
Thus, the sufficiency portion of assertion (i) follows immediately —
in light of assertion (ii) and [CmbGC], Proposition 1.5, (ii) — from
Corollary 2.17, (ii). This completes the proof of Corollary 2.19. �

Corollary 2.20 (Discrete combinatorial cuspidalization). Let
Σ ⊆ Primes be a subset which is either equal to Primes or of cardinal-
ity one, (g, r) a pair of nonnegative numbers such that 2g − 2 + r > 0,
n a positive integer, and X a topological surface of type (g, r) [i.e., the
complement of r distinct points in an orientable compact topological
surface of genus g]. For each positive integer i, write Xi for the i-th
configuration space of X ; Πi for the topological fundamental group of

Xi; ΠΣ
i for the pro-Σ completion of Πi; Π̂i for the profinite completion

of Πi;
OutFC(Πi) ⊆ OutF(Πi) ⊆ Out(Πi)

for the subgroups of the group Out(Πi) of outomorphisms of Πi defined
in the statement of [CmbCsp], Corollary 5.1;

OutFC(ΠΣ
i ) ⊆ OutF(ΠΣ

i ) ⊆ Out(ΠΣ
i )
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for the subgroups of the group Out(ΠΣ
i ) of outomorphisms of ΠΣ

i con-
sisting of FC-admissible, F-admissible [cf. [CmbCsp], Definition 1.1,
(ii)] outomorphisms, respectively. Then the following hold:

(i) The natural homomorphism

OutF(Πn) −→ OutF(ΠΣ
n )

is injective. In the following, we shall regard subgroups of OutF(Πn)
as subgroups of OutF(ΠΣ

n ).

(ii) It holds that OutF(Πn) ∩OutFC(Π̂n) = OutFC(Πn).

(iii) Consider the commutative diagram

OutF(Πn+1) −−−→ OutF(Π̂n+1)y y
OutF(Πn) −−−→ OutF(Π̂n),

— where the horizontal arrows are the injections of (i), and the vertical
arrows are the homomorphisms induced by the projection Xn+1 → Xn

obtained by forgetting the (n+1)-st factor. Suppose that the right-hand
vertical arrow of the diagram is injective [cf. Remark 2.20.1 below].
Then the commutative diagram of the above display is cartesian. In
particular, the left-hand vertical arrow of the diagram is injective.

(iv) The image of the left-hand vertical arrow of the commuta-
tive diagram of (iii) [where we do not impose the assumption that the
right-hand vertical arrow be injective] is contained in OutFC(Πn) ⊆
OutF(Πn).

(v) Consider the commutative diagram

OutFC(Πn+1) −−−→ OutFC(Π̂n+1)y y
OutFC(Πn) −−−→ OutFC(Π̂n)

— where the horizontal arrows are the injections induced by the injec-
tions of (i), and the vertical arrows are the homomorphisms induced by
the projection Xn+1 → Xn obtained by forgetting the (n + 1)-st factor.
This diagram is cartesian, its right-hand vertical arrow is injective,
and its left-hand vertical arrow is bijective.

(vi) Write

nFC
def
=

 2 if (g, r) = (0, 3),
3 if (g, r) 6= (0, 3) and r 6= 0,
4 if r = 0.

Suppose that n ≥ nFC. Then it holds that

OutFC(Πn) = OutF(Πn);
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the left-hand vertical arrow

OutF(Πn+1) −→ OutF(Πn)

of the commutative diagram of (iii) is bijective.

Proof. To verify assertion (i), it suffices to verify that Πn is normally
terminal in ΠΣ

n . When n = 1, this normal terminality follows immedi-
ately from the fact that Π1 is conjugacy l-separable [cf. [Prs], Theorems
3.2, 4.1] for every l ∈ Σ, by applying a similar argument to the argu-
ment applied in the proof of [André], Lemma 3.2.1 [cf. also the proof
of [CbTpIII], Lemma 3.2, (ii)]. In the case of n ≥ 2, this normal ter-
minality follows immediately by induction [cf. the proof of [CmbCsp],
Corollary 5.1, (i)]. This completes the proof of assertion (i).

Assertion (ii) follows immediately from Corollary 2.19, (i), together
with [CbTpII], Lemma 3.2, (i), and the [easily verified] discrete ana-
logue of [CbTpII], Lemma 3.2, (i). Next, we verify assertion (iii). Let us
first observe that since [we have assumed that] the right-hand vertical
arrow of the diagram of assertion (iii) is injective, it follows immediately
from assertion (i) that all arrows of the diagram of assertion (iii) are in-

jective. Let α ∈ OutF(Πn) be such that the image of α in OutF(Π̂n) lies
in the image of the right-hand vertical arrow of the diagram of assertion
(iii). Then it follows from [CbTpI], Theorem A, (ii), that the image

of α in OutF(Π̂n) is FC-admissible. Thus, it follows from assertion (ii)
that α ∈ OutFC(Πn). In particular, it follows from [NodNon], Corollary
6.6, that there exists a uniquely determined element of OutFC(Πn+1)
whose image in OutF(Πn) coincides with α ∈ OutF(Πn). Thus, since all
arrows of the diagram of assertion (iii) are injective [as verified above],
we conclude that the diagram of assertion (iii) is cartesian. This com-
pletes the proof of assertion (iii). Assertion (iv) follows immediately
from [CbTpI], Theorem A, (ii), together with assertion (ii). Asser-
tion (v) follows immediately from a similar argument to the argument
applied in the proof of assertion (iii), together with the injectivity por-
tion of [NodNon], Theorem B. Assertion (vi) follows immediately from
[CbTpII], Theorem A, (ii), together with assertions (ii), (v). This com-
pletes the proof of Corollary 2.20. �

Remark 2.20.1. It follows from [CbTpII], Theorem A, (i), that if
either n 6= 1 or r 6= 0, then the right-hand vertical arrow of the diagram
of Corollary 2.20, (iii), is injective.

Remark 2.20.2. In the notation of Corollary 2.20, the bijectivity of
the left-hand vertical arrow OutFC(Πn+1)→ OutFC(Πn) of the diagram
of Corollary 2.20, (v), is proven in [NodNon], Corollary 6.6, by apply-
ing, in essence, a well-known result concerning topological surfaces due
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to Dehn-Nielsen-Baer [cf. the proof of [CmbCsp], Corollary 5.1, (ii)].
On the other hand, the equivalences of Corollary 2.19, (i) [cf. also the
injection of Corollary 2.20, (i)], together with a similar argument to the
argument applied in the proof of the bijectivity portion of [NodNon],
Theorem B — i.e., in essence, the argument applied in the proof of
[CmbCsp], Corollary 3.3 — allow one to give a purely algebraic alter-
native proof of this bijectivity result in the case where n ≥ max{3, nFC}
[cf. Corollary 2.20, (vi)].

Corollary 2.21 (Discrete/profinite Dehn multi-twists). In the

situation of Example 2.4, (i), write ĜXlog for the semi-graph of an-
abelioids of pro-Primes PSC-type of Proposition 2.5, (iii), in the case
where we take “(G,Σ)” to be (GXlog ,Primes); ΠG

Xlog
, ΠbG

Xlog
for the

respective fundamental groups of GXlog , ĜXlog ; Π̂G
Xlog

for the profi-

nite completion of ΠG
Xlog

[so we have a natural outer isomorphism

Π̂G
Xlog

∼→ ΠbG
Xlog

— cf. Proposition 2.5, (iii)];

Dehn(GXlog) ⊆ Out(ΠG
Xlog

)

for the subgroup consisting of the Dehn multi-twists of GXlog , i.e., of
α ∈ Out(ΠG

Xlog
) such that the following conditions are satisfied:

(a) α is graphic [cf. Definition 2.7, (ii)] and induces the identity
automorphism on the underlying semi-graph of GXlog .

(b) Let Πv ⊆ ΠG
Xlog

be a verticial subgroup of ΠG
Xlog

. Then the

outomorphism of Πv induced by restricting α [cf. (a); Corollary 2.18,
(v); the evident discrete analogue of [CbTpII], Lemma 3.10] is trivial.

Then the following hold:

(i) The composite of natural outer homomorphisms

ΠG
Xlog
−→ Π̂G

Xlog

∼−→ ΠbG
Xlog

determines an injection

Out(ΠG
Xlog

) ↪→ Out(ΠbG
Xlog

).

(ii) If one regards subgroups of Out(ΠG
Xlog

) as subgroups of Out(ΠbG
Xlog

)

by means of the injection of (i), then the equality

Dehn(GXlog) = Dehn(ĜXlog) ∩Out(ΠG
Xlog

)

[cf. [CbTpI], Definition 4.4] holds.

(iii) The homomorphism of the final display of Example 2.4, (i),

determines, relative to the natural outer isomorphism π1(X
log
an (C)|s)

∼→
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ΠG
Xlog

, an isomorphism of free Z-modules of rank Node(GXlog)]

π1(S
log
an (C))

∼−→ Dehn(GXlog),

whose image is dense, relative to the profinite topology, in Dehn(ĜXlog).

Proof. Assertion (i) follows from Corollary 2.20, (i). Next, we verify

assertion (ii). The inclusion Dehn(GXlog) ⊆ Dehn(ĜXlog) ∩Out(ΠG
Xlog

)
follows immediately from the various definitions involved. To verify the

reverse inclusion, let α ∈ Dehn(ĜXlog) ∩ Out(ΠG
Xlog

). Then it follows

immediately from Corollary 2.19, (i), together with the definition of

Dehn(ĜXlog), that the outomorphism α of ΠG
Xlog

satisfies the condition

(a) in the statement of Corollary 2.21. Moreover, since every verticial
subgroup of ΠG

Xlog
is normally terminal in its profinite completion [cf.

the proof of Corollary 2.20, (i)], it follows immediately from Propo-

sition 2.5, (v), together with the definition of Dehn(ĜXlog), that the
outomorphism α of ΠG

Xlog
satisfies the condition (b) in the statement

of Corollary 2.21. This completes the proof of assertion (ii).
Finally, we verify assertion (iii). First, let us observe that it fol-

lows immediately from the various definitions involved that the ho-
momorphism of the final display of Example 2.4, (i), factors through
Dehn(GXlog) and has dense image [i.e., relative to the profinite topology]

in Dehn(ĜXlog) [cf. [CbTpI], Proposition 5.6, (ii)]. Next, let us recall
from [CbTpI], Theorem 4.8, (ii), (iv), that if, for e ∈ Node(GXlog) =

Node(ĜXlog), we write Se
def
= Node(GXlog) \ {e} and (GXlog)∧ Se

for the
semi-graph of anabelioids of pro-Primes PSC-type of Proposition 2.5,
(iii), in the case where we take “(G,Σ)” to be ((GXlog) Se ,Primes)
[cf. Definition 2.9] and regard Dehn((GXlog)∧ Se

) as a closed subgroup

of Dehn(ĜXlog) via the specialization outer isomorphism of [CbTpI],
Definition 2.10 [cf. also Remark 2.9.1, Proposition 2.10 of the present
paper], then we have an equality

Dehn(ĜXlog) =
⊕

e∈Node(G
Xlog )

Dehn((GXlog)∧ Se
)

— where each direct summand is [noncanonically] isomorphic to Ẑ.
Here, we note that these specialization outer isomorphisms are compat-
ible [cf. [CbTpI], Proposition 5.6, (ii), (iii), (iv)] with the corresponding
homomorphisms of the final display of Example 2.4, (i). Thus, in light
of the density assertion that has already been verified, one verifies im-
mediately that, to complete the verification of assertion (iii), it suffices
to verify that the image of Dehn(GXlog) via the projection to any di-
rect summand of the direct sum decomposition of the above display is
contained in some submodule of the direct summand that is isomor-
phic to Z. To this end, let us recall from [CbTpI], Theorem 4.8, (iv),
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that such an image via a projection to a direct summand may be com-
puted by considering the homomorphism of the first display of [CbTpI],
Lemma 4.6, (ii), i.e., which determines an isomorphism between the di-

rect summand under consideration and any profinite nodal subgroup Π̂e

associated to the node e corresponding to the direct summand. On the
other hand, it follows immediately — in light of the definition of this
isomorphism — from Proposition 2.5, (v); Corollary 2.17, (i), that the
image of Dehn(GXlog) under consideration is contained in a suitable
discrete nodal subgroup Πe (∼= Z) associated to e. This completes the
proof of assertion (iii). �

Definition 2.22. Let (g, r) be a pair of nonnegative integers such that

2g − 2 + r > 0; n a positive integer; Σ = Primes; k = C; Slog def
=

Spec(k)log the log scheme obtained by equipping S
def
= Spec(k) with

the log structure determined by the fs chart N→ k that maps 1 7→ 0;
X log = X log

1 a stable log curve of type (g, r) over Slog. For each [possibly
empty] subset E ⊆ {1, . . . , n}, write

X log
E

for the E]-th log configuration space of the stable log curve X log [cf.
the discussion entitled “Curves” in [CbTpI], §0], where we think of
the factors as being labeled by the elements of E ⊆ {1, . . . , n} [cf. the
discussion at the beginning of [CbTpII], §3, in the case where (Σ, k) =
(Primes,C)]. For each nonnegative integer n and each [possibly empty]

subset E ⊆ {1, . . . , n}, write (X log
E )an → Slog

an for the morphism of fs log

analytic spaces determined by the morphism X log
E → Slog; (X log

E )an(C),
Slog

an (C) for the respective topological spaces “X log” defined in [KN],

(1.2), in the case where we take “X” of [KN], (1.2), to be (X log
E )an,

Slog
an [cf. the notation established in Example 2.4, (i)]. Let s ∈ Slog

an (C).
Write

XE
def
= (X log

E )an(C)|s
for the fiber of the natural morphism (X log

E )an(C)→ Slog
an (C) at s;

Πdisc
E

def
= π1(XE)

for the discrete topological fundamental group of XE;

Xn
def
= X{1,...,n}; X

def
= X1; Πdisc

n
def
= Πdisc

{1,...,n}.

Thus, for sets E ′ ⊆ E ⊆ {1, . . . , n}, we have a projection

pan
E/E′ : XE → XE′

obtained by forgetting the factors that belong to E \ E ′. For nonneg-
ative integers m ≤ n, write

pΠdisc

E/E′ : Πdisc
E � Πdisc

E′
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for the surjection induced by pan
E/E′ ;

Πdisc
E/E′

def
= Ker(pΠdisc

E/E′) ⊆ Πdisc
E

pan
n/m

def
= pan

{1,...,n}/{1,...,m} : Xn −→ Xm;

pΠdisc

n/m
def
= pΠdisc

{1,...,n}/{1,...,m} : Πdisc
n � Πdisc

m ;

Πdisc
n/m

def
= Πdisc

{1,...,n}/{1,...,m} ⊆ Πdisc
n .

Finally, we shall write “Π̂disc
(−)” for the profinite completion of “Πdisc

(−)”.
Thus, we have a natural outer isomorphism

Π̂disc
E

∼−→ ΠE

— where ΠE is as in the discussion at the beginning of [CbTpII], §3.

In the following, we shall also write X log
n

def
= X log

{1,...,n}; Πn
def
= Π{1,...,n}.

Definition 2.23. In the notation of Definition 2.22, let i ∈ E ⊆
{1, . . . , n}; x ∈ Xn(C) a C-valued geometric point of the underlying
scheme Xn of X log

n .

(i) We shall write

Gdisc

for the semi-graph of temperoids of HSD-type associated to X log [cf.
Example 2.4, (ii)];

Gdisc
i∈E,x

for the semi-graph of temperoids of HSD-type associated to the geo-
metric fiber [cf. Example 2.4, (ii); Remark 2.4.1] of the projection

plog
E/(E\{i}) : X

log
E → X log

E\{i} over xlog
E\{i} → X log

E\{i} [cf. [CbTpII], Definition

3.1, (i)];
ΠGdisc , ΠGdisc

i∈E,x

for the respective fundamental groups of Gdisc, Gdisc
i∈E,x [cf. Proposi-

tion 2.5, (i)];

Π̂Gdisc
i∈E,x

for the profinite completion of ΠGdisc
i∈E,x

. Thus, it follows from the dis-

cussion of Remark 2.5.2 that we have a natural graphic [cf. [CmbGC],
Definition 1.4, (i)] outer isomorphism

Π̂Gdisc
i∈E,x

∼−→ ΠGi∈E,x

— where Gi∈E,x is the semi-graph of anabelioids of pro-Primes PSC-
type of [CbTpII], Definition 3.1, (iii) — and hence a natural isomor-
phism of semi-graphs of anabelioids

Ĝdisc
i∈E,x

∼−→ Gi∈E,x
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— where we write Ĝdisc
i∈E,x for the semi-graph of anabelioids of pro-

Primes PSC-type of Proposition 2.5, (iii), in the case where we take
“(G,Σ)” to be (Gdisc

i∈E,x,Primes). Moreover, it follows immediately from

the discussion of Example 2.4 that we have a natural Πdisc
E -orbit [i.e.,

relative to composition with automorphisms induced by conjugation by
elements of Πdisc

E ] of isomorphisms

(Πdisc
E ⊇) Πdisc

E/(E\{i})
∼−→ ΠGdisc

i∈E,x
.

One verifies immediately from the various definitions involved that the
diagram

Π̂disc
E/(E\{i})

∼−−−→ Π̂Gdisc
i∈E,x

o
y yo

ΠE/(E\{i})
∼−−−→ ΠGi∈E,x

— where the upper horizontal arrow is an element of the Π̂disc
E -orbit of

isomorphisms induced by the Πdisc
E -orbit of isomorphisms of the above

discussion; the lower horizontal arrow is an element of the ΠE-orbit
of isomorphisms of [CbTpII], Definition 3.1, (iii); the left-hand verti-
cal arrow is the isomorphism induced by the isomorphism of the final
display of Definition 2.22; the right-hand vertical arrow is the isomor-
phism of the above discussion — commutes up to composition with
automorphisms induced by conjugation by elements of ΠE.

(ii) We shall say that a vertex v ∈ Vert(Gdisc
i∈E,x) is a(n) [E-]tripod of

Xn if v is of type (0, 3) [cf. Definition 2.6, (iii)]. Thus, one verifies easily
that v ∈ Vert(Gdisc

i∈E,x) is a(n) [E-]tripod if and only if the corresponding

vertex of Gi∈E,x via the graphic outer isomorphism Π̂Gdisc
i∈E,x

∼→ ΠGi∈E,x
of

(i) is a(n) [E-]tripod of X log
n [cf. [CbTpII], Definition 3.1, (v)]. We shall

refer to a verticial subgroup of ΠGdisc
i∈E,x

associated to a(n) [E-]tripod of

Xn as a(n) [E-]tripod of Πdisc
n .

(iii) Let P be a property of [E-]tripods of Πn [cf. [CbTpII], Definition
3.3, (i)] or X log

n [e.g., the property of being strict — cf. [CbTpII], Def-
inition 3.3, (iii); the property of arising from an edge — cf. [CbTpII],
Definition 3.7, (i); the property of being central — cf. [CbTpII], Defini-
tion 3.7, (ii)]. Then we shall say that a(n) [E-]tripod of Πdisc

n or Xn [cf.
(ii)] satisfies P if the corresponding [E-]tripod of Πn or X log

n satisfies P.

(iv) Let T ⊆ Πdisc
E be an E-tripod of Πdisc

n [cf. (ii)]. Then one may
define the subgroups

OutC(T ), OutC(T )cusp, OutC(T )∆, OutC(T )∆+ ⊆ Out(T )

of Out(T ) in an entirely analogous fashion to the definition of the
subgroups “OutC(T )”, “OutC(T )cusp”, “OutC(T )∆”, “OutC(T )∆+” of
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“Out(T )” given in [CbTpII], Definition 3.4, (i). We leave the routine
details to the reader.

Theorem 2.24 (Outomorphisms preserving tripods). In the no-
tation of Definition 2.22, let E ⊆ {1, . . . , n} be a subset and T ⊆ Πdisc

E

an E-tripod of Πdisc
n [cf. Definition 2.23, (ii)]. Let us write

OutF(Πdisc
n )[T ] ⊆ OutF(Πdisc

n )

for the subgroup of OutF(Πdisc
n ) [cf. the notational conventions intro-

duced in the statement of Corollary 2.20] consisting of α ∈ OutF(Πdisc
n )

such that the outomorphism of Πdisc
E determined by α preserves the

Πdisc
E -conjugacy class of T ⊆ Πdisc

E ;

OutFC(Πdisc
n )[T ]

def
= OutF(Πdisc

n )[T ] ∩OutFC(Πdisc
n ) ⊆ OutFC(Πdisc

n )

[cf. the notational conventions introduced in the statement of Corol-

lary 2.20]; Π
def
= Π1; Πdisc def

= Πdisc
1 ; OutC(Πdisc)

def
= OutFC(Πdisc);

OutC(Π)
def
= OutFC(Π). Then the following hold:

(i) Write T̂ for the profinite completion of T . Then the natural
homomorphism

Out(T ) −→ Out(T̂ )

is injective. If, moreover, one regards subgroups of Out(T ) as sub-

groups of Out(T̂ ) via this injection, then it holds that

OutC(T ) = OutC(T̂ ) ∩Out(T ),

OutC(T )cusp = OutC(T̂ )cusp ∩Out(T ),

OutC(T )∆ = OutC(T̂ )∆ ∩Out(T ),

OutC(T )∆+ = OutC(T̂ )∆+ ∩Out(T )

[cf. Definition 2.23, (iv); [CbTpII], Definition 3.4, (i)].

(ii) It holds that

OutC(T )cusp = OutC(T )∆ = OutC(T )∆+ ∼= Z/2Z,

OutC(T ) ∼= Z/2Z×S3

— where we write S3 for the symmetric group on 3 letters.

(iii) The commensurator and centralizer of T ∈ Πdisc
E satisfy the

equality
CΠdisc

E
(T ) = T × ZΠdisc

E
(T ).

Thus, by applying the evident discrete analogue of [CbTpII], Lemma
3.10, to outomorphisms of Πdisc

E determined by elements of OutF(Πdisc
n )[T ],

one obtains a natural homomorphism

TT : OutF(Πdisc
n )[T ] −→ Out(T ).
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(iv) Suppose that n ≥ 3, and that T is central [cf. Definition 2.23,
(iii)]. Then it holds that

OutF(Πdisc
n ) = OutF(Πdisc

n )[T ].

Moreover, the homomorphism

TT : OutF(Πdisc
n ) = OutF(Πdisc

n )[T ] −→ Out(T )

of (iii) determines a surjection

OutFC(Πdisc
n ) � OutC(T )∆+ (∼= Z/2Z).

We shall refer to this homomorphism as the tripod homomorphism
associated to Πdisc

n .

(v) The profinite completion T̂ determines an E-tripod of Πn,

which, by abuse of notation, we denote by T̂ . Now suppose that T is
E-strict [cf. Definition 2.23, (iii)]. Then it holds that

OutF(Πdisc
n )[T ] = OutF(Πn)[T̂ ] ∩OutF(Πdisc

n )

[cf. [CbTpII], Theorem 3.16].

(vi) Suppose that the semi-graph of anabelioids of pro-Primes PSC-
type G associated to X log [cf. [CbTpII], Definition 3.1, (ii)] is totally
degenerate [cf. [CbTpI], Definition 2.3, (iv)]. Recall that G may be
naturally identified with the semi-graph of anabelioids of pro-Primes
PSC-type determined by Gdisc [cf. Proposition 2.5, (iii); the discussion
of Definition 2.23, (i)]. Then one has an equality

Aut(Gdisc)− = Aut(G) ∩ OutC(Πdisc)− (⊆ OutC(Π))

— where the superscript “−’s” denote the closure in the profinite topol-
ogy — of subgroups of OutC(Π) [cf. Corollary 2.20, (i)].

Proof. First, we verify assertion (i). The injectivity portion of asser-
tion (i) follows from Corollary 2.20, (i). The first equality follows from
Corollary 2.20, (ii). Thus, the second and third equalities follow imme-
diately from the various definitions involved; the fourth equailty follows
from Corollary 2.20, (v). This completes the proof of assertion (i).

Next, we verify assertion (ii). The inclusions OutC(T )∆+ ⊆ OutC(T )∆

⊆ OutC(T )cusp follow from assertion (i), together with [CbTpII], Lemma
3.5. The inclusion OutC(T )cusp ⊆ OutC(T )∆+ and the assertion that
OutC(T )cusp ∼= Z/2Z follow immediately from [CmbCsp], Corollary 5.3,
(i), together with a classical result of Nielsen [cf. [CmbCsp], Remark
5.3.1]. This completes the proof of the first line of the display of as-
sertion (ii). Now since OutC(T )∆ = OutC(T )cusp, by considering the
action of OutC(T ) on the set of the T -conjugacy classes of cuspidal
inertia subgroups of T , we obtain an exact sequence

1 −→ OutC(T )∆ −→ OutC(T ) −→ S3 −→ 1.
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By considering outomorphisms of T arising from automorphisms of
analytic spaces, one obtains a section of this sequence; moreover, it
follows from the definition of OutC(T )∆ that this section determines

an isomorphism OutC(T )∆×S3
∼→ OutC(T ). This completes the proof

of assertion (ii).
Next, we verify assertion (iii). Recall that every finite index sub-

group of T is normally terminal in its profinite completion [cf. the
proof of Corollary 2.20, (i)]. Thus, assertion (iii) follows immediately
from [CbTpII], Theorem 3.16, (i). This completes the proof of assertion
(iii).

Next, we verify assertion (iv). First, let us observe that it fol-
lows immediately from the definition of the notion of a central tri-
pod [cf. Definition 2.23, (iii); [CbTpII], Definition 3.7, (ii)] that we
may assume without loss of generality that n = 3. To verify the
equality of the first display of assertion (iv), we mimick the argu-
ment in the profinite case given in the proof of [CmbCsp], Corollary
1.10, (i): Let α ∈ OutF(Πdisc

n ), α̃ ∈ Aut(Πdisc
n ) a lifting of α. Write

α̃2 ∈ Aut(Πdisc
2 ) for the automorphism induced by α̃. Now observe that

since α ∈ OutF(Πdisc
n ), it follows immediately from Corollary 2.20, (iv),

that α̃2 determines an element of OutFC(Πdisc
2 ), hence that α̃2 preserves

the Πdisc
2 -conjugacy class of inertia groups associated to the diagonal

cusp of any of the fibers of pan
2/1 [cf. Definition 2.22; the discussion of

[CmbCsp], Remark 1.1.5]. Thus, by replacing α̃ by the composite of
α̃ with a suitable inner automorphism, we may assume without loss
of generality that α̃2 preserves the inertia group associated to some
diagonal cusp of a fiber of pan

2/1. Now the fact that α ∈ OutF(Πdisc
n )[T ]

follows immediately from Corollary 2.17, (ii); [CbTpII], Theorem 1.9,
(ii) [cf. the application of [CmbCsp], Proposition 1.3, (iv), in the proof
of [CmbCsp], Corollary 1.10, (i)]. The assertion that the restriction to
OutFC(Πdisc

n ) of the homomorphism OutF(Πdisc
n )→ Out(T ) of assertion

(iii) factors through OutC(T )∆+ ⊆ Out(T ) follows immediately from
from assertions (i) and (ii), together with [CbTpII], Theorem 3.16,
(v). The assertion that the resulting homomorphism is surjective fol-
lows immediately from the fact that the [unique] nontrivial element
of OutC(T )∆+ is the outomorphism induced by complex conjugation
[cf. [CmbCsp], Remark 5.3.1], together with the [easily verified] fact
that the pointed stable curve over C corresponding to the given sta-
ble log curve X log may be assumed, without loss of generality [i.e.,
by applying a suitable specialization isomorphism — cf. the discussion
preceding [CmbCsp], Definition 2.1, as well as [CbTpI], Remark 5.6.1],
to be defined over R. This completes the proof of assertion (iv).

Next, we verify assertion (v). It follows immediately from the clas-
sification of E-strict tripods given in [CbTpII], Lemma 3.8, (ii), that
we may assume without loss of generality that E] = n ≤ 3. When
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n = 3, assertion (v) follows formally from assertion (iv). When n = 1,
assertion (v) follows immediately from Corollary 2.17, (ii). Thus, it
remains to consider the case where n = 2, i.e., where the tripod T
arises from an edge. In this case, assertion (v) follows from a similar
argument to the argument applied in the proof of assertion (iv). That
is to say, let α ∈ OutF(Πdisc

2 ), α̃ ∈ Aut(Πdisc
2 ) a lifting of α. Write

α̃1 ∈ Aut(Πdisc
1 ) for the automorphism induced by α̃; β̃1 ∈ Aut(Π1),

β̃ ∈ Aut(Π2) for the automorphisms determined by α̃. Then we must

verify that α ∈ OutF(Πdisc
2 )[T ] under the assumption that β̃ deter-

mines an element β ∈ OutF(Π2)[T̂ ]. Now observe that it follows im-
mediately from the computation of the centralizer given in [CbTpII],

Lemma 3.11, (vii), that β̃1 preserves the Π1-conjugacy class of edge-like
subgroups of Π1 determined by the edge that gives rise to the tripod
T . Thus, we conclude from Corollary 2.17, (ii), that, by replacing α̃
by the composite of α̃ with a suitable inner automorphism, we may
assume that α̃1 preserves a specific edge-like subgroup of Πdisc

1 corre-
sponding to the edge that gives rise to the tripod T . Note that this
assumption implies, in light of the commensurably terminality of edge-

like subgroups [cf. [CmbGC], Proposition 1.2, (ii)], that β̃ preserves the

Π2/1-conjugacy class of the tripod T̂ . In particular, we conclude, as in
the proof of assertion (iv), i.e., by applying Corollary 2.17, (ii), that
α ∈ OutF(Πdisc

2 )[T ], as desired. This completes the proof of assertion
(v).

Finally, we verify assertion (vi). First, let us observe that it follows
immediately from Corollary 2.20, (v), that both sides of the equality
in question are ⊆ OutFC(Πdisc

3 )− ⊆ OutFC(Π3) (⊆ OutC(Π)). Also, we
observe that, by considering the case where X log is defined over R [cf.
the proof of assertion (iv)], it follows immediately that both sides of the
equality in question surject, via the tripod homomorphism of assertion
(iv), onto the finite group of order two that appears as the image of
this tripod homomorphism. In particular, to complete the proof of
assertion (v), it suffices to verify that the evident inclusion

Aut(Gdisc)−∩OutFC(Π3)
geo ⊆ Aut(G) ∩ OutC(Πdisc)− ∩ OutFC(Π3)

geo

— where we write OutFC(Π3)
geo ⊆ OutFC(Π3) for the kernel of the

tripod homomorphism on OutFC(Π3) [cf. [CbTpII], Definition 3.19]
— of subgroups of OutC(Π) is, in fact, an equality. On the other
hand, since Dehn(G) is a normal open subgroup of both Aut(Gdisc)− ∩
OutFC(Π3)

geo and Aut(G) ∩ OutC(Πdisc)− ∩ OutFC(Π3)
geo [cf. Corol-

lary 2.21, (iii); [CbTpI], Theorem 4.8, (i); the commutative diagram of
[CbTpII], Corollary 3.27, (ii)], and Aut(Gdisc)− ∩ OutFC(Π3)

geo clearly
surjects onto the finite group of automorphisms of the underlying semi-
graph of Gdisc, the desired equality follows immediately from [CbTpII],
Corollary 3.27, (ii). This completes the proof of assertion (vi). �
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Remark 2.24.1. It is not clear to the authors at the time of writing
whether or not one can remove the strictness assumption imposed in
Theorem 2.24, (v). Indeed, from the point of view of induction on
n, the essential difficulty in removing this assumption may already be
seen in the case of a non-E-strict tripod when E] = n = 2. From
another point of view, this difficulty may be thought of as arising from
the lack of an analogue for discrete topological fundamental groups of
n-th configuration spaces, when n ≥ 2, of Corollary 2.17.

Remark 2.24.2.

(i) In the notation of Theorem 2.24, let us observe that it follows
from Corollary 2.19, (i), that we have an equality

Aut(Gdisc) = Aut(G) ∩ OutC(Πdisc) (⊆ OutC(Π))

of subgroups of OutC(Π) [cf. Corollary 2.20, (i)]. On the other hand,
it is by no means clear whether or not the evident inclusion

Aut(Gdisc)− ⊆ Aut(G) ∩ OutC(Πdisc)− (⊆ OutC(Π)) (∗)

— where the superscript “−’s” denote the closure in the profinite topol-
ogy — is an equality in general. On the other hand, when X log is
totally degenerate, this equality is the content of Theorem 2.24,
(vi).

(ii) We continue to use the notation of (i). WriteMQ for the moduli
stack of hyperbolic curves of type (g, r) over Q and CQ →MQ for the
tautological hyperbolic curve overMQ. Thus, for appropriate choices of

basepoints, if we write ΠC
def
= π1(CQ), ΠM

def
= π1(MQ) for the respective

étale fundamental groups, then we obtain an exact sequence of profinite
groups

1 −→ ∆C/M −→ ΠC −→ ΠM −→ 1

— where ∆C/M is defined so as to render the sequence exact — as well
as a natural outer representation

ρM : ΠM −→ OutC(Π)

— where, by choosing appropriate basepoints, we identify Π with ∆C/M
— and a natural outer surjection

ΠM � GQ

onto the absolute Galois group GQ of Q [cf. the discussion of [CbTpII],
Remark 3.19.1]. Write GR ⊆ GQ for the decomposition group [which
is well-defined up to GQ-conjugation] of the unique archimedean prime
of Q. In the spirit of [Bgg1], [Bgg2], [Bgg3], let us write

Γ
def
= OutC(Πdisc) (⊆ OutC(Π)); Γ̌

def
= ρM(ΠM ×GQ GR)
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[cf. Corollary 2.20, (i)]. Thus, for appropriate choices of basepoints, Γ̌ is
equal to the closure of Γ in OutC(Π). If σ is a simplex of the complex of
profinite curves L(Π) studied in [Bgg1], [Bgg2], [Bgg3], that arises from
Πdisc, then the stabilizer in Γ of σ is denoted Γσ, while the stabilizer in
Γ̌ of the image of σ in the profinite curve complex corresponding to Γ̌
is denoted Γ̌σ. Then [Bgg3], Theorem 4.2 [cf. also [Bgg1], Proposition
6.5], asserts that

The natural inclusion Γ−σ ⊆ Γ̌σ is, in fact, an equality.

Translated into the language of the present paper, this assertion corre-
sponds precisely to the assertion that the inclusion (∗) considered in (i)
is, in fact, an equality. In particular, Theorem 2.24, (vi), corresponds,
essentially, to a special case [i.e., the totally degenerate case] of [Bgg3],
Theorem 4.2. At a more concrete level, when Node(G)] = 1, and σ
arises from a single simple closed curve that corresponds to the unique
node e of G, this assertion corresponds precisely to the assertion that

the profinite stabilizer in Γ̌ of the Π-conjugacy class
of nodal subgroups of Π determined by e coincides
with the closure in Γ̌ of the discrete stabilizer in Γ
of the Πdisc-conjugacy class of nodal subgroups of Πdisc

determined by e

— cf. Theorem 3.3, Remark 3.3.1, Corollary 3.4 in §3 below. As dis-
cussed in (i), this sort of assertion is highly nontrivial. That is to
say, this sort of coincidence between a profinite stabilizer and the clo-
sure of a corresponding discrete stabilizer is, in fact, false in general,
as the example given in (iv) below demonstrates. In particular, this
sort of coincidence is by no means a consequence of superficial “general
nonsense”-type considerations, but rather, when true [cf., e.g., the case
treated in Theorem 2.24, (vi)], a consequence of deep properties of the
specific groups and specific spaces [on which these groups act] under
consideration.

(iii) In closing, we observe that many of the results derived in [Bgg3]
as a consequence of the assertion discussed in (ii) were, in fact, already
obtained in earlier papers by the authors. Indeed, the faithfulness
asserted in [Bgg3], Theorem 7.7 — i.e., the injectivity of the restriction
of ρM to a section GF ↪→ ΠM arising from a hyperbolic curve of type
(g, r) defined over a number field F — is a special case of [NodNon],
Theorem C. On the other hand, in [CbTpI], Theorem D, a computation
is given of the centralizer in OutC(Π) of an open subgroup of Γ̌. Thus,
the computation of centers given in [Bgg3], Corollary 6.2, amounts to
a special case of [CbTpI], Theorem D. Finally, [Bgg3], Corollary 7.6 —
which may be regarded as the assertion that the inverse image via ρM
of the centralizer of Γ̌ in OutC(Π) maps trivially to GQ — amounts to
a concatenation of the computation of the centralizer given in [CbTpI],
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Theorem D, with the fact, stated in [NodNon], Corollary 6.4, that
ρ−1
M(Γ̌) maps trivially to GQ.

(iv) Let n ≥ 3 be an integer. Consider the natural conjugation
action of the general linear group GLn(Z) with coefficients ∈ Z on
the module Mn(Z) of n by n matrices with coefficients ∈ Z. Write
A ∈ Mn(Z) for the diagonal matrix whose entries are given by the
integers 1, . . . , n. Then one verifies immediately that the stabilizer

GLn(Z)A

of A, relative to the conjugacy action of GLn(Z), is equal to the sub-
group of diagonal matrices of GLn(Z), hence isomorphic to the finite
group given by a product of n copies of the finite group of order two
{±1}. On the other hand, if one considers the action of the general

linear group GLn(Ẑ) with coefficients ∈ Ẑ on the module Mn(Ẑ) of n

by n matrices with coefficients ∈ Ẑ, then one verifies immediately that
the stabilizer

GLn(Ẑ)A

of A, relative to the conjugacy action of GLn(Ẑ), is equal to the sub-

group of diagonal matrices of GLn(Ẑ), hence isomorphic to a product

of n copies of Ẑ×, a group of uncountable cardinality. That is to say,

The profinite stabilizer GLn(Ẑ)A is much larger
than the profinite completion of the discrete stabi-
lizer GLn(Z)A.

Here, we recall that since, as is well-known, the congruence subgroup
problem has been resolved in the affirmative, in the case of n ≥ 3, the

topological group GLn(Ẑ) may be identified with the profinite comple-
tion of the group GLn(Z). A similar example may be given in the case
of the symplectic group Sp2n(Z).

Corollary 2.25 (Characterization of the archimedean local Ga-
lois groups in the global Galois image associated to a hyper-
bolic curve). Let F be a number field [i.e., a finite extension of
the field of rational numbers]; p an archimedean prime of F ; F p an
algebraic closure of the p-adic completion Fp of F [so F p is isomor-

phic to C]; F ⊆ F p the algebraic closure of F in F p; X
log
F a smooth

log curve over F . Write Gp
def
= Gal(F p/Fp) ⊆ GF

def
= Gal(F/F );

X log

F

def
= X log

F ×F F ; X log
Fp

def
= X log

F ×F Fp; X
log

F p

def
= X log

F ×F F p;

π1(X
log

F
)

for the log fundamental group of X log

F
;

πdisc
1 (X log

F p
)
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for the [discrete] topological fundamental group of the analytic

space associated to the interior of the log scheme X log

F p
;

πdisc
1 (X log

F p
)∧

for the profinite completion of πdisc
1 (X log

F p
);

ρXlog
F

: GF −→ Out(π1(X
log

F
))

for the natural outer Galois action associated to X log
F ;

ρdisc

Xlog
F ,p

: Gp −→ Out(πdisc
1 (X log

F p
))

for the natural outer Galois action associated to X log
Fp

. Thus, we have
a natural outer isomorphism

πdisc
1 (X log

F p
)∧

∼−→ π1(X
log

F
),

which determines a natural injection

Out(πdisc
1 (X log

F p
)) ↪→ Out(π1(X

log

F
))

[cf. Corollary 2.20, (i)]. Then the following hold:

(i) We have a natural commutative diagram

Gp

ρdisc

X
log
F

,p

−−−−→ Out(πdisc
1 (X log

F p
))y y

GF

ρ
X

log
F−−−→ Out(π1(X

log

F
))

— where the vertical arrows are the natural inclusions, and all arrows
are injective.

(ii) The diagram of (i) is cartesian, i.e., if we regard the various

groups involved as subgroups of Out(π1(X
log

F
)), then we have an equality

Gp = GF ∩Out(πdisc
1 (X log

F p
)).

Proof. Assertion (i) follows immediately from the injectivity of the
lower horizontal arrow ρXlog

F
[cf. [NodNon], Theorem C], together with

the various definitions involved.
Finally, we verify assertion (ii). Write (XF )log

3 for the 3-rd log con-

figuration space of X log

F
. Then it follows immediately from [NodNon],

Theorem B, that the group OutFC(π1((XF )log
3 )) of FC-admissible outo-

morphisms of the log fundamental group π1((XF )log
3 ) of (XF )log

3 may be

regarded as a closed subgroup of Out(π1(X
log

F
)). Moreover, it follows

immediately from the various definitions involved that the respective
images Im(ρXlog

F
), Im(ρdisc

Xlog
F ,p

) of the natural outer Galois actions ρXlog
F

,
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ρdisc

Xlog
F ,p

associated to X log
F , X log

Fp
are contained in this closed subgroup

OutFC(π1((XF )log
3 )) ⊆ Out(π1(X

log

F
)). Thus, to verify assertion (ii),

one verifies immediately from Corollary 2.20, (v), that it suffices to
verify the equality

Im(ρdisc

Xlog
F ,p

) = Im(ρXlog
F

) ∩Out(πdisc
1 ((XF p

)log
3 ))

— where we write (XF p
)log
3

def
= (XF )log

3 ×F F p and πdisc
1 ((XF p

)log
3 ) for the

[discrete] topological fundamental group of the analytic space associated

to the interior of the log scheme (XF p
)log
3 . On the other hand, since

the “ρXlog
F

” that occurs in the case where we take “X log
F ” to be the

smooth log curve associated to P1
F \ {0, 1,∞} is injective [cf. assertion

(i)], this equality follows immediately — by considering the images of
the subgroups

Im(ρdisc

Xlog
F ,p

) ⊆ Im(ρXlog
F

) ∩Out(πdisc
1 ((XF p

)log
3 ))

of Out(πdisc
1 ((XF p

)log
3 )) via the [manifestly compatible!] tripod homo-

morphisms associated to πdisc
1 ((XF p

)log
3 ) [cf. Theorem 2.24, (iv)] and

π1((XF )log
3 ) [cf. [CbTpII], Theorem 3.16, (i), (v)] — from [André], The-

orem 3.3.1. This completes the proof of assertion (ii), hence also of
Corollary 2.25. �

Remark 2.25.1. Corollary 2.25 is a generalization of [André], The-
orem 3.3.2 [cf. also the footnote of [André] following [André], The-
orem 3.3.2]. Although the proof given here of Corollary 2.25 is by
no means the first proof of this result [cf. the discussion of this foot-
note; [NodNon], Corollary 6.4], it is of interest to note that this result
may also be derived in the context of the theory of the present pa-
per, i.e., via an argument that parallels the proof given in [CbTpIII]
of [CbTpIII], Theorem B, in the p-adic case [for which no alternative
proofs are known!].
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3. Canonical liftings of cycles

In the present §3, we discuss certain canonical liftings of cycles [cf.
Theorems 3.10, 3.14 below]. These canonical liftings are constructed in
a fashion illustrated in Figure 1. This approach to constructing such
canonical liftings was motivated [cf. Remark 3.10.1 below] by the ar-
guments of [Bgg2], where these canonical liftings were applied, in the
context of the congruence subgroup problem for hyperelliptic modular
groups, to derive certain injectivity results [cf. [Bgg2], §2], which may
be regarded as special cases of [NodNon], Theorem B. Unfortunately,
however, the authors of the present paper were unable to follow in detail
these arguments of [Bgg2], which appear to be based to a substantial
extent on geometric intuition concerning the geometry of topological
surfaces. Although, in the development of the present series of pa-
pers on combinatorial anabelian geometry, the authors were motivated
by similar geometric intuition, the proofs of the results given in the
present series of papers proceed by means of purely combinatorial and
algebraic arguments concerning combinatorial [e.g., graphs] and group-
theoretic [e.g., profinite fundamental groups] data that arises from a
pointed stable curve. From the point of view of arithmetic geome-
try, the geometric intuition which underlies the topological arguments
given in [Bgg2] involving objects such as topological Dehn twists is of an
essentially archimedean nature, hence, in particular, is fundamentally
incompatible, at least from the point of view of establishing a rigorous
mathematical formulation, with the highly nonarchimedean properties
of profinite fundamental groups, as studied in the present series of
papers — cf. the discussion of [SemiAn], Remark 1.5.1. It was this
state of affairs that motivated the authors to give, in the present §3,
a formulation of the constructions of [Bgg2], §2, in terms of the purely
combinatorial and algebraic techniques developed in the present series
of papers.

In the present §3, let (g, r) be a pair of nonnegative integers such that
2g− 2 + r > 0; n a positive integer; Σ a set of prime numbers which is
either equal to the entire set of prime numbers or of cardinality one; k

an algebraically closed field of characteristic 6∈ Σ; Slog def
= Spec(k)log the

log scheme obtained by equipping S
def
= Spec(k) with the log structure

determined by the fs chart N → k that maps 1 7→ 0; X log = X log
1

a stable log curve of type (g, r) over Slog. For each [possibly empty]
subset E ⊆ {1, . . . , n}, write

X log
E

for the E]-th log configuration space of the stable log curve X log [cf.
the discussion entitled “Curves” in [CbTpI], §0], where we think of the
factors as being labeled by the elements of E ⊆ {1, . . . , n};

ΠE
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for the maximal pro-Σ quotient of the kernel of the natural surjection
π1(X

log
E ) � π1(S

log);

plog
E/E′ : X

log
E → X log

E′ , p
Π
E/E′ : ΠE � ΠE′ ,

ΠE/E′
def
= Ker(pΠ

E/E′) ⊆ ΠE, X
log
n

def
= X log

{1,...,n}, Πn
def
= Π{1,...,n},

plog
n/m

def
= plog

{1,...,n}/{1,...,m} : X
log
n −→ X log

m ,

pΠ
n/m

def
= pΠ

{1,...,n}/{1,...,m} : Πn � Πm,

Πn/m
def
= Π{1,...,n}/{1,...,m} ⊆ Πn,

G, G, ΠG, Gi∈E,x, ΠGi∈E,x

for the objects defined in the discussion at the beginning of [CbTpII],
§3; [CbTpII], Definition 3.1. In addition, we suppose that we have been
given a pair of nonnegative integers (Yg, Yr) such that 2Yg− 2 + Yr > 0

and a stable log curve Y log = Y log
1 of type (Yg, Yr) over Slog. We shall

use similar notation

Y log
E , YΠE,

Yplog
E/E′ : Y

log
E → Y log

E′ ,
YpΠ

E/E′ : YΠE � YΠE′ ,

YΠE/E′
def
= Ker(YpΠ

E/E′) ⊆ YΠE, Y
log
n

def
= Y log

{1,...,n},
YΠn

def
= YΠ{1,...,n},

Yplog
n/m

def
= Yplog

{1,...,n}/{1,...,m} : Y
log
n −→ Y log

m ,

YpΠ
n/m

def
= YpΠ

{1,...,n}/{1,...,m} :
YΠn � YΠm,

YΠn/m
def
= YΠ{1,...,n}/{1,...,m} ⊆ YΠn,

YG, YG, ΠYG,
YGi∈E,y, ΠYGi∈E,y

for objects associated to the stable log curve Y log = Y log
1 to the nota-

tion introduced above for X log [cf. the discussion at the beginning of
[CbTpII], §3; [CbTpII], Definition 3.1].

Lemma 3.1 (Graphicity in the case of a single node). In the
notation of the discussion at the beginning of the present §3, suppose
that Node(G)] = Node(YG)] = 1. Write

e ∈ Node(G) (respectively, Ye ∈ Node(YG))

for the unique node of G (respectively, YG). Let Πe ⊆ ΠG (respectively,
ΠYe ⊆ ΠYG) be a nodal subgroup of ΠG (respectively, ΠYG) associated to
e ∈ Node(G) (respectively, Ye ∈ Node(YG)); e2 ∈ X2(k) (respectively,
Ye2 ∈ Y2(k)) a k-valued point of the underlying scheme X2 (respectively,

Y2) of the log scheme X log
2 (respectively, Y log

2 ) that lies, relative to plog
2/1
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(respectively, Yplog
2/1), over the k-valued point of X (respectively, Y ) de-

termined by the node e ∈ Node(G) (respectively, Ye ∈ Node(YG)). Thus,
we obtain an outer isomorphism

Π2/1
∼−→ ΠG2∈{1,2},e2

(respectively, YΠ2/1
∼→ ΠYG

2∈{1,2},Ye2
)

[cf. [CbTpII], Definition 3.1, (iii)] that may be characterized, up to

composition with elements of Aut|grph|(G2∈{1,2},e2) ⊆ Out(ΠG2∈{1,2},e2
)

(respectively, Aut|grph|(YG2∈{1,2},Ye2
) ⊆ Out(ΠYG

2∈{1,2},Ye2
)) [cf. [CbTpI],

Definition 2.6, (i); [CbTpII], Remark 4.1.2], as the group-theoretically
cuspidal [cf. [CmbGC], Definition 1.4, (iv)] outer isomorphism such
that the semi-graph of anabelioids structure on G2∈{1,2},e2 (respectively,
YG2∈{1,2},Ye2

) is the semi-graph of anabelioids structure determined [cf.
[NodNon], Theorem A] by the resulting composite outer representa-
tion

Πe ↪→ ΠG
∼← Π1 → Out(Π2/1)

∼→ Out(ΠG2∈{1,2},e2
)

(respectively, ΠYe ↪→ ΠYG
∼← YΠ1 → Out(YΠ2/1)

∼→ Out(ΠYG
2∈{1,2},Ye2

))

— where the third arrow is the outer action determined by the exact
sequence 1→ Π2/1 → Π2 → Π1 → 1 (respectively, 1→ YΠ2/1 → YΠ2 →
YΠ1 → 1) — in a fashion compatible with the restriction Π2/1 � Π{2}
(respectively, YΠ2/1 � YΠ{2}) of pΠ

{1,2}/{2} (respectively, YpΠ
{1,2}/{2}) to

Π2/1 ⊆ Π2 (respectively, YΠ2/1 ⊆ YΠ2) and the given outer isomor-

phisms Π{2}
∼→ Π1

∼→ ΠG (respectively, YΠ{2}
∼→ YΠ1

∼→ YΠG). Let

v ∈ Vert(G2∈{1,2},e2) (respectively, Yv ∈ Vert(YG2∈{1,2},Ye2
))

be the {1, 2}-tripod [cf. [CbTpII], Definition 3.1, (v)] that arises
from e ∈ Node(G) (respectively, Ye ∈ Node(YG)) [cf. [CbTpII], Defini-

tion 3.7, (i)]; Πv ⊆ ΠG2∈{1,2},e2

∼← Π2/1 (respectively, ΠYv ⊆ ΠYG
2∈{1,2},Ye2

∼←
YΠ2/1) a {1, 2}-tripod in Π2 (respectively, YΠ2) associated to the tripod
v (respectively, Yv) [cf. [CbTpII], Definition 3.3, (i)];

α : ΠG
∼−→ ΠYG

an outer isomorphism of profinite groups. Suppose that the following
conditions are satisfied:

(a) The outer isomorphism α is group-theoretically nodal [cf.
[NodNon], Definition 1.12], i.e., determines a bijection of the set of
ΠG-conjugates of Πe ⊆ ΠG and the set of ΠYG-conjugates of ΠYe ⊆ ΠYG.

(b) The outer isomorphism α is 2-cuspidalizable [cf. [CbTpII],
Definition 3.20], i.e., the outer isomorphism

Π1
∼−→ ΠG

α
∼−→ ΠYG

∼←− YΠ1

arises from a [uniquely determined, up to permutation of the 2 factors
— cf. [NodNon], Theorem B] PFC-admissible [cf. [CbTpI], Definition
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1.4, (iii)] outer isomorphism Π2
∼→ YΠ2. [In particular, the outer iso-

morphism α is group-theoretically cuspidal.]

Then the following hold:

(i) There exists an isomorphism α̃2 : Π2
∼→ YΠ2 that lifts α such

that the composite

ΠG2∈{1,2},e2

∼←− Π2/1
∼−→ YΠ2/1

∼−→ ΠYG
2∈{1,2},Ye2

— where the second arrow is the restriction of α̃2 — is graphic [cf.
[CmbGC], Definition 1.4, (i)].

(ii) The outer isomorphism α2 : Π2
∼→ YΠ2 determined by the iso-

morphism α̃2 of (i) induces a bijection between the set of Π2-conjugates
of Πv ⊆ Π2 and the set of YΠ2-conjugates of ΠYv ⊆ YΠ2. Moreover,
if we think of Πv, ΠYv as the respective [pro-Σ] fundamental groups of
G2∈{1,2},e2|v, YG2∈{1,2},Ye2

|Yv [cf. [CbTpI], Definition 2.1, (iii); [CbTpI],

Remark 2.1.1], then the induced outer isomorphism Πv
∼→ ΠYv [cf.

[CbTpII], Theorem 3.16, (i)] is group-theoretically cuspidal.

(iii) The outer isomorphism α is graphic.

Proof. Assertion (i) follows immediately from [NodNon], Theorem A
[cf. also our assumption that Node(G)] = Node(YG)] = 1, which im-
plies that the outer representation Πe → Out(ΠG2∈{1,2},e2

) (respectively,

ΠYe → Out(ΠYG
2∈{1,2},Ye2

)) is nodally nondegenerate!]. Next, let us ob-

serve that the ΠG2∈{1,2},e2
- (respectively, ΠYG

2∈{1,2},Ye2
-) conjugacy class

of Πv ⊆ ΠG2∈{1,2},e2
(respectively, ΠYv ⊆ ΠYG

2∈{1,2},Ye2
) may be charac-

terized as the unique ΠG2∈{1,2},e2
- (respectively, ΠYG

2∈{1,2},Ye2
-) conjugacy

class of verticial subgroups that fails to map injectively via the surjec-
tion Π2/1 � Π{2} (respectively, YΠ2/1 � YΠ{2}). Now assertion (ii)
follows immediately from assertion (i). Assertion (iii) follows immedi-
ately — in light of [CmbCsp], Proposition 1.2, (iii) — from assertions
(i), (ii), together with the various definitions involved. This completes
the proof of Lemma 3.1. �

Before proceeding, we pause to observe that Lemma 3.1 may be
applied to obtain an alternative proof of a slightly weaker version of
Theorem 3.3 below, as follows.

Proposition 3.2 (Graphicity of group-theoretically nodal 2-cus-
pidalizable outer isomorphisms). In the notation of the discussion
at the beginning of the present §3, let

α : ΠG
∼−→ ΠYG
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be an outer isomorphism of profinite groups. Suppose that the following
conditions are satisfied:

(a) The outer isomorphism α is group-theoretically nodal [cf.
[NodNon], Definition 1.12].

(b) The outer isomorphism α is 2-cuspidalizable [cf. [CbTpII],
Definition 3.20], i.e., the outer isomorphism

Π1
∼−→ ΠG

α
∼−→ ΠYG

∼←− YΠ1

arises from a [uniquely determined, up to permutation of the 2 factors
— cf. [NodNon], Theorem B] PFC-admissible [cf. [CbTpI], Definition

1.4, (iii)] outer isomorphism Π2
∼→ YΠ2. [In particular, the outer iso-

morphism α is group-theoretically cuspidal — cf. [CmbGC], Def-
inition 1.4, (iv).]

Then the outer isomorphism α is graphic [cf. [CmbGC], Definition
1.4, (i)].

Proof. Let us first observe that it follows from condition (a), together
with [CmbGC], Proposition 1.2, (i), that α determines a bijection

Node(G) ∼→ Node(YG), so Node(G)] = Node(YG)]. We verify Propo-
sition 3.2 by induction on Node(G)] = Node(YG)]. If Node(G) =
Node(YG) = ∅, then Proposition 3.2 is immediate. Thus, we may
assume without loss of generality that Node(G), Node(YG) 6= ∅. Let
e ∈ Node(G). Write Ye ∈ Node(YG) for the node of YG that corresponds,
via α, to e. Write G {e} (respectively, YG {Ye}) for the generization

of G (respectively, YG) with respect to {e} ⊆ Node(G) (respectively,
{Ye} ⊆ Node(YG)) [cf. [CbTpI], Definition 2.8]; β for the composite
outer isomorphism

ΠG {e}

ΦG {e}
∼−→ ΠG

α
∼−→ ΠYG

Φ−1
YG
 {Ye}
∼−→ ΠYG {Ye}

[cf. [CbTpI], Definition 2.10]; v0 ∈ Vert(G {e}) (respectively, Yv0 ∈
Vert(YG {Ye})) for the [uniquely determined] vertex of the generiza-

tion G {e} (respectively, YG {Ye}) that does not arise from a vertex

of Vert(G) (respectively, Vert(YG)). Let Πv0 ⊆ ΠG {e} (respectively,

ΠYv0
⊆ ΠYG {Ye}

) be a verticial subgroup associated to v0 ∈ Vert(G {e})
(respectively, Yv0 ∈ Vert(YG {Ye})); Πe ⊆ Πv0 (respectively, ΠYe ⊆
ΠYv0

) a subgroup that maps to a nodal subgroup associated to e in
ΠG (respectively, to Ye in ΠYG). Thus, it follows immediately from
[NodNon], Lemma 1.9, (i), (ii) [cf. also [NodNon], Lemma 1.5; con-
dition (2) of [CbTpI], Proposition 2.9, (i)], that Πv0 (respectively,
ΠYv0

) may be characterized as the unique verticial subgroup of ΠG {e}

(respectively, ΠYG {Ye}
) that contains Πe (respectively, ΠYe).
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Next, let us observe that, by applying the induction hypothesis to β,
we conclude that β is graphic. Thus, it follows immediately — in light
of [CmbGC], Proposition 1.5, (ii) — from the definition of the gener-
izations under consideration [cf. condition (3) of [CbTpI], Proposition
2.9, (i)], that, to complete the verification of Proposition 3.2, it suffices
to verify that the following assertion holds:

Claim 3.2.A: Let H ⊆ Πv0 ⊆ ΠG {e} be a closed sub-
group of Πv0 whose image in ΠG is a verticial subgroup.
Then the image of H via the composite

ΠG {e}

β
∼−→ ΠYG {Ye}

ΦYG
 {Ye}
∼−→ ΠYG

is a verticial subgroup.

To verify Claim 3.2.A, let us observe that since β is graphic, it fol-
lows immediately from the above characterization of Πv0 , ΠYv0

that
β maps Πv0 bijectively onto a ΠYG {Ye}

-conjugate of ΠYv0
. Thus, it

follows immediately from condition (b), together with the evident iso-
morphism [i.e., as opposed to outomorphism — cf. [CbTpII], Remark
4.14.1] version of [CbTpII], Lemma 4.8, (i), (ii), that, in the notation

of [CbTpII], Definition 4.3, the outer isomorphism Π2
∼→ YΠ2 of con-

dition (b) induces compatible outer isomorphisms (Πv0)2
∼→ (ΠYv0

)2,

Πv0

∼→ ΠYv0
. In particular, by applying Lemma 3.1, (iii), to these outer

isomorphisms, one concludes that Claim 3.2.A holds, as desired. This
completes the proof of Proposition 3.2. �

Theorem 3.3 (Graphicity of profinite outer isomorphisms). Let
Σ be a nonempty set of prime numbers; H, J semi-graphs of anabe-
lioids of pro-Σ PSC-type; ΠH, ΠJ the [pro-Σ] fundamental groups of
H, J , respectively;

α : ΠH
∼−→ ΠJ

an outer isomorphism of profinite groups. Then the following condi-
tions are equivalent:

(i) The outer isomorphism α is graphic [cf. [CmbGC], Definition
1.4, (i)].

(ii) The outer isomorphism α is group-theoretically verticial
and group-theoretically cuspidal [cf. [CmbGC], Definition (iv)].

(iii) The outer isomorphism α is group-theoretically nodal [cf.
[NodNon], Definition 1.12] and group-theoretically cuspidal.

Proof. The implication (i) ⇒ (ii) (respectively, (ii) ⇒ (iii)) follows
from the various definitions involved (respectively, [NodNon], Lemma
1.9, (i)). Thus, it suffices to verify the implication (iii) ⇒ (i). Suppose
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that condition (iii) holds. Then, to verify the graphicity of α, it follows
from [CmbGC], Theorem 1.6, (ii), that it suffices to verify that α is
graphically filtration-preserving [cf. [CmbGC], Definition 1.4, (iii)]. In
particular, by replacing ΠH, ΠJ to suitable open subgroups of ΠH, ΠJ ,
it suffices to verify that α determines isomorphisms

Πab-edge
H

∼−→ Πab-edge
J , Πab-vert

H
∼−→ Πab-vert

J

— where we write “Πab-edge
(−) ”, “Πab-vert

(−) ” for the closed subgroups of

the abelianization “Πab
(−)” of “Π(−)” topologically generated by the im-

ages of the edge-like, verticial subgroups of “Π(−)”. Here, we may as-
sume without loss of generality that H and J are sturdy, hence admit
compactifications [cf. [CmbGC], Remarks 1.1.5, 1.1.6]. Now the asser-

tion concerning “Πab-edge
(−) ” follows immediately from condition (iii). On

the other hand, the assertion concerning “Πab-vert
(−) ” follows immediately

from the duality discussed in [CmbGC], Proposition 1.3, applied to the
compactifications ofH, J , together with condition (iii). This completes
the proof of Theorem 3.3. �

Remark 3.3.1. Here, we observe that results such as [Bgg3], Corol-
lary 6.1; [Bgg3], Corollary 6.4, (ii); [Bgg3], Theorem 6.6, amount, when
translated into the language of the present paper, to a special case of
the result obtained by concatenating the equivalence (i)⇔ (iii) of The-
orem 3.3, with the computation of the normalizer given in [CbTpI],
Theorem 5.14, (iii) [i.e., in essence, [CmbGC], Corollary 2.7, (iii), (iv)].
Moreover, the proof given above of this equivalence (i)⇔ (iii) of Theo-
rem 3.3 is, essentially, a restatement of various results from the theory
of [CmbGC]. That is to say, although the statements of these results
that occur in the present series of papers and in [Bgg3] are formulated
and arranged in a somewhat different way, the essential mathematical
content that underlies these results is, in fact, entirely identical; more-
over, this state of affairs is by no means a coincidence. Indeed, this
mathematical content is given in [CmbGC] as [CmbGC], Proposition
1.3; [CmbGC], Proposition 2.6. In [Bgg3], this mathematical content is
given as [Bgg3], Lemma 5.11 [and the surrounding discussion], which,
in fact, was related to the author of [Bgg3] by the senior author of
the present paper in the context of an explanation of the theory of
[CmbGC].

Corollary 3.4 (Graphicity of discrete outer isomorphisms). Let
H, J be semi-graphs of temperoids of HSD-type [cf. Definition 2.3,
(iii)]; ΠH, ΠJ the fundamental groups of H, J , respectively [cf. Propo-
sition 2.5, (i)];

α : ΠH
∼−→ ΠJ
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an outer isomorphism. Then the following conditions are equivalent:

(i) The outer isomorphism α is graphic [cf. Definition 2.7, (ii)].

(ii) The outer isomorphism α is group-theoretically verticial
and group-theoretically cuspidal [cf. Definition 2.7, (i)].

(iii) The outer isomorphism α is group-theoretically nodal and
group-theoretically cuspidal [cf. Definition 2.7, (i)].

Proof. This follows immediately from Theorem 3.3, together with Corol-
lary 2.19, (i). �

Definition 3.5. Let (YG, S ⊆ Node(YG), φ : YG S
∼→ G) be a degener-

ation structure on G [cf. [CbTpII], Definition 3.23, (i)] and e ∈ S.

(i) We shall say that a closed subgroup J ⊆ Π1 of Π1 is a cycle-

subgroup of Π1 [with respect to (YG, S ⊆ Node(YG), φ : YG S
∼→ G),

associated to e ∈ S] if J is contained in the Π1-conjugacy class of closed
subgroups of Π1 obtained by forming the image of a nodal subgroup of
ΠYG associated to e via the composite of outer isomorphisms

ΠYG

Φ−1
YG S
∼−→ ΠYG S

∼−→ ΠG
∼−→ Π1

— where the first arrow is the inverse of the specialization outer iso-
morphism ΦYG S

[cf. [CbTpI], Definition 2.10], the second arrow is the

graphic outer isomorphism ΠYG S

∼→ ΠG induced by φ, and the third

arrow is the natural outer isomorphism ΠG
∼→ Π1 [cf. the left-hand

portion of Figure 1].

(ii) Let n be a positive integer. Then we shall say that a cycle-
subgroup of Π1 is n-cuspidalizable if it is a cycle-subgroup of Π1 with re-
spect to some n-cuspidalizable degeneration structure on G [cf. [CbTpII],
Definition 3.23, (v)].

Remark 3.5.1. Let J ⊆ Π1 be a cycle-subgroup of Π1 with respect
to a degeneration structure (YG, S ⊆ Node(YG), φ : YG S

∼→ G), associ-
ated to a node e ∈ S. Then it follows immediately from [CmbGC],
Proposition 1.2, (i), that the node e of YG is uniquely determined
by the subgroup J ⊆ Π1 and the degeneration structure (YG, S ⊆
Node(YG), φ : YG S

∼→ G).

Definition 3.6. Let J ⊆ Π1 be a 2-cuspidalizable cycle-subgroup of Π1

[cf. Definition 3.5, (i), (ii)].
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(i) It follows immediately from the various definitions involved that
we have data as follows:

(a) a 2-cuspidalizable degeneration structure (YG, S ⊆ Node(YG),
φ : YG S

∼→ G) on G [cf. [CbTpII], Definition 3.23, (i), (v)],

(b) an isomorphism YΠ1
∼→ Π1 that is compatible with the com-

posite of the display of Definition 3.5, (i), in the case where we take

the “(YG, S ⊆ Node(YG), φ : YG S
∼→ G)” of Definition 3.5 to be the

degeneration structure of (a),

(c) a PFC-admissible isomorphism YΠ2
∼→ Π2 that lifts the iso-

morphism of (b), and

(d) a nodal subgroup Πe ⊆ ΠYG
∼← YΠ1 of ΠYG

∼← YΠ1 associated
to a [uniquely determined — cf. Remark 3.5.1] node e of YG

such that the image of the nodal subgroup Πe ⊆ ΠYG
∼← YΠ1 of (d)

via the isomorphism YΠ1
∼→ Π1 of (b) coincides with J ⊆ Π1. We

shall say that a closed subgroup T ⊆ Π2/1 of Π2/1 is a tripodal subgroup

associated to J if T coincides with the image, via the lifting YΠ2
∼→ Π2

of (c), of some {1, 2}-tripod in YΠ2/1 ⊆ YΠ2 [cf. [CbTpII], Definition 3.3,
(i)] arising from e [cf. [CbTpII], Definition 3.7, (i)], and, moreover, the
centralizer ZΠ2(T ) maps bijectively, via pΠ

2/1 : Π2 � Π1, onto J ⊆ Π1

[cf. [CbTpII], Lemma 3.11, (vii)].

(ii) Let T ⊆ Π2/1 be a tripodal subgroup associated to J [cf. (i)].
Then we shall refer to a closed subgroup of T that arises from a
nodal (respectively, cuspidal) subgroup contained in the {1, 2}-tripod
in YΠ2/1 ⊆ YΠ2 of (i) as a lifting cycle-subgroup (respectively, distin-
guished cuspidal subgroup) of T [cf. the right-hand portion of Figure
1].

Remark 3.6.1. Note that, in the situation of Definition 3.6, (i), it fol-
lows immediately from Lemma 3.1, (ii) [i.e., by considering the gener-
ization of YG with respect to Node(YG) \ {e} — cf. [CbTpI], Definition
2.8], together with the computation of the centralizer given in [CbTpII],
Lemma 3.11, (vii), and the commensurable terminality of J ⊆ Π1 [cf.
[CmbGC], Proposition 1.2, (ii)], that the Π2/1-conjugacy class of a
tripodal subgroup T is completely determined by the cycle-subgroup
J ⊆ Π1.

Remark 3.6.2.

(i) Suppose that we are in the situation of Definition 3.5, (i). Recall
the module ΛG, i.e., the cyclotome associated to G, defined in [CbTpI],
Definition 3.8, (i). Thus, as an abstract module, ΛG is isomorphic to
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the pro-Σ completion ẐΣ of Z. Recall, furthermore, from [CbTpI],
Corollary 3.9, (v), (vi), that one may construct a natural, functorial
{±}-orbit of isomorphisms

Πe
∼−→ ΛYG

— where Πe ⊆ ΠYG denotes a nodal subgroup associated to e. Thus,

by applying the natural, functorial [outer] isomorphisms ΛYG
∼→ ΛYG S

[cf. [CbTpI], Corollary 3.9, (i)] and Φ−1
YG S

: ΠYG
∼→ ΠYG S

[cf. [CbTpI],

Definition 2.10], together with the [outer] isomorphisms ΛYG S

∼→ ΛG

and ΠYG S

∼→ ΠG induced by φ, we obtain a natural, functorial {±}-
orbit of isomorphisms

J
∼−→ ΛG

associated to the cycle-subgroup J ⊆ Π1. In this context, it is natu-
ral to refer to either of the two isomorphisms in this {±}-orbit as an
orientation on the cycle-subgroup J .

(ii) Now suppose that we are in the situation of Definition 3.6, (i),
(ii). Then let us observe that the natural outer surjection YΠ2/1 �
YΠ{2}

∼→ YΠ1 determined by YpΠ
{1,2}/{2} induces a natural, functorial

isomorphism

ΛYG2∈{1,2},e2

∼−→ ΛYG

[cf. [CbTpI], Corollary 3.9, (ii)], where we write e2 ∈ Y2(k) for a k-

valued point of Y2 that lies, relative to Yplog
2/1, over the k-valued point of

Y determined by the node e. Write v for the vertex of YG2∈{1,2},e2 that
gives rise to the tripodal subgroup T ⊆ Π2/1. Thus, we have a natural,
functorial isomorphism

Λv
∼−→ ΛYG2∈{1,2},e2

[cf. [CbTpI], Corollary 3.9, (ii)]. Now suppose that e∗ is a node of
YG2∈{1,2},e2 that abuts to v and, moreover, gives rise to a lifting cycle-
subgroup J∗ ⊆ T of the tripodal subgroup T . Thus, one verifies im-
mediately that the natural outer surjection Π2/1 � Π{2}

∼→ Π1 deter-

mined by pΠ
{1,2}/{2} induces a natural isomorphism J∗

∼→ J [cf. [CbTpII],

Lemma 3.6, (iv)]. Let Πe∗ ⊆ ΠYG2∈{1,2},e2
be a nodal subgroup associ-

ated to e∗. Then the [unique!] branch of e∗ that abuts to v determines
a natural, functorial isomorphism

Πe∗
∼−→ Λv

[cf. [CbTpI], Corollary 3.9, (v)]. Thus, by composing the isomorphisms

of the last three displays with the isomorphism ΛYG
∼→ ΛYG S

∼→ ΛG

discussed in (i) and the inverse of the tautological isomorphism Πe∗
∼→

J∗, we obtain a natural, functorial isomorphism

J∗
∼−→ ΛG
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associated to the lifting cycle-subgroup J∗ ⊆ T . Finally, one verifies
immediately from the construction of the isomorphisms of [CbTpI],

Corollary 3.9, (v), that if one composes this isomorphism J∗
∼→ ΛG

with the inverse of the natural isomorphism J∗
∼→ J discussed above,

then the resulting isomorphism J
∼→ ΛG is an orientation on the cycle-

subgroup J , in the sense of the discussion of (i), and, moreover, that, if
we define an orientation on the tripodal subgroup T to be a choice of
a T -conjugacy class of lifting cycle-subgroups of T , then the resulting
assignment{

orientations on T
}
−→

{
orientations on J

}
is a bijection [between sets of cardinality 2].

Lemma 3.7 (Induced outomorphisms of tripods). In the situa-
tion of Lemma 3.1, suppose that X log = Y log. Write c ∈ Cusp(G2∈{1,2},e2)
for the cusp arising from the diagonal divisor in X ×k X. Let Πc ⊆
ΠG2∈{1,2},e2

be a cuspidal subgroup of ΠG2∈{1,2},e2
associated to c. Write

αv
def
= TΠv(α2) ∈ Out(Πv)

[cf. Lemma 3.1, (ii); [CbTpII], Theorem 3.16, (i)] for the result of
applying the tripod homomorphism TΠv to α2. [Thus, it follows
immediately from Lemma 3.1, (ii), that αv ∈ OutC(Πv).] Suppose,
moreover, that the following condition is satisfied:

(c) The cuspidal subgroup Πc ⊆ ΠG2∈{1,2},e2

∼← Π2/1 is contained in
Πv.

Then the following hold:

(i) Since Πv may be regarded as the “Π1” that occurs in the case
where we take “X log” to be the smooth log curve associated to P1

k \
{0, 1,∞} [cf. [CbTpII], Remark 3.3.1], there exists a uniquely deter-
mined outomorphism

ι ∈ Out(Πv)

of Πv that arises from an automorphism of P1
k \ {0, 1,∞} over k and

induces a nontrivial automorphism of the set N (v). Write

|αv|
def
= αv ∈ Out(Πv) (respectively, |αv|

def
= ι ◦ αv ∈ Out(Πv))

if αv ∈ OutC(Πv)
cusp (respectively, 6∈ OutC(Πv)

cusp) [cf. [CbTpII], Def-
inition 3.4, (i)]. Then it holds that |αv| ∈ OutC(Πv)

cusp.

(ii) Let Πtpd ⊆ Π3 be a central {1, 2, 3}-tripod of Π3 [cf. [CbTpII],
Definitions 3.3, (i); 3.7, (ii)]. Then every geometric [cf. [CbTpII],

Definition 3.4, (ii)] outer isomorphism Πtpd
∼→ Πv satisfies the follow-

ing condition: Let β ∈ Out(Π1)
∼→ Out(ΠG) be an outomorphism of
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Π1
∼→ ΠG that is group-theoretically nodal and 3-cuspidalizable,

i.e., β ∈ Out(Π1) arises from a(n) [uniquely determined — cf. [NodNon],
Theorem B] FC-admissible outomorphism β3 ∈ OutFC(Π3). Then the
image TΠtpd

(β3) ∈ Out(Πtpd) [cf. [CbTpII], Definition 3.19] coin-

cides — relative to the outer isomorphism Πtpd
∼→ Πv under con-

sideration — with |βv| ∈ Out(Πv) [cf. (i)]. In particular, it holds that
|βv| ∈ OutC(Πv)

∆+ [cf. [CbTpII], Definition 3.4, (i)].

Proof. Assertion (i) follows immediately from the various definitions
involved. Next, we verify assertion (ii). Let us first observe that the
inclusion |βv| ∈ OutC(Πv)

∆ follows immediately from the coincidence
of TΠtpd

(β3) with |βv|, relative to some specific geometric outer iso-

morphism Πtpd
∼→ Πv, together with the second displayed equality of

[CbTpII], Theorem 3.16, (v). The inclusion |βv| ∈ OutC(Πv)
∆+ then

follows from [CbTpII], Lemma 3.5; [CbTpII], Theorem 3.17, (i). More-
over, it follows immediately from the various definitions involved that
the inclusion |βv| ∈ OutC(Πv)

∆ allows one to conclude that the coinci-
dence of TΠtpd

(β3) with |βv|, relative to some specific geometric outer

isomorphism Πtpd
∼→ Πv, implies the coincidence of TΠtpd

(β3) with |βv|,
relative to an arbitrary geometric outer isomorphism Πtpd

∼→ Πv. Thus,
to complete the verification of assertion (ii), it suffices to verify the co-
incidence of TΠtpd

(β3) with |βv|, relative to the specific geometric outer

isomorphism Πtpd
∼→ Πv whose existence is guaranteed by [CbTpII],

Theorem 3.18, (ii). In the following discussion, we fix this specific geo-

metric outer isomorphism Πtpd
∼→ Πv.

Next, let us observe that if βv = |βv|, i.e., βv ∈ OutC(Πv)
cusp, then

it follows immediately from [CbTpII], Theorems 3.16, (v); 3.18, (ii),
that TΠtpd

(β3) ∈ Out(Πtpd) coincides with |βv| ∈ Out(Πv). Thus, to
complete the verification of assertion (ii), we may assume without loss
of generality that βv 6= |βv|, i.e., that βv 6∈ OutC(Πv)

cusp. Then let us
observe that collections of data consisting of smooth log curves that
[by gluing at prescribed cusps] give rise to a stable log curve whose
associated semi-graph of anabelioids [of pro-Σ PSC-type] is isomor-
phic to G may be parametrized by a smooth, connected moduli stack.
Thus, one verifies easily that, by considering a suitable loop in the étale
fundamental groupoid of this moduli stack that arises from a scheme-
theoretic automorphism of a collection of data parametrized by this
moduli stack, one obtains a 3-cuspidalizable automorphism ξ ∈ Aut(G)
(↪→ Out(ΠG)) of G such that ξv [i.e., the “αv” that occurs in the case
where we take “α” to be ξ] coincides with ι. Thus, by applying the
portion of assertion (ii) that has already been verified to ξ ◦ β, we con-
clude that, to complete the verification of assertion (ii), it suffices to
verify that TΠtpd

(ξ3) = 1. On the other hand, this follows immediately
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from the fact that ξ was assumed to arise from a scheme-theoretic au-
tomorphism. This completes the proof of assertion (ii) and hence of
Lemma 3.7. �

Definition 3.8. Let J ⊆ Π1 be a 2-cuspidalizable cycle-subgroup [cf.
Definition 3.5, (i), (ii)]; let us fix associated data as in Definition 3.6,
(i), (a), (b), (c), (d). Relative to this data, suppose that T ⊆ Π2/1 is a
tripodal subgroup associated to J ⊆ Π1 [cf. Definition 3.6, (i)], and that
I ⊆ T is a distinguished cuspidal subgroup of T [cf. Definition 3.6, (ii)].
Note that this data, together with the log scheme structure of Y log,
allows one to speak of geometric [cf. [CbTpII], Definition 3.4, (ii)] out-
omorphisms of T . Then one verifies easily that there exists a uniquely
determined nontrivial geometric outomorphism of T that preserves the
T -conjugacy class of I. Thus, since I is commensurably terminal in T
[cf. [CmbGC], Proposition 1.2, (ii)], there exists a uniquely determined
I-conjugacy class of automorphisms of T that lifts this outomorphism
and preserves I ⊆ T . We shall refer to this I-conjugacy class of auto-
morphisms of T as the cycle symmetry associated to I.

Before proceeding, we pause to observe the following interesting “al-
ternative formulation” of the essential content of Lemma 3.7, (ii).

Lemma 3.9 (Geometricity of conjugates of geometric outer
isomorphisms). Suppose that we are in the situation of [CbTpII],
Theorem 3.18, (ii), i.e., n ≥ 3, and T (respectively, T ′) is an E-
(respectively, E ′-) tripod of Πn for some subset E ⊆ {1, . . . , n} (re-

spectively, E ′ ⊆ {1, . . . , n}). Let φ : T
∼→ T ′ be a geometric [cf.

[CbTpII], Definition 3.4, (ii)] outer isomorphism. Then, for every
α ∈ OutFC(Πn)[T, T ′ : {|C|}], the composite of outer isomorphisms

T
TT (α)
∼−→ T

φ
∼−→ T ′

TT ′ (α)−1

∼−→ T ′

[cf. [CbTpII], Theorem 3.16, (i)] is equal to φ.

Proof. Let us first observe that the validity of Lemma 3.9 for some spe-
cific geometric outer isomorphism “φ” follows formally from the com-
mutative diagram of [CbTpII], Theorem 3.18, (ii). Thus, the validity
of Lemma 3.9 for an arbitrary geometric outer isomorphism “φ” follows
immediately from the equality of the first display of [CbTpII], Theorem
3.18, (i), i.e., the fact that TT (α) commutes with arbitrary geometric
outomorphisms of T . This completes the proof of Lemma 3.9. �
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Remark 3.9.1. One verifies immediately that a similar argument to
the argument applied in the proof of Lemma 3.9 yields evident ana-
logues of Lemma 3.9 in the respective situations of [CbTpII], Theorem
3.17, (i), (ii).

Theorem 3.10 (Canonical liftings of cycles). In the notation of
the discussion at the beginning of the present §3, let I ⊆ Π2/1 ⊆ Π2

be a cuspidal inertia group associated to the diagonal cusp of a fiber
of plog

2/1; Πtpd ⊆ Π3 a central {1, 2, 3}-tripod of Π3 [cf. [CbTpII],

Definition 3.7, (ii)]; Itpd ⊆ Πtpd a cuspidal subgroup of Πtpd that does

not arise from a cusp of a fiber of plog
3/2; J

∗
tpd, J

∗∗
tpd ⊆ Πtpd cuspidal

subgroups of Πtpd such that Itpd, J
∗
tpd, and J∗∗tpd determine three dis-

tinct Πtpd-conjugacy classes of closed subgroups of Πtpd. [Note that
one verifies immediately from the various definitions involved that such
cuspidal subgroups Itpd, J

∗
tpd, and J∗∗tpd always exist.] For positive inte-

gers n ≥ 2, m ≤ n and α ∈ AutFC(Πn) [cf. [CmbCsp], Definition 1.1,
(ii)], write

αm ∈ AutFC(Πm)

for the automorphism of Πm determined by α;

AutFC(Πn, I) ⊆ AutFC(Πn)

for the subgroup consisting of β ∈ AutFC(Πn) such that β2(I) = I;

AutFC(Πn)G ⊆ AutFC(Πn)

for the subgroup consisting of β ∈ AutFC(Πn) such that the image of β
via the composite AutFC(Πn) � OutFC(Πn) ↪→ OutFC(Π1)→ Out(ΠG)
— where the second arrow is the natural injection of [NodNon], Theo-
rem B, and the third arrow is the homomorphism induced by the natural
outer isomorphism Π1

∼→ ΠG — is graphic [cf. [CmbGC], Definition
1.4, (i)];

AutFC(Πn, I)
G def

= AutFC(Πn, I) ∩ AutFC(Πn)G;

Cyclen(Π1)

for the set of n-cuspidalizable cycle-subgroups of Π1 [cf. Defini-
tion 3.5, (i), (ii)];

TpdI(Π2/1)

for the set of closed subgroups T ⊆ Π2/1 such that T is a tripodal sub-
group associated to some 2-cuspidalizable cycle-subgroup of Π1

[cf. Definition 3.6, (i)], and, moreover, I is a distinguished cuspidal
subgroup [cf. Definition 3.6, (ii)] of T . Then the following hold:

(i) Let n ≥ 2 be a positive integer, α ∈ AutFC(Πn, I)
G, J ∈

Cyclen(Π1), and T ∈ TpdI(Π2/1). Then it holds that

α1(J) ∈ Cyclen(Π1), α2(T ) ∈ TpdI(Π2/1).
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Thus, AutFC(Πn, I)
G acts naturally on Cyclen(Π1), TpdI(Π2/1).

(ii) Let n ≥ 2 be a positive integer. Then there exists a unique
AutFC(Πn, I)G-equivariant [cf. (i)] map

CI : Cyclen(Π1) −→ TpdI(Π2/1)

such that, for every J ∈ Cyclen(Π1), CI(J) is a tripodal subgroup
associated to J . Moreover, for every α ∈ AutFC(Πn, I)

G and J ∈
Cyclen(Π1), the isomorphism CI(J)

∼→ CI(α1(J)) induced by α2 maps
every lifting cycle-subgroup [cf. Definition 3.6, (ii)] of CI(J) bijec-
tively onto a lifting cycle-subgroup of CI(α1(J)).

(iii) Let n ≥ 3 be a positive integer. Then there exists an assignment

Cyclen(Π1) 3 J 7→ synI,J

— where synI,J denotes an I-conjugacy class of isomorphisms Πtpd
∼→

CI(J) — such that

(a) synI,J maps Itpd bijectively onto I,

(b) synI,J maps J∗tpd, J
∗∗
tpd bijectively onto lifting cycle-subgroups

of CI(J), and

(c) for α ∈ AutFC(Πn, I)
G, the diagram [of Itpd-, I-conjugacy

classes of isomorphisms]

Πtpd −−−→ Πtpd

synI,J

y ysynI,α1(J)

CI(J) −−−→ CI(α1(J))

— where the upper horizontal arrow is the [uniquely determined — cf.
the commensurable terminality of Itpd of Πtpd discussed in [CmbGC],
Proposition 1.2, (ii)] Itpd-conjugacy class of automorphisms of Πtpd

that lifts TΠtpd
(α) [cf. [CbTpII], Definition 3.19] and preserves Itpd;

the lower horizontal arrow is the I-conjugacy class of isomorphisms
induced by α2 [cf. (ii)] — commutes up to possible composition with
the cycle symmetry of CI(α1(J)) associated to I [cf. Definition 3.8].

Finally, the assignment

J 7→ synI,J

is uniquely determined, up to possible composition with cycle sym-
metries, by these conditions (a), (b), and (c).

(iv) Let n ≥ 3 be a positive integer, α ∈ AutFC(Πn, I)
G, and J ∈

Cyclen(Π1). Suppose that one of the following conditions is satisfied:

(a) The FC-admissible outomorphism of Π3 determined by α3 is
∈ OutFC(Π3)

geo [cf. [CbTpII], Definition 3.19].

(b) Cusp(G) 6= ∅.
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(c) n ≥ 4.

Then there exists an automorphism β ∈ AutFC(Πn, I)
G such that the

FC-admissible outomorphism of Π3 determined by β3 is ∈ OutFC(Π3)
geo,

and, moreover, α1(J) = β1(J). Finally, the diagram [of Itpd-, I-
conjugacy classes of isomorphisms]

Πtpd Πtpd

synI,J

y ysynI,α1(J)=synI,β1(J)

CI(J) −−−→ CI(α1(J)) = CI(β1(J))

— where the lower horizontal arrow is the isomorphism induced by
β2 [cf. (ii)] — commutes up to possible composition with the cycle
symmetry of CI(α1(J)) = CI(β1(J)) associated to I.

Proof. Assertion (i) follows immediately from the various definitions
involved. Next, we verify assertion (ii). The initial portion of assertion
(ii) follows immediately from the discussion of Remark 3.6.1, together
with the fact that T is uniquely determined among its Π2/1-conjugates
by the condition I ⊆ T [cf. [CmbGC], Proposition 1.5, (i)]. The final
portion of assertion (ii) follows immediately from Lemma 3.1, (ii) [i.e.,
by considering a suitable generization operation, as in the discussion
of Remark 3.6.1]. This completes the proof of assertion (ii).

Next, we verify assertion (iii). Let us fix associated data

(YG, S ⊆ Node(YG), φ : YG S
∼→ G); YΠ1

∼→ Π1;

YΠ2
∼→ Π2; Πe ⊆ ΠYG

∼← YΠ1

for J ∈ Cyclen(Π1) as in Definition 3.6, (i), (a), (b), (c), (d), and let
YT ⊆ YΠ2/1 be a {1, 2}-tripod as in the discussion of Definition 3.6,
(i). Let YΠtpd ⊆ YΠ3 be a central tripod of YΠ3. Here, we note that
since J ∈ Cyclen(Π1), and n ≥ 3, it follows that the above isomor-

phism YΠ2
∼→ Π2 lifts to a PFC-admissible isomorphism YΠ3

∼→ Π3

that maps YΠtpd to a Π3-conjugate of Πtpd [cf. [CbTpII], Theorem
3.16, (v); [CbTpII], Remark 4.14.1]. Now one verifies immediately
that, by applying a suitable generization operation as in the discus-
sion of Remark 3.6.1, we may assume without loss of generality that
Node(YG)] = 1 [an assumption that will be invoked when we apply
Lemmas 3.1, 3.7 in the argument to follow]. Then, by considering the
geometric outer isomorphism of [CbTpII], Theorem 3.18, (ii), in the
case where we take the “(T, T ′)” of [CbTpII], Theorem 3.18, (ii), to

be (YΠtpd,
YT ), we obtain an outer isomorphism Πtpd

∼→ CI(J). More-
over, by considering the composite of this outer isomorphism with a
suitable geometric outomorphism of Πtpd, we may assume without loss

of generality that this outer isomorphism Πtpd
∼→ CI(J) determines

a bijection between the Πtpd-conjugacy class of Itpd and the CI(J)-
conjugacy class of I. Thus, since I is commensurably terminal in T
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[cf. [CmbGC], Proposition 1.2, (ii)], we obtain a uniquely determined

I-conjugacy class of isomorphisms synI,J : Πtpd
∼→ CI(J) that lifts the

outer isomorphism just discussed and satisfies condition (a). On the
other hand, one verifies immediately from the various definitions in-
volved that synI,J also satisfies condition (b).

Next, we verify that synI,J satisfies condition (c). To this end, let
us observe that it follows immediately from the graphicity asserted in
Lemma 3.1, (iii) [cf. our assumption that Node(YG)] = 1], that α1(J)
admits associated data as in Definition 3.6, (i), (a), (b), (c), (d), for
which the data of Definition 3.6, (i), (a), (d), is of the form

(YG, S ⊆ Node(YG), ψ : YG S
∼→ G); Πe ⊆ ΠYG

∼← YΠ1

for some isomorphism ψ : YG S
∼→ G. Now it follows immediately from

the various definitions involved that the composite

YΠ1
∼−→ Π1

α1
∼−→ Π1

∼←− YΠ1

— where the first (respectively, third) arrow is the isomorphism aris-
ing from the associated data [cf. Definition 3.6, (i), (b)] for J (respec-
tively, α1(J)) ∈ Cyclen(Π1) under consideration — preserves the YΠ1-
conjugacy class of Πe. Thus, the assertion that synI,J satisfies condition
(c) follows immediately from Lemma 3.7, (ii) [cf. our assumption that
Node(YG)] = 1].

Finally, we consider the final portion of assertion (iii) concerning
uniqueness. To this end, we observe that, by considering the case where
YG, as well as each of the branches of the underlying semi-graph of YG,
is defined over a number field F , it follows immediately, by considering
automorphisms α ∈ AutFC(Πn, I)

G that arise from scheme theory, that
given any element γ ∈ Out(Πtpd) that arises from an element of the
absolute Galois group of F , there exists an α ∈ AutFC(Πn, I)

G such that
α(J) = J and TΠtpd

(α) = γ. Thus, the uniqueness under consideration
follows immediately from the geometricity of elements of Out(Πtpd)
that commute with the image of the absolute Galois group of F , i.e., in
other words, from the Grothendieck Conjecture for tripods over number
fields [cf. [Tama1], Theorem 0.3; [LocAn], Theorem A]. This completes
the proof of assertion (iii).

Finally, we verify assertion (iv). If condition (a) is satisfied, then, by
taking the “β” of assertion (iv) to be α, we conclude that assertion (iv)
follows immediately from assertion (iii), together with the definition of
OutFC(Πn)geo. Next, let us observe that, by applying assertion (iv) in
the case where condition (a) is satisfied, we conclude that, to verify
assertion (iv) in the case where either (b) or (c) is satisfied, it suffices
to verify that the following assertion holds:

Claim 3.10.A: Write

Out(Π1 ⊇ J) ⊆ Out(Π1)
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for the subgroup of Out(Π1) consisting of outomor-
phisms of Π1 that preserve the Π1-conjugacy class of
J and

OutFC(Πn)G def
= AutFC(Πn)G/Inn(Πn) ⊆ OutFC(Πn).

Then every element of the image of the injection

OutFC(Πn)G ↪→ OutFC(Π1)

[cf. [NodNon], Theorem B] may be written as a prod-
uct of an element of the image of the natural injec-
tion OutFC(Πn)geo ↪→ OutFC(Π1) and an element of

Out(Π1 ⊇ J)G def
= Out(Π1 ⊇ J) ∩OutFC(Π1)

G.

To verify Claim 3.10.A, write OutFC(Πn, J)G ⊆ OutFC(Πn)G for the
subgroup of OutFC(Πn)G obtained by forming the inverse image of the
closed subgroup Out(Π1 ⊇ J) ⊆ Out(Π1) via the natural injection
OutFC(Πn)G ↪→ OutFC(Π1). Then one verifies immediately, by consid-
ering the exact sequence

1 −→ OutFC(Πn)geo −→ OutFC(Πn)
TΠtpd−→ OutC(Πtpd)

∆+ −→ 1

[cf. conditions (b), (c); [CbTpII], Definition 3.19; [CbTpII], Corollary
4.15], that, to verify Claim 3.10.A, it suffices to verify that the following
assertion holds:

Claim 3.10.B: The composite

OutFC(Πn, J)G ↪→ OutFC(Πn)
TΠtpd

� OutC(Πtpd)
∆+

is surjective.

To verify Claim 3.10.B, let (YG, S ⊆ Node(YG), φ : YG S
∼→ G) be an

n-cuspidalizable degeneration structure on G with respect to which J is
a cycle-subgroup such that YG is totally degenerate [cf. [CbTpI], Defini-
tion 2.3, (iv)]. [One verifies immediately that such a degeneration struc-
ture always exists.] Now let us identify OutFC(Πn) with OutFC(YΠn)
via a(n) [uniquely determined, up to permutation of the n factors —
cf. [NodNon], Theorem B] PFC-admissible [cf. [CbTpI], Definition 1.4,

(iii)] outer isomorphism Πn
∼→ YΠn that is compatible with the out-

omorphism of the display of Definition 3.5, (i) [cf. [CbTpII], Propo-
sition 3.24, (i)]. Then it follows immediately from the various defini-
tions involved that the closed subgroup OutFC(YΠn)brch ⊆ OutFC(YΠn)
[cf. [CbTpII], Definition 4.6, (i)] is contained in the closed subgroup
OutFC(Πn, J)G ⊆ OutFC(Πn). On the other hand, it follows immedi-
ately from the proof of [CbTpII], Corollary 4.15, that the composite

OutFC(YΠn)brch ↪→ OutFC(YΠn) = OutFC(Πn)
TΠtpd

� OutC(Πtpd)
∆+

is surjective. This completes the proof of Claim 3.10.B, hence also of
assertion (iv) in the case where either (b) or (c) is satisfied. �
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Remark 3.10.1.

(i) The content of Theorem 3.10, (iv), may be regarded, i.e., by con-
sidering the various lifting cycle-subgroups involved, as a formulation
of the construction of the two sections discussed in [Bgg2], Proposition
2.7 [which plays an essential role in the proof of [Bgg2], Theorem 2.4],
in terms of the purely combinatorial and algebraic techniques developed
in the present series of papers.

(ii) In this context, we observe in passing that [one verifies immedi-
ately that] for arbitrary nonnegative integers g, r such that 3g−3+r >
0, there exists a stable log curve of type (g, r) which admits an auto-
morphism that is linear over the base scheme under consideration and
fixes a node of the stable log curve, but switches the branches of this
node. Thus, by considering the resulting automorphism of the associ-
ated semi-graph of anabelioids of pro-Σ PSC-type, one concludes that
the diagrams of Theorem 3.10, (iii), (iv), fail to commute, in general, if
one does not allow for the possibility of composition with a cycle sym-
metry. This situation contrasts with the situation discussed in [Bgg2],
Proposition 2.7, where two independent sections are obtained, by con-
sidering orientations on the various cycles involved.

(iii) The orientation-theoretic portion of [Bgg2], Proposition 2.7,
referred to in (ii) above may be interpreted, from the point of view of
the present paper, as a lifting “C±I ” of the map CI of Theorem 3.10,
(ii), as follows. In the the notation of Theorem 3.10, let us write

Cyclen(Π1)
±

for the set of pairs consisting of a cycle-subgroup J ∈ Cyclen(Π1) and
an orientation on J [cf. Remark 3.6.2, (i)];

TpdI(Π2/1)
±

for the set of pairs consisting of a tripodal subgroup T ∈ TpdI(Π2/1) and
an orientation on T [cf. Remark 3.6.2, (ii)]. Thus, one has natural
surjections Cyclen(Π1)

± � Cyclen(Π1), TpdI(Π2/1)
± � TpdI(Π2/1),

which may be regarded as torsors over the group {±1}. Moreover,
one verifies immediately from the functoriality of the various isomor-
phisms that appeared in the constructions of Remark 3.6.2, (i), (ii),
that the action [cf. Theorem 3.10, (i)] of AutFC(Πn, I)

G on the sets
Cyclen(Π1), TpdI(Π2/1) lifts naturally to an action of AutFC(Πn, I)

G

on the sets Cyclen(Π1)
±, TpdI(Π2/1)

±. Thus, the inverse of the bijec-
tive correspondence of the final display of Remark 3.6.2, (ii), determines
a natural AutFC(Πn, I)G-equivariant lifting

C±I : Cyclen(Π1)
± −→ TpdI(Π2/1)

±

of the map CI of Theorem 3.10, (ii). Moreover, if n ≥ 3, and one regards
the Πtpd-conjugacy class of cuspidal subgroups of Πtpd determined by
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J∗tpd as being “positive”, then it follows immediately from the definition

of TpdI(Π2/1)
± that this lifting C±I naturally determines an assignment

Cyclen(Π1)
± 3 J± 7→ syn±I,J±

— where J± 7→ J ∈ Cyclen(Π1), and syn±I,J± denotes an I-conjugacy

class of isomorphisms Πtpd
∼→ CI(J) that coincides, up to possible

composition with a cycle symmetry, with the I-conjugacy class of iso-
morphisms synI,J of Theorem 3.10, (iii) — such that if, in the diagram
[of Itpd-, I-conjugacy classes of isomorphisms] in the display of The-
orem 3.10, (ii), (c), one replaces “syn” by “syn±”, then the diagram
commutes, i.e., even if one does not allow for possible composition
with cycle symmetries.

Definition 3.11. Suppose that Σ = Primes, and that k = C, i.e.,
that we are in the situation of Definition 2.22. We shall apply the
notational conventions established in Definition 2.22. Moreover, we
shall use similar notation

YE
def
= (Y log

E )an(C)|s, YΠdisc
E

def
= π1(YE), Yn

def
= Y{1,...,n}, Y

def
= Y1,

YΠdisc
n

def
= YΠdisc

{1,...,n},
Ypan

E/E′ : YE → YE′ , YpΠdisc

E/E′ : YΠdisc
E � YΠdisc

E′ ,

YΠdisc
E/E′

def
= Ker(YpΠdisc

E/E′) ⊆ YΠdisc
E ,

Ypan
n/m

def
= Ypan

{1,...,n}/{1,...,m} : Yn −→ Ym,

YpΠdisc

n/m
def
= YpΠdisc

{1,...,n}/{1,...,m} :
YΠdisc

n � YΠdisc
m ,

YΠdisc
n/m

def
= YΠdisc

{1,...,n}/{1,...,m} ⊆ YΠdisc
n , YΠ̂disc

(−) ,

YGdisc, YGdisc
i∈E,y, ΠYGdisc , ΠYGdisc

i∈E,y

for objects associated to the stable log curve Y log = Y log
1 to the notation

introduced in Definitions 2.22, 2.23.

Definition 3.12. Let J be a semi-graph of temperoids of HSD-type
[cf. Definition 2.3, (iii)]. Then we shall refer to a triple

(H, S ⊆ Node(H), φ : H S
∼→ J )

[cf. Definition 2.9] consisting of a semi-graph of temperoids of HSD-

type H, a subset S ⊆ Node(H), and an isomorphism φ : H S
∼→ J of

semi-graphs of temperoids of HSD-type as a degeneration structure on
J .
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Definition 3.13. In the situation of Definition 3.11:

(i) Let (YGdisc, S ⊆ Node(YGdisc), φ : YGdisc
 S

∼→ Gdisc) be a degener-
ation structure on Gdisc [cf. Definition 3.12], e ∈ S, and J ⊆ Πdisc

1 a
subgroup of Πdisc

1 . Then we shall say that J ⊆ Πdisc
1 is a cycle-subgroup

of Πdisc
1 [with respect to (YGdisc, S ⊆ Node(YGdisc), φ : YGdisc

 S
∼→ Gdisc),

associated to e ∈ S] if J is contained in the Πdisc
1 -conjugacy class of

subgroups of Πdisc
1 obtained by forming the image of a nodal subgroup

of ΠYGdisc associated to e via the composite of outer isomorphisms

ΠYGdisc

Φ−1
YGdisc
 S
∼−→ ΠYGdisc

 S

∼−→ ΠGdisc
∼−→ Πdisc

1

— where the first arrow is the inverse of the specialization outer iso-
morphism ΦYGdisc

 S
[cf. Proposition 2.10], the second arrow is the graphic

[cf. Definition 2.7, (ii)] outer isomorphism ΠYGdisc
 S

∼→ ΠGdisc induced by

φ, and the third arrow is the natural outer isomorphism ΠGdisc
∼→ Πdisc

1

[cf. the left-hand portion of Figure 1].

(ii) Let J ⊆ Πdisc
1 be a cycle-subgroup of Πdisc

1 [cf. (i)]. Thus, we
have

(a) a degeneration structure (YGdisc, S ⊆ Node(YGdisc), φ : YGdisc
 S

∼→
Gdisc) on Gdisc [cf. Definition 3.12],

(b) an isomorphism YΠdisc
1

∼→ Πdisc
1 that is compatible with the

composite of the display of (i) in the case where we take the “(YGdisc, S ⊆
Node(YGdisc), φ : YGdisc

 S
∼→ Gdisc)” of (i) to be the degeneration structure

of (a),

(c) an isomorphism YΠdisc
2

∼→ Πdisc
2 that lifts [cf. Corollary 2.20,

(v)] the isomorphism of (b) and determines a PFC-admissible isomor-
phism between the respective profinite completions, and

(d) a nodal subgroup Πe ⊆ ΠYGdisc
∼← YΠdisc

1 of ΠYGdisc
∼← YΠdisc

1

associated to a [uniquely determined — cf. Corollary 2.18, (iii)] node e
of YGdisc

such that the image of the nodal subgroup Πe ⊆ ΠYGdisc
∼← YΠdisc

1 of

(d) via the isomorphism YΠdisc
1

∼→ Πdisc
1 of (b) coincides with J ⊆ Πdisc

1 .
We shall say that a subgroup T ⊆ Πdisc

2/1 of Πdisc
2/1 is a tripodal sub-

group associated to J if T coincides with the image, via the lifting
YΠdisc

2
∼→ Πdisc

2 of (c), of some {1, 2}-tripod in YΠdisc
2/1 ⊆ YΠdisc

2 [cf. Def-

inition 2.23, (ii)] arising from e [cf. Definition 2.23, (iii); [CbTpII],
Definition 3.7, (i)], and, moreover, the centralizer ZΠdisc

2
(T ) maps bijec-

tively, via pΠdisc

2/1 : Πdisc
2 � Πdisc

1 , onto J ⊆ Πdisc
1 [cf. Corollary 2.17, (i);

[CbTpII], Lemma 3.11, (vii)].
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(iii) Let J ⊆ Πdisc
1 be a cycle-subgroup of Πdisc

1 [cf. (i)] and T ⊆
Πdisc

2/1 a tripodal subgroup associated to J [cf. (ii)]. Then we shall refer

to a subgroup of T that arises from a nodal (respectively, cuspidal)
subgroup contained in the {1, 2}-tripod in YΠdisc

2/1 ⊆ YΠdisc
2 of (ii) as a

lifting cycle-subgroup (respectively, distinguished cuspidal subgroup) of
T [cf. the right-hand portion of Figure 1].

(iv) Let J ⊆ Πdisc
1 be a cycle-subgroup of Πdisc

1 [cf. (i)]; T ⊆ Πdisc
2/1 a

tripodal subgroup associated to J [cf. (ii)]; I ⊆ T a distinguished cuspi-
dal subgroup of T [cf. (iii)]. Then it follows immediately from the vari-
ous definitions involved, together with Theorem 2.24, (i), that there ex-
ists a unique outomorphism ι of T such that the induced outomorphism

of the profinite completion T̂ of T coincides with the outomorphism of

T̂ determined by the cycle symmetry of T̂ associated to the profinite

completion Î of I [cf. Definition 3.8]. Moreover, since I is commensu-
rably terminal in T [cf. Corollary 2.18, (v)], it follows immediately from
Corollary 2.17, (ii), that there exists a uniquely determined I-conjugacy
class of automorphisms of T that lifts ι and preserves I ⊆ T . We shall
refer to this I-conjugacy class of automorphisms of T as the cycle sym-
metry of T associated to I.

Theorem 3.14 (Discrete version of canonical liftings of cycles).
In the notation of Definition 3.11, let I ⊆ Πdisc

2/1 ⊆ Πdisc
2 be a cuspi-

dal inertia group associated to the diagonal cusp of a fiber of pan
2/1;

Πtpd ⊆ Πdisc
3 a central {1, 2, 3}-tripod of Πdisc

3 [cf. Definition 2.23,
(ii), (iii)]; Itpd ⊆ Πtpd a cuspidal subgroup of Πtpd that does not arise
from a cusp of a fiber of pan

3/2; J
∗
tpd, J

∗∗
tpd ⊆ Πtpd cuspidal subgroups

of Πtpd such that Itpd, J
∗
tpd, and J∗∗tpd determine three distinct Πtpd-

conjugacy classes of subgroups of Πtpd. [Note that one verifies immedi-
ately from the various definitions involved that such cuspidal subgroups
Itpd, J

∗
tpd, and J∗∗tpd always exist.] For α ∈ AutFC(Πdisc

2 ) [cf. the nota-
tional conventions introduced in the statement of Corollary 2.20], write

α1 ∈ AutFC(Πdisc
1 )

for the automorphism of Πdisc
1 determined by α;

AutFC(Πdisc
2 , I) ⊆ AutFC(Πdisc

2 )

for the subgroup consisting of β ∈ AutFC(Πdisc
2 ) such that β(I) = I;

AutFC(Πdisc
2 )G ⊆ AutFC(Πdisc

2 )

for the subgroup consisting of β ∈ AutFC(Πdisc
2 ) such that the image of

β via the composite AutFC(Πdisc
2 ) � OutFC(Πdisc

2 )
∼→ OutFC(Πdisc

1 ) →
Out(ΠGdisc) — where the second arrow is the natural bijection of Corol-
lary 2.20, (v), and the third arrow is the homomorphism induced by
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the natural outer isomorphism Πdisc
1

∼→ ΠGdisc — is graphic [cf. Defi-
nition 2.7, (ii)];

AutFC(Πdisc
2 , I)G def

= AutFC(Πdisc
2 , I) ∩ AutFC(Πdisc

2 )G;

Cycle(Πdisc
1 )

for the set of cycle-subgroups of Πdisc
1 [cf. Definition 3.13, (i)];

TpdI(Π
disc
2/1 )

for the set of subgroups T ⊆ Πdisc
2/1 such that T is a tripodal subgroup

associated to some cycle-subgroup of Πdisc
1 [cf. Definition 3.13, (ii)],

and, moreover, I is a distinguished cuspidal subgroup [cf. Defini-
tion 3.13, (iii)] of T . Then the following hold:

(i) Let α ∈ AutFC(Πdisc
2 , I)G, J ∈ Cycle(Πdisc

1 ), and T ∈ TpdI(Π
disc
2/1 ).

Then it holds that

α1(J) ∈ Cycle(Πdisc
1 ), α(T ) ∈ TpdI(Π

disc
2/1 ).

Thus, AutFC(Πdisc
2 , I)G acts naturally on Cycle(Πdisc

1 ), TpdI(Π
disc
2/1 ).

(ii) There exists a unique AutFC(Πdisc
2 , I)G-equivariant [cf. (i)]

map

CI : Cycle(Πdisc
1 ) −→ TpdI(Π

disc
2/1 )

such that, for every J ∈ Cycle(Πdisc
1 ), CI(J) is a tripodal subgroup

associated to J . Moreover, for every α ∈ AutFC(Πdisc
2 , I)G and J ∈

Cycle(Πdisc
1 ), the isomorphism CI(J)

∼→ CI(α1(J)) induced by α maps
every lifting cycle-subgroup [cf. Definition 3.13, (iii)] of CI(J) bi-
jectively onto a lifting cycle-subgroup of CI(α1(J)).

(iii) There exists an assignment

Cycle(Πdisc
1 ) 3 J 7→ synI,J

— where synI,J denotes an I-conjugacy class of isomorphisms Πtpd
∼→

CI(J) — such that

(a) synI,J maps Itpd bijectively onto I in a fashion that is com-

patible with the natural isomorphism Itpd
∼→ I induced by the pro-

jection pΠdisc

{1,2,3}/{1,3} : Πdisc
3 � Πdisc

{1,3} and the natural outer isomorphism

Πdisc
{1,3}

∼→ Πdisc
{1,2} obtained by switching the labels “2” and “3” [cf. Corol-

lary 2.17, (ii); Corollary 2.18, (v); [CbTpII], Lemma 3.6, (iv)],

(b) synI,J maps J∗tpd, J
∗∗
tpd bijectively onto lifting cycle-subgroups

of CI(J), and
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(c) for α ∈ AutFC(Πdisc
2 , I)G, the diagram [of Itpd-, I-conjugacy

classes of isomorphisms]

Πtpd −−−→ Πtpd

synI,J

y ysynI,α1(J)

CI(J) −−−→ CI(α1(J))

— where the upper horizontal arrow is the [uniquely determined —
cf. the commensurable terminality of Itpd of Πtpd discussed in Corol-
lary 2.18, (v)] Itpd-conjugacy class of automorphisms of Πtpd that lifts
TΠtpd

(α) [cf. Corollary 2.20, (v); Theorem 2.24, (iv)] and preserves
Itpd; the lower horizontal arrow is the I-conjugacy class of isomor-
phisms induced by α [cf. (ii)] — commutes up to possible composition
with the cycle symmetry of CI(α1(J)) associated to I [cf. Defini-
tion 3.13, (iv)].

Finally, the assignment

J 7→ synI,J

is uniquely determined, up to possible composition with cycle sym-
metries, by these conditions (a), (b), and (c).

(iv) Let α ∈ AutFC(Πdisc
2 , I)G and J ∈ Cycle(Π1). Then there

exists an automorphism β ∈ AutFC(Πdisc
2 , I)G such that TΠtpd

(β) [cf.
Corollary 2.20, (v); Theorem 2.24, (iv)] is trivial, and, moreover,
α1(J) = β1(J). Finally, the diagram [of Itpd-, I-conjugacy classes of
isomorphisms]

Πtpd Πtpd

synI,J

y ysynI,α1(J)=synI,β1(J)

CI(J) −−−→ CI(α1(J)) = CI(β1(J))

— where the lower horizontal arrow is the isomorphism induced by
β [cf. (ii)] — commutes up to possible composition with the cycle
symmetry of CI(α1(J)) = CI(β1(J)) associated to I.

Proof. Assertion (i) follows from the various definitions involved. As-
sertion (ii) follows immediately from the evident discrete version [cf.
Corollaries 2.17, (ii); 2.18, (i), (ii), (iii)] of the argument involving Re-
mark 3.6.1 that was given in the proof of Theorem 3.10, (ii). The
existence portion of assertion (iii) follows, in light of Corollaries 2.17,
(ii); 2.18, (iii); 2.20, (i), (v), from a similar argument to the argument
applied in the proof of the existence portion of Theorem 3.10, (iii) [cf.
also the fact that the “synI,J” of Theorem 3.10, (iii), was constructed
from a suitable geometric outer isomorphism]. The uniqueness portion
of assertion (iii) follows from the compatibility portion of condition (a),
together with the computation of discrete outomorphism groups given
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in Theorem 2.24, (ii). Assertion (iv) follows immediately from asser-
tion (iii), together with a similar argument to the argument applied
in the proof of the surjectivity portion of Theorem 2.24, (iv) [cf. the
argument given in the proof of Theorem 3.10, (iv)]. This completes the
proof of Theorem 3.14. �

Remark 3.14.1. One verifies immediately that the discrete construc-
tions of Theorem 3.14, (i), (ii), (iii), (iv), are compatible, in an evident
sense, with the pro-Σ constructions of Theorem 3.10, (i), (ii), (iii), (iv).
We leave the routine details to the reader.

Remark 3.14.2. One verifies immediately that remarks analogous to
Remarks 3.6.2, 3.10.1 in the profinite case may be made in the dis-
crete situation treated in Theorem 3.14. In this context, we observe
that the theory of the “modules of local orientations Λ” developed in
[CbTpI], §3, admits a straightforward discrete analogue, which may be

applied to conclude that the “orientation isomorphisms J
∼→ ΛG” of

Remark 3.6.2, (i), are compatible with the natural discrete structures on
the domain and codomain. Alternatively, in the discrete case, relative
to the notation of Definition 2.2, (iii), one may think of these modules
“Λ” as the Z-duals of the second relative singular cohomology modules
[with Z-coefficients]

H2(UX , ∂UX ; Z)

— cf. the discussion of orientations in [CbTpI], Introduction. Then
the discrete version of the key isomorphisms [cf. the constructions of
Remark 3.6.2] of [CbTpI], Corollary 3.9, (v), (vi), may be obtained by
considering the connecting homomorphism [from first to second coho-
mology modules] in the long exact cohomology sequence associated to
the pair (UX , ∂UX). We leave the routine details to the reader.
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Appendix. Explicit limit seminorms associated to
sequences of toric surfaces

In the proof of Corollary 1.15, (ii), we considered sequences of dis-
crete valuations that arose from vertices or edges of the dual graphs
associated to the geometric special fibers of a tower of coverings of
stable log curves and, in particular, observed that the convergence of
a suitable subsequence of such a sequence follows immediately from
the general theory of Berkovich spaces. In the present Appendix, we
reexamine this convergence phenomenon from a more elementary and
explicit — albeit logically unnecessary, from the point of view of proving
Corollary 1.15, (ii)! — point of view that only requires a knowledge
of elementary facts concerning log regular log schemes, i.e., without
applying the terminology and notions [e.g., of “Stone-Čech compact-
ifications”] that frequently appear in the general theory of Berkovich
spaces [cf. the proof of [Brk1], Theorem 1.2.1]. In particular, we discuss
the notion of a “stratum” of a “toric surface” [cf. Definition A.1 below],
which generalizes the notion of a vertex or edge of the dual graph of
the special fiber of a stable curve over a complete discrete valuation
ring. We observe that such a stratum determines a discrete valuation
[cf. Definition A.4] and consider, at a quite explicit level, the limit of a
suitable subsequence of a given sequence of such discrete valuations [cf.
Theorem A.7 below]. The material presented in this Appendix is quite
elementary and “well-known”, but we chose to include it in the present
paper since we were unable to find a suitable reference that discusses
this material from a similar point of view.

In the present Appendix, let R be a complete discrete valuation ring.
Write K for the field of fractions of R and S log for the log scheme

obtained by equipping S def
= Spec(R) with the log structure determined

by the unique closed point of S.

Definition A..1.

(i) We shall refer to an fs log scheme X log over S log as a toric surface
over S log if the following conditions are satisfied:

(a) The underlying scheme X of X log is of finite type, flat, and of
pure relative dimension one [i.e., every irreducible component of every
fiber of the underlying morphism of schemes X → S is of dimension
one] over S.

(b) The fs log scheme X log is log regular.

(c) The interior [cf., e.g., [MT], Definition 5.1, (i)] of the log
scheme X log is equal to the open subscheme X ×R K ⊆ X .

Given two toric surfaces over S log, there is an evident notion of iso-
morphism of toric surfaces over S log.
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(ii) Let X log be a toric surface over S log [cf. (i)] and n a nonnegative
integer. Write X [n] ⊆ X for the n-interior of X log [cf. [MT], Definition
5.1, (i)] and X [−1] ⊆ X for the empty subscheme. Then we shall refer
to a connected component of X [n] \X [n−1] as an n-stratum of X log. We
shall write

Strn(X log)

for the set of n-strata of X log [so Strn(X log) = ∅ if n ≥ 3] and

Str(X log)
def
= Str1(X log) t Str2(X log).

Definition A..2. Let I be a totally ordered set that is isomorphic to
N [equipped with its usual ordering]. In particular, it makes sense to
speak of “limits i → ∞” of collections of objects indexed by i ∈ I, as
well as to speak of the “next largest element” i+ 1 ∈ I associated to a
given element i ∈ I. Then we shall refer to a sequence of fs log schemes

· · · −−−→ X log
i+1 −−−→ X

log
i −−−→ · · ·

— where i ranges over the elements of I — over S log [indexed by I] as

a sequence of toric surfaces over S log if, for each i ∈ I, X log
i is a toric

surface over S log [cf. Definition A.1, (i)], and, moreover, the morphism

X log
i+1 → X

log
i is dominant. Observe that the horizontal arrows of the

above diagram determine a sequence of maps of sets

· · · −→ Str(X log
i+1) −→ Str(X log

i ) −→ · · · .

Finally, given two sequences of toric surfaces over S log, there is an
evident notion of isomorphism of sequences of toric surfaces over S log.

Definition A..3. Let X log be a toric surface over S log and A a strict
henselization of X at [the closed point determined by] z ∈ Str2(X log)
[cf. Definition A.1, (i), (ii)]. Write F for the field of fractions of A; k for

the residue field of A; mA for the maximal ideal of A; Xz
def
= Spec(A);

MX for the sheaf of monoids on X that defines the log structure of
X log; M for the fiber ofMX/O×

X at the maximal ideal of A;

Q
def
= Hom(M,Q≥0) ⊆ P

def
= Hom(M,R≥0) ⊆ V

def
= Hom(M,R)

— where we write Q≥0, R≥0 for the respective submonoids deter-
mined by the nonnegative elements of the [additive groups] Q, R and
“Hom(M,−)” for the monoid consisting of homomorphisms of monoids
from M to “(−)”. Thus, one verifies easily that V is equipped with a
natural structure of two-dimensional vector space over R. In the fol-
lowing, we shall use the superscript “gp” to denote the groupification
of any of the monoids of the above discussion.
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(i) We shall say that a submonoid L ⊆ P of P is a P -ray if L is
the R≥0-orbit of some nonzero element of P , relative to the natural
[multiplicative] action of R≥0 on P .

(ii) We shall say that a P -ray L ⊆ P [cf. (i)] is rational (respectively,
irrational) if L ∩Q 6= {0} (respectively, L ∩Q = {0}).

(iii) Let L ⊆ P be a rational P -ray [cf. (i), (ii)]. Then we shall
write vL : F× → Q ⊆ R for the discrete valuation associated to the
irreducible component of the blow-up of Xz associated to L ⊆ P , nor-
malized so as to map each prime element πR of R ⊆ F to 1 ∈ Q. That
is to say, if λ ∈ L [which, by a slight abuse of notation, we regard as
a homomorphism Mgp → R] maps πR 7→ 1 ∈ Q [so λ ∈ L ∩ Q], and
f ∈ F lies in the A×-orbit determined by m ∈Mgp, then

vL(f) = λ(m) ∈ Q.

Here, we observe that [one verifies easily that] the submonoid ML
def
=

λ−1(Q≥0) ⊆ Mgp is isomorphic to Z × N. In particular, if we denote
by FL ⊆ F the set of f ∈ F that lie in the A×-orbits determined by
m ∈ML and write AL ⊆ F for the A-subalgebra generated by f ∈ FL,
then the “blow-up of Xz associated to L” referred to above may be
described explicitly as

XL
def
= Spec(AL) −→ Xz.

Indeed, if we write pL ⊆ AL for the ideal generated by the set of f ∈
F that lie in the A×-orbits determined by the noninvertible elements
m ∈ ML, then it follows immediately from the simple structure of the
monoid Z × N that pL is the prime ideal of height one in AL that
corresponds to the discrete valuation vL, and that the k-algebra AL/pL

is isomorphic to k[U,U−1], where U is an indeterminate.

(iv) Write MS for the sheaf of monoids on S that defines the log
structure of S log; MR for the fiber ofMS/O×

S at the unique closed point

of S; VR
def
= Hom(MR,R). Then one verifies easily that VR is a one-

dimensional vector space over R, and that the morphism X log → S log

determines an R-linear surjection V � VR. Let eα, eβ ∈ P be such
that R≥0 · eα + R≥0 · eβ = P , and, moreover, the images of eα, eβ in
VR coincide. [Note that the existence of such elements eα, eβ ∈ P
follows, e.g., from [ExtFam], Proposition 1.7.] Then we shall refer to
the [necessarily rational — cf. (ii)] P -ray R≥0 · (eα + eβ) ⊆ P [cf. (i)] as
the midpoint P -ray at z ∈ Str2(X log). Here, we note that one verifies
easily that the P -ray R≥0 · (eα + eβ) does not depend on the choice of
the pair (eα, eβ).

(v) We shall refer to a valuation w : F× → R as admissible if w
dominates A and maps each prime element πR of R ⊆ F to 1 ∈ R. Let
w be an admissible valuation. Then by restricting w to the elements
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f ∈ F that lie in the A×-orbits determined by m ∈ M , one obtains
a nonzero homomorphism of monoids M → R≥0, i.e., an element of
P . We shall refer to the P -ray Lw determined by this element of P
as the P -ray associated to the admissible valuation w. Thus, if Lw is
rational [cf. (ii)], then it follows immediately from the definitions that,
in the notation of (iii), the valuation of A determined by w extends to
a valuation of ALw (⊇ A).

Remark A..3.1. In the notation of Definition A.3, the usual topology
on the real vector space V naturally determines a topology on the
subspace P ⊆ V , as well as on the set of P -rays [i.e., which may
be regarded as the complement of the “zero element” in the quotient
space P/R≥0]. Moreover, one verifies easily that, if eα and eβ are as in
Definition A.3, (iv), then the assignment

R ⊇ [0, 1] 3 γ 7→ R≥0 · (γ · eα + (1− γ) · eβ)

determines a homeomorphism of the closed interval [0, 1] ⊆ R onto the
resulting topological space of P -rays, and that the subset of rational
P -rays is dense in the space of P -rays. In particular, it makes sense
to speak of non-extremal (respectively, extremal) P -rays, i.e., P -rays
that lie (respectively, do not lie) in the interior — i.e., relative to
the homeomorphism just discussed, the open interval (0, 1) ⊆ [0, 1]
(respectively, the endpoints {0, 1} ⊆ [0, 1]) — of the space of P -rays.
Finally, we observe that the two extremal P -rays are rational, and that
a rational P -ray is non-extremal if and only if its associated discrete
valuation [cf. Definition A.3, (iii)] is admissible [cf. Definition A.3, (v)].

Definition A..4. Let X log be a toric surface over S log, z ∈ Str(X log)
[cf. Definition A.1, (i), (ii)]. Write F for the residue field of the generic
point of the irreducible component of X on which [the subset of X
determined by] z ∈ Str(X log) lies. Then one may associate to z ∈
Str(X log) a collection of distinguished valuations on F , as well as a
uniquely determined canonical valuation on F , as follows:

(i) If z is a 1-stratum, then we take both the unique distinguished
valuation and the canonical valuation associated to z to be the discrete
valuation

F× −→ Q ⊆ R
associated to the prime of height 1 determined by z, normalized so as
to map each prime element πR of R ⊆ F to 1 ∈ Q.

(ii) If z is a 2-stratum, then we take the collection of distinguished
valuations associated to z to be the discrete valuations

F× −→ Q ⊆ R
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determined by the restrictions of the discrete valuations associated to
the rational P -rays [cf. Definition A.3, (iii)]. We take the canonical
valuation associated to z to be the discrete valuation determined by
the restriction of the discrete valuation associated to the midpoint P -
ray at z [cf. Definition A.3, (iii), (iv)].

Here, we note that the construction from z of either the collection of dis-
tinguished valuations or the uniquely determined canonical valuation is
functorial with respect to arbitrary isomorphisms of pairs (X log, z) [i.e.,
pairs consisting of a toric surface over S log and an element of “Str(−)”
of the toric surface].

Remark A..4.1. One verifies immediately that the [noncuspidal] val-
uations of the discussion preceding Corollary 1.15 correspond precisely
to the canonical valuations of Definition A.4.

Lemma A..5 (Valuations associated to irrational rays). In the
notation of Definition A.3, let L ⊆ P be an irrational P -ray [cf.
Definition A.3, (i), (ii)], {Li}∞i=1 a sequence of P -rays such that L =
limi→∞ Li [cf. Remark A..3.1], and {wi}∞i=1 a sequence of admissible
valuations such that, for each positive integer i, Li is the P -ray as-
sociated to wi [cf. Definition A.3, (v)]. Then there exists a uniquely
determined admissible valuation [cf. Definition A.3, (v)]

vL : F× −→ R
such that the P -ray associated to vL [cf. Definition A.3, (v)] is equal
to L, and, moreover, for each f ∈ F×, it holds that

vL(f) = lim
i→∞

wi(f).

This valuation vL is the unique admissible valuation [i.e., in the sense
of Definition A.3, (v)] for which the associated P -ray is equal to L.
In particular, vL depends only on the P -ray L ⊆ P , i.e., is inde-
pendent of the choice of the sequences {Li}∞i=1 and {wi}∞i=1. If λ ∈ L
maps a prime element πR of R to 1 ∈ R, J is a nonempty finite set,
{mj}j∈J is a collection of distinct elements of Mgp, and {fj}j∈J is a
collection of elements of F such that fj lies in the A×-orbit determined
by mj, then

vL(
∑
j∈J

fj) = min
j∈J

λ(mj) ∈ R.

Proof. One may define vL(−) by considering elements of A modulo
sufficiently large powers of mA and applying the formula of the final
display of the statement of Lemma A.5. It is then a straightforward
exercise to verify that vL(−), defined in this way, determines a valu-
ation on F that satisfies the properties asserted in the statement of
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Lemma A.5. Here, it is crucial to apply the fact that the irrationality
of L implies that the map Mgp → R determined by λ ∈ L is injective.
This injectivity means that the vL(−) of any sum of elements as in
the final display of the statement of Lemma A.5 may be computed in
an entirely straightforward manner, i.e, as the minimum of the values
λ(mj) ∈ R. Indeed, the subtleties that arise when L is rational, and
this sort of injectivity fails to hold amount, in essence, to the portion
of the proof of Theorem A.7 given below in the case where “condition
(1) is satisfied”. �

Lemma A..6 (Convergence of midpoints of closed intervals).
Let

· · · ⊆ [ai+1, bi+1] ⊆ [ai, bi] ⊆ [ai−1, bi−1] ⊆ · · · ⊆ [a0, b0]
def
= [0, 1] ⊆ R

— where i ranges over the nonnegative integers — be a sequence of
inclusions of nonempty closed intervals in [0, 1]. For each i, write ci for

the midpoint of the closed interval [ai, bi], i.e., ci
def
= (ai+bi)/2 ∈ [ai, bi].

Then the sequence of midpoints {ci}∞i=1 converges.

Proof. This follows immediately from the [easily verified] fact that the
sequences {ai}∞i=1, {bi}∞i=1 converge. �

Theorem A..7 (Explicit limit seminorms associated to sequences
of toric surfaces). Let R be a complete discrete valuation ring
and I a totally ordered set that is isomorphic to N [equipped with its
usual ordering]. Write K for the field of fractions of R and S log for the

log scheme obtained by equipping S def
= Spec(R) with the log structure

determined by the unique closed point of S. Let

· · · −−−→ X log
i+1 −−−→ X

log
i −−−→ · · ·

be a sequence of toric surfaces over S log indexed by I [cf. Definition A.2]
and

{zi}i∈I ∈ lim←−
i∈I

Str(X log
i )

[cf. Definitions A.1, (ii); A.2]. Then, after possibly replacing I by a
suitable cofinal subset of I, there exist sequences

{vi : F
×
i → R}i∈I , {vzi

}i∈I

— where, for each i ∈ I, Fi denotes the residue field of some point
xi ∈ Xi ×R K; vi : F

×
i → R is a valuation; vzi

is a distinguished
valuation associated to zi [cf. Definition A.4] — such that

(a) vi maps each prime element of R ⊆ Fi to 1 ∈ R [which thus
implies that vi dominates R];
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(b) the xi’s and vi’s are compatible [in the evident sense] with re-

spect to the upper horizontal arrows X log
i+1 → X

log
i of the above diagram;

(c) for every nonzero rational function f on the irreducible com-
ponent of Xi containing xi that is regular at xi, hence determines an
element f ∈ Fi [cf. Remark A..7.1 below], it holds that

vi(f) = lim
j→∞

vzj
(f)

[cf. Definition A.4] — where j ranges over the elements of I that are
≥ i, and we regard vi as a map defined on Fi by sending Fi 3 0 7→ +∞.

Finally, these sequences of valuations {vi}i∈I , {vzi
}i∈I may be con-

structed in a way that is functorial [in the evident sense] with respect
to isomorphisms of pairs consisting of a sequence of toric surfaces over
S log and a compatible collection of strata [i.e., “{zi}i∈I”].

Proof. Until further notice, we take, for each i ∈ I, vzi
to be the canon-

ical valuation associated to zi [cf. Definition A.4]. Next, let us observe
that one verifies easily that we may assume without loss of generality,
by replacing I by a suitable cofinal subset of I, that there exists an
element n ∈ {1, 2} such that every member of {zi} is an n-stratum,
i.e., one of the following conditions is satisfied:

(1) Every member of {zi} is a 1-stratum.

(2) Every member of {zi} is a 2-stratum.

First, we consider Theorem A.7 in the case where condition (1) is
satisfied. For each i ∈ I, write Zi ⊆ Xi for the reduced closed sub-
scheme of Xi whose underlying closed subset [⊆ Xi] is the closure of the
subset of X determined by the 1-stratum zi. Then let us observe that
if, after possibly replacing I by a suitable cofinal subset of I, it holds
that, for each i ∈ I, the composite Zi+1 ↪→ Xi+1 → Xi is quasi-finite,
then the system consisting of the vzi

’s [cf. Definition A.4, (i)] already
yields a system of valuations {vi}i∈I as desired. Thus, we may assume
without loss of generality, by replacing I by a suitable cofinal subset of
I, that, for each i ∈ I, the composite Zi+1 ↪→ Xi+1 → Xi is not quasi-
finite, i.e., that the image of this composite is a closed point yi ∈ Xi of
Xi. Here, we observe that since we are operating under the assumption
that condition (1) is satisfied, it follows from the fact that zi+1 7→ zi

that yi necessarily lies in the regular locus of Xi.
For each i ∈ I, write Bi for the local ring of Xi at yi ∈ Xi, Ei for

the field of fractions of Bi, and vzi
: E×

i → R for the discrete valuation
defined in Definition A.4, (i). Thus, one verifies immediately that the
morphisms

· · · → Xi+1 → Xi → · · ·
induce compatible chains of injections

· · · ↪→ Bi ↪→ Bi+1 ↪→ · · · ,
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· · · ↪→ Ei ↪→ Ei+1 ↪→ · · · .
Moreover, if πR is a prime element of R, then the discrete valuation
vzi

may be interpreted as the discrete valuation of Bi determined by
the unique height one prime of Bi that contains πR. In particular,
since Bi is regular, hence a unique factorization domain, one verifies
immediately — by considering the extent to which positive powers of
an element f ∈ Bi are divisible, in Bi or in Bi+1, by positive powers of
πR — that, for each i ∈ I and f ∈ Bi, it holds that

(0 ≤) vzi
(f) ≤ vzi+1

(f). (∗)

For each i ∈ I, write

pi
def
= { f ∈ Bi | lim

j→∞
vzj

(f) = +∞} ⊆ Bi.

Then since each vzj
is a discrete valuation, one verifies immediately that

pi ⊆ Bi is a prime ideal of Bi. Moreover, since πR 6∈ pi, we conclude
that the ideal pi is not maximal, i.e., that the height of pi is ∈ {0, 1}.
Next, let us observe that if, after possibly replacing I by a suitable
cofinal subset of I, it holds that, for each i ∈ I, the prime ideal pi is of
height 1, then it follows immediately that pi determines a closed point
xi of the generic fiber of Xi, and that, if we write Fi for the residue
field of Xi at xi and vi : F

×
i → R for the uniquely determined [since

Fi is a finite extension of K] discrete valuation on Fi that extends the
given discrete valuation on K and maps πR 7→ 1 ∈ R, then the limit
limj→∞ vzj

(−) [cf. (∗)] determines a valuation on Fi = (Bi)pi
/pi(Bi)pi

that necessarily coincides [since Fi is a finite extension of K] with vi;
in particular, one obtains a system of valuations {vi}i∈I as desired.

Thus, we may assume without loss of generality, by replacing I by
a suitable cofinal subset of I, that, for each i ∈ I, the prime ideal
pi is of height 0, i.e., pi = {0}, hence determines a generic point xi

of some irreducible component of Xi such that Ei may be naturally
identified with the residue field Fi of Xi at xi. But this implies that,
for f ∈ E×

i = F×
i , the quantity

vi(f)
def
= lim

j→∞
vzj

(f) ∈ R

is well-defined [cf. (∗)]. Moreover, one verifies immediately that this
definition of vi determines a valuation on Ei = Fi. In particular, one
obtains a system of valuations {vi}i∈I as desired. This completes the
proof of Theorem A.7 in the case where condition (1) is satisfied.

Next, we consider Theorem A.7 in the case where condition (2) is
satisfied. For each i ∈ I, write Qi, Pi, Vi for the objects “Q”, “P”, “V ”
defined in Definition A.3 in the case where we take the data “(X log, z ∈
Str2(X log))” in Definition A.3 to be (X log

i , zi ∈ Str2(X log
i )). Then one

verifies easily that the morphism X log
i+1 → X

log
i determines a nontrivial
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R-linear map Vi+1 → Vi that maps Qi+1, Pi+1 ⊆ Vi+1 into Qi, Pi ⊆ Vi,
respectively.

Next, let us observe that if, after possibly replacing I by a suitable
cofinal subset of I, it holds that, for each i ∈ I, the R-linear map
Vi+1 → Vi is of rank one, i.e., the image of Pi+1 ⊆ Vi+1 in Vi is a rational
Pi-ray Li [cf. Definition A.3, (i), (ii)], then we may assume without loss
of generality, by taking vzi

to be the distinguished valuation associated
to the rational Pi-ray Li [cf. Definition A.4, (ii); Remark A..7.2 below]
and then replacing the pair (Xi, zi) by the pair consisting of the blow-
up of Xi and the 1-stratum of this blow-up determined by Li [cf. the
discussion of Definition A.3, (iii), (v); Remark A..3.1], that condition
(1) is satisfied. Thus, we may assume without loss of generality, by
replacing I by a suitable cofinal subset of I, that, for each i ∈ I, the
R-linear map Vi+1 → Vi is of rank 6= 1, hence [cf. the existence of the
R-linear surjection “V � VR” of Definition A.3, (iv)] of rank two, i.e.,
an isomorphism.

Since the R-linear map Vi+1 → Vi is an isomorphism, it follows im-
mediately from Lemma A.6, together with Remark A..3.1, that, for each
i ∈ I, the sequence consisting of the images in Pi of the midpoint Pj-
rays [cf. Definition A.3, (iv)], where j ranges over the elements of I such
that j ≥ i, converges to a [not necessarily rational] Pi-ray Li,∞ ⊆ Pi.
If, after possibly replacing I by a suitable cofinal subset of I, it holds
that, for each i ∈ I, the Pi-ray Li,∞ is rational, then we may assume
without loss of generality, by taking vzi

to be the distinguished valu-
ation associated to the rational Pi-ray Li,∞ [cf. Definition A.4,
(ii); Remark A..7.2 below] and then replacing the pair (Xi, zi) by the
pair consisting of the blow-up of Xi and the 1-stratum of this blow-
up determined by Li,∞ [cf. the discussion of Definition A.3, (iii), (v);
Remark A..3.1], that condition (1) is satisfied. Thus, it remains to con-
sider the case in which we may assume without loss of generality, by
replacing I by a suitable cofinal subset of I, that, for each i ∈ I, the
Pi-ray Li,∞ is irrational. Then the system consisting of the valuations
vLi,∞ ’s of Lemma A.5 yields a system of valuations {vi}i∈I as desired.
This completes the proof of Theorem A.7. �

Remark A..7.1. In the situation of Theorem A.7, for I 3 j ≥ i, write
zi

j for the irreducible locally closed subset of Xi determined by the image

of the stratum zj in Xi. Thus, zi
j′ ⊆ zi

j for all j′ ≥ j, and one verifies
immediately that the intersection

zi
∞

def
=

⋂
j≥i

zi
j

is nonempty. Moreover, it follows immediately from the constructions
discussed in the proof of Theorem A.7 that if ξi ∈ zi

∞, then any element
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f of the local ring OXi,ξi
of Xi at ξi determines a rational function on

the irreducible component of Xi containing xi that is regular at xi [cf.
Theorem A.7, (c)].

Remark A..7.2. Although, in certain cases [cf. Remark A..4.1; the final
portion of the proof of Theorem A.7], the distinguished valuation vzi

in
the statement of Theorem A.7 is not necessarily canonical, the system
of valuations {vi}i∈I obtained in Theorem A.7 is nevertheless sufficient
[cf. the functoriality discussed in the final portion of Theorem A.7] to
derive the conclusion of Corollary 1.15, (ii), i.e., without applying the
theory of [Brk1].
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