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Abstract. By using “Gauss sum type” Kolyvagin systems, Kurihara studied the
higher Fitting ideals of Iwasawa modules, and he obtained a refinement of the minus
part of the Iwasawa main conjecture over totally real fields ([Ku]). In this paper, we
study the higher Fitting ideals of Iwasawa modules arising from the dual fine Selmer
groups of general Galois representations which have Euler systems of “Rubintype”,
like circular units or Beilinson–Kato elements. By using Kolyvagin derivatives, we
construct an ascending filtration {Ci(c)}i≥0 of the Iwasawa algebra, and show that
the filtration {Ci(c)}i≥0 gives good approximation of the higher Fitting ideals of the
Iwasawa module under the assumption of “Iwasawa main conjecture”. Our results
can be regarded as analogues of Kurihara’s results, and a refinement of “Iwasawa
main conjecture” and Mazur–Rubin theory in certain cases.
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1. Introduction

By the theory of Euler systems, a norm compatible system of Galois cohomology
classes called Euler system give a lower bound of the characteristic ideal of a certain
Iwasawa module. (For instance, see Theorem 2.3.3 in [Ru2].) The characteristic
ideals are an important invariants of finitely generated torsion Iwasawa modules, but
in general, we cannot determine the pseudo-isomorphism classes of Iwasawa modules
completely by the characteristic ideals. The higher Fitting ideals have more refined
information on the structure of Iwasawa modules. For example, we can determine the
pseudo-isomorphism class and the cardinality of the minimal system of generators of
an Iwasawa module by the higher Fitting ideals. (For the definition and some basic
properties of the higher Fitting ideals, see, for incetance, [Oh2] §2.)

In [MR], Mazur and Rubin established the theory of Kolyvagin systems, and ob-
tained a refinement of “Iwasawa main conjecture” in certain situations. They does not
write explicitly, but we can deduce, via their arguments in [MR] §5.3, that Λ-primitive
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Kolyvagin systems determine the pseudo-isomorphism class of Iwasawa modules aris-
ing from dual fine Selmer groups of p-adic representations of the absolute Galois group
of Q satisfying certain conditions. However in [MR], they do not obtain any explicit
bound of the higher Fitting ideals of Iwasawa modules.

In [Ku], Kurihara studied the higher Fitting ideals of the minus-part of the Iwasawa
module defined by the inverse limit of the p-Sylow subgroups of the ideal class groups
along the cyclotomic Zp-extension of a CM-field K satisfying certain conditions. By
using Kolyvagin systems of “Gauss sum type”, he constructed an ascending filtration
{Θi}i∈Z≥0

of Iwasawa algebra called the higher Stickelberger ideals, which are defined
by analytic objects arising from p-adic L-functions, and he proved that higher Fitting
ideals coincide with the higher Stickelberger ideals. (For details, see [Ku] Theorem
1.1.) His results give a refinement of the minus-part of the Iwasawa main conjecture
for totally real number fields. In the proof of results, he developed new Euler system
arguments, which can deal with more refined informations on the structure of Iwasawa
modules than usual arguments.

In the paper [Oh2], the higher Fitting ideals of the plus-part of the Iwasawa modules
of ideal class groups (over abelian fields) are studied. By using circular units, we con-
structed the ideals Ci of the Iwasawa algebra, which are analogues of Kurihara’s higher
Stickelberger ideals, and proved that Ci give “upper bounds” and “lower bounds” of
the higher Fitting ideals in certain senses. (For details, see [Oh2] Theorem 1.1 and
§10.1 in this paper.) The results in [Oh2] can be regarded as analogues of Kurihara’s
results and a refinement of the plus-part of the Iwasawa main conjecture. Note that in
[Oh1], we also obtained similar results for the Iwasawa modules of ideal class groups
over abelian extension fields of imaginary quadratic fields by using elliptic units. (See
[Oh1] and Remark 10.1 in this paper.)

In this article, we study higher Fitting ideals of an Iwasawa module X = X(T )
arising from “dual fine Selmer groups” of a lattice T of a general p-adic Galois rep-
resentation along the cyclotomic Zp-extension of Q. Here, let us state our main
theorem roughly. Under the assumption of the existence of a “non-vanishing” Euler
system c of Rubin type (see the condition (NV) in §2), by using Kolyvagin deriva-
tives of the Euler system, we shall construct ideals Ci(c) of Iwasawa algebra Λ, which
can be regarded as generalizations of ideals Ci in [Oh2] and analogues of Kurihara’s
higher Stickelberger ideals. Under certain assumptions, we shall prove the following
assertions, which are the main results in this article.

• In §2, we shall “explicitly” construct an ideal I(c) of Λ, which satisfies the
following properties.

– If the Euler system c satisfies “Iwasawa main conjecture” (see the condi-
tion (MC) in §2), then the heiget of I(c) is at least two.

– Moreover, under the assumption of the Iwasawa main conjecture, we have
I(c) = Λ in certain practical situations. For details, see Remark 2.3.

LetXfin be the maximal pseudo-null Λ-submodule ofX, and putX ′ := X/Xfin.
Then, for any i ∈ Z≥0, we have

annΛ(Xfin)I(c) · FittΛ,i(X ′) ⊆ Ci(c).
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• For any i ∈ Z≥0, there exists a height-two ideal Ii of Λ satisfying

IiCi(c) ⊆ FittΛ,i(X).

(However, in present, we do not have any explicit description of the “error
factors” Ii.)

(For the precise statement of our main results, see Theorem 2.4.) In particular,
under the assumption of the Iwasawa main conjecture, our main results implies that
the filtration {Ci(c)}i≥0 of Λ determines the perudo-isomorphism classe of X (see
Corollary 2.7). Our results can be regarded as a generalization of the results in [Oh2]
for general Galois representations and analogues of Kurihara’s results. Moreover, our
results can also be regarded as a refinement of the “Iwasawa main conjecture” and
the results by Mazur and Rubin in [MR] §5.3.

In §2, we state our main results. (See Theorem 2.4 and its corollaries.) In §3, we set
the local conditions on Galois cohomology groups, and give another description of the
Iwasawa module X in terms of “Selmer groups” by using the Global duality theorem
of Galois cohomology. In this section, we also recall some Iwasawa theoretical results
which control the behaviour of Selmer groups along the Zp-extension Q∞/Q. In §4,
we recall the definition and some properties of Euler systems of Rubin type. In §5,
we define the ideal Ci(c), and prove Theorem 2.4 (i). In §6, we recall some results
on Kolyvagin systems established by Mazur and Rubin. In this section, we prove the
assertion (iii) of Theorem 2.4 by using Mazur–Rubin’s arguments. In §7, by using
Chebotarev density theorem we show a preliminary results which is used in Euler
system arguments in the next section 8. Then, we complete the proof of Theorem
2.4 by using Kurihara’s Euler system arguments in §8. In §9, we give some remarks
on the structure of dual fine Selmer groups over the ground level Q0 = Q. In the last
section (§10), we apply our results to particular Euler systems: circular units and
Kato’s Euler systems.

Notation. Let K be a field, and fix a separable closure K of K. Then, we put
GK := Gal(K/K). For a topological abelian group M with a continuous GK-action,
let H∗(K,M) = H∗(GK ,M) be the continuous Galois cohomology group.

In this paper, an algebraic number field K is a finite extension of Q in this fixed
algebraic closure Q. Let L/K be a finite extension of number fields. For a finite set
Σ of places of K, we denote by LΣ/L the maximal extension unramified outside Σ,
and put GL,Σ := Gal(LΣ/L). We denote the ring of integers of a number field K by
OK .

Let ℓ be a prime number, and L a finite extension field of Qℓ. We denote the Weil
group of L by WL, and the inertia subgroup of WL by IL.

Let L/K be a finite Galois extension of algebraic number fields. Let λ be a prime
ideal of K, and λ′ a prime ideal of L above λ. We denote the completion of K at
λ by Kλ. If λ is unramified in L/K, the arithmetic Frobenius at λ′ is denoted by
(λ′, L/K) ∈ Gal(L/K). We fix a family of embeddings {ℓQ : Q ↪→ Qℓ}ℓ:prime satisfying
the condition (Chb) as follows:
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(Chb) For any subfield F ⊂ Q which is a finite Galois extension of Q and any
element σ ∈ Gal(F/Q), there exist infinitely many prime numbers ℓ such that
ℓ is unramified in F/Q and (ℓF , F/Q) = σ, where ℓF is the prime ideal of F
corresponding to the embedding ℓQ|F .

The existence of a family satisfying the condition (Chb) follows easily from the Cheb-
otarev density theorem.

For any prime number ℓ, we regard WQℓ
⊆ GQℓ

as a subgroup of GQ via the
embedding ℓQ : Q ↪→ Qℓ.

We also fix an embedding∞Q : Q ↪→ C, and let c ∈ GQ be the complex conjugation
corresponding to this embedding. For any abelian group M with action of GQ, we
denote by M− the subgroup of M consisting of all elements on which c acts via −1.
For any positive integer n, let µn := µn(Q) be the group of n-th roots of unity in Q,
and define an element ζn ∈ µn by ∞Q(ζn) = e2πi/n.

Let K be a finite extension field of Qp, and O the ring of integer of K. We fix a
uniformizer π ∈ O. For anyO-moduleM , we define the dualO-moduleM∨ byM∨ :=
HomO(M,K/O). In this paper, we identify theO-moduleM∨ with HomZp(M,Qp/Zp)
by the isomomorphism

M∨ := HomO(M,K/O) ≃−−→ HomZp(M,Qp/Zp),

induced by

K −→ Qp; a 7−→ TrK/Qp(π
−dK/Qp · a),

where we denote the different of K/Qp by dK/Qp = πdK/QpO. If M has an O-linear
action of a group G, we define the action

G×M∨ −→M∨; (g, f) 7−→ gf

of G on M∨ by (gf)(m) = f(g−1m) for any m ∈M .

Let R be a commutative ring, and M an R-module. For any a ∈ R, let M [a] be
the R-submodule of M consisting of all a-torsion elements. We denote the ideal of R
consisting of all annihilators of M by annR(M). For any sheaf F of abelian groups
on (SpecR)ét, and i ∈ Z≥0, we put

H i
ét(R,F) := H i

ét(SpecR,F).

Let G be a group, and M an abelian group with an action of G. Then, we denote
by MG the maximal subgroup of M fixed by the action of G.
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2. Main results

In this section, we state the precise statement of our main results.

First, we set some terminologies. Let p be an odd prime number, and Q∞/Q the
cyclotomic Zp-extension. For any m ∈ Z≥0, we denote by Qm the unique intermediate
field of Q∞/Q satisfying [Qm : Q] = pm. We put Γ := Gal(Q∞/Q), and define the
Iwasawa algebra Λ by

Λ := Zp[[Γ]] = lim←−Zp[Gal(Qn/Q)].

Let K/Qp be a finite extension, and O the ring of integers of K. Fix a uniformizer
π ∈ O, and put k := O/πO. Let us consider a free O-module T of finite rank d with
a continuous O-linear action of GQ unramified outside a finite set Σ of places of Q
containing {p,∞}. We regard T as an étale O-sheaf on SpecOQm,Σ, where OQm,Σ is
the ring of Σ-integers of Qm. We denote the action of GQ on T by

ρT : GQ −→ AutO(T ) ≃ GLd(O).

We put V := T ⊗O K, A := T ⊗O K/O, and A∗ := HomO(T,K/O(1)). Here, we let
K/O(1) be the Tate twist of the trivial GQ-module K/O. In this article, we always
assume the following conditions.

(C1) The GQ∞-representation A[π] over k is absolutely irreducible.
(C2) There exists an element τ ∈ GQ(µp∞ ) which make T/(τ−1)T a freeO-module

of rank one.
(C3) The Fp[GQ∞ ]-module A[π] is not isomorphic to A∗[π].
(C4) If the rank of T is one, then GQ∞ does not act on A[π] via the trivial

character 1 or the Teichmüller character ω.
(C5) Let Ω = Q(µ∞

p , A) be the maximal subfield of Q fixed by the subgroup

ker
(
GQ(µp∞ ) −→ Aut(A)

)
of GQ. Then, we have

H1(Ω/Q∞, A) = H1(Ω/Q∞, A
∗) = 0.

(C6) The torsion Zp-module H0
ét(Q∞ ⊗Q Qp, A

∗) is divisible.
(C7) Let ℓ ∈ Σ \ {p,∞} be any element. We denote by

(rℓ : WQℓ
−→ GLd(K), Nℓ)

the Weil-Deligne representation corresponding to (V, ρT |WQℓ
), and let Lℓ be

the intermediate field of Qℓ/Qur
ℓ fixed by Ker(rℓ|IQℓ

). Then, the following
holds.
(i) We have p ∤ #rℓ(IQℓ

) = [Lℓ : Qur
ℓ ].

(ii) The O-module H1
cont(GLℓ

, T ) is torsion-free.

In particular, the assumption (C7) implies that for any ℓ ∈ Σ\{p,∞}, the O-module
H1

cont(IQℓ
, T ) is torsion-free. The following lemma gives a sufficient condition for the

condition (ii) of (C7).
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Lemma 2.1. Let ℓ ∈ Σ \ {p,∞} be any element, and (rℓ, Nℓ) and Lℓ as in (C7). Fix
a topological generator gℓ of the tame inertia group I tLℓ

of Lℓ. Suppose that the O-
module the O-module T/(gℓ − 1)T is torsion-free. Then, the O-module H1

cont(ILℓ
, T )

is torsion-free.

Proof. The proof of Lemma 2.1 is a routaine, and not difficult. So here, we only give
a sketch of it. Assume that the O-module the O-module T/(gℓ − 1)T is torsion-free.
Then, it is sufficient to show that the condition (ii) of (C7) holds. By our assumption,
the ascending filtration

{T (ℓ)
i := Ker

(
(gℓ − 1)i : T −→ T

)
}i∈Z≥0

of T satisfies that for any i ∈ Z≥0,

• GLℓ
acts trivially on T

(ℓ)
i /T

(ℓ)
i−1, and

• the O-module T
(ℓ)
i−1/(gℓ − 1)T

(ℓ)
i is torsion-free.

By induction on i, we can deduce that the the O-module H1
cont(GLℓ

, T
(ℓ)
i ) is torsion-

free for any i ∈ Z≥0, so in particular, H1
cont(GLℓ

, T ) is a torsion-free O-module. □

Now, we introduce an Iwasawa module X = X(T ), which we study in this article.

Definition 2.2. We define

Hi
Σ(T ) := lim←−H

i
ét(OQm,Σ, T ).

for any prime number ℓ, we put

Hi
loc,ℓ(T ) := lim←−H

i
ét(Qm ⊗Q Qp, T )

Then, we define

X(T ) := ker

(
H2

Σ(T ) −→
⊕
ℓ∈Σ

H2
loc,ℓ(T )

)
.

It is well-known thatHi
Σ(T ) = 0 for any i ≥ 3, and the Λ-moduleHi

Σ(T ) is finitely gen-
erated for any i ∈ Z≥0. (Recall that here, we assume p is odd, so the p-cohomological
dimension of GQm,Σ is two.) We denote the maximal pseudo-null Λ-submodule of X
by Xfin(T ).

For simplicity, we write X := X(T ) and Xfin := Xfin(T ). In fact, the Λ-module
X is independent of the choice of Σ, and it is isomorphic to the Pontrjagin dual of
the “dual fine Selmer group” SΣp(Q∞, A

∗) in the sense of [Ru2] Definition 2.3.1. (See
Proposition 3.7.) In this article, we study the higher Fitting ideals of the Λ-module

X ′ = X ′(T ) := X(T )/Xfin(T )

under the assumption of the existence of a “non-vanishing” Euler system for T .

In order to mention Euler systems, we need to introduce some abelian extension
fields of Q. For each prime number ℓ not contained in Σ, we denote by Q(ℓ) the
maximal subfield of Q(µℓ) whose extension degree over Q is a p-power. Let N (Σ) be
the set of all positive integers decomposed into square-free products of prime numbers
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not contained in Σ. Here, we promise 1 ∈ N (Σ). Let n ∈ N (Σ) be any element, and
assume that n has a prime factorization n =

∏r
i=1 ℓi. Then, we define the composite

field
Qm(n) := QmQ(ℓ1) · · ·Q(ℓr)

for any m ≥ 0.

In this paper, we assume that there exists an Euler system

c :=
{
cm(n) ∈ H1(Qm(n), T )

}
m≥0,n∈N (Σ)

in the sense of [Ru2] Remark 2.1.4 satisfying the following “non-vanishing” conditions.

(NV) The element c(1) := (cm(1))m≥0 ∈ H1
Σ(T ) is not Λ-torsion.

(For details of the definition of Euler systems in our terminology, see Definition 4.2.)

We define the ideal Ind(c) of Λ by

Ind(c) :=
{
φ (c(1)) | φ ∈ HomΛ

(
H1

Σ(T ),Λ
)}
,

and denote by Ind0(c) the minimal principal ideal of Λ containing Ind(c). By usual
Euler system arguments, the assumption (NV) implies that X is a torsion Λ-module,
and we have

(1) charΛ(X) ⊇ Ind0(c).

(See Theorem 2.3.2 and Theorem 2.3.3 in [Ru2].) We define the ideal Iφ(c) of Λ by

Iφ(c) := {a ∈ Λ | a · charΛ(X) ⊆ φ(c(1)) · Λ} .
for any Λ-linear homomorphism φ ∈ HomΛ (H1

Σ(T ),Λ), and put

I(c) :=
∪

φ∈HomΛ(H1
Σ(T ),Λ)

Iφ(c).

By the definition of I(c) and (1), we have

Ind(c) = I(c) · charΛ(X).

Under the assumption (NV), we sometimes consider the following condition (MC),
which is “Iwasawa main conjecture” for (T, c).

(MC) The characteristic ideal of the Λ-module X coincides with Ind(c), that is,
we have

charΛ(X) = Ind0(c).

Remark 2.3. Assume that the pair (T, c) satisfies the conditions (C1), (C4) and
(NV), and that T− is a free O-module of rank one. Then, [Ru2] Theorem 2.3.2
and the formula on the global Euler–Poincaré characterisitic (for instance, see [Ta1]
Theorem 2.2) imply that the Λ-module H1

Σ(T ) is generically of rank one, namely we
have

dimFrac(Λ)H1
Σ(T )⊗Λ Frac(Λ) = 1.

Hence in this situation, we have

Ind(c) = Ind0(c) = charΛ

(
H1

Σ(T )

H1
Σ(T )tors + Λc(1)

)
,
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where H1
Σ(T )tors denotes the maximal torsion Λ-submodule of H1

Σ(T ). In particular,
if we also assume that the pair (T, c) satisfies the Iwasawa main conditions (MC),
then we have I(c) = Λ.

In order to state our main theorem, it is convenient to introduce the following
notation. Let I and J be ideals of Λ. We write I ≺ J if there exists a height two
ideal A of Λ (called an “error factor”) satisfying AI ⊆ J . Note that for two ideals I
and J of Λ, we have I ≺ J if and only if IΛp ⊆ JΛp for all prime ideals p of height
one, where we denote the localization of Λ at p by Λp. We write I ∼ J if I ≺ J and
J ≺ I. The relation ∼ is an equivalence relation on ideals of Λ.

We shall define ideals Ci(c) of Λ, which are analogues of Kurihara’s higher Stickel-
berger ideals. In §5 we define them by using Kolyvagin derivatives of the Euler system
c (as in [Oh1] and [Oh2]). For details, see Definition 5.1 and Definition 5.4. Note
that the definition of the ideals Ci(c) is one of the key of our results. The following
theorem is our main results.

Theorem 2.4. Assume that T and c satisfy the conditions (C1)–(C7) and (NV).
Then, we have the following.

(i) We have
annΛ(Xfin)I(c) · FittΛ,0(X ′) ⊆ C0(c).

(ii) Assume O = Zp. Then, we have

annΛ(Xfin)I(c) · FittΛ,i(X ′) ⊆ Ci(c)

for any i ∈ Z≥0.
(iii) Assume that T− is a free O-module of rank one. Then for any i ∈ Z≥0, we

have
Ci(c) ≺ FittΛ,i(X)

Remark 2.5. We assume that T and c satisfy the conditions (C1)–(C7), (NV) and
(MC). (Then, we have I(c) = Λ.) Note that we have

FittΛ,0(X) ⊆ annΛ(Xfin) · FittΛ,0(X ′).

So, in this case, Theorem 2.4 (i) implies

FittΛ,0(X) ⊆ C0(c).

Note that the higher Fitting ideals determine the pseudo-isomorphism class of a
finitely generated torsion Λ-module. More precisely, we have the following lemma.

Lemma 2.6. Let M be a finitely generated torsion Λ-module. Assume that M is
pseudo-isomorphic to an elementary Λ-module

⊕n
i=1 Λ/fiΛ, where {fi}ni=1 is a se-

quence of non-zero elements of Λ satisfying fi | fi+1, then we have

FittΛ,i(M) ∼


(
n−i∏
k=1

fk

)
Λ (if i < n)

Λ (if i ≥ n)

for any non-negative integer i (cf. [Ku] Lemma 8.2). This implies that the pseudo-
isomorphism class of M is determined by the higher Fitting ideals {FittΛ,i(M)}i≥0.
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By Theorem 2.4, we immediately obtain the following corollaries.

Corollary 2.7. Assume that T and c satisfy the conditions (C1)–(C7), (NV) and
(MC). We also assume O = Zp and rankZpT

− = 1. Then, we have

FittΛ,i(X) ∼ Ci(c)

for any i ∈ Z0. In other words, the ascending filtration {Ci(c)}i∈Z≥0
of Λ determines

the pseudo-isomorphism class of X. Moreover, we have

annΛ(Xfin)I(c) · FittΛ,i(X ′) ⊆ Ci(c)

for any i ∈ Z≥0.

Corollary 2.8. Suppose O = Zp. We assume that T and c satisfy the conditions
(C1)–(C7), (NV) and (MC). We also assume that X(T ) has no non-trivial pseudo-
null Λ-submodules (namely, Xfin = 0), and rankZpT

− = 1. Then, we have

FittΛ,i(X
′) ⊆ Ci(c)

for any i ∈ Z≥0.

Remark 2.9. In certain nice cases, we can show that the ideals {Ci,0,N(c)}i≥0 of
O/πNO (for sufficiently large N) determine the isomorphism classes of dual fine
Selmer groups over the ground level Q0 = Q. For details, see Theorem 9.1. Note
that this result itself is not so new because it is only a translation of Mazur–Rubin’s
results in [MR] §5.2 into the context of higher Fitting ideals and our ideals Ci(c). As a
corollary of this result, we shall see that in certain situations, the ideals {Ci,0,N(c)}i≥0

determines the cardinality of the minimal system of generators of the Λ-module X.
(For details, see Corollary 9.7.)

3. Fine Selmer groups and Iwasawa theory

Here, we use the similar notation to that in §2. Let Σ be a finite set of containing
{p,∞}, and T a free O-module of finite rank d with a continuous O-linear GQ,Σ-action
satisfying the conditions (C1)–(C7). We define A, T ∗ and A∗ by similar manner to
that in §2. In this section, we introduce the “fine” Selmer group H1

Fcan
(F,A∗), which

is our main interest. Here, we also review some Iwasawa theoretical results.

3.1. Local conditions and Selmer groups. In the first subsection, we introduce
the “fine” Selmer group and some related Selmer groups.

First, we define Selmer groups for “general” local conditions. Let F be a number
field, and ΣF be a set of all places of F above Σ. Consider a topological Zp-module
with an GF,ΣF

-action. We assume that M is a discrete group (resp. a pro-p-group or
a finite dimensional Qp-vector space), and we regard M as an étale sheaf (resp. étale
pro-p-sheaf or étale Qp-sheaf) on SpecF . A local condition F on M is a collection{

H1
F(F ⊗Qv,M) ⊆ H1

ét(F ⊗Qv,M)
}
,

where v runs through all places of Q. Note that we assume p ̸= 2 in this paper, so
we have automatically

H1
F(F ⊗ R,M) = H1

ét(F ⊗ R,M) = 0
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For such pair (M,F), we define the Selmer group H1
F(F,M) by

H1
F(F,M) := ker

H1(F,M) −→
∏
v∈PQ

H1
ét(F ⊗Qv,M)

H1
F(F ⊗Qv,M)

 .

For a finite set Σ′ of places of Q, we define

H1
FΣ′ (F,M) : = ker

H1(F,M) −→
∏

v∈PQ\Σ′

H1
ét(F ⊗Qv,M)

H1
F(F ⊗Qv,M)

 ,

H1
FΣ′ (F,M) : = ker

(
H1

F(F,M) −→
∏
v∈Σ′

H1
ét(F ⊗Qv,M)

)
.

For any n ∈ Z≥0, we denote by Fn (resp. Fn) the local condition Fprime(n) (resp.
Fprime(n)), where prime(n) is the set of prime divisors of n.

From now on, let us consider local conditions and Selmer groups on the free O-
module T . Here, we assume F = Qm is a subfield of Q∞. Let F be a local condition
on T , and N a positive integer. For any prime number ℓ, by local duality Theorem,
we have a diagram

H i
ét(Qm ⊗Qℓ, T )

πN

��

× H2−i
ét (Qm ⊗Qv, A

∗)
(·,·)ℓ // K/O

H i
ét(Qm ⊗Qℓ, T/π

NT )×H2−i
ét (Qm ⊗Qv, A

∗[πN ])

iN

OO

(·,·)ℓ // 1
πNO/O

?�

⊆

OO

whose horizontal arrows are perfect pairings, and satisfy

(πN(a), b)ℓ = (a, iN(b))ℓ ∈ K/O
for any a ∈ H i

ét(F ⊗Qℓ, T ) and b ∈ H2−i
ét (F ⊗Qv, A

∗[πN ]). We denote the orthogonal
component of H1

F(F ⊗Qℓ, T ) (resp. H
1
F(F ⊗Qℓ, T/π

NT )) with respect to the above
pairing (·, ·)ℓ by H1

F∗(F ⊗Qℓ, A
∗) (resp. H1

F∗(F ⊗Qℓ, A
∗)). Then, we obtain the dual

local condition F∗ of A∗ and A∗[πN ].

Definition 3.1. Let ℓ be a prime number distinct from p, and Qur
ℓ the maximal

unramified extension of Qℓ.

• We define

H1
f (Qm ⊗Qℓ, T ⊗K) = H1

ur(Qm ⊗Qℓ, T ⊗K)

:= ker
(
H1

ét(Qm ⊗Qℓ, T ⊗K) −→ H1
ét(Qm ⊗Qur

ℓ , T ⊗K)
)
.

• We denote by H1
f (F ⊗Qℓ, T ) the inverse image of H1

f (Qm ⊗Qℓ, T ⊗K) with
respect to the natural map

H1
ét(Qm ⊗Qℓ, T ) −→ H1

ét(Qm ⊗Qℓ, T ⊗K).

• We denote by H1
f (Qm⊗Qℓ, T ⊗K/O) the image of H1

f (Qm⊗Qℓ, T ⊗K) with
respect to the natural map

H1
ét(Qm ⊗Qℓ, T ⊗K) −→ H1

ét(Qm ⊗Qℓ, T ⊗K/O).
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• We denote by H1
f (Qm⊗Qℓ, T/π

NT ) the image of H1
f (Qm⊗Qℓ, T ) with respect

to the natural map

H1
ét(Qm ⊗Qℓ, T ) −→ H1

ét(Qm ⊗Qℓ, T/π
NT ).

Note that H1
f (Qm⊗Qℓ, T/π

NT ) coincides with the inverse image of H1
f (Qm⊗

Qℓ, T ⊗K/O) with respect to the map

H1
ét(Qm ⊗Qℓ, T/π

NT ) −→ H1
ét(Qm ⊗Qℓ, T ⊗K/O)

induced by

T/πNT
×(1/πN )−−−−−−→

≃

1

πN
T/T ⊆ T ⊗K/O.

(See [Ru2] Lemma 1.3.8.)

Then, we define the local condition Fcan on T by

H1
Fcan

(Qv, T ) :=


H1
f (Qm ⊗Qv, T ) if v is a finite place distinct from p;

H1
ét(Qm ⊗Qp, T ) if v = p;

0 if v =∞.

For any N > 0, we define the induced local condition {H1
Fcan

(Qm ⊗Qv, T/π
NT )}v on

T/πNT by the image of H1
Fcan

(Qm ⊗ Qv, T ) for any place v of Q. In this paper, we
call the group H1

can∗(F,A
∗) the dual fine Selmer group of A∗.

Remark 3.2. By the local duality, for any prime number ℓ distinct from p, H1
f (F ⊗

Qℓ, T ) and H
1
f (F ⊗Qℓ, T ⊗Qp/Zp) are orthogonal component each other with respect

to the pairing (·, ·)ℓ. In other words, the pairing induces the natural isomorphism

H1
s (F ⊗Qℓ, T ) := H1

ét(F ⊗Qℓ, T )/H
1
f (F ⊗Qℓ, T )

≃ H1
f (F ⊗Qℓ, A

∗)∨,

H1
s (F ⊗Qℓ, A

∗) := H1
ét(F ⊗Qℓ, A

∗)/H1
f (F ⊗Qℓ, A

∗)

≃ H1
f (F ⊗Qℓ, T )

∨.

The similar orthogonality holds for H1
f (F ⊗ Qℓ, T/p

NT ) and H1
f (F ⊗ Qℓ, A

∗[pN ]) =

H1
f (F ⊗Qℓ, T

∗/pNT ∗).

By the orthogonality of the local condition f , the dual local condition F∗
can on A∗

is as follows:

H1
F∗

can
(Qv, A

∗) =

{
H1
f (F ⊗Qv, A

∗) if v is a finite place distinct from p;

0 if v = p,∞.

In this paper, we often use the following elementary fact which immediately follows
from the assumption (C1) and (C4).

Lemma 3.3. For any integers m ∈ Z≥0 and N ∈ Z≥0, the natural homomorphism

H1(Qm, A[π
N ]) −→ H1(Qm, A)[π

N ],

H1(Qm, A
∗[πN ]) −→ H1(Qm, A

∗)[πN ]

are isomorphisms.



HIGHER FITTING IDEALS AND EULER SYSTEMS OF RUBIN TYPE 13

We also note that the hypothesis (C6) implies H1
F∗

can
(F ⊗ Qp, A

∗) = 0. Then, by

Lemma 3.3 and [Ru2] Proposition 7.4.4, we obtain the following proposition.

Proposition 3.4. Let m be a non-negative integer, and N a positive integer. Then,
we have a natural isomorphism

H1
F∗

can
(Qm, A

∗[πN ]) ≃ H1
F∗

can
(Qm, A

∗)[πN ].

3.2. Preliminaries on Iwasawa theoretical results. Here, we recall some Iwa-
sawa theoretical results which control Iwasawa modules arising from Galois cohomol-
ogy groups and certain Selmer groups. Recall that in §2, we put Γ := Gal(Q∞/Q) ≃
Zp and Λ := Zp[[Γ]]. For any non-negative m, we define

Rm := Zp[Gal(Qm/Q)] ≃ Λ/(γp
m − 1).

Recall that we have defined the Λ-module X by

X = X(T ) := ker

(
H2

Σ(T ) −→
⊕
ℓ∈Σ

H2
loc,ℓ(T )

)
.

Here, we assume that X is a torsion Λ-module. Let ℓ be any prime number contained
in Σ. Since ℓ does not split completely in Q∞/Q, the Zp-module

H2
loc,ℓ(T ) ≃

(
lim−→
m

H0
ét(Qm ⊗Qℓ, A

∗)

)∨

is finitely generated. This implies that H2
Σ(T ) is also a torsion Λ-module. We need

the following lemma which follows from the assumptions (C6) and (C7).

Lemma 3.5. Let ℓ be a prime number contained in Σ. Then, H2
loc,ℓ(T ) is a torsion-

free O-module.

Proof. If ℓ = p, then it immediately follows from (C6) and the local duality theorem
that H2

loc,p(T ) is a torsion-free Zp-module. So, we suppose ℓ ̸= p. Let Qℓ,∞ be the
cyclotomic Zp-extension of Qℓ. Here, we regard WQℓ

⊆ GQℓ
as a subgroup of GQ via

the embedding ℓQ : Q ↪→ Qℓ fixed in §1. Note that as an O-module, H0
ét(Q∞⊗Qℓ, A

∗)

is isomorphic to the direct product of finitely many copies of H0(Qℓ,∞, A
∗). So by the

local duality theorem, in order to show Lemma 3.5, it is sufficient to show that the
O-module H0(Qℓ,∞, A

∗) is divisible. Let (rℓ, Nℓ), Lℓ and gℓ be as in (C7) and Lemma
2.1. Note that T ∗/(gℓ − 1)T ∗ ≃ (T [gℓ − 1])∗ is a torsion-free O-module. So we apply
the snake lemma to the diagram

0 // T ∗ //

gℓ−1

��

T ∗ ⊗O K //

gℓ−1

��

A∗ //

gℓ−1

��

0

0 // T ∗ // T ∗ ⊗O K // A∗ // 0

with exact rows, and we deduce that the O-module

H0(Lℓ, A
∗) ≃ A∗[gℓ − 1]

is divisible.
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Let N ∈ Z≥0 ∪ {∞}, and define the subgroup Hℓ,N of Gℓ := Gal(Lℓ/Qℓ,∞) of by

Hℓ,N := Ker
(
Gℓ −→ Aut

(
H0
(
Lℓ, A

∗[πN ]
)))

.

The hypothesis (C7) implies that Gℓ does not have pro-ℓ quotient. So for any finite
N , the order of Gℓ,N := Gℓ,∞/Hℓ,N is (finite and) prime to p. Then, we can define an
element

eN :=
1

#Gℓ

∑
σ∈Gℓ,N

σ ∈ O[Gℓ,N ]

for any finite N , and obtain an idempotent element

e := (eN)N≥0 ∈ O[[Gℓ,∞]] := lim←−
N

O[Gℓ,N ].

We have H0(Qℓ,∞, A
∗) = eH0(Lℓ, A

∗), so the divisibility of H0(Lℓ, A
∗) implies that

the O-module H0(Qℓ,∞, A
∗) is divisible. □

By Lemma 3.5, we immediately obtain the following corollary.

Corollary 3.6. Let X̃fin be the maximal pseudo-null Λ-submodule of H2
Σ(T ). Then,

we have X̃fin = Xfin.

We define a Λ-module H1
F∗

can
(Q∞, A

∗) by

H1
F∗

can
(Q∞, A

∗) := lim−→
m≥0

H1
F∗

can
(Qm, A

∗).

Note that H1
F∗

can
(Q∞, A

∗) is a cofinitely generated Λ-module. The following proposi-
tion gives another description of the Λ-module X.

Proposition 3.7. There exists a natural isomorphism

X(T ) ≃ H1
F∗

can
(Q∞, A

∗)∨

of Λ-module.

Proof. It follows from Proposition B.3.4 in [Ru2] that we have

(2) lim←−
m

H1(Qm ⊗Qℓ, T ) ≃ lim←−
m

H1
ur(Qm ⊗Qℓ, T ) = lim←−

m

H1(OQm ⊗ Zℓ, T Iℓ)

for any prime number ℓ distinct from p, where Iℓ := GQur
ℓ

is the inertia subgroup of
GQℓ

. Then, the isomorphism in Proposition 3.7 immediately follows from the limit
of the Poitou–Tate exact sequence, the orthogonality of the local conditions and the
equality (2). □

By our assumption (C6), we have the following proposition.

Proposition 3.8 ([Ru2] Proposition 7.4.4). Let m be a non-negative integer. Then,
we have a natural isomorphism

X(T )⊗Λ Rm ≃ H1
F∗

can
(Qm, A

∗)∨.

In our paper, the following proposition plays important roles.
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Proposition 3.9 ([Ne] Proposition 8.4.8.1). We have a spectral sequence

(EΣ)
p,q
2 = TorΛ−p (Rm,Hq

Σ(T )) =⇒ Hq−p
ét (OQm,Σ, T ).

Especially, by proposition 3.9, we have a short exact sequence

0 −→ H1
Σ(T )⊗Λ Rm −→ H1

ét(OQm,Σ, T ) −→ H2
Σ(T )[γ

pm − 1] −→ 0

for any m ∈ Z≥0 be any element. By this fact and Corollary 3.6, we obtain the
following corollary.

Corollary 3.10. If X = X(T ) is a torsion Λ-module, and if

charΛ(H2
Σ(T )) ̸⊆ (γp

m − 1)Λ,

then the cokernel of the natural homomorphism

H1
Σ(T )⊗Λ Rm −→ H1

ét(OQm,Σ, T )

is annihilated by annΛ(Xfin).

4. Euler systems of Rubin type

The axiomatic framework of Euler systems for general p-adic representations of GQ
are established in [P-R], [Ka1] and [Ru2]. Here, we recall the notion of Euler systems
and some of their basic properties introduced in [Ru2].

4.1. Euler systems. Throughout this section, we use the same notations as the
previous section. In particular, we assume that T is a free O-module of finite rank d
with a continuous O-linear GQ,Σ-action, and satisfies the conditions (C1)–(C7) in §2.

Definition 4.1. Let M a free O-module of finite rank with a O-linear action of GQ.
Then, for each element σ ∈ GQ, we define a polynomial P (σ|M ; x) by

P (σ|M ; x) := detO(1− σx |M) ∈ O[x].

Definition 4.2. Recall that we denote by N (Σ) the set of all positive integers decom-
posed into square-free products of prime numbers not contained in Σ. If no confusion
arises, we write N := N (Σ) for simplicity. For any n ∈ N and any non-negative
integer m, we defined a field Qm(n) in §2. In this paper, we call a family

c :=
{
cm(n) ∈ H1(Qm(n), T )

}
m≥0,n∈N (Σ)

of cohomology classes an Euler system for (T,Σ) if c satisfies the following conditions:

(ES1) For any n ∈ N and any non-negative integer m, we have

CorQm+1(n)/Qm(n) (cm+1(n)) = cm(n).

(ES2) Let n ∈ N and m a non-negative integer. Then, for any prime divisor ℓ of
n, we have

CorQm(n)/Qm(n/ℓ) (cm(n)) = P (Fr−1
ℓ |T

∗; Fr−1
ℓ ) · cm(n/ℓ),

where Frℓ ∈ Gal (Qm(n/ℓ)/Q) is the arithmetic Frobenius element at ℓ.

We denote the set of all Euler systems for (T,Σ) by ESO(T,Σ).
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In order to refer results in [MR], it is convenient to introduce the notion of “mod-
ified” Euler systems in the following sense.

Definition 4.3. Let ES′
O(T,Σ) be the set of all families

c′ :=
{
c′m(n) ∈ H1(Qm(n), T )

}
m≥0,n∈N (Σ)

of cohomology classes satisfying (ES1) and the following condition (ES2)′:

(ES2)′ For any non-negative integer m, any n ∈ N and any prime divisor ℓ of n,
we have

CorQm(n)/Qm(n/ℓ) (c
′
m(n)) = P (Frℓ|T ; Fr−1

ℓ ) · c′m(n/ℓ).

We call an element of ES′
O(T,Σ) a modified Euler system.

Remark 4.4. Let c = {cm(n)}m,n ∈ ESO(T,Σ) and c′ = {c′m(n)}m,n ∈ ES′
O(T,Σ)

be arbitrary elements. Regard T as a pro-p sheaf on (Spec OQm(n),Σ)ét. Then, t is
known that cm(n) and c

′
m(n) both belong to H1

ét(OQm(n)[1/p], j∗T ), where

j : Spec OQm(n),Σ −→ Spec OQm(n)[1/p]

is the natural open immersion. For details, see [Ru2] Corollary B.3.5.

Note that in [MR], “an Euler system” does not mean an element of ESO(T,Σ) but
ES′

O(T,Σ). The following proposition relates ESO(T,Σ) to ES′
O(T,Σ).

Proposition 4.5 ([Ru2] Lemma 9.6.1). There exists an isomorphism

iES : ESO(T,Σ) −→ ES′
O(T,Σ); c 7−→ iES(c) = {c′m(n)}

of O[GQ]-modules satisfying the following property:

“For any c := {cm(n)} ∈ ESO(T,Σ), any non-negative integer m and any
n ∈ N , there exists a unit uT,n is a unit of O[Gal(Qm(n)/Q)] such that

iES(c)m(n) ≡ uT,n · cm(n) mod M0(T ; c, n).

Here, Mm(T ; c, n) is a O[Gal(Qm(n)/Q)]-submodule of H1(Qm(n), T ) gener-
ated by {

the image of cm(a)

∣∣∣∣ 0 < a | n
}

where ℓ runs through all prime divisors of n.”

Note that we can construct the map iES in Proposition 4.5 explicitly. For details
of its construction, see the proof of Lemma 9.6.1.

4.2. Localization maps and finite-singular comparison maps. Here, we in-
troduce two types of homomorphisms, namely localization maps and finite-singular
comparison maps, which play key roles in Euler system arguments. Let e := eK/Qp be
the absolute ramification index of K. In this and the next subsections, we fix integers
m and N satisfying N > em ≥ 0. We define

Rm,N := Rm/π
NRm = O/πNO[Gal(Qm/Q)].



HIGHER FITTING IDEALS AND EULER SYSTEMS OF RUBIN TYPE 17

Definition 4.6. We fix an element τ ∈ GQ(µp∞ ) in the condition (C2) and an isomor-
phism

Φ∗ : T ∗/(τ − 1)T ∗ ≃−−→ O.
By taking HomO(−, K/O(1)), we obtain the isomorphism

Φ: K/O(1) −→ (A)τ=1.

Then, we define an isomorphism

Ψm,N : Rm,N ⊗Z/πNZ (T/πNT )τ=1 = Rm,N ⊗O/πNO
(
A[πN ]

)Fr=1 −→ Rm,N

of Rm,N -modules by

Ψm,N(x⊗ a)⊗ (1/πN)⊗ ζp[N/e] := x · (Φ)−1(a) ∈ Rm,N ⊗O/πNO K/O[πN ](1).

(Here, we declare that Gal(Qm/Q) acts trivially on T/πNT .)

For any prime number ℓ /∈ Σ, we denote by Iℓ the ideal of O generated by ℓ − 1
and P (Fr−1

ℓ |T ∗; 1). Let n be a square-free product n := ℓ1 × · · · × ℓr, where ℓi is a
prime number not contained in Σ for i = 1, ..., r. Then, we define an ideal

In :=
r∑
i=1

Iℓi ⊆ O.

Definition 4.7. We define a set PN(Σ;T )O of prime numbers by

PN(Σ;T )O :=

{
ℓ

∣∣∣∣ ℓ /∈ Σ, Iℓ ⊆ πNZp, and T/(πNT + (Frℓ − 1)T ) is
a free O/πNO-module of rank one.

}
,

where Frℓ ∈ GQ is an arithmetic Frobenius element at ℓ. Then, we put

NN(Σ;T )O :=

{
r∏
i=1

ℓi

∣∣∣∣ r ∈ Z>0, ℓi ∈ PN(Σ;T )O (i = 1, . . . , r)
and ℓi ̸= ℓj if i ̸= j

}
∪ {1}.

We define subsets PτN(Σ;T )O ⊆ PN(Σ;T )O and N τ
N(Σ;T )O ⊆ N τ

N(Σ;T )O by

PτN(Σ;T )O : =
{
ℓ ∈ PN(Σ;T )O | Frℓ coincides with τ on Q(µpN , A[π

N ])
}
,

N τ
N(Σ;T )O : =

{
r∏
i=1

ℓi ∈ NN(Σ;T )O
∣∣∣∣ ℓi ∈ PτN(Σ;T )O (i = 1, . . . , r)

}
∪ {1}

respectively. For simplicity, we write PN := PN(Σ;T )O, PτN := PτN(Σ;T )O, NN :=
NN(Σ;T )O and N τ

N := N τ
N(Σ;T )O.

We define Hn := Gal (Q(n)/Q) for any n ∈ NN . If n is decomposed as n =
∏r

i=1 ℓi,
where ℓ1, . . . , ℓr are distinct prime numbers, then we have natural isomorphisms

Gal(Qm(n)/Qm) ≃ Hn ≃ Hℓ1 × · · · ×Hℓr

for any integer m ≥ 0. We identify these groups by the above natural isomorphisms.

Let ℓ be a prime number contained in PN . We shall take a generator σℓ of the
cyclic group Hℓ as follows. We define a positive integer N{ℓ} by

Iℓ = πN{ℓ}O.
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Then, by definition, we have N{ℓ} ≥ N . By the fixed embedding ℓQ : Q ↪→ Qℓ,
we regard µ

p
N{ℓ} as a subset of Qℓ. Let λ := ℓQ(ℓ) be the place of Q(ℓ) below ℓQ,

and identify Gal
(
Q(µℓ)λ/Qℓ

)
with Hℓ by the isomorphism induced from the natural

embedding. Let π be a uniformizer of Q(ℓ)λ. We fix a generator σℓ of Hℓ such that

πσℓ−1 ≡ ζpordp(ℓ−1) (mod mλ),

where mλ is the maximal ideal of Q(ℓ)λ, and

ordp : Q×
p

// // Z

is the normalized valuation at p. Note that the definition of σℓ does not depend on
the choice of π. We have the following Lemma.

Lemma 4.8 ([Ru2] Lemma 1.4.7). Let ℓ ∈ PN . The following hold.

(i) The O/πNO-modules T/
(
πNT + (Frℓ − 1)T

)
and (T/πNT )Frℓ=1 are free of

rank one.
(ii) Evaluating cocycles on Frℓ and σℓ induces isomorphisms

H1
f (Qm ⊗Qℓ, T/π

NT )
≃−−→ Rm,N ⊗O/πNO T/

(
πNT + (Frℓ − 1)T

)
H1
s (Qm ⊗Qℓ, T/π

NT )
≃−−→ Rm,N ⊗O/πNO (T/πNT )Frℓ=1

of Rm-modules respectively.

If ℓ ∈ PτN , then the isomorphism Ψm,N and Lemma 4.8 induce an isomorphism

Ψℓ
m,N : H1

s (Qm ⊗Qℓ, T/π
NT ) ≃ Rm,N ⊗O/πNO (T/πNT )Frℓ=1 −→ Rm,N

of Rm,N -modules. Here, we define the “localization” map.

Definition 4.9 (Localization map). For any ℓ ∈ NN , we call the composite of natural
maps

(·)ℓ,sm,N : H1(Qm, T/π
NT ) −→ H1

ét(Qm ⊗Qℓ, T/π
NT )

−→ H1
s (Qm ⊗Qℓ, T/π

NT )

the localization map. If ℓ ∈ PτN , we define the composite map

(·)ℓ,sm,N,Φ∗ := Ψℓ
m,N ◦ (·)ℓm,N : H1(Qm, T/π

NT ) −→ Rm,N .

In order to define the “finite-singular” map, we need to introduce a new local
condition on T/πNT .

Definition 4.10 (Qm(ℓ)⊗Qℓ-transverse condition). Let ℓ ∈ PN . Then, we define

H1
tr(Qm ⊗Qℓ, T/π

NT ) := Ker

(
H1

ét(Qm ⊗Qℓ, T/π
NT )

−→ H1
ét(Qm(ℓ)⊗Qℓ, T/π

NT )

)
.

This local condition is called the Qm(ℓ)⊗Qℓ-transverse condition (cf. [MR] Definition
1.1.6).
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Lemma 4.11 ([MR] Lemma 1.2.4). Let ℓ ∈ PN . Then, we have a direct sum decom-
position

H1
ét(Qm ⊗Qℓ, T/π

NT ) = H1
f (Qℓ, T/π

NT )⊕H1
tr(Qm ⊗Qℓ, T/π

NT ).

So, the natural projection

H1
tr(Qm ⊗Qℓ, T/π

NT ) −→ H1
s (Qm ⊗Qℓ, T/π

NT )

is an isomorphism.

Let ℓ ∈ PN . Since ℓ ≡ 1 mod pN , we have

P (Frℓ|T ; x) ≡ P (Fr−1
ℓ |T

∗; x) ≡ 0 mod πN .

Then, by definition of PN , we have

P (Fr−1
ℓ |T

∗; 1) ≡ 0 mod πN ,

so there exists a unique polynomial Q(x) ∈ O/πNO satisfying

(x− 1)Q(x) ≡ P (Frℓ|T ;x) := det(1− xFrℓ|T ) mod πN .

By the Cayley–Hamilton Theorem, we have a group homomorphism

(3) T/
(
πNT + (Frℓ − 1)T

) ×Q(Fr−1
ℓ )

−−−−−−−→ (T/πNT )Frℓ−1.

Thus we obtain the “finite-singular comparison” homomorphism as follows.

Definition 4.12 (Finite-singular comparison map). Let ℓ ∈ NN . The homomorphism
(3) and Lemma 4.8 induce the homomorphism

ϕℓfs : H
1
f (Qm ⊗Qℓ, T/π

NT ) −→ H1
s (Qm ⊗Qℓ, T/π

NT )

of Rm,N -modules called the finite-singular comparison map. We define the composite
map

ϕℓm,N : H1(Qm, T/π
NT ) −−→ H1

ét(Qm ⊗Qℓ, T/π
NT )

H1
tr(Qm ⊗Qℓ, T/πNT )

≃−−→ H1
f (Qm ⊗Qℓ, T/π

NT )

ϕℓfs−−→ H1
s (Qm ⊗Qℓ, T/π

NT )

If ℓ ∈ PτN , we define the composite map

ϕℓm,N,Φ∗ := Ψℓ
m,N ◦ ϕℓm,N : H1(Qm, T/π

NT ) −→ Rm,N .

4.3. Kolyvagin derivatives. In this subsection, we recall the notion of Kolyvagin
derivatives briefly. As in the previous subsection, we fix integers N > m ≥ 0. Let
c = {cm(n)}m,n ∈ ESO(T,Σ) be an Euler system, and c′ = {c′m(n)}m,n ∈ ES′

O(T,Σ)
a modified Euler system corresponding to c.

Definition 4.13. For ℓ ∈ PN , we define

Dℓ :=
ℓ−2∑
k=1

kσkℓ ∈ Z[Hℓ].
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Let n =
∏r

i=1 ℓi ∈ NN , where ℓi ∈ PN for each i. Then, we define

Dn :=
r∏
i=1

Dℓi ∈ Z[Hn].

By the formal arguments using “the universal Euler system”, we have the following
lemma. (For details, see [Ru2] §4.)

Lemma 4.14 ([Ru2] Lemma 4.4.2). For any n ∈ NN , the images of Dncm(n) and
Dnc

′
m(n) in H

1(OQm(n)[1/p], j∗T )⊗O O/πNO are fixed by the action of Hn, where

j : SpecOQm(n),Σ −→ SpecOQm(n)[1/p]

is the natural inclusion.

Let n ∈ NN , and put Σn := Σ ∪ prime(n). Let

jn : OQm,Σn −→ SpecOQm [1/pn]

be the natural open immersion. Later (especially in §8), we need the following lemma.

Lemma 4.15. Under the assumption (C7), the natural homomorphism

jn∗T/π
Njn∗T −→ jn∗(T/π

NT )

of O-sheaves on (SpecOQm [1/pn])ét is an isomorphism.

Proof. By the short exact sequence

0 −→ T
πN×−−−→ T −→ T/πNT −→ 0,

we obtain the exact sequence

0 −→ jn∗T/π
Njn∗T −→ jn∗(T/π

NT ) −→ (R1jn∗T )[π
N ] −→ 0

of O-sheaves on (SpecOQm [1/pn])ét. So, in order to show the lemma. it is sufficient
to show (R1jn∗T )[π

N ] = 0. For any place λ of Qm, we denote by km(λ) the residue
field of OQm at λ, and let

iλ : Spec km(λ) −→ SpecOQm

be the natural closed immersion. Then, we have the natural isomorphism

R1jn∗T ≃
⊕
λ

(iλ)∗H
1
cont(IQm,λ

, T ),

where λ runs through all places of Qm above elements of Σ \ {p,∞}, and we regard
H1

cont(IQm,λ
, T ) as a sheaf on (Spec km(λ))ét via its Gkm(λ)-module structure. Then,

by the assumption (C7), it follows that the O-module H1
cont(IQm,λ

, T ) is torsion-free.
Hence the O-sheaf R1jn∗T is torsion-free. □

Note that for any prime divisor ℓ of n, the action of GQℓ
on T is unramified. So

for any n ∈ NN , the assumptions (C1) and (C4) imply that

H0(Qm(n), T/π
NT ) = H0(Qm, T/π

NT ) = 0.
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In particular, we have

H0
ét(OQm(n)[1/pn], jn∗T/π

Njn∗T ) = H0
ét(OQm(n)[1/pn], jn∗(T/π

NT )) = 0.

Thus by Hochschild–Serre spectral sequence, the restriction map

R
(n)
m,N,T : H

1
ét(OQm [1/pn], jn∗T/π

Njn∗T ) −→ H1
ét(OQm(n), jn∗T/π

Njn∗T )
Hn

is an isomorphism.

Definition 4.16 (Kolyvagin derivative). Let z = {zm(n)} be c or c′. Take any
element of n ∈ NN . Then, we put

κm,N(n; z) := (R
(n)
m,N,T )

−1 (Dnzm(n)) ∈ H1
ét(OQm [1/pn], jn∗T/π

Njn∗T )

The cohomology classes κm,N(n; z) is called Kolyvagin derivatives. Note that the
Kolyvagin derivative κm,N(n; z) can be regarded as an element of H1

Fn
can
(Qm, T/π

NT )
since the natural map

H1
ét(OQm [1/pn], jn∗(T/π

NT )) −→ H1
Fn

can
(Qm, T/π

NT ).

is injective by Lemma 4.15.

For any n ∈ N , we define the local condition Fcan(n) on T by

H1
Fcan(n)(Qm ⊗Qℓ, T ) :=

{
H1

Fcan
(Qℓ, T ) if ℓ ∤ n;

H1
tr(Qm ⊗Qℓ, T ) if ℓ | n.

The following proposition is one of the essence in induction steps of the Euler system
arguments.

Proposition 4.17 ([Ru2] Theorem 3.5.1 and [Ru2] Theorem 3.5.4). Let z = {zm(n)}
be c or c′, and n any element of NN . Then, for any prime divisor ℓ of n, we have

(κm,N(n; z))
ℓ,s
m,N = ϕℓm,N (κm,N(n/ℓ; z)) .

In order to discuss the Kurihara’s Euler system arguments, we need the notion of
well-ordered integers, which is introduced in [Ku].

Definition 4.18. Let n ∈ NN . We call n well-ordered if n has a factorization n =∏r
i=1 ℓi with ℓi ∈ PN such that ℓi+1 splits in Qm

(
µ∏i

j=1 ℓj

)
/Q for any i satisfying

1 ≤ i ≤ r − 1. In other words, n is well-ordered if and only if n has a factorization
n =

∏r
i=1 ℓi such that

ℓi+1 ≡ 1 (mod
i∏

j=1

ℓj)

for i = 1, . . . , r − 1. We denote by Nw.o.
N the set of all elements in NN which are

well-ordered.

In Kurihara’s Euler system arguments, the following Proposition is another essence.

Proposition 4.19 ([MR] Theorem A.4). Let n ∈ Nw.o.
N be any element. Then, the

cohomology class κm,N(n; c
′) belongs to H1

Fcan(n)
(Qm, T/π

NT ). In particular, we have

ϕℓm,N (κm,N(n; c
′)) = 0

for any prime divisor ℓ of n.
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5. Construction of the ideal Ci(c)

Assume that T satisfies (C1)–(C7). Here, fix an Euler system c = {cm(n)}m,n ∈
ESO(T,Σ) satisfying (NV), and let c′ = {c′m(n)}m,n ∈ ES′

O(T,Σ) be the modified
Euler system corresponding to c. We denote c or c′ by z = {zm(n)}.

In this section, we construct the ideals Ci(c) of Λ, and prove Theorem 2.4 (i).

5.1. Construction of Ci(c). First, we fix integers m,N satisfying N > em ≥ 0, and
construct an ideal Ci,m,N(c) of Rm,N for any i ∈ Z≥0.

Let n ∈ Nw.o.
N with the prime decomposition n =

∏r
j=1 ℓj, where ℓi ∈ PN for each

j. We denote the number of prime divisors of n by ϵ(n), that is, ϵ(n) := r. We define
an ideal Cm,N(n; z) of Rm,N by

Cm,N(n; z) :=
{
f(κm,N(n; z)) | f ∈ HomRm,N

(H1(Qm, T/π
NT ), Rm,N)

}
.

Definition 5.1. Let i ∈ Z≥0. We denote by Ci,m,N(z) the ideal of Rm,N generated
by
∪
n Cm,N(n; z), where n runs through all elements of Nw.o.

N satisfying ϵ(n) ≤ i.

Remark 5.2. By Proposition 4.5, we have

Ci,m,N(c) = Ci,m,N(c
′).

Now vary m and N , and let us construct the ideal Ci(c) of Λ. As [Oh1] Claim 4.4,
the following lemma holds.

Lemma 5.3. Let m1, m2, N1 and N2 be positive integers satisfying m2 ≥ m1 and
N2 ≥ N1. Take any element n ∈ NN2. Then, the following hold.

(i) For any Rm2,N2-homomorphism

f2 : H
1(Qm2 , T/π

N2T ) −→ Rm2,N2 ,

there exists an Rm1,N1-homomorphism

f1 : H
1(Qm1 , T/π

N1T ) −→ Rm1,N1,

which makes the diagram

H1(Qm2 , T/π
N2T )

f2 //

CorQm2/Qm1
��

Rm2,N2

����
H1(Qm1 , T/π

N1T )
f1 //___ Rm1,N1

commute, where the left vertical arrow CorQm2/Qm1
is the corestriction map,

and the right one is the natural projection.
(ii) Assume N1 = N2 =: N . Then, for any Rm1,N [Hn]-homomorphism

g1 : H
1(Qm1(n), T/π

NT ) −→ Rm1,N [Hn],

there exists an Rm2,N [Hn]-homomorphism

g2 : H
1(Qm2(n), T/π

NT ) // Rm2,N,χ[Hn]
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which makes the diagram

H1(Qm2(n), T/π
NT )

g2 //___

CorQm2/Qm1
��

Rm2,N,χ[Hn]

����
H1(Qm1(n), T/π

NT )
g1 // Rm1,N,χ[Hn]

commute.

Proof. Proof of this lemma is completely to that of [Oh2] Lemma 4.13. First, we
shall give preliminary remarks. Let n be as in the assertion (ii). When we treat the
situation in the assertion (i), we assume that n = 1. We put R1 = Rm1,N1 [Hn], R2 =
Rm2,N2 [Hn], and the natural surjection pr : R2 −→ R1. Γm2,m1 := Gal(Qm2/Qm1). We
assume that the action of GQ is unramified at any prime ℓ dividing n, so it follows
from the hypotheses (C1) and (C4) that we have

H0(Qm2(n), T/π
N2T ) = 0.

So, the Hochschild–Serre spectral sequence implies that the restriction map

H1(Qm1(n), T/π
N2T ) −→ H1(Qm2(n), T/π

N2T )Γm2,m1

is an isomorphism, and we identify these two Rm2,N2-modules by this isomorphism.
W also note that

R1 ≃ HomZp(R1,Qp/Zp)
is an injective R1-module,

Let us prove the assertion (i). Note that we can easily reduce the proof of this
claim to the following two cases:

(A) (m2, N2) = (m1, N1 + 1);
(B) (m2, N2) = (m1 + 1, N1).

First, we consider the case (A). Here, we put m = m1 = m2 and N = N1. By
Lemma 3.3, the map

T/πNT
×π−−−→ T/πN+1T

induces an isomorphism

H1(×π) : H1(Qm, T/π
NT )

≃−−→ H1(Qm, T/π
N+1T )[πN ].

Note that we have an isomorphism

×π−1 : R2[π
N ] = πR2

≃−−→ R1,

so we can define the R1-linear homomorphism

f1 := (×π−1) ◦ f2 ◦H1(×π) : H1(Qm, T/π
NT ) −→ R1.

The map f1 is what we desired.

Let us consider the case (B). Put

Nm+1/m :=
∑

σ∈Gal(Qm+1/Qm)

σ ∈ R2,
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and consider the isomorphism

νm+1/m : R1
≃−−→ Nm+1,mR2 = (R2)

Γm+1,m

of R1-modules defined by 1 7→ Nm+1/m. We define the composite map

f1 : H
1(Qm, T/π

NT ) = H1(Qm+1, T/π
NT )Γm2,m1

f2−−−→ (R2)
Γm+1/m

ν−1
m+1/m−−−−−−→ R1.

Let NH be the image of H1(Qm+1, T/π
NT ) in

H1(Qm, T/π
NT ) = H1(Qm+1, T/π

NT )Γm+1,m

by the norm map. Then, the diagram

H1(Qm2 , T/π
NT )

f2 //

Nm+1,m×(·)

��

CorQm+1/Qm

vvmmmmmmmmmmmmmmmmmmmmmmm
R2

pr

��

×Nm/m+1 // R2

NH Nm+1/m ·H1(Qm2 , T/π
NT )

f1 //___ R1

- 

νm+1/m

<<xxxxxxxxxxxxxx

commutes. This completes the proof of the assertion (i).

Now, let us show the assertion (ii). It is sufficient to show in the case of (m2, N) =
(m1 + 1, N). Suppose that an arbitrary R1-linear homomorphism

g1 : H
1(Qm1(n), T/π

N2T ) −→ R1

is given. Since R2 is injective as an R2-module, we can extend the homomorphism

νm+1/m ◦ g1 : H1(Qm(n), T/π
NT ) = H1(Qm+1(n), T/π

NT )Γm+1/m −→ R2

to an R2-linear homomorphism g2 : H
1(Qm+1(n), T/π

NT ) −→ R2. Then, we have the
commutative diagram

H1(Qm+1(n), T/π
NT )

g2 //___

CorQm+1/Qm=Nm+1/m×(·)

��

R2

pr

��

×Nm+1/m // R2

H1(Qm(n), T/π
NT )

g1 // R1

- 

νm+1/m

<<xxxxxxxxxxxxxx

of R2-modules, and the assertion (ii) of Lemma 5.3 follows. □

Let m1,m2, N1, N2 and n be as above, and assume Ni > emi for each i = 1, 2.
Then, Lemma 5.3 and “norm compatibility” of the Euler system c imply that the
image of Cm2,N2(c) in Rm1,N1 is contained in Cm1,N1(c). We obtain the projective
system of the natural homomorphisms{

Ci,m2,N2(c) −→ Ci,m1,N1(c)
∣∣ N2 ≥ N1 > em1 and N2 > em2 ≥ em1.

}
Finally, we define Ci(c) as follows.
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Definition 5.4. For any i ∈ Z≥0, we define the ideal Ci(c) of Λ = lim←−Rm,N by the
projective limit

Ci(c) := lim←−Ci,m,N(c).

5.2. Results on principal Fitting ideals. In this subsection, we shall prove the
assertion (i) of Theorem 2.4. Recall that we denote the maximal pseudo-null Λ-
submodule of X := X(T ) by Xfin, and put X ′ = X ′(T ) := X/Xfin. The goal of this
subsection is the following theorem.

Theorem 5.5. Assume that the pair (T, c) satisfies the conditions (C1)–(C7) and
(NV). Then, we have

annΛ(Xfin)I(c) · FittΛ,0(X ′) ⊆ C0(c).

Later (including the proof of Theorem 5.5), we often use the following facts on
twists of T by characters of Γ.

Lemma 5.6 ([Ru2] Lemma 6.1.3). The following hold.

(i) Let γ1, . . . , γr be elements of GQ whose image in Γ are non-trivial. Then, the
set{

ρ ∈ Homcont(Γ,O×)

∣∣∣∣ (T ⊗ ρ)γ
pn

i =1 = 0 for any i ∈ Z ∩ [1, k]
and any n ∈ Z≥0.

}
is open and dense in Homcont(Γ,O×).

(ii) For any m ∈ Z≥, the set{
ρ ∈ Homcont(Γ,O×)

∣∣∣∣ the order of H2
Σ(T ⊗ ρ)⊗Λ Rm is finite

}
is open and dense in Homcont(Γ,O×).

Remark 5.7. Assume that (T, c) satisfies the conditions (C1)–(C7), (NV) and (MC).
Let ρ : Γ −→ 1 + πO be any continuous character, and (O, ρ) be the free O-module
of rank one on which Γ acts via ρ. We put

T ⊗ ρ := T ⊗O (O, ρ),
and let c ⊗ ρ ∈ ESO(T ⊗ ρ; Σ) be the twist of the Euler system c by the character
ρ in the sense of in the [Ru2] Chapter 6. Note that both ρ|GQ∞

∈ Hom(GQ∞ ,O×)
and (ρ mod πO) ∈ Hom(GQ, k

×) are trivial characters, so the pair (T ⊗ ρ, c⊗ ρ) also
satisfies the conditions (C1)–(C7), (NV) and (MC).

Proof of Theorem 5.5. Letm and N be integers satisfying N > em ≥ 0. Since Fitting
ideals are compatible with respect to base change, it is sufficient to show that

annΛ(Xfin)I(c) · FittRm,N ,0(X
′ ⊗Λ Rm,N) ⊆ C0,m,N(c).

By Lemma 5.6, there exists a character ρ ∈ Homcont(Γ, 1 + pNZp) which makes the
order of (

H2
Σ(T )⊗ ρ

)
⊗Λ Rm ≃ H2

Σ(T ⊗ ρ)⊗Λ Rm

finite. Let ρ : Γ −→ 1 + pNZp be such a character, and c ⊗ ρ be the twist of c by
ρ. Note that the image of annΛ(X(T ⊗ ρ)fin) (resp. I(c⊗ ρ) and FittΛ,0(X

′(T ⊗ ρ)))
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in Rm,N coincides with the image of annΛ(Xfin) (resp. I(c) and FittΛ,0(X
′)). By the

construction of Kolyvagin derivatives and the ideal Ci,m,N(c), we also have

Ci,m,N(c⊗ ρ) = Ci,m,N(c).

So, we may replace T with T ⊗ ρ, and assume that

charΛ(H2
Σ(T )) ̸⊆ (γp

m − 1)Λ.

Fix a Λ-linear map φ : H1
Σ(T ) −→ Λ. This map induces a homomorphism

φ̄m,N : H1
Σ(T )⊗Λ Rm,N −→ Rm,N .

We take an arbitrary elements δ ∈ annΛ(Xfin). By Corollary 3.10, we obtain the
following lemma.

Lemma 5.8. Let NHm,N be the image of the natural homomorphism

H1
Σ(T )⊗Λ Rm,N −→ H1

ét(OQm,Σ, T/π
NT ).

Then, the kernel of this homomorphism is annihilated by δ, and there exists a homo-
morphism ψ : NHm,N −→ Rm,N,χ which makes the diagram

H1
Σ(T )⊗Λ Rm,N

δφ̄m,N //

����

Rm,N

NHm,N

ψ

55kkkkkkkkk

commute.

By Lemma 5.8, we obtain

δφ̄m,N(the image of cm(1)) = ψ(κm,N(1; c)) ∈ C0,m,N(c).

By the definition of the ideal Iφ(c), we have

δIφ(c)FittΛ,0(X
′) = δIφ(c) charΛ(X) = δφ(cm(1))Λ,

so we obtain

δI(c) · FittRm,N ,0(X
′ ⊗Λ Rm,N) = δφ̄m,N(the image of cm(1))Rm,N .

This completes the proof. □

6. Kolyvagin systems and lower bounds of higher Fitting ideals

Let (T, c, c′) be as in the previous section. Here, we briefly recall the definition
and some known results of Kolyvagin systems established in [MR], and prove the
inequality

(4) Ci(c) ≺ FittΛ,i(X).

for any non-negative integer i under the assumption rankOT
− = 1..
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6.1. Review of Kolyvagin systems. Here, we recall the notion and some results of
Kolyvagin systems for discrete valuation rings. For any n ∈ N1, we put In := πN{n}O.
First, we recall the definition of Kolyvagin systems.

Definition 6.1. Let R be O or O/πNO for some N ∈ Z>0, and put M := T ⊗O R.
Consider a local condition F onM satisfying H1

F(Qℓ,M) = H1
f (Qℓ,M) for any prime

number ℓ not contained in Σ.

• For any n ∈ N1(Σ;T )O. we define a new local condition F(n) by

H1
F(Qℓ,M) =

{
H1
tr(Qℓ,M) (if ℓ | n).

H1
f (Qℓ,M) (if ℓ ∤ n).

(For the definition of H1
tr(Qℓ,M), see Definition 4.10.)

• A Kolyvagin system for the triple (M,F ,P1(T ; Σ))O is a family of cohomology
classes

κ = {κn ∈ H1
F(n)(Q,M/InM)}n∈N1(Σ;T )O

satisfying

(κn)
ℓ,s

0,N̄{n}
= ϕℓ0,N̄{n}

(κn/ℓ) in H1
s (Qℓ,M/InM)

for any n ∈ N1 and any prime divisor ℓ of n, where we put N̄{n} := N{n} (resp.
N ′ := min{N,N{n}}) if M = T (resp. M = T/πNT ). We denote the set of all
Kolyvagin systems for (M,F ,P1(T ; Σ))O by KSR(M ;F ,Σ). In particular, if F
is the canonical local condition Fcan, we put KSR(M ; Σ) := KSR(M ;Fcan,Σ)
for simplicity.

Here, we remark on some relations between Euler systems and Kolyvagin systems.

Proposition 6.2 ([MR] Theorem 3.2.4). Assume the following two conditions.

(K1) The action of Frp
a

ℓ −1 on T is injective for any ℓ ∈ P1(Σ;T )O and any a ∈ Z≥0.
(K2) It holds that

rankOT
− + corankOH

0(Qp, A
∗) = 1.

Then, there exists an O-linear map

ES′
O(T,Σ) −→ KSO(T,Σ); z′ = {z′m(n)}m,n 7−→ κ(z′) := {κ(z′)n}n

satisfying the following property.

(EK) Let n ∈ N1(Σ;T )O be an arbitrary well-ordered element, and put In = πN{n}O.
Then, for any z′ ∈ ESO(T,Σ), we have

κ(z′)n = κ0,N{n}(n; z
′),

where κ0,N{n}(n; z
′) ∈ H1(Q, T/InT ) is the Kolyvagin derivative of z′ at n.

For details of the construction of the map in Proposition 6.2, see [MR] Appendix
A, in particular pp. 80–81.
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Corollary 6.3. Assume that rankOT
− = 1. Let n0 ∈ N1(Σ;T )O be an arbitrary

well-ordered element. Then, for any z′ ∈ ESO(T,Σ), there exists a Kolyvagin system

κ(z′) = {κ(z′)n}n ∈ KSO/πN{n0}O(T/π
N{n0}T,Σ)

satisfying
κ(z′)n0 = κ0,N{n0}

(n0; z
′).

Proof. Fix an well-ordered element n0 ∈ NN(Σ, T )O. By Lemma 5.6, there exists a
character ρ ∈ Homcont(Γ, 1 + πN{n0}O) satisfying the following conditions.

• The action of Frp
a

ℓ − 1 on T ⊗ ρ is injective for any ℓ ∈ P1 and any a ∈ Z≥0.
• The order of H0(Qp, A

∗) is finite.

Let z′⊗ ρ ∈ ES′
O(T ⊗ ρ,Σ) be the twist of the Euler system z′ by ρ. Note that T ⊗ ρ

satisfies the conditions (K1) and (K2) in Proposition 6.2, so we can apply Proposition
6.2 for T ⊗ρ. Let κ̃ = {κ̃n}n ∈ KSO(T ⊗ρ,Σ) be the Kolyvagin system corresponding
to z′ ⊗ ρ, and denote the image of κ̃ in KSO

(
(T ⊗ ρ)/πNn0 (T ⊗ ρ),Σ

)
by κ = {κn}n.

Note that by definition, we have

κ0,N{n0}
(n; z′ ⊗ ρ) = κ0,N{n0}

(n; z′)

for any n ∈ N1(Σ;T )O. So, the condition (EK) in Proposition 6.2 implies

(5) κn = κ0,min{Nn0 ,N{n}}(n; z
′)

for any well-ordered n ∈ N1(Σ;T )O.

Here, we denote by Fcan,1 (resp. Fcan,ρ) the local condition on the GQ-moduleM :=
T/πN{n0}T arising from the canonical local condition on T (resp. T ⊗ ρ). In order to
complete the proof of Corollary 6.3, it suffices to show κ ∈ KSO/πN{n}O(M ;Fcan,1,Σ).

Fix an integer n ∈ N1(Σ;T )O, and let us show

κn ∈ H1
Fcan,1(n)

(Q,M/InM).

By the definition of the local condition tr and [Ru2] Lemma 1.3.8, we have

κn ∈ H1
FΣ

can,ρ(n)
(Q,M/InM) = H1

FΣ
can,1(n)

(Q,M/InM).

On the other hand, by the definition of Kolyvagin derivatives and the equality (5)
imply

κn ∈ H1
Fn

can,1
(Q,M/InM).

Since any prime divisor of n is not contained in Σ, we obtain

κn ∈ H1
Fcan,1(n)

(Q,M/InM).

This completes the proof. □

Note that by [MR] Theorem 5.2.12, in certain good situations, Kolyvagin systems
determine the isomorphism class of the Selmer groups over complete discrete valuation
rings with finite residue fields. Here, we briefly review this result. Recall that for any
element n ∈ N1(Σ;T )O, we denote the number of prime divisors of n by ϵ(n). Namely,
we put ϵ(n) := r if n is decomposed into the product of r prime numbers. For any
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non-zero element κ = {κn} ∈ KSO(T,Σ) and any non-negative integer i, we denote
the maximum (accepting ∞) of the set{

j ∈ Z≥0 | κn ∈ πjHF(n)(Q, T/InT ) for all n ∈ N1(Σ;T )O with ϵ(n) = i
}

by ∂i(κ;T ). We also define

∂i(T ) := min{∂i(κ;T ) | κ = {κn} ∈ KSO(T,Σ)}.
Note that ∂i(T ) = 0 for sufficiently large i, and ∂j(T ) ≥ ∂j+1(T ) for any j ∈ Z≥0.
(See [MR] Theorem 5.10 (ii) and Theorem 5.12).

Proposition 6.4 ([MR] Theorem 5.2.12). Assume that T satisfies the condition (K2)
in Proposition 6.2. We put

X0 = X0(T ) := Hom
(
H1

F∗
can

(Q, A∗),Qp/Zp
)
.

Then, we have

FittO,i(X0) = π∂i(T )O
for any i ∈ Z≥0. Here, we put π∞O := {0}.

6.2. Lower bounds of higher Fitting ideals. Here, let us prove Theorem 2.4 (iii).
In this subsection, we always assume that T− is a free O-module of rank one. We fix
an integer i ∈ Z≥0 and a height one prime ideal P of Λ containing FittΛ,i(X). We
define two integers α = αi(P) and β = βi(P) by

FittΛP,i(XP) = PαΛP,

CiΛP = PβΛP.

In order to prove Theorem 2.4 (iii), it is sufficient to show the following theorem.

Theorem 6.5. We have βi(P) ≥ αi(P).

We shall prove Theorem 6.5 by the parallel arguments to that in [Oh2] §8.3, but
here, we also treat the cases when the µ-invariant of the Iwasawa module X(T ) is
not zero. We identify Λ = O[[Γ]] with the ring O[[T ]] of formal power series by an
isomorphism O[[Γ]] ≃ O[[T ]] defined by γ 7→ 1 + T . We assume that GQ acts on Λ
by the tautological action, and put

T := T ⊗O Λ.

By Shapiro’s lemma and limit arguments (cf. [Ta2] Corollary 2.2), we have the natural
isomorphism

H i(GQ,Σ,T) ≃ Hi
Σ(T ),

H i(GQp ,T) ≃ H i
loc(T ).

As in [MR] §5.3, we define the exceptional set ΣΛ of hight-one prime ideals of Λ by

ΣΛ :=
{
P | #

(
H2

Σ(T )[P]
)
<∞

}
∪
{
P | #

(
H2

loc(T )[P]
)
<∞

}
∪ {πΛ}

Note that ΣΛ is a finite set. (See [MR] Lemma 5.3.13.) For any positive integer j, we
define an element fj(T ) ∈ O[T ] ⊂ Λ as follows.
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• Suppose P ̸= (π), and let f(T ) = f∞(T ) be the Weierstrass polynomial which
generates P. Then, for any j ∈ Z≥0, we put fj(T ) = f(T ) + pj.
• Suppose P = (π). Then, we put f(T ) = f∞(T ) := π, and fj(T ) = π + T j for
any j ∈ Z≥0.

For any j ∈ Z≥0 ∪ {∞}, let Pj be the principal ideal of Λ = O[[T ]] generated by
fj(T ). (So, especially, we have P∞ = P.) Then, there exists a positive integer N(P)
satisfying the following properties.

(i) The ideal Pj is a prime ideal for any j ∈ Z≥N(P).
(ii) The ideal Pj is not contained in ΣΛ for any j ∈ Z≥N(P).
(iii) If P ̸= (π), then the ring Λ/Pj is (non-canonically) isomorphic to Λ/P as an
O-algebra for any j ∈ Z≥N(P).

(For detail, see [MR] p. 66.) As in [Oh2], it is convenient to introduce the following
notation.

Definition 6.6. Let M be an integer, and {xj}j≥M and {yj}j≥M sequences of real
numbers. We write xj ≻ yj if lim infj→∞(xj − yj) ̸= −∞. We write xN ∼ yN if
xj ≻ yj and yj ≻ xj.

For any j ∈ Z≥0, we denote the normalization of Λ/Pj by Oj. Note that if j ≥
N(P), the ring Oj is a complete discrete valuation ring, and we fix a uniformizer πj
of Oj. We put Frac(Oj) := Kj. We define a non-negative integer s by

ps = (O∞ : Λ/P).

(For instance, if P = (π), then we have Λ/P ≃ k[[T ]]. So, in this case, we can take
π∞ = T , and s = 0.) We define an integer e∞ as follows.

• If P ̸= (π), we denote the ramification index of K∞/Qp by e∞.
• If P = (π), we put e∞ = 1

As in [Oh2] Lemma 8.10 and [Oh2] Corollary 8.11, via the observations in [MR],
we obtain the following lemma.

Lemma 6.7. Let M be a finitely generated torsion Λ-module. We define a non-
negative integer C by

FittΛP,i(MP) = PCΛP.

For any j ∈ Z≥N(P), we define a non-negative integer cj by

FittOj ,i(M ⊗Λ Oj) = π
cj
j Oj.

Then, we have cj ∼ Ce∞j.

Definition 6.8. For any j ∈ Z≥N(P), we define aj, bj ∈ Z≥0 by

π
aj
j Oj = FittOj ,i(X ⊗Λ Oj),
bj = lengthOj

(
(Λ/Ci(c))⊗Λ Oj

)
.

By Lemma 6.7, we have aj ∼ αe∞j and bj ∼ βe∞j.
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Let j be an integer satisfying j ≥ N(P). We define a continuous character

ρj : Γ −→ 1 + πjOj
by the composite

Γ
⊆−−→ Λ −→ Λ/Pj

⊆−−→ Oj.
We put Tj := Oj ⊗O T , and define the action of GQ on it by

GQ × Tj −→ Tj; (g, a⊗m) 7−→ ρj(g)a⊗ gm.
for any g ∈ GQ, a ∈ Oj and m ∈ T . We put A∗

j := HomOj
(Tj, Kj/Oj(1)), and

X0(Tj) := HomZp

(
H1

F∗
can

(Q, A∗
j),Qp/Zp

)
.

Proposition 6.9 ([MR] Proposition 5.3.14). Take any j ∈ Z≥N(P), and let πj : X⊗Λ

Oj −→ X0(Tj) be a natural homomorphism. Then, the kernel and cokernel of πj
are both finite. Moreover, the orders of kernel and cokernel of πj are bounded by a
constant independent of j ∈ Z≥N(P).

As in [Oh2] Corollary 8.14, we deduce the following corollary from Proposition 6.9
and Proposition 6.4 for the Oj-module Tj.

Corollary 6.10. We have aj ∼ ∂i(Tj).

For any j ∈ Z≥N(P), we take an integer N ′
j satisfying

• e∞N ′
j ≥ ∂i(Tj) + 4se∞, and

• pN ′
j ∈ Ci(c) +Pj.

Note that there exist such an integer N ′
j since the order of X0(Tj) is finite, and since

the ideal Ci(c) +Pj has finite index in Λ. Then, we take an integer N ′′
j satisfying

• eN ′′ ≥ max{e, e∞}N ′,

• γp
N′′
j −1

− 1 ∈ Pj + pN
′
jΛ, and

• PeN ′′
j
(Σ;T )O ⊆ Pe∞N ′

j
(Σ;Tj)Oj

∩ Pe∞N ′
j
(Σ; (Oj, ρj))Oj

,

where (Oj, ρj) is a free Oj-module of rank one on which GQ acts via the character ρj.
We put mj := N ′′

j − 1.

Proof of Theorem 6.5. Now, let us prove the inequality β ≥ α. Note that it is suffi-
cient to show βe∞j ≻ αe∞j. Let j ∈ Z≥N(P). Then, we have

βe∞j ∼ bj = lengthOj

(
(Λ/(Ci(c) +Pj))⊗Λ Oj

)
= lengthOj

((
Λ/(Ci(c) +Pj + pN

′
jΛ)
)
⊗Λ Oj

)
= lengthOj

((
Λ/(Ci(c) +Pj + (pN

′
j , γp

mj − 1))
)
⊗Λ Oj

)
= lengthOj

((
Rmj ,eN ′

j
/(the image of Cj(c))

)
⊗Λ Oj

)
≥ lengthOj

((
Rmj ,eN ′

j
/(the image of Ci,mj ,eN ′′

j
(c))

)
⊗Λ Oj

)
.
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Note that by Remark 5.2, we have

Ci,mj ,eN ′′
j
(c) = Ci,mj ,eN ′′

j
(c′).

Since the ring Rmj ,eN ′
j
⊗ΛOj is a quotient of the discrete valuation ring Oj, the image

of Ci,mj ,eN ′′
j
(c′) in Rmj ,eN ′

j
⊗Λ Oj is a principal ideal. So, there exist a well-ordered

integer nj ∈ NeN ′′
j
(Σ;T )O and a homomorphism

hj : H
1(Qmj

, T/pN
′′
j T ) −→ Rmj ,eN ′′

j

such that the image of Ci,mj ,eN ′′
j
(c′) in Rmj ,eN ′

j
⊗Λ Oj is generated by the image of

hj(κmj ,eN ′′
j
(nj; c

′)). Therefore, we obtain

(6) βe∞j ≻ lengthOj

((
Rmj ,eN ′

j
/(the image of hj(κmj ,eN ′′

j
(nj; c

′)))
)
⊗Λ Oj

)
.

By Lemma 5.3, there exists an Rmj ,eN ′
j
-linear homomorphism

h̄j : H
1(Qmj

, T/pN
′
jT ) −→ Rmj ,eN ′

j

which makes the diagram

H1(Qmj
, T/pN

′′
j T )

hj //

��

Rmj ,eN ′′
j

����
H1(Qmj

, T/pNjT )
h̄j //___ Rmj ,eN ′

j

commute.

For a moment, we fix an integer j ≥ N(P), and put N ′ := Nj, N
′′ := N ′′

j , m := mj,

n = nj and h̄j := h̄ for simplicity. We put

NHn :=
∑
σ∈Hn

σ ∈ Z[Hn].

Let νHn : Rm,eN ′ −→ Rm,eN ′ [Hn]
Hn be an isomorphism of Rm,eN ′ [Hn]-module defined

by 1 7→ NHn . Note that the natural map

H1(Qm, T/p
N ′
T ) −→ H1(Qm(n), T/p

N ′
T )

is injective by the assumption (C1) and (C4), and Rm,eN ′ [Hn] is an injective Rmk,eN
′
k
-

module, so there exist an Rmk,eN
′
k
-linear map

h̃ : H1(Qm(n), T/p
N ′
T ) −→ Rm,eN ′ [Hn]

which makes the diagram

H1(Qm, T/p
N ′
T )

� _

��

h̄ // Rm,eN ′

νHn

��
H1(Qm(n), T/p

N ′
T )

h̃ // Rm,eN ′ [Hn]

commute.

Proposition 6.11. The following hold.
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(i) There exists a homomorphism

h̃∞ : H1(Q(n),T/pN
′
T) −→ Λ[Hn]/(p

N ′
) = lim←−

m′

Rm′,eN ′ [Hn]

of Λ[Hn]/(p
N ′
)-modules which makes the diagram

H1(Q(n),T/pN
′
T)

h̃∞ //______

��

Λ[Hn]/(p
N ′
)

mod (γp
m−1)

��
H1(Qm(n), T/p

N ′
T )

h̃ // Rm,eN ′ [Hn]

commute.
(ii) There exists an Oj[Hn]-linear map

h̃Pj ,N ′ : H1(Q(n), Tj/p
N ′
Tj) −→ Oj[Hn]/(p

N ′
)

which makes the diagram

H1(Q(n),T/pN
′
T )

��

p4sh̃∞ // Λ[Hn]/(p
N ′
)

��

H1(Q(n), Tj/p
N ′
Tj)

h̃Pj //______ Oj[Hn]/(p
N ′
)

commute. Here, the vertical maps in this diagram are the natural ones, and
h̃∞ denotes the map in the assertion (i).

Proof. By Shapiro’s lemma and limit arguments (cf. [Ta2] Corollary 2.3), we have a
natural isomorphism

H1(GQ(n),T/p
N ′
T)

≃−−→ lim←−
m′

H1(Qm′(n), T/pN
′
T ).

Then, the assetion (i) follows from Lemma 5.3 (ii). The assertion (ii) is proved by
the similar arguments to that in the proof of [Oh2] Proposition 8.16. For details, see
loc. cit.. □

The map h̃Pj
introduced in Proposition 6.11 (ii) induces a homomorphism

hPj
: H1(Q, Tj/pN

′
Tj) −→ (Oj[Hn]/(p

N ′
))Hn

νHn :=NHn×←−−−−−−−−
≃

Oj/pN
′Oj.

Recall that here, we assume the ideal Pj + pN
′
Λ contains γp

m − 1, so the natural
homomorphism

H1(Q(n),T/pN
′
T) −→ H1(Q(n), Tj/p

N ′
Tj)

factors through

H1
(
Q(n),T/((γp

m − 1)T+ pN
′
T)
)
≃ H1(Qm(n), T/p

N ′
T ).

We denote by NHm,eN ′,(n) the image of the natural map

H1(Q(n),T/pN
′
T) −→ H1(Qm(n), T/p

N ′
T ).
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Note that since T is a free Λ-module, and since γp
m − 1 = (1 + T )p

m − 1 is a monic
polynomial, we have an exact sequence

0 −→ T/pN
′
T

×(γp
m−1)−−−−−−−→ T/pN

′
T −→ T⊗Λ Rm,N ′ −→ 0.

So, the natural map

H1(Q(n),T/pN
′
T)⊗Λ Rm,eN ′ −→ NHm,eN ′,(n)

is an isomorphism, and the map h̃∞ in Proposition 6.11 (i) induces a homomorphism

h̃ = h̃∞ ⊗Rm,eN ′ : NHm,eN ′,(n) −→ Rm,eN ′ [Hn].

By Proposition 6.11 (ii), we obtain the commutative diagram

H1(Q(n),T/pN
′
T)

��

p4sh̃∞ // Λ[Hn]/(p
N ′
)

��
NHm,eN ′,(n)

p4sh̃ //

��

Rm,eN ′ [Hn]

��

H1(Q(n), Tj/p
N ′
Tj)

h̃Pj // Oj[Hn]/(p
N ′
)

H1(Q, Tj/pN
′
Tj)

hPk //
?�

OO

Oj/pN
′Oj.

?�

ν−1
Hn

OO

We denote the image of c′m(n) in H
1(Qm(n), T/p

N ′
T ) by c̄′m(n), and put

Dnc
′(n) := (Dnc

′
m(n))m ∈ H1(Q(n),T/pN

′
T) = lim←−

m

H1(Qm(n), T/p
N ′
T ).

Note that we have Dnc̄
′
m(n) ∈ NHm,eN ′,(n). Let

c′ ⊗ ρj := {(c′ ⊗ ρj)m′(n′)}m′,n′ ∈ ESOj
(Tj,Σ)

be a modified Euler system for the Oj-module Tj which is the twist of the modified
Euler system c′ by the character ρj. Since we assume that n is an well-ordered integer
satisfying

n ∈ PeN ′′
j
(Σ;T )O ⊆ Pe∞N ′

j
(Σ;Tj)Oj

∩ Pe∞N ′
j
(Σ; (Oj, ρj))Oj

we can define the Kolyvagin derivative

κ0,e∞N ′(n; c′ ⊗ ρj) ∈ H1(Q, Tj/pN
′
Tj) = H1(Q, (T/pN ′

T )⊗O (Oj, 1))

whose image in H1(Q(n), (T/pN
′
T )⊗O (Oj, 1)) coincides with the image of

Dnc̄
′
m(n) ∈ H1(Qm(n), (T/p

N ′
T )⊗O (Oj, 1)).

Here, (Oj, 1) is a freeOj-module of rank one on whichGQ acts via the trivial character.
By Corollary 6.3, there exists a Kolyvagin system

κ(c′ ⊗ ρj) = {κ(c′ ⊗ ρj)n′}n′ ∈ KSOj
(Tj,Σ)
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such that the image of κ(c′ ⊗ ρj)n in H1(Q, Tj/pN
′
Tj) coincides with the Kolyvagin

derivative κ0,e∞N ′(n; c′ ⊗ ρ). Therefore, we obtain

βe∞j ≻ lengthOj

(
Oj/pN

′
jOj

hj(κmj ,eN ′′
j
(nj; c′)) · (Oj/pN

′
jOj)

)

∼ lengthOj

 Oj/pN
′
jOj

ν−1
Hn

(
p4sh̃(Dnj

c′mj
(nj))

)
· (Oj/pN

′
jOj)

 .

So, we obtain the inequality

(7) βe∞j ≻ lengthOj

(
Oj/pN

′
jOj

hPj
(p4sκ(c′ ⊗ ρj)n) · (Oj/pN

′
jOj)

)
.

By the estimate (7) and Corollary 6.10, if P ̸= (π), then we have

βe∞j ≻ min{∂i(Tj) + 4se∞, e∞N
′
j}

= ∂i(Tj) + 4se∞ ∼ aj ∼ αe∞j.

Let us consider the case when P = (π). Note that in this case, we have s = 0. So,
the inequality (7) and Corollary 6.10 imply that we have

βe∞j ≻ min{∂i(Tj), N ′j} = ∂i(Tj) ∼ aj ∼ αe∞j.

Thus, we obtain β ≥ α in any case, and this completes the proof of Theorem 6.5. □

7. Evaluation maps and the Chebotarev density theorem

In this section, we briefly recall the definitions and some properties of “evaluation
maps” induced in [Ru2] §7.2. Then, by using the Chebotarev density theorem, we
shall prove a proposition which plays a key role in our Euler system arguments in §8.
(See Proposition 7.6.) In this and the next sections, we assume O = Zp.

Through out this section, we fix integers m and N satisfying N > m ≥ 0. We
assume that the Zp[GQ]-module T satisfies the conditions (C1)–(C7) τ ∈ in introduc-
tion. In particular, we fix an element τ ∈ GQ(µp∞ ) in the condition (C2).

7.1. Evaluation maps. Here, we introduce “evaluation maps” defined in [Ru2] §7.2.
First, we recall the definition of them. By the assumption (C2), the divisible Zp-
module A/(τ − 1)A is cofree of rank one. Recall that we have fixed an Zp-linear
isomorphism

Φ∗ : T/(τ − 1)T
≃−−→ Zp.

in Definition 4.6. By taking (−) ⊗Zp Q/Z, this isomorphism induces an Zp-linear
isomorphism

θ∗ : A/(τ − 1)A
≃−−→ Qp/Zp.

By taking Hom(−, µp∞), we obtain the Zp-linear isomorphism

θ∗∗ : Zp(−1)
≃−−→ T τ=1.
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Recall that we have fixed a Zp-basis (ζpn)n of Zp(1). By this basis, we identify Zp(1)
with Zp as an Zp-module. Then, we put

θ := (θ∗∗)−1 ⊗Zp Qp/Zp : Aτ=1 ≃−−→ Qp/Zp.
The assumption (C2) also implies that we have

qτ (x) :=
detZp(1− τ−1x | T ∗)

x− 1
=

detZp(1− τx | T )
x− 1

∈ Zp[x].

We denote the composite map

A/(τ − 1)A
qτ (τ−1)−−−−−→ Aτ=1 θ−→ Qp/Zp

by θ̄. Note that the Zp-linear map θ̄ is an isomorphism. (See [Ru2] Corollary A.2.7.)
We define the evaluation maps Ev∗m,N and Evm,N as follows.

Definition 7.1. Let Σ′ be a finite set of prime numbers, and write

XΣ′

m,N := HomZp

(
H1

(F∗
can)

Σ′ (Qm, A
∗[pN ]),Z/pNZ

)
.

Let θ∗ and θ be as above. We put Ωm,N := Qm(µpN , A[p
N ]), and let Ωτ=1

m,N be the
maximal subfield of Ωm,N fixed by τ . We define group homomorphisms

Ev∗m,N,Σ′ : GΩτ=1
m,N
−→ XΣ′

m,N

Evm,N : GΩτ=1
m,N
−→ HomZp

(
H1(Qm, A[p

N ]),Z/pNZ
)

by
(
Ev∗m,N(σ)

)
(c) := θ∗(c(σ)) and (Evm,N(σ)) (c) := θ̄(c(σ)). Here, we identify

Z/pNZ with p−NZ/Z ⊂ Q/Z by the isomorphism

p−NZ/Z ×pN−−−−→
≃

Z/pNZ.

For simplicity, we put Ev∗m,N := Ev∗m,N,∅.

In the next section, we need the surjectivity of evaluation maps in some sense. (See
§§8.2–8.3.) The following proposition ensures it.

Proposition 7.2. For any finite set Σ′ of prime numbers and for any integer N0

satisfying N ≥ N0 > m, we have

HomZp

(
H1(Qm, A[p

N0 ]),Z/pN0Z
)
= Evm,N0(GΩm,N

)

and
XΣ′

m,N0
= Ev∗m,N0

(GΩm,N
).

Proof. By Lemma 3.3 and the assumptions (C1), (C2) and (C5), we can deduce the
composite

H1(Qm, A[p
N ])

Res−−−→ Hom(GΩm,N
, A[pN ])GQm

−→ Hom(GΩm,N
, A[pN ]/(τ − 1)A[pN ])

θ̄−→ p−NZ/Z.
is injective. (For details, see the arguments in the proof of [Ru2] Lemma7.2.4.) We
apply Hom(−,Qp/Zp) to this injection, and obtain the surjection

GΩ
// // Hom(H1(Qm, A[p

N ]),Qp/Zp).
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The first assertion immediately follows from this surjectivity. The second assertion
follows from similar arguments for (A∗, τ, θ∗). □
Remark 7.3. In the arguments in the proof of Proposition 7.2 (the surjectivity of
evaluation maps), we use the assumption O = Zp. In our paper, this is the only part
which requires O = Zp.

Let ℓ be a prime number contained in PτN(Σ;T )O. By definition, we have Frobℓ ∈
GΩτ=1

N
and Iℓ ⊆ GΩτ=1

N
, where Frobℓ is a lift of the arithmetic Frobenius element at

ℓQ/ℓ, and Iℓ ⊆ GQ is the inertia subgroup at ℓQ/ℓ. Then, by the definition of maps

(−)ℓ,sm,N,Φ∗ and ϕℓm,N,Φ∗ introduced in §4.2, we immediately obtain the following lemma.

Lemma 7.4. Let ℓ ∈ PτN(Σ;T )O. Recall that we put Rm,N = Z/pNZ[Gal(Qm/Q)].

(i) For any element x ∈ H1(Qm, A[p
N ]), we have

(x)ℓ,sm,N,Φ∗ =
∑

g∈Gal(Qm/Q)

(Evm,N(σ̃ℓ)) (g
−1x) · g ∈ Rm,N ,

where σ̃ℓ ∈ Iℓ is a lift of a generator σℓ of the cyclic group Hℓ.
(ii) For any element x ∈ Ker(−)ℓ,sm,N,Φ∗, we have

ϕℓm,N,Φ∗(x) =
∑

g∈Gal(Qm/Q)

(Evm,N(Frobℓ)) (g
−1x) · g ∈ Rm,N .

By Tate’s local duality theorem, we have the following proposition.

Proposition 7.5. Let ℓ ∈ PτN(Σ;T )O, and λ a place of Qm above ℓ. Consider the
local pairing

(·, ·)λ : H1
f (Qm,λ, A

∗[pN ])×H1
s (Qm,λ, A[p

N ]) −→ Z/pNZ.

Let ḡ ∈ Gal(Qm/Q) be an element satisfying λ = ℓQm ◦ ḡ−1. Then, for any x ∈
H1

F∗
can

(Qm, A
∗[pN ]) and y ∈ H1(Qm, A[p

N ]), we have

(x, y)λ = Ev∗m,N(Frobℓ)(g
−1x) · Evm,N(σ̃ℓ)(g−1y) ∈ Z/pNZ.

7.2. Application of the Chebotarev density theorem. Here, by using the Cheb-
otarev density theorem, we shall show a key proposition for our Euler system argu-
ments (See Proposition 7.6.) Recall that we have fixed a collection of embeddings
{ℓQ : Q ↪→ Qℓ} in the introduction. Note that the existence of such a family follows
from the Chebotarev density theorem. The goal of this subsection is the following
proposition.

Proposition 7.6. Let q ∈ PτN(Σ;T )O be any prime number, and n ∈ N τ
N(Σ;T )O by

any integer prime to q. We assume that n has a decomposition n =
∏r

i=1 ℓi, where
ℓ1, . . . , ℓr are prime numbers. Let N0 be any integer satisfying N ≥ N0 > m. Suppose
the following are given:

• an Rm,N0-submodule W of H1(Qm, A[p
N0 ]) of finite order;

• an Rm,N0-homomorphism ψ : W −→ Rm,N0.
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Then, there exist infinitely many q′ ∈ PτN(Σ;T )O which split completely in Qm(µqn)/Q,
and satisfy all of the following properties.

(i) We have

Ev∗m,N(Frobq′) = Ev∗m,N(Frobq),

where Frobq′ ∈ GQm (resp. Frobq ∈ GQm) is an arithmetic Frobenius element
at q′Q/q

′
Qm

(resp. at qQ/qQm).

(ii) there exists an element z ∈ H1(Qm, A[p
N ]) satisfying the following conditions

• We have (z)q
′,s
m,N,Φ∗ = 1 and (z)q,sm,N,Φ∗ = −1.

• For any prime number ℓ not contained in {q, q′}, the image of z in
H1
s (Qm ⊗ Qℓ, A[p

N ]) is zero. Moreover, if ℓ ∈ Σ, then the image of
the image of z in H1(Qm ⊗Qℓ, A[p

N ]) is zero.
• We have ϕℓim,N,Φ∗(z) = 0 for each i = 1, . . . , r.

(iii) the group W is contained in the kernel of (−)q
′,s
m,N0,Φ∗, and

ψ(x) = ϕq
′

m,N0,Φ∗(x)

for any x ∈ W .

Proof. First, let us define an element g1 of the Galois group of a certain finite exten-
sion over Ωm,N related to the conditions (i) and (ii). We put Σ′ := {q, ℓ1, . . . , ℓr}∪Σ.
Let L0 be the maximal subfield of Q fixed by the kernel of which is the evaluation
map

e∗ : GΩm,N
−→ HomZp

(
Hom(GΩm,N

, A∗[pN ])Gal(Ωm,N/Qm), A∗[pN ]
)
,

and we put L := L0(µqn). By definition, the homomorphism Ev∗m,N,Σ′ |GΩm,N
factors

through e∗. Note that L0 and L are Galois over Qm. On the one hand, all Jordan–
Hölder constituents of Gal(L0/Ωm,N) as a Zp[GQm ]-module are subquotients of A∗[p].
On the other hand, the action of GQm on Gal(Ωm,N(µqn)/Ωm,N) is trivial. So by the
assumption (C4), L0 and Ωm,N(µqn) are linearly disjoint over Ωm,N . Hence we can
take an element g1 ∈ Gal(L/Ωm,N) which satisfies

g1|L0 = τ−1Frobq|L0 .

Next, we shall take an element g2 of the Galois group of a certain finite extension
over Ωm,N related to the conditions (i) and (ii).

We define a surjective homomorphism

Pm,N0 : Rm,N0 −→ Z/pN0Z

of abelian groups by
∑

g ag · g 7−→ a1, where 1 ∈ Gal(Qm/Q) is the identity element.
Note that the map

HomRm,N0
(W,Rm,N0) −→ HomZ(W,Z/pN0Z); f 7−→ Pm,N0 ◦ f

is bijective. Indeed, its inverse is given by

h 7−→
(
x 7−→

∑
g∈Gal(Qm/Q)

h(g−1x)g

)
∈ HomRm,N0

(W,Rm,N0),
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for any h ∈ HomZ(W,Z/pN0Z). We define an element ψ̄0 ∈ HomZ(W,Z/pN0Z) by

ψ̄0 := Pm,N0 ◦ ψ − Evm,N0(τ)|W .

Then, by Proposition 7.2, we have ψ̄0 is the restriction of an element contained in
Evm,N0(GΩm,N

).

Recall that by Lemma 3.3 and the assumption (C5), the restriction map

H1(Qm, A[p
N0 ]) −→ Hom(GΩm,N

, A[pN0 ])Gal(Ωm,N/Qm)

is injective. By this injection, we regard W as an Rm := Zp[Gal(Qm/Q)]-submodule

of Hom(GΩm,N
, A[pN0 ])Gal(Ωm,N/Qm). We denote by M the maximal subfield of Q fixed

by the kernel of which is the evaluation map

e : GΩm,N
−→ HomZp

(
W,A[pN0 ]

)
,

Note thatM/Q is a Galois extension, and all Jordan–Hölder constituents of Gal(M/Q)
as a Zp[GQ]-module are subquotients of W . Let σ ∈ GΩm,N

be an element satisfying

Evm,N(σ) = ψ̄0. Then, we denote the image of σ in Gal(M/Ωm,N) by g2.

Here, we consider the composite field LM . Note that L and M are linearly dis-
joint over Ωm,N since by the assumptions (C3) and (C4), the set of Jordan–Hölder
constituents of Gal(L/M) as a Zp[GQ]-module is disjoint from that of Gal(M/Ωm,N).

Let M ′ be the maximal subfield of Q fixed by KerEvm,N |GΩm,N
, and ΣW the set of

all prime numbers which ramifies in the extension M ′/Q. Let q′ be a prime number
not contained in Σ ∪ Σ′ ∪ ΣW satisfying{

(q′L, L/Q) = τg1;

(q′M ,M/Q) = τg2.

Note that our choice of the family of embeddings {ℓQ : Q ↪→ Qℓ} ensures that there
exist infinitely may prime numbers q′. By the definition of q′, we deduce that q′ splits
completely in Qm(µqn)/Q, and q′ belongs to PτN(Σ;T )O. In order to prove Proposition
7.6, it is sufficient to show that all but finitely many such prime numbers q′ satisfy
all conditions (i)–(iii).

The condition (i) follows from the definition of q′ since Ev∗m,N |GΩm,N
factors through

the map e∗. We shall consider the condition (ii). Let ℓ ∈ PτN(Σ;T )O be any element.
Recall that in §4.2, we have defined an isomorphism

Ψℓ
m,N : H1

tr(Qm ⊗Qℓ, A[p
N ]) ≃ H1

s (Qm ⊗Qℓ, A[p
N ])

≃−−→ Rm,N .

We take an element cℓ ∈ H1
tr(Qm ⊗ Qℓ, A[p

N ]) satisfying Ψℓ
m,N(cℓ) = 1. Then, we

define an element x := (xℓ)ℓ∈Σ′∪{q′} ∈
⊕

ℓ∈Σ′ H1
ét(Qm ⊗Qℓ, A[p

N ]) by

xℓ :=


cq′ (ℓ = q′);

−cq (ℓ = q);

0 (ℓ ̸= q′, q).
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Then, Lemma 7.4, Proposition 7.5 and the Poitou–Tate exact sequence

H1(OQm,Σ′∪{q′}, A[p
N ]) −→

⊕
ℓ∈Σ′∪{q′}

H1
ét(Qm ⊗Qℓ, A[p

N ]) −→ X
Σ′∪{q′}
m,N .

imply that there exists an element z ∈ H1(OQm,Σ′∪{q′}, A[p
N ]) whose image in⊕

ℓ∈Σ′∪{q′}

H1
ét(Qm ⊗Qℓ, A[p

N ])

coincides with x. Such z clearly satisfies all the properties required in (ii).

Now let us consider the condition (iii). Since q′ /∈ ΣW , Lemma 7.4 implies that the

group W is contained in the kernel of (−)q
′,s
m,N,Φ∗ . It is sufficient to show

Pm,N ◦ ψ(x) = Pm,N ◦ ϕq
′

m,N,Φ∗(x)

for any x ∈ W . This equality follows from the choice of q′ (in particular, see the
definition of g2) and Lemma 7.4. □

8. Upper bounds of higher Fitting ideals

In this section, assume that T satisfies (C1)–(C7), and fix an Euler system c =
{cm(n)}m,n ∈ ESO(T,Σ) satisfying (NV). Let c′ = {c′m(n)}m,n ∈ ES′

O(T,Σ) be a
modified Euler system corresponding to c. Throughout this section, we assume O =
Zp. Here, by using Kurihara’s Euler system arguments, we shall prove Theorem 2.4
(ii), which asserts that the ideals Ci(c) give “upper bounds” of FittΛ,i(X).

8.1. Setting. Recall that we denote the maximal pseudo-null Λ-submodule of X :=
X(T ) byXfin, and putX ′ = X ′(T ) := X/Xfin. IfX

′ = 0, the assertion (ii) of Theorem
2.4 immediately follows from Theorem 5.5. So, we assumeX ′ ̸= 0 here. The projective
dimension of the Λ-module X ′ is one, so there exists an exact sequence

(8) 0 −→ Λh
f−−→ Λh

g−−→ X ′ −→ 0,

where h is the minimal of the cardinalities of sets of generators of X ′. We denote by
M the matrix corresponding to f with respect to the standard basis e := (ei)

r
i=1 of

the free Λ-module Λh.

Let {m1, . . . ,mh} and {n1, . . . , nh} be permutations of {1, . . . , h}, and let i be an
integer satisfying 1 ≤ i ≤ h−1. Let us consider the matrixMi which is obtained from
M by eliminating the nj-th rows (j = 1, . . . , i) and the mk-th columns (k = 1, . . . , i).
If det(Mi) = 0, we clearly have det(Mi) ∈ Ci(c), so we assume that det(Mi) ̸= 0.
If necessary, we permute {m1, . . . ,mi}, and assume det(Mj) ̸= 0 for all integers j
satisfying 0 ≤ j ≤ i.

For a while, we fix integers m and N satisfying N > m ≥ 0, and we put

Xm,N := HomZp

(
H1

F∗
can

(Qm, A
∗[pN ]),Z/pNZ

)
.
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(Note that our tentative goal is Proposition 8.6 in §8.3, which states that certain
equalities in Rm,N related to Ci,m,N(c) and X ⊗ΛRm,N hold.) By Proposition 3.8, we
have the natural isomorphism

X ⊗Λ Rm,N ≃ Xm,N .

Let Xm,N,fin be the image of Xfin in Xm,N , and write X ′
m,N := Xm,N/Xm,N,fin. We shall

consider the ideal Ci,m,N(c) = Ci,m,N(c
′) and the image of det(Mi) annΛ(Xfin)I(c) in

Rm,N .

By Lemma 5.6, there exists a character ρ ∈ Homcont(Γ, 1 + pNZp) which satisfies

charΛ(H2
Σ(T ⊗ ρ)) ̸⊆ (γp

m − 1)Λ.

Let ρ : Γ −→ 1 + pNZp be such a character, and c ⊗ ρ be an Euler system of T ⊗ ρ
which is the twist of c by the character ρ. In particular, we have

charΛ(X(T ⊗ ρ)) = charΛ(X(T )⊗ ρ) ̸⊆ (γp
m − 1)Λ.

Note that by the construction of the ideal Ci,m,N(c) implies

Ci,m,N(c⊗ ρ) = Ci,m,N(c).

We define an endomorphism

ιρ : Λ −→ Λ; γ 7−→ ρ(γ)−1 · γ
of a topological O-algebra Λ. By the exact sequence (8), we have an exact sequence

0 −→ Λh
ιρ(M)−−−−→ Λh −→ X ′(T ⊗ ρ) −→ 0.

In order to study Ci,m,N(c) and X ⊗Λ Rm,N , we may replace T (resp. Mi) with T ⊗ ρ
(resp. ιρ(Mi)). So, from now on, we assume that the order of X ⊗Λ Rm is finite.

We apply (−) ⊗Λ Rm to the short exact sequence (8), then we obtain an exact
sequence

(9) 0 −→ Rh
m

f̄−−→ Rh
m

ḡ−−→ X ′ ⊗Λ Rm −→ 0.

Here, the injectivity of f̄ follows from the assumption #(X ′⊗Λ Rm) <∞. We define
an integer N ′ by

pN
′
= max

{
#H2

ét(Om[1/p], j∗T )tor,#(X ′ ⊗Λ Rm)
}
,

where j : SpecOm,Σ −→ SpecOm[1/p] is the natural inclusion, and

H2
ét(Om[1/p], j∗T )tor ⊆ H2

ét(Om[1/p], j∗T )tor
denotes the O-torsion part. We apply (−)⊗Rm Rm,N+N ′ to the short exact sequence
(9), and consider the exact sequence

(10) Rh
m,N+N ′

f̄N+N′
−−−−−→ Rh

m,N+N ′
ḡN+N′
−−−−−→ X ′

m,N+N ′ −→ 0.

We put K := Ker fN+N ′ . Note that X ′ ⊗Λ Rm ≃ X ′
m,N+N ′ is annihilated by pN

′
, so K

is annihilated by pN
′
.

For each integer j with 1 ≤ j ≤ h, we denote the image of ej in Rh
m,N+N ′ by ēj,

and fix a lift xj ∈ Xm,N of ḡN+N ′(ej). By Proposition 7.2, we have

xj − Evm,N+N ′(τ) ∈ Ev∗m,N+N ′(GΩm,N
).
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Note that sine we assume that h is minimal, Nakayama’s lemma implies xj ̸= xj′ if
j ̸= j′. For each integer j with 1 ≤ j ≤ h, we fix a prime number qj ∈ PτN+2N ′(Σ;T )Zp

satisfying

Ev∗m,N+N ′(Frobqj,Q) = xj,

and define a subset Pj of PτN(Σ;T )Zp by

Pj :=
{
ℓ ∈ PτN+2N ′(Σ;T )Zp

∣∣ Ev∗m,N+2N ′(FrobℓQ) = Ev∗m,N+2N ′(Frobqj,Q)
}
.

By assumption (Chb), there exists infinitely many elements in Pj.

Here, let us construct 3 maps α0, α1 and β0, which play a key role in this section.
For any integer j with 1 ≤ j ≤ h and any t ∈ {0, 1, 2}, we put

Jj,t :=
⊕
ℓ∈Pj

H1
s (Qm ⊗Qℓ, T/p

N+tN ′
T )

define an Rm,N+tN ′-linear map αj,t : Jj,t −→ Rm,N+tN ′ by

αj,t := ⊕(−)ℓ,sm,N+tN ′,Φ∗

We put Jt :=
⊕h

j=1 Jj,t and consider the map

αt := (αj,t)
h
j=1 : Jt −→ Rh

m,N+tN ′ .

The construction of the map β0 is slightly complicated. By (the direct limit of) the
Poitou–Tate exact sequence and the exact sequence (10), we deduce that there exists
a homomorphism

β̃1 : H
1
FP

can
(Qm, T/p

N+N ′
T ) −→ Rh

m,N+N ′/K

which makes the diagram

(11) H1
FP

can
(Qm, T/p

N+N ′
T ) //

β̃1
���
�
�

J1 //

α1

��

X ′
m,N+N ′

0 // Rh
m,N+N ′/K

f̄N+N′
// Rh

m,N+N ′ // X ′
m,N+N ′

commutes. Note that the bottom low in the diagram (11) is exact, and the top low
may not be exact but a complex. Recall that K is annihilated by pN

′
, so K is contained

in pNRh
N+N ′ . We define β0 to be the composite map

β1 : H
1
FP

can
(Qm, T/p

N+N ′
T )

β̃1−−→ Rh
m,N+N ′/K

mod pN−−−−−−→ Rh
m,N .

Take an integer n which is a product of some prime numbers contained in P :=⨿h
j=1 Pj, and put Σn := Σ ∪ prime(n). Let

jn : SpecOQm,Σn −→ SpecOQm [1/pn]

be the natural open immersion.
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Definition 8.1. Let t ∈ {0, 1, 2}. We denote the image of the natural homomorphism

H1
ét(OQm [1/pn], jn∗T/p

N+2N ′
jn∗T ) −→ H1

ét(OQm [1/pn], jn∗T/p
N+tN ′

jn∗T )

by Ht(n). Note that by Lemma 4.15, we can naturally regard

Ht(n) ⊆ H1
Fn

can
(Qm, T/p

N+tN ′
T ).

In order to construct the map β0 : H0(n) −→ Rh
N , we need the following lemma.

Lemma 8.2. The natural map

H1(n)⊗Zp (Zp/pNZp) −→ H0(n)

is an isomorphism.

Proof. For any t ∈ {0, 1, 2} and a ∈ Z≥0, we put

H̃t(n) : = H1
ét(OQm [1/pn], jn∗T/p

N+tN ′
jn∗T ),

Ha(jn∗T ) : = Ha
ét(OQm [1/pn], jn∗T ).

The exact sequence

0 −→ jn∗T
×pN+tN′

−−−−−−→ jn∗T −→ jn∗T/p
N+tN ′

jn∗T −→ 0,

induces a commutative diagram

0 // H1(jn∗T )/p
N+2N ′ //

mod pN+N′

����

H̃2(n) //

��

H2(jn∗T )[p
N+2N ′

]

pN
′×

��

// 0

0 // H1(jn∗T )/p
N+N ′ //

mod pN
����

H̃1(n) //

��

H2(jn∗T )[p
N+N ′

]

pN
′×

��

// 0

0 // H1(jn∗T )/p
N // H̃0(n) // H2(jn∗T )[p

N ] // 0,

whose rows are exact. (Here, for simplicity, we putM/a :=M/aM for any Zp-module
M and any element a ∈ Zp.) So, we obtain a commutative diagram

(12) H1(jn∗T )/p
N // H1(n)/p

N //

��

(
pN

′
H2(jn∗T )[p

N+2N ′
]
)
/pN

P̄ :=pN
′×

��

// 0

0 // H1(jn∗T )/p
N // H̃0(n) // H2(jn∗T )[p

N ] // 0,

with exact rows. In order to prove Lemma 8.2, it is sufficient to show that the right
vertical map P̄ in the diagram (12) is injective.

Here, let us consider H2(jn∗T ). Let

j = j1 : Spec OQm,Σ −→ SpecOQm [1/p]

be the natural open immersion. By Leray spectral sequence, we obtain the exact
sequence

(13) H2
ét(OQm [1/p], j∗T ) −→ H2

ét(jn∗T ) −→ H1
ét(OQm [1/pn], R

1jn∗T ) −→ 0.
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Let we have natural isomorphisms

H1
ét(OQm [1/pn], R

1jn∗T ) ≃
⊕
λ|n

H1(km(λ), H
1(Qur

m,λ, T )) ≃
⊕
λ|n

H2(Qm,λ, T )

≃
⊕
λ|n

H0(Qm,λ, A
∗),

where λ runs through all places of Qm above prime divisors of n. Since we assume
n ∈ NN+2N ′(Σ;T ), for any place λ of Qm dividing n, there exists an integer Mλ ≥
N + 2N ′ such that

H0(Qm,λ, A
∗) ≃ Zp/pMℓZp.

So, the exact sequence (13) and the choice of N ′ imply that we have a decomposition

H2(jn∗T )[p
N+2N ′

] ≃ L0 ⊕ L1,

where L0 is an abelian group annihilated by pN
′
, and L1 is a free Z/pN+2N ′Z-module.

In particular,

pN
′
H2(jn∗T )[p

N+2N ′
] = pN

′
L1

is a free Z/pN+N ′Z-module. Hence the right vertical map P̄ in the diagram (12) is
injective, and this completes the proof. □

By Lemma 8.2, the map β1|H1(n) factors through H0(n). Namely, there exist a
unique map β0 = (βj,0)

h
j=1 : H0(n) −→ Rh

N which makes the diagram

H1(n)
β1 //

��

RN+N ′

mod pN

��
H0(n)

β0

//____ RN

commute, where the left vertical arrow is the natural map. Summary, we obtain the
following lemma.

Lemma 8.3. Let n, α0 and β0 be as above. Then, the diagram

H0(n) //

β0
��

J0

α0

��
Rh
m,N

f̄N

// Rh
m,N

commutes, where f̄N is the map induced by f .

8.2. Analogue of Kurihara’s element. The arguments in the rest of the proof of
Theorem 2.4 are similar to those in [Oh2] §§7.2–7.4. In this subsection, as in [Oh2]
§7.2, we shall introduce elements x(ν; q) ∈ H2(qν) which are analogues of Kurihara’s
elements, and which become a key of the proof of Theorem 2.4. In the present and
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the next subsection, for simplicity, we put

(−)s,ℓt := (−)s,ℓm,N+tN ′

ϕℓt := ϕℓm,N+tN ′,Φ∗

κt(n) := κm,N+tN ′(n; c′)

Let qν ∈ N τ
N(Σ;T )Zp and assume that qν is well-ordered. Suppose that for each prime

number ℓ dividing ν, an element wℓ ∈ Rm,N+2N ′ is given. (Later, we shall choose qν
and {wℓ}ℓ|ν explicitly, but we take arbitrary elements here.) For any e ∈ Z≥0 dividing
ν, we define we :=

∏
ℓ|ewℓ. Since we have κ2(qν/e) ∈ H2(qν) for any positive divisor

e of ν, we can define the element x(ν; q) by

x(ν; q) :=
∏
e|ν

we ⊗ κ2(qν/e) ∈ H2(qν).

For any t ∈ {0, 1, 2}, we denote by xt(ν; q) the image of x(ν; q) by the natural homo-
morphism

H1(Qm, T/p
N+2N ′

T ) −→ H1(Qm, T/p
N+tN ′

T ).

The following proposition immediately follow from Proposition 4.17 and Proposition
4.19.

Proposition 8.4 (cf. [Ku] Proposition 6.1). Let qν be an integer which is decomposed
into the square-free product of some prime numbers contained in P . We assume that
qν is well-ordered. Let t ∈ {0, 1, 2}.

(i) Let ℓ be a prime number dividing ν. Then, we have

(xt(ν; q))
ℓ,s
t = ϕℓt (xt(ν/ℓ; q)) .

(ii) Let ℓ be a prime number dividing ν. Then, we have

ϕℓt (xt(ν; q)) = wℓ · ϕℓt (xt(ν/ℓ; q)) .

Here, let us take q, ν, and {wℓ}ℓ|ν . First, let us take a prime number q as follows.
Fix a non-zero element δA ∈ annΛ(Xfin). Recall that for each integer r with 1 ≤ r ≤ h,
we have fixed a prime number qr ∈ Pnr in the previous subsection. We put

Q :=
h∏
r=1

qr ∈ NN .

We fix a homomorphism φ : H1
Σ(T ) −→ Λ of Λ-modules satisfying φ(c(1)) ̸= 0. Note

that we have
c(1) = c′(1) := (c′m(1))m≥0 ∈ H1

Σ(T ).

By the definition of Iφ(c), it holds that

φ(c(1)) · Λ = det(M) · Iφ(c),
where M ∈ Mh(Λ) is the matrix defined in the previous subsection. We take an
arbitrary element δφ ∈ Iφ(c). If necessary, we replace φ with aφ for some a ∈ Λ, and
we may assume that we have φ(c(1)) = δφ det(M). Let

φ̄ : H1
Σ(T )⊗Λ Rm,N −→ Rm,N



46 TATSUYA OHSHITA

be the homomorphism induced by φ. Recall that in the proof of Theorem 5.5, we
denote by NH the image of the natural homomorphism

H1
Σ(T )⊗Λ Rm,N −→ H1

ét(OQm,Σ, T/p
NT ).

By the similar argument to that in Lemma 5.8, there exists an Rm,N -linear map
ψ : NH −→ Rm,N which makes the diagram

H1
Σ(T )⊗Λ Rm,N

δAφ̄ //

��

Rm,N

NH
ψ

77ooooooo

commute. By Proposition 7.6, we can take a prime number q satisfying the following
two conditions:

(q1) q ∈ Pn1 \ {qn1};
(q2) NH is contained in the kernel of (−)q,s0 , and for all x ∈ NH, we have

ϕq0(x) = ψ(x).

In particular, we have

ϕ̄q(the image of c̄(1)) = ψ(the image of cm(1))

= δφ̄(the image of cm(1))

= δ det(M̄),

where M̄ ∈Mh(Rm,N) is the image of M .

Next, let us take ν and {wℓ}ℓ|ν . First, we consider βm1,1 : H1(Qq) −→ RN . By
Proposition 7.6, we can take a prime number ℓ2 and an element b2 ∈ H0(qn2ℓ2)
satisfying the following conditions.

• The prime number ℓ2 splits completely in Qm(µq)/Q, and ℓ2 ∈ Pn2 \ {qn2}.
• For all x ∈ H0(qQ), we have ϕℓ20 (x) = βm1,0(x).

• We have (b2)
ℓj ,s
2 = 1 and (b2)

qnj ,s

2 = −1.

Then, we put ν1 := 1, and wℓ2 := ϕ
ℓj
2 (b2) ∈ Rm,N+2N ′ .

If i = 1, we put ν := ν1 = 1, and x(ν; q) = x(1; q) = κ2(q).

Suppose i ≥ 2. In order to take ν and {wℓ}ℓ|ν , we choose prime numbers ℓj for any
integer j with 2 ≤ j ≤ i+1 by induction on j as follows. Let j be an integer satisfying
2 < j ≤ i + 1, and suppose that we have chosen distinct prime numbers ℓ1, . . . , ℓj−1

contained in P such that ℓj′ splits completely in Qm(µqνj′−1
)/Q for any 2 ≤ j′ ≤ j−1,

where we put νj′−1 :=
∏j′−1

r=2 ℓr. Let us consider the Rm-linear homomorphism

βmj−1,0 : H0(Qqνj−1) −→ Rm,N .

Applying Proposition 7.6, we can take a prime number ℓj which splits completely in
Qm(µqνj−1

)/Q, and satisfies the following conditions:

(x1) ℓj ∈ Pnj
\ {qnj

};
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(x2) There exists an element bj ∈ H2(qnj
ℓj) satisfying the following conditions.

(x2.1) We have (bj)
ℓj ,s
2 = 1 and (bj)

qnj ,s

2 = −1.
(x2.2) We have ϕ

ℓj′
2 (bj) = 0 for each j′ satisfying 2 ≤ j′ ≤ j − 1.

(x3) ϕ
ℓj
0 (x) = βmj−1,0(x) for any x ∈ H0(Qqνj−1).

Thus, we have taken ℓ2, . . . , ℓi+1, and we put ν := νi =
∏i

j=2 ℓj ∈ N τ
N(Σ;T )O. For

each j with 2 ≤ j ≤ i, we put

wℓj := ϕ
ℓj
2 (bj) ∈ Rm,N+2N ′ ,

and we obtain x(ν; q) ∈ H2(qν). Note that qν is well-ordered.

8.3. Computation of the minors. In this subsection, we observe two homomor-
phism αi and βi by using xν,q, and describe the image of det(Mi) in Rm,N . (The
goal of this subsection is Proposition 8.6.) Recall that we fix non-zero elements
δA ∈ annΛ(Xfin) and δφ ∈ Iφ(c). In order to compute the image of det(Mi), we need
the following lemma.

Lemma 8.5 (cf. [Ku] Lemma 10.2). Suppose i ≥ 2. Then,

(i) βmj−1,0(x0(ν; q)) = 0 for all j with 2 ≤ j ≤ i.
(ii) ᾱj,0(x0(ν; q)) = 0 for any j ̸= n1, . . . , ni.

Proof. Let us prove the first assertion. Here, for any a ∈ H2(Qqν), we denote the
image of a in H0(Qqν) by ā. Let j be an integer satisfying 2 ≤ j ≤ i, and define an
element yj ∈ H2(Qqν) by

yj := x(ν; q)−
i∑

j′=j

ϕ
ℓj′
2 (x(ν/ℓj′ ; q)) · bj′ .

Note that by the diagram (11) and the condition (x2) for the elements bj, we have

βmj−1,0(x0(ν; q)) = βmj−1,0(ȳj).

(Recall the construction of the map β0 = (βj,0)
h
j=1.) Then, by the similar arguments

to that in the proof of [Oh2] Lemma 7.6, we obtain

βmj−1,0(ȳj) = ϕ
ℓj
0 (ȳj) = 0,

and this completes the proof of the assertion (i). Since x0(ν; q) belongs to H0(qν),
the assertion (ii) of this lemma is clear. □

By the similar arguments to those in the proof of [Oh2] Proposition 7.7, we can
deduce the following proposition from the above lemmas.

Proposition 8.6 (cf. [Ku] pp.763–764 and [Oh2] Proposition 7.7). The following
equalities in Rm,N hold.

(i) We have

det(M) · ϕℓ20 (x0(1; q)) = ±δA det(M1) · φ̄(c̄(1)),
where φ̄ : H1

Σ(T )⊗Λ Rm,N −→ Rm,N is the homomorphism induced by φ.
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(ii) Assume i ≥ 2. Then, we have

det(Mj−1) · ϕ
ℓj+1

0 (x0(νj; q)) = ± det(Mj) · ϕ
ℓj
0 (x0(νj−1; q))

for any integer j with 2 ≤ j ≤ i.

The signs ± in (i) and (ii) do not depend on m.

Proof. All steps in arguments of the proof of [Oh2] Proposition 7.7 works in our
setting. Here, we only show the assertion (ii). (Note that the arguments in the
proof of the assertion (ii) contains an essence how to use Kurihara’s elements in the
computation of the minors of the matrix M .)

We assume i ≥ 2. We denote by e(m) := (e
(m)
j )hj=1 be the standard Rm,N -basis of

Rh
m,N . For each j satisfying 1 ≤ j ≤ i we put

x(j) := β0(x0(νj; q)) ∈ Rh
m,N ;

y(j) := α0(x0(νj; q)) ∈ Rh
m,N ,

and regard them as column vectors. By the commutative diagram in Lemma 8.3, we
have y(j) =Mx(j) in Rh

m,N .

It is sufficient to prove the assertion when j = i. We write x = x(i) and y = y(i).
Let x′ ∈ Rh−i+1

N be the vector obtained from x by eliminating the mk-th rows for
k = 1, . . . , i − 1, and y′ the vector obtained from y by eliminating the nk′-th rows
for k′ = 1, . . . , i− 1. By Lemma 8.5 (i), we have y′ = Mi−1x

′. We assume the m′
i-th

component of x′ corresponds to the mi-th component of x, and the n′
i-th component

of y′ corresponds to the ni-th component of y. By Lemma 8.5 (ii) and Proposition
8.4 (ii), we have

y′ = ϕℓi0 (x0(νi−1; q))e
′(m)

n′
i
,

where (e′
(m)
i )h−i+1

i=1 denotes the standard basis of Rh−i+1
m,N . Let M̃i−1 be the matrix of

cofactors of Mi−1. Multiplying the both sides of

y′ =Mi−1x
′

by M̃i−1, and comparing the m′
i-th components, we obtain

(−1)n′
i+m

′
i det(Mi) · ϕℓi0 (x0(νi−1; q)) = det(Mi−1) · βmi,0(x0(ν; q)).

By condition (x3) for ℓi+1, we have

βmi,0(x0(ν; q)) = ϕ
ℓi+1

0 (x0(ν; q)).

This completes the proof. □

8.4. Proof of the theorem. Now let us complete the proof of Theorem 2.4 by the
similar arguments to that in [Oh2] §7.4. Fix a strictly increasing sequence {Nm}m≥0 ⊆
Z satisfying Nm > m for any m ∈ Z≥0. In this subsection, we vary m, and denote
the element

ϕ
ℓj+1

0 (x0(νj; q)) ∈ Rm,Nm = (Z/pNmZ)[Gal(Qm/Q)]

defined in §6.2 by ϕ
ℓj+1

0 (x0(νj; q))m.
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Proof of Theorem 2.4 . As in [Oh2] §7.4, by induction on j, we shall prove that the

sequence (ϕ
ℓj+1

0 (x0(νj; q))m)m≥0 converges to

±δAδφ det(Mr) ∈ Λ

in the sense of [Oh2] Definition 7.8, for any integer j satisfying 0 ≤ j ≤ i. First, let
us show it when j = 0. By proposition 8.6 (i), we have

det(M) · ϕℓ20 (x0(1; q))m = ±δA det(M1)φ̄(c̄(1)) ∈ Rm,Nm .

The right hand side of this equality converges to ±δAδφ det(M1) det(M), and since X

is a torsion Λ-module, we have det(M) ̸= 0. Hence the sequence (ϕℓ20 (x0(1; q))m)m≥0

converges to δA det(M1). (Recall that the sign ± does not depend on m, see Propo-
sition 8.6).

Next, we assume that the sequence (ϕ
ℓj
0 (x0(νj−1; q))m)m≥0 converges to

±δAδφ det(Mj−1) ∈ Λ.

Then, the right hand side of the equality

det(Mr−1) · ϕ
ℓj+1

0 (x0(νj; q))m = ± det(Mr) · ϕ
ℓj
0 (x0(νj−1; q))m ∈ Rm,Nm

converges to ±δAδφ det(Mj) det(Mj−1). Since we take det(Mj−1) ̸= 0, the sequence

(ϕ̄
ℓj+1

0 (x0(νj; q))m)m≥0 converges to ±δAδφ det(Mr).

By induction on j, the above arguments imply that the sequence (ϕ
ℓi+1

0 (x0(ν; q))m)
converges to ±δAδφ det(Mi). Since

ϕ
ℓi+1

0 (x0(ν; q))m ∈ Ci,m,Nm(c
′) = Ci,m,Nm(c)

for any m ∈ Z≥0, we have
±δAδφ det(Mi) ∈ Ci(c).

This completes the proof of theorem. □

9. Remarks on the ground level

In this section, we assume that O = Zp and T satisfies (C1)–(C7). Further, we
assume the hypothesis (K1) and (K2) in Proposition 6.2. Fix an Euler system c =
{cm(n)}m,n ∈ ESZp(T,Σ) satisfying (NV). Let c′ ∈ ES′

Zp
(T,Σ) be the modified Euler

system corresponding to c. We also assume the following hypothesis.

(G1) The ideal pind(c) does not contained in (γ − 1)Λ.
(G2) The Kolyvagin system κ(c′) = {κ(c′)n}n ∈ KSZp(T,Σ) corresponding to c′ is

primitive in the sense of [MR] Definition 4.5.5. In particular, for any i ∈ Z≥0,
we have ∂i(κ(c

′);T ) = ∂i(T ).

Here, we give some remarks on the assumptions (G1)–(G3). The assumption (G1)
implies that the order of X0 := H1

F∗
can

(Q, A∗)∨ is finite. By Proposition 6.4, we have

(14) FittO,i(X0) = p∂i(κ(c
′);T )Zp

for any i ∈ Z≥0. (Note that since X0 has finite order, we have ∂i(κ(c
′);T ) < ∞ for

any i ∈ Z≥0.)
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By combining the “standard” Euler system arguments like [Ru1] §4 (without Kuri-
hara’s elements) and the equality (14), we obtain the following theorem.

Theorem 9.1. Assume that (T, c) satisfies the conditions (C1)–(C7), (K1)–(K2),
(NV) and (G1)–(G2). Let N be an integer satisfying pN > #X0. Then, we have

FittR0,N ,i(X0) = Ci,0,N(c)

for any i ∈ Z≥0.

Proof. Let N and i be as in the assertion of Theorem 9.1. By definition of the ideal
C0,N(n; c

′), for any well-ordered n ∈ NN(Σ;T )Zp , we have

C0,N(n; c
′) ⊆ p∂(κ(c

′)n;T )R0,N

where we put ∂(κ(c′)n;T ) := min
{
j ∈ Z≥0 | κn ∈ pjHF(n)(Q, T/InT )

}
. So, by the

equality (14), we obtain

(15) Ci,0,N(c) ⊆ p∂i(κ(c
′);T )R0,N = FittR0,N ,i(X0).

Let us show Ci,0,N(c) ⊇ FittR0,N ,i(X0). Here, we use similar notation to that in the

previous section. Recall that R0,N = Z/pNZ is a quotient of the discrete valuation
ring Zp. Since X0 is a finitely generated torsion Zp-module, we have an exact sequence

0 −→ Zhp
f−−→ Zhp

g−−→ X0 −→ 0

of Zp-modules, where the matrix Mf associated with f for the standard basis e :=
(ej)

h
j=1 of Zrp is a diagonal matrix

Mf :=


pd1

pd2

. . .

pdh


satisfying d1 ≥ d2 ≥ · · · ≥ dh. Note that by the equality (14), we have ∂i(κ(c

′);T )Zp =∑h
j=i+1 dj for any i ∈ Z≥0. (If i > h, we put

∑h
j=i+1 dj := 0.) We apply (−)⊗ZpR0,2N

to the above short exact sequence, and obtain the exact sequence

Rh
0,2N

f̄2N−−−→ Rh
0,2N

ḡ2N−−−→ X0 −→ 0.

For any integer j with 1 ≤ j ≤ h, we denote the image of ej in R
h
0,2N by ēj. For each

integer j with 1 ≤ j ≤ h, we define a set P ′
j of prime numbers by

P ′
j :=

{
ℓ ∈ Pτ3N(Σ;T )Zp | Ev∗m,2N(FrobℓQ) = ḡ(ēj)

}
,

and put P ′ :=
⨿h

j=1 P
′
j . For each integer j with 1 ≤ j ≤ h, we put

Jj :=
⊕
ℓ∈Pj

H1
s (Qℓ, T/p

NT )

and put J :=
⊕h

j=1 Jj.
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Definition 9.2. Let n be an integer which is a product of some prime numbers
contained in P ′, and put Σn := Σ ∪ prime(n). Let

jn : SpecZ[1/Σn] −→ SpecZ[1/pn]

be the natural open immersion. We denote the image of the natural homomorphism

H1
ét(Z[1/pn], jn∗T/p3Njn∗T ) −→ H1

ét(Z[1/pn], jn∗T/pNjn∗T )

by H(n). Then, we have a commutative diagram

H(n)
(·)sn //

β
��

J

α
��

Rh
m,N

f̄

// Rh
m,N

commutes, where the top horizontal arrow (·)sn is the localization map, the bottom
horizontal arrow f̄ is the map induced by f , and the vertical arrows α (resp. β) are
homomorphisms defined by the same manner to α1 (resp. β1) in the previous section.
For each integer j with 1 ≤ i ≤ h, let

prj : R
h
m,N −→ Rm,N

be the j-th projector, and put αj := prj ◦ α and βj := prj ◦ β.

By the commutative diagram in Definition 9.2 and the matrix representation of f ,
we have

(16) βj ◦ (·)sn = pdjαj

for any integer j with 1 ≤ i ≤ h. We need the following lemma.

Lemma 9.3. There exists a homomorphism

ψ̄ : H1
ét(Z[1/Σ], T/pNT ) −→ R0,N

which satisfies

ψ̄(c′0(1))R0,N = p∂0(T )R0,N .

Proof of 9.3. We denote by H2
ét(Z[1/Σ], T )tor the maximal torsion Zp-submodule of

H2
ét(Z[1/Σ], T ), and let M be an integer satisfying pM ≥ #H2

ét(Z[1/Σ], T )tor. Then,
we have a commutative diagram

(17) H1
ét(Z[1/Σ], T )⊗Zp R0,N+M

� � //

��

H1
ét(Z[1/Σ], T/pN+MT ) //

prN,N+M

��

H2
ét(Z[1/Σ], T )tor

×pM=0
��

H1
ét(Z[1/Σ], T )⊗Zp R0,N

� � // H1
ét(Z[1/Σ], T/pNT ) // H2

ét(Z[1/Σ], T )tor

whose rows are exact. We denote the image of c0(1) in H
1
ét(Z[1/Σ], T/pN+MT ) (resp.

H1
ét(Z[1/Σ], T/pNT )) by c̄0(1)N+M (resp. c̄0(1)N). By the assumption (G2), there

exists an element ȳ ∈ H1
ét(Z[1/Σ], T/pN+MT ) satisfying

c̄0(1)N+M = p∂0(T )ȳ.
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Note that by the commutative diagram (17), we have

prN,N+M(ȳ) ∈ H1
ét(Z[1/Σ], T )⊗Zp R0,N ,

so we obtain
c̄0(1)N ∈ p∂0(T )H1

ét(Z[1/Σ], T )⊗Zp R0,N .

By assumption (C1) and (C4), we have H0(Q, A) = 0, so H1
ét(Z[1/Σ], T ) is a free

Zp-module (of finite rank). Hence, H1
ét(Z[1/Σ], T ) ⊗Zp R0,N is a free R0,N -module of

finite rank. This implies that there exists a homomorphism

ψ̄0 : H
1
ét(Z[1/Σ], T )⊗Zp R0,N −→ R0,(h+1)N

which satisfies
ψ̄0(c̄0(1)N)R0,N = p∂0(T )R0,N .

Let ψ̄ : H1
ét(Z[1/Σ], T/pNT ) −→ R0,N be an extension of ψ̄0, then ψ̄ is the map as

desired. □

By the similar arguments to that in §8.2 using Proposition 7.6, we obtain the
following lemma.

Lemma 9.4. There exists a well-ordered integer n ∈ N τ
3N(Σ;T )Zp with a prime de-

composition n = ℓ1 × · · · × ℓi+1 satisfying the following conditions.

• For any j ∈ Z satisfying 1 ≤ j ≤ i, we have ℓj ∈ N τ
3N(Σ;T )bbZp, and

Ev∗m,2N(Frobℓj) = ḡ(ēj),

where Frobℓj ∈ GQ is an arithmetic Frobenius element at ℓj,Q/ℓj.
• We have

ϕ
ℓj
m,N,Φ∗|H1

ét(Z[1/Σ],T/pNT ) = ψ̄|H1
ét(Z[1/Σ],T/pNT ),

where ψ̄ is the homomorphism in Lemma 9.3.
• Let j be an integer satisfying 2 ≤ j ≤ i + 1. We put nj−1 :=

∏j−1
s=1 ℓs. Then,

we have
ϕ
ℓj
m,N,Φ∗|H(nj−1) = βj−1|H(nj−1).

By Lemma 9.4 and the equality (16), we obtain

p
∑i−1

j=1 djβi(κ0,N(ni; c
′))R0,N = p

∑i−2
j=1 djβi−1(κ0,N(ni−1, c

′))R0,N

= · · ·
= ψ̄(c̄0(1))R0,N = p∂0(T )R0,N

= p
∑h

j=1 djR0,N .

Since we assume that
i−1∑
j=1

dj ≤ ∂0(T ) = #X0 < N,

we have
FittR0,N ,i(X0) = p

∑h
j=i+1 djR0,N = βi(κ0,N(ni; c

′))R0,N .

This completes the proof of Theorem 9.1. □
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Corollary 9.5. Let (T, c) be as in Theorem 9.1. Then, for any i ∈ Z≥0, the following
holds.

(i) The image of Ci(c) in R0,N coincides with the ideal Ci,0,N(c) for any positive
integer N .

(ii) The image of Ci(c) in Zp = Λ/(γ − 1)Λ coincides with the ideal Ci,0(c) :=
lim←−N Ci,0,N(c).

Proof. Fix i ∈ Z≥0. Let m, N and N ′ be integers satisfying pN
′ ≥ pN > #X0 and

N > m ≥ 0. Then, Lemma 5.3 (ii) implies that the image of Ci,m,N ′(c) in R0,N ′

coincides with Ci,0,N ′(c). The image of Ci,0,N ′(c) in R0,N coincides with Ci,0,N(c)
since Theorem 9.1 implies they are both equal to FittR0,N ,i(X0). Hence the image
of Ci,m,N ′(c) in R0,N coincides with Ci,0,N(c). By varying m and N ′, Corollary 9.5
follows. □

Note that the higher Fitting ideals determines the the cardinality of the minimal
system of generators of a finitely presented module over a local ring. Precisely speak-
ing, we can easily show the following lemma.

Lemma 9.6. Let R be a commutative local ring, andM a finitely presented R-module.
Then, the cardinality of the minimal system of generators of M is i + 1 if and only
if FittR,i(M) ̸= R and FittR,i+1(M) = R. (Note that by Nakayama’s lemma, the
cardinarity is independent of the choice of the minimal system of generators of M .)

By Lemma 9.6 and the results in this section, we deduce the following corollary.

Corollary 9.7. Let (T, c) be as in Theorem 9.1. Further, we assume rankZpT
− = 1.

Let r be a non-negative integer. Then, the following two conditions are equivalent.

(i) The cardinality of the minimal system of generators of the Λ-module X is r.
(ii) Cr−1(c) ̸= Λ and Cr(c) = Λ.

Proof. Put R0 := Λ/(γ − 1)Λ ≃ Zp. Then, by Proposition 3.8, we have a natural
isomorphism X ⊗Λ R0 ≃ X0. So, by Nakayama’s lemma, the cardinality of the
minimal system of generators of the Λ-module X coincides with the cardinality of the
minimal system of generators of the R0-module X0. By Theorem 9.1 and Corollary
9.5, the image of Ci(c) in R0 coincides with FittR0,i(X0) for any i ∈ Z≥0. Therefore,
Corollary 9.7 follows from Lemma 9.6. □
Corollary 9.8. Let (T, c) be as in Theorem 9.1. We also assume that rankZpT

− = 1.
Further, we assume the condition (MC) and that X is a pseudo-null Λ-module. Then,
the image of FittΛ,0(X) in R0 = Λ/(γ − 1)Λ coincides with the image of annΛ(X).

Proof. By our assumption, we have I(c) = 0. So, by Theorem 2.4 (i), we have

FittΛ,0(X) ⊆ annΛ(X) ⊆ C0(c).

On the other hand, by Theorem 9.1, we have

FittR0,0(X0) = C0,0(c).
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Note that the image of FittΛ,0(X) in R0 coincides with FittR0,0(X0), and by Corollary
9.5, image of C0(c) in R0 coincides with C0,0(c). Hence we obtain Corollary 9.8. □

10. Examples

In this section, we study application of our results for two well-known Euler sys-
tems: circular units (for one dimensional cases) and Beilinson–Kato elements (for
one dimensional cases). Recall that we have fixed embeddings pQ : Q ↪→ Qp and

∞Q : Q ↪→ C in §1. We regard Q as a subfield of Qp and C by these embeddings. We

fix an isomorphism ι : Qp
≃−−→ C of fields over Q.

10.1. Circular units. Let K/Q be an abelian extension satisfying p ∤ [K : Q] and
unramified at p. We put ∆ := Gal(KQ(µp)/Q), and fix an even character χ ∈
Hom(∆,Z×

p ) satisfying χ|GQp
̸= 1. We define a Zp[GQ]-module Tχ by

Tχ := Zp(1)⊗ χ−1.

For any m ∈ Z≥0, let Am,χ be the χ-part of the p-Sylow subgroup of the ideal class
group of KQ(µpm+1), and define a Λ-module Xχ by Xχ := lim←−Am,χ. Then, we have

a natural isomorphism Xχ ≃ X(Tχ) of Λ-modules. Note that Zp(1) ⊗ χ−1 satisfies
(C1)–(C7), and we have an Euler system ccycχ of “circular units” for Zp(1) ⊗ χ−1

satisfying (NV) and (MC). For details on ccycχ , see [Oh2] Proposition 4.5 and Remark
4.6. (For the Iwasawa main conjecture (MC) for this case, see [MW], [Ru1] or [Gre].)
So we can apply Theorem 2.4 to the pair (Tχ, c

cyc
χ ), and obtain FittΛ,i(Xχ) ∼ Ci(c

cyc
χ )

and

annΛ(Xχ,fin) · FittΛ,i(X ′
χ) ⊆ Ci(c

cyc
χ )

for any i ≥ 0 ([Oh2] Theorem 1.1). Moreover, in this case, we have the following
results:

• Note that the pair (Tχ, c
cyc
χ ) also satisfies the conditions (K1)–(K2) and (G1)–

(G2), so we can apply the results in the previous section. (Note that in
this situation, the condition (G1) follows from the Leopoldt’s conjecture for
abelian fields, and (G2) follows from [MW] Theorem 1.10.1.) In particular,
the cardinality of the minimal system of generators of the Λ-module Xχ is r
if and only if we have Cr−1(c

cyc
χ ) ̸= Λ and Cr(c

cyc
χ ) = Λ.

• If the Λ-module X is pseudo-null, then we have

FittΛ,0(Xχ) = annΛ(Xχ) = C0(c
cyc
χ ).

For details of such results on circular units, see [Oh2]. Note that we also treat an

arbitrary non-trivial character χ ∈ Hom(∆,Q×
p ) in [Oh2].

Remark 10.1 (Elliptic units). For the classical Iwasawa module of ideal class groups
associated with (not necessary cyclotomic) Zp-extension of certain abelian extension
field of imaginary quadratic fields and Euler systems of elliptic units, we have similar
results to the first and second assertions of Theorem 2.4. For details, see [Oh1]
Theorem 1.1.
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10.2. Beilinson-Kato elements. In this subsection, we study the Iwasawa module
arising from elliptic modular forms by using the Euler systems of Belinson–Kato
elements introduced by Kato.

10.2.1. Basic setting. Fix integers k ∈ Z≥2, N ∈ Z≥1 and an even Dirichlet character

ε : (Z/NZ)× −→ Q×
. In this paper, via the isomorphism Gal(Q(µN)/Q) ≃ (Z/NZ)×

induced by the global reciprocity map of the class field theory, we often regard ε as

a character Gal(Q(µN)/Q) −→ Q×
.

We denote by Sk(N) the C-vector space of all cuspforms of weight k and level Γ1(N),
and by Sk(N, ε) the C-subspace of Sk(N) consisting of all forms with nebentypus ε.
For any subring R ⊆ C, we define the Hecke algebra hk(N ;R) ⊆ EndC(Sk(N ;C)) by

hk(N ;R) := R

[
T (ℓ), S(ℓ′)

∣∣∣∣ ℓ: any prime number,
ℓ′: prime number not dividing N

]
,

where T (ℓ) and S(ℓ′) are operators given by

T (ℓ) := Γ1(N)

(
1 0
0 ℓ

)
Γ1(N),

S(ℓ′) := Γ1(N)

(
ℓ′ 0
0 ℓ′

)
Γ1(N).

We fix a normalized eigen newform f =
∑∞

n=1 an(f)q
n ∈ Sk(N ; ε), and assume that

f does not have complex multiplication. We put F := Q({an}n≥1, Im ε) ⊆ Q, and
pF := pQ|F . Let

λf : hk(N ;Qp) := hk(N ; ι(Qp)) −→ FpF ;

{
T (ℓ) 7−→ aℓ(f)

S(ℓ′) 7−→ ε(ℓ′)ℓ′k−2

be the ring homomorphism corresponding to f .

10.2.2. Construction of a lattice. For the normalized eigen newform f fixed above,
Deligne have constructed a two dimensional representation V (f) of GQ over FpF . (See
[De].) In this subsection §10.2, by using the Euler systems of Beilinson–Kato elements{

c,dzpmn(f, 1, r
′, ξ, S) ∈ H1(Q(µpmn), T (f))

}
m≥0

intoroduced in [Ka2], we study the Λ-module X := X(T (f)) arising from a special
lattice T (f) of V (f). Here, let us recall the construction of the spcial lattice T (f)
briefly. (For details, see [Ka2] §8.3. The special lattice T (f) is denoted by VOpF

(f) in
[Ka2].) Note that by Remark 10.7 (ii) below, the choice of the lattice is not essential
for our main results for modular forms, namely Thoerem 10.14. However, when we
state Thoerem 10.14 precisely, the choice of the lattice T (f) makes it easy to list up
a class of Euler systems which we need.

In order to construct the special lattice T (f), we need to recall the construction of
V (f). First, we assume N ≥ 4. Let Y1(N) be the (open) modular curve over Q, and
λuniv : Euniv −→ Y1(N) the universal elliptic curve. (Note that Y1(N) is an algebraic
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stack in general, but it is a scheme if N ≥ 4.) We define a pro-p-sheaf H1
p on Y1(N)ét

by

H1
p := R1λuniv∗ Zp.

Then, we define a free Zp-module Vk,Zp(Y1(N)) of finite rank with a continuous GQ-
action by

Vk,Zp(Y1(N)) := H1
ét

(
Y1(N)Q, Sym

k−2H1
p

)
and put Vk,Qp(Y1(N)) := Vk,Zp(Y1(N)) ⊗Zp Qp. Note that by geometrically interpre-
tation of Hecke actions via Hecke correspondence of modular curves, Vk,Qp(Y1(N))
admits a natural hk(N ;Qp)-action which commutes with the action of GQ. We define
the FpF -vector space V (f) by

V (f) := Vk,Qp(Y1(N))⊗hk(N ;Qp) (FpF , λf ),

and denote the image of Vk,Zp(Y1(N)) in V (f) by T (f). Note that V (f) is a two
dimensional FpF -vector space with a continuous GQ-action ρf unramified outside pN ,
and satisfying

P (Fr−1
ℓ |V (f); x) := detFpF

(1− Fr−1
ℓ · x|V (f)) = 1− aℓx+ ε(ℓ)ℓk−1x2

for any prime number ℓ not dividing pN , where Fr−1
ℓ ∈ GQ is a geometric Frobenius

element at ℓ.

Now let N ≤ 3. In this case, we define V (f) and T (f) as follows. Let L ∈ NZ≥0 be
an element satisfying L ≥ 4, and regard Y1(N) as a quotient stack G\Y1(L) of Y1(N)
by a subgroup G of GL2(Z/LZ). Then, we define Vk,Qp(Y1(N)) := Vk,Qp(Y1(L))

G, and
denote by Vk,Zp(Y1(N)) the image of the trace map

NG : Vk,Qp(Y1(L)) −→ Vk,Qp(Y1(N)); v 7−→
∑
g∈G

gv.

Note that Vk,Qp(Y1(N)) and Vk,Qp(Y1(N)) are independent of the choice of L. Then,
we define the FpF -vector space V (f) by

V (f) := Vk,Qp(Y1(N))⊗hk(N ;Qp) (FpF , λf ),

and denote the image of Vk,Zp(Y1(N)) in V (f) by T (f). Thus we obtain the two
dimensional GQ-representation (V (f), ρf ) over FpF and its GQ-stable lattice T (f) for
any N ∈ Z≥0.

Definition 10.2. In this subsection, we study the OFpF
[GQ]-module

(T, ρT ) :=
(
T (f)(k − 1), ρf ⊗ χk−1

cyc

)
,

where χcyc denotes the cyclotomic character at p. In this subsection we denote by Σ
a finite set of places of Q consisting of ∞, p and all finite places v dividing N .

Note that rankOFpF
T = 2, and

det ρT = ε−1χk−1
cyc

is an odd character on GQ, so we have rankOFpF
T− = 1.
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10.2.3. Assumptions on T . In this paper, we assume the followin condition on the
pair (f, p):

(MF1) We have FpF = Qp.
(MF2) Under the assumption (MF1), the homomorphism

ρf : GQ −→ AutZp(T (f)) ≃ GL2(Zp)
is surjective.

(MF3) We have

(ε−1 · χk−1
cyc )|GQ∞

̸≡ (ε · χ3−k
cyc )|GQ∞

mod mFpF
,

where mFpF
is the maximal ideal of OFpF

. (This condition implies that T (f)
is not “mod p selfdual”.)

(MF4) The OFpF
[GQ]-module T := T (f)(k − 1) satisfies the condition (C6).

(MF5) The OFpF
[GQ]-module T := T (f)(k − 1) satisfies the condition (C7).

Here, let us check that T := T (f)(k−1) satisfies the conditions (C1)–(C7) in §2 under
the assumption (MF1)–(MF5). First, the condition (C4) for T (f) clearly holds. The
conditions (MF4) and (MF5) tautologically imply (C6) and (C7). The condition
(MF3) implies

(det ρT )|GQ∞
̸≡ (det ρT )|GQ∞

mod mFp ,

so (C3) holds. Let us consider the assumption (MF2) and the conditions (C1), (C2)
and (C5). We need the following lemma.

Lemma 10.3. Under the assumption (MF2), the subgroup ρf (GQ(µp∞ )) of GL2(Zp)
contains SL2(Zp). Note that the assertion of this lemma is independent of the choice
of the basis V (f) since SL2(Zp) is a normal subgroup of GL2(Zp).

Proof. Since GQ(µp∞ ) contains the commutator subgroup of GQ, the surjectivity of
ρf implies that the image of GQ(µp∞ ) by ρf contains the commutator subgroup of
GL2(Zp). It is known that the commutator subgroup of GL2(Zp) coincides with
SL2(Zp). (For the proof of this fact, instance, see [Ro] Proposition 2.1.4 and the
proof of [Ro] Proposition 2.2.2. Note that the statement of [Ro] Proposition 2.2.2
treats only fields but similar proof works for the local rings.) □

By Lemma 10.3, the conditions (C1) and (C2) follow from the assumption (MF2).
For the condition (C5), we need the following lemma.

Lemma 10.4. The following hold.

(i) We have H1
cont(GL2(Zp), (Qp/Zp)⊕2) = 0, where we regard (Qp/Zp)⊕2 as a

discrete Zp[GL2(Zp)]-module by the standard matrix action of GL2(Zp).
(ii) Let G be a closed subgroup of GL2(Zp) which acts on Q⊕2 irreducibly. Then

the order of H1
cont(G, (Qp/Zp)⊕2) is finite.

Proof. Let us show the first assertion. Since H1
cont(GL2(Zp),F2

p) is isomorphic to

Ker
(
H1

cont(GL2(Zp), (Qp/Zp)⊕2)
×p−−−→ H1

cont(GL2(Zp), (Qp/Zp)⊕2)
)
,
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it is sufficient to show H1
cont(GL2(Zp),F2

p) = 0. We denote the kernel of the natural
projection GL2(Zp) −→ GL2(Fp) by G0. Then, we have the inflation-restriction exact
sequence

(18) H1(GL2(Fp),F2
p) −→ H1

cont(GL2(Zp),F2
p) −→ Homcont(G0,F2

p)
GL2(Fp).

First, we shall show H1(GL2(Fp),F2
p) = 0. Let us consider the Hochschild–Serre

spectral sequence

(19) Ep,q
2 = Hp(PGL2(Fp), Hq(F×,F2

p)) =⇒ H1(GL2(Fp),F2
p).

Since the order of F× is prime to p, we have Hq(F×,F2
p) = 0 for any q ∈ Z≥0. Clearly,

we also have H0(F×,F2
p) = 0. (Recall that we always assume p ̸= 2 in this paper.)

Hence by the spectral sequence (19), we obtain

H1(GL2(Fp),F2
p) = 0.

Next, let us show Homcont(G0,F2
p)

GL2(Fp) = 0. Note that the homomorphism

G0 −→M2(Fp);
(
1 + px py
pz 1 + pw

)
7−→

(
x y
z w

)
mod p

induces an isomorphism (G0/[G0, G0])⊗Z Fp ≃M2(Fp). So, we obtain

Homcont(G0,F2
p)

GL2(Fp) ≃ HomFp[GL2(Fp)](adGL2(Fp),F2
p),

where adGL2(Fp) := (M2(Fp), adGL2(Fp)) is the adjoint representation, which is a rep-
resentation defined by the conjugation of matrices. The set of the Jordan–Hölder
constituents of the Fp[GL2(Fp)]-module adGL2(Fp) consists of two elements: one ele-
ment is the one dimensional (trivial) representation, and the other is sl2(Fp), which
is three dimensional. In particular, the two dimensional irreducible representation F2

p

(with the standard GL2(Fp)-action) does not appear as a quotient of adGL2(Fp). This
implies

HomFp[GL2(Fp)](adGL2(Fp),F2
p) = 0.

By the exact sequence (18), this completes the proof Lemma 10.4 (i).

The second assertion follows from Theorem C.1.1 and the arguments in the proof
of Corollary C.2.2 in [Ru2] Appendix C. For details, see loc. cit.. □
Corollary 10.5. Let G be a subgroup of GL2(Zp) containing SL2(Zp). We also as-
sume that Q := GL2(Zp)/G ≃ Zp. Then, we have H1

cont(G, (Qp/Zp)⊕2) = 0

Proof. By Lemma 10.4 (i) and the Hochschild–Serre spectral sequence, we have an
injection

H1
cont (G, (Qp/Zp)⊕2)

Q � � // H2
cont (Q,H

0 (G, (Qp/Zp)⊕2)) .

Since G contains SL2(Zp), we have H0
cont (G, (Qp/Zp)⊕2) = 0. So, we obtain

(20) H1
cont

(
G, (Qp/Zp)⊕2

)Q
= 0.

Fix a topological generator q ∈ Q, and consider the complete group ring

ΛQ := Zp[[Q]]
≃−−→ Zp[[t]]; q 7−→ 1 + t.
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By Lemma 10.4 (ii), the length of the ΛQ-module H1
cont (G, (Qp/Zp)⊕2) is finite. On

the other hand, by (20), the map

(q − 1)× : H1
cont

(
G, (Qp/Zp)⊕2

)
−→ H1

cont

(
G, (Qp/Zp)⊕2

)
is injective (and also surjective). Hence by Nakayama’s lemma, we conclude

H1
cont

(
G, (Qp/Zp)⊕2

)
= 0.

This completes the proof. □
Corollary 10.6. The hypothesis (MF2) implies (C5).

Proof. Recall that we put A := T ⊗Zp Qp/Zp Note that clearly we have

Ker(ρT |GQ∞
) = Ker(GQ∞ −→ Aut(A)).

Let Ω′ be the subfield of Ω fixed by Ker(ρT ∗|Q∞). Then, [Ω′ : Ω] is prime to p, so
we have H1(Ω/Ω′, A) = 0. By the inflation-restriction exact sequence, we obtain the
isomorphism

H1
cont(ρT (GQ∞), A)

≃−−→ H1(Ω/Q∞, A).

By the assumption (MF2), the images of GQ∞ by ρT contains SL2(Zp). So we can
apply Corollary 10.5 for ρT (GQ∞), and obtain

H1(Ω/Q∞, A) = 0

The hypothesis (MF2) implies that ρT ∗ is also surjective. So by similar arguments,
we obtain

H1(Ω/Q∞, A) = 0.

Thus, we completes the corollary 10.6. □
Remark 10.7. Here, we give some remarks on the assumptions (MF1)–(MF5).

(i) The choice of the family {ℓQ : Q ↪→ Qℓ}ℓ of embeddings satisfying the assump-
tion (Chb) ensures that for a given modular form f , there exists infinitely many
prime number p satisfying the condition (MF1).

(ii) By the work of Ribet (cf. [Ri1] and [Ri2], generalization of the results by Serre
[Se1] and Swinnerton-Dyer [S-D]), if the given eigen cuspform f does not have
complex multiplication, the condition (MF2) holds for all but finitely many
prime number p. Under the assumption (MF2), T (f) is essentially the only
one GQ-stable lattice of V (f) in the following sense.

(*) If T ′ is a GQ-stable lattice of V (f), then there exists an element a ∈
F×
pF

such that T ′ = a · T (f).
For the proof of the fact (*), see the proof of Lemma 14.7 in [Ka2].

(iii) Skinner and Urban have completed the proof of Iwasawa main conjectures of
elliptic modular forms under certain conditions which require ε = 1 and

χk−2
cyc |GQ∞

≡ 1 mod mFpF

in our notation. (See [SU] Theorem 3.6.4.) Because of the assumption (MF3),
we cannot treat the case they studied. In particular, we have to exclude the
case when T (f) is a Tate module of an elliptic curve defined over Q.
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(iv) Let us consider the condition (MF4). Here, we assume p ≥ 5, and let Ip be the

inertia subgroup of GQp . For any (f, p), the representation (T ∗⊗Zp Fp, ρ̄T ∗ |Ip)
of Ip over Fp is given either of the following two forms:

– If the representation (T ∗ ⊗Zp Fp, ρ̄T ∗|Ip) is irreducible, then

ρ̄T ∗ |Ip ≃
(
ϕ 0
0 ϕ′

)
,

where ϕ and ϕ′ are characters Ip −→ F×
p2 of level two in the sense of [Ed]

§2.4.
– If the representation (T ∗ ⊗Zp Fp, ρ̄T ∗|Ip) is reducible, then

ρ̄T ∗|Ip ≃
(
χ̄acyc ∗
0 χ̄bcyc

)
,

where χ̄cyc denotes the mod p cyclotomic character, and a and b are some
integers.

(For details of this fact, see [Se2].) Hence there exists an integer i satisfying

H0(Q∞, A
∗ ⊗ χ̄−i

cyc) = 0.

In particular, for such i, the pair (f ⊗ ωi, p) satisfies the condition (MF4),
where

ω : (Z/pZ)× // Z×
p

� � ι // C×

is the Teichmüller character. In Example 10.8, we shall study more details on
the condition (MF4) in certain special situations.

(v) Let N be the level of a fixed newform f , and p a prime number not dividing
N . We denote by πf =

⊗′
v πf,v the automorphic representation of GL2(AQ)

corresponding to f . For any prime number ℓ, we denote by (rf,ℓ, Nf,ℓ) the
Weil-Deligne representation of WQℓ

corresponding to V (f). Suppose that for
each prime divisor ℓ of N , one of the following conditions holds.

– We have Nf,ℓ = 0, namely πf,ℓ is not special, and the order of rf,ℓ(IQℓ
) is

prime to p.
– We have πf,ℓ = St ⊗ (ε′ ◦ det), where St is the Steinberg representation
and ε′ : Q×

ℓ −→ C× is a continuous character such that the order of ε′|Z×
ℓ

is prime to p. Further, the action of IQℓ
on the mod mFpF

reduction of
T (f) is non-trivial.

Then, Lemma 2.1 implies that the condition (MF5) is satisfied. Note that if
πf,ℓ is not special for any prime number ℓ dividing N , then the pair (f, p′)
satisfies the condition (MF5) for all but finitely many prime number p′.

Example 10.8. Here, we consider sufficient conditions for (MF4) in the following
special situations (i) and (ii).

(i) Suppose that p ∤ N and pF ∤ ap(f), namely the p-adic representation (V (f), ρf )
of GQ is crystalline and ordinary at p. Then, by Deligne’s unpublished work,
the mod p representation (T ⊗Zp Fp, ρ̄T ∗|GQp

) is given by

ρ̄T ∗|GQp
≃
(
χ̄cyc · λ (ε̄(p) · āp(f)) ∗

0 χ̄kcyc · λ (1/āp(f))

)
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where we denote the image of an element x ∈ Zp in Fp by x̄, and for any
ā ∈ F×

p , we define an unramified character λ(ā) : GQp −→ F×
p by

λ(ā)(Fr−1
p ) := ā.

(For the proof of this fact in under assumption k ≤ p + 1, see [Gro] Propo-
sition 12.1.) So in particular, if we have ap(f) ̸≡ ε−1(p) mod mpF , then the
condition (MF4) holds.

(ii) Let us consider the non-ordinary cases. Assume that p ∤ N and pF | ap(f).
We also assume that k ≤ p + 1. Then, by unpublished Fontaine’s work, it
holds that the representation (T ∗ ⊗Zp Fp2 , ρ̄T ∗|Ip) of Ip over Fp2 is given by

ρ̄T ∗|Ip ≃ χ̄cyc ⊗
(
ψ1−k 0
0 ψ′1−k

)
,

where ψ and ψ′ := ψp are the fundamental characters Ip −→ F×
p2 of level two.

(For details on this fact, see [Ed] Theorem 2.6.) In particular, we have

H0(Q∞, A
∗) ⊆ H0(Q∞ ⊗Qp, A

∗) = 0.

So, in this case, the condition (MF4) always holds.

Example 10.9. Let us consider the Ramanujan’s delta

∆ := q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn ∈ S12(1, 1).

Here, let p = 13. The condition (MF1), (MF2) and (MF5) for (∆, 13) hold clearly. By
the Swinnerton-Dyer’s work, it is known that (∆, 13) satisfies the condition (MF2).
(See [S-D] Corollary of Theorem 4.) We have

τ(13) = −577738 ≡ 8 mod 13,

so by Remark 10.7 (iv), the pair (∆, 13) satisfies the condition (MF4). Therefore, the
pair (∆, 13) satisfies the conditions (MF1)–(MF5).

10.2.4. Kato’s Euler systems. In order to introduce Euler systems of Beilinson–Kato
elements for T := T (f)(k− 1), we need to define an “index” set Index(f). We denote
by Index(f) the set of 5-ples (r′, ξ, S, c, d) consisting of the following data:

• r′ is an integer satisfying 1 ≤ r′ ≤ k − 1.
• (ξ, S) is either of the following two:

– “ξ is a symbol a(A), where (a,A) ∈ Z×Z≥1, and S is a non-empty finite
set of prime numbers containing prime(pA), where prime(pA) is the set
of prime divisors of N” or

– “ξ is a matrix α ∈ SL2(Z), and S is a non-empty finite set of prime
numbers containing prime(pN)”.

• c and d are integers satisfying prime(cd) ∩ S = ∅, (c, 6) = 1 and (d,N) = 1.
If ξ ∈ SL2(Z), we also assume c ≡ d ≡ 1 mod N .
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Here, let us recall Kato’s Euler systems for T . In [Ka2] Chapter I, by using Siegel
units cgα,β ∈ O(Y (N)Q), Kato introduced elements

c,dzM,N ; = {cg1/M,0, dg0,1/N} ∈ K2(Y (Mpm, Npm))

called “zeta elements”, which satisfy certain good norm relations with respect to the
pushforward maps

K2(Y (M ′, N ′)Q) −→ K2(Y (M,N)Q)

of K2-groups induced by the natural projections for M | M ′ and N | N ′. Then, in
[Ka2] Chapter II, by using the image of zeta elements by (the limit of) the Chern
character map

lim←−K2(Y (Mpm, Npm)) −→ lim←−H
2
ét(Y (Mpm, Npm),µ⊗2

pm),

Kato constructed an Euler system

zJ := {zJ,m(n) ∈ H(Qm(n), T )} ∈ ESZp(T, S)

for any J = (r′, ξ, S, c, d) ∈ Index(f). For details of the construction of zI , see [Ka2].
Note that our zJ,m(n) is the image of the ω0-component of

c,dzpmn(f, 1, r
′, ξ, S) ∈ H1(Q(µpmn), T ) =

p−2⊕
i=0

H1(Qm(µn), T ⊗ ωi)

(in Kato’s notation) by the corestriction map H1(Qm(µn), T ) −→ H(Qm(n), T ). We
define a subset Index+(f) of Index(f) by{

J ∈ Index(f)
∣∣ zJ satisfies the condition (NV) in §2

}
.

Then, by Kato, the set Index+(f) is not empty. (See Theorem 12.5 and Theorem
12.6. in [Ka2].) Therefore, X(T ) is a torsion Λ-module.

Definition 10.10. We denote the ideal of Λ generated by∪
J∈Index+(f)

Ind(zJ) (resp.
∪

J∈Index+(f)

I(zJ))

by Ind(z; f) (resp. I(z; f)). Note that by definition, we have

Ind(z; f) = I(z; f) · charΛ(X(T )).

We also denote the minimal principal ideal of Λ containing Ind(z; f) by Ind0(z; f).

Now, we can state the Iwasawa main conjecture for the dual fine Selmer groups of
modular forms.

Conjecture 10.11 (See Conjecture 12.10 in [Ka2]). Let T := T (f)(k− 1). Here, we
may not assume the hypothesis (MF1)–(MF5). Then, it should be hold

charΛ(X(T )) = Ind0(z; f).

Remark 10.12. Note that “Conjecture 12.10 in [Ka2] for T := T (f)(k − 1)” is
equivalent to “Conjecture 10.11 for the modular forms f ⊗ ωi for all i ∈ Z with
0 ≤ i ≤ p−2”. As remarked in 10.7 (iii), Skinner and Urban proved Conjecture 10.11
under certain assumptions (cf. [SU] Theorem 3.6.4.), but we cannot treat their cases
since our assumption (MF3) excludes the conditions on the weight of f required in
[SU].
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10.2.5. Main results on modular forms. In order to state our main results on modular
forms, we need to introduce ideals Ci(z; f), which arise from Kolyvagin derivatives of
Kato’s Euler systems.

Definition 10.13. For any i ∈ Z≥0, we denote by Ci(z; f) the ideal of Λ generated
by
∪

Index+(f) Ci(zJ).

Now, we can state our main results on modular forms. Under the assumption
(MF1)–(MF5), we can apply Theorem 2.4 for T := T (f)(k − 1).

Theorem 10.14. Fix integers k ∈ Z≥2, N ∈ Z≥1 and an even Dirichlet character

ε : (Z/NZ)× −→ Q×
. Let p be an odd prime, and f =

∑∞
n=1 an(f)q

n ∈ Sk(N ; ε) a
normalized eigen newform. Assume that the pair (f, p) satisfies (MF1)–(MF5). We
put T := T (f)(k − 1). Then, we have the following.

(i) For any i ∈ Z≥0, we have

annΛ(Xfin)I(z; f) · FittΛ,i(X ′(T )) ⊆ Ci(z; f).

Recall that Xfin is the maximal pseudo-null Λ-submodule of H2
Σ(T ).

(ii) For any i ∈ Z≥0, we have

Ci(z; f) ≺ FittΛ,i(X(T )).

In particular, if Conjecture 10.11 holds, then we have

FittΛ,i(X(T )) ∼ Ci(z; f),

and the pseudo-isomorphism class of X(T ) is determined by Ci(z; f).
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