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ABSTRACT. By using “Gauss sum type” Kolyvagin systems, Kurihara studied the
higher Fitting ideals of Iwasawa modules, and he obtained a refinement of the minus
part of the Iwasawa main conjecture over totally real fields ([Ku]). In this paper, we
study the higher Fitting ideals of Iwasawa modules arising from the dual fine Selmer
groups of general Galois representations which have Euler systems of “Rubintype”,
like circular units or Beilinson—Kato elements. By using Kolyvagin derivatives, we
construct an ascending filtration {€;(c)};>o of the Iwasawa algebra, and show that
the filtration {&;(c)};>0 gives good approximation of the higher Fitting ideals of the
Iwasawa module under the assumption of “Iwasawa main conjecture”. Our results
can be regarded as analogues of Kurihara’s results, and a refinement of “Iwasawa
main conjecture” and Mazur—Rubin theory in certain cases.
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1. INTRODUCTION

By the theory of Euler systems, a norm compatible system of Galois cohomology
classes called Euler system give a lower bound of the characteristic ideal of a certain
Iwasawa module. (For instance, see Theorem 2.3.3 in [Ru2].) The characteristic
ideals are an important invariants of finitely generated torsion Iwasawa modules, but
in general, we cannot determine the pseudo-isomorphism classes of Iwasawa modules
completely by the characteristic ideals. The higher Fitting ideals have more refined
information on the structure of Iwasawa modules. For example, we can determine the
pseudo-isomorphism class and the cardinality of the minimal system of generators of
an Iwasawa module by the higher Fitting ideals. (For the definition and some basic
properties of the higher Fitting ideals, see, for incetance, [Oh2] §2.)

In [MR], Mazur and Rubin established the theory of Kolyvagin systems, and ob-
tained a refinement of “Iwasawa main conjecture” in certain situations. They does not
write explicitly, but we can deduce, via their arguments in [MR] §5.3, that A-primitive
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Kolyvagin systems determine the pseudo-isomorphism class of Iwasawa modules aris-
ing from dual fine Selmer groups of p-adic representations of the absolute Galois group
of Q satisfying certain conditions. However in [MR], they do not obtain any explicit
bound of the higher Fitting ideals of Iwasawa modules.

In [Ku], Kurihara studied the higher Fitting ideals of the minus-part of the Iwasawa
module defined by the inverse limit of the p-Sylow subgroups of the ideal class groups
along the cyclotomic Z,-extension of a CM-field K satisfying certain conditions. By
using Kolyvagin systems of “Gauss sum type”, he constructed an ascending filtration
{©;}icz., of Iwasawa algebra called the higher Stickelberger ideals, which are defined
by analytic objects arising from p-adic L-functions, and he proved that higher Fitting
ideals coincide with the higher Stickelberger ideals. (For details, see [Ku] Theorem
1.1.) His results give a refinement of the minus-part of the Iwasawa main conjecture
for totally real number fields. In the proof of results, he developed new Euler system
arguments, which can deal with more refined informations on the structure of Iwasawa
modules than usual arguments.

In the paper [Oh2], the higher Fitting ideals of the plus-part of the Iwasawa modules
of ideal class groups (over abelian fields) are studied. By using circular units, we con-
structed the ideals €; of the Iwasawa algebra, which are analogues of Kurihara’s higher
Stickelberger ideals, and proved that &; give “upper bounds” and “lower bounds” of
the higher Fitting ideals in certain senses. (For details, see [Oh2] Theorem 1.1 and
§10.1 in this paper.) The results in [Oh2] can be regarded as analogues of Kurihara’s
results and a refinement of the plus-part of the Iwasawa main conjecture. Note that in
[Oh1], we also obtained similar results for the Iwasawa modules of ideal class groups
over abelian extension fields of imaginary quadratic fields by using elliptic units. (See
[Oh1] and Remark 10.1 in this paper.)

In this article, we study higher Fitting ideals of an Iwasawa module X = X(7)
arising from “dual fine Selmer groups” of a lattice T of a general p-adic Galois rep-
resentation along the cyclotomic Z,-extension of Q. Here, let us state our main
theorem roughly. Under the assumption of the existence of a “non-vanishing” Euler
system ¢ of Rubin type (see the condition (NV) in §2), by using Kolyvagin deriva-
tives of the Euler system, we shall construct ideals €;(c) of Iwasawa algebra A, which
can be regarded as generalizations of ideals €; in [Oh2] and analogues of Kurihara’s
higher Stickelberger ideals. Under certain assumptions, we shall prove the following
assertions, which are the main results in this article.

e In §2, we shall “explicitly” construct an ideal I(c) of A, which satisfies the
following properties.
— If the Euler system c satisfies “Iwasawa main conjecture” (see the condi-
tion (MC) in §2), then the heiget of I(c) is at least two.
— Moreover, under the assumption of the Iwasawa main conjecture, we have
I(c) = A in certain practical situations. For details, see Remark 2.3.
Let Xg, be the maximal pseudo-null A-submodule of X, and put X’ := X/ Xjg,.
Then, for any i € Z>(, we have

anny (X, )1 (c) - Fittp:(X') C €(c).
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e For any ¢ € Z>, there exists a height-two ideal I; of A satisfying

(However, in present, we do not have any explicit description of the “error
factors” I;.)

(For the precise statement of our main results, see Theorem 2.4.) In particular,
under the assumption of the Iwasawa main conjecture, our main results implies that
the filtration {€;(c)}i>o of A determines the perudo-isomorphism classe of X (see
Corollary 2.7). Our results can be regarded as a generalization of the results in [Oh2]
for general Galois representations and analogues of Kurihara’s results. Moreover, our
results can also be regarded as a refinement of the “Iwasawa main conjecture” and
the results by Mazur and Rubin in [MR] §5.3.

In §2, we state our main results. (See Theorem 2.4 and its corollaries.) In §3, we set
the local conditions on Galois cohomology groups, and give another description of the
Iwasawa module X in terms of “Selmer groups” by using the Global duality theorem
of Galois cohomology. In this section, we also recall some Iwasawa theoretical results
which control the behaviour of Selmer groups along the Z,-extension Q. /Q. In §4,
we recall the definition and some properties of Euler systems of Rubin type. In §5,
we define the ideal €;(c), and prove Theorem 2.4 (i). In §6, we recall some results
on Kolyvagin systems established by Mazur and Rubin. In this section, we prove the
assertion (iii) of Theorem 2.4 by using Mazur-Rubin’s arguments. In §7, by using
Chebotarev density theorem we show a preliminary results which is used in Euler
system arguments in the next section 8. Then, we complete the proof of Theorem
2.4 by using Kurihara’s Euler system arguments in §8. In §9, we give some remarks
on the structure of dual fine Selmer groups over the ground level Qg = Q. In the last
section (§10), we apply our results to particular Euler systems: circular units and
Kato’s Euler systems.

Notation. Let K be a field, and fix a separable closure K of K. Then, we put
Gk := Gal(K/K). For a topological abelian group M with a continuous Gg-action,
let H*(K, M) = H*(Gg, M) be the continuous Galois cohomology group.

In this paper, an algebraic number field K is a finite extension of QQ in this fixed
algebraic closure Q. Let L/K be a finite extension of number fields. For a finite set
Y. of places of K, we denote by Ly/L the maximal extension unramified outside X,
and put Gy := Gal(Ly/L). We denote the ring of integers of a number field K by
Ok.

Let ¢ be a prime number, and L a finite extension field of Q,. We denote the Weil
group of L by Wy, and the inertia subgroup of Wy, by .

Let L/K be a finite Galois extension of algebraic number fields. Let A be a prime
ideal of K, and X a prime ideal of L above \. We denote the completion of K at
A by K. If A is unramified in L/K, the arithmetic Frobenius at A" is denoted by
(N, L/K) € Gal(L/K). We fix a family of embeddings {/: Q = Q¢ }oprime satisfying
the condition (Chb) as follows:
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(Chb) For any subfield F C Q which is a finite Galois extension of Q and any
element o € Gal(F/Q), there exist infinitely many prime numbers € such that
¢ is unramified in F/Q and ({p, F'/Q) = o, where (g is the prime ideal of F
corresponding to the embedding lg|r .

The existence of a family satisfying the condition (Chb) follows easily from the Cheb-
otarev density theorem.

For any prime number ¢, we regard Wg, € Gg, as a subgroup of Gg via the
embedding (5: Q — Q.

We also fix an embedding oog: Q— C,andlet c € Gg be the complex conjugation
corresponding to this embedding. For any abelian group M with action of Gg, we
denote by M~ the subgroup of M consisting of all elements on which ¢ acts via —1.
For any positive integer n, let u, := u, (Q) be the group of n-th roots of unity in Q,
and define an element (,, € i, by cog((,) = e2mi/n

Let K be a finite extension field of Q,, and O the ring of integer of K. We fix a
uniformizer # € O. For any O-module M, we define the dual O-module MY by MV :=
Home (M, K/O). In this paper, we identify the O-module MY with Homg, (M, Q,/Z,)
by the isomomorphism

MY := Homp (M, K/O) — Homgz, (M, Q,/Zy),
induced by
K — Qp; ar— TrK/Qp (W_dK/Qp -a),

where we denote the different of K/Q, by dx/g, = 7%/ O. If M has an O-linear
action of a group G, we define the action

Gx M — M’ (g9.f) — gf
of G on MV by (gf)(m) = f(g~'m) for any m € M.

Let R be a commutative ring, and M an R-module. For any a € R, let M[a] be
the R-submodule of M consisting of all a-torsion elements. We denote the ideal of R
consisting of all annihilators of M by anng(M). For any sheaf F of abelian groups
on (Spec R)¢, and i € Zxq, we put

Hgt(Rv F) = Hét(spec R7 ‘F)

Let G be a group, and M an abelian group with an action of G. Then, we denote
by M¢ the maximal subgroup of M fixed by the action of G.
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2. MAIN RESULTS

In this section, we state the precise statement of our main results.

First, we set some terminologies. Let p be an odd prime number, and Q. /Q the
cyclotomic Z,-extension. For any m € Zx(, we denote by Q,, the unique intermediate
field of Q.,/Q satistying [Q,, : Q] = p™. We put I' := Gal(Q/Q), and define the
Iwasawa algebra A by

A = Z,[[I]) = Iim Z,[Gal(Q,./Q)].

Let K/Q, be a finite extension, and O the ring of integers of K. Fix a uniformizer
m € O, and put k := O/7O. Let us consider a free O-module T of finite rank d with
a continuous O-linear action of Ggp unramified outside a finite set ¥ of places of Q
containing {p, co}. We regard T as an étale O-sheaf on Spec Og,, s, where QOg,, s is
the ring of X-integers of Q,,,. We denote the action of G on T by

pPT: GQ — Aut@(T) ~ GLd<O)

Weput V=T ®o K, A:=T ®0 K/O, and A* := Homp(T, K/O(1)). Here, we let
K/O(1) be the Tate twist of the trivial Gg-module K/QO. In this article, we always
assume the following conditions.

(C1) The Gq, -representation A[r| over k is absolutely irreducible.

(C2) There exists an element 7 € Gg(y,) Which make T'/(7—1)T a free O-module
of rank one.

(C3) The F,[Gq.. ]-module A[r] is not isomorphic to A*[x].

(C4) If the rank of 7' is one, then Gg, does not act on A[rn] via the trivial
character 1 or the Teichmiiller character w.

(C5) Let Q = Q(p5°, A) be the maximal subfield of Q fixed by the subgroup

ker (GQ(MPOO) — Aut(A))
of Gg. Then, we have
H'(Q/Qu, A) = H'(Q/Qu, A*) = 0.

(C6) The torsion Z,-module H (Qy ®g Q,, A*) is divisible.
(C7) Let £ € ¥\ {p, o0} be any element. We denote by

(Tg: W@z — GLd(K),NZ)

the Weil-Deligne representation corresponding to (V, pT|W@2), and let L, be

the intermediate field of Q,/Q}" fixed by Ker(r| Iy,). Then, the following
holds.

(i) We have p{ #r(lg,) = [Le : Q).
(ii) The O-module H} .(Gp,,T) is torsion-free.
In particular, the assumption (C7) implies that for any ¢ € ¥\ {p, oo}, the O-module
H .(Ig,,T) is torsion-free. The following lemma gives a sufficient condition for the

cont

condition (ii) of (C7).
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Lemma 2.1. Let ¢ € ¥\ {p, o0} be any element, and (r¢, Ny) and Ly as in (C7). Fix
a topological generator g, of the tame inertia group IZZ of Ly. Suppose that the O-
module the O-module T/(g, — 1)T is torsion-free. Then, the O-module H. .(I1,,T)
18 torsion-free.

Proof. The proof of Lemma 2.1 is a routaine, and not difficult. So here, we only give
a sketch of it. Assume that the O-module the O-module T'/(g, — 1)T is torsion-free.
Then, it is sufficient to show that the condition (ii) of (C7) holds. By our assumption,
the ascending filtration

{0 =Ker (90 = ": T — T) }iezy
of T satisfies that for any ¢ € Z>,,

e G, acts trivially on T, /T, and
e the O-module Tl-(f)l /(g0 — 1)TZ-(€) is torsion-free.

By induction on i, we can deduce that the the O-module HY ,(Gy,, Tz-(g)) is torsion-
free for any i € Zs, so in particular, H. ,(Gyr,,T) is a torsion-free O-module. O

Now, we introduce an Iwasawa module X = X (7'), which we study in this article.
Definition 2.2. We define
H(T) = lim HY,(Og,,,T).
for any prime number ¢, we put
Hi,e, (T) = lim Hiy(Qn ©g Q. T)
Then, we define

X(T) := ker (HQE(T) — P ]HIIQOC’Z(T)> .
tex
It is well-known that H%(7') = 0 for any ¢ > 3, and the A-module H(T') is finitely gen-
erated for any ¢ € Z>¢. (Recall that here, we assume p is odd, so the p-cohomological
dimension of Gg,, »; is two.) We denote the maximal pseudo-null A-submodule of X
by Xﬁn (T)

For simplicity, we write X := X(T') and Xg, := Xg,(T'). In fact, the A-module
X is independent of the choice of ¥, and it is isomorphic to the Pontrjagin dual of
the “dual fine Selmer group” Sy, (Qu, A*) in the sense of [Ru2] Definition 2.3.1. (See
Proposition 3.7.) In this article, we study the higher Fitting ideals of the A-module

X' =X'(T) = X(T)/ Xau(T)
under the assumption of the existence of a “non-vanishing” Euler system for 7.
In order to mention Euler systems, we need to introduce some abelian extension
fields of Q. For each prime number ¢ not contained in ¥, we denote by Q(¢) the

maximal subfield of Q(1u,) whose extension degree over Q is a p-power. Let N'(X) be
the set of all positive integers decomposed into square-free products of prime numbers
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not contained in X. Here, we promise 1 € N'(X). Let n € N (X) be any element, and
assume that n has a prime factorization n = [[;_, ¢;. Then, we define the composite

field

for any m > 0.

In this paper, we assume that there exists an Euler system
c:= {cm(n) € Hl(@m(n)7T)}mzo,neN(2)

in the sense of [Ru2] Remark 2.1.4 satisfying the following “non-vanishing” conditions.
(NV) The element c(1) := (¢n(1)),,5¢ € Hg(T) is not A-torsion.

(For details of the definition of Euler systems in our terminology, see Definition 4.2.)

We define the ideal Ind(c) of A by

Ind(c) := {¢ (c(1)) | ¢ € Homy (H5(T),A)},
and denote by Indy(c) the minimal principal ideal of A containing Ind(c). By usual

Euler system arguments, the assumption (NV) implies that X is a torsion A-module,
and we have

(1) chary (X) D Indy(c).
(See Theorem 2.3.2 and Theorem 2.3.3 in [Ru2].) We define the ideal I,(c) of A by
I,(c):={a € A|a-chary(X) C p(c(l))-A}.
for any A-linear homomorphism ¢ € Homy (H(7'), A), and put
I(c) := U I,(c).
peHom  (HIL(T),A)
By the definition of I(c) and (1), we have
Ind(c) = I(c) - chary (X).

Under the assumption (NV), we sometimes consider the following condition (MC),
which is “Iwasawa main conjecture” for (7', c).

(MC) The characteristic ideal of the A-module X coincides with Ind(c), that is,
we have

char (X) = Indy(c).

Remark 2.3. Assume that the pair (7, c) satisfies the conditions (C1), (C4) and
(NV), and that T~ is a free O-module of rank one. Then, [Ru2] Theorem 2.3.2
and the formula on the global Euler-Poincaré characterisitic (for instance, see [Tal]
Theorem 2.2) imply that the A-module Hi(7') is generically of rank one, namely we
have

dimpyac(a) H(T) ®4 Frac(A) = 1.
Hence in this situation, we have

B _ H ()
Ind(c) = Indy(c) = chary (HIE(T)WS n Ac(l)) ;
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where Hi, (7T )iors denotes the maximal torsion A-submodule of Hi(T). In particular,
if we also assume that the pair (7, c) satisfies the Iwasawa main conditions (MC),
then we have I(c) = A.

In order to state our main theorem, it is convenient to introduce the following
notation. Let I and J be ideals of A. We write I < J if there exists a height two
ideal A of A (called an “error factor”) satisfying Al C J. Note that for two ideals I
and J of A, we have I < J if and only if TA, C JA, for all prime ideals p of height
one, where we denote the localization of A at p by A,. We write [ ~ J if I < J and
J < I. The relation ~ is an equivalence relation on ideals of A.

We shall define ideals €;(c) of A, which are analogues of Kurihara’s higher Stickel-
berger ideals. In §5 we define them by using Kolyvagin derivatives of the Euler system
c (as in [Ohl] and [Oh2]). For details, see Definition 5.1 and Definition 5.4. Note
that the definition of the ideals €;(c) is one of the key of our results. The following
theorem is our main results.

Theorem 2.4. Assume that T and c satisfy the conditions (C1)—(C7) and (NV).
Then, we have the following.

(i) We have

anny (Xan)I(c) - Fittp o(X') C €(c).
(i) Assume O = Z,. Then, we have

anny (Xan)I(c) - Fittp (X)) C €;(c)

for any i € Z>.
(ili) Assume that T~ is a free O-module of rank one. Then for any i € Zso, we
have

Q:Z(C) =< FittAVi(X)

Remark 2.5. We assume that 7" and c satisfy the conditions (C1)—(C7), (NV) and
(MC). (Then, we have I(c) = A.) Note that we have

FittAVO(X) Q annA(Xﬁn) . Fittmo(X,).
So, in this case, Theorem 2.4 (i) implies
FlttAp(X) g @0(0).

Note that the higher Fitting ideals determine the pseudo-isomorphism class of a
finitely generated torsion A-module. More precisely, we have the following lemma.

Lemma 2.6. Let M be a finitely generated torsion A-module. Assume that M is
pseudo-isomorphic to an elementary A-module @;_, A/ f;\, where {fi}1, is a se-
quence of non-zero elements of A satisfying f; | fix1, then we have

Fitty (M) ~ (g fk) A (ifi<n)
A (if i > n)

for any non-negative integer i (cf. [Ku] Lemma 8.2). This implies that the pseudo-
isomorphism class of M is determined by the higher Fitting ideals {Fitta ;(M)}i>o.
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By Theorem 2.4, we immediately obtain the following corollaries.

Corollary 2.7. Assume that T and c satisfy the conditions (C1)—(C7), (NV) and
(MC). We also assume O = Z,, and ranky T~ = 1. Then, we have

for any i € Zy. In other words, the ascending filtration {€;(c)}
the pseudo-isomorphism class of X. Moreover, we have

anny (X, )I(c) - Fitta (X)) C €;(c)

i€Zs of A determines

for any 1 € Z>.

Corollary 2.8. Suppose O = Z,. We assume that T and c satisfy the conditions
(C1)—(CT7), (NV) and (MC). We also assume that X (T) has no non-trivial pseudo-
null A-submodules (namely, Xg, = 0), and ranky T~ = 1. Then, we have

FlttAJ(X,) - Q:,L(C)
for any 1 € Z>.

Remark 2.9. In certain nice cases, we can show that the ideals {€; o n(c)}i>o of
O/aNO (for sufficiently large N) determine the isomorphism classes of dual fine
Selmer groups over the ground level Qp = Q. For details, see Theorem 9.1. Note
that this result itself is not so new because it is only a translation of Mazur—Rubin’s
results in [MR] §5.2 into the context of higher Fitting ideals and our ideals €;(c). As a
corollary of this result, we shall see that in certain situations, the ideals {€; o n(c)}i>0
determines the cardinality of the minimal system of generators of the A-module X.
(For details, see Corollary 9.7.)

3. FINE SELMER GROUPS AND IWASAWA THEORY

Here, we use the similar notation to that in §2. Let X be a finite set of containing
{p, 00}, and T a free O-module of finite rank d with a continuous O-linear Gg s-action
satisfying the conditions (C1)—(C7). We define A, T* and A* by similar manner to
that in §2. In this section, we introduce the “fine” Selmer group Hx._ (F, A*), which

n

is our main interest. Here, we also review some Iwasawa theoretical results.

3.1. Local conditions and Selmer groups. In the first subsection, we introduce
the “fine” Selmer group and some related Selmer groups.

First, we define Selmer groups for “general” local conditions. Let F' be a number
field, and X be a set of all places of F' above X. Consider a topological Z,-module
with an Gy ,-action. We assume that M is a discrete group (resp. a pro-p-group or
a finite dimensional Q,-vector space), and we regard M as an étale sheaf (resp. étale
pro-p-sheaf or étale Q,-sheaf) on Spec F'. A local condition F on M is a collection

{HHF ®Q,,M) C H\(F®Q, M)},

where v runs through all places of Q. Note that we assume p # 2 in this paper, so
we have automatically

Hz(F ®R,M) = Hy(F ®R,M) =0
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For such pair (M, F), we define the Selmer group Hx(F, M) by

Hé}t(F ® QU? M)
HE(F ®Q,, M)

Hy(F,M) :=ker | H'(F,M) —

’UEP@

For a finite set Y of places of Q, we define

Hg(F @ Qu, M)

HL(F M):=ker | H(F, M
porn:=re {0 = 11 e e |

’UGP@\E/

veX!

Hy (F,M): = ker (H}T(F, M) — [[ HL(F 2 Q,, M)) .

For any n € Zsg, we denote by F" (resp. F,) the local condition FPrme™ (resp.
Fprime(n)), Where prime(n) is the set of prime divisors of n.

From now on, let us consider local conditions and Selmer groups on the free O-
module T'. Here, we assume F = Q,, is a subfield of Q... Let F be a local condition
on T, and N a positive integer. For any prime number ¢, by local duality Theorem,
we have a diagram

('7')4

Hy(@Qn® Qe T) % Hg'(Qu®Qy AY) K/O
| fi jg
HE (Qu ® Qo T/7VT) X HE/(Qp @ Qy, A[rY]) ~25 1.0/0
whose horizontal arrows are perfect pairings, and satisfy
(mn(a),b)e = (a,in(b)), € K/O

for any a € Hi (F®Qy,T) and b € HZ (F ® Q,, A*[r"]). We denote the orthogonal
component of H-(F @ Qq, T) (resp. H-(F @ Qg, T/7NT)) with respect to the above
pairing (-, ), by Hz.(F ® Qg, A*) (resp. Hz.(F ® Qg, A*)). Then, we obtain the dual
local condition F* of A* and A*[x"].

Definition 3.1. Let ¢ be a prime number distinct from p, and Q}* the maximal
unramified extension of Q.
o We define
Hp(Qn® QT ® K) = H,, (U ® Q. T ® K)
= ker (Hy(Qn ® Q,, T ® K) — Hi(Q, @ Q)", T ® K)) .
e We denote by H}(F ® Qg, T') the inverse image of H}(Qm ® Qp, T ® K) with
respect to the natural map
Hgy(Qn ® Qe T) — Hey(Qu ® Q. T ® K).
e We denote by H}(Q, ®Q, T ® K/O) the image of H}(Q,, ® Qp, T ® K) with
respect to the natural map

Hy(Qm® QT ® K) — Hi(Qn®Q, T ® K/O).
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e We denote by H}(Qm®(@g, T /7NT) the image of H} (Qmn®Qy, T') with respect
to the natural map

Hy(Qrn @ Qp, T) — H(Qr @ Qp, T/7VT).

Note that H}(Qn, ® Qg T/7NT) coincides with the inverse image of H(Q,, ®
Qu, T ® K/O) with respect to the map

He(Qum ® Qp, T/7NT) — He(Qm ® Qp, T ® K/O)
induced by

x (/=)

1
T/7NT —T/TCT®K/O.
™

~

(See [Ru2] Lemma 1.3.8.)

Then, we define the local condition F.,, on T by

Hi(Qn®Q,,T) ifwvis a finite place distinct from p;
H.]#can (Q’I)7 T) = He}t (Qm ® Qp; T) lf UV = P;
0 if v = oo.

For any N > 0, we define the induced local condition {Hy._ (Q,, ® Q,,T/aNT)}, on
T/7NT by the image of Hy (Qn ®Q,,T) for any place v of Q. In this paper, we

call the group H, .(F, A*) the dual fine Selmer group of A*.

Remark 3.2. By the local duality, for any prime number ¢ distinct from p, H}(F ®
Q¢, T) and H}(F ®Q, T ®Q,/Z,) are orthogonal component each other with respect
to the pairing (+,)¢. In other words, the pairing induces the natural isomorphism

H(F®Q,T) := Hy(F®Q,T)/H(F©QT)
~ Hi(F ® Qg A")Y,
Hy(F @ Qq, A*) := He(F @ Qp, A*)/H{(F @ Qq, A*)
~ Hi(F®Q,T)".
The similar orthogonality holds for H(F ® Q,, T/p"T) and H(F @ Q,, A*[p"]) =
H(F © Q. T p"T)

By the orthogonality of the local condition f, the dual local condition F} on A*

can
is as follows:

HL (Q,,A%) = {H}(F ® Q,, A*) if v is a finite place distinct from p;

0 it v = p, 0.
In this paper, we often use the following elementary fact which immediately follows
from the assumption (C1) and (C4).
Lemma 3.3. For any integers m € Z>o and N € Zxq, the natural homomorphism
HY(Qum, Alr"]) — H'(Qum, A)[7"],
HY(Qu, A*[7"]) — H'(Qum, A%)[7"]

are 1somorphisms.
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We also note that the hypothesis (C6) implies Hr. (F ® Qp, A*) = 0. Then, by
Lemma 3.3 and [Ru2] Proposition 7.4.4, we obtain the following proposition.

Proposition 3.4. Let m be a non-negative integer, and N a positive integer. Then,
we have a natural isomorphism

1, (Qu, A7) = HE, (@, A",

3.2. Preliminaries on Iwasawa theoretical results. Here, we recall some Iwa-
sawa, theoretical results which control Iwasawa modules arising from Galois cohomol-
ogy groups and certain Selmer groups. Recall that in §2, we put I' := Gal(Qs/Q) ~
Z, and A := Z,[[I']]. For any non-negative m, we define

Ry = L,[Gal(Qn /Q)] = A/ (77" = 1).
Recall that we have defined the A-module X by

X = X(T) := ker <IHI2E(T) B HfOC’K(T)> :

lex

Here, we assume that X is a torsion A-module. Let ¢ be any prime number contained
in 3. Since ¢ does not split completely in Q. /Q, the Z,-module

H%OC,Z(T) = (hﬂ He(':)t (Qm ® Qf? A*)>

is finitely generated. This implies that H%(T) is also a torsion A-module. We need
the following lemma which follows from the assumptions (C6) and (C7).

Lemma 3.5. Let £ be a prime number contained in ¥. Then, Hi, ,(T) is a torsion-

free O-module.

Proof. 1f ¢ = p, then it immediately follows from (C6) and the local duality theorem
that leoc’p(T) is a torsion-free Z,-module. So, we suppose ¢ # p. Let Qo be the
cyclotomic Z,-extension of Q. Here, we regard Wq, C G, as a subgroup of Gg via
the embedding (g Q — Q, fixed in §1. Note that as an O-module, H,(Q. ®Qy, A*)
is isomorphic to the direct product of finitely many copies of H°(Qy ., A*). So by the
local duality theorem, in order to show Lemma 3.5, it is sufficient to show that the
O-module H(Qy , A*) is divisible. Let (ry, N¢), Ly and gy be as in (C7) and Lemma
2.1. Note that T*/(g, — 1)T* ~ (T[g, — 1])* is a torsion-free O-module. So we apply
the snake lemma to the diagram

0——T"——T" Qo K —A*—0
lgel lgel lgzl
0—T"—T"®o K —=A*—0
with exact rows, and we deduce that the O-module
HO(Ly, A*) ~ A*[g, — 1]

is divisible.
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Let N € Z>o U {00}, and define the subgroup $,n of &, := Gal(L;/Qy) of by
f)g’N = Ker (Q5g — Aut (HO (Lg, A*[ﬂ'N]))) .

The hypothesis (C7) implies that &, does not have pro-¢ quotient. So for any finite
N, the order of &, n := & /9y is (finite and) prime to p. Then, we can define an

element X
ey = % Z o c O[@e,]\/]

Ue@E,N

for any finite N, and obtain an idempotent element
¢ = (eN)NZO S O[[ﬁf,oon = @O[@&N].
N

We have H®(Qy o0, A*) = ¢H(Ly, A*), so the divisibility of H°(L,, A*) implies that
the O-module H°(Qy o, A*) is divisible. O

By Lemma 3.5, we immediately obtain the following corollary.

Corollary 3.6. Let Xgn be the mazimal pseudo-null A-submodule of H(T). Then,
we have Xg, = Xap.

We define a A-module Hx. (Qo, A*) by

Note that H Jch*an (Qo0, A%) is a cofinitely generated A-module. The following proposi-
tion gives another description of the A-module X.

Proposition 3.7. There exists a natural isomorphism
X(T) ~ Hy, (Qoo, A)"
of A-module.

Proof. 1t follows from Proposition B.3.4 in [Ru2] that we have
(2) @1 Hl((@m ® Q, T) = @Hir(Qm ® Qy, T) - m Hl(OQm ® Zy, TIZ)

m

for any prime number ¢ distinct from p, where I, := Ggy is the inertia subgroup of
Gq,- Then, the isomorphism in Proposition 3.7 immediately follows from the limit
of the Poitou-Tate exact sequence, the orthogonality of the local conditions and the
equality (2). O

By our assumption (C6), we have the following proposition.

Proposition 3.8 ([Ru2] Proposition 7.4.4). Let m be a non-negative integer. Then,
we have a natural isomorphism

X(T) ®x Ry =~ Hr. (Qpn, A%)Y.

In our paper, the following proposition plays important roles.
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Proposition 3.9 ([Ne| Proposition 8.4.8.1). We have a spectral sequence
(Bo)y? = Torl, (R, HY(T)) = HE " (Oq,, 2, T).

Especially, by proposition 3.9, we have a short exact sequence
0 — H5(T) ®p Ry — Hi(Og,, v, T) — HA(T)[y*" — 1] — 0

for any m € Zso be any element. By this fact and Corollary 3.6, we obtain the
following corollary.

Corollary 3.10. If X = X(T) is a torsion A-module, and if
chary (HE(T)) € (" — 1A,
then the cokernel of the natural homomorphism
Hy(T) @2 R — Hy(Oq,, 5, T)

is annihilated by anna (Xgy).

4. EULER SYSTEMS OF RUBIN TYPE

The axiomatic framework of Euler systems for general p-adic representations of Gg
are established in [P-R], [Kal] and [Ru2]. Here, we recall the notion of Euler systems
and some of their basic properties introduced in [Ru2].

4.1. Euler systems. Throughout this section, we use the same notations as the
previous section. In particular, we assume that T is a free O-module of finite rank d
with a continuous O-linear Gg s-action, and satisfies the conditions (C1)-(C7) in §2.

Definition 4.1. Let M a free O-module of finite rank with a O-linear action of Gg.
Then, for each element o € Gg, we define a polynomial P(o|M;z) by

P(o|M;zx) :=deto(l —ox | M) € Olx].
Definition 4.2. Recall that we denote by AV (X) the set of all positive integers decom-
posed into square-free products of prime numbers not contained in X. If no confusion

arises, we write ' := N(X) for simplicity. For any n € N and any non-negative
integer m, we defined a field Q,,(n) in §2. In this paper, we call a family

Cc:= {cm(n) cH' (@m(n)7T)}m20,n€N(E)

of cohomology classes an Euler system for (T, ¥) if ¢ satisfies the following conditions:

(ES1) For any n € A and any non-negative integer m, we have

COrg, 1(n)/@m(n) (Cm+1(n)) = cm(n).
(ES2) Let n € N and m a non-negative integer. Then, for any prime divisor ¢ of
n, we have

Corg,,m)/@u(n/e) (em(n)) = PFry T Frgt) - cn(n/0),
where Fr, € Gal (Q,,(n/¢)/Q) is the arithmetic Frobenius element at ¢.

We denote the set of all Euler systems for (7',3) by ESo (T, X).
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In order to refer results in [MR], it is convenient to introduce the notion of “mod-
ified” Euler systems in the following sense.

Definition 4.3. Let ES; ( Y) be the set of all families
= {C ) € H'(Qu(n), )}mZO,nEN(E)

of cohomology classes satisfying (ES1) and the following condition (ES2)’:

(ES2)" For any non-negative integer m, any n € N and any prime divisor ¢ of n,
we have

Corg, (n)/@m(n/e) (G (n)) = P(Fre|T; Fr, ) - &), (n/1).
We call an element of ES,(T,X) a modified Euler system.

Remark 4.4. Let ¢ = {¢;n(n)}mn € ESo(T,%) and ¢’ = {c,,(n)}}mn € ESH(T,X)
be arbitrary elements. Regard T as a pro-p sheaf on (Spec Og,,m)x)s. Then, t is
known that c,,(n) and ¢, (n) both belong to H(Oq,,m [1/p], T, Where

J: Spec Og,,(m),x. — Spec Oq,,m)[1/p]

is the natural open immersion. For details, see [Ru2] Corollary B.3.5.
Note that in [MR], “an Euler system” does not mean an element of ESp (7', ¥) but
ES,(T,3). The following proposition relates ESo (T, %) to ES, (T, X).
Proposition 4.5 ([Ru2| Lemma 9.6.1). There exists an isomorphism
igs: ESo(T,X) — ESy(T,X); ¢ +—igps(c) = {c,(n)}
of O[Ggl|-modules satisfying the following property:

“For any ¢ := {cn(n)} € ESo(T,Y), any non-negative integer m and any
n € N, there exists a unit ur,, is a unit of O[Gal(Qn(n)/Q)] such that

ips(C)m(n) = ury, - ¢n(n) mod My(T;c,n).
Here, M,,(T;c,n) is a O[Gal(Q,,(n)/Q)]-submodule of H*(Q,,(n),T) gener-

ated by
{the image of cp(a) | 0 < a | n}

where { runs through all prime divisors of n.”

Note that we can construct the map igg in Proposition 4.5 explicitly. For details
of its construction, see the proof of Lemma 9.6.1.

4.2. Localization maps and finite-singular comparison maps. Here, we in-
troduce two types of homomorphisms, namely localization maps and finite-singular
comparison maps, which play key roles in Euler system arguments. Let e := ek g, be
the absolute ramification index of K. In this and the next subsections, we fix integers
m and N satisfying N > em > 0. We define

Rpn = Ry/™ R, = O/7N0[Gal(Q,,/Q)].
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Definition 4.6. We fix an element 7 € Gg(,,) in the condition (C2) and an isomor-
phism
o T/ (r — 1)T* — O.
By taking Homp(—, K/O(1)), we obtain the isomorphism
®: K/O(1) — (A
Then, we define an isomorphism
\Ilm,N: Rm,N ®Z/7rNZ (T/ﬂ'NT)T:1 = Rm,N ®O/7rN(9 (A[WN])Fr:1 — Rm,N
of R,, n-modules by
\Ime(x X a) X (1/71'N) & Cp[N/e] =T (<I>)_1(a) € Rm,N ®(’)/7rN(’) K/O[WN](l)

(Here, we declare that Gal(Q,,/Q) acts trivially on T/7NT'.)

For any prime number ¢ ¢ ¥, we denote by I, the ideal of O generated by ¢ — 1
and P(Fr,'|T*;1). Let n be a square-free product n := £; x --- x {,, where {; is a
prime number not contained in ¥ for ¢ = 1,...,r. Then, we define an ideal

Definition 4.7. We define a set Py (2;T)o of prime numbers by
(¢, I, CaNZ,, and T/(7NT + (Fr, — 1)T) is }

a free O/mN O-module of rank one.

Py (S T)o = {e

where Fr, € Gg is an arithmetic Frobenius element at ¢. Then, we put
Nu(S:T)o = {Hﬁ re€lso b Pu(ET)o (i=1,..,1) } u {1},
i=1

We define subsets Py (2;T)o C Pn(2;T)o and NG (Z;T)o CNZ(E;T)o by
Pr(Z;T)o : = {€ € Pn(3;T)o | Fry coincides with 7 on Q(u,v, A[r™])},

=1

.NX;(E,T)O = {ﬁ& GNN(E;T>O l; € 'P]TV(E,T)O (Z = 1,...,7")} U{l}

respectively. For simplicity, we write Py := Py(Z;T)o, Py = PR (X;T)o, Ny =
Ny (E;T)o and N := NG (E;T)o.

We define H,, := Gal (Q(n)/Q) for any n € Ny. If n is decomposed as n = [[;_, ¢;,

where (1, ...,/ are distinct prime numbers, then we have natural isomorphisms
Gal(Q,,(n)/Qp) ~ H, >~ Hy, X -+ X Hy,
for any integer m > 0. We identify these groups by the above natural isomorphisms.

Let ¢ be a prime number contained in Py. We shall take a generator o, of the
cyclic group Hy as follows. We define a positive integer Nyz by

I, = 7M8 0.
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Then, by definition, we have N(f} > N. By the fixed embedding (g: Q — Q,
we regard [LNpy as @ subset of Q. Let A := lg( be the place of Q(£) below (g,

and identify Gal (Q(,ug) z/ @g) with H, by the isomorphism induced from the natural
embedding. Let m be a uniformizer of Q(¢),. We fix a generator o, of H, such that

e Cporape—1)  (mod my),
where m, is the maximal ideal of Q(¢),, and
ordy: QF —=7Z
is the normalized valuation at p. Note that the definition of o, does not depend on
the choice of m. We have the following Lemma.
Lemma 4.8 ([Ru2] Lemma 1.4.7). Let ¢ € Py. The following hold.
(i) The O/xNO-modules T/ (7NT + (Fr, — 1)T) and (T/7T)*™=" are free of

rank one.
(ii) Ewaluating cocycles on Fry and o, induces isomorphisms

H}(@m ® @Z’ T/WNT) i> Rm,N ®O/TI’NO T/ (WNT + (FI'[ - ].)T)
H(Qum ® Qp, T/7NT) — Ry @oyaro (T/7NT)T=!

of R,,-modules respectively.

If ¢ € Py, then the isomorphism W¥,, v and Lemma 4.8 induce an isomorphism
Ul v HY(Qp ® Qp, T/7NT) = Ry v @0 avo (T/aNT) =" — Ry v
of R,, n-modules. Here, we define the “localization” map.

Definition 4.9 (Localization map). For any ¢ € Ny, we call the composite of natural
maps

oy H(Qun, T/7NT) — Hiy(Qun ® Qp, T/ T)
— HX(Q, ® Q,, T/7NT)
the localization map. If ¢ € P}, we define the composite map
O = Yiun © Ot s H(Quoy T/7NT) — Ry
In order to define the “finite-singular” map, we need to introduce a new local

condition on T'/7NT.
Definition 4.10 (Q,,(¢) ® Q-transverse condition). Let ¢ € Py. Then, we define
Hélt (Qm ® Qy, T/WNT)
— Hy(Qu(0) @ Q,, T/7NT) )

This local condition is called the Q,,(¢) ® Q,-transverse condition (cf. [MR] Definition
1.1.6).

HE(Qn ® Qp, T/7NT) := Ker (
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Lemma 4.11 ([MR] Lemma 1.2.4). Let ¢ € Py. Then, we have a direct sum decom-
position

H;t((@m ® Q& T/WNT) = H}(@ﬁv T/WNT) D Htlr((@m & Qﬁ, T/?TNT)
So, the natural projection
HL(Qpn ® Qp, T/7NT) — HY(Qp ® Qp, T/7"T)

18 an isomorphism.

Let £ € Py. Since £ =1 mod p", we have
P(Fr|T;x) = P(Fr;'|T*2) =0 mod 7.
Then, by definition of Py, we have
P(F;YT*1)=0 mod 7%,
so there exists a unique polynomial Q(z) € O/7N O satisfying
(z — 1)Q(z) = P(Fr,|T;z) := det(1 — 2Fr,|T) mod 7.
By the Cayley—Hamilton Theorem, we have a group homomorphism

Q(Fr,

(3) T/ (2T + (Fr, — )T) =250 L (pyaN et

Thus we obtain the “finite-singular comparison” homomorphism as follows.

Definition 4.12 (Finite-singular comparison map). Let £ € Ny. The homomorphism
(3) and Lemma 4.8 induce the homomorphism

Ot Hi(Qn @ Qp, T/7T) — HJ(Qu ® Qp, T/7"T)

of R,, y-modules called the finite-singular comparison map. We define the composite
map

Hélt (Qm & Qﬁa T/T‘-NT)
Htlr (Qm & Qﬁa T/,/TNT)
— H}(Qn ® Qp, T/7T)

fn,N : Hl (Qrm T/T‘-NT)

0
oy HYQy ® Qp, T/xNT)
If ¢ € P}, we define the composite map
¢£1,N,<I>* = \ij;l,N o ¢fn,N5 Hl(Qma T/WNT) — Ry N

4.3. Kolyvagin derivatives. In this subsection, we recall the notion of Kolyvagin
derivatives briefly. As in the previous subsection, we fix integers N > m > 0. Let
¢ = {cm(n) }mn € ESo(T,X) be an Euler system, and ¢ = {c,(n)}mn € ESH(T,X)
a modified Euler system corresponding to c.

Definition 4.13. For ¢ € Py, we define
-2
D= koj € Z[H.

k=1



20 TATSUYA OHSHITA

Let n = []'_, ¢; € N, where ¢; € Py for each i. Then, we define

D, =[] D, € Z[H,).
=1

By the formal arguments using “the universal Euler system”, we have the following
lemma. (For details, see [Ru2] §4.)

Lemma 4.14 ([Ru2] Lemma 4.4.2). For any n € Ny, the images of Dycy,(n) and
D,c, (n) in H(Oq,,m[1/p], 5:T) ®0 O/aNO are fized by the action of H,, where

J: Spec Og,,(n),x — Spec Og,,m)[1/p]

18 the natural inclusion.

Let n € Ny, and put %, := X U prime(n). Let
Jn: Og,, =, — Spec Oq,, [1/pn]
be the natural open immersion. Later (especially in §8), we need the following lemma.
Lemma 4.15. Under the assumption (CT7), the natural homomorphism
Gus T /TN T — Giua(T/7NT)
of O-sheaves on (Spec O, [1/pn])e is an isomorphism.

Proof. By the short exact sequence

N x N
0 —1T —T—T/7"T —0,
we obtain the exact sequence
0 — juuT/7N jpu T — jru(T/7NT) — (R, T) 7] — 0

of O-sheaves on (Spec Og,,[1/pn])e. So, in order to show the lemma. it is sufficient
to show (R'j,.T)[7"] = 0. For any place A of Q,,, we denote by k,,(\) the residue
field of Og,, at A, and let

ix: Spec ky,(A) — Spec Og,,

be the natural closed immersion. Then, we have the natural isomorphism
len*T = @(ik>*H(:lont([@m,AvT)>
A

where A runs through all places of Q,, above elements of ¥ \ {p, o0}, and we regard
H! (Ig, ., T) as a sheaf on (Specky,()))e via its Gy, (n-module structure. Then,
by the assumption (C7), it follows that the O-module H! (Iq,, ,,T) is torsion-free.
Hence the O-sheaf R'j,.T is torsion-free. O

cont

Note that for any prime divisor ¢ of n, the action of Gg, on T is unramified. So
for any n € Ny, the assumptions (C1) and (C4) imply that

H(Q,(n), T/7NT) = H(Q,,, T /7 T) = 0.
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In particular, we have

Hgt(OQm(n)[1/pn]7jn*T/7TNjn*T) = Hgt(OQm(n)[l/pn]7jn* (T/WNT)) =0.
Thus by Hochschild—Serre spectral sequence, the restriction map

Ry Hi(Og,[1/pn], jun T/ junT) — Hy(Ogyuiuys T/ junT)™
is an isomorphism.

/

Definition 4.16 (Kolyvagin derivative). Let z = {z,(n)} be ¢ or c'.
element of n € Ny. Then, we put

oy (132) = (R )™ (Dnzin()) € Hiy(Oa [1/pn], ne T/ 7 )
The cohomology classes k, y(n;2) is called Kolyvagin derivatives. Note that the

Kolyvagin derivative i, n(n;2) can be regarded as an element of Hz, (Qy,, T/7"T)
since the natural map

H}(Oq,, [1/pn), jus(T/7NT)) — Hpy (Qp, T/7NT).

is injective by Lemma 4.15.

Take any

For any n € N, we define the local condition Fe.,(n) on T by
H,, (QT) if 04 n;
H(Qn®Q,T) ifl|n.

The following proposition is one of the essence in induction steps of the Euler system
arguments.

Proposition 4.17 ([Ru2] Theorem 3.5.1 and [Ru2] Theorem 3.5.4). Let z = {z,,(n)}
be ¢ or c’, and n any element of N. Then, for any prime divisor £ of n, we have

(R ¥ (152))° = Sy (R (0/€:2))

H‘;—can(n) (Qm ® Qﬁ, T) = {

In order to discuss the Kurihara’s Euler system arguments, we need the notion of
well-ordered integers, which is introduced in [Ku].

Definition 4.18. Let n € Ny. We call n well-ordered if n has a factorization n =
[T;—, ¢ with ¢; € Py such that ¢;;; splits in Q,, (/LH«;:1Z7_)/@ for any ¢ satisfying

1 <i <r—1. In other words, n is well-ordered if and only if n has a factorization
n = [];_, ¢; such that

€i+1 =1 (HlOd ng)
j=1

fori = 1,...,7 — 1. We denote by N¥° the set of all elements in Ay which are
well-ordered.

In Kurihara’s Euler system arguments, the following Proposition is another essence.
Proposition 4.19 ([MR] Theorem A.4). Let n € NY° be any element. Then, the
cohomology class K, n(n;c’) belongs to ercan(n)((@m, T/7NT). In particular, we have

Oy (B (ni€)) =0

for any prime divisor { of n.
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5. CONSTRUCTION OF THE IDEAL &;(c)

Assume that T" satisfies (C1)—(C7). Here, fix an Euler system ¢ = {¢;n(n)}imn €
ESo(T,Y) satisfying (NV), and let ¢’ = {c,,(n)}mn € ESH(T,X) be the modified
Euler system corresponding to c. We denote ¢ or ¢’ by z = {z,,(n)}.

In this section, we construct the ideals €;(c) of A, and prove Theorem 2.4 (i).

5.1. Construction of €;(c). First, we fix integers m, N satisfying N > em > 0, and
construct an ideal €, ,,, y(c) of R, y for any i € Zxo.

Let n € Ny° with the prime decomposition n = H;Zl ¢;, where ¢; € Py for each
j. We denote the number of prime divisors of n by €(n), that is, €(n) := r. We define
an ideal €, y(n;z) of R, n by

Con(n:2) == { f(kmn(152)) | f € Homp,,  (H"(Qpu, T/7"T), Ry n) } -

Definition 5.1. Let ¢ € Z>o. We denote by &, ,, n(z) the ideal of R,, n generated
by U, € n(n;z), where n runs through all elements of Ny satisfying e(n) < i.

Remark 5.2. By Proposition 4.5, we have
Q:i,m,N(C) - Q:i,m,N<C/)'
Now vary m and N, and let us construct the ideal €;(c) of A. As [Ohl] Claim 4.4,
the following lemma holds.

Lemma 5.3. Let my, my, Ny and Ny be positive integers satisfying mo > mq and
Ny > Ny. Take any element n € Ny,. Then, the following hold.

(i) For any R, n,-homomorphism
for H' (Quy, T/7™N*T) — Rypy o,
there exists an Ry, n,-homomorphism
fii H(Quy, T/7™MT) — Ry i,

which makes the diagram

HY(Quy, T/7T) 2= Ry vy
Corgumy, /Qm, J/ i
Hl (le 3 T/7TN1T) _fl— > le,Nl

commute, where the left vertical arrow Corg,, /g, 1 the corestriction map,
and the right one is the natural projection.
(ii) Assume Ny = Ny =: N. Then, for any R,,, y[Hy]-homomorphism

g1: Hl(le (n),T/ﬂ'NT) — Rm1,N[Hn]7

there ezists an Ry, v[Hp|-homomorphism

go: HY(Qpy(n), T/7NT) — Ry Ny [Ha)
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which makes the diagram
HY(Quy (n), T/7NT) == = Ry no [ o)
Corgym, /lei i
HY(Quy (n), T/7NT) =" Runy v [Ha)

commute.

Proof. Proof of this lemma is completely to that of [Oh2] Lemma 4.13. First, we
shall give preliminary remarks. Let n be as in the assertion (ii). When we treat the
situation in the assertion (i), we assume that n = 1. We put Ry = Ry, n, [Hn], Ra =
Ry, Ny [Hy), and the natural surjection pr: Ry — Ry. Iy my i= Gal(Qy, /Qiy ). We
assume that the action of G is unramified at any prime ¢ dividing n, so it follows
from the hypotheses (C1) and (C4) that we have

H(Qpy(n), T/7"T) = 0.
So, the Hochschild—Serre spectral sequence implies that the restriction map
HY(Qu, (n), T/7*T) — H'(Quy (n), T/7T) 2

is an isomorphism, and we identify these two R,,, n,-modules by this isomorphism.
W also note that
Ry ~ Homg, (R, Q,/Zy,)

is an injective R;-module,

Let us prove the assertion (i). Note that we can easily reduce the proof of this
claim to the following two cases:

(A) (mg, Na) = (mq, Ny + 1);
(B) (ma, No) = (my + 1, Ny).

First, we consider the case (A). Here, we put m = m; = ms and N = N;. By
Lemma 3.3, the map

T/eNT =2 T /7N HT

induces an isomorphism

H'(xm): H(Q,,, T/7"T) — HY(Qu, T/xNT1T)[xN].
Note that we have an isomorphism

xm 1l Ry[n™] = TRy —5 Ry,

so we can define the R;-linear homomorphism

fii=(xmYofyo H (xn): H(Qpu, T/aNT) — R;.
The map f; is what we desired.

Let us consider the case (B). Put

Nm+1/m = Z oc R2a
UEGal(Qm+1/Qm)
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and consider the isomorphism
Vim1/m: B - Nig1mBa = (Rg)tmttm
of Ri-modules defined by 1+ Ny, 11/m,. We define the composite map
fr: B Q@ T/7VT) = H (Quuir, T/7¥T) 2
-1

Vm+1/m

B (Ry) Ty Uy R
Let N'H be the image of H*(Q,,+1,T/7NT) in
HYQu, T/7NT) = H (Quypir, T/7NT) et
by the norm map. Then, the diagram

Hl (sz, T/ﬂ'NT) R2 R2
Cor
Qm+1/@ Nm+1,mx(‘) pr
V7n+1/'m
f
NH == No1jm - H'(Qu,, T/7"T) == = Ry

commutes. This completes the proof of the assertion (i).

Now, let us show the assertion (ii). It is sufficient to show in the case of (mq, N) =
(m1 4+ 1, N). Suppose that an arbitrary R;-linear homomorphism

g1: HY(Qp, (n), T/7™NT) — R,
is given. Since Rj is injective as an Ry-module, we can extend the homomorphism
Vimt1/m © 910 H'(Qu(n), T/7VT) = HY(Qpyr(n), T/aNT) ms1im —s Ry

to an Ry-linear homomorphism go: H'(Q41(n), T/mVT) — Ry. Then, we have the
commutative diagram

Y Qs (), T/mVT) -2 - By —" R,
Corq,,, 11 /Qm=Nm+1/m X (") pr i
HY(Qp(n), T/aNT) —2= R,
of Ry-modules, and the assertion (ii) of Lemma 5.3 follows. O

Let my, mo, N1, Ny and n be as above, and assume N; > em; for each ¢ = 1,2.
Then, Lemma 5.3 and “norm compatibility” of the Euler system c imply that the
image of &, n,(c) in Ry, n, is contained in €, n,(c). We obtain the projective
system of the natural homomorphisms

{@i,mQ,Nz(c) — €y v, (€) ! Ny > N; > em; and Ny > emgy > eml.}

Finally, we define €;(c) as follows.
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Definition 5.4. For any i € Z>,, we define the ideal €;(c) of A = @me by the
projective limit

Q:Z(C) = @ Q:i,m,N(C)-

5.2. Results on principal Fitting ideals. In this subsection, we shall prove the
assertion (i) of Theorem 2.4. Recall that we denote the maximal pseudo-null A-
submodule of X := X(T') by Xg,, and put X' = X'(T) := X/Xg,. The goal of this
subsection is the following theorem.

Theorem 5.5. Assume that the pair (T,c) satisfies the conditions (C1)—(C7) and
(NV). Then, we have

annx (Xan)(c) - Fittao(X') C €(c).

Later (including the proof of Theorem 5.5), we often use the following facts on
twists of T" by characters of I'.

Lemma 5.6 ([Ru2] Lemma 6.1.3). The following hold.

(i) Let y1,...,7 be elements of Gg whose image in I' are non-trivial. Then, the
set

{,0 € Hom (T, O) (T®p)" = =0 for anyi € ZN 1,k }

and any n € Z>q.

is open and dense in Hom (L', O%).
(ii) For any m € Z>, the set

{,0 € Homcont(ry OX)

the order of Hy(T ® p) ®@p R, is ﬁnite}

is open and dense in Hom (T, O%).

Remark 5.7. Assume that (7', ¢) satisfies the conditions (C1)-(C7), (NV) and (MC).
Let p: I' — 1 + 7O be any continuous character, and (O, p) be the free O-module
of rank one on which I' acts via p. We put

T®p::T®O (Ovp)v

and let ¢ ® p € ESp(T ® p; %) be the twist of the Euler system ¢ by the character
p in the sense of in the [Ru2] Chapter 6. Note that both p|g, € Hom(Gg,, O%)

and (p mod 7O) € Hom(Gg, k*) are trivial characters, so the pair (7' ® p, c ® p) also
satisfies the conditions (C1)-(C7), (NV) and (MC).

Proof of Theorem 5.5. Let m and N be integers satisfying N > em > 0. Since Fitting
ideals are compatible with respect to base change, it is sufficient to show that

annA(Xﬁn)[(c) . FittRmﬂN,O(X/ ®A Rm,N) Q Q:o,m,N(C).

By Lemma 5.6, there exists a character p € Homeon (I', 1 + p¥Z,,) which makes the
order of

(H3(T) ® p) @a Ry ~ HL(T @ p) @a R
finite. Let p: ' — 1 + pVZ, be such a character, and ¢ ® p be the twist of ¢ by
p. Note that the image of anny (X (T ® p)an) (resp. I(c ® p) and Fittp o( X' (T ® p)))



26 TATSUYA OHSHITA

in R, y coincides with the image of anny (Xg,) (resp. I(c) and Fitty o(X’)). By the
construction of Kolyvagin derivatives and the ideal &;,, n(c), we also have

Q:i,m,N(C ® p) = Q:Z‘,m,N(C>.
So, we may replace T' with T'® p, and assume that

m

charA(sz(T)) Z (" —1)A.

Fix a A-linear map ¢: Hs(7T) — A. This map induces a homomorphism
G Hy(T) @4 Rpy — R

We take an arbitrary elements 0 € anny(Xg,). By Corollary 3.10, we obtain the
following lemma.

Lemma 5.8. Let N'H,,, n be the image of the natural homomorphism
Hy(T) ®p Ry — H(Oq,, 5, T/7NT).

Then, the kernel of this homomorphism is annihilated by &, and there exists a homo-
morphism ¢ : N'Hp n — RN,y which makes the diagram

6¢m,N

HIZ(T) @a RN

—
—
—
—
—
—
—
—

NH, N

Rm,N
>

commute.

By Lemma 5.8, we obtain
0@m,n (the image of ¢ (1)) = Y (km,n(1;€)) € Comn(c).
By the definition of the ideal I,(c), we have
01, (c)Fittpo(X") = d1,(c) chary (X) = dp(en(1))A,
so we obtain
61(c) - Fittp,, v.o(X ®r Rp,n) = 0@, n(the image of ¢,,(1)) Ry -
This completes the proof. [l

6. KOLYVAGIN SYSTEMS AND LOWER BOUNDS OF HIGHER FITTING IDEALS

Let (T,c,c’) be as in the previous section. Here, we briefly recall the definition
and some known results of Kolyvagin systems established in [MR], and prove the
inequality

(4) ¢;(c) < Fittp ;(X).

for any non-negative integer ¢ under the assumption rankpT~ = 1..
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6.1. Review of Kolyvagin systems. Here, we recall the notion and some results of
Kolyvagin systems for discrete valuation rings. For any n € N, we put I,, := 7V O.
First, we recall the definition of Kolyvagin systems.

Definition 6.1. Let R be O or O/7NO for some N € Z~¢, and put M := T ®¢ R.
Consider a local condition F on M satisfying Hx(Qg, M) = H(Qq, M) for any prime
number ¢ not contained in X.

e For any n € Ni(%;T)o. we define a new local condition F(n) by
Hp(Qe, M) (if Lfn).
(For the definition of H} (Qy, M), see Definition 4.10.)

e A Kolyvagin system for the triple (M, F, P1(T; X))o is a family of cohomology
classes

Hz(Qy, M) = {

K= {Hn S H}-—(n) (Qu M/ITLM)}’VZEN1(E;T)O
satisfying

(HN)gij{n} = ¢€,N{n} (Knse) in H(Qq, M/ 1, M)

for any n € N; and any prime divisor £ of n, where we put N{n} := Nyny (resp.
N’ :=min{N, Ny }) if M =T (vesp. M =T/7"T). We denote the set of all
Kolyvagin systems for (M, F, P1(T; %)) by KSg(M; F, ). In particular, if F
is the canonical local condition Fe.,, we put KSg(M;X) := KSg(M; Fean, 2)
for simplicity.

Here, we remark on some relations between FEuler systems and Kolyvagin systems.

Proposition 6.2 ([MR] Theorem 3.2.4). Assume the following two conditions.

(K1) The action ofFrga—l onT is injective for any £ € P1(X;T)o and any a € Z>.
(K2) It holds that
rankoT ™ + corankp H(Q,, A*) = 1.

Then, there exists an O-linear map
ESH(T,%) — KSo(T,%); z' ={z,(n)}mn+— K(Z') = {k(Z)n}n
satisfying the following property.

(EK) Letn € N1(2;T)o be an arbitrary well-ordered element, and put I,, = 0.
Then, for any z' € ESo(T,X), we have

(2 )n = Ko, (05 2),
where ko, (n;2") € HY(Q,T/I,T) is the Kolyvagin derivative of ' at n.

For details of the construction of the map in Proposition 6.2, see [MR] Appendix
A, in particular pp. 80-81.
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Corollary 6.3. Assume that rankoT~ = 1. Let ng € N1(Z;T)o be an arbitrary
well-ordered element. Then, for any z' € ESo(T,X), there exists a Kolyvagin system

/i(z') _ {K;(z’)n}n S KSO/ﬂN{”O}O(T/ﬂ-N{nO}T’ E)

satisfying
k(2 )y = K0, N gy (M0 z').

Proof. Fix an well-ordered element ng € Ny (2, T)o. By Lemma 5.6, there exists a
character p € Homeoy (T, 1 + 7m0} O) satisfying the following conditions.

e The action of Frzf — 1 on T ® p is injective for any ¢ € P; and any a € Z>.
e The order of H%(Q,, A*) is finite.

Let 2’ ® p € ES,(T ® p, %) be the twist of the Euler system z’ by p. Note that T ® p
satisfies the conditions (K1) and (K2) in Proposition 6.2, so we can apply Proposition
6.2 for T®p. Let K = {k,}n € KSo(T ®p, X) be the Kolyvagin system corresponding
to 2’ ® p, and denote the image of & in KSo ((T'® p) /7" (T @ p), X) by & = {kn}n.
Note that by definition, we have

K/O,N{no} (n7 Z/ ® 10) = KO’N{”O} (n7 Z/)
for any n € N1(2;T)e. So, the condition (EK) in Proposition 6.2 implies
(5) Kp = HO,min{NnO,N{n}}(n; ZI)

for any well-ordered n € N1(%;T)o.

Here, we denote by Foan1 (resp. Fean,p) the local condition on the Gg-module M :=
T /aNtno} T arising from the canonical local condition on 1" (resp. T'® p). In order to
complete the proof of Corollary 6.3, it suffices to show k € KSO/ﬂ_N{n}O(M; Fean1, 2).
Fix an integer n € N1(2;T)p, and let us show

Fin € Hr | ()(Q, M/L,M).
By the definition of the local condition ¢r and [Ru2] Lemma 1.3.8, we have
Kn € Hilfén,p(n)(@’ M/I,M) = ijim(ﬂ)(@’ M/I,M).

On the other hand, by the definition of Kolyvagin derivatives and the equality (5)

imply
kin € Hrn  (Q,M/1,M).

,1

Since any prime divisor of n is not contained in Y, we obtain
Kn € H}'—can,l(n) (@, M/InM)
This completes the proof. (l

Note that by [MR] Theorem 5.2.12, in certain good situations, Kolyvagin systems
determine the isomorphism class of the Selmer groups over complete discrete valuation
rings with finite residue fields. Here, we briefly review this result. Recall that for any
element n € N1 (3;T)o, we denote the number of prime divisors of n by €(n). Namely,
we put €(n) := r if n is decomposed into the product of  prime numbers. For any
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non-zero element k = {k,} € KSp(7,X) and any non-negative integer i, we denote
the maximum (accepting co) of the set

{j € Zso | kin € @ Hry(Q,T/1,T) for all n € N1(5;T)o with e(n) =i}
by 0;(k;T). We also define
0;(T) :=min{0;(x; T) | k = {kn} € KSo(T,X)}.

Note that 0;(7") = 0 for sufficiently large ¢, and 0;(T") > 0;41(T) for any j € Z>o.
(See [MR] Theorem 5.10 (ii) and Theorem 5.12).

Proposition 6.4 ([MR] Theorem 5.2.12). Assume that T satisfies the condition (K2)
in Proposition 6.2. We put

Xo = Xo(T) := Hom (H}Té‘an((@’ A),Q,/Z,) .
Then, we have
Fitte,(Xo) = 7210
for any i € Zso. Here, we put 7°0 := {0}.

6.2. Lower bounds of higher Fitting ideals. Here, let us prove Theorem 2.4 (iii).
In this subsection, we always assume that 7'~ is a free O-module of rank one. We fix
an integer ¢ € Z>( and a height one prime ideal B of A containing Fitts ;(X). We
define two integers a = «;(B) and g = S;(°B) by

Fittay (Xqp) = B Ay,
Ay = P Ag.
In order to prove Theorem 2.4 (iii), it is sufficient to show the following theorem.

Theorem 6.5. We have 5;(*B) > a;(P).

We shall prove Theorem 6.5 by the parallel arguments to that in [Oh2] §8.3, but
here, we also treat the cases when the p-invariant of the Iwasawa module X (T) is
not zero. We identify A = O[[I']] with the ring O[[T]] of formal power series by an
isomorphism O[[I']] ~ O[[T]] defined by v + 1+ T. We assume that Gg acts on A
by the tautological action, and put

T:T®OA

By Shapiro’s lemma and limit arguments (cf. [Ta2] Corollary 2.2), we have the natural
isomorphism

H'(Gox, T) =~ Hy(T),
H'(Gy,, T) = Ho((T).
As in [MR] §5.3, we define the exceptional set ¥, of hight-one prime ideals of A by
Sa = {P | # (HS(T)[P]) < oo
U{P | # (Hio(T)[F]) < oo} U{rA}

Note that X, is a finite set. (See [MR] Lemma 5.3.13.) For any positive integer j, we
define an element f;(7') € O[T] C A as follows.
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e Suppose P # (7), and let f(T) = foo(T) be the Weierstrass polynomial which
generates P. Then, for any j € Zsq, we put f;(T) = f(T) + p’.

e Suppose P = (7). Then, we put f(T) = foo(T) := 7, and f;(T) = 7 + T? for
any ] € Zzo.

For any j € Zso U {00}, let B; be the principal ideal of A = O[[T]] generated by
f;(T). (So, especially, we have P, = P.) Then, there exists a positive integer N ()
satisfying the following properties.

(i) The ideal B; is a prime ideal for any j € Zx> n(p).
(i) The ideal B; is not contained in X, for any j € Zs n(p).
(iii) If P # (), then the ring A/B; is (non-canonically) isomorphic to A/P as an
O-algebra for any j € Zxn(y).

(For detail, see [MR] p. 66.) As in [Oh2], it is convenient to introduce the following
notation.

Definition 6.6. Let M be an integer, and {z;};>ym and {y;};>m sequences of real
numbers. We write x; > y; if iminf; .. (z; — y;) # —oo. We write zy ~ yy if
x; = y; and y; > x;.

For any j € Zs(, we denote the normalization of A/B; by O;. Note that if j >
N(P), the ring O; is a complete discrete valuation ring, and we fix a uniformizer 7,
of O;. We put Frac(0,) := K;. We define a non-negative integer s by

P’ = (O : A/P).
(For instance, if P = (7), then we have A/P ~ E[[T]]. So, in this case, we can take
Teo =T, and s = 0.) We define an integer e, as follows.

o If P # (), we denote the ramification index of K /Q, by ex.
o If P = (), we put e =1

As in [Oh2] Lemma 8.10 and [Oh2] Corollary 8.11, via the observations in [MR],

we obtain the following lemma.

Lemma 6.7. Let M be a finitely generated torsion A-module. We define a non-
negative integer C' by

Fitta, i (My) = B Ag.
For any j € Z>ny), we define a non-negative integer c; by
Fitto, ;(M ®4 O;) = w3’ O;.
Then, we have ¢j ~ Cesj.
Definition 6.8. For any j € Z> y(p), we define a;,b; € Z>q by
75’ O; = Fitto, i(X @ O;),
b; = lengthy, ((A/€(c)) ®4 O;).

By Lemma 6.7, we have a; ~ aexj and bj ~ Bes].
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Let j be an integer satisfying j > N(3). We define a continuous character
pi: ' — 14+ m0;
by the composite
I =5 A— AP, = O
We put T; := O; ®p T, and define the action of Gy on it by
Go x T; — Tj; (9,a ®m) — p;(g)a @ gm.
for any g € G, a € 05 and m € T. We put A} := Homo, (T}, K;/O;(1)), and
Xo(Ty) = Homy, (H. (Q,A2),Q,/Z,).

Proposition 6.9 ([MR] Proposition 5.3.14). Take any j € Z>nypy, and let m;: X @x
O; — Xo(T;) be a natural homomorphism. Then, the kernel and cokernel of ;
are both finite. Moreover, the orders of kernel and cokernel of m; are bounded by a
constant independent of j € Zxn(p)-

As in [Oh2] Corollary 8.14, we deduce the following corollary from Proposition 6.9
and Proposition 6.4 for the O;-module Tj.

Corollary 6.10. We have a; ~ 0;(1}).

For any j € Z>n(y), we take an integer N} satisfying

. eOON’ > 0;(T;) + 4se, and
e p N; € ¢(c )+5T3;-

Note that there exist such an integer N} since the order of Xo(7}) is finite, and since
the ideal €;(c) + 93, has finite index in A Then, we take an integer N}’ satisfying

o eN” > max{e, ex } N,

o'ypj_l—léiﬁj pNJ/'A and
) eN]’.’(E;T) C Pe N’(Z T)(’) m/PeooN’< (OJHO]))

where (O}, p;) is a free O;-module of rank one on which G acts via the character p;.
We put m; := N} — 1.

Proof of Theorem 6.5. Now, let us prove the inequality 8 > «. Note that it is suffi-
cient to show fesj = aexj. Let j € Z>nep). Then, we have

e ~ by = lengthy ((A/(€i(c) +PB;)) @a O;)

— lengthy, ((A/(Ci(c) +B; 4 pNa‘A>) ® oj)

= lengthy,, < c)+P, + + (i 4" = 1))> ®n Oj>
( et/ (the image of e:j(c))) @ oj)
(7

- eN, /(the image of Q:i,mj,eNJ’.’(C))> A (Qj> )

= lengthy,

/N 77 N7 N

> lengthy,



32 TATSUYA OHSHITA

Note that by Remark 5.2, we have
Qtz',mj,eNJ’.’ (C) - €i,mj,eN]’v’(c/)-
Since the ring R, N @A O; is a quotient of the discrete valuation ring O;, the image

of € e N (c') in ij’eNJ/_ ®a O; is a principal ideal. So, there exist a well-ordered
integer n; € ./\/'GNJ/,/(Z; T)o and a homomorphism

hit HY(Qp,, T/p™T) — Ry, env

such that the image of Q:i,mj,eN]//(C' ) in ij,eN]/, ®@a O; is generated by the image of
hj(Kmyenn(ng; €')). Therefore, we obtain

(6)  Bewj = lengthy, ((ijyeN;/(the image of h; (K enr (n; c’)))) ®n (’)j> .
By Lemma 5.3, there exists an R, . er_—linear homomorphism
hy: HY (Qu,, T/p™T) — Ry e

which makes the diagram

1" hj
H ((@mj7 T/pNj T) — ij,eN]’.’

| :

h.
Hl(@mij/pNjT) -1 ij,eNJ/,

commute.

For a moment, we fix an integer j > N(*B), and put N' := N;, N” := N, m :=mj,
n = n; and Bj .= h for simplicity. We put

Let vy, : Rment — Rpnen'[Hy)® be an isomorphism of R, .n+[H,]-module defined
by 1 — Npg,. Note that the natural map

HY(Qu, T/pN'T) — H'(Qp(n), T/p"'T)

is injective by the assumption (C1) and (C4), and Ry, en'[H,] is an injective Ry, on:-
module, so there exist an Rmk,eN;g—linear map

h: H(Qu(n), T/pN'T) — Rypen[Hy)

which makes the diagram

HYQp, T/pN'T)

HY(Qu(n), T/p™'T) = R env[Hy)]
commute.

Proposition 6.11. The following hold.
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(i) There exists a homomorphism

oot H'(Q(n), T/p"'T) — A[H,)/(p"") = 1t Ry o[,

of A[H,]/(p™")-modules which makes the diagram

HY(Qun(n), T/pN'T)

commaute.
(ii) There exists an O;[H,]-linear map

ha, v s HY(Q(n), T;/p™'T;) — O;[H,) /(™)

which makes the diagram

Hl(@(n)lT/pN’ﬂ _—— A[Hn]i/(pw)
H(Q(n), Ty/p"'T) - - - == = O,[H,) /(o)

commute. Here, the vertical maps in this diagram are the natural ones, and
hoo denotes the map in the assertion (i).

Proof. By Shapiro’s lemma and limit arguments (cf. [Ta2] Corollary 2.3), we have a
natural isomorphism

H' (G, T/p"™'T) = lim H'(Qur (n), T/p"'T).

Then, the assetion (i) follows from Lemma 5.3 (ii). The assertion (ii) is proved by
the similar arguments to that in the proof of [Oh2] Proposition 8.16. For details, see
loc. cit.. 0

The map ingj introduced in Proposition 6.11 (ii) induces a homomorphism

/ / VvH, :=Ng, X /
ha, : HY(Q, T;/p™ Tj) — (O;[H,]/(p™) " +———— O;/p" 0.

Recall that here, we assume the ideal ; + p~ "A contains v*" — 1, so the natural
homomorphism

H'(Q(n), T/p"'T) — H'(Q(n), T;/p"'T;)
factors through
H'(Q(n), T/((7"" = 1)T +p"'T)) = H"(Qu(n), T/p"'T).
We denote by N'H,, env () the image of the natural map
H'(Q(n), T/p"'T) — H'(Qun(n), T/p"'T).
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Note that since T is a free A-module, and since *" — 1 = (1 + T)?" — 1 is a monic
polynomial, we have an exact sequence

0— T/pVT 20 1N T s T @y Ry — 0.

So, the natural map
HY(Q(n), T/pN'T) @4 Rent —> Nt env (n)

is an isomorphism, and the map izoo in Proposition 6.11 (i) induces a homomorphism
h="he @ Rpent: N ent n) — Ronent[Hp)-

By Proposition 6.11 (ii), we obtain the commutative diagram

HY(Qn), T/p¥'T) — o A[H, ]/ (o)
NHoonr o LA N
HQ(), T3 /' Ty) —— O, ()
HYQ.T,/pV'Ty) Oj/E;Igj-

We denote the image of ¢, (n) in H'(Q,,(n),T/p"'T) by &, (n), and put
Dpc'(n) := (Dnc,y(n))m € HY(Q(n), T/pV'T) = @Hl(Qm(n),T/pN/T).

Note that we have D,c,,(n) € N'Hyenv,(n)- Let
c® Pj = {(d® pj)m’(n/)}m’m’ < ESOj (73, %)

be a modified Euler system for the Oj-module 7 which is the twist of the modified
Euler system ¢’ by the character p;. Since we assume that n is an well-ordered integer
satisfying

n € Pent(5;T)o € Peoont (35 T)0, N Peon: (35 (05, p5))o,
we can define the Kolyvagin derivative
fio.on (0 €' ® pj) € HH(Q,T3/p"'Ty) = HY(Q, (T/p"'T) @0 (0;,1))
whose image in H'(Q(n), (T/p"'T) ®o (0;, 1)) coincides with the image of
D,e,,(n) € H{(Qu(n), (T/p"V'T) @0 (0;,1)).

Here, (0;,1) is a free Oj-module of rank one on which G acts via the trivial character.
By Corollary 6.3, there exists a Kolyvagin system

k(¢ ® pj) ={k(c' @ pj)w}w € KSo, (T}, %)
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such that the image of x(c’ ® p;), in H'(Q,T;/p™'T;) coincides with the Kolyvagin
derivative Ko n'(n; ¢’ @ p). Therefore, we obtain

0,/ 0; )
hj(“mj,eNJ'/ (nj;c)) - (Oj/pNj 0,)
Oj/pN; Oj
Vit (p4sh(D”jclmj (”j>>> - (0;/p™50;)

Bes] > lengthoj (

~ lengthy,

So, we obtain the inequality

NI O
(7) Beoej = lengthe, ( 0,/r>0; ) .

hog, (P*R(¢! ® pj)a) - (0;/p™0))
By the estimate (7) and Corollary 6.10, if P # (), then we have
Beoj = min{0i(T}) + 4s€os, oo N} }
= 0;(T}) + 4see ~ aj ~ Q€uo].

Let us consider the case when 8 = (7). Note that in this case, we have s = 0. So,
the inequality (7) and Corollary 6.10 imply that we have

fesej = min{d;(T;), N'j} = 0;(T;) ~ aj ~ aeoo).

Thus, we obtain § > « in any case, and this completes the proof of Theorem 6.5. [

7. EVALUATION MAPS AND THE CHEBOTAREV DENSITY THEOREM

In this section, we briefly recall the definitions and some properties of “evaluation
maps” induced in [Ru2] §7.2. Then, by using the Chebotarev density theorem, we
shall prove a proposition which plays a key role in our Euler system arguments in §8.
(See Proposition 7.6.) In this and the next sections, we assume O = Z,,.

Through out this section, we fix integers m and N satisfying N > m > 0. We
assume that the Z,[Gg]-module T satisfies the conditions (C1)—(C7) 7 € in introduc-
tion. In particular, we fix an element 7 € Gy, ) in the condition (C2).

7.1. Evaluation maps. Here, we introduce “evaluation maps” defined in [Ru2| §7.2.
First, we recall the definition of them. By the assumption (C2), the divisible Z,-
module A/(7 — 1)A is cofree of rank one. Recall that we have fixed an Z,-linear
isomorphism

o T/(r — )T — 7Z,.
in Definition 4.6. By taking (—) ®z, Q/Z, this isomorphism induces an Z,-linear
isomorphism
0°: A)(1 — 1)A = Q,/Z,.

By taking Hom(—, pp~ ), we obtain the Z,-linear isomorphism

07 Zp(—1) — T
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Recall that we have fixed a Z,-basis ((yn), of Z,(1). By this basis, we identify Z,(1)
with Z, as an Z,-module. Then, we put

~

0:=(0")"' ®z, Qp/Zy: A7~ — Q,/Z,.
The assumption (C2) also implies that we have
detz (1 — 7'z [T*) detg, (1 —7a|T)
- x—1 - r—1
We denote the composite map

- () : € Z,[z].

Af(r— 1A ST a0 7,

by 0. Note that the Z,-linear map @ is an isomorphism. (See [Ru2] Corollary A.2.7.)
We define the evaluation maps Ev;, y and Ev,, y as follows.

Definition 7.1. Let X’ be a finite set of prime numbers, and write
X3y i= Homg, (Hir, 1o(Qu, A'p™)), 2/pVZ).

Let 6* and 6 be as above. We put Qnn = Qum (v, A[p"]), and let Q7% be the
maximal subfield of €, y fixed by 7. We define group homomorphisms

Evy, v Gagj}v — XEL/,N
Evin: GQTTn:’}V — Homg, (Hl (Qm, AIp")), Z/pNZ)
by (Evy, n(0)) (¢) :== 6*(c(0)) and (Evpn(0)) () = 0(c(0)). Here, we identify
Z.)pN7Z with p~N7Z/7 C Q/7Z by the isomorphism
pN2/Z 2T 2V

For simplicity, we put Ev}, v := Evy, vy

In the next section, we need the surjectivity of evaluation maps in some sense. (See
§88.2-8.3.) The following proposition ensures it.

Proposition 7.2. For any finite set X' of prime numbers and for any integer Ny
satisfying N > Ny > m, we have

Homy, (H'(Qm, A[p"°]), Z/p"°Z) = Evyung (Gay x)
and

’
X’EL,NO = EV:VL,NO (GQm,N)'

Proof. By Lemma 3.3 and the assumptions (C1), (C2) and (C5), we can deduce the
composite

HY(Qm, A[p™]) ey Hom(GQm’N,A[pN])G@m _
— Hom(Ga,, ., A[p™)/(r = DAPY]) = p~2/Z.

is injective. (For details, see the arguments in the proof of [Ru2| Lemma7.2.4.) We
apply Hom(—,Q,/Z,) to this injection, and obtain the surjection

GQ —> I‘IOHI([{1 (Qma A[prv QP/ZP>
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The first assertion immediately follows from this surjectivity. The second assertion
follows from similar arguments for (A*, 7, 6%). O

Remark 7.3. In the arguments in the proof of Proposition 7.2 (the surjectivity of
evaluation maps), we use the assumption O = Z,. In our paper, this is the only part
which requires O = Z,,.

Let ¢ be a prime number contained in PX(3;7T)e. By definition, we have Frob, €
GQ]TV=1 and I, C GQ]TV=1, where Froby is a lift of the arithmetic Frobenius element at
é@/f, and Iy C Gg is the inertia subgroup at E@/é. Then, by the definition of maps

(—)fns ~.o and ¢h, N+ Introduced in §4.2, we immediately obtain the following lemma.

Lemma 7.4. Let { € Py(3;T)o. Recall that we put R, n = Z/p"Z]|Gal(Q,,/Q)].
(i) For any element v € H'(Q,,, A[p"]), we have

l,s ~ _
@iva = > (Evan(@) (970) - g € Ruy,
9€Gal(Qm /Q)
where ¢y € Iy is a lift of a generator o, of the cyclic group Hy.

(ii) For any element x € Ker(—)g’fN@*, we have

m

fn,N,@*('x> = Z (EVWN(FrObe)) (9_11) ‘g € Ry N
geGal(Qm/Q)

By Tate’s local duality theorem, we have the following proposition.

Proposition 7.5. Let ¢ € PL(X;T)o0, and X a place of Q,, above £. Consider the
local pairing

(o0t HpQu, A [pV]) x Hy (Qua, Alp™)) — Z/p"Z.

Let g € Gal(Q,,/Q) be an element satisfying A\ = (g, o g~ ‘. Then, for any x €
Hy. (Qu, A*[p"]) and y € H(Qp, A[p™]), we have

(z,y)x = Ev}y, y(Froby) (g~ z) - Evin(60) (9~ 'y) € Z/p"Z.

7.2. Application of the Chebotarev density theorem. Here, by using the Cheb-
otarev density theorem, we shall show a key proposition for our Euler system argu-
ments (See Proposition 7.6.) Recall that we have fixed a collection of embeddings
{g: Q — Q,} in the introduction. Note that the existence of such a family follows
from the Chebotarev density theorem. The goal of this subsection is the following
proposition.

Proposition 7.6. Let g € Py (X;T)o be any prime number, and n € NG(X;T)o by
any integer prime to q. We assume that n has a decomposition n = [[;_, t;, where
U1, ..., 0. are prime numbers. Let Ny be any integer satisfying N > No > m. Suppose
the following are given:

o an Ry, n,-submodule W of H*(Q,,, A[p™°]) of finite order;
e an R, n,-homomorphism ¢»: W — Ry, n,-
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Then, there exist infinitely many ¢ € PR(3;T)o which split completely in Q. (ftgn)/Q,
and satisfy all of the following properties.

(i) We have
EV;L’N(FI'Obq/) = EV:;L,N(FI'Obq%
where Frob, € Gg,, (resp. Frob, € Gg,,) is an arithmetic Frobenius element
at qf@/q(’@m (resp. at q@/qu).
(ii) there exists an element z € HY(Q,,, A[p"]) satisfying the following conditions

e We have (z)g,;’j\,@* =1 and (2)} y o = —1.

e For any prime number { not contained in {q,q'}, the image of z in
HYQ,, @ Qu, A[p™]) is zero. Moreover, if { € X, then the image of
the image of z in H'(Q,, ® Qg, A[p™]) is zero.

o We have ¢’  g+(2) =0 for eachi=1,...,r.

(iii) the group W is contained in the kernel of (—)gr;ﬁvo,q)*, and

() = B w0 ()
for any x € W.

Proof. First, let us define an element g; of the Galois group of a certain finite exten-
sion over €2, n related to the conditions (i) and (ii). We put X' := {q, (1,..., ¢, } UX.
Let Ly be the maximal subfield of Q fixed by the kernel of which is the evaluation
map

A [pN]) Gt /@) AX[pN])

and we put L := Lo(ptg,). By definition, the homomorphism Evy, v v|a, - factors
through e*. Note that Ly and L are Galois over Q,,,. On the one hand, all Jordan—
Hoélder constituents of Gal(Lo/Qm n) as a Z,[Gg,, |-module are subquotients of A*[p].
On the other hand, the action of Gg,, on Gal(2, N (tgn)/Qm ) is trivial. So by the
assumption (C4), Lo and €, n(itgn) are linearly disjoint over €, . Hence we can
take an element g € Gal(L/Q,, ) which satisfies

e*: Gg,, y — Homg, (Hom(GQ

m,N "’

91lL, = T_lFI‘Obq|LO.

Next, we shall take an element g, of the Galois group of a certain finite extension
over €, v related to the conditions (i) and (ii).

We define a surjective homomorphism
Py Rnng — Z/p™N°7Z

of abelian groups by > a, - g — a1, where 1 € Gal(Q,,/Q) is the identity element.
Note that the map

Hompg,, v (W, Ro,n,) — Homg (W, Z/p"°Z); [+ Pun,o f
is bijective. Indeed, its inverse is given by

h— (x — Z h(g_lx)g) € Homg,, v (W, Ry, ),
9€Gal(Qm/Q)
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for any h € Homg(W, Z/p™°Z). We define an element 1)y € Homgz (W, Z/p°Z) by

%Eo = Pm,NO ot — EVm,NU(T)|W-

Then, by Proposition 7.2, we have 1), is the restriction of an element contained in
EVm,No (GQm,N )

Recall that by Lemma 3.3 and the assumption (C5), the restriction map

is injective. By this injection, we regard W as an R,, := Z,[Gal(Q,,/Q)]-submodule
of Hom(Gq,, , A[p"0])@al(@n.n/@n)  We denote by M the maximal subfield of Q fixed
by the kernel of which is the evaluation map

e: Gq,, , — Homg, (W, Alp™),

Note that M/Q is a Galois extension, and all Jordan—-Holder constituents of Gal(M/Q)
as a Zy|Ggl-module are subquotients of W. Let 0 € Gg,, , be an element satisfying
Ev,,.n(0) = thy. Then, we denote the image of o in Gal(M/Q,, x) by ga.

Here, we consider the composite field LM. Note that L and M are linearly dis-
joint over €, y since by the assumptions (C3) and (C4), the set of Jordan-Holder
constituents of Gal(L/M) as a Z,|Ggl-module is disjoint from that of Gal(M /€y, n).

Let M’ be the maximal subfield of Q fixed by Ker Ev,y,. ~leq, - and Xy the set of

all prime numbers which ramifies in the extension M'/Q. Let ¢’ be a prime number
not contained in 3 U X' U Xy satisfying

(¢7,, L/Q) = 71
(¢hr» M/Q) = Tgs.

Note that our choice of the family of embeddings {/g: Q < Q,} ensures that there
exist infinitely may prime numbers ¢’. By the definition of ¢/, we deduce that ¢’ splits
completely in Q,, (¢tgn)/Q, and ¢’ belongs to PX(X; T)e. In order to prove Proposition
7.6, it is sufficient to show that all but finitely many such prime numbers ¢’ satisfy
all conditions (i)—(iii).

The condition (i) follows from the definition of ¢’ since Ev;, v,  factors through

the map e*. We shall consider the condition (ii). Let ¢ € P} (X;T)o be any element.
Recall that in §4.2, we have defined an isomorphism

\Ijﬁq,N: Htlr(@m ® @Z7 A[pND = H;(@m ® @Z7 A[pND —:_> Rm,N-

We take an element ¢, € H\(Qn ® Qq, A[p"]) satisfying W!, y(c,) = 1. Then, we
define an element 2 := (2¢)resrufe} € Byesy Héy(Qn @ Qp, A[pN]) by

cg (L=4q);
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Then, Lemma 7.4, Proposition 7.5 and the Poitou-Tate exact sequence

HY(Og,, w00y, AP — @@ HAL(Qn @ Qi AP™])) — Xo 3177,
Lex’u{q'}

imply that there exists an element z € H*(Oq,, svu(q} A[p"]) whose image in

P HLQwn® QAP

es'U{q'}
coincides with z. Such z clearly satisfies all the properties required in (ii).

Now let us consider the condition (iii). Since ¢’ ¢ Xy, Lemma 7.4 implies that the
group W is contained in the kernel of (—)] "y .. It is sufficient to show

Py no Y(z) = Pnno ¢Z);,N,q>* (z)

for any x € W. This equality follows from the choice of ¢’ (in particular, see the
definition of g5) and Lemma 7.4. O

8. UPPER BOUNDS OF HIGHER FITTING IDEALS

In this section, assume that 7" satisfies (C1)—(C7), and fix an Euler system ¢ =
{em(n)}mn € ESo(T,X) satistying (NV). Let ¢ = {c,(n)}mn € ESp(T,X) be a
modified Euler system corresponding to c. Throughout this section, we assume O =
Z,. Here, by using Kurihara’s Euler system arguments, we shall prove Theorem 2.4
(ii), which asserts that the ideals €;(c) give “upper bounds” of Fitty ;(X).

8.1. Setting. Recall that we denote the maximal pseudo-null A-submodule of X :=
X(T) by X, and put X' = X'(T') := X/ Xq,. If X’ = 0, the assertion (ii) of Theorem
2.4 immediately follows from Theorem 5.5. So, we assume X’ # 0 here. The projective
dimension of the A-module X’ is one, so there exists an exact sequence

(8) 0— A" Ly Ah 25 X' 0,

where h is the minimal of the cardinalities of sets of generators of X’. We denote by
M the matrix corresponding to f with respect to the standard basis e := (e;)i_; of
the free A-module A"

Let {mq,...,mp} and {ny,...,n,} be permutations of {1,... A}, and let ¢ be an
integer satisfying 1 <7 < h—1. Let us consider the matrix M; which is obtained from
M by eliminating the n;-th rows (j = 1,...,4) and the my-th columns (k =1,...,17).
If det(M;) = 0, we clearly have det(M;) € €;(c), so we assume that det(M;) # 0.
If necessary, we permute {m;,...,m;}, and assume det(M;) # 0 for all integers j
satisfying 0 < j <.

For a while, we fix integers m and N satisfying N > m > 0, and we put

XN = Homg, (H}C*an(@m, A” [PNDa Z/PNZ) :
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(Note that our tentative goal is Proposition 8.6 in §8.3, which states that certain
equalities in R,, y related to €;,, n(c) and X ®, R, v hold.) By Proposition 3.8, we
have the natural isomorphism

X @A Rm,N ~ Xva.

Let X, v.sn be the image of Xg, in X, n, and write X, 1= XN/ Xmnin- We shall
consider the ideal €, ,, y(c) = €; ,, v(c’) and the image of det(M;) anny (Xg,)I(c) in
RN

By Lemma 5.6, there exists a character p € Homeon (T, 1 4+ p™¥Z,) which satisfies
chary (H2(T @ p)) € (77" — 1)A.

Let p: I' — 1 4 p"Z, be such a character, and ¢ ® p be an Euler system of T ® p
which is the twist of ¢ by the character p. In particular, we have

chary (X (T ® p)) = chary (X(T) ® p) € (47" — 1)A.
Note that by the construction of the ideal &, ,, y(c) implies
Cimn(c®p) =Cnn(c).
We define an endomorphism
i A — Ay = p(y) ey

of a topological O-algebra A. By the exact sequence (8), we have an exact sequence

00— A 2z X @ p) — 0.
In order to study €; ,, y(c) and X ®p R, v, we may replace T' (resp. M;) with T'® p
(resp. ¢,(M;)). So, from now on, we assume that the order of X ®, R,, is finite.

We apply (—) ®a R, to the short exact sequence (8), then we obtain an exact
sequence
(9) 0— R LR 95 X' 9, R, — 0.
Here, the injectivity of f follows from the assumption # (X’ ®x R,,) < co. We define
an integer N’ by
P = max {#HZ(O[1/p], 5 T)or, #(X' @n Rn) }

where j: Spec O,, » — Spec O,,[1/p] is the natural inclusion, and

Hg (Om[1/p], 5.T)tor € He(Om[1/p), 5T )ior

denotes the O-torsion part. We apply (—) ®g,, Rm.n+n to the short exact sequence
(9), and consider the exact sequence

INEN/

h fNJrN/ h /
(10) Rm,N-‘,—N’ ; Rm,N—i—N’ Xm,N—i—N/ 0.

We put R := Ker fy,n. Note that X' ®, R, =~ ;n,NJrN, is annihilated by pN' so R
is annihilated by pV'.

For each integer j with 1 < j < h, we denote the image of ¢; in an,N+N/ by e,
and fix a lift x; € X,,, y of gnyn(ej). By Proposition 7.2, we have

Tj — BEvip npne (7) € BV, vy (Gay iy )
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Note that sine we assume that h is minimal, Nakayama’s lemma implies z; # z;s if
J # j'. For each integer j with 1 < j < h, we fix a prime number ¢; € P on(3;T)z,
satisfying

* p—
Ev Ny (FrObqj@) = Zj

and define a subset P; of PF(3;T)z, by

Py i= {t € PRyan:(%: 1)z, | By avyans (Frobey) = BV, v yan (Froby, ) |
By assumption (Chb), there exists infinitely many elements in P;.

Here, let us construct 3 maps «ag, a; and [y, which play a key role in this section.
For any integer j with 1 < j < h and any t € {0, 1,2}, we put

Jju = @ H}(Qum ® Q, T/p"™N'T)

define an R,, yynv-linear map oj¢: Jjp — Ry nvpen' by

£7
Qjp = @(_)ms,NthN',@*

We put J; :== @

;1 Jj¢ and consider the map

— h . s h
Oét o (Oé],t)jzl . Jt Rm,N—i—tN"

The construction of the map [y is slightly complicated. By (the direct limit of) the
Poitou-Tate exact sequence and the exact sequence (10), we deduce that there exists
a homomorphism

BI: Hjlfgjln<@m,T/PN+N/T) — RZm,N+N’/ﬁ

which makes the diagram

(11) Hfliin (Qum, T/pNN'T) J1 X N4
[
-
! fN+N’
0 an,N-&-N’ /5’jt R%,NJFN/ - Xrlwz,N+N’

commutes. Note that the bottom low in the diagram (11) is exact, and the top low
may not be exact but a complex. Recall that £ is annihilated by p™', so £ is contained
in pV R, - We define 3 to be the composite map

mod pV

! Bl
Bi: Hyp (Qu, T/p"NT) =5 R vy /R R n-

Take an integer n which is a product of some prime numbers contained in P :=
H?Zl P;, and put X, ;= ¥ U prime(n). Let
Jn: Spec Og,, »,, — Spec Og,, [1/pn]

be the natural open immersion.
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Definition 8.1. Let t € {0, 1,2}. We denote the image of the natural homomorphism
Hélt (Oq,,[1/pn], jn*T/pN+2Nljn*T) — Hét (Og,.[1/pn], jn*T/pNHN,jn*T)
by H;(n). Note that by Lemma 4.15, we can naturally regard
Hi(n) C Hr, (Qu, T/pNTN'T).

In order to construct the map By: Ho(n) — R%, we need the following lemma.
Lemma 8.2. The natural map
Hi(n) ®z, (Zp/pNZp) — Ho(n)

18 an isomorphism.

Proof. For any t € {0,1,2} and a € Z>(, we put
7:[15(71) - = Hgt(OQm[1/pn]7jn*T/pN+tN/jn*T)a
H(jneT) : = Hg(Og,, [1/pn], juiT).
The exact sequence

N+tN’ ,
0 — juusT —2—— . T — G T/pN N T — 0,

induces a commutative diagram
0 ——= H'(juuT)/p" N —— Hy(n) — H*(juuT)[p"T*N] —0
mod pN‘HVIi lpwfx
0 —— H'(juuD) /P —— Hi(n) — H?(ju ) PN —0
mod pNi J/ lpwfx
0 — H'(juT)/p" — Ho(n) —= H*(juuT)[p"] —0,

whose rows are exact. (Here, for simplicity, we put M/a := M /aM for any Z,-module
M and any element a € Z,.) So, we obtain a commutative diagram

(12) HY(juT) /PN — Hi(n)/pN — (pV H?(j . T)[pV+2N]) [0V —0
0— Hl(jn*T)/pN — 7'20(”) HQ(jn*T) [pN]

with exact rows. In order to prove Lemma 8.2, it is sufficient to show that the right
vertical map P in the diagram (12) is injective.

0,

Here, let us consider H?(j,.T). Let
j =iz Spec Og,,x — Spec Og,,[1/p]

be the natural open immersion. By Leray spectral sequence, we obtain the exact
sequence

(13)  Hi(Og,[1/pl, jiT) — He(juT) — Hg(Og,, [L/pn], R juT) — 0.
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Let we have natural isomorphisms

H (O, [1/pn], R T) =~ €5 H' (kn mnT) = @ H (Qua, T
An Aln
~ P H(Qua. A7),
Aln

where A runs through all places of Q,, above prime divisors of n. Since we assume
n € Nyyon/(X;T), for any place A of Q,, dividing n, there exists an integer M, >
N + 2N’ such that

H(Qu, AY) =~ Z,/p™ L,
So, the exact sequence (13) and the choice of N” imply that we have a decomposition

H?(juT)[p" ] = Lo @ L,

where Ly is an abelian group annihilated by p™', and L, is a free Z/p"V*2N' Z-module.
In particular,

pNIH2(jn*T)[pN+2NI] — pN/Ll
is a free Z/pN+tN' Z-module. Hence the right vertical map P in the diagram (12) is
injective, and this completes the proof. 0

By Lemma 8.2, the map (3|4, (n) factors through Ho(n). Namely, there exist a
unique map By = (80)"_; : Ho(n) — R}y which makes the diagram

B1
Hi(n) — Ryin

e

Ho(n) - EO_ > RN

commute, where the left vertical arrow is the natural map. Summary, we obtain the
following lemma.

Lemma 8.3. Let n, ag and [y be as above. Then, the diagram

HQ(TL) —_— J()

NN

an N 77 an N
b fN b
commutes, where fx is the map induced by f.

8.2. Analogue of Kurihara’s element. The arguments in the rest of the proof of
Theorem 2.4 are similar to those in [Oh2] §§7.2-7.4. In this subsection, as in [Oh2]
§7.2, we shall introduce elements x(v; q) € Ha(qr) which are analogues of Kurihara’s
elements, and which become a key of the proof of Theorem 2.4. In the present and
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the next subsection, for simplicity, we put

EN s,0
<_>t T (_)m,N+tN’
/ ¢
by = ¢m,N+tN',<I>*
ki (n) = K, nren (05 )
Let qv € N (2;T)z, and assume that qu is well-ordered. Suppose that for each prime
number ¢ dividing v, an element wy € R, yon' is given. (Later, we shall choose qv
and {wy}, explicitly, but we take arbitrary elements here.) For any e € Z>, dividing
v, we define we := [],, we. Since we have r2(qv/e) € Ha(q) for any positive divisor
e of v, we can define the element z(v; q) by
z(v;q) = Hwe ® Ko(qr/e) € Ha(qu).
elv

For any t € {0, 1,2}, we denote by x(v; ¢) the image of 2(v; ¢) by the natural homo-
morphism

Hl(@m; T/pN-i-QN’T) N Hl(@m, T/pN+tN/T).
The following proposition immediately follow from Proposition 4.17 and Proposition
4.19.

Proposition 8.4 (cf. [Ku] Proposition 6.1). Let qv be an integer which is decomposed
into the square-free product of some prime numbers contained in P. We assume that
qu is well-ordered. Let t € {0,1,2}.

(i) Let £ be a prime number dividing v. Then, we have

(2:(v59));° = & (m(v /0 q)) -

(ii) Let £ be a prime number dividing v. Then, we have

o; (z(v5q)) = we - ¢y (2e(v /45 q)) .

Here, let us take ¢, v, and {wy},. First, let us take a prime number ¢ as follows.
Fix a non-zero element d4 € anny (Xg,). Recall that for each integer r with 1 < r < h,
we have fixed a prime number ¢, € P, in the previous subsection. We put

h
Q = HQT E-/\/’N-
r=1

We fix a homomorphism ¢: HE(7) — A of A-modules satisfying p(c(1)) # 0. Note
that we have

c(1) = /(1) = (cf(1))m>o0 € Hy(T).
By the definition of I,(c), it holds that
p(c(1)) - A = det(M) - I(c),

where M € M;(A) is the matrix defined in the previous subsection. We take an
arbitrary element o, € I,(c). If necessary, we replace ¢ with ay for some a € A, and
we may assume that we have p(c(1)) = d, det(M). Let

p: H%(T) N RmJ\f — Rm,N
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be the homomorphism induced by ¢. Recall that in the proof of Theorem 5.5, we
denote by N'H the image of the natural homomorphism

H12<T) ®A RmJV — Hélt(o(@nuz’ T/pNT)

By the similar argument to that in Lemma 5.8, there exists an R, y-linear map
t: NH — R, v which makes the diagram

oAp

Hy(T) ®a Ry y — Rm.n

J, e
NH

commute. By Proposition 7.6, we can take a prime number ¢ satisfying the following
two conditions:

(al) ¢ € Bo \ {gn, };
(q2) N'H is contained in the kernel of (—)&*, and for all x € N'H, we have

¢5(x) = ().
In particular, we have
¢?(the image of ¢(1)) = 1 (the image of ¢,,(1))
= dp(the image of ¢,,(1))
= §det(M),
where M € M, (R,, n) is the image of M.
Next, let us take v and {wy}y,. First, we consider £, 1: H1(Qq) — Rn. By

Proposition 7.6, we can take a prime number ¢, and an element by € Ho(gn,02)
satisfying the following conditions.

e The prime number ¢, splits completely in Q,,(14)/Q, and ¢y € P,, \ {¢n, }-
e For all = € Ho(qQ), we have ¢2(2) = B, 0(2).

e We have (b)5° =1 and (by)s"” = —1.

Then, we put vy := 1, and wy, := ¢§j(b2) € Ry Nion-
Ifi =1, we put v:=1vy =1, and z(v;q) = z(1;q) = ka(q).

Suppose i > 2. In order to take v and {wy},, we choose prime numbers ¢; for any
integer 7 with 2 < 7 <¢+1 by induction on j as follows. Let j be an integer satisfying
2 < j <1+ 1, and suppose that we have chosen distinct prime numbers ¢y,...,¢;_;
contained in P such that ¢, splits completely in Qm(,uq,,j_l)/(@ for any 2 < 5/ < j—1,

where we put vy := Hf, :21 (.. Let us consider the R,,-linear homomorphism
Bm;_1,0° Ho(Qquj—1) — Ry n-

Applying Proposition 7.6, we can take a prime number ¢; which splits completely in
Qi (tgr;_,)/Q, and satisfies the following conditions:

(Xl) gj S Pnj \ {Qn]-};
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(x2) There exists an element b; € H(gn, 6 ;) satisfying the following conditions.
(x2.1) We have (b; )4 * =1 and (b)57" = —1.
(x2. 2) We have ¢2 "(b;) = 0 for each j' satisfying 2 < j' < j — 1.

(x3) ¢ (l’) = Bm,_0(x) for any z € Ho(Qqv;_1).

Thus, we have taken /o, ..., 411, and we put v := v; = H;.:2 l; € N3(E;T)o. For
each j with 2 < 7 <1, we put

= ¢2 (bj) € Rin,n2n',
and we obtain z(v;q) € Hg(qu). Note that qv is well-ordered.

8.3. Computation of the minors. In this subsection, we observe two homomor-
phism «; and §; by using z,,, and describe the image of det(M;) in R, n. (The
goal of this subsection is Proposition 8.6.) Recall that we fix non-zero elements
04 € anny(Xg,) and 6, € I (c). In order to compute the image of det(M;), we need
the following lemma.

Lemma 8.5 (cf. [Ku] Lemma 10.2). Suppose i > 2. Then,

(1) Bm,_10(xo(v:q)) = 0 for all j with 2 < j <.
(ii) @jo(xo(v;q)) =0 for any j # na, ..., n;.

Proof. Let us prove the first assertion. Here, for any a € Hz(Qqv), we denote the
image of a in Ho(Qqr) by a. Let j be an integer satisfying 2 < j < ¢, and define an
element y; € Ha(Qqv) by

Yj Z¢2’ (v/€j;q)) - by
i'=j
Note that by the diagram (11) and the condition (x2) for the elements b;, we have

Bm;—1,0(20(V5q)) = Bmy_1.0(F;)-
(Recall the construction of the map 8y = (8j0)"_;.) Then, by the similar arguments
to that in the proof of [Oh2] Lemma 7.6, we obtain

_ 0
/ij—lyo(yj) - qu (yj) - 07
and this completes the proof of the assertion (i). Since z(v;q) belongs to Ho(qv),
the assertion (ii) of this lemma is clear. O

By the similar arguments to those in the proof of [Oh2] Proposition 7.7, we can
deduce the following proposition from the above lemmas.

Proposition 8.6 (cf. [Ku] pp.763-764 and [Oh2] Proposition 7.7). The following
equalities in R, y hold.
(i) We have
det(M) - ¢ (o(1; q)) = £ det(My) - B(c(1)),
where @: HL(T) ®@a Ry v — R is the homomorphism induced by .



48 TATSUYA OHSHITA

(ii) Assume i > 2. Then, we have

det(M;-1) - ¢ (w0(v: @) = % det(M;) - ¢ (20(¥j-15 )
for any integer j with 2 < j <1.

The signs + in (i) and (ii) do not depend on m.

Proof. All steps in arguments of the proof of [Oh2] Proposition 7.7 works in our
setting. Here, we only show the assertion (ii). (Note that the arguments in the
proof of the assertion (ii) contains an essence how to use Kurihara’s elements in the
computation of the minors of the matrix M.)

We assume i > 2. We denote by e™ := (egm))?zl be the standard R,, y-basis of

R}, . For each j satisfying 1 < j < i we put
XU = Bo(wo(vs:9)) € Ry s
y9 = ao(wo(v539)) € Ry s

and regard them as column vectors. By the commutative diagram in Lemma 8.3, we
have y) = MxU) in Rl .

It is sufficient to prove the assertion when j = i. We write x = x® and y = y@.
Let x' € R be the vector obtained from x by eliminating the my-th rows for
k=1,...,i—1, and y’ the vector obtained from y by eliminating the n-th rows
for k' =1,...,i—1. By Lemma 8.5 (i), we have y’ = M,_;x’. We assume the m/-th
component of x’ corresponds to the m;-th component of x, and the n-th component
of y’' corresponds to the n;-th component of y. By Lemma 8.5 (ii) and Proposition
8.4 (ii), we have

y = ¢€i (zo(Vie1; Q)>€/£21),
where (¢/™)P=#*1 denotes the standard basis of RGN Let M;_; be the matrix of
cofactors of M;_;. Multiplying the both sides of
y = M;_x’
by ]\72-,1, and comparing the m-th components, we obtain
(=1)"F™ det(M;) - ¢ (wo(vim15q)) = det(M; 1) - B, 0(0(v3 9)).

By condition (x3) for ¢;,1, we have

Brneo(@0(v30)) = ¢ (20(v:)).
This completes the proof. 0

8.4. Proof of the theorem. Now let us complete the proof of Theorem 2.4 by the
similar arguments to that in [Oh2] §7.4. Fix a strictly increasing sequence { Ny, } >0 C
Z satistying N, > m for any m € Zs(. In this subsection, we vary m, and denote
the element

¢ (20(50)) € R, = (Z/p™7)[Gal(Q,,/Q)]
defined in §6.2 by (bgj“(xo(yj; q))m-
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Proof of Theorem 2.4 . As in [Oh2] §7.4, by induction on j, we shall prove that the
sequence ( gj“(xo(yj; q))m)m>0 converges to
+040, det(M,) € A
in the sense of [Oh2] Definition 7.8, for any integer j satisfying 0 < j <. First, let
us show it when j = 0. By proposition 8.6 (i), we have
det(M) - 62 (20(1; 9))m = £04 det(M1)p(€(1)) € Ry,

The right hand side of this equality converges to £040,, det(M;) det(M), and since X
is a torsion A-module, we have det(M) # 0. Hence the sequence (¢52(20(1; q))m)m0

converges to d4 det(M;). (Recall that the sign 4+ does not depend on m, see Propo-
sition 8.6).

Next, we assume that the sequence (gbf)j (20(Vj=1:¢))m)m>0 converges to
:|:6A650 det(Mj_l) € A.
Then, the right hand side of the equality

det(M;—1) - ng (20(¥5; @) m = £ det(M,) - Qbé] (20(Vj-159))m € RN,
converges to +040, det(M;)det(M;_1). Since we take det(M;_1) # 0, the sequence

(75”1(%(1/]-; q))m)m>0 converges to £49, det(M,).

By induction on j, the above arguments imply that the sequence (¢€i“ (x0(V59))m)
converges to 040, det(M;). Since

60" (20(V0)m € Cimn, (€) = €y, (€)
for any m € Z>,, we have
:|:5A6@ det(Mz) € Q:Z(C)
This completes the proof of theorem. 0

9. REMARKS ON THE GROUND LEVEL

In this section, we assume that O = Z, and 7" satisfies (C1)-(C7). Further, we
assume the hypothesis (K1) and (K2) in Proposition 6.2. Fix an Euler system ¢ =
{cm(n)}mn € ESg, (T, %) satisfying (NV). Let ¢’ € ESy (T, %) be the modified Euler
system corresponding to c. We also assume the following hypothesis.

(G1) The ideal pind(c) does not contained in (v — 1)A.

(G2) The Kolyvagin system r(c’) = {s(c’), }n € KSz, (T, X) corresponding to ¢’ is
primitive in the sense of [MR] Definition 4.5.5. In particular, for any ¢ € Zs,
we have 0;(k(c'); T) = 0;(T).

Here, we give some remarks on the assumptions (G1)—-(G3). The assumption (G1)
implies that the order of Xy := H Jl”éan (Q, A*)Y is finite. By Proposition 6.4, we have
(14) Fitte,(Xo) = p? =)Dz,

for any i € Zso. (Note that since X, has finite order, we have 0;(x(c); T") < oo for
any 1€ Zzo.)
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By combining the “standard” Euler system arguments like [Rul] §4 (without Kuri-
hara’s elements) and the equality (14), we obtain the following theorem.

Theorem 9.1. Assume that (T, c) satisfies the conditions (C1)—(C7), (K1)—-(K2),
(NV) and (G1)—~(G2). Let N be an integer satisfying p"¥ > #X,. Then, we have

FittRo,N,i(XO> = Q:i,O,N(C)
for any i € Z>y.
Proof. Let N and ¢ be as in the assertion of Theorem 9.1. By definition of the ideal
Co.n(n; '), for any well-ordered n € Ny (Z; T)ZP, we have
Con(n;c) C p?rEmn Ry

where we put 9(k(c'),;T) = min {j € Zsg | kn € P Hr)(Q,T/1,T)}. So, by the
equality (14), we obtain

(15) Qi,O,N( ) C p Bi(w(c")T) RQN = FlttRO N z(AXV())
Let us show €; g n(c) 2 Fittg, ».i(Xo). Here, we use similar notation to that in the

previous section. Recall that Ry y = Z/pNZ is a quotient of the discrete valuation
ring Z,. Since Xy is a finitely generated torsion Z,-module, we have an exact sequence

0—zh Lszh 25X, —0

of Z,-modules, where the matrix My associated with f for the standard basis e :=
(e;)t_, of Zj is a diagonal matrix

ph
do
Mf = P
p™
satisfying d; > dy > -+ > dj,. Note that by the equality (14), we have 0;(x(c'); T)Z, =
Z?:Hl d;j for any i € Z>o. (If ¢ > h, we put Z] _i1d; :=0.) We apply (—) ®z, Roan

to the above short exact sequence, and obtain the exact sequence

fon JoN
RO 2N RU 2N XO O

For any integer j with 1 < j < h, we denote the image of ¢; in R(})L,Q ~ by e;. For each
integer j with 1 < j < h, we define a set P of prime numbers by

= {£ e Piu(:T)s, | B, an (Frobey) = §(2) |
and put P’ := H?Zl Pj. For each integer j with 1 < j < h, we put

= P HU(QW, T/p"T)

KEPJ'

and put J := @"_, J,.

7j=1
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Definition 9.2. Let n be an integer which is a product of some prime numbers
contained in P’, and put ¥, := X U prime(n). Let

Jn: SpecZ[1/%,] — Spec Z[1/pn]
be the natural open immersion. We denote the image of the natural homomorphism

Hélt(Z[l/pn]ajn*T/pgNjn*T> — Hgt(Z[l/pn]ajn*T/pNjn*T)

by H(n). Then, we have a commutative diagram

H(n) O

|
Rf}n,N 4};) RZ@,N
commutes, where the top horizontal arrow (-); is the localization map, the bottom
horizontal arrow f is the map induced by f, and the vertical arrows « (resp. ) are
homomorphisms defined by the same manner to a; (resp. 8;) in the previous section.
For each integer j with 1 <4 < h, let
pr;: RZ%N — R N

be the j-th projector, and put o := pr; o @ and j; := pr; o .

By the commutative diagram in Definition 9.2 and the matrix representation of f,
we have

(16) Bjo () =p"a
for any integer j with 1 < i < h. We need the following lemma.

Lemma 9.3. There exists a homomorphism
Vv: HL(Z[1)X)], T/p"T) — Ron

which satisfies
15(06(1>>RO,N = pao(T)Ro,N-

Proof of 9.3. We denote by HZ(Z[1/%],T)ir the maximal torsion Z,-submodule of
HZ(Z[1/%],T), and let M be an integer satisfying pM > #HZ (Z[1/%], T)tor- Then,
we have a commutative diagram

(17)  He(Z[1/%],T) @z, Ronen— HA(Z[1/3],T/p"*MT) — HE(Z[1/5], T)tor

l \L PIN N+M \L xpM =0

He(Z[1/%],T) ®z, Ron—— Hy(Z[1/¥], T/p"T) —= HE(Z[1/Z], T)sor

whose rows are exact. We denote the image of c(1) in HE (Z[1/%], T/p"tMT) (resp.
HL(Z[1/%],T/pNT)) by (1)nsar (resp. co(1)y). By the assumption (G2), there
exists an element § € HL(Z[1/%], T/pNTMT) satisfying

(T)

co(Dnpar = p*Dy.
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Note that by the commutative diagram (17), we have

PTN,N-s-M(g) € Hélt(Z[l/ELT) Xz, RO,N?
so we obtain

eo(1)y € p* D HL(Z[1/S],T) ®z, Ron-
By assumption (C1) and (C4), we have H°(Q, A) = 0, so H(Z[1/X],T) is a free
Zy,-module (of finite rank). Hence, H} (Z[1/X],T) ®z, Ron is a free Ry y-module of
finite rank. This implies that there exists a homomorphism

o HE(Z[1/%],T) ®z, Ron — Ro,(hi1)n
which satisfies B
o((1)n) Ron = p™ T Ry .

Let ¢: HL(Z[1/S],T/pNT) — Ry n be an extension of vy, then ¢ is the map as
desired. U

By the similar arguments to that in §8.2 using Proposition 7.6, we obtain the
following lemma.

Lemma 9.4. There exists a well-ordered integer n € Ny (3;T)z, with a prime de-
composition n = {1 X - -+ X ;11 satisfying the following conditions.
o For any j € Z satisfying 1 < j < i, we have {; € Ny(35;T )z, and
Evy, an (Froby, ) = g(é;),

where Froby, € Gq is an arithmetic Frobenius element at {;5/¢;.

o We have

0 —
G, N0+ | L @211/ 1708 Ty = UlEY (202 T/N T,

where Y is the homomorphism in Lemma 9.3. '
o Let j be an integer satisfying 2 < j < i+ 1. We put nj_; := Hi;i ls. Then,
we have

g.
¢771,N,<I>*|7‘L(nj71) = 5j—1’%(nj,1)-

By Lemma 9.4 and the equality (16), we obtain

i-1 i-2
p=i=1% B (ko n (0 c))Ron = p=i=1% 6,1 (ko n(ni_1,¢))Ron

= 1(So(1))Ron = PaO(T)Ro,N

h ds
= p==1 9 Ry N.

Since we assume that

i—1
Zdj < O(T) = #Xo <N,
=1

we have .
Fittr, y.i(Xo) = pa=it1d Ro.n = Bi(kon(ni;c’))Ro N
This completes the proof of Theorem 9.1. 0
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Corollary 9.5. Let (T,c) be as in Theorem 9.1. Then, for any i € Z>o, the following
holds.

(i) The image of €;(c) in Ry n coincides with the ideal €; o n(c) for any positive
integer N.

(ii) The image of €;(c) in Z, = N/(y — 1)A coincides with the ideal €;o(c) :=
l'mN Q:MLN(C) .

Proof. Fix i € Z>o. Let m, N and N’ be integers satisfying p™ > p" > #X, and
N > m > 0. Then, Lemma 5.3 (ii) implies that the image of &;,, n/(c) in Ry n/
coincides with &; o n/(c). The image of €;n/(c) in Ry n coincides with €; o n(c)
since Theorem 9.1 implies they are both equal to Fittg, , :(Xo). Hence the image
of & n(c) in Ry n coincides with € y(c). By varying m and N’, Corollary 9.5
follows. O

Note that the higher Fitting ideals determines the the cardinality of the minimal
system of generators of a finitely presented module over a local ring. Precisely speak-
ing, we can easily show the following lemma.

Lemma 9.6. Let R be a commutative local ring, and M a finitely presented R-module.
Then, the cardinality of the minimal system of generators of M is i 4+ 1 if and only
if Fittg,(M) # R and Fittg;11(M) = R. (Note that by Nakayama’s lemma, the
cardinarity is independent of the choice of the minimal system of generators of M.)

By Lemma 9.6 and the results in this section, we deduce the following corollary.

Corollary 9.7. Let (T,c) be as in Theorem 9.1. Further, we assume rankz T~ = 1.
Let v be a non-negative integer. Then, the following two conditions are equivalent.

(i) The cardinality of the minimal system of generators of the A-module X is r.

(i) € _i(c) £ A and €,(c) = A.

Proof. Put Ry := A/(y — 1)A ~ Z,. Then, by Proposition 3.8, we have a natural
isomorphism X ®, Ry ~ Xy. So, by Nakayama’s lemma, the cardinality of the
minimal system of generators of the A-module X coincides with the cardinality of the
minimal system of generators of the Ry-module X,. By Theorem 9.1 and Corollary
9.5, the image of €;(c) in Ry coincides with Fittg, ;(Xo) for any i € Zso. Therefore,
Corollary 9.7 follows from Lemma 9.6. O

Corollary 9.8. Let (T, c) be as in Theorem 9.1. We also assume that ranks T~ = 1.
Further, we assume the condition (MC) and that X is a pseudo-null A-module. Then,
the image of Fitty o(X) in Ry = A/(y — 1)A coincides with the image of anny (X).

Proof. By our assumption, we have I(c) = 0. So, by Theorem 2.4 (i), we have
Fittao(X) C anny (X) C €y(c).
On the other hand, by Theorem 9.1, we have
Fittr, 0(Xo) = €oo(c).
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Note that the image of Fitta ¢(X) in Ry coincides with Fittp, ¢(Xo), and by Corollary
9.5, image of €y(c) in Ry coincides with €y ¢(c). Hence we obtain Corollary 9.8. [

10. EXAMPLES

In this section, we study application of our results for two well-known Euler sys-
tems: circular units (for one dimensional cases) and Beilinson—Kato elements (for
one dimensional cases). Recall that we have fixed embeddings pg: Q = Q, and

0g Q < Cin §1. We regard Q as a subfield of @p and C by these embeddings. We
fix an isomorphism ¢: @p — C of fields over Q.

10.1. Circular units. Let K/Q be an abelian extension satisfying p 1 [K : Q] and
unramified at p. We put A = Gal(KQ(u,)/Q), and fix an even character x €
Hom(A, Z,) satistying x|q,, # 1. We define a Z,[Gg]-module T by

T, :=Z,(1) @ x .

For any m € Zx, let A,,, be the x-part of the p-Sylow subgroup of the ideal class
group of KQ(u,m+1), and define a A-module X, by X, := @Am,x. Then, we have
a natural isomorphism X, ~ X (T,) of A-modules. Note that Z,(1) ® x~' satisfies
(C1)~(C7), and we have an Euler system ¢ of “circular units” for Z,(1) ® x~!
satisfying (NV) and (MC). For details on ¢3¥°, see [Oh2] Proposition 4.5 and Remark
4.6. (For the Iwasawa main conjecture (MC) for this case, see [MW], [Rul] or [Gre].)
So we can apply Theorem 2.4 to the pair (T}, c{¢), and obtain Fitts ;(X,) ~ €;(c¥)
and
annp (X, ) - Fitta (X)) € ()

for any ¢ > 0 ([Oh2] Theorem 1.1). Moreover, in this case, we have the following
results:

e Note that the pair (T}, c{°) also satisfies the conditions (K1)-(K2) and (G1)-
(G2), so we can apply the results in the previous section. (Note that in
this situation, the condition (G1) follows from the Leopoldt’s conjecture for
abelian fields, and (G2) follows from [MW] Theorem 1.10.1.) In particular,
the cardinality of the minimal system of generators of the A-module X, is r
if and only if we have €,_;(c{¥°) # A and &, (c?°) = A.

e If the A-module X is pseudo-null, then we have

Fitt0(X,) = anny (X)) = €(c).

For details of such results on circular units, see [Oh2]. Note that we also treat an
arbitrary non-trivial character y € Hom(A, @; ) in [Oh2].

Remark 10.1 (Elliptic units). For the classical Iwasawa module of ideal class groups
associated with (not necessary cyclotomic) Z,-extension of certain abelian extension
field of imaginary quadratic fields and Euler systems of elliptic units, we have similar
results to the first and second assertions of Theorem 2.4. For details, see [Ohl]
Theorem 1.1.
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10.2. Beilinson-Kato elements. In this subsection, we study the Iwasawa module
arising from elliptic modular forms by using the Fuler systems of Belinson-Kato
elements introduced by Kato.

10.2.1. Basic setting. Fix integers k € Z>9, N € Z>; and an even Dirichlet character
e: (Z/NZ)* — Q. In this paper, via the isomorphism Gal(Q(uy)/Q) ~ (Z/NZ)*
induced by the global reciprocity map of the class field theory, we often regard ¢ as

a character Gal(Q(uy)/Q) — Q.

We denote by Sk (N) the C-vector space of all cuspforms of weight & and level I'y (N),
and by Si(V,e) the C-subspace of Si(N) consisting of all forms with nebentypus e.
For any subring R C C, we define the Hecke algebra b (N; R) C Endc(Sx(V;C)) by

¢: any prime number,
¢': prime number not dividing N |’

b(N:R) = R [Tw), S(6)

where T'(¢) and S(¢') are operators given by

7(6) = 1u(V) () 1)

S(¢) = Ty(N) (f) 2) Ty (N).

We fix a normalized eigen newform f = > a,(f)¢" € Sk(N;¢), and assume that
f does not have complex multiplication. We put F := Q({a}n>1,Ime) C Q, and
PE = p@| r. Let

T(l) — ar(f)

/\f: hk(N§@p> = bk(Nv L(Qp)) — FPF; {S(g/) s 5(€/)€/k—2

be the ring homomorphism corresponding to f.

10.2.2. Construction of a lattice. For the normalized eigen newform f fixed above,
Deligne have constructed a two dimensional representation V'(f) of Gg over F),,.. (See
[De].) In this subsection §10.2, by using the Euler systems of Beilinson—Kato elements

{c,dzpmn<f7 17 Tl? 57 S) S Hl (@(Mp"”»’ T(f))}mgo

intoroduced in [Ka2], we study the A-module X := X (7'(f)) arising from a special
lattice T'(f) of V(f). Here, let us recall the construction of the spcial lattice T'(f)
briefly. (For details, see [Ka2] §8.3. The special lattice T'(f) is denoted by Vo, (f) in
[Ka2].) Note that by Remark 10.7 (ii) below, the choice of the lattice is not essential
for our main results for modular forms, namely Thoerem 10.14. However, when we
state Thoerem 10.14 precisely, the choice of the lattice T'(f) makes it easy to list up
a class of Euler systems which we need.

In order to construct the special lattice T'(f), we need to recall the construction of
V(f). First, we assume N > 4. Let Y;(N) be the (open) modular curve over Q, and
AUV puniv 5y (N) the universal elliptic curve. (Note that Yi (V) is an algebraic
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stack in general, but it is a scheme if N > 4.) We define a pro-p-sheaf #, on Yi(N)e
by

H, = RNV,
Then, we define a free Z,-module V7, (Y1(N)) of finite rank with a continuous Gg-
action by

Vk,Zp <Y1<N)) = ]Jélt (}/1(]\[)@’ Syrnk—QfH;)

and put Vi, (Y1(N)) := Viz, (Y1(N)) ®z, Q,. Note that by geometrically interpre-
tation of Hecke actions via Hecke correspondence of modular curves, Vi q,(Yi(V))
admits a natural b (NV; Q,)-action which commutes with the action of Gg. We define
the F},,.-vector space V(f) by

V(f) = Vio, Ya(N)) @nvigp) (Fors Ar),
and denote the image of Vi (Y1(NN)) in V(f) by T'(f). Note that V(f) is a two

dimensional F}, -vector space with a continuous Gg-action py unramified outside p.V,
and satisfying

P(Fr, |V (f);x) :=detp,, (1 = Fr, ' 2|V (f)) = 1 — a + ()" 2

for any prime number ¢ not dividing pN, where Fr,' € Gg is a geometric Frobenius
element at ¢.

Now let NV < 3. In this case, we define V' (f) and T'(f) as follows. Let L € NZx( be
an element satisfying L > 4, and regard Y;(N) as a quotient stack G\Y;(L) of Y1(N)
by a subgroup G of GLy(Z/LZ). Then, we define Vi g, (Y1(N)) := Vi g, (Y1(L))¢, and
denote by Vi z,(Y1(V)) the image of the trace map

Ne: Vg, (Yi(L) — Vig, (Yi(N)); v — Y gu.
geG

Note that Vj g, (Y1(N)) and Vi q,(Y1(V)) are independent of the choice of L. Then,
we define the F),,-vector space V(f) by

V(f) = Vio, Yi(IV)) @b (v:0,) (Fpps Ar)s

and denote the image of Vj 7z, (Y1(N)) in V(f) by T'(f). Thus we obtain the two
dimensional Gg-representation (V(f), ps) over F,, and its Gg-stable lattice T'(f) for
any N € Zzo.

Definition 10.2. In this subsection, we study the Op, [Gg]-module
(T, pr) = (T(f)(k = 1), 01 © Xeye ) -
where xcy. denotes the cyclotomic character at p. In this subsection we denote by X

a finite set of places of Q consisting of 0o, p and all finite places v dividing N.

Note that rank@FpF T =2, and

det pr = ey

is an odd character on Gg, so we have ranko, T~ =1.
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10.2.3. Assumptions on T. In this paper, we assume the followin condition on the
pair (f,p):

(MF1) We have F,, = Q,.
(MF2) Under the assumption (MF1), the homomorphism

Pr: G@ — AUtZP(T(f)) ~ GLQ(ZP)

is surjective.
(MF3) We have

e XoDlee, Z (6 Xy, mod mp, |

where mp, is the maximal ideal of OF, . (This condition implies that T'(f)
is not “mod p selfdual”.)
(MF4) The Op, [Gg]-module T":=T'(f)(k — 1) satisfies the condition (C6).
(MF5) The Op, [Ggl-module T":= T(f)(k — 1) satisfies the condition (C7).

Here, let us check that 7" := T'(f)(k—1) satisfies the conditions (C1)—(C7) in §2 under
the assumption (MF1)—-(MF5). First, the condition (C4) for T'(f) clearly holds. The
conditions (MF4) and (MF5) tautologically imply (C6) and (C7). The condition
(MF3) implies

(det pr)|cq,. # (det pr)lc,, mod mp,,
so (C3) holds. Let us consider the assumption (MF2) and the conditions (C1), (C2)
and (C5). We need the following lemma.

Lemma 10.3. Under the assumption (MF2), the subgroup ps(Gou,e)) of GLa(Zp)
contains SLa(Z,). Note that the assertion of this lemma is independent of the choice
of the basis V(f) since SLo(Z,) is a normal subgroup of GLy(Z,).

Proof. Since Gg,,) contains the commutator subgroup of Gg, the surjectivity of
py implies that the image of Gg(u,) by py contains the commutator subgroup of
GL3(Z,). It is known that the commutator subgroup of GLy(Z,) coincides with
SLs(Z,). (For the proof of this fact, instance, see [Ro] Proposition 2.1.4 and the
proof of [Ro] Proposition 2.2.2. Note that the statement of [Ro] Proposition 2.2.2
treats only fields but similar proof works for the local rings.) 0J

By Lemma 10.3, the conditions (C1) and (C2) follow from the assumption (MF2).
For the condition (C5), we need the following lemma.

Lemma 10.4. The following hold.

(i) We have HL (GLy(Z,), (Q,/Z,)®*) = 0, where we regard (Q,/Z,)** as a
discrete Z,|GLs(Z,)]-module by the standard matriz action of GLy(Z,).
(ii) Let G be a closed subgroup of GLa(Z,) which acts on Q®* irreducibly. Then

the order of H. (G, (Q,/Z,)%?) is finite.

Proof. Let us show the first assertion. Since H,(GLy(Z,),F2) is isomorphic to

Ker ( Hla(GLa(Zy), (Qp/Z)%) =25 Hlyt(GLa(Z), (Qy/ 7)) )
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it is sufficient to show H(,(GLs(Zy),F2) = 0. We denote the kernel of the natural

projection GLy(Z,) — GL4(FF,) by Gy. Then, we have the inflation-restriction exact
sequence

(18)  H'(GLy(F,),F2) — H!

cont

(GL2(Zp),F2) — Homen(Go, ]F;)GLNIFP)'

First, we shall show H'(GLy(F,),F7) = 0. Let us consider the Hochschild-Serre
spectral sequence
(19) EYY = HP(PGLy(F,), HY(F*,F2)) = H'(GLy(F,),F>).

Since the order of F* is prime to p, we have H?(F*, ]FIQ)) = 0 for any ¢ € Z>(. Clearly,
we also have HO(F*,F?) = 0. (Recall that we always assume p # 2 in this paper.)
Hence by the spectral sequence (19), we obtain

H'(GLy(F,),F2) = 0.

Next, let us show Homon (G, IF%)GL?UF ») = 0. Note that the homomorphism
(l+pr py Ty
Go — M(F,); ( v 1) L w mod p
induces an isomorphism (Gy/[Go, Go|) ®z F, =~ Ms(F,). So, we obtain
Homgon (Go, F2) ) ~ Homp, (g1, ) (2dcram,), F2),

where adgr,r,) = (M2(IFp), adgr,r,)) is the adjoint representation, which is a rep-
resentation defined by the conjugation of matrices. The set of the Jordan-Hélder
constituents of the F,[GLy(F,)]-module adgr,,) consists of two elements: one ele-
ment is the one dimensional (trivial) representation, and the other is sly(F,), which
is three dimensional. In particular, the two dimensional irreducible representation ]Ff)
(with the standard GLy(IF,)-action) does not appear as a quotient of adgr,r,). This
implies
Homy, cL(r,)] (adGLy(s,) Fy) = 0.
By the exact sequence (18), this completes the proof Lemma 10.4 (i).

The second assertion follows from Theorem C.1.1 and the arguments in the proof
of Corollary C.2.2 in [Ru2] Appendix C. For details, see loc. cit.. O

Corollary 10.5. Let G be a subgroup of GLa(Z,) containing SLa(Z,). We also as-
sume that Q := GLy(Z,)/G ~ Z,. Then, we have H! (G, (Q,/Z,)**) =0
Proof. By Lemma 10.4 (i) and the Hochschild-Serre spectral sequence, we have an
injection

cont ( (QP/Z )@Q)Q HC20nt (Qv HO <G7 (QP/ZP)®2>) :
Since G contains SLy(Z,), we have HY (G, (Q,/Z,)**) = 0. So, we obtain
(20) cont ( (QP/Z )@2) = O

Fix a topological generator ¢ € @), and consider the complete group ring

Aq = Z,[[Ql] — Zyllt]}; g — 1+t
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By Lemma 10.4 (ii), the length of the Ag-module HZ .
the other hand, by (20), the map

(¢ —1)x: Hyp (G (Qp/Zy)®?) — Hlo (G, (Qy/Z,)%?)

is injective (and also surjective). Hence by Nakayama'’s lemma, we conclude

Hclont (G7 (QP/ZP)EB2) = O
This completes the proof. 0

Corollary 10.6. The hypothesis (MF2) implies (C5).

(G, (Q,/Z,)*?) is finite. On

Proof. Recall that we put A :=T ®;, Q,/Z, Note that clearly we have
Ker(pr|a, ) = Ker(Gg,, — Aut(A)).

Let € be the subfield of Q fixed by Ker(pr+|g., ). Then, [ : ] is prime to p, so
we have H'(2/Q, A) = 0. By the inflation-restriction exact sequence, we obtain the
isomorphism

Heoni (pr(Gan), A) — H'(Q/Qus, A).
By the assumption (MF2), the images of Gg., by pr contains SLy(Z,). So we can
apply Corollary 10.5 for pr(Gg.. ), and obtain

H'(Q/Qu, A) =0

The hypothesis (MF2) implies that pp« is also surjective. So by similar arguments,
we obtain

H'(Q/Qu, A) = 0.
Thus, we completes the corollary 10.6. 0

Remark 10.7. Here, we give some remarks on the assumptions (MF1)-(MF5).

(i) The choice of the family {E@: Q = Q,}, of embeddings satisfying the assump-
tion (Chb) ensures that for a given modular form f, there exists infinitely many
prime number p satisfying the condition (MF1).

(ii) By the work of Ribet (cf. [Ril] and [Ri2], generalization of the results by Serre
[Sel] and Swinnerton-Dyer [S-D]), if the given eigen cuspform f does not have
complex multiplication, the condition (MF2) holds for all but finitely many
prime number p. Under the assumption (MF2), T'(f) is essentially the only
one Gg-stable lattice of V(f) in the following sense.

(*) If T" is a Gg-stable lattice of V(f), then there exists an element a €
Fy such that T" = a - T(f).
For the proof of the fact (*), see the proof of Lemma 14.7 in [Ka2].

(iii) Skinner and Urban have completed the proof of Iwasawa main conjectures of
elliptic modular forms under certain conditions which require ¢ = 1 and

k—2 _
Xeye ‘G@oo =1 mod mg,

in our notation. (See [SU] Theorem 3.6.4.) Because of the assumption (MF3),
we cannot treat the case they studied. In particular, we have to exclude the
case when T'(f) is a Tate module of an elliptic curve defined over Q.
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(iv) Let us consider the condition (MF4). Here, we assume p > 5, and let I, be the
inertia subgroup of Gg,. For any (f,p), the representation (T ®z, Iy, pr-[1,)
of I, over T, is given either of the following two forms:

— If the representation (7" ®z, F,, pr- 1,) is irreducible, then

~ (¢ 0
I, — 0 ¢I7

where ¢ and ¢’ are characters I, — F; of level two in the sense of [Ed]
§2.4. _
— If the representation (7" ®z, F,, pr-

[ Xeye  *
IP‘( 0 >‘<’éyc>’

where Xy denotes the mod p cyclotomic character, and a and b are some
integers.
(For details of this fact, see [Se2].) Hence there exists an integer i satisfying

H(Qu, A" ® Yo%) = 0.

In particular, for such 4, the pair (f ® w’, p) satisfies the condition (MF4),
where

P+

1,) is reducible, then

T+

w: (Z/pL)* — L ——C*

is the Teichmiiller character. In Example 10.8, we shall study more details on
the condition (MF4) in certain special situations.

(v) Let N be the level of a fixed newform f, and p a prime number not dividing
N. We denote by m; = &, 7., the automorphic representation of GLa(Ag)
corresponding to f. For any prime number ¢, we denote by (rss, Nf,) the
Weil-Deligne representation of Wy, corresponding to V(f). Suppose that for
each prime divisor ¢ of N, one of the following conditions holds.

— We have Ny, = 0, namely 7, is not special, and the order of r,(g,) is
prime to p.

— We have 7y = St ® (¢’ o det), where St is the Steinberg representation
and £': Q — C* is a continuous character such that the order of &|
is prime to p. Further, the action of Iy, on the mod mp, reduction of
T(f) is non-trivial.

Then, Lemma 2.1 implies that the condition (MF5) is satisfied. Note that if
mre is not special for any prime number ¢ dividing N, then the pair (f,p)
satisfies the condition (MF5) for all but finitely many prime number p'.

Example 10.8. Here, we consider sufficient conditions for (MF4) in the following
special situations (i) and (ii).

(i) Suppose that p{ N and pg t a,(f), namely the p-adic representation (V (f), ps)
of G is crystalline and ordinary at p. Then, by Deligne’s unpublished work,
the mod p representation (1" ®z, F, pr- G@p) is given by

~ Xeye A (é(p) ’ a’p(f)) *
Cop 0 Xeye " M (1/ay(f))

Pr+
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where we denote the image of an element z € Z, in F, by z, and for any
a € Fy, we define an unramified character A(a): Gg, — F; by

Aa)(Fr; ') = a.

p

(For the proof of this fact in under assumption & < p + 1, see [Gro| Propo-
sition 12.1.) So in particular, if we have a,(f) #Z ¢ '(p) mod m,,, then the
condition (MF4) holds.

(ii) Let us consider the non-ordinary cases. Assume that p ¢+ N and pr | a,(f).
We also assume that £ < p 4+ 1. Then, by unpublished Fontaine’s work, it
holds that the representation (T ®z, Fpe2, pr+|1,) of I, over F. is given by

_ 1=k 0
Ip = Xeye ® (¢O 'l/)ll_k) )

where 1 and ¢’ := 9P are the fundamental characters 1, — IF;Q of level two.
(For details on this fact, see [Ed] Theorem 2.6.) In particular, we have

H°(Quo, A*) € H'(Qo ® Q,, A*) = 0.
So, in this case, the condition (MF4) always holds.

P+

Example 10.9. Let us consider the Ramanujan’s delta

A::qH(l—q ZT n)q" € Si2(1,1).
n=1 n=1

Here, let p = 13. The condition (MF1), (MF2) an
the SWlnnerton-Dyer s work, it is known that (A,
(See [S-D] Corollary of Theorem 4.) We have

nd (MF5) for (A, 13) hold clearly. By
13) satisfies the condition (MF2).

7(13) = =577738 =8 mod 13,

so by Remark 10.7 (iv), the pair (A, 13) satisfies the condition (MF4). Therefore, the
pair (A, 13) satisfies the conditions (MF1)-(MF5).

10.2.4. Kato’s Euler systems. In order to introduce Euler systems of Beilinson-Kato
elements for T := T'(f)(k — 1), we need to define an “index” set Index(f). We denote
by Index(f) the set of 5-ples (', &, S, ¢, d) consisting of the following data:

e i’ is an integer satisfying 1 <’ <k — 1.
e (&,5) is either of the following two:

— “¢is a symbol a(A), where (a, A) € Z X Z>1, and S is a non-empty finite
set of prime numbers containing prime(pA), where prime(pA) is the set
of prime divisors of N” or

— “¢ is a matrix a € SLy(Z), and S is a non-empty finite set of prime
numbers containing prime(pN)”.

e ¢ and d are integers satisfying prime(cd) NS =0, (¢,6) = 1 and (d, N) = 1.
If £ € SLy(Z), we also assume c =d =1 mod N.
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Here, let us recall Kato’s Euler systems for T. In [Ka2] Chapter I, by using Siegel
units .ga.s € O(Y (N)g), Kato introduced elements
¢, d*M,N; = {cgl/M,07 dgo,l/N} € K2(Y(Mpm> Npm))

called “zeta elements”, which satisfy certain good norm relations with respect to the
pushforward maps

Ky(Y(M',N')g) — K2(Y(M,N)g)
of Ks-groups induced by the natural projections for M | M’ and N | N’'. Then, in
[Ka2] Chapter II, by using the image of zeta elements by (the limit of) the Chern
character map

lim K (Y (Mp™, Np™)) — lim H (Y (Mp™, Np™), py),
Kato constructed an Euler system
zy = A{zim(n) € H(Qn(n),T)} € ESz (T, 5)

for any J = (r', £, S, ¢,d) € Index(f). For details of the construction of z;, see [Ka2].
Note that our z;,,(n) is the image of the w’-component of

p—2
cazpn(f1,7,€,5) € H (Qpyen), T) = P H (Qun ), T ® w')
=0

(in Kato’s notation) by the corestriction map H(Q,,(ptn), T) — H(Qn(n),T). We
define a subset Index (f) of Index(f) by

{J € Index(f) | 2, satisfies the condition (NV) in §2} .

Then, by Kato, the set Index, (f) is not empty. (See Theorem 12.5 and Theorem
12.6. in [Ka2].) Therefore, X(T') is a torsion A-module.

Definition 10.10. We denote the ideal of A generated by
U Ind(z;) (resp. U I(zy))
JeIndexs (f) JeIndex (f)
by Ind(z; f) (resp. I(z; f)). Note that by definition, we have
Ind(z; f) = I(z; f) - chary (X(T)).
We also denote the minimal principal ideal of A containing Ind(z; f) by Indy(z; f).

Now, we can state the Iwasawa main conjecture for the dual fine Selmer groups of
modular forms.

Conjecture 10.11 (See Conjecture 12.10 in [Ka2]). Let T :=T(f)(k —1). Here, we
may not assume the hypothesis (MF1)—(MF5). Then, it should be hold

chary (X(T)) = Indy(z; f).

Remark 10.12. Note that “Conjecture 12.10 in [Ka2| for T' := T(f)(k — 1)” is
equivalent to “Conjecture 10.11 for the modular forms f ® w’ for all i € Z with
0 <i<p—2". Asremarked in 10.7 (iii), Skinner and Urban proved Conjecture 10.11
under certain assumptions (cf. [SU] Theorem 3.6.4.), but we cannot treat their cases
since our assumption (MF3) excludes the conditions on the weight of f required in

Sul.
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10.2.5. Main results on modular forms. In order to state our main results on modular
forms, we need to introduce ideals €;(z; f), which arise from Kolyvagin derivatives of
Kato’s Euler systems.

Definition 10.13. For any i € Z>(, we denote by €;(z; f) the ideal of A generated
by UIndex+(f) QtZ(ZJ)

Now, we can state our main results on modular forms. Under the assumption
(MF1)-(MF5), we can apply Theorem 2.4 for T :=T'(f)(k — 1).

Theorem 10.14. Fix integers k € Z>s, N € Z>y and an even Dirichlet character
e: (Z/NZ)* — Q. Let p be an odd prime, and f = 3°° a,(f)q" € Sk(N;¢e) a
normalized eigen newform. Assume that the pair (f,p) satisfies (MF1)-(MF5). We
put T :=T(f)(k —1). Then, we have the following.

(i) For any i € Z>p, we have
anny (Xan)I(2; f) - Fitta:(X'(T)) C €i(z; f).

Recall that Xg, is the mazimal pseudo-null A-submodule of HZ(T).
(ii) For any i € Z>p, we have

Ci(z; f) < Fittp (X (7).

In particular, if Conjecture 10.11 holds, then we have
Fitta:(X(T)) ~ (2 f),
and the pseudo-isomorphism class of X(T') is determined by &;(z; f).
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